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CHAPTER I 

GENERAL INTRODUCTION 

Nanoparticles (NPs), particles of material at the dimension of <100 nm, offer a way to 

access and control properties not observed in bulk materials or molecular species. This is due to 

confinement effects (quantum and dielectric) and the enormous increase of surface area-to-

volume ratio relative to bulk materials.1 Properties such as optical absorption, optical emission, 

reactivity, and catalytic activity can be altered through changing particle size and morphology. 

This control of material properties is a useful tool for exploring how nanoparticles interact with 

the environment and each other.  

Semiconductor nanoparticles have size-tunable band gaps and high quantum yield. For 

these reasons, they are often studied for light-absorption and emission applications, including 

solar energy collection, theranostics, and LEDs.2 Metal nanoparticles likewise show size-

dependent properties at the nanoscale, such as localized surface plasmon resonance(LSPR) and 

increased catalytic activity.3  Since size and shape are intrinsically linked to optoelectronic 

properties, developing and improving synthetic methods to better control nanoparticle 

morphology is crucial to both understanding this relationship and facilitating particle 

applications. 

Colloidal synthesis supplies sophisticated control over the size, shape, and composition 

of the nanoparticle product.2,3 It is an efficient way to obtain relatively large quantities of 

monodisperse particles. A variety of factors can be manipulated to control the resulting particles, 

including precursor type, reaction time and temperature, injections, surfactants, and even stir rate.  

 The unique control over properties at the nanoscale can be augmented by the addition of 

other nanoscale components to the original particle4. These constructs, comprised of two or more 
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nanomaterials in a single particle, are known as hybrid nanoparticles.  In the design of a hybrid 

system, a second material domain can serve many purposes,1,5,6 contributing its own 

functionality to the whole or coupling with the other domain to dramatically change existing 

properties and synergistically create a whole with markedly different properties than either 

component.  Some recent examples include facilitating charge separation within a catalytic 

nanoparticle by adding a metal domain, adding a silica shell to render gold nanoparticles stable 

in solution and easily functionalizable, and passivating the surface of semiconductor 

nanoparticles with a wider-band-gap material to improvement confinement and quantum yield.7–9 

Hybrid nanoparticles are often created by first making a ‘seed’ particle of an initial 

material, and adding another domain via a second growth step that is nucleated on the seed 

particles. The way this secondary growth step manifests depends greatly upon the materials 

being hybridized, but the major patterns of growth seen in this report can be simplified to core-

shell type growth or the formation of dimers via nucleation of a new domain onto a single point 

such as a specific crystal face, edge, or vertex.4,6,10 

 There are inherent synthetic challenges in the controlled creation of nanoparticles 

combining two disparate materials, such as the proposed Au—CuS hybrid. When working with 

two crystalline materials, the lattice constant mismatch must be minimalized for heterogeneous 

nucleation of the second material to occur. The synthetic conditions must be compatible with 

both materials, both to ensure dispersibility (for solution-phase syntheses) and to avoid the 

destruction of the seed domain. Surface characteristics of the materials must be considered, such 

as the composition of facets, the presence of surface defects, and interfacial energy between the 

materials. Miscibility of the materials and precursors must also be considered.   
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In this work, the synthesis of various hybrid nanoparticles of gold, gold and copper 

sulfides, and silica is explored. In the first portion of this work, dual-plasmonic gold-copper 

sulfide nanoparticles are synthesized and their nonlinear optical properties briefly investigated. 

In the second portion of this work, copper sulfide nanoplatelets are used as a template material in 

a cation exchange reaction to create gold sulfide nanoparticles, and hybrid nanoparticles of gold 

sulfide and copper sulfide. 
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CHAPTER II 

DESIGN AND SYNTHESIS OF A DUAL-PLASMONIC HYBRID NANOPARTICLE 
SYSTEM 

Many hybrid nanoparticle designs pair a metal domain with a semiconductor domain.11,12 

Metallic nanomaterials, especially those of noble metals, are highly influential in hybrid systems 

in part due to the localized surface plasmon resonances 

(LSPRs) exhibited by these materials at the nanoscale.1 

LSPRs result from the collective oscillation of surface 

charges on nanoparticles in response to specific frequencies 

of incident light(Figure 1).  Metallic nanoparticles often 

have LSPRs in the visible to near-UV range,13–15 and many semiconductor nanoparticles can be 

doped to manifest LSPRs in the near IR.16–21 The surface and immediate surroundings of a 

nanoparticle with an excited LSPR are considered an electric field ‘hotspot.’22  This enormous 

electric field enhancement has far-reaching implications when a component exhibiting LSPR is 

incorporated into a hybrid nanoparticle,14,23–25 such as enhanced catalytic properties and 

absorption of light, carrier transfer enhanced excitation or decay, and so forth.1,26,27 The use of 

one or more domains exhibiting LSPR in a hybrid nanoparticle can result in astonishing new 

material properties. 

 The property this project hopes to enhance via LSPR is a nonlinear optical effect28–30 

known as second harmonic generation (SHG), which is a special case of sum frequency 

generation. In this project, we hope to use hybrid systems to demonstrate enhanced SHG by 

using LSPRs to enhance the electric fields at both the fundamental and second harmonic 

frequencies. This sort of enhancement of SHG by nanoparticle dimer systems has some literature 

Figure 1 Simplified scheme of 
charges on a nanoparticle interacting 
with the electric field of light, forming 
an LSPR. 



5 
 

precedent.31–35 However, there are no known published instances of 

a heterodimer nanoparticle system with two resonant LSPRs 

resulting in enhancement of SHG. 

 In this nanoparticle system (Figure 2), a gold nanoparticle 

is paired with a semiconductor NP in order to enhance SHG via 

the combined LSPR field effects of the two domains. In its simplest spherical form, nano-gold 

has a pronounced LSPR at around 530 nm. Many copper chalcogenides, such as Cu2Se (the first 

semiconductor applied to this project), can be oxidized to exhibit hole-based LSPR in the near-

IR spectral region.36 However, the copper chalcogenide used for most of the work reported here, 

copper sulfide (CuS, covellite), 37,38 derives its LSPR from inherent features of its crystal 

structure. The copper oxidation state in covellite is +1, with the extra hole necessary for charge 

balance delocalized into the sulfur-sulfur bonds.39,40  The result is a stoichiometric quantity of 

delocalized holes in the material, which causes a very strong and sharp LSPR peak centered at 

close to 1100 nm. These CuS NPs are also reasonably resistant to degradation under normal 

atmospheric conditions, and the strength of the LSPR makes them a desirable alternative to other 

copper chalcogenides in the hybrid system. Additionally, there is a pronounced absorption 

minimum at 520-550 nm, ensuring that reabsorption by the semiconductor band gap of any SHG 

generated will be minimized, which was a concern with copper selenide nanoparticles. If 

enhancement of SHG is achieved using this dual LSPR system, the insight into NP-NP LSPR 

dynamics could pave the way to advances in microscopy, optics, sensing, and related fields. 

Although there are many reports on metal-metal hybrids with dual plasmons41,42, there are few 

reports of metal-semiconductor systems with two LSPR resonances.43,44 Furthermore, the 

insights into the creation of hybrid nanomaterials with plasmonic enhancement over an 

Figure 2 General hybrid scheme 
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extremely broad spectral region has further value in areas including photothermal therapy, 

photoabsorbers, and catalysis. The colloidal synthesis of a hybrid system containing two LSPRs 

for possible SHG enhancement comprises the first portion of this work. 

Synthesis of gold-copper selenide hybrids 

Initial efforts in this project used 

oxidized copper selenide (Cu2-xSe) NPs as 

the source of the NIR LSPR for the hybrid 

system. This material has a very broad LSPR 

peak that extends through a large portion of 

the NIR. Furthermore, once the surface of 

the nanoparticles has oxidized to a certain 

point, the NPs are in the more stable Cu1.8Se form18 that resists further oxidation and degradation 

under normal conditions. The first design was to simply grow a gold domain onto a Cu2-xSe 

nanoparticle following a literature procedure for growing gold on CdSe dots and nanorods.45  

(Complete synthetic detail is presented in Appendix I.) The TEM showed this route resulted in a 

heterodimer with a distinct Cu2Se domain and an Au domain that was apparent as a high-contrast 

domain on the copper selenide particles in TEM images. The Au domain was also seen as an 

LSPR peak at around 520 nm in the UV-Vis spectrum. (Figure 3) However, if the gold domain 

was grown on a Cu2-xSe particle that had not experienced any surface oxidation (i.e., no LSPR 

peak in the IR absorption), the appearance of a NIR LSPR could not be induced post 

hybridization, whether through exposing the particles to atmospheric oxygen and water or 

through the addition of oxidizing agents such as ceric ammonium nitrate, both of which were 

more than sufficient to induce LSPRs in unaltered Cu2Se NPs.  If an Au domain was grown on 

a
 

b 

Figure 3 a) UV-Vis for Cu2Se (red), Cu2-xSe (blue), and Au-
Cu2-xSe (green). b) TEM image of hybrid particles (scale 
bar=20 nm) 
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pre-oxidized Cu2-xSe nanoparticles, the NIR LSPR disappeared entirely, and the Au LSPR that 

appeared was much less intense and red-shifted compared to the Au LSPR on unoxidized Cu2Se. 

The red-shift of the Au LSPR can be an indication of decreased charge carrier density at the Au 

domain. The conclusion was reached that an Au monolayer must be forming in addition to the 

larger Au domains, and/or copper vacancies were being filled by gold, which resulted in the 

quench of the NIR LSPR.  This hypothesis could have been confirmed with STEM-EDS 

mapping, but at the time of this work this capability was not available. 

  Some months after the direct hybrid synthesis was completed, a paper was published for 

a similar Au-Cu2-xSe  hybrid NP system that observed the same quenching/shifting trends,44 

though LSPR quenching was not as complete for their hybrids as it was for the hybrids 

synthesized in this project. In this example, the quench and shift of LSPRs was attributed to 

charge transfer between the two domains, hole diffusion from the Cu2-xSe to the Au being 

sufficient to significantly reduce the carrier density of both domains. Further shift of the LSPRs 

than could be attributed to reduced carrier density was explained as due to the change of the 

dielectric constant surrounding each domain with the formation of the hybrid. This was also a 

reasonable explanation for both the loss of NIR LSPR and the reduction of the Au LSPR in the 

direct hybrid system synthesized here.  

Since direct growth of domains did not preserve 

LSPRs, the conclusion was reached that the domains 

needed to be separated chemically and electronically. 

The most straightforward way to achieve this separation 

was to place a dielectric barrier on one of the material 

domains, and to attach the other domain to that barrier. 

Semiconductor NPs 

SiO
2
 shell 

Au 
core 

Figure 4 Hybrid scheme with silica shell, cross-
sectional view. 
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A number of strategies could be implemented to create a barrier between the two domains, such 

as using a long-chain bifunctional linker molecule, adding a polymer shell, etc.46–48 Of these 

strategies, placing a silica shell between the gold and semiconductor domains was selected as the 

best solution, as inspired by many literature examples49–52. The silica shelling of many different 

types of nanoparticles is widely studied due to the several material advantages offered; SiO2 is 

transparent in the regions of interest for this project, it is very resistant to degradation, and it is 

synthetically convenient for the materials used in this hybrid scheme. Once completely shelled, 

Au@SiO2 NPs are resilient, and the shells do not degrade or transform under the electron beam 

of the TEM so shell thickness can be accurately measured. These accurate measurements will 

allow the study of interparticle distance effects on LSPR enhancement. From a  synthetic 

standpoint, an SiO2 surface can easily be functionalized through basic sol-gel chemistry, 

allowing attachment of almost any conceivable functionality.49 Furthermore, many standard Au 

NP syntheses are aqueous, and as SiO2 sol-gel shelling chemistry usually requires a polar 

solvent,53–55 the shelling synthesis is compatible with the Au NPs. 

Gold nanoparticle synthesis and silica shelling 

 A sodium citrate reduction56 of chloroauric acid (HAuCl4) was used to synthesize 16 nm 

spherical Au NPs with an LSPR at a wavelength of 520 nm. For the research presented here, this 

synthesis is superior to the other commonly seen Au NP syntheses24,25,57  because there are fewer 

excess surfactants present and the product typically has higher monodispersity and few to no 

irregular (non-spherical) components. The nanoparticles are supported in aqueous solution by the 

citrate ions that cap the surface. 

The citrate-capped Au NPs offered a surface on which a very thin silica shell can be 

deposited. Keeping distances between Au and CuS very small was important to ensure plasmonic 
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interaction. Most literature SiO2 shelling procedures49,58  (usually using the Stöber method) result 

in shells that are too thick for the purposes of this project.50 These Stöber shells are on the order 

of 50-100 nm, past the size regime (within 20 nm) at which LSPR interaction is expected to 

occur for 16 nm NPs.59 It was possible to manipulate a combination of literature SiO2 shelling 

procedures8,60 to tune shell thickness of batches anywhere from 4-17 nm. In this process, the first 

step was to displace the citrate capping layer with 3-aminopropyltrimethoxysilane (APTES). The 

amines adhere to the Au surface, leaving Si-O-R terminating groups facing outwards and 

rendering the surface vitreophilic. The terminal alkoxy groups provide a nucleation point for the 

condensation of SiO2 shells from addition of a sodium silicate solution. Condensation of the 

silica shells from the sodium silicate solution was driven by decreasing the pH of the solution. 

After 7+ days of gentle stirring, a 2-4 nm silica shell formed on the Au NPs. Shell growth was 

monitored via TEM. This shell was terminated with hydroxyl groups that provide an ideal 

platform for further shell growth via a sol-gel type technique. Addition of a solution of 

tetraethylorthosilicate (TEOS) and ammonium hydroxide resulted in a base-catalyzed hydrolysis 

Figure 5 a) Silica shelling scheme. b) STEM-EDS elemental map of Au NP after silicate addition. c) and d) Two different shell 
thicknesses achieved by adding different quantities of TEOS. e) UV-Vis showing preservation of LSPR  (Scale bars=20nm) 



10 
 

polymerization to slowly build thicker shell onto the Au@SiO2. Final thickness of the shell was 

largely controlled by reaction time, typically running anywhere from a few days to a few weeks 

(depending on desired shell thickness, with longer times typically resulting in thicker shells) of 

gentle stirring in ambient conditions. Progress of shell growth was monitored via TEM. After 

this final shell addition step, SiO2 shell thickness ranged from 5 to 17 or more nanometers with a 

typical standard deviation of 1.5 nm per batch.  

Silica shell functionalization 

 Next, the shells were functionalized with 3-(trimethoxysilyl)propyl methacrylate (TPM). 

TPM functionalization was necessary for transfer to nonpolar solvent, long-term particle stability, 

and compatibility with the copper sulfide domain. Au@SiO2 without a stabilizing group 

irreversibly aggregates with time, usually on the scale of weeks to months. In order to achieve 

both nonpolar solubility and surface stability of the Au@SiO2, a literature procedure49 was 

modified to add a methacrylate functionality to the silica surface after the desired shell thickness 

was achieved. In short, the Au@SiO2 solution was refluxed with ethanol and TPM until the 

particles readily transferred from the H2O/EtOH mixture to a CHCl3/EtOH solvent mixture. 

Once this functionalization was achieved, the particles could be concentrated and stored for 

extended periods of time without any change in optical properties or agglomeration. 

 The final functionalization necessary was the addition of an amine so that copper 

chalcogenide nanoparticles would adhere to the SiO2 surface. The CuS used in this synthesis is 

passivated with oleylamine, so an amine is reasonably expected to displace the labile oleylamine 

and adhere to the surface of CuS. 3-aminopropyltrimethoxy silane (APTES) is a readily available 

reagent and there is ample literature precedent for its use in adding an amine functionality to 

silica surfaces.8,49,61  Altering and combining these precedents resulted in a successful 
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functionalization through stirring the TPM-functionalized Au@SiO2 in a solution of APTES and 

EtOH for sixteen hours followed by reflux. The reflux steps were repeated until functionalization 

occurred as evinced by the attachment of CuS NPs when tested. 

 Preparation of the hybrids was accomplished by the addition of a solution of CuS NPs 

(synthetic details in Appendix A) to the functionalized Au@SiO2 in tetrahydrofuran (THF) 

followed by stirring for thirty minutes. This formed hybrid superstructures (TEM images in 

supplementary information), in which the adherence of CuS to multiple SiO2 surface resulted in 

agglomeration of both types of particles on the microscale. Typically, Au@SiO2 cores were 

covered in CuS platelets. Due to the large size of these hybrid superstructures, they were easily 

recovered via centrifugation, while unattached CuS remained in solution. 

Testing for SHG 

To test nanoparticles for SHG, it was decided 

that depositing the particles as a film on a 

glass slide, as opposed to a liquid suspension, 

would yield the most robust samples and be 

most applicable to the available analytical 

setup, especially as the superstructures 

eventually settled out of solution due to their 

large size. Initial trial tests for SHG on controls demonstrated the necessity of high optical 

density samples, so the preparation of very thick, even films was essential for quantifiable 

measurements. These requirements are difficult to meet via standard film-preparation procedures 

such as drop-casting or spin-coating. To overcome this difficulty, the sample mount substrate, 

fluorine-doped tin oxide (FTO)-coated glass, was cut so it fit into a 6-dram glass vial. The mount 

Figure 5  

Figure 6 Clockwise from top left: Gold and copper sulfide 
blanks and direct hybrids; a 6-dram vial containing a freshly 
prepared film, and all three core-shell hybrids and the covellite 
CuS sample. 
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was placed in the bottom of the glass vial, and the vial was then filled with a nanoparticle 

suspension and centrifuged so that a film of nanoparticles was deposited onto the mount, which 

was then air-dried and stored under vacuum in a desiccator. This yielded films with a thickness 

and composition that was easily controlled by altering the contents and concentration of the  

NP solution. 

 The samples and controls that were prepared for SHG analysis are listed in the table 

below. In addition to the Au@SiO2-CuS hybrid structures, a recent literature example43 of direct 

Au-Cu2-xS hybrids were tested for SHG. (Figure 7) These hybrids consisted of a 10 nm gold core 

particle surrounded by a “Saturn-like” disk of copper sulfide. They differ dramatically from the 

other direct gold-copper chalcogenide hybrids 

mentioned44 in that they demonstrate plasmonic 

enhancement in both LSPRs, which the authors 

hypothesized as being due to electron transfer from 

the copper sulfide to the gold core, which increased 

charge carrier density in both domains.  This is in 

direct contrast to the Cu2Se-Au heterodimers 

originally synthesized in this project, where the LSPR 

of both domains was quenched in the hybrid 

nanoparticle. 

Sample # Contents 

1 10 nm Au NPs, Jiang control 

2 Copper Sulfide NPs Jiang control 

3 Direct hybrids (Jiang) Au-CuS 

4 Covellite CuS NPs 

5 4 nm shells Au@SiO2--CuS 

6 17 nm  shells Au@SiO2--CuS 

7 13 nm  shells Au@SiO2--CuS 

8 4 nm shells Au@SiO2 

9 17 nm  shells Au@SiO2 

10 13 nm  shells Au@SiO2 

11 FTO-glass blank 
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 SHG measurements were carried out in collaboration with Roderick Davidson of the 

labof Professor Richard Haglund, physics dept. Additional details of SHG measurements, 

including analytical setup, are in Appendix B.  Relative SHG potential is determined by 

measuring SH light at a series of different power intensities. The exponential fit of the curve 

generated at these different powers will be normalized to the sample’s absorbance to give the 

Figure 7 a) Unshelled 16 nm Au NPs. b) Au@SiO2 NPs. c) Covellite CuS NPs. d)Au@SiO2--CuS e) sample of the UV-Vis 
spectrum of hybrid Au@SiO2-CuS hybrids compared to CuS and Au@SiO2. f) STEM-EDS elemental map of a Au@SiO2-CuS 
hybrid superstructure. g) TEM of the direct Au-CuS hybrids h) UV-Vis of the direct hybrids showing NIR and visible LSPR 
peaks. 
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relative SHG efficiencies of the different hybrids. SHG was observed in most samples, with the 

exception of the first control, bare Au NPs.  Hybrids sample raw data showed significantly more 

SHG than either plain Au@SiO2 controls or the CuS controls, though further processing of the 

data is ongoing to generate quantitative results. An example of these results is included in 

Appendix B. While some samples began to lose second-order dependence at high laser 

intensities as higher-order effects predominated, many of the samples showed signs of thermal 

degradation at these same high (50 mW) excitation intensities. This burning of samples at high 

light intensity is fairly normal when the optical absorption is high, as it is for the CuS LSPR, 

especially since much of the plasmonic decay is thermal.62,63  At the current time, these results 

still need to be normalized to account for differing particle density and loading, and varying film 

translucency.  Also, though it is likely that the individual particles will not be discernable, 

Scanning Electron Microscopy (SEM) will be used to evaluate film thickness and uniformity and 

also to determine the extent of damage caused by the high-intensity laser to the films. 

Preliminary optical absorption measurements taken of the films have highlighted the necessity of 

quantifying scattering or reflectance of the films to enable meaningful interpretation of the 

relative strength of second harmonic generation by these samples. 

Conclusions 

The hybrid Au@SiO2-CuS synthesis reported upon here is a new synthetic route to form 

these hybrid systems. As compared to previously reported syntheses27,49,50 for these types of 

Au@SiO2-semiconductor hybrids, this synthesis has demonstrated higher quality (fewer multi-

core particles, very limited agglomeration of core-shells) products at much thinner shell 

thicknesses than previously reported. The access to <10 nm shell thicknesses is a valuable 

addition to the existing literature, as the nature of plasmonic interactions changes quickly at this 
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distance scale.64 The applicability of this synthesis to the widely-used citrate-capped Au NPs 

instead of CTAB-based Au syntheses also makes it valuable, as these syntheses produce high 

yields of clean, monodisperse particles. Furthermore, as demonstrated in the Au@SiO2-Cu2-xSe 

examples presented herein, the dielectric barrier of the silica shell allows the creation of hybrid 

structures with two LSPRs preserved that unavoidably quench when hybridized through direct 

growth strategies.44 Finally, the easy control over relative quantities of the respective 

nanoparticle precursors in the final product provides another variable to examine when studying 

NP-NP interactions.   

This system is applied in this work to a study of plasmonic enhancement of SHG, but 

could easily be extended to the study of many different plasmon-NP interactions. The 

observation of SHG in the hybrid particles demonstrates the applicability of the system to LSPR-

LSPR interactions. 
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CHAPTER III 

PREPARATION OF GOLD SULFIDE NANOPARICLES VIA CATION EXCHANGE 

Semiconductor nanocrystals (NC) have found wide applications due to their tunable band gap 

and high absorption coefficients. Semiconductor heterostructures allow even further tunability of 

material properties. Many current semiconductor NC applications, such as solar cells and 

photodiode arrays, rely extensively on the highly tunable cadmium and lead chalcogenides, and 

as a result the colloidal synthesis of these materials has been very well-developed.65 However, 

these materials are highly toxic, and therefore the copper sulfides have been the focus of 

increased interest for semiconductor applications.19,38,66–68 Copper sulfides display much promise 

for similar applications as lead and cadmium sulfides as they have a high absorption cross 

section with a direct band gap of 1.2-2.0 eV, ideal for biomedical and photovoltaic 

applications.66,68 Furthermore, as their stoichiometry is tuned from Cu2S to CuS, copper sulfide 

nanoparticles exhibit strong localized surface plasmon resonance in the near 

IR, opening up further applications in optics, catalysis, and theranostics. 

These traits in addition to the low toxicity of copper sulfide have made it an 

appealing subject for study. Moving down the group eleven elements, Ag2S is 

also a direct band gap semiconductor that is widely used in nano- and 

macroscopic form for a wide range of applications.69 

The group 11 sulfides CuS, Cu2S and Ag2S hold great promise for 

applications that take advantage of their direct band gaps in the visible 

region, high ion mobility, and surface plasmon resonance in the NIR when 

cation deficient. Another group 11 sulfide, gold sulfide, Au2S, is has 

untapped potential. The crystal structure is cuprite, similar to α-Ag2S with a 

Figure 8 Cation exchange, 
where original cation ‘C’ 
is replaced by new cation 
‘M.’ 
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body centered cubic anion sublattice. It is a p-type direct band gap semiconductor widely 

considered to be a promising candidate for many of the same applications as the other group 

eleven sulfides and in some cases surpass them.70–72  Unlike Cu2S and Ag2S, Au2S is not 

believed to be an ion conductor. Therefore it can be used in applications where leaching of ions 

is challenging, especially in thin films.73 Au2S often forms at the interfaces between metal 

sulfides and Au, and so is an important material to understand for charge transport in thin film 

and hybrid nanomaterials.74 While CuS, Cu2S and Ag2S are well studied, Au2S remains much 

more enigmatic.  

 On both the bulk- and nano-scale Au2S is a synthetically challenging material due to its 

metastability. Gold will readily reduce to metal rather than remain in the +1 oxidation state.75  As 

a result, there are few direct colloidal syntheses of Au2S,72,76 and most result in a significant 

amount of metallic gold byproduct, hindering the material characterization. There is also poor 

control over product morphology which further leads to the instability.70,71,75,77–81 Without 

reliable syntheses to clean, stable products, some of the fundamental material properties of Au2S 

are still a mystery. As an example, the band gap it is predicted to be within the wide range of 1.3-

2.6 eV, and the basis of this prediction is not published.82  

Reported syntheses of gold sulfide and gold-gold sulfide core-shell nanoparticles78,83–85 are 

aqueous reduction of sodium sulfide and sodium gold sulphite,70,72 reduction of chloroauric acid 

with sulphide ions79,80, templated growth with apoferritin protein cages76, and via controlled 

cation exchange86. The synthesis for Cu2-xS—Au2S hybrids reported here falls into the latter 

category.    

Nanoscale techniques give exquisite control over crystallite morphology, and by the nature of 

the colloidal syntheses, the most stable facets are exposed in high proportion and stabilized by 
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ligands. As a result, metastable phases and shapes can be kinetically trapped. Cation exchange, in 

particular, has frequently been applied to provide synthetic routes to otherwise unachievable 

product morphologies, such as in the synthesis of CuInS nanorods.87 Cation exchange is practical 

for the alteration of nanomaterials, as this process occurs much more quickly on the nanoscale 

than at the bulk.88–94 Cation exchange has recently been reported to yield Au2S and mixed gold 

sulfide hybrid nanocrystals from CdS and CuS nanoparticles.86,95 Cu2S is an ideal template 

material for cation exchange as the crystal structure consists of a rigid anion sublattice with 

highly mobile Cu+ cations.19 Futhermore, there are synthetic techniques available to prepare 

large single crystalline copper sulfide nanocrystals with well-defined morphologies.96 Here, we 

use nanoscale cation exchange to achieve Au2S.  

A cation exchange procedure was used to transform Cu2S chalcocite nanoplatelets to hybrid 

Cu2S-Au2S “nanostars” and to single- and hexa-crystalline Au2S nanocrystals. This templated 

design allows control over the final product size, composition, and shape. The work reported 

herein provides an easily controllable synthetic route to Au2S nanocrystals as well as new 

understanding of the kinetic and thermodynamic variables at work in this exchange. The nature 

of cation exchange produces an Au2S product with crystallinity and purity not matched by any 

synthesis currently published. The enhanced stability of the large disk-like crystals reported 

facilitates material characterization not previously possible. Remarkably, this is the first report of 

the absorbance spectra of Au2S alone, and through a Tauc plot, the first reported experimental 

bandgap.72,86  

Cu2S platelets were synthesized via a modified literature method (Figure 9) .97 A copper 

thiolate precursor solution [(copper (II) nitrate(0.9mmol), tetraoctylammonium bromide 

(TOAB)(0.3 mmol), and dodecanethiol (DDT) (1.0 mmol)] was heated in an oil bath under 
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atmosphere for 30 min – 2.5 hours. At the low synthetic temperatures of 165°C, highly 

monodisperse hexagonally shaped Cu2S platelets with basal short axis of ~10 nm were prepared. 

At higher synthetic temperatures of to 200°C, larger hexagonal plates with basal short axis of 50-

200 nm were prepared and with a much greater size distribution. XRD indicates the phase is low 

chalcocite Cu2S. Low chalcocite has a large unit cell with low symmetry, but for convenience of 

discussion can be approximated as the closely related high chalcocite phase, which has a 

hexagonal unit cell.98 HR-TEM indicates that the large faces of the particles are the (001) plane 

of the hexagonal Cu2S, which has hexagonally arranged S atoms. 

Cation exchange was performed through the slow addition of a solution of gold (III) chloride 

(0.03 mmol), didodecyldimethylammonium bromide (DDAB), and toluene to a solution of Cu2S 

nanocrystals in oleylamine (OlAm) and toluene under nitrogen atmosphere. (Details in Appendix 

C). The gold precursor solution changed color from dark orange to colorless upon contact with 

nanoparticle/OlAm solution (Appendix C) The complete quench of the characteristic Au3+ 

absorption indicates the OlAm acts to quickly reduce the Au3+ to Au1+, readying it for exchange 

with the Cu1+ of the copper sulfide. 

Figure 9 Synthetic scheme for Au2S 
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 The product of the exchange is disks of Au2S with the same morphology as the parent 

Cu2S. The XRD shows the expected Au2S phase, consistent with that reported by Ishikawa et al 

and other.73,86 FFT analysis of lattice fringes from HR-TEM identified several d-spacings 

corresponding to Au2S, specifically 0.36 nm (110) and 0.29 nm (111). (Figure 10) The top face 

of the Au2S crystals therefore belong to a related (110) plane, which is a direction with 

hexagonally arranged sulfur atoms in the BCC anion lattice of the cuprite crystal structure of 

Au2S.  

Exchange from small Cu2S (10-20 nm diameter) nanocrystals yield single-crystalline Au2S. 

When less Au precursor was added small disks 10-30 nm appear as two sided Janus Cu2S/Au2S 

particles. Together, this suggests that small particles undergo a unidirectional exchange process 

originating from one side of the Cu2S.91  In contrast, exchange into larger Cu2S nanocrystals 

(>20nm) results in a hexa-crystalline product indicating six separate directions of exchange. 

With less Au precursor added, the result was hexagonally shaped Cu2S disks “tipped” with Au2S. 

Larger particles, therefore, are thought to go through exchange through six independent 

directions.  

Figure 10 a) HR-TEM of top face of Cu2S platelet. b) HR-TEM of completely exchanged Au2S platelet 
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Bright field TEM of the larger particles after exposure to low Au precursor concentrations 

shows that the exchange occurs exclusively from the tips of the hexagonal copper sulfide 

platelets. The direction of growth corresponds to the <110> directions of the Cu2S, resulting in 

triangular tips of gold sulfide surrounding copper sulfide centers. As the size of cationic Au1+ (r = 

137pm) is much larger than Cu+ (r = 77pm),99 visible strain deforms the hexagonal platelets into 

pointed star shapes as the Au+ exchanges for Cu+. Further evidence of the directional nature of 

this exchange is seen in figure 11f in the presence of lines of Au2S across the surface of the 

copper sulfide cores, presumably corresponding to surface step defects of the Cu2S.   

The highly directional nature of the cation exchange is related to the shifts in the anion lattice 

upon exchange. The transition from the HCP to BCC anion sublattices of the hexagonal 

chalcocite and cuprate crystal structures, respectively, requires an expansion in the <110> 

directions of the Cu2S lattice.100  These directions correspond to the tips of the parent Cu2S 

nanocrystals facilitating the exchange along these axes.  

There are pronounced domain boundaries at the ‘seams’ where two corners of Au2S meet. The 

TEM of many large particles show at least one low contrast “seam” where two corners meet or a 

“crack” at an edge in the fully exchanged Au2S. These are likely ion channels for Cu1+ to escape 

the structure during the exchange process, directionally along the [100] of the Cu2S.101 It is 

interesting to note that neither the Au3+ inclusion, nor Cu1+ leaching occur through the (001) 

faces of the Cu2S indicating there is poor ionic conductivity in this crystallographic direction.  
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Figure 11 TEM images showing: a. Smallest size Cu2S platelets, planar width of 11±2 nm. b. Large Cu2S platelets, planar 
width of 200 nm. c. Almost completely exchanged Au2S platelets. Red circles highlight cracks along domain boundaries due to 
strain following exchange. d. P artially exchanged Au2S—Cu2-xS. e. Au2S ring remaining post-etching with neocuproine. The 
red lines highlight the (110) lattice fringing on two adjacent crystallites, clearly showing the misalignment at these interfaces. f. 
STEM-EDS map clearly showing cation exchange confined to the (110) faces of the Cu2-xS and step defects on the surface of 
the platelets exposing the (110) face. 
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Further morphologies such as triangles and rings of Au2S were attained by limiting the extent of 

exchange to yield Cu2S- Au2S hybrids and followed by the removal of Cu2S domains by etching 

the Cu+ with an excess of neocuproine (Figure 11e) The removal of any remaining Cu2S was 

confirmed through TEM, EDS and XRD. The extreme flexibility in template size and control 

over the extent of cation exchange makes the synthesis reported here the first procedure that 

offers a wide range of possible product morphologies.   

A noteworthy missing piece in our knowledge of gold sulfide is an established experimental 

band gap. A Tauc plot analysis of UV-Visible absorption data was used to measure the band gap 

as seen in figure 12. Au2S nanoparticles were stirred with neocuproine in an acetone/ toluene 

solvent system in order to remove any trace copper before UV-Vis data was collected. As Au2S 

is a direct band gap material, (αhv)2 as estimated by (Ahv)2 was plotted versus the energy in eV.  

The x-intercept of the linear region of these plots was established to consistently fall at about 1.5 

eV. This result was repeated in excess of 5 times. 

Figure 12 (Left) Powder XRD of a) Au2S—Cu2S hybrid sample with b) Au2S card and c) djurleite card for reference. (Right) 
Two examples of Tauc plots derived from absorption spectra of pure Au2S nanoparticle samples. 
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The balance of cation exchange vs. metal reduction is well established to be highly system-

specific for metals with high electron affinity like Au. There are many factors at play in addition 

to relative free energies of formation such as relative solubilities, ligand chemistry, nanocrystal 

size and shape, and lattice strain.88 A simple thermodynamic calculation (Appendix C) shows 

that the Gibbs Free Energy change for cation exchange in this case is favorable95 and 

experimentally the cation exchange is completed within five minutes. While reduction of Au1+ to 

Au0 is also thermodynamically favorable, it is much slower than the cation exchange process; 

stirring the precursor solution with an excess of OlAm in the absence of template particles 

quickly converts the Au3+ to Au1+, but metal nanoparticle formation only occurs after several 

days of stirring at room temperature. (See Appendix C) 

Au2S is prone to decomposition to Au(0) under X-ray and electron beam exposure. For 

instance, XPS characterization of the product (Appendix C) shows the presence of only Au (0) 

due to the intense extended exposure to X-rays inherent to the technique (Al Ka, 1486 eV). It has 

also been noted that the surface Au tends to more easily reduce, in this work and others,80 and 

this may also be the case here as XPS is a surface sensitive technique (inelastic mean free path of 

a 1480 eV electron in Au is about 1.8 nm)102. However, we do note that an increase in size of the 

crystallites of Au2S stabilizes the material towards under X-ray and electron beam flux. With 

extended exposure to the electron beam of the TEM (on the order of 3 min for the small, 10 nm 

Au2S NC and ~10 minutes for the larger >50 nm disks), high-contrast islands of Au (0) formed, 

which is consistent with previously reported syntheses of Au2S. XRD analysis (Cu Ka,  8027 eV, 

1.8 kW, 8 h) of samples after reaction show only Au2S peaks for the large crystallites, with small 

peaks corresponding to unexchanged copper sulfide. For small crystallites, there is 

contamination from Au(0) due to decomposition. (Figure 12) 
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Therefore, the stability of the product can be tuned by changing the size of the product, with 

large (> 100nm) platelets remaining stable under TEM and XRD, and smaller platelets with their 

greater surface-area-to-volume ratio and concomitant higher degree of disorder tending to reduce 

rapidly. The previous reports of cation exchange86,95 to produce Au2S lacked any kind of 

directional control, so the products were therefore invariably polycrystalline and were reported to 

rapidly reduce in TEM.  

A major barrier to the study of Au2S nanoparticles has been the lack of a synthetic route to a 

high-quality, single crystalline product without the presence of side products such as metallic 

gold. We have presented a highly versatile synthesis for Au2S and Au2S-Cu2S hybrid 

nanoparticles, adaptable to a wide range of product morphologies and compositions. We have 

also presented the first (known to us) experimental band gap value for Au2S. This synthesis 

paves the way for further study of Au2S in the field of semiconductor nanoparticles.  
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Appendix A: Synthetic Detail for Chapter I 

General 

 All glassware for use in non-aqueous syntheses was oven dried before use and air-free 

reactions were carried out on a Schlenk line under nitrogen. A J-Kem Model 210 temperature 

controller was used in conjunction with heating mantles for most semiconductor reactions. Other 

heating methods are noted as used. 

 UV-Vis data for all nanoparticles was collected on a Jasco V-670 UV-Vis 

spectrophotometer with a baseline run of atmospheric conditions prior to data collection. 1 cm 

glass cuvettes were used with the exception of studies requiring fluorescence data, in which 

case1 cm quartz cuvettes were used. Fluorescence data was collected on a Jasco FP-8300 

fluorimeter.  

 TEM grids were prepared by dropping 10 μL of NP solution onto a grid resting on filter 

paper, except where otherwise noted. TEM images were collected on a CM20 or Osiris 

instrument at 200 kV. 

 All solvents and reagents were used as received.  Copper sulfide nanoplatelets and Jiang 

hybrids were stored for later use by freezing in cyclohexane. 

 A Time Bandwidth Products 1053 nm laser with a bandwidth of 6nm  FWHM and a 

pulse width of 100 fs was used in SHG measurements. Signal detection was carried out with a 

Hamamatsu photomultiplier tube (PMT) connected to a Stanford Research Systems photon 

counter. Power was controlled with crossed Thorlabs linear polarizers. 
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Initial synthesis. Cu2Se NP stock solution was prepared using a published synthesis.62  In short, 

CuCl (0.1976g, 2mmol), 5mL octadecene, and 5 mL oleylamine (OlAm) were degassed at 60˚C 

for at least one hour. In a nitrogen environment, selenourea (0.1463 g, 1mmol) and 1.2 mL 

OlAm were placed in a 10 mL round-bottomed flask, then the flask was transferred to a Schlenk 

line and purged three times with N2. The copper chloride solution was heated to 130˚C and the 

selenourea solution to 200˚C.  Each solution was held at their respective temperature for 10 

minutes, then cooled to 100˚C and 160˚C, respectively.  The selenourea solution was then 

injected into the copper solution and the reaction temperature was increased to 240˚C and held 

for 30 minutes. The reaction was cooled to room temperature, then the product was cleaned via 

precipitation of product with isopropyl alcohol (IPA), collection through centrifugation, and 

resuspension in toluene. All solvent additions and opening of the vial occurred in a glovebox. 

This synthesis yielded 10.7 ± 2.2 nm particles (n = 300).  

Second synthesis.  A more reliable Cu2-xSe synthesis for creating more monodisperse, 

predictable particles was found in the literature.18  In short, trioctylphosphine-copper (TOPCu) 

and trioctylphsophine-selenium (TOPSe) precursors were simultaneously injected into a 300˚C 

mixture of trioctylphosphine oxide (TOPO) and octylphosphonic acid (OPA). The temperature is 

decreased to 285˚C and held for 13 min, and then the reaction was quenched via injection of 

degassed toluene. The product was centrifuged in toluene for 20 minutes to remove any bulk 

Figure 13 Reaction Scheme for copper selenide nanoparticles and TEM 
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product, then 2 mL acetonitrile was added to the supernatant and it was centrifuged for another 

20 min. Finally, methanol (MeOH) was used to precipitate the remaining nanoparticles from the 

supernatant, and they were redispersed in toluene, washed one more time with MeOH, and 

finally stored in toluene. The particles produced in this synthesis were far more regularly-shaped 

and monodisperse (d = 9.3 ± 1.2 nm, n = 129) than those from the earlier Au—Cu2-xSe synthesis, 

and will be used in the Au@SiO2—Cu2-xSe synthesis. 

Copper sulfide syntheses 

Covellite copper sulfide. Covellite copper sulfide (CuS) nanoparticles were synthesized via a 

literature procedure37.  CuCl (49.5 mg, 0.5 mmol), Octadecylamine (ODE, 7.68 mL), oleylamine 

(OlAm, 1.97 mL), and oleic acid (OLAC, 0.21 mL) were added to a 25 mL three-neck round-

bottom (RB) flask, and rapidly heated to 130 ˚C, where they were held for ten minutes under 

vacuum. The flask was then filled with N2 and heated to 180˚C. 2mL of a stock 1 M sulfur-

oleylamine (S-OlAm) solution was injected, the temperature was recovered to 180˚C and held 

for 10 minutes before cooling the flask by spraying the outside with toluene. A modification to 

this synthesis that improved final product quality was to heat the ODE, OlAm, and OLAC to 

100˚C in the 25 mL RB flask and holding under vacuum for thirty minutes to remove dissolved 

gases and water, then flushing the flask with nitrogen and adding the CuCl. After this point, the 

synthesis was continued as published.  

Figure 14 Reaction scheme for covellite copper sulfide and TEM 



29 
 

Copper sulfide spheres. Copper sulfide spheres were synthesized per a modified literature 

synthesis103 as a control for the direct hybrid synthesis. Copper (II) acetonacetate (Cu(acac)2, 

0.27 g, 1.0 mmol), OlAm (10 mL), and OLAC (5 mL) were put in a 25 mL 3-neck RB flask and 

held with stirring under vacuum for one hour at room temperature to remove dissolved gasses. 

The mixture was heated to 200˚C under N2 and an S-OlAm solution (16 mg S, 1mL OlAm) was 

injected, then the temperature was held at 200˚C for 30 minutes. Dark brown product particles 

were washed with MeOH and toluene. 

Hybrid syntheses 

Gold addition. In order to grow Au domains45 on the Cu2Se, 2.35·10-7 mmol Cu2Se 

(ϵ=1.59*107), 19 mL toluene, and 1 mL OlAm were added to a 50 mL round-bottom flask in a 

glovebox. Also in the glovebox, AuCl3 (8.2 mg, 0.03 mmol) and 4 mL toluene were added to a 

10 mL RB flask already containing 35.6 mg dodecylamine (DDA) and 62.4 mg 

didodecyldimethylammonium bromide (DDAB). Both flasks were removed from the glovebox. 

The Cu2Se NP solution was transferred to a Schlenk line, and the AuCl3 solution was sonicated 

for 10 minutes to ensure complete dissolution of all components. The AuCl3 solution was added 

dropwise to the Cu2Se solution over 3 minutes with vigorous stirring. Product particles were 

precipitated with methanol and resuspended in 200:1:1 toluene:OLAM:TOP solution. In order to 

Figure 15 Reaction schemes for chalcocite platelets and spheres and TEM. 
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synthesize oxidized Cu2-xSe NPs for hybrid synthesis, Cu2Se particles were chemically oxidized 

with ceric ammonium nitrate. Temperature varied syntheses were carried out in ice water or dry 

ice/acetone baths instead of at room temperature. 

Later experiments showed little to no signs of air sensitivity, so fewer precautions were 

taken to avoid the exposure of the particles to air, particularly in the case of particles that were 

stored in air for several days with no adverse effects or change in optical properties, such as all 

of the copper sulfide examples. The Au/DDA/DDAB solution was prepared in an air-free 

manner, and the particles were added to the reaction flask with the OlAm, which was then placed 

under vacuum at room temperature to remove excessive dissolved gases and flushed with 

nitrogen. For copper sulfide samples, nanoparticle concentration was recorded by taking a UV-

Vis of the toluene/NP/OlAm solution before adding the Au growth solution, but no evidence of a 

NP concentration dependence was observed. 

Gold-seeded direct hybrids43 and controls. Au seed particles were synthesized by injecting 

HAuCl4 (0.3 mmol, 124 mg) in 1 mL OLAM (70%) into 5 mL OlAm previously held at 150 ˚C 

under nitrogen for 20 min. After Au injection, the reaction was stirred at 150˚C for 90 min, then 

cooled to room temperature naturally. Product particles were cleaned via precipitation with 

EtOH followed by centrifugation and resuspension in hexanes. 

 Copper stearate was prepared by dissolving CuCl2(1.1g) and sodium stearate (4.75g) in 

methanol separately, then adding the two solutions together and heating to 70˚C for 3 hours.  The 

dark green CuCl solution instantly turned vivid blue and a cloudy precipitate appeared upon 

mixing with the clear sodium stearate solution. Product was collected by adding water to the 

methanol solution, then washing several times with MeOH and H2O and drying under vacuum to 

obtain a light blue powder. 
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 Hybrids were synthesized by adding 0.2 mmol seed Au NPs, Cu-Stearate (62.7 mg), and 

trioctylamine (5 mL) to a 25-mL three-neck RB flask and stirring for 30 minutes under N2. The 

reaction mixture was then heated to 80˚C, and 0.75 mL of a solution containg S powder (8 mg), 

1,2-dichlorobenzene (0.5 mL), and OlAm (2 mL) was added dropwise very slowly. The reaction 

flask was then heated to 100˚C for 1 hour, cooled naturally, and the purple-black particles were 

purified with hexanes and ethanol (EtOH). 

 The copper sulfide control to these hybrids was prepared by adding Cu-stearate (188 mg) 

to trioctylamine (5 mL) and stirring 30 minutes under N2.  The solution was then heated to 80˚C 

under a clear dark green solution formed. 0.75 mL of a solution containg S powder (12 mg), 1,2-

dichlorobenzene (0.25 mL), and OlAm (1 mL) was added dropwise very slowly. The reaction 

temperature was raised to 100˚C and held for 1 hour before being allowed to cool to room 

temperature. Particles were cleaned with hexanes/EtOH and centrifugation. The product was a 

greenish black color. 

Au@SiO2 core-shell nanoparticles 

Two syntheses were used to synthesize Au@SiO2 core-shell nanoparticles. The first 

synthesis consisted of a seeded gold nanoparticle CTAB reduction and shells formed via base-

catalyzed tetraethylorthosilicate (TEOS) polymerization. The second synthesis consists of a 

Turkevich-style citrate reduction of chloroauric acid followed by exchange of capping citrate 

Figure 16  Direct hybrid synthesis for control 
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with (3-aminopropyl) trimethoxysilane (APTS) and shell growth via the addition of a sodium 

silicate solution activated via lowering the pH. 

 Synthesis 1 details. The first 

method employed in the 

synthesis of Au@SiO2 core-

shell nanoparticles was 

adopted from Khanal et al. 

(2012).49  First, spherical Au 

NPs were prepared ranging in 

size from 5-40 nm following a 

literature synthesis.57 3.5 ± 0.7 

nm (n = 103) gold seed nanoparticles were synthesized through the addition of 0.6 mL ice-cold 

NaBH4 (0.1 M ) solution to an aqueous solution of HAuCl4 (1.7 mg) and trisodium citrate (1.47 

mg). The solution was stirred for 3 hours before use to ensure decomposition of the NaBH4. 

HAuCl4 (17.03 mg) was dissolved in 200 mL H2O, and 

then  cetyltrimethylammonium bromide (CTAB, 6 g) 

was added and the solution was heated until the CTAB 

was completely dissolved, yielding a bright orange 

solution to be used as a growth solution. To grow 

particles, seeds were added to a mixture of growth 

solution and ascorbic acid. Ascorbic acid is not a strong 

enough reducing agent to form Au particles without the 

presence of seeding particles. 

Synthetic strategies for different particle sizes 

Particle Size Synthetic components 

5 nm 2.5 mL seed solution, 7.5 mL growth solution, 0.05 mL 0.1 

M ascorbic acid 

7 nm 1.0 mL seed solution, 9 mL growth solution, 0.05 mL 0.1 

M ascorbic acid 

16 nm 1.0 mL 7 nm particles, 9 mL growth solution, 0.05 mL 0.1 

M ascorbic acid 

35 nm 1.0 mL 16 nm particles, 9 mL growth solution, 0.05 mL 

0.1 M ascorbic acid 

Figure 17 The most successful synthesis of 
Au@SiO2 NPs following the procedures used 
by Khanal et al. Note thick (30+nm) shells and 
numerous SiO2 particles without cores 
(scale=100nm) 
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Particles were cleaned via high-speed centrifugation and resuspension in DI H2O. The 

smaller particles were mostly spherical; however, at the largest particle size rods and tetrahedral 

particles began to form a significant fraction. SiO2 shells were grown on these particles 

following a sol-gel method.49 To 30 mL nanoparticle solution containing approximately 10-11 

moles of nanoparticles, 50 μL of NaOH (0.1 M) was added. After 5 minutes, 50 μL 20% TEOS 

in methanol was added drop-wise with slow stirring. After 8-12 hours, the additions could be 

repeated in order to generate thicker shells. Unfortunately, this synthesis was difficult to reliably 

reproduce, and produced shells that were too thick, so a different synthesis was found. 

Synthesis 2 details The most successful Au@SiO2 core-shell particle synthesis8 began with a 

Turkevich56-type reduction of chloroauric acid to form citrate-capped gold nanoparticles. Briefly, 

425 mL of DI H2O was brought to a boil in a 1 liter Erlenmeyer flask. HAuCl4 (43.2 mg) was 

dissolved in 50 mL H2O and added to the boiling water. After the solution returned to a boil, 

trisodium citrate(0.25g ) dissolved in 25 mL H2O was added with vigorous stirring and the 

solution was boiled for 30 more minutes, progressing from grey to purple to a dark red color as 

the nanoparticles nucleated and grew. This synthesis yielded citrate-capped gold nanospheres 

about 16 nm in diameter. To grow 2-4 nm SiO2 shells on these particles, 2.5 mL of 1 mM APS in 

MeOH was added to 500 mL of unaltered gold nanoparticle solution in order to displace citrate 

capping ligands and form a surface upon which SiO2 could condense. The solution was 

vigorously stirred for 15 minutes, then a solution of sodium silicate (adjusted to pH 10) was 

added, resulting in a final solution pH of 8. Stirring was reduced to a minimum speed and 

continued for 4 days to ensure shell formation. At this point, SiO2 shells were present on the gold 

nanoparticles.  In order to increase shell thickness, varying volumes of TEOS and 2 mL NH4OH 

were added, as well as 100 mL ethanol, and the solution was slowly stirred for a minimum of 2 
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days. Particle progress was monitored at each step with TEM and UV-Vis. This synthesis 

provides a facile method of creating shells of any desired thickness from 2 nm up. 

Silica shell functionalization 

Transfer of Au@SiO2 particles to nonpolar organic solvent. Transfer of Au@SiO2 particles to 

chloroform was accomplished following a 

published procedure with some 

modifications.8 An excess of 3-

(trimethoxysilyl)propyl methacrylate 

approximately equivalent to the quantity of 

silica already present in the NP dispersion 

was added. This was stirred at room 

temperature for 45 minutes before slowly distilling off about 100 mL of the solvent over the 

course of one hour. At this point, a small aliquot would be withdrawn and tested for 

functionalization by adding CHCl3 and visually accessing the transfer of the nanoparticles to the 

CHCl3 layer. If the particles did not transfer from the H2O/EtOH solvent mixture to the CHCl3, 

refluxing would be continued until they did. This functionalization step did not significantly 

increase shell thickness (remained within standard deviation of original values). Once 

functionalized with methacrylate, the particle stability was much improved. The particles could 

be concentrated and collected via polar solvent addition and centrifuging, and could be stored in 

a mixture of EtOH and CHCl3 for months without irreversibly agglomerating or experiencing 

any change in optical properties as the unfunctionalized particles had a tendency to do. 

 

Figure 18 left) methacrylate-functionalized Au@SiO2 and Cu2-xSe, 
showing no signs of attachment of Cu2-xSe (scale=100nm). right) 
amine and methacrylate functionalized Au@SiO2 mixed with Cu2-

xSe, showing attachment of all Cu2-xSe to the SiO2 shells. 
(scale=50nm) 
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Amine functionalization of Au@SiO2
49,52,61

 Amine functionalization of methacrylate-

functionalized Au@SiO2 was accomplished via adding 100 μL of APTES to a solution of 

Au@SiO2 in EtOH, stirring at room temperature for 12 hours, and then refluxing. The particles 

were then collected via centrifugation and the extent of surface functionalization was accessed 

by adding CuS or Cu2Se to a solution of the Au@SiO2 in THF and stirring for thirty minutes, 

then collecting the AuSiO2 via centrifugation and examining the attachment of copper 

chalcogenide NPs to the SiO2 surface via TEM. When the surface was appropriately 

functionalized, no free copper chalcogenide NPs would be visible and large superstructures 

consisting of Au@SiO2/CuS agglomerations would dominate.  These agglomerations only 

appeared with the addition of copper chalcogenide NPs and were due to CuS NPs adhering to the 

surface of multiple Au@SiO2 particles. 

Hybrid superstructure preparation 

To prepare hybrid superstructures, plasmon peak 

intensity of Au@SiO2 and CuS solutions were 

measured via UV-Vis, then CuS was added to a 

solution of Au@SiO2 such that the proportion of 

plasmon peak intensity Au:CuS (530 nm:1050 nm) 

was approximately 1:2.  

 

 

SHG sample preparation 

Fluorine-doped tin oxide-coated glass slides were cut into 1.75 cm diameter circular disks. The 

disks were fit into the bottom of 6-dram glass centrifuge vials with the conductive FTO facing 

Figure 19 UV-Vis spectra of hybrid superstructures in 
solution 
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upwards, and a suspension of each NP or hybrid sample in THF was added to the vials. The vials 

were then placed a 4400 rpm centrifuge, and 

spun until the samples had formed an even 

pellet onto the FTO surface. The solvent was 

then carefully pipetted out of the vial, and 

characterized by UV-Vis to determine if any 

NPs had remained in solution. The pellet was 

slowly dried out in the vial, then removed and 

placed into a vacuum dessicator over Drierite. Samples were stored under vacuum until SHG 

was evaluated, and then replaced under vacuum until all reflectance, transmission, scattering, and 

SEM evaluation was completed to minimize sample oxidation and degradation.  

  

Figure 5  

Figure 20 Clockwise from top left: Gold and copper sulfide 
blanks and direct hybrids; a 6-dram vial containing a freshly 
prepared film, and all three core-shell hybrids and the covellite 
CuS sample. 
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Appendix B 

SHG Analysis Apparatus 

 

 

  

Figure 21 Laser setup for SHG analysis. PMT = photomultiplier tube. SLM = Spatial light 
modulator 
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Figure 22 An example of the SHG enhancement observed in the hybrid Au@SiO2-CuS (blue) as opposed to the Au@SiO2 alone. 

 

 

Figure 23 SHG versus power for CuS platelets alone. 
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Appendix C 

Supporting Information for Chapter III, Synthesis of Au2S 

1) Complete synthetic detail 
Cu2S 

Copper thiolate was prepared by adding (Copper (II) nitrate(0.9mmol), tetraoctylammonium 

bromide (TOAB)(0.3 mmol), H2O (32 mL), and CHCl3 (25 mL) to a flask, covering, ad 

vigorously stirring for twenty minutes. At this point, 240 μL dodecanethiol was added, and the 

mixture was stirred for an additional twenty minutes. The water layer was poured off, and the 

CHCl3 was evaporated, leaving a white waxy material which was the copper thiolate. The 

thiolate was heated in an open 5 dram glass vial in an oil bath for 2.5 hours. To achieve large 

hexagonal platelets, 50-200nm in diameter, the bath temperature was kept at 200˚C and the 

reaction was not stirred. To achieve smaller platelets, the reaction was stirred and the oil bath 

was maintained at around 165-185 ˚C, with lower temperatures yielding smaller particles. The 

product was collected via centrifugation with methanol followed by redispersion in CHCl3. UV-

VIS, TEM, and XRD were used to characterize the product. 

 

Figure 24 Copper sulfide synthesis 
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Au2S 
A batch of Cu2S was added to 1 mL oleylamine in a 20 mL 3-neck RB flask and placed under 

vacuum on a Schlenck line until the solvent was removed. The flask was then flushed with 

nitrogen and then put under vacuum several more times to remove any dissolved gases. 4-19 mL 

toluene was then added under nitrogen (less toluene resulted in greater degree of cation 

exchange). An Au precursor consisting of gold (III) chloride (0.03mmol), dodecylamine(0.2 

mmol) didodecyldimethylammonium bromide (DDAB)(0.15 mmol), and toluene was added 

dropwise to the Cu2S with vigorous stirring over the course of 3 min, and the reaction continued 

stirring for 5 minutes after the addition.  The product was collected through the addition of 

methanol and centrifugation at 8000 rpm for 10 min, then washed 2 more times with 

toluene/MeOH. Product was characterized through UV-Vis, TEM, XRD, XPS. 

2) Additional characterization 

TEM-induced Au reduction 
 

 

 

 

 

 

 

 

 

 

Figure 25 Series of TEM images of the same particles showing the rapid reduction to metallic Au 
that occurs on Au2S particles with smaller (<20 nm) domain sizes of Au2S. FFT analysis of higher-
contrast domains that within five minutes of initial image (a) to (c) confirms that these areas are 
crystalline gold, while lower-contrast regions are Au2S. Nucleation of gold domains occurs at 
surfaces and domain interfaces(‘seams’) of the gold sulfide crystals, and domain appear to undergo 
an Ostwald ripening process with continued exposure to the TEM beam, with initial small 
nucleation points quickly coalescing into a few larger gold domains. Scale bars=20 nm 
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TEM of Cu2S platelets 

 

 

 

 

 

 

 

 

 

 

 

Au2S STEM-EDS Line Scan 

 

Line-scan STEM-EDS of Au2S rings showing 2:1 Au:S ratio within ring structures. High Cu 
background levels are due to the instrument and sample holder. 

200 nm 500 nm 

Figure 26 LR TEM of smaller and larger Cu2S platelets 
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3) Precursor reduction 

 
 
 
 
 
 
 
 
 
 

Figure 25.  UV-Vis of undiluted Au precursor solution 
shows strong absorption characteristic of an Au3+ 
solution.  Upon addition of oleylamine to cuvette, this 
absorption is instantaneously diminished. After 
continuous stirring at room temperature for >1 week, 
the precursor solution turned light pink, indicating the 
formation of Au NPs. The presence of Au NPs was 
confirmed by UV-Vis (LSPR peak centered at 530nm) 
and TEM. 

4) Thermodynamic Calculations 
Following a calculation made by Kundu et al95. and the guidelines for estimation set down in 
Rivest et al.88 the thermodynamic driving force for this cation exchange was estimated.  All 
values are taken from the CRC handbook. ΔHf˚ is used for the enthalpy of formation of AuCl as 
ΔGf˚ was not available. 

2AuCl + Cu2S  Au2S + 2 CuCl 

AuCl  Au+ + Cl-                                 2(+34.7)  ΔHf˚ 

Cu2S 2Cu+ + S2-               +86.2 

2Au+ + S2-  Au2S                      (+10.8)   ΔGf˚ 

2Cu+ + 2Cl-  2CuCl                  2(-119.9) 

2AuCl + Cu2S  Au2S + 2CuCl       -73.4  ΔG˚  kJ/mol 

Negative ΔG˚ so the exchange should proceed spontaneously. 
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5) XPS 
Nanoparticles were dropcast in a toluene solution onto a silicon wafer. XPS was taken a Physical 

Electronics (PHI) VersaProbe 5000. with Al Kα X-rays (1486.6 eV), a takeoff angle of 45˚, and 

a spot size of 100 μm. Peaks were fitted using CasaXPS software and were calibrated to the 

lowest energy C 1s peak at 284.8 eV. Au 4f peaks are consistent with Au(0), as noted in the text.  

Cu 2p peaks are consistent with Cu2S as reported by Turo et al.104 However, the S 2p peaks are 

not consistent with S1- as would be expected.  Fitting only to S1-  yielded a poor fit, which was 

much improved by adding a second fit representing a slightly higher binding energy, centered 

near 162.4 eV for the S 2p3/2, which is closer to the binding energy for thiols bound to gold105 

than to the Cu2S S 2p3/2 binding energy which falls around 161.8 eV.106 Although XPS has been 

noted to be a poor characterization technique80 for Au2S, this suggests a slight material change 

and perhaps some Au-S bonding. 
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Figure 27 S 2p XRD peaksTop: S 2p peaks fit as if there were only Cu2S present. Bottom: S 2p peaks fit with another set of 
higher energy fits.  
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