
Skill Transfer between Industrial Robots by Sparse learning

By

Ke Lan

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Electrical Engineering

May, 2017

Nashville, Tennessee

Approved:

Richard Alan Peters, Ph.D.

D. Mitchell Wilkes, Ph.D.

In dedication to my advisor and partner for supporting me all the way

ii

ACKNOWLEDGMENTS

The data used in this project was obtained from mocap.cs.cmu.edu. The database was

created with funding from NSF EIA-0196217.

iii

TABLE OF CONTENTS

Page

DEDICATION . ii

ACKNOWLEDGMENTS . iii

LIST OF TABLES . vi

LIST OF FIGURES . vii

Chapter

1 INTRODUCTION . 1

1.1 Related Work . 3

1.1.1 Learning by demonstration and knowledge transfer across robots 3

1.1.2 Compressed sensing . 4

2 MOTION CAPTURE AND DEFINITION . 5

2.1 Kinect Motion Capture . 5

2.2 ASF/AMC Motion System . 7

2.2.1 ASF file . 7

2.2.2 AMC file . 9

3 SKILL TRANSFER SYSTEM . 10

3.1 Potential Motion Trajectory Generation . 10

3.2 Motion Registration between Robots . 14

3.3 Dynamic Movement Primitives Learning . 18

3.4 DMP learning and Motion representation . 23

3.5 Skill transfer and inverse kinematics . 25

4 SYSTEM DESCRIPTION . 27

4.1 CMU Motion Database . 27

4.2 Yaskawa Motoman HP3JC . 28

iv

4.3 Rethink Robotics Baxter . 30

5 EXPERIMENTS AND ANALYSIS . 33

5.1 Potential Motion Trajectory Generation . 33

5.2 Motion Registration between Robots . 34

5.3 Dynamic Movement Primitives Learning . 35

5.4 DMP learning and Motion representation . 40

5.5 Skill transfer and advantage in space complexity 40

6 CONCLUSION . 44

BIBLIOGRAPHY . 45

v

LIST OF TABLES

Table Page

4.1 HP3JC joints constraints . 30

4.2 Baxter joints constraints . 30

vi

LIST OF FIGURES

Figure Page

2.1 Kinect and different cameras1 . 6

2.2 Kinect depth image and corresponding skeleton generated from SDK 6

2.3 ASF hierarchy in CMU Motion database 8

3.1 Pipeline of skill transfer system2 . 11

3.2 Linkage structure between two joints3 . 13

3.3 Standard Motions registration result between human and Baxtor. In this

figure, the corresponding motion is straight right arm sweep. 17

3.4 Structure of Neural Sparse Autoencoder 20

3.5 the sigmoid function . 21

3.6 Canonical system in DMP algorithm . 24

3.7 Kernel activation in DMP algorithm . 25

4.1 Front and back view of marker set in CMU Motion Database4 28

4.2 Yaskawa Motoman HP3JC5 . 29

4.3 Side view of Yaskawa Motoman HP3JC6 29

4.4 Rethink Robotics Baxter7 . 31

4.5 Front and side view of Baxter8 . 32

5.1 Data from CMU motion database. Top: Boxing. Bottom: Washing window. 33

5.2 Motion data generated by our method . 34

5.3 Pre-registration and resultant point cloud between human and Baxter 36

5.4 Visualization of sparse coding result. The original data is represented by

the value of pixel. 37

5.5 25 learned bases of end-effector trajectories 38

vii

5.6 Process of solving Lasso [1] . 39

5.7 Original trajectory (red) and linear combination fitting result (blue) from

bases . 39

5.8 Error distribution of dictionary representation over 10,000 motion trajectories 40

5.9 DMP of a movement base . 41

5.10 Skill transfer between human and Baxter, Baxter and Motoman 41

5.11 Difference of space complexity between direct transfer and our method . . . 42

5.12 Difference of space requirement between direct transfer and our method . . 43

viii

Chapter 1

INTRODUCTION

Robots unconsciously but drastically changed the lives of many individuals. In 1956,

inspired by the short stories and novels of Isaac Asimov, Devol and Engelberger brain-

stormed to derive the first industrial robot arm, based upon Devols patent, called the Uni-

mate. Programmed Article Transfer became the seminal industrial robot patent which was

ultimately sub-licensed around the world. [2]After development over decades, through we

have not yet observed humanoid robot’s acting as personal assistants in daily life, industrial

robots are revolutionizing manufacturing. Assembled with cyber-physical systems, the In-

ternet of things and cloud computing, industrial robots that can produce more intelligent

and flexible products have become the bedrock of modern industry.

Recently, Boston Dynamics released its latest robot which is described the combination

of legs and wheels as the best of both worlds. The wheels make Handle energy efficient

on flat surfaces. With legs it’s able to manage uneven terrain, and go nearly anywhere.

[3] However, compared with the artificial intelligence being applied in research robotics,

the operation technology of industrial robots is similar to 1970s when Stanford University

produced the Stanford Cart which is designed to be a line follower but also was able to be

controlled from a computer via radio link. [4]

Most industrial robots are still programmed by a human operator. Specific tasks are

hard coded manually through a controller. Thus, task motions are preprogrammed and fixed

point-by-point. The inability to modify pre-learned tasks during operation and the inability

to transfer programs between different robots have limited the use of robots in industry.

More sophisticated works such as cooperation between different robots and reproduction of

complex skills from pre-learned knowledge are impossible without more intelligent robotic

operation technology.

1

Furthermore, consider storage for robot skills. When a robot executes complex tasks,

it must maintain a large library to store the redundant 3D position trajectories. To further

the development of robots, it’s necessary to generalize and transfer robotic skills between

different robot platforms and to keep the motion library small and concise.

In this paper, a motion capture system, motion registration method, and motion dictio-

nary, comprise a skill transfer system based on a sparse coding algorithm and the DMP

method to address above two requirements. A raw skill is learned by capturing the 3D

position of joints during human demonstration. To transfer the motion between different

platforms, an initialization-enhanced self-adapted Scale-ICP method was designed to find

a registration matrix between two robots. To embody the effect of motion compression

and eliminate noise in original track, a motion dictionary was learned from potential tra-

jectories generated from forward kinematics. Original motions are simplified as the linear

combination of motion bases in the dictionary. Thus, over 10-k records of position can be

compressed as a weighting vector with a low-dimension. Whenever we need to transfer

or implement skills on the platform, the motion records are reconstructed by combing a

weighting vector, a registration matrix, and a motion dictionary. With an inverse kinemat-

ics algorithm, to make the robot move, a resultant track is re-coded as operation commands

for the specific robot.

Preliminary work [5] was enhanced with:

• An improved motion capture system which is capable of capturing the location of the

full skeleton.

• A Scale ICP-based algorithm was designed to align two robots automatically.

• A dictionary learning algorithm was proposed to redefine and compress the original

motion records.

2

1.1 Related Work

There are two main fields related to our work:

• Learning by demonstration generalizes skills by fitting a dynamical system model

where the starting point and goal position of the task can be modified to keep the

original behavior.

• Compressive sensing recovers a signal from far fewer samples. It exploits the spar-

sity of signals. Compressed sensing is one available method to generate primitives

automatically and to decrease size of complex skills in the motion library.

1.1.1 Learning by demonstration and knowledge transfer across robots

In order to find a solution to reduce the motion programming time and reuse data from

an older robot, researchers have been working on knowledge transfer across different robots

for some time.

In recent years, researchers worked on the robot skill learning from human demonstra-

tion. Specifically, in Pastor’s work [6], the observed movement is learned and represented

by a non-linear differential system. This is called Dynamical Movement Primitives(DMP).

In the DMP system, a learned skill can be reproduced with different starting and goal pa-

rameters to a required position. With the DMP method, different control models were built.

Li [5] designed a Kinect-based skill transfer system. By applying a hierarchical reinforce-

ment learning approach in sequences of Dynamic Movement Primitives, Stulp [7] proposed

a method to find optimized parameters for DMP. Rückert [8] proposed an extension of dy-

namic movement primitives. By employing parametrized basis functions, it combines the

benefits of DMP with muscle synergies.

To decompose complex trajectories into primitives, some researchers tried to represent

task and robot knowledge as symbols. Konidaris [9] designed an algorithm that decom-

posed the complex task into a chain of component skills. Abbas [10] proposed a longest

3

common subsequence(LCS) algorithm to help build a generalized task structure.

1.1.2 Compressed sensing

Recently, compressive sensing has proliferated in the different fields of Computer Sci-

ence and Electrical Engineering. By representing signals using only a few sparse weighting

vector in a dictionary, compressive sensing (sparse approximation) exploits signal sparsity

and compressibility. [11] After Bruckstein’s work proved that most data such as images

and signals can be recovered from a learned basis set, [12] researchers in different fields

have implemented sparse approximation to compress the original signals. For instance, in

image visual search, to compress the data transfered between client and server, Tibshirani

[1] and Zou’s [13] applied different sparse coding schemes to learn the dictionary and to

compress the data from original BoW (Bag of Words) codebook.

The remainder of this thesis is organized as follows. In Chapter 2, motion capture using

Microsoft Kinect and a skill representation system is briefly introduced. Chapter 3 presents

the pipeline of the proposed skill transfer system which includes potential motion trajectory

generation, motion registration, dynamical primitive motion codebook building, and target

robot operation. In Chapter 4, the robot platforms used in experiment are described in

detail. Experiments and discussions are given in Chapter 5 and conclusions are drawn in

Chapter 6.

4

Chapter 2

MOTION CAPTURE AND DEFINITION

The motion capture and definition chapter describes the motion recording system of

our project. First, using a Microsoft Kinect, human skills were recorded as a sequence of

motions. After processing the raw joint data by low-pass filtering and normalization, the

original human motion is stored in an ASF/AMC system [14], which provides a reasonable

description of human and robot skeletal structure. Furthermore, based on the ASF/AMC

system, the potential transformation of a skeleton is predictable. Thus, we can generate ba-

sic dynamical movement primitives from the skeletal system and decompose input motions

into combinations of dynamical movement primitives for the convenience of future transfer

between different robots.

2.1 Kinect Motion Capture

There are two independent different camera systems in the Kinect. A regular camera

captures an RGB image of the scene. To obtain depth data, a depth sensor system in Kinect

comprises an IR Projector and an IR Camera. The sensor in the camera is sensitive to the

near-IR light from the IR Projector. A grid of generated lights is distorted by surfaces and

imaged by the IR camera. By analyzing the deformations of the IR images of the scene,

depth data are reconstructed. These three cameras restore the scene in 6 dimensions(color:

R G B, position: X Y Z) [15].

To recognize and discriminate human body parts from the background, a machine learn-

ing based object recognition approach is implemented in the Kinect SDK. From a ground-

truth database with 100,000 depth images, a randomized decision forest is trained which

can map the pixel in depth image to corresponding human body parts. [16]

1https://www.codeproject.com/Articles/317974/KinectDepthSmoothing

5

Figure 2.1: Kinect and different cameras1

Figure 2.2: Kinect depth image and corresponding skeleton generated from SDK

6

Figure 2.2 demonstrates how a random tree decides which part of the human body the

pixel belongs to. The randomized decision tree is learned from the ground-truth database.

Each node in the tree represents condition which can divide the inputed data into two sets.

Starting from the root of the tree, the pixel is tested in each node with a specific condition.

Through a path in the tree (red edges in Figure 2.2), going down to a leaf node of the tree,

the pixel is assigned to a specific body part.

After body part recognition by implementing the random forest, it’s possible to estimate

the joint positions by accumulating the 3D center of probability mass. The Mean Shift

Algorithm is one method to find the modes in the density for each cluster. Motion is defined

as the joint’s position transformation in the time-line after low-pass filtering smoothing and

normalization.

2.2 ASF/AMC Motion System

Human Motion capture as described above infers per-joint 3D position in the timeline.

To represent captured motion from the joints’ 3D position changes as a skeleton transfor-

mation, the information must be constrained by a reasonable skeleton model. A skeleton

model is also necessary to generate proper primitive motions for skill transfer in the next

step. In this project, the mechanical structure of human and robots is described by an

Acclaim ASF file. Motion is restored in a corresponding AMC file [14].

2.2.1 ASF file

In the ASF file (Acclaim Skeleton File), the base pose of a skeleton is defined in a hier-

archical style. Starting from the 3D position of a virtual joint root, the ASF file maintains

the mechanical structure as a list of nodes. For each node, the specific description includes:

• “name” & “ID”: “name” & “ID” provide a unique identification for the joint, which

is used as reference for the hierarchy section.

7

Figure 2.3: ASF hierarchy in CMU Motion database

• “parent”: in ASF file, the relationship between nodes is described by the “parent”

property in the hierarchy structure. For all nodes expect for the root, it keeps the par-

ent node. Figure 2.3 is a classical ASF structure used in the CMU motion database to

represent the human skeleton. Specific local properties can be obtained by recursive

calculation from root to node.

• “direction” & “length” : “direction” and “length” define how the joint is posed with

respect to the parent joint. “direction” provides default pose for the joint. “length”

gives the distance to the joint from the parent.

• “axis”, “dof” & “limits”: “axis” provides the offset of global default axis. This prop-

erty allows a joint to be drawn without all the information from the root. Since most

joints have limitations in channels, “dof” gives the degrees of freedom for joint. For

each available channel, “limits” defines the minimum and maximum of reasonable

value.

8

2.2.2 AMC file

The AMC is used to record the transformation of joints in the timeline. For a specific

node, based on the axis defined above, a rotation matrix Q is created in the order “XYZ”:

Q(θx,θy,θz) = Qx(θx)Qy(θy)Qz(θz) (2.1)

Since the rotation matrix is orthogonal, the inverse matrix Qinv is simply the transpose of

the original Q.

In AMC file, each joint also maintains its axis translation offset from the parent root.

A translation matrix T can be created from this information. In the same way, a motion

transformation matrix M can be obtained for each channel. These are combined in a pre-

calculated matrix. The local transformation is, therefore, defined as:

L = QinvMQT (2.2)

Since the hierarchical relationship is defined in the ASF file, a global transformation

can be fixed by accumulation of the local transformations:

G = L1L2 . . .Lroot (2.3)

9

Chapter 3

SKILL TRANSFER SYSTEM

This chapter describes the skill transfer system in detail. As illustrated in Figure 3.1,

the skill transfer system consists of an offline part and an online part. To learn a dictio-

nary which can provide sparse approximation for potential movements in different robots,

a training set, with a large number of trajectories, is randomly generated. This is done

offline using the DH parameters of the specific robot. To evaluate the registration relation

between two platforms, a set of standard movements is designed. Aligning the movement

from source to target, combined with the potential trajectory data, the transformation be-

tween these two platform is revealed by applying the Scale-ICP algorithm [17]. Based

on the generated trajectories, a motion dictionary is learned by a sparse auto-encoder [18]

in dynamic movement primitives learning part. When the movement primitives are avail-

able, the original movement is recoded by solving a lasso problem [1] to find the optimal

weighting vector in the resultant dictionary. For each movement primitive, the DMP algo-

rithm is implemented to create a dynamical system for further skill generalization. In the

online part, whenever a skill is to be transferred, only the weighting vector is necessary to

transfer. The motion is recovered from a linear combination of primitives in the dictionary

and registration via the transformation described above. By using inverse kinematics, the

transfered skill is translated into platform-specific operation for the target platform.

3.1 Potential Motion Trajectory Generation

In this part, the potential motion trajectory is generated as training data for motion

dictionary learning and trajectory registration between different models.

Based on the mechanical structure of the robot model, forward kinematics uses kine-

matic equation and corresponding parameters of each joint to computer the 3D position

10

Figure 3.1: Pipeline of skill transfer system1

and pose for joints. Denavit Hartenberg parameters (DH parameters) is a well known and

frequently used forward kinematics algorithm [19]. The DH parameters method describes

the model as a chain of joints with linkages. For link i, the transformation matrix Ti is

defined as the combination of four primitive transformations [20]:

Ti = Transzi−1(di)Rotzi−1(θi)Transxi(ai)Rotxi(αi) (3.1)

where di is the link offset distance between local coordinate of joint i−1 to local coor-

dinate of joint i in axes zi−1.

θi is the angle offset about previous link in x axes.

ai is link length measurement for link i.

αi is angle offset about previous link in z axes.

The four primitive transformation are respectively:

11

Transzi−1(di) =



1 0 0 0

0 1 0 0

0 0 1 di

0 0 0 1


(3.2)

Rotzi−1(θi) =



cosθi −sinθi 0 0

sinθi cosθi 0 0

0 0 1 0

0 0 0 1


(3.3)

Transxi(ai) =



1 0 0 ai

0 1 0 0

0 0 1 0

0 0 0 1


(3.4)

Rotxi(αi) =



1 0 0 0

0 cosαi −sinαi 0

0 sinαi cosαi 0

0 0 0 1


(3.5)

As a result, Ti equals to:

Ti =



cosθi −sinθicosαi sinθisinαi aicosθi

sinθi cosθicosαi −cosθisinαi aisinθi

0 sinαi cosαi di

0 0 0 1


(3.6)

When the mechanical parameters are obtained, starting from the first link l0, by imple-

menting transformation T0T1 . . .Ti−1 in chain, the li is fixed.

2http://www.intechopen.com/books/matlab-a-fundamental-tool-for-scientific-computing-and-

12

Figure 3.2: Linkage structure between two joints2

In our system, since the length of linkage is fixed, the system can be simplified as:

P = T1...n−1(DH parameters,θ) (3.7)

where P is the location of joint1...n, T is the transformation for linkage1...n−1, and θ is

the set of input angle parameters for joint1...n.

To generate the training dataset, which can almost cover all the potential trajectory of

motion, in our method for each joint four anchoring angles are generated randomly. After

interpolation for these anchoring angles, we create a sequence of θ for all angles. Applying

the DH Parameters described above, the full trajectory is produced. Consequently, in this

way, we both guarantee the diversity of the training set and the smoothness of the motion

track.

engineering-applications-volume-3/micro-robot-management

13

3.2 Motion Registration between Robots

In this section, to transfer skills between platforms, we are concerned with the registra-

tion of two trajectories from different robots. First, the registration problem is considered

as a point registration optimization problem. Then, a scale factor is introduced into the

optimization formula. Since the formula describes the registration error, by solving it, the

registration can be solved uniformly across the links. Last, by applying the Scale-ICP algo-

rithm from Ying’s work [17], the original motion from one robot can be transformed into

the corresponding motion in target robot.

Suppose, in the data generated by the forward kinematics described above, there are

two partially overlapping trajectories, an original trajectory P, and a target robot motion Q.

Denote s,R ∈R3×3,~t ∈R3 as the scale factor, rotation matrix in 3D space, and translation

vector. The registration optimization model can be defined as:

mins,R,~t(∑~pa∈P ‖sR~pa +~t−~qc(a)‖2
2)

s.t.RT R = I3,det(R) = 1

(3.8)

where~qc(a) is the corresponding point for ~pa in the target trajectory scan.

Suppose the correspondence of points between two trajectory sets is not available, in

our work, compared with the standard ICP algorithm [21], the optimization is designed as

a iterative process.

In iteration k, to map points in the original trajectory to the potential trajectory of the

target robot, a closest matching strategy is applied at first. More specifically, a K-D tree

[22] is constructed based on the data from Q. For ~pa ∈ Pk, nearest neighbors in the target

data set Q are found to produce the corresponding closest data set Qk.

The target function of the registration optimization problem can be redefined as a Fidu-

14

cial Registration Error [23] without the scale factor s:

FRE2 =
1
N

N

∑
i=1
‖Rpi +~t−qi‖2 (3.9)

In this equation, to separate translation vector~t, standard FRE is processed by local

mean subtraction as:

FRE2 =
1
N

N

∑
i=1
‖Rp̃i− q̃i‖2 +‖Rp̄i− q̄i +~t‖2 (3.10)

where p̄i and q̄i are the mean values of point clouds. p̃i and q̃i are corresponding

point location generated from mean subtraction. As we know, R and~t represent the rigid

transformation between the original points and the target points. This registration relation

is also valid to the mean values. Thus, we have ‖Rp̄i− q̄i +~t‖2 = 0. Consequently, the

translation vector can be calculated by~t = q̄i−Rp̄i.

The rest of Fiducial Registration Error is:

1
N

N

∑
i=1
‖Rp̃i− q̃i‖2 =

1
N

trace(Rpi−qi)(Rpi−qi)
t (3.11)

Let H = pqt , by using singular-value decomposition of H to find parameter that maxi-

mizes trace of RH, rotation matrix R can be obtained:

H =U ∧V (3.12)

R =



VUT det(VUT) = 1

V


1 0 0

0 1 0

0 0 −1

UT ,det(VUT) =−1
(3.13)

when rotation matrix R is obtained, to extend this algorithm, a scale factor is introduced

15

in the registration problem as described in Scale-ICP algorithm [17],

s =
∑

N
i=1 < Rp̃i, q̃i >

s
(3.14)

After we get the scale factor sk and rotation matrix Rk, in current iteration, the corre-

sponding translation vector separated in equation 3.10 is generated by:

~t = q̄− skRk p̄ (3.15)

Through the Scale-ICP algorithm, the original motion from one robot can be trans-

formed into the corresponding motion for the target robot. However, since ICP algorithm

is sensitive to initial parameters, bad initialization often leads to convergence to a local min-

imum which can be incorrect. We designed a set of matching standard motion trajectory

pairs between two robots to have a good guess for initial registration parameters. Figure 3.3

illustrates a typical registration between standard motions between two kinematic models.

First, the initial scale factor si is defined as:

si =
max(q)−min(q)
max(p)−min(p)

(3.16)

Since the order of the points in the trajectory is available, the initial parameters Ri and

~ti can be computed by equations 3.13 and 3.10.

The iterative process defined above is described briefly as the algorithm 1.

After the registration process, we can transfer the motion for robot 1, M1 to correspond-

ing motion in robot 2, M2 as:

M2 = sRM1 +~t (3.17)

16

Figure 3.3: Standard Motions registration result between human and Baxtor. In this figure,
the corresponding motion is straight right arm sweep.

Algorithm 1 Scale-ICP algorithm

Input: original data set P and Q, initial parameters si,Ri,~ti and terminating error ε

Output: optimal parameters s,R,~t

while ∑~pa∈P ‖sR~pa +~t−~qc(a)‖2
2 < ε do

In iteration k, for ~pa ∈ Pk, find closest point set Qk ∈ Q

Compute Rk+1 by formula 3.13

Compute sk+1 by formula 3.14

Compute~tk+1 by formula 3.10

end while

17

3.3 Dynamic Movement Primitives Learning

In this chapter, a motion dictionary is learned by implementing sparse approximation to

the motion trajectories in the training set generated above. To recode complicated robotic

behavior, compressive sensing algorithm tries to learn a dictionary from the original re-

dundant information and use the combination of primitive elements in the dictionary to

reconstruct the robotics skills. One simple, naive implementation of dictionary learning

is PCA, which generates a complete set of bases. However, drawbacks of a PCA based

method are noticeable. First, PCA is sensitive to the noise in the training set. In a addition,

PCA which is linear does not fit the nolinear trajectory very well.

In order to realize the hidden pattern in the system, an over-complete set of bases is

necessary to fit movement which is not contained in the training set. In addition, even if a

relatively large dictionary is available, mixing most elements in the dictionary is not always

helpful enough to find the significant factors (primary moves) for the data.

To have sufficient descriptive power yet remain efficient, the implemented dictionary

learning algorithm should generate:

• An over-complete dictionary.

• Relatively short and clean code to recover the basic motion behavior information of

robots.

Based on the requirements above, in our system, we found that the sparse coding

method was adequate to compress the redundant movement information. We use the sparse

auto-encoder from [18] to represent the original data:

In general, the error of sparse approximation can be defined as the sum of the average

Euclidean distance from original variables to the linear combination approximate results:

J(a,b) =
1
m

m

∑
j=1
‖x j− (

k

∑
i=1

a j
i φi +b)‖2 (3.18)

18

In this equation, x represents m original data vectors. To compress these vectors, we

use linear combination of k bases φ to fit x with the weighting vectors a and constant term

b. One goal of our work was to get the minimum error from the linear combination of

elements.

To avoid overfitting bases, regularization was introduced into the cost function. There

are two possible regularization terms to use here:

• L2 regularization term:
λ1

2

n

∑
i=1
‖ai‖2 (3.19)

• L1 regularization term:
λ2

n

n

∑
i=1
|ai| (3.20)

where λ1 and λ2 are coefficients. It can be argued which is better since the L2 term

provides a more smooth solution but L1 term ensures its sparsity. In our work, L2 term was

added as regularization term in the cost function:

J(a,b) =
1
m

m

∑
j=1
‖x j− (

k

∑
i=1

a j
i φi +b)‖2 +

λ1

2

n

∑
i=1
‖ai‖2 (3.21)

where λ is the regularization constant.

For the cost function J(a,b), a neural network based autoencoder was implemented

to find the optimal bases and corresponding weighting vectors. Figure 3.4 illustrates the

structure of the encoder. Compared with a typical neural network, only three layers were

used in our work: inputs, the hidden layer, and outputs. In the hidden layer, m neurons

represent m elements in the resultant dictionary.

A neuron is the primary computational unit. For instance, for neuron n1 the input z is a

linear combination of elements from the input layer:

z =Wx+b (3.22)

19

Figure 3.4: Structure of Neural Sparse Autoencoder

where W denotes the weights and b is the constant. To simulate the behavior of an ac-

tual neuron and to keep the active threshold around 0, a sigmoid function was applied to

generate the output in this unit as shown in Figure 3.5.

S(z) =
1

1+ e−z (3.23)

Since a goal of our work is to represent the original data accurately, we set x = y in the

training process of this encoder network, which means that the input layer and output layer

are identical.

Another requirement is sparsity in the movement primitives we generate. To achieve

this, a sparse term KL(ρ‖ρ̂ j) is designed to modify the original cost function.

KL(ρ‖ρ̂ j) = ρlog
ρ

ρ̂
+(1−ρ)log

1−ρ

1− ρ̂ j
(3.24)

20

Figure 3.5: the sigmoid function

where ρ is the active threshold for the neuron.

Consequently, when this sparsity penalty is combined with L2 term and the error defined

above, the cost function of this neural network becomes:

Jsparse(a,b) = J(a,b)+β

m

∑
j=1

KL(ρ‖ρ̂ j) (3.25)

To find the minimum solution of the cost function Jsparse(a,b), back propagation algo-

rithm is applied:

Equation 3.22 and 3.23 define the feed-forward process in the Neural Network. To

find the optimal weights for each neuron, back propagation [24] process is implemented to

adjust the weights based on the difference between input layer and output layer.

The error of node j in output layer can be defined as:

E j = S(z j)(1−S(z j))(Tj−S(z j)) (3.26)

where Tj is the observed value for the node. In our work, Tj is the value of node j in

input layer.

21

In the middle layer, error of node j is defined as weighted accumulation of nodes in

next layer:

E j = S(z j)(1−S(z j))∑
k

EkWjk (3.27)

where Wjk represents the weight from current node j to node k in next layer. Ek is the

error which is precomputed for node k.

To decrease the error described above, the weights for each node can be updated as:

∆Wi j = λE jS(zi) (3.28)

Wi j =Wi j +∆Wi j (3.29)

corresponding constant term is:

∆b j = λE j (3.30)

b j = b j +∆b j (3.31)

where λ is value from 0 to 1 which represents learning speed. When λ is large, algo-

rithm tends to have fast convergent rate, however the result may trap into a local minima.

When the maximum number of iterations is fixed or if we set a threshold for the sys-

tem error, by applying back propagation iteratively, the optimal weighting vector can be

generated from the structure so defined.

After the process of dictionary construction, a set of m bases φ is available. In the

coding phase, the error is defined as:

1
m

m

∑
j=1
‖x j− (

k

∑
i=1

a j
i φi +b)‖2 (3.32)

which can be solved by Lasso method [1].

22

Consequently, in this part, an optimal dictionary is created, and the original moves are

recoded as the weighting vector.

3.4 DMP learning and Motion representation

In previous section, a dictionary of movement primitives was constructed using a sparse

auto-encoder. Generated from the original trajectories, however , the movement bases in

the skill dictionary are the record of the joints’ 3D positions. To generalize the skill from

point-point records to a general behavior, we apply the DMP system [8] to redefine the

motion for each movement primitive we learn.

In the DMP system, the record of trajectory is treated as a linear spring system perturbed

by an external forcing term:

τ v̈ = K(g− x)−Dv+(g− x0) f (3.33)

τ ẋ = v (3.34)

Movement records are represented by these equations, where x is current position of

joint and v is corresponding velocity; x0 and g are the starting point and goal of the trajec-

tory. K and D are constants that represent the spring coefficient and damping term of the

system. f is the external force that drives the trajectory between the starting point and the

goal.

f (t) =
∑

N
i=1 ψi(t)wi

∑
N
i=1 ψi(t)

(3.35)

Equation 3.4 acts as a fitting function for the external force, where ψ are the basis

functions of the system, we choose a Gaussian model and w is an adjustable weight.

For the further development of our skill transfer dynamical system, a canonical equation

23

Figure 3.6: Canonical system in DMP algorithm

is introduced to make the system time-independent:

τ ẋ =−αxx (3.36)

where αx is a constant which controls rate of convergence. Figure 3.6 shows an example

canonical system. Starting from 1, the system reaches 0, which represents the goal of the

trajectory, by Equation 3.36.

Therefore, the equation is reformed as:

f (x) =
∑

N
i=1 ψi(x)wi

∑
N
i=1 ψi(x)

x(g− y0) (3.37)

Figure 3.7 shows bell-shaped curves we use for the nonlinear function approximator of

the force term, which is defined as:

ψi(x) = e
− (x−ci)

2

2σ2
i (3.38)

24

Figure 3.7: Kernel activation in DMP algorithm

Equation 3.33 can be reformed as:

f =
−K(g− x)+Dẋ+ τ ẍ

g− x0
(3.39)

Locally Weighted Regression [1] is implemented to calculate the optimal parameters

for the nonlinear function approximator to fit the force sequence defined in Equation 3.39.

3.5 Skill transfer and inverse kinematics

For a specific skill minput in the source platform, similar to Equation 3.32, the error of

recoding by the dictionary is defined as:

E f itting = ‖minput−
N

∑
j=1

Wjb j‖2 (3.40)

where b denotes base in the dictionary. After finding optimal weighting vector W for

minput , the motion minput is recoded as W , a low dimension vector, to transfer between

robots.

The reconstructing motion in target platform can be executed as:

25

mresult = sR
N

∑
i
(WiDMPi)+T (3.41)

where s, R and T are registration parameters. DMPi is the position sequence generated

from the DMP system of base bi.

To convert mresult for operation on the target platform, an inverse kinematics algorithm,

such as the Jacobian inverse technique [25], can be implemented.

26

Chapter 4

SYSTEM DESCRIPTION

There are significant differences between industrial manipulators from different man-

ufacturers and between different models from the same manufacturer. These include the

number of joints, the DoF, the dimensions, the link configurations, the workspace, and the

dynamics. Not the least, this includes the controllers, which are usually company propri-

etary, and the programming language, which is usually specific to one company’s robots.

A major goal of this work is to bridge those differences and to devise a systematic method

for transferring skills (sequences of behaviors that comprise a motion or manipulation task)

between different robots. To verify the skill transfer algorithm across heterogeneous plat-

forms, our prototype system comprises three different models: a human body mechani-

cal model from CMU motion database, the Yaskawa Motoman HP3JC, and the Rethink

Robotics Baxter. Specific configurations are described in this chapter.

4.1 CMU Motion Database

The CMU Mocap lab contains 12 Vicon infrared MX-40 cameras. Humans wear a black

jumpsuit and have 41 reflective markers taped on. The Vicon cameras see the markers in

infra-red. Figure 4.1 demonstrates the view of marker set. The images that the various

cameras pick up are triangulated to get 3D data. [26] To capture the mechanical features

for input motion, only the 3D positions of joints are necessary. From a complete set of

motion capture data we used only the right arm with 6 joints.

1http://mocap.cs.cmu.edu/info.php

27

Figure 4.1: Front and back view of marker set in CMU Motion Database1

4.2 Yaskawa Motoman HP3JC

The Yaskawa Motoman HP3JC is a compact vertical jointed-arm robot. Compared with

other industrial robots, HP3JC is a compact robot that requires minimal installation space.

Since the HP3JC is ideal for inspection/testing and research applications, we used this robot

to test our skill transfer algorithm for a robot with 6 controlled axes. [27] It is programmed

by moving it with a teach pendant or by transferring to it a program written in Yaskawa’s

proprietary language, INFORM. Figure 4.3 is a side view of the robot. The DH parameters

for the HP3JC are listed in Table 4.1
2https://www.used-robots.com/motoman/used-hp3
3https://www.used-robots.com/images/robots/original/hp3jc-side.jpg

28

Figure 4.2: Yaskawa Motoman HP3JC2

Figure 4.3: Side view of Yaskawa Motoman HP3JC3

29

Table 4.1: HP3JC joints constraints

Joint Number θ d a α

1 θ1 157 0 −π

2
2 θ2− π

2 0 260 π

2
3 θ3 0 30 −π

2
4 θ4 -270 0 π

2
5 θ5 0 0 −π

2
6 θ6 -135 0 0

4.3 Rethink Robotics Baxter

Baxtor is a relatively new robot for industrial automation. It’s a “co-robot” designed to

work in collaboration with people. With 7 DoF arms, Baxter is capable of executing a wide

range of tasks. It can be programmed by moving its arms directly, or using the open-source

ROS libraries with python, C, or C++. To test the transfer between different platforms,

Baxter was treated both as a teacher robot and as a student respectively. Also, by imple-

menting the algorithm between heterogeneous robots, the different mechanical structures,

caused us to verify skill transfer under different geometric constraints. Figure 4.4 and fig-

ure 4.5 illustrate the physical structure of Baxter. Table 4.2 lists the DH parameters for its

7 joints.

Since it has 7 joints in each arm, Baxter is a redundant manipulator, more flexible than

the HP3JC but more complex to program. This enabled us to test the transference of motion

between 6 DoF and 7 DoF manipulators.

Table 4.2: Baxter joints constraints

Joint Name θ d a α

S0 θ1 270.35 69 −π

2
S1 θ2 +

π

2 0 0 π

2
E0 θ3 364.35 69 −π

2
E1 θ4 0 0 π

2
W0 θ5 374.29 10 −π

2
W1 θ6 0 0 π

2
W2 θ7 280 0 0

30

Figure 4.4: Rethink Robotics Baxter4

4http://www.rethinkrobotics.com/wp-content/uploads/2015/11/Baxter Datasheet Oct2015.pdf
5http://sdk.rethinkrobotics.com/wiki/Workspace Guidelines

31

http://www.rethinkrobotics.com/wp-content/uploads/2015/11/Baxter_Datasheet_Oct2015.pdf
http://sdk.rethinkrobotics.com/wiki/Workspace_Guidelines

Figure 4.5: Front and side view of Baxter5

32

Chapter 5

EXPERIMENTS AND ANALYSIS

In last chapter, we described the database and the platforms we used in the experiments.

Using the pipeline we described in Chapter 3, we performed experiments to verify our

method. The movements we chose were extracted from the boxing and washing motion

capture files from the CMU motion database as shown in Figure 5.1.

5.1 Potential Motion Trajectory Generation

In the motion trajectory part, a training set of 10,000 trajectories was generated by

the randomized method in Chapter 3. Figure 5.2 shows the resultant trajectories. The

generated trajectories covered many of the possible positions of the end joint. The figure

shows that the robot workspace was covered to ensure the diversity and smoothness of

generated trajectories.

Figure 5.1: Data from CMU motion database. Top: Boxing. Bottom: Washing window.

33

Figure 5.2: Motion data generated by our method

5.2 Motion Registration between Robots

To find the registration relation between the original model and the target robot plat-

form, based on the motion analysis described in Chapter 4, the Scale-ICP algorithm was

implemented. Figure 5.3 demonstrates point clouds from human skeleton model and Baxter

before registration and corresponding registration result. The source of mis-matched points

is the difference of sphere of activities between two models. Our ICP-based algorithm suc-

cessfully find registration relation between platforms included scale factor, rotation and

translation as follow:

Rhumanbaxter =


−0.9934 −0.0813 0.0810

−0.0813 0 −0.9967

0.0810 −0.9967 −0.0066



34

Thumanbaxter =


−74.4706

86.6437

490.6197


Shumanbaxter = 35.9

From motoman to baxter

Rmotomanbaxter =


−0.968 0.0159 −0.249

0.0159 −0.992 −0.125

−0.249 −0.125 0.960



Tmotomanbaxter =


−187.83

387.44

403.77


Smotomanbaxter = 1.48

It’s not necessary to find the registration relation between every pairs because of transi-

tive relation between models.

5.3 Dynamic Movement Primitives Learning

For the learning of motion primitives, 25 bases were learned from the trajectories we

generated. Figure 5.4 is the visualization of sparse coding result. In the left part, several

tracks are randomly chosen from the training set. The right 25 images represent the bases

we learned. Compared with training data, generated bases have typical patterns. Thus, by

applying linear combination, the original data can be recovered.

Figure 5.5 demonstrates the resultant trajectory bases. Compared with original trajecto-

ries, the based learned is highly diverse and normalized. Figure 5.6 illustrates some details

in the process of solving Lasso (least absolute shrinkage and selection operator) to generate

35

Figure 5.3: Pre-registration and resultant point cloud between human and Baxter

36

Figure 5.4: Visualization of sparse coding result. The original data is represented by the
value of pixel.

the weighting vector: the name of the selected coefficient with a fitted value, the L1 norm

of a set of coefficients including the selected coefficient, and the index of the corresponding

Lambda. The solving algorithm leads to find an answer which minimizes L1 norm for each

coefficient. Consequently, in the resultant weighting vector, only a few entries are non-zero

to avoid overfitting.

In Figure 5.7, we compared original trajectory and fitting result from linear combination

of movement bases. In Figure 5.5, it’s easy to find that as prototype of movement, the bases

are very smooth. Consequently, generated from linear combination of the bases, the fitting

process acts as filter which eliminate noise in the original record.

In error estimation, we calculated mean squared error (MSE) for each trajectory and its

fitting result. The fitting error distribution of 10k motion is demonstrated by Figure 5.8.

As shown in Figure 5.8, sparse approximation is capable of representing and compressing

original motion signals without a lot distortion.

37

Figure 5.5: 25 learned bases of end-effector trajectories

38

Figure 5.6: Process of solving Lasso [1]

Figure 5.7: Original trajectory (red) and linear combination fitting result (blue) from bases

39

Figure 5.8: Error distribution of dictionary representation over 10,000 motion trajectories

5.4 DMP learning and Motion representation

Figure 5.9 demonstrates the how DMP system generalizes the movement in a dynamic

system based on the bases we learned above. In the left figure, blue line is the raw record

of the position. As the representation of the original data, red line from DMP fits the data

well when they have same starting point and the goal. In the right figure, it shows that

when we change the goal, DMP system is capable of setting attractor to the new goal and

also keeping the behavior of inputed trajectory. Thus, when it’s necessary to implement

this skill to new destination, the DMP method enables we maintain the original behavior

pattern.

5.5 Skill transfer and advantage in space complexity

Figure 5.10 is skill transfer result. The movement data is a snippet from motion of

washing a window. Top left represents the original trajectory (red) and reconstruction (blue)

in our system. By implementing registration, it’s successfully transfered to Baxter (top

right) and Motoman (bottom).

Another advantage our method is compression of redundant trajectory information.

40

Figure 5.9: DMP of a movement base

Figure 5.10: Skill transfer between human and Baxter, Baxter and Motoman

41

Figure 5.11: Difference of space complexity between direct transfer and our method

Figure 5.11 demonstrates the difference of space complexity between direct transfer and

our method in the transfer process. If the number of bases is fixed, with increased size of

a trajectory, our method keeps the space complexity constant. In contrast, if the trajectory

data were to be transferred directly, the space complexity would increase linearly.

In Figure 5.12, we compared storage requirement between direct skill transfer and our

dictionary-based transfer. In our method, the skill library consists of a fix-sized motion

dictionary we learned above, and a set of weighting vectors. Compared with our method,

direct transfer only keeps trajectories for all stored skills. In this figure, suppose we use

n1 bases to represent the original movement record. Each skill is stored in n2 frames of

position. In the skill library, if N skills were to be restored, the size of our system’s require-

ment would be n1× n2 + n1×N, and corresponding space requirement for direct transfer

method would be n2×N. Though the space complexity of direct transfer algorithm and

our system are both linear O(N). Consider the sparsity of the weighting vectors, n1 << n2.

Consequently, the space requirement of our proposed system is much lower.

42

Figure 5.12: Difference of space requirement between direct transfer and our method

43

Chapter 6

CONCLUSION

In this work, we designed a system for skill transfer between industrial robots. The

whole framework includes a Kinect based motion capture system and a skill representa-

tion and transfer algorithm. In the skill transfer part, the original skill is represented by

a primitive motion dictionary. The experiments on the Rethink Robotics Baxter and the

Yaskawa Motoman HP3JC with the CMU motion database show that the generated mo-

tion dictionary is capable of representing the original motion through a weighting vector.

By implementing a transformation on the DMPs, the skill can be transferred between het-

erogeneous robots independent of their structural, mechanical, and dynamic differences.

Moreover, compared with directly transferring trajectory data, our method can reconstruct

high-dimensional movement from bases that have far lower dimensions than the input data.

We have achieved good transfer results between different models, however, there still

exit many drawbacks in our system. First, in our system skills are represented by the

trajectory of end-of-arm motion, since other joints’ poses are not considered, there exits

ambiguity in joints’ angles. Furthermore, since error accumulates in the transfer process,

registration error is potential risk in our system. Future work can be focused on error

elimination by applying motion averaging technology. For instance, Govindu’s work [28]

exploits the information redundancy in a set of 3D scans by using the averaging of relative

motions.

44

BIBLIOGRAPHY

[1] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the

Royal Statistical Society. Series B (Methodological), pages 267–288, 1996.

[2] the International Federation of Robotics. History of industrial robots.

https://docs.google.com/file/d/0B4JOD-8OZ5BEOUZQTUFRWTkwQXM/edit,

2012. [Online; accessed 08-Mar.-2017].

[3] Matt McFarland. Google officially reveals its latest robot.

http://money.cnn.com/2017/02/28/technology/google-boston-dynamics-handle-

robot/, 2017. [Online; accessed 08-Mar.-2017].

[4] robotiksistem.com. History of robotics. http://www.robotiksistem.com/robotics history.html,

2009. [Online; accessed 08-Mar.-2017].

[5] Mengtang Li. Skill Transfer between Industrial Robots by Learning from Demonstra-

tion. PhD thesis, Vanderbilt University, 2016.

[6] Peter Pastor, Heiko Hoffmann, Tamim Asfour, and Stefan Schaal. Learning and gener-

alization of motor skills by learning from demonstration. In Robotics and Automation,

2009. ICRA’09. IEEE International Conference on, pages 763–768. IEEE, 2009.

[7] Freek Stulp and Stefan Schaal. Hierarchical reinforcement learning with movement

primitives. In Humanoid Robots (Humanoids), 2011 11th IEEE-RAS International

Conference on, pages 231–238. IEEE, 2011.

[8] Elmar Rückert and Andrea d’Avella. Learned parametrized dynamic movement prim-

itives with shared synergies for controlling robotic and musculoskeletal systems.

Frontiers in computational neuroscience, 7:138, 2013.

45

[9] George Konidaris, Scott Kuindersma, Roderic Grupen, and Andrew Barto. Robot

learning from demonstration by constructing skill trees. The International Journal of

Robotics Research, 31(3):360–375, 2012.

[10] Tanveer Abbas and Bruce A MacDonald. Generalizing topological task graphs from

multiple symbolic demonstrations in programming by demonstration (pbd) processes.

In Robotics and Automation (ICRA), 2011 IEEE International Conference on, pages

3816–3821. IEEE, 2011.

[11] Mark A Davenport, Marco F Duarte, Yonina C Eldar, and Gitta Kutyniok. Introduc-

tion to compressed sensing. Preprint, 93(1):2, 2011.

[12] Alfred M Bruckstein, David L Donoho, and Michael Elad. From sparse solutions

of systems of equations to sparse modeling of signals and images. SIAM review,

51(1):34–81, 2009.

[13] Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic

net. Journal of the Royal Statistical Society: Series B (Statistical Methodology),

67(2):301–320, 2005.

[14] http://research.cs.wisc.edu. Asf/amc file description.

http://research.cs.wisc.edu/graphics/Courses/cs-838-1999/Jeff/ASF-AMC.html,

2017. [Online; accessed 08-Mar.-2017].

[15] MICHAEL J. MILLER. Primesense: Motion control beyond the kinect.

http://forwardthinking.pcmag.com/gadgets/282321-primesense-motion-control-

beyond-the-kinect, May 2, 2011. [Online; accessed 08-Mar.-2017].

[16] Jamie Shotton, Toby Sharp, Alex Kipman, Andrew Fitzgibbon, Mark Finocchio, An-

drew Blake, Mat Cook, and Richard Moore. Real-time human pose recognition in

parts from single depth images. Communications of the ACM, 56(1):116–124, 2013.

46

[17] Shihui Ying, Jigen Peng, Shaoyi Du, and Hong Qiao. A scale stretch method based

on icp for 3d data registration. IEEE Transactions on Automation Science and Engi-

neering, 6(3):559–565, 2009.

[18] Rajat Raina, Alexis Battle, Honglak Lee, Benjamin Packer, and Andrew Y Ng. Self-

taught learning: transfer learning from unlabeled data. In Proceedings of the 24th

international conference on Machine learning, pages 759–766. ACM, 2007.

[19] Richard S Hartenberg and Jacques Denavit. A kinematic notation for lower pair mech-

anisms based on matrices. Journal of applied mechanics, 77(2):215–221, 1955.

[20] Saeed B Niku. Introduction to robotics: analysis, systems, applications, volume 7.

Prentice Hall New Jersey, 2001.

[21] Zhengyou Zhang. Iterative point matching for registration of free-form curves and

surfaces. International journal of computer vision, 13(2):119–152, 1994.

[22] Jon Louis Bentley. Multidimensional binary search trees used for associative search-

ing. Communications of the ACM, 18(9):509–517, 1975.

[23] J Michael Fitzpatrick. Fiducial registration error and target registration error are un-

correlated. In SPIE Medical Imaging, pages 726102–726102. International Society

for Optics and Photonics, 2009.

[24] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning represen-

tations by back-propagating errors. Cognitive modeling, 5(3):1, 1988.

[25] wikipedia.org. Inverse kinematics. https://en.wikipedia.org/wiki/Inverse kinematics,

2017. [Online; accessed 08-Mar.-2017].

[26] mocap.cs.cmu.edu. Cmu motion database description.

http://mocap.cs.cmu.edu/info.php, 2017. [Online; accessed 08-Mar.-2017].

47

[27] www.motoman.com. Yaskawa motoman hp3jc specification.

https://www.motoman.com/hubfs/HP3JC-1.pdf?t=1489503085836, 2017. [On-

line; accessed 08-Mar.-2017].

[28] Venu Madhav Govindu and A Pooja. On averaging multiview relations for 3d scan

registration. IEEE Transactions on Image Processing, 23(3):1289–1302, 2014.

48

	DEDICATION
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Related Work
	Learning by demonstration and knowledge transfer across robots
	Compressed sensing

	MOTION CAPTURE AND DEFINITION
	Kinect Motion Capture
	ASF/AMC Motion System
	ASF file
	AMC file

	SKILL TRANSFER SYSTEM
	Potential Motion Trajectory Generation
	Motion Registration between Robots
	Dynamic Movement Primitives Learning
	DMP learning and Motion representation
	Skill transfer and inverse kinematics

	SYSTEM DESCRIPTION
	CMU Motion Database
	Yaskawa Motoman HP3JC
	Rethink Robotics Baxter

	EXPERIMENTS AND ANALYSIS
	Potential Motion Trajectory Generation
	Motion Registration between Robots
	Dynamic Movement Primitives Learning
	DMP learning and Motion representation
	Skill transfer and advantage in space complexity

	CONCLUSION
	 BIBLIOGRAPHY

