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CHAPTER I 

 

INTRODUCTION: MOSQUITOES AS VECTORS OF DISEASE AND THE 

OLFACTORY BASIS FOR ANOPHELES GAMBIAE HOST SEEKING 

 

Preface 

 Despite several decades of global efforts, millions of the world’s 

poorest people continue to be plagued with one or more mosquito-

vectored diseases such as malaria, filariasis, yellow and dengue fevers, 

and numerous other arboviral illnesses. Billions are considered “at risk” of 

infection in any given year. The reasons for this continuing disease burden 

are numerous and complex. Among the factors contributing to sustained 

transmission are the high prevalence of mosquito vectors and often 

extreme levels of human exposure to them, high holoendemicity of 

diseases in many locations, agricultural practices that have weakened the 

effectiveness of insecticides, ignorance among people about modes of 

transmission and means of prevention, lack of access to basic health 

needs like clean water, food, and medicines, years of wars and conflict in 

the poorest regions of the world, and governmental policies that fail to 

address all of these issues in sustainable ways. Any of these topics are 

vigorous subjects of debate and intensive study that could easily fill the 

pages of multiple volumes and are well beyond the focus and scope of this 

dissertation. It is not the intent of this introduction to cover any of these 
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topics in detail, but rather to mention them briefly in order to place the 

work contained herein in a global health context. The ultimate resolution of 

the issues surrounding disease transmission will require many more years 

of research and the cooperative efforts of agencies both in the public and 

private sectors. We have, after all, rich historical examples of places 

where disease transmission was not only controlled but effectively 

eliminated, and the courageous people who met those challenges head-

on. These successes encourage us to press forward, even in the face of 

sometimes extreme difficulties. It is my firm belief that humankind will one 

day witness the elimination of many of these diseases. It is my sincere 

hope that my own efforts will contribute to, even in small ways, the 

solution to one of these problems. The following pages offer a brief review 

of our current state of knowledge regarding mosquito chemosensation, 

specifically in Anopheles gambiae, one of the major carriers of malaria in 

sub-Sarahan Africa. Moreover, the chapters collectively describe sets of 

experiments that were designed to increase our understanding of the 

molecular biology, and to a lesser extent the ecology of, the malaria 

mosquito. I encourage your participation in this exercise and welcome 

your comments. 

 

Introduction 

 

Malaria and Mosquitoes 
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Malaria is a disease that has been known to humankind for many 

centuries. Hippocrates, writing in the fifth century BC, recorded its 

symptoms. The debilitating power of malaria has taken the lives of millions 

of innocent children and brought some of the world’s most feared armies 

to ruin. Alexander the Great is thought to have succumbed to its power 

(Sherman 2007). Malaria is blamed for much of the slow development of 

the entire continent of Africa. Remarkably, it was not until the transition of 

the 19th to 20th centuries when dedicated researchers discovered that 

mosquitoes were responsible for transmitting the disease. Ronald Ross, a 

British physician working in India, is given credit for this discovery, and 

deservedly so, but Carlos Finaly of Cuba is often cited as the first person 

to suggest that mosquitoes can transmit disease among humans 

(Guerrant et al. 2006) and others were working on the same premise at 

the time of Ross’ discovery. In the last 100+ years we have learned a 

great deal about the pathology and treatment of malaria. Despite these 

advances malaria continues to plague our planet (Figure 1). 

Human malaria is a systemic illness that is caused by one of five 

species of the protozoan genus, Plasmodium [falciparum, vivax, ovale, 

malariae, and more recently, knowlesi (Sabbatani et al. 2010)]. Many 

other forms of malaria infect lizards, birds, and other mammals. Malaria is 

transmitted by mosquitoes of the genus, Anopheles. In all, there are about 

450 known species of Anopheline mosquitoes, but only about 40 are 

considered important carriers of human malaria (Hay et al. 2010). The 
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disease transmission cycle begins when Plasmodium parasites 

(gametocytes) are taken up by a female mosquito in the blood of an 

infected person. The gametocytes pass through several developmental 

stages in the mosquito midgut, which includes sexual reproduction. If the 

mosquito is unable to clear the infection, one or more oocysts may form 

on the outer surface of the midgut, each producing thousands of 

sporozoites that migrate through the hemolymph into the salivary glands. 

From there the sporozoites may be carried along with saliva into the 

bloodstream of a new host when the infected female mosquito feeds. The 

sporozoites rapidly penetrate liver cells, develop into merozoites over the 

course of several days and ultimately leave the liver to invade red blood 

cells. It is during the blood stage of infection that the clinical 

manifestations of malaria become evident. Despite differences in some 

characteristics of the various Plasmodium infections, a set of symptoms is 

shared among them. For example, recurrent fever and chills, excessive 

sweating, general malaise, muscle aches and headache are malaria’s 

principal manifestations. These signs are often indistinguishable from 

those occurring with many viral or bacterial diseases. A blood smear is 

one of the most common and reliable ways to identify Plasmodium in 

active blood stage malaria. P. falciparum is the most deadly of human 

infections, accounting for >90% of malaria deaths worldwide. P. vivax and 

P. ovale are generally less severe, but can remain dormant in the liver and 

produce recurring illness, months or even years after the initial infection. 
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Figure 1: Worldwide malaria burden (Guerrant et al. 2006). Dark shading 
indicates areas of highest risk. 
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For an excellent review of malaria see Guerrant et al. (2006). 

Malaria’s human toll is as difficult to describe as it is to truly 

comprehend. An estimated 250 million people suffer from malaria each 

year, and the disease annually kills between 1 million and 2.5 million 

people, mostly pregnant women and children under 5 (Guerrant et al. 

2006). The risks of malaria are not distributed evenly across the globe, 

with the poorest countries of the world being affected disproportionately. 

Consider this: annually 58% of malaria deaths occur in the poorest 20% of 

the world’s population and 90% of worldwide malaria cases occur in sub-

Saharan Africa (WHO 2003). Despite suffering the greatest consequences, 

the impoverished are least able to afford effective preventions and 

treatments and are least likely to have adequate access to them (Barat et 

al. 2004; Guerrant et al. 2006). The economic costs of malaria are also 

staggering, both for individuals and for nations. Malaria often reduces 

family incomes disproportionately across economic classes within a 

country (Russell 2004). For example, one study estimates that in Ghana 

malaria reduces the incomes of the wealthiest households by 1% but 

reduces the incomes of the poorest households by 34% (Sachs and 

Malany 2002; WHO 2003). At the national level, malaria may reduce gross 

national products (GNP) of disease-endemic countries by as much as 

50% relative to non-malarial countries (Malaney et al. 2004). 

Despite the grim picture of the world malaria burden there is reason 

for cautious optimism. The 2010 World Malaria Report published by the 
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World Health Organization Global Malaria Program indicates that 

worldwide malaria cases dropped by nearly 10% during the 10 year period 

from 2000-2009 (WHO 2010). Moreover the number of reported malaria 

deaths was down by an astounding 20% during the same period, with 

many African countries contributing to the decline (WHO 2010). 

Reductions in African malaria cases coincide with increased intervention 

programs like Roll Back Malaria (WHO 2002), which worked toward the 

distribution of Insecticide Treated Bednets (ITNs) that target host-seeking 

mosquitoes, as well as the introduction of combination drug therapies 

(WHO 2010). ITNs have proven to be one of the most cost-effective public 

health interventions, reducing transmission of not only malaria, but other 

mosquito-vectored diseases (Choi et al. 1995; Nuwaha 2001; Bates et al. 

2004; Molyneux and Nantulya 2004; Curtis et al. 2003). Although the RBM 

campaign has its critics (Yamey 2004), these programs may be at least 

partially responsible for the gains of the past 10 years. It will be interesting 

to follow malaria trends over the next decade to see if the improvements 

of the past 10 years are sustained or even exceeded. Still, the fight 

against malaria has a long way to go and it is unlikely that these programs 

alone can eradicate the disease (Yamey 2004; Guerrant et al. 2006). 

Improving mosquito control measures and continuing to explore innovative 

ways to reduce human contact with vectors are likely to make important 

contributions to these efforts.  
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Human Feeding Behavior 

An. gambaie is considered to be one of the most anthropophilic, or 

“human-loving”, mosquito species. Indeed the Human Biting Index (HBI), a 

measure of the propensity of female mosquitoes to prey on humans, of An. 

gambiae is extremely high, reaching 80-90% in many studies (Tanga et al. 

2011; Kasili et al. 2009; Okwa et al. 2009; Garrett-Jones et al. 1980). This 

preference for human hosts contributes significantly to the ability of An. 

gambiae to transmit disease. However, it is important to understand that 

most mosquitoes, including Anopheline vectors of malaria, are 

opportunistic feeders and low HBIs in An. gambiae have been recorded, 

especially in locations where outdoor collections have been utilized or 

where cattle were present (Kaburi et al. 2009; Muriu et al. 2008; Lardeux 

et al. 2007; Sousa et al. 2001; Duchemin et al. 2001; Diatta et al. 1998). 

Conversely, high rates of human feeding have been recorded in 

mosquitoes like An. quadriannulatus and Culex quinquefasciatus that are 

considered strongly zoophilic (Michaelakis et al. 2005; Barr 1967). 

Anecdotally it is also worth noting that some laboratories maintain colonies 

of An. gambiae by using mice for bloodfeeding. This implies that even 

highly anthropophilic mosquitoes are at least able to adapt to feeding on 

non-preferred hosts. 
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Figure 2. Distribution of An. gambiae in sub-Saharan Africa (Sinka et al. 
2010). Scale on right indicates lowest (blue) to highest (red) probability of 
finding breeding populations of An. gambiae. Black circles indicate survey 
sites. Inset shows An. gambiae distribution (green) based upon results 
from expert opinion surveys. 
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Olfactory Basis of Anthropophily 

A multitude of field and laboratory studies have linked odors to host 

preference in mosquitoes (Dekker et al. 2001; Mboera et al. 1998, 2000; 

Dekker et al. 1998) and particularly human odors in the case of An. 

gambiae (For reviews see Bock and Cardew 1996; Costantini et al. 1999; 

Takken and Knols 1999 & 2009; Zwiebel and Takken 2004; Besansky et 

al. 2004). Strong anthropophily has been demonstrated in choice studies 

in an olfactometer where An. gambiae was significantly more attracted to 

human odor than was a sibling species An. quadriannulatus (Pates et al. 

2001a). Moreover, An. gambiae showed a strong aversion to cow odor 

while An. quadriannulatus had no preference for either odor source. In a 

related field experiment, when An. gambiae and An. quadriannulatus were 

offered both a human and a calf inside a tent, >90% of An. gambiae fed on 

the human, while An. quadriannulatus fed equally on either. In choice 

studies in South Africa, An. quadriannulatus proved to be strongly 

zoophilic, selecting calf odors or CO2 preferentially to human odors 

(Dekker and Takken, 1998). In other field trials, An. gambiae has 

demonstrated a strong preference to human hosts from a distance, even 

in the absence of visual cues or CO2, while its sibling species An. 

arabiensis has shown a stronger zoophilic inclination (Costantini et al. 

1996, 1998; Mboera et al., 1997). Field collections of mosquitoes using 

tent traps baited with sleeping humans, again without the possibility of 

visual contact between the mosquito and host, also catch large numbers 
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of female mosquitoes (Govella et al 2009). Odor bated traps routinely 

catch more Anophelines when human odors are used (Njiru et al. 2006), 

even when competed directly with primate odors (Costantini et al. 2001b). 

The species composition of the catch depends on local breeding 

conditions, but often includes a preponderance of An. gambiae 

(Charlwood et al. 2011). These studies and many others (see reviews) 

have demonstrated that host-seeking mosquitoes are mainly guided by 

olfactory cues. Sometimes it is unclear whether a given mosquito species 

prefers one host over another. For example, Mansonia spp. showed no 

preference for human or primate odor in a dual choice field experiment 

(Costantini et al. 2001b). In those cases, one would necessarily argue for 

a model of opportunistic host-seeking. While it seems reasonable to argue 

based on the published research record that An. gambiae prefer human 

hosts, collection methods may have biased some of the outcomes. For 

example, many studies have utilized indoor resting collections to assess 

An. gambiae host preferences simply because outdoor resting sites are 

largely unknown or difficult to identify. Furthermore, An. gambiae and 

other malaria vectors are members of species complexes that often live in 

close sympatry, but occupying perhaps subtly different ecological niches. 

Therefore what may be true for one member of the complex or even a 

local ecotype may not be true for all local breeding populations. A recent 

study has provided evidence for a cryptic subgroup of An. gambiae in 

West Africa by assessing multilocus genetic variation in larvae that were, 
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by definition, collected outdoors (Riehle et al. 2011). Whether this cryptic 

subgroup are also anthropohilic is unknown, but the exophilic subgroup 

was more susceptible to P. falciparum infection than sympatric, endophilic 

An. gambiae collected from the same breeding sites. This could have 

important implications for malaria transmission if one considers that 

current insecticide programs, using bednets or spraying, target adult 

mosquitoes that bite or rest indoors. If the endophilic mosquitoes are thus 

selected against, the exophilic subgroup could be favored, which may 

paradoxically lead to higher transmission rates. Ultimately it will be 

important to understand the biting preference of the exophilic subgroup so 

that mosquito control programs can be more carefully designed. This is an 

area where novel olfactory-based interventions could serve a critical 

function by reducing human-vector encounters, regardless of indoor or 

outdoor resting and biting preferences of the mosquito. 

An. gambiae are nocturnal feeders, taking blood meals throughout 

the night with a peak of blood feeding near midnight, coinciding with 

locomotor activity (Clements 1999; Wanji et al. 2003). Whether or not An. 

gambiae feed exclusively on humans, one thing is clear: this species 

reacts very strongly to human odors (Qiu et al. 2004; Zwiebel and Takken 

2004). Human odors used as mosquito attractants have been derived from 

a range of sources including live volunteers, sweat collected from skin, 

hand and foot rubbings, worn socks, breath emanations, and synthetic 

blends. Odors have been tested in field traps and in wind tunnels 
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(olfcatometers). Locating potential a bloodmeal source involves a series of 

behaviors: activation of insect flight following stimulation with a host 

chemical odor (kairomone), upwind flight in the direction of the odor, and 

alighting/probing on the host (Takken 1991). In the context of human odor, 

approximately 350 different chemical compounds have been identified in 

sweat (Cork and Park 1996; Bernier et al. 2000). Attractive sweat 

compounds include carboxylic acids (Meijerink 2001; Meijerink and van 

Loon 1999; Knols et al. 1997), ammonia (Braks et al. 1999, 2001), lactic 

acid, and various other volatiles (Meijerink et al. 2001; Healy and Copland 

2001; Cork and Park 1996). Moreover, incubated human sweat is more 

attractive to An. gambiae than freshly collected sweat (Braks et al. 2001). 

Skin microbes are responsible for the changes in chemical composition of 

sweat that increase its attractiveness (Verhulst et al. 2011, 2010, 2009; 

Braks 2000). An. gambiae females also respond to human breath 

components, although sometimes based on their repellent effects 

(Mukabana et al. 2004; Qiu et al. 2010). Another important component of 

breath is CO2. While not a human-specific odor, CO2 has long been 

recognized as an important mosquito kairomone in field and laboratory 

settings conditions (Costantini et al. 1996; Gillies 1980; Gillies and Wilkes 

1969;  Rudolfs 1922). CO2 acts synergistically to enhance the attraction of 

other volatiles and is particularly important for the activation phase of host 

seeking (Lacey and Cardé 2010; Dekker et al. 2005; Dekker et al. 2001; 

Takken and Knols 1999). Ammonia, like CO2, acts as a powerful synergist 
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(Smallegange et al. 2005). Differences in attractiveness to An. gambiae 

among individuals have been well documented (Qiu et al. 2006; Brady et 

al. 1997; Knols et al. 1995; Lindsay et al. 1993; Schreck et al. 1990). 

Importantly, a few studies have shown that pregnant women are more 

attractive to An. gambiae or An. arabiensis than non-pregnant women 

(Himeidan et al. 2004; Ansell et al. 2002; Lindsay et al. 2000). Strangely, 

alcohol intake correlated with higher attractiveness to An. gambiae in one 

study (Lefèvre et al. 2010). The basis for these differences is poorly 

understood, but highly volatile sweat components are likely the source. 

Moreover it is apparent that blends of odors and not any single odor 

constitute a human odor signature that elicits the most profound 

responses in host-seeking An. gambiae females (Smallegange et al. 2011, 

2010, 2005; Verhulst et al. 2010; Schmied et al. 2008; Qiu et al. 2010, 

2007). Understanding more about the basis of human odor attraction may 

help us discover new ways to “push” mosquitoes away from human 

habitations or “pull” them toward baited traps. The idea of a push/pull 

strategy for mosquito control is based upon a model that has been used 

effectively in agriculture either to repel crop pests using plant species that 

are noxious (push) or to attract them using plants that are desirable (pull) 

but of no commercial value (Cook et al. 2007). 

 

 

 



	
   15	
  

Morphological and Physiological Basis of Olfaction 

Mosquitoes are equipped with 3 types of head chemosensory 

appendages: paired antennae and maxillary palps, and the proboscis, 

each with distinct sensory functions. In most mosquitoes the antennae and 

palps are sexually dimorphic while the proboscis is monomorphic 

(Clements 1999). Electrophysiological responses to host volatiles have 

been recorded from all three head appendages using sensory 

physiological techniques. What follows is a summary of the various 

structural elements that constitute the head chemosensory machinery in 

An. gambiae, which is analogous to many other mosquito species and is 

broadly similar to many insects from diverse orders. For a good review of 

many aspects of insect chemosensory biology, consult chapter 10 of 

Chemosensory Systems in Mammals, Fishes, and Insects (Meyerhof 

and Korsching 2009). 

Antennae are attached to the mosquito head by a structure called 

the scape that serves as an attachment point for muscles that move the 

antennae (McIver 1982). Distal to the scape is the cup-shaped pedicel that 

houses the Johnston's Organ (JO), which functions as the mosquito 

chordotonal (hearing) organ, and is the attachment point for the long 

segmented flagellum. The flagellum is divided into distinct flagellomeres, 

numbered 1 thru 13 beginning proximal to the head. Female antennae 

display chemosensilla on all flagellomeres, while male antennae exhibit 

long fibrillae (bristles) on flagellomeres 1–11 with chemosensilla restricted 
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to the distal two flagellomeres (McIver 1982). While the exact role of the 

fibrillae remains unclear, in An. gambiae they become erect prior to 

swarming and are thought to aid in sensing the wing beat frequency of 

conspecific females as they fly into swarms of males for the purpose of 

locating a mate (Charlwood and Jones 1979, 1980; Pennetier et al. 2010). 

In both sexes the most distal, 13th, flagellomere tapers to a pointed tip, 

ending in a pair of small sensilla. 

Volatile odor perception in mosquitoes, like other insects, is carried 

out by thousands of primary olfactory receptor neurons (ORNs) that are 

segregated in groups of 2 or more in small sensory hairs called sensilla. 

ORN dendrites are bathed in aqueous sensillar lymph contained within 

porous cuticular extensions (Stocker 2001). Sensilla are classified by both 

morphology and function. Although sensilla nomenclature often varies 

between insect species, some general descriptive features are applicable 

to all. For example, sensilla can be classified as single- or double-walled, 

thin- or thick-walled, and multiporous or single-pored (Sutcliffe 1994). The 

single pore sensilla generally mediate contact chemosensation 

(gustation/taste) and are not considered further here. The reader is 

encouraged to consult reviews: Scott (2005), Ebbs & Amrein (2007), 

Yarmolinski (2009), and Montell (2009) on taste perception in insects. 

Antennal sensilla have been described for numerous species of 

mosquitoes, including some Anophelines (Pitts and Zwiebel 2006; Ismail 

1964; Coluzzi 1964). Sensilla types are well conserved in mosquitoes, 
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Figure 3. Head appendages of An. gambiae adult female (top) and male 
(bottom), showing sexual dimorphism of antennae and maxillary palps. 
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although large variations in the numbers of each have been 

observed.Moreover, female mosquitoes generally have a significantly 

greater number of chemosensilla than conspecific males, although the 

types of sensilla are the same in both sexes. Arrayed along the antennal 

surface in An. gambiae are 5 classes of sensilla: chaetica, coeloconica, 

ampullaceal, trichodea, and basiconica. The sensilla chaetica are sturdy 

bristles that occur as two distinct subtypes – large and small. Both 

subtypes are set into sockets at their bases, end in sharply pointed tips 

and are mechanosensory. Sensilla coeloconica are thick-walled sensilla 

that occur in large and small forms in the Anophelines. Large sensilla 

coeloconica are commonly called pitted pegs and are absent in the 

Culicines. Small sensilla coeloconica also have a peg set into the bottom 

of a pit and are found paired at the distal tip of the 13th flagellomere as 

well as in small numbers on 2 other flagellomeres (Pitts and Zwiebel 2006). 

Little is known about the function of coeloconic sensilla, but the two 

located at the distal tip of the anteanne are thermosensitive (Wang et al. 

2009). Sensilla ampullacea are small, thick-walled peg sensilla set at the 

bottom of a tube, the external opening of which appears as a very small 

aperture on the cuticular surface of the first flagellomere. Their small size 

and location among non-innervated microtrichia made the ampullaceae 

the most difficult to discern and their function is unknown. Information 

described in this paragraph was derived from two excellent reviews: 

Sutcliffe 1994 and McIver 1982, except where noted. 
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Figure 4. An.gambiae antennal sensilla (Pitts and Zwiebel 2006). A: 
Sensilla trichodea (sharp). B: Socket of large chaetica sensillum. 
C:Sensilla trichodea (blunt). D: Basiconic sensillum (grooveg peg). E: 
Large coeloconic sensillum. F: Small coeloconic sensilla. G: Small 
chaetica and small coelocoinc sensilla (inset shows small coeloconic 
sensilla at distal tip of antennae). H: Sensillum ampulacea. 
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The most numerous sensilla found along the An. gambiae 

antennae are the sensilla trichodea (or trichoid), which comprise two-thirds 

of all sensilla (Pitts and Zwiebel 2006). More than 600 trichoid sensilla are 

located on each An. gambiae female antenna (Pitts and Zwiebel 2006), 

while only about 250 are found on each male antenna (McIver 1982). 

Some mosquitoes have as many as 5 distinct sub-classes of sensilla 

trichodea based on their lengths, shapes, and wall thicknesses (Boo 1980). 

Two or three distinct types of sensilla trichodea are recognized in An. 

gambiae (Pitts and Zwiebel 2006; Qiu et al. 2006; Meijerink and van Loon 

1998). The sharp trichodea vary in length but all taper noticeably from 

base to tip, have a smooth surface without obvious grooves or ridges, and 

protrude directly from the cuticle surface. Blunt trichodea are distinct in 

that they do not taper sharply, ending instead in a rounded tip that is 

nearly as wide as the base. These sensilla are more uniform in length than 

the sharp trichodea. In An. gambiae, blunt sensilla trichodea are are found 

in small numbers on with females having 15–20 per antenna (Pitts and 

Zwiebel 2006). Almost all sensilla trichodea house 2 ORNs (McIver 1982). 

Single sensillum reocrdings from sensilla trichodea in An. gambiae have 

shown that the ORNs are sensitive to a range of carboxylic acids, alcohols, 

ketones, and ammonia (Qiu et al. 2006; Meijerink et al. 2001; Meijerink 

and van Loon 1999; van den Broek and den Otter 1999). At least 6 

different physiological classes of trichoid sensilla have been named based 

on odor response profiles (Qiu et al. 2006). Importantly, some of the 
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specific odors tested: geranyl acetone, 3-methyl-1-butanol, 6-methyl-5-

heptene-2-one, and indole, are known components of human sweat (Cork 

and Park 1996; Qiu et al. 2006). Finally, while many ORNs exhibit 

increases in action potentials (excitation) when exposed to odors, some 

ORNs exhibit decreases in spontaneous action potentials (inhibition). 

Often the same odor can elicit excitatory responses in one neuron, but 

inhibitory responses in another (Qiu et al. 2006; Meijerink et al. 2001; 

Meijerink and van Loon 1999; van den Broek and den Otter 1999). 

Likewise a given neuron may be excited by one odor but inhibited by 

another. It is very likely that the combination of excitation of groups of 

ORNs and the inhibition of others is what ultimately determines how the 

mosquito perceives an odor. Evidence for this type of odor coding in 

insects comes from studies showing differential patterns of neuronal 

activity in the brain antennal lobes upon stimulation of chemosensory 

appendages with different odors (Masse et al. 2009; Riffel et al. 2009). 

Antennal lobes are the sites of first order connections made by the ORNs 

as they project into the brain from the antennae, via the antennal nerve. 

The structures of mosquito antennal lobes have been described and are 

similar to those of other insects, such that odor coding is likely to be 

processed similarly (Ghaninia et al. 2007; Ignell et al. 2005; Anton et al. 

2004, 2003). 

The sensilla basiconica, or grooved pegs are the second most 

numerous class of antennal sensilla and closely resemble the sensilla 
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basiconica of Aedes aegypti and other Culicines (McIver 1982). Externally 

they resemble thorns having 10–12 grooves along their surfaces and are 

raised on small cuticular prominences. Grooved pegs are found in small 

numbers on the basal flagellomeres and increase in number distally, with 

nearly half of them occurring on the last three flagellomeres (Pitts and 

Zwiebel 2006). Subclasses of grooved pegs have been distinguished in 

other Anophelines, based on numbers of external grooves, wall structures, 

and numbers of innervating neurons (Boo and McIver 1976), but not in An. 

gambiae. Each peg houses 2-4 olfactory neurons (McIver 1982) and is 

sensitive to important volatile chemicals. ORNs in grooved pegs of Ae. 

aegypti were the first to be recognized in mosquitoes as being sensitive to 

lactic acid, a major component of human sweat (Davis and Sokolove 

1976). Grooved peg nerons in An. gambiae are also sensitive to lactic acid 

as well as other important kairomones like ammonia and butylamine. An. 

gambiae grooved pegs have been grouped into 5 physiological types 

(GP1-5) based on their response profiles to a common set of odorants 

(Qiu et al. 2006). All grooved pegs respond with excitation to ammonia 

and butylamine (Qiu et al. 2006). Four of the five types respond to a few 

carboxylic acids, some by excitation some by inhibition (Qiu et al. 2006). 

On the whole grooved peg neurons seem to be more specialized with 

respect to the breadth of odor responses than trichoid sensilla neurons, at 

least for the panels of odors that have been used in published studies. 
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Figure 5. Response profiles of An. gambiae grooved peg sensilla to 
ammonia (top panel) and lactic acid (bottom panel, Qiu et al. 2006). Clear 
increases in action potential frequencies (vertical spikes) are induced by 
odor application. Amplitudes of spikes are characteristic of a specific 
neuron, here named A, B, or C. In both cases the A neuron responds to 
odor. For other odors, the B or C neurons may respond (not shown). 
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The secondary chemosensory organs on An. gambiae heads are 

the maxillary palps and proboscis. The palps are located latero-ventrally 

from the antennae and are comprised of five segments in both sexes. The 

palps of females are longer than the antennae in Anophelines, but not in 

Culicines (McIver 1982), which can be used as a defining characteristic in 

subfamily identification. The distal 2 segments of male An. gambiae 

maxillary palps are fused and form a club-shaped end. The purpose of this 

club is unknown. The palps of mosquitoes are also distinguished by the 

presence of a single morphological sensillar type, the capitate peg 

(Sutcliffe 1994; McIver 1982). Contained within the capitate pegs are 3 

ORNs, one of which has a specialized folded (lamellate) structure (McIver 

1982). This neuron is sensitive to increasing concentrations of CO2 in 

many insects including the mosquitoes Ae. aegypti and An. gambiae (Lu 

et al. 2007; Grant and O’Connell, 1996). The two other ORNs in capitate 

pegs of An. gambiae are excited volatile odors. One of them is a highly 

sensitive to 1-octen-3-ol that is both a human sweat component and a 

plant volatile (Lu et al. 2007). The remaining ORN is sensitive to a range 

of compounds, but is most highly excited by 2,4,5 trimethyl thiazole (Lu et 

al. 2007). 

The mosquito proboscis is a modified labium and is the most 

ventral of the head appendages, ending in paired labellar lobes. The 

proboscis houses the stylets that are used by both sexes for nectar 

feeding and are also used by females for bloodfeeding (Clements 1992). 
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Until recently, the labellum was considered to be solely gustatory in its 

function (McIver 1982), but is now recognized as also having an olfactory 

capacity (Kwon et al. 2006; Melo et al 2004). Specifically, small but 

numerous T2 sensilla located on both labellar lobes each house 2 ORNs 

that are sensitive to volatile odors, including the important kairomones 

butylamine and oxovaleric acid (Kwon et al. 2006). The future exploration 

of the role of the proboscis in host seeking and selection will be interesting 

to follow. 

	
  

Molecular Basis of Chemosensation 

 The first insect odorant receptors (Ors) were identified in D. 

melanogaster by multiple groups using differing approaches (Clyne et al. 

1999; Gao and Chess 1999; Vosshall et al. 1999). As a result of genome 

sequencing projects, Or gene families have now been described in 

numerous insect species representing multiple orders (Smith et al. 2011; 

Robertson et al. 2010; Smadja et al. 2009; Robertson and Wanner 2006; 

Krieger et al. 2003; Robertson et al. 2003), including three mosquito 

species: An. gambiae (Hill et al. 2002), Ae. aegypti (Bohbot et al. 2007), 

and Culex quinquefasciatus (Pelletier et al. 2010). Insect Ors are an 

extremely divergent gene superfamily, often sharing very low amino acid 

identities/similarities within the same species, and having few orthologs 

between species (Robertson et al. 2003; Robertson 2006; Ache and 

Young 2005). They represent a distinct subclass (class E) of the very 
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large G protein-coupled receptor (GPCR) family with a unique evolutionary 

history and no homologs in vertebrate genomes (Kaupp 2010; Ramdya 

and Benton 2010; Robertson et al. 2003). Ors are usually widely 

dispersed in insect genomes, with some tandem or clustered groups of 

paralogous genes representing recent duplications. Moreover, single 

nucleotide polymorphisms are widespread, very few pseudogenes have 

been retained, and numerous duplications are evident (Hill et al. 2002, 

Robertson et al. 2003; Ache and Young 2005; Bohbot et al. 2007), all 

suggesting that insect odorant receptors are very rapidly evolving genes 

(Sánchez-Gracia et al. 2009).  

 The large family of 79 candidate An. gambiae Or genes (AgOr) was 

identified using homology-based approaches (Fox et al., 2001, Fox et al. 

2002; Hill et al 2002). A few AgOrs are clustered in the genome and, 

based on their homologies, similar directions of transcription, and 

conserved introns, are likely to have arisen as a result of multiple 

duplication events (Hill et al., 2002). In general the conceptual translations 

of AgOrs do share the common topological feature of 7 predicted 

transmembrane (TM) domains, although fewer than 7 TMs are predicted 

for some (Hill et al. 2002). Like other insect Ors, the AgOr gene products 

share little identity at the primary amino acid level, usually less than 20%, 

although 14 pairs share >70% peptide identity (Hill et al. 2002). 

Phylogenetic comparison of the DmOrs and AgOrs best illustrates the 

divergence between these insect odorant receptors as nearly all clades 
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are composed of within-species receptors, with a few clades being 

composed of interspecies groupings (Hill et al., 2002). 

 As expected for chemosensory receptors, insect Ors are expressed 

in adult antennae, maxillary palps (Figure 6) as well as larval 

chemosensory structures (Clyne et al., 1999, Gao and Chess, 1999, 

Vosshall et al., 1999, Vosshall et al., 2000; Fox et al. 2001; Fox et al. 

2002; Hill et al. 2002; Melo et al. 2004; Xia and Zwiebel 2006; Bohbot et al. 

2007; Pelletier et al. 2010; Krieger et al. 2003). Their expression is limited 

to specific sensillar types in stereotypic regions of the antennae and their 

patterns and projections are conserved from individual to individual 

(Schymura et al. 2010; Sakurai et al. 2004; Vosshall et al., 2000). 

One Or gene is highly conserved across insect orders, is widely co- 

expressed with other Ors, and is required for their function (Krieger et al. 

2003; Pitts et al. 2004; Larsson et al. 2004; Jones et al. 2005; Xia and 

Zwiebel 2006). A more detailed discussion of this receptor is provided 

below. 

The regulation of Or expression has been explored in D. 

melanogaster where two genes, acj6 and pdm3, encode POU-domain 

transcription factors that are expressed in ORNs and modulate expression 

of several DmOrs (Bai et al. 2009; Tichy et al. 2008). Or expression 

patterning is likely to play a significant role in establishing olfactory 

sensitivity, indeed acj6 mutants show defects in olfactory responses 

(Clyne et al. 1999). Cis-acting DNA elements that are involved in Or 
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Figure 6. AgOr expression in An. gambiae female chemosensory 
appendages. Top Panel - A: scanning electron micrograph of a single 
flagellomere showing sensilla types. B: Antibodies against AgOR7 protein 
reveal its broad expression (magenta) in female antennae. C: AgOR7 is 
localized to cell bodies and dendrites of sensilla trichodea (ST) neurons 
(labeled green) D: AgOR7 is absent in grooved peg (GP) neurons. E: 
scanning electron micrograph of a maxillary showing single sensilla type. 
F: AgOR7 is localized to cell bodies and dendrites of capitate peg sensilla 
(CP) neurons (green; Pitts et al. 2004). Bottom panel – C: in situ probes 
detect AgOr1 in a few cells in each antennal flagellomere. D: Higher 
magnifications of the 4th flagellomere from C (Schymura et al 2010). 
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transcriptional regulation, both positively and negatively, have also been 

characterized in D. melanogaster (Ray et al. 2007, 2008). Whether those 

elements are conserved in An. gambiae remains to be determined. 

However, strong homologs of both acj6 and pdm3 are expressed at high 

levels in An. gambiae antennae (unpublished observation). Furthermore 

expression of AgOrs in the An. gambiae antennae is limited to the trichoid 

sensilla (Pitts et al. 2004). This is analogous to the expression pattern 

observed for DmOrs (Vosshall et al. 2000). Therefore it is likely that the 

odor sensitivities of An. gambiae trichoid sensilla that are described above 

can be accounted for by the repertoire of AgOrs that are localized in 

trichoid ORNs. Still unknown, as of the time of this writing, was the identity 

of chemoreceptors expressed in grooved peg neurons in An. gambiae. 

The discovery of a new class of chemoreceptors in D. melanogaster that 

function in odor sensing in the morphological analogs of grooved pegs 

(Benton et al. 2009) led directly to the identification of a new receptor 

class in An. gambiae that may underlie odor sensitivities in this important 

class of sensilla. Chapter II will describe this work in detail. 

 Ors from multiple insect species have now been functionally 

characterized (for review see Kaupp 2010; Ramdya and Benton 2010; and 

Touhara and Vosshall 2009). Nearly the entire repertoires of Ors in D. 

melanogaster (Hallem et al. 2004a) and An. gambiae have been 

deorphaned (Carey et al. 2010; Wang et al. 2010). The receptors can be 

divided into 2 broad classes based upon specificity of function: the 
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pheromone receptors activated by blends of compounds that are released 

by conspecifics, and the general odorant receptors activated or inhibited 

by a range of semiochemicals that are released by heterospecifics 

(Touhara and Vosshall 2009). Based on heterologous expression studies, 

AgOrs seem to belong to the latter class as no true pheromonal functions 

have been described for them, although a few receptors are sensitive to a 

narrow range of odors and odor ligands are unknown for several more 

(Hallem et al. 2004b; Xia et al. 2008; Bohbot et al. 2010; Carey et al. 

2010; Wang et al. 2010). Perhaps future studies will identify important An. 

gambiae pheromone(s) and the receptor(s) that mediate their sensitivities. 

In heterologous expression studies AgOrs were found to be 

sensitive to chemical classes such as heterocyclics, aromatics and 

alcohols (Carey et al 2010; Wang et al. 2010). Among these compounds 

are odors found in human sweat (Carey et al. 20101; Wang et al. 2010). 

However, receptors for amines, including ammonia, were clearly lacking 

(Carey et al 2010; Wang et al. 2010). This again suggests that 

chemoreceptors other than AgOrs are responsible for ammonia sensitivity 

in grooved pegs. In another study AgOr1 conferred sensitivity to 2-

methylphenol (Hallem et al. 2004b), a component of human sweat that 

elicits responses in mosquito antennae (Cork and Park 1996). 

Interestingly, AgOr1 is also down-regulated in female antennae after 

blood-feeding (Fox et al. 2001). Whether or not AgOr1 is required for 2-

methylphenol sensitivity in a living, adult mosquito awaits validation. If 
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demonstrated, such a finding would close a significant gap in our 

understanding of mosquito olfaction. Only one study to date has 

demonstrated the functional requirements of AgOrs in living animals by 

using RNA interference (RNAi) knockdowns of gene expression. This 

study will be discussed in Chapter II, where knockdowns of different 

classes of receptors in An. gambiae larvae led to altered behavioral 

responses to distinct odors thus defining distinct signaling pathways (Liu 

et al. 2010). 

Gustatory (i.e. taste) receptors (Grs) have been identified in 

numerous insect genomes (Robertson et al. 2010; Kent and Robertson 

2009; Robertson and Kent 2009; Kent et al. 2008; Robertson and Wanner 

2006). These large gene families appear to encode 7 transmembrane 

receptor proteins and are structurally and phylogenetically similar to the 

Ors (Robertson et al. 2003). Grs have been studied most extensively in D. 

melanogaster where they are responsible for sensing general classes of 

tastants like sweet, bitter, and carbonation (Weiss et al. 2011; Dahanakar 

et al. 2007; Jones et al. 2007; Kwon et al. 2007; Slone et al. 2007; Thorne 

et al. 2005). Perhaps most important to mosquito host-seeking are the 

carbon dioxide (CO2) sensitive receptors (Lu et al. 2007). CO2 is a 

powerful attractant to many bloodsucking insects and is especially 

important as an activator of mosquito flight (Lacey and Cardé 2010; 

Dekker et al. 2005; Gillies 1980). The An. gambiae homologs of CO2 

receptors are expressed in a specialized neuron in each capitate peg of 
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the maxillary palps and mediate the highly sensitive phasic-tonic response 

to changes in carbon dioxide (Lu et al. 2007). 

 Odorants, which are often lipophilic, must transverse the sensillum 

lymph in order to activate odorant receptors. Families of odorant binding 

proteins (Obps) are thought to fulfill this role in insect sensilla (Bloomquist 

and Vogt 2003). Obps were first discovered in the silk moth Antheraea 

polyphemus where a pheromone-binding protein (ApolPBP) was shown to 

interact with a female sex pheromone component in the lymph of a 

pheromone sensitive sensillum (Vogt and Riddiford 1981). Members of 

this gene family share some common characteristics: N-terminal signal 

sequence, putative odor binding capability, overall small size of 

approximately 14kDa, and the presence of alpha helices each containing 

conserved cysteine residues at characteristic positions, but are otherwise 

extremely divergent (Bloomquist and Vogt 2003). The identification of 

Obps in several insect species (Xu et al. 2003; Nikonov et al. 2002; Briand 

et al. 2001; Kim et al. 1998; Picone et al. 2001; Riviere et al. 2003; Vogt et 

al. 1999) and the description of a new subfamily of Obps called General 

Odorant-Binding Proteins (Gobps) in Lepidoptera provided evidence that 

Obps are part of multigene families with intrinsic roles in peri-reception 

(Vogt et al., 1989, Vogt et al., 1991). The availability of the D. 

melanogaster and An. gambiae genomes resulted in the identification of 

Obp families in both species (Hekmat-Scafe et al. 2002; Xu et al. 2003). 
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In An. gambiae, 57 Obp genes were identified in homology-based 

searches (Xu et al. 2003). Like the AgOrs, AgObps show very little 

sequence homology either within or across species (Xu et al. 2003). 

AgObps are clustered in the An. gambiae genome and belong to three 

subclasses. The 29 classical Obps are predicted to form a six-alpha 

helical structure held together by the interactions of 6 conserved cysteine 

residues, the 12 Plus-C Obps contain an additional exon/intron and other 

conserved amino acid residues that are not found in the classical Obps, 

and the 16 atypical Obps encode peptides with longer C-terminal regions 

that contain additional conserved cysteine residues (Xu et al 2003). 

Atypical AgObps lack introns, but are otherwise more similar to the 

classical AgObp genes than the Plus-C AgObps. The atypical AgObps are 

not found in D. melanogaster leading to the speculation that this subfamily 

arose after fly/mosquito divergence (Xu et al. 2003). 

 The first evidence for Obp olfactory function in Dipteran flies was 

provided by the characterization of the Drosophila OBP76a mutant, also 

called Lush. Lush mutants display abnormal attraction to toxic levels of 

ethanol (Kim et al., 1998) and loss of sensitivity to the aggregation 

pheromone 11-cis vaccinyl acetate (VA) (Xu et al. 2005). These 2 

compounds are detected by two different subsets of trichoid sensilla each 

expressing Lush. Transgenic rescue and the introduction of Lush protein 

into the recording pipette of VA sensitive neurons in mutant flies restored 

the electrophysiological response to this compound. However, introducing 
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an alternative Obp, 83a, failed to restore the VA response, demonstrating 

that Lush is necessary for the transduction pathway of VA (Xu et al. 2005). 

Moreover, modification of Lush protein by making single amino acid 

substitution mimics the conformation change associated with VA binding 

and induces activation of the pheromone receptor (Laughlin et al. 2008). 

If high Obp expression in chemosensory tissues implies olfactory 

function then expression of Obps in non-chemosensory tissues either 

indicates cryptic chemosensory cells in thode tissues, or alternative 

functions for Obps. In D. melanogaster (Galindo and Smith, 2001) the 

Obps have been further classified based upon their expression pattern: 

olfactory, taste, olfactory & taste and non-chemosensory. The non-

chemosensory class includes the Drosophila Obp19d (pbprp2) whose 

expression is ubiquitous (Park et al. 2000; Shanbhag et al. 2001; Galindo 

and Smith 2001) and is expressed in various olfactory and taste organs 

and in the epidermis. Accordingly, an odorant scavenger function has 

been suggested for these Obps (Shanbhag et al. 2001; Park et al. 2000). 

In An. gambiae, functional roles for AgObps in olfactory signaling have 

been described recently. RNA intereference knockdown of AgObp1 

expression reduced the antennal response to indole (Biessmann et al. 

2010). Another study, using recombinant proteins in vitro, showed that 

ligand binding properties were altered when combinations of AgOBPs 

were mixed together (Qiao et al 2010). The study also showed co-

expression of AgObps in the same antennal sensilla. The authors 
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conclude that AgObps may form heterodimers that work cooperatively to 

bind odors, which would effectively increase the odor receptive range 

(Qiao et al, 2010). These studies have offered new insights into the 

functional properties of AgObps. The demonstration that RNAi-mediated 

knockdown of AgOrs (Chapter II) and AgObps (Biessmann et al. 2010) 

can produce deficits in odor sensitivities should encourage similar studies 

designed to elucidate not only their independent roles, but perhaps co-

dependence of these two gene classes. A detailed description of the 

expression pattern of the AgObps family is found in Chapter III. Moreover, 

the identification of genes that are similar to families of lipophilic carriers 

and highly expressed in chemosensory tissues, but are unrelated to the 

AgObps, suggests novel odorant binding functions for them (Chapter III). 

 

Olfactory Signal Transduction 

From its first identification and subsequent expression analysis, 

DmOr83b was viewed as a potentially extraordinary odorant receptor 

(Vosshall et al., 2000). It is longer than the average DmOR, having an 

extended loop between the 4th and 5th putative transmembrane regions 

and it is expressed in nearly all antennae and maxillary palp neurons in D. 

melanogaster (Vosshall et al., 2000). Furthermore, DmOr83b and other 

DmOrs have unexpectedly inverted conformations in the dendritic 

membrane, with their N-termini located intra-cellularly and their C-termini 

located extra-cellularly (Benton et al., 2006; Lundin et al. 2007; Tsitoura et 
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al. 2010). Moreover, highly conserved orthologs have been identified in all 

insect genomes sequenced to date, some of which have been used to 

complement the general anosmia in DmOr83b- null mutant flies (Larsson 

et al. 2004; Neuhaus et al. 2005; Jones et al. 2005). DmOr83b was also 

demonstrated to be necessary and sufficient for the proper localization 

and retention of other conventional DmOrs to the dendritic membrane 

(Larsson et al., 2004, Benton et al., 2006). The DmOr83b subgroup is 

unique to insects and forms a monophyletic clade within the larger insect 

chemoreceptor family and bridges the Ors to gustatory receptors 

(Robertson et al., 2003). This exceptional degree of sequence 

conservation and expression characteristics among insect OR gene 

families suggested that the DmOr83b family represents a non-

conventional Or that is required for olfactory signal transduction in all 

insects. 

Heterologous expression studies revealed that orthologs of 

DmOr83b partner with conventional ORs and enhance odorant response 

sensitivities (Wetzel et al. 2001; Sakurai et al. 2004; Neuhaus et al., 2005). 

DmOr83b does not independently confer odorant sensitivity (Dobritsa et al. 

2003; Benton et al. 2006; Sato et al. 2008; Wicher et al. 2008), but forms 

an ion channel either alone or in cooperation with a conventional Or that is 

gated by its cognate odor ligand (Sato et al. 2008; Wicher et al. 2008; 

Smart et al. 2008). Still controversial is whether the heteromeric 

Or83b/Orx receptor can also function as a metabotropic receptor, coupled 
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to G-protein second messenger signaling (Nakagawa and Vosshall 2009; 

Sato and Touhara 2009). The molecular machinery and mechanisms of 

insect olfactory signal transduction is thus distinct from vertebrate and 

nematode signaling, each of which utilize GPCR signaling (Figure 7). As 

the downstream signaling events in insect chemoreception are very poorly 

understood they will not be covered in this introduction. The reader is 

directed to the following reviews for further reading (Kaupp 2010; 

Nakagawa and Vosshall 2009; Rutzler and Zwiebel 2005). It will now be 

interesting to study the evolutionary history of this signaling pathway. We 

may indeed find that the principles of insect olfaction are conserved in 

more basal hexapod or arthropod lineages, and potentially providing 

opportunities for broad-based control strategies that rely on olfaction for 

their implementation. 

 

Preview of Chapters II, III, and IV 

What follows are accounts of studies that I have personally 

contributed to that were designed to answer questions about the 

molecular basis of mosquito olfaction. As already mentioned, Chapter II 

will describe the identification of a new class of candidate chemoreceptors 

in An. gambiae, the ionotropic receptors. This large family of genes is 

weakly homologous to a family first discovered in olfactory tissues of D. 

melanogaster, the DmIrs (Benton et al. 2009). The Irs of both species are 

related to the ionotropic glutamate receptors and have apparently evolved 
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Figure 7. Model of insect olfactory signal transduction (Kaupp 2010). 
Or83b (or its ortholog in other species) forms a channel either in 
cooperation with another OrX (top panel) or alone (bottom panel). 
Whether some OrX-Or83b complexes can also signal via G proteins 
(bottom panel) remains controversial.  
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as sensory receptors. Their expression is significantly enhanced in An. 

gambiae antennae and maxillary palps, and in D. melanogaster they are 

responsible for odor sensitivity in sensilla that are the morphological 

analogs of mosquito grooved pegs. We demonstrate a requirement for 

one of these receptors, AgIr76b, in larval behavioral responses to 

butylamine. Furthermore, the butylamine response is insensitive to the 

knockdown of AgOr7, indicating that distinct olfactory signaling pathways 

exist in An. gambiae larvae. 

 In Chapter III, my coauthors and I examine transcriptome profiles of 

the antennae and maxillary palps of female and male An. gambiae. The 

studies were designed to explore several aspects of the molecular 

components of An. gambiae chemosensory tissues using RNA-seq 

technology. First, we wanted to look for genes that are enhanced in 

chemosensory tissues, with the goal of identifying new olfactory signaling 

players. These genes, if identified, could become targets for 

pharmacological screens aimed at developing novel mosquito repellents 

or attractants. Second, we were interested in potential differences in gene 

expression between antenna and maxillary palps and between sexes. 

Finally, we could use the data to carefully study the expression profiles of 

AgOrs, AgIrs, AgGrs, and AgObps, the large chemosensory gene families. 

What we found was enlightening. We identified classes of genes that had 

previously not been associated with chemoreception, including potentially 

novel odorant binding proteins. Moreover, we discovered that the 
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complexity of chemoreceptor expression was similar in antennae and 

maxillary palps females and males, although their absolute expression 

levels were higher in females. These results could impact future studies of 

mosquito olfaction and we expect will provide a valuable resource for the 

research community. 

 Chapter IV fits loosely into the overall work and is the product of an 

ecological study of An. gambiae in Ghana in which I participated in the 

summer of 2010. I became friends with Drs. Derek Charlwood and 

Alexander Egyir-Yawson while attending mosquito conferences in July 

2008 and January 2010. They invited me to come to Ghana to assist in 

their work. Through the generous gift of Dr. Gisela Mosig, who 

bequeathed money to the Department of Biological Sciences for graduate 

student travel, I was able to accept the invitation. The survey was 

designed to examine the bionomics of the local An. gambiae population 

including, breeding sites, molecular forms, age structure, survival rates, 

and gonotrophic cycle timing in a small rice growing village. The 2010 

study was a follow-up to one conducted a year earlier. The ultimate goal of 

this work would be to understand the vectorial capacity of An. gambiae in 

the village such that appropriate mosquito control measures might be 

implemented. 
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CHAPTER II 

 

DISTINCT OLFACTORY SIGNALING MECHANISMS IN THE MALARIA 

VECTOR MOSQUITO ANOPHELES GAMBIAE 

 

Preface 

The following publication by Liu et al. appeared in the journal PLoS 

Biology in 2010 (Volume 8, No. 8, pii: e1000467). I was a co-first author of 

this publication based on my contributions to the work contained therein. 

My experimental contributions included identifying and annotating the 

large family of 46 An. gambiae Ionotropic Receptors (AgIrs) plus 9 

ionotropic glutamate receptors, examining their expression patterns in 

chemosensory tissues of adults and larvae, synthesizing AgIr76b siRNA. 

In addition, I contributed to all aspects of the experimental design, 

statistical analyses, figures, and manuscript writing. My own unpublished 

data (Table 2 and Figure 12) have been added to this chapter that 

describe in more detail the expression of AgIrs in adult chemosensory 

tissues. 

 

Introduction 

Chemosensory cues play a central role in directing much of the 

behavioral repertoire and are a significant determinant in the vectorial 

capacity of female An. gambiae mosquitoes, which are responsible for the 
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transmission of human malaria (Takken and Knols 1999). Significant 

progress has been made in identifying the components of olfactory 

pathways in An. gambiae (Fox et al. 2001; Merrill et al. 2003; Hallem et al. 

2004; Pitts et al. 2004; Kwon et al. 2006). Nonetheless, there is a paucity 

of information regarding the precise molecular mechanisms that mediate 

olfactory signaling in An. gambiae. 

At the center of the peripheral olfactory signal transduction pathway 

in An. gambiae is a family of odorant receptors (AgORs) that are 

selectively expressed in olfactory receptor neurons (ORNs). Although 

originally identified as candidate G protein-coupled receptors (GPCRs; Hill 

et al. 2002), several studies have disputed the GPCR nature of 

Anopheline and other insect ORs (Benton et al. 2006; Lundin et al. 2007; 

Sato et al. 2008; Wicher et al. 2008; Smart et al. 2008), which likely form 

ligand-gated heteromeric ion channels that activate ORNs through 

ionotropic (Sato et al. 2008; Smart et al. 2008) as well as perhaps 

metabotropic mechanisms (Wicher et al. 2008). In addition, members of a 

family of another set of chemosensory receptors related to ionotropic 

glutamate receptors have recently been described in Drosophila 

melanogaster (Benton et al. 2009). The majority of insect ORNs typically 

express at least two ORs that are likely to form complexes of 

undetermined stoichiometry that are composed of one highly conserved 

non-conventional OR83b-like protein together with a conventional OR that 

presumably mediates odorant binding specificity (Hallem et al. 2004; 
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Benton et al. 2006; Larsson et al. 2004). In An. gambiae, 73 of the 79 

AgORs originally identified (Hill et al. 2002) are expressed in the adult and 

13 are expressed in larval stages (Xia et al. 2008). The non-conventional 

Anopheline OR83b-like family member, AgOR7, is widely expressed in 

nearly all olfactory sensilla with the notable exception of grooved-peg 

sensilla (Pitts et al. 2004), which are activated in vivo by compounds such 

as ammonia, lactic acid, and other carboxylic acids that are major 

components of human sweat (Cork and Park 1996; Bernier et al. 2000) 

known to evoke physiological and/or behavioral activity in An. gambiae 

(Carey et al. 2010; Wang et al. 2010). Indeed, recent functional analyses 

of AgOR odor space reveal a paucity of responses for these groups of 

odorants, suggesting Anopheline sensitivity to amines and other variant 

odorants may lie outside of AgOR-based signaling (Carey et al. 2010; 

Wang et al. 2010). 

In order to improve our understanding of mosquito olfaction, we 

have continued to utilize the relative simplicity of the An. gambiae larval 

olfactory system, which consists of only 12 ORNs (Xia et al. 2008). In 

previous studies utilizing behavioral and functional approaches to describe 

the molecular and cellular basis for olfactory responses to a range of 

natural and synthetic chemical stimuli, we identified a subset of AgORs 

expressed in the larval antenna that are tuned to odorants that elicit 

specific behavioral responses (Xia et al. 2008). Building upon those 

studies, we now use RNAi-based gene-silencing approaches to validate in 
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vivo the role of AgORs in larval olfactory signal transduction and 

specifically identify the molecular receptor that mediates the repellent 

activity of N, N-diethyl-m-toluamide (DEET). In addition, we have identified 

and characterized a family of chemosensory receptors that are related to 

inotropic glutamate receptors (AgIRs) that underlie a novel-signaling 

pathway that is independent of AgOR activity. We propose that An. 

gambiae expresses distinct signaling pathways that participate in larval 

olfaction and are likely to also be active in mediating adult responses to a 

diverse range of chemosensory stimuli. These studies further our 

understanding of the molecular basis of olfaction and olfactory-driven 

behaviors in An. gambiae and lay the foundation for advancing 

alternatives to mosquito control strategies focused on adult life stages. 

 

Methods 

 

Mosquito Rearing 

An. gambiae sensu stricto, originated from Suakoko, Liberia, was 

reared as described (Fox et al. 2001). For stock propagation, 4- to 5-d-old 

female mosquitoes were blood fed for 30–45 min on anesthetized mice, 

following the guidelines set by Vanderbilt Institutional Animal Care and 

Use Committee. 

 

Individual Larval Behavioral Assays 
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Larval assays were conducted between ZT2 and ZT10 during the 

standard LD12:12 rearing cycle. Here, An. gambiae 2nd or 3rd instar 

larvae were removed from rearing pans, rinsed carefully with distilled 

water to eliminate any remaining food residue, and kept in segregated 

containers with distilled water for 30 min. Odorant stocks were made by 

dissolving odorant (>99% pure, or the highest grade commercially 

available) in pre-heated (70 degrees C) 2% NuSieve, GTG low-melting-

temperature agarose (Cambrex Bio Science). The assay was performed in 

a 10x1.5 cm Petri dish containing 50 ml of 27 degrees C distilled water. 

The odorant and larva dropping spots were located at opposite ends along 

the diameter and marked by a solid circle and a cross, respectively. The 

odorant/control stock was placed into the dish for 1 min beforehand to 

equilibrate, and the larva was gently introduced at the marked spot. 

Real-time images of larval movements were obtained and 

downloaded at 1s intervals for the duration of the 5 min assay using a 

custom-designed 30 frames/s video camera/computer/software system 

(Model NC-70, DAGE-MTI, Michigan City, Apple PowerMac 8500/Scion 

Image J v1.63, National Institutes of Health, USA). At the conclusion of 

each assay, all larvae were individually stored at -80 degrees C for 

molecular analyses, as described below. The images were subsequently 

sorted and analyzed using Image J (version 1.40g, NIH, USA) with its 

Mtrack J plug-in (version 1.3.0). The analysis of larval responses was 

carried out by tracking the motion of individual larva after marking the 



	
   63	
  

position of the larva’s anterior, which was easily discernable in our system. 

In this manner, we were able to monitor and calculate the number of larval 

turns, overall movement, resting time (s), and average velocity (mm/s) to 

provide a comprehensive characterization of larval behavior patterns. 

Similarly, a turn threshold was defined such that if the intersection angle 

between two successive larval tracking vectors exceeded 45 degrees, the 

larvae were considered to have carried out a turn (Figure 1). Similarly, 

movement thresholds were defined so as to recognize false movements 

and account for the tendency of An. gambiae larvae to stochastically 

perform body swirls that appear to lack any horizontal locomotion. In our 

hands, a movement threshold was set by establishing that an individual 

larva turns 90 degrees relative to an axis set at the body-length midpoint; 

the distance between the previous and the current position of the larval 

head can be calculated using the equation: body length/sqrt(2). By setting 

the movement threshold in such a manner, we were able to compensate 

for false movements that result from the tendency of An. gambiae larvae 

to stochastically perform body swirls that appear to lack any horizontal 

locomotion. After measurement of multiple (n>30) stage-2 and stage-3 

larvae, we calculated the average larval body length as approximately 

3.25 mm in our CCD system, thereby establishing a threshold for larval 

movements at approximately 2.3 mm, such that any shift in larval head 

position exceeding this value was defined as a single instance of larval 

movement (Figure 1). In addition to analyzing tracking data for the number  
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Figure 1. Operational definitions of larval movements and turns. (A) A 
larval body movement threshold is characterized by a larva turning its 
body axis by 90 degrees and its head traveling the distance indicated. (B) 
A larval turn threshold is defined by a 45 degree angle between two 
successive larval tracking vectors. 
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of movements and turns, we also measured the average velocity (mm/s) 

and resting time (s) over the course of the entire assay. Arithmetic means 

for each assay/treatment were analyzed for statistical significance using 

single-factor ANOVA; significant results were followed up with Tukey-

Kramer post-tests to distinguish among groups using JMP software (v. 

4.0.4, SAS, Cary, NC). In the cases where antennal and maxillary palp 

ablations of larvae were conducted, all manipulations were carried out by 

manual dissection at 2nd instar stages, after which larvae were allowed to 

recover for 24h prior to behavioral testing. 

 

AgIR Identification and Expression 

Candidate AgIR sequences were identified in both the An. gambiae 

genome using DmIR amino acid sequences as tBLASTn and BLASTp 

queries, respectively. Potential exon-intron gene models were predicted 

based on homology to DmIRs or AgIRs, as well as with the aid of a 

Hidden Markov Model-based gene structure predictor 

(www.Softberry.com). Iterative searches of all gene models were carried 

out until no new candidates were identified. Conceptual translations of full 

AgIR coding sequences were aligned with DmIR protein sequences using 

Clustal X. Phylogenetic trees were constructed using the Neighbor-Joining 

method (Saitou and Nei 1987) with bootstrap resampling of 1,000 pseudo-

replicates. Transmembrane helices were predicted using Hidden Markov 

Model-based software from the Center for Biological Sequence Analysis 
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(Technical University of Denmark, 

http://www.cbs.dtu.dk/services/TMHMM-2.0/). Antennae from late-instar 

An. gambiae larvae were hand-dissected into RNALater-Ice solution 

(Ambion, Austin, TX). Total RNA extraction and cDNA synthesis were 

performed using the RNeasy Mini (Qiagen) and Transcriptor First Strand 

cDNA Synthesis (Roche) kits, respectively. Antennal cDNA was used as a 

template in PCR as described (Fox et al. 2001). PCR primers specific for 

AgIrs were as follows: AgIr8a: f5’-CCCTATGAGTGCAGAAAATT-3’ and 

r5’-GGTACAGCACGTCTTCTGCG-3’; AgIr25a: f5’-

CAACCGACATACGCTACCAA-3’ and r5’-ACGATGAATACGCCTCCGAT-

3’; AgIr41a: f5’-ACTGG- GAACTGGAGGTGGTG-3’ and r5’-

CTAAGGTGTCTCACTCCTCC-3’; AgIr41n f5’-

ATGCACGATACATCTTGCCG-3’ and r5’-

TAAAGGACAGGAACGGTGTG-3’; AgIr76b: f5’- 

CACGCTCCCAATCAACAATG-3’ and r5’-GATGGCGGCTAAACACTTCC-

3’; AgNMDAR2 f5’-AAGTTGGTGCTATGGATCAT-3’ and r5’-

ACACCATACGCATATACCCG-3’; rps7 f5’-

GGCGATCATCATCTACGTGC-3’ and r5’-

GTAGCTGCTGCAAACTTCGG-3’. cDNA amplicons were TOPO-TA 

cloned into plasmid pCRII (Invitrogen) and sequenced to confirm their 

identities. 

Expression of AgIrs in adult antennae and maxillary palps were 

determined by RNA-seq analysis as described in Chapter III (Methods) of 
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this dissertation. In-situ hybridizations were carried out as described 

(Kwon et al. 2006), except that frozen sections were used instead of 

paraffin sections. 

 

siRNA Preparation and Injection 

Double-stranded (ds) RNAs against a specific target gene were 

prepared and purified using bidirectional in vitro transcription of full-length 

cDNA templates using flanking T7 transcription initiation sites, and siRNAs 

were prepared via RNAse III digestion using Silencer siRNA Construction 

reagents and protocols (Applied BioSystems/Ambion, Austin, TX). Healthy, 

wild-type 2nd instar An. gambiae larvae were chosen for micro-injection. 

They were pre-immobilized on 3MM filter paper on top of a 4 degrees C 

chill platform (BioQuip Inc, Rancho Dominquez, CA). Additional 

desiccation was achieved using Kimwipes (Kimberly-Clark, Dallas TX) to 

gently dry individual larva. Twin styrofoam strips were also employed as 

temperature sinks to reduce distress from cold temperatures. Single barrel 

borosilicate glass capillary pipettes (World Precision Instruments, 

Sarasota, FL) were pulled (using a P-97 puller, Sutter Instruments, Novato, 

CA) and beveled (using a Narishige EG-5 beveller, Tokyo, Japan) to form 

microinjection needles. For larval microinjection, 27.6 nl of 100 nM siRNA 

were injected into the dorsal side of the larval thorax using a Nanoliter 

2000 system (World Precision Instruments, Sarasota, FL). Post-injection, 

larvae were allowed to recover in 27 degrees C distilled water with 1 ml of 
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larval food (as described in Mosquito Rearing section) for 48h. Larvae 

were monitored every 24h post-injection, and non-viable individuals were 

discarded. 

 

Real-Time PCR (qRT-PCR) 

Subsequent to experimental treatments and behavioral assays, 

AgOr7, AgOr40 and AgIr76b transcript levels were determined by means 

of quantitative RT-PCR. Each sample was comprised of 10 (AgOr7) or 30 

(AgOr40, AgIr76b) larval heads that were hand-dissected from batches of 

control and experimental An. gambiae larvae. RNA extraction and cDNA 

synthesis were performed using the QIAGEN RNeasy Mini Kit and Roche 

Transcriptor First Strand cDNA Synthesis Kit, respectively. All primers in 

the assay were designed to span predicted introns in order to distinguish 

well between genomic DNA and cDNA templates. An. gambiae ribosomal 

protein S7 (rps7), which is constitutively expressed at high levels in all 

tissues, was chosen as control gene to measure the relative levels of 

mRNA of target genes in vivo. Primer sequences are as follows: rps7, f5’-

GGCGATCATCATCTACGTGC-3’ and r5’-

GTAGCTGCTGCAAACTTCGG-3’ (product size: 458bp cDNA); AgOr7, 

f5’-ATCTTTGGCAATCGGCTCATC-3’ and r5’-

GGCTCCAAGAACCGAAGC-3’ (product size: 346 bp cDNA); AgOr40, f5’-

GACCCTCAAGAACCAGGGCT-3’ and r5’-

AATGATGGTGTAGTACGAGAAGG-3’; AgIr76b, f5’-AT- 
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CTTCGATCCAGAGTTGCT-3’ and r5’-CCGGTCACCATGACGAAGTA-3’. 

qRT-PCR was carried out using an Applied Biosystems 7300 Real-time 

PCR system and SYBR green as fluorescent dye. Three experimental 

repetitions were analyzed for each biological sample and the data 

processed using System 7300 Sequence Detection Software (version 

1.3.1). Primer efficiency was determined using a standard curve for all the 

primers used. In the amplification of target genes and rps7, 8 µl and 2 µl 

cDNA, respectively, from each group were used as templates. In each trial, 

cDNA levels of target genes were quantified relative to rps7 levels using 

the method of Pfaffl (2001). 

 

Results 

 

Behavioral Responses of Individual Larva 

Previous studies utilized a novel paradigm to assay the behavioral 

responses of large groups of An. gambiae late instar larvae to various 

natural and synthetic odorants in order to characterize the molecular and 

cellular elements of the larval olfactory system (Xia et al. 2008). While 

providing fundamental information about the components underlying the 

olfactory responses of An. gambiae larvae, these end-point studies did not 

provide the precise tracking information that would allow us to distinguish 

between attractive or repulsive behavioral patterns. In addition, the need 

for a large number of larvae precluded its use in other experimental 
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contexts. To provide such information and utility, a CCD camera-based 

tracking system was utilized to study the behavior of individual An. 

gambiae larva in response to odorant stimuli. Visual tracking records 

(Figure 2) were then analyzed to distinguish parameters associated with 

directional movement. These included calculating the total number of turns, 

the overall number of movements, the average velocity, and the resting 

time for each larval behavioral assay (Figures 2 and 3). 

The sensitivity of this system was initially tested with two odorant 

stimuli, each of which evoked a strong dose-dependent response in the 

An. gambiae larvae group assay paradigm (Xia et al. 2008). The first was 

DEET, which is a widely used commercial insect repellent. The second 

was yeast paste, a complex odorant source and a normal component of 

larval food (Xia et al. 2008). The behavioral responses of individual An. 

gambiae larva to three concentrations of DEET and two concentrations of 

yeast paste were examined along with the appropriate set of parallel no-

odorant controls (Figure 2). For each assay, the four behavioral 

parameters described above were quantified. In these studies, yeast paste 

elicited decreases in overall larval turning (inverse klinokinesis; Figure 2) 

and movement (Figure 3) as well as concomitant increases in resting time 

when compared with no-odorant controls. In contrast, DEET elicited nearly 

the opposite effect: An. gambiae larvae displayed a dose-dependent 

increase in the turning rate (direct klinokinesis; Figure 2), number of  
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Figure 2. Larval responses in An. gambiae to yeast and DEET elicit 
opposite behaviors. (A) 2-D tracking maps (top view) of freely moving 
individual larva during a 5 min time lapse. (B) Average number of turns 
exhibited by larvae in response to no odor, two concentrations of yeast 
paste, and three concentrations of DEET were assessed independently 
over a 5 min time lapse. Treatments with high DEET concentrations (10-4 
and 10-3 v/v dilutions) and yeast paste (0.8 and 1.6 mg/ml) differed 
significantly from the no-odor control (p<0.01). Results are shown as 
means +/- SE, n = 10. 
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Figure 3. Behavioral effects of yeast and DEET on An. gambiae. Larval 
responses to yeast and DEET stimuli. Average number of movements (A), 
velocity (B), and resting time (C)—histograms of larval responses to two 
concentrations of yeast paste and three concentrations of DEET. 
Compared with the no-odor control, yeast, and DEET significantly affected 
larval activity (p<0.05). Results are shown as means +/- SE, n = 10. 
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movements, and average velocity (direct orthokinesis; Figure 3), while the 

average resting time was reduced to threshold levels at dilutions of 10-3 

and 10-4. 

To confirm that the odorant-evoked behavioral responses were 

mediated by the larval olfactory system, a parallel set of assays were 

carried out after hand dissection of both larval antennae to effectively 

eliminate the site of olfactory signal transduction. Antennal-ablated larvae 

appeared to be largely indifferent to high concentrations of both DEET and 

yeast, as larval responses were indistinguishable from no-odorant and 

unablated controls (Figure 4). In larvae in which the antennae were left 

intact but maxillary palps removed, responses to DEET and yeast paste 

were similar to those in unablated controls (Figure 4). Taken together, 

these data demonstrate that we have developed a robust behavioral 

paradigm for examining odorant-induced responses from individual An. 

gambiae larva. 

 

AgOR Silencing Confirms a Direct Role in the DEET Response 

To discern the molecular basis for odorant-evoked behavioral 

responses of An. gambiae larvae, we initially focused on the role of AgOr7, 

which is the An. gambiae ortholog of the non-conventional Drosophila OR, 

DmOr83b (Pitts et al. 2004; Hill et al. 2002), and is highly expressed in the 

larval antenna (Xia et al. 2008). In the absence of effective strategies to 

generate mutant or transgenic strains of An. gambiae, we used RNA 
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interference (RNAi) to reduce AgOr7 mRNA levels in individual larva, 

which could then be tested for abnormal behavioral responses. Individual 

larval behavioral assays followed by quantitative RNA analyses were 

conducted to assess the effects of AgOr7 siRNA and control siRNA 

microinjections on olfactory responses and transcript levels. To account 

for non-specific effects of siRNA delivery, larvae were microinjected with 

identical amounts of a siRNA designed against a gene (AT5G39360) from 

the Arabidopsis thaliana genome lacking significant homology to any 

cDNA in An. gambiae. Furthermore, buffer-alone microinjections were 

carried out in parallel to assess any potential effects of microinjection on 

larval behavior. 

In order to assess the efficiency of siRNA-mediated knockdown of 

AgOr7 transcripts, a series of qRT-PCR studies were carried out on 

experimental and control larvae after behavioral testing. In these assays, 

cDNA was prepared from larval heads (with olfactory antennae attached) 

from individual larva collected immediately following behavioral testing. 

These data (Figure 5) confirm that microinjection of siRNAs targeting 

AgOr7 resulted in dramatic decreases in levels of this transcript. 

Although a modest microinjection effect was observed on the 

average larval velocity, the overall number of turns (Figure 6) as well as 

the number of movements, average velocity, and resting time (Figure 7) in 

response to 1.6 mg/ml yeast paste stimuli were largely unaffected by 
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Figure 4. Larval antennae mediate responses to yeast and DEET. In the 
presence of yeast and DEET, unablated and palp-ablated larvae 
responded equally to both; ablation of the antennae, however, significantly 
increased or decreased the number of turns (p<0.05) in response to yeast 
and DEET, respectively. Results are shown as means +/- SE, n = 10. 
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microinjection with AgOr7 or control siRNAs. In contrast, a 1x10-3 (v/v) 

dilution of DEET in individuals that received AgOr7 siRNA showed 

significant (p<0.01) reductions in turns (Figure 6), movements, and 

velocity as well as a significant increase in their average resting time 

relative to buffer-injected and control larvae (Figure 7). Although a modest 

microinjection effect was again observed in buffer-injected larvae, these 

results are consistent with the hypothesis that larval responses to DEET 

are AgOr7-dependent whilst larval responses to yeast paste are AgOr7-

independent. Functional studies using Xenopus oocytes (Xia et al. 2008) 

have previously identified AgOR40 as a conventional ligand-specific larval 

AgOR that responds to DEET stimulation and, by implication, is likely to 

be responsible for DEET-elicited behavioral responses in An. gambiae 

larvae. Inasmuch as the molecular basis for DEET-mediated behaviors 

remains controversial, we tested this hypothesis by using siRNA-mediated 

gene silencing to examine whether knockdown of AgOr40 transcripts 

would also perturb behavioral responses to DEET and yeast paste. In 

these studies, injection of siRNAs targeting AgOr40 echoed the effects of 

AgOr7 siRNAs and showed a significant reduction in turns and other 

elements of larval behavior in response to DEET stimuli (Figure 8A) and 

were unaffected in response to yeast paste (Figure 8B). As was the case 

for AgOr7 silencing, qRT-PCR studies were carried out on experimental 

and control larvae after behavioral testing to assess the levels of AgOr40  
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Figure 5. Quantitative RT-PCR analysis demonstrates significant 
transcript level reduction of AgOr7 and AgOr40 after siRNA treatment. 
Larval cDNAs for qRT-PCR were generated using equal amounts (2 µg for 
AgOr7 and 4 µg for AgOr40) of RNA extracted from hand-dissected larval 
heads from each injection treatment group, and three technical replicates 
were performed for each experimental group. AgOr7 and AgOr40 mRNA 
levels were quantified as fold-changes relative to rps7 using the method of 
Pfaffl (2001). AgOr7 and AgOr40 levels are shown after normalization to 
buffer-alone controls in each of three experimental replicates. Histograms 
showing averaged AgOr7 and AgOr40 levels normalized to buffer-alone 
injection controls. Standard errors were +/-0.041 and +/-0.029 for non-
specific and AgOr7 siRNA injections; +/-0.127 and +/-0.392 for non-
specific and AgOr40 siRNA injections, respectively. Raw data from each 
qRT- PCR reaction indicating cycle-threshold (CT) and primer efficiency 
information for each technical replicate. 
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Figure 6. Differential sensitivity of larval responses in An. gambiae to 
siRNA-mediated knockdown of AgOr7 is odorant dependent. The average 
number of turns exhibited by uninjected larvae as well as those receiving 
mock (buffer-alone), non-specific, or siRNA injections in response to yeast 
paste and DEET were assessed independently over a 5 min time lapse. 
Larval responses to 1.6 mg/ml yeast paste were unaffected by any siRNA 
treatments (A) while larvae receiving AgOr7 siRNAs displayed significant 
reductions in turning rates in response to a 10-3 v/v dilution of DEET (B). 
Buffer and non-specific siRNA-injected animals displayed a comparable 
reduction of the number of turns (p<0.05). Results are shown as means 
+/- SE, n = 10. 
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Figure 7. Larval behaviors after injection of non-specific small interfering 
RNA (siRNA). Averaged responses of buffer, non-specific, and AgOr7 
siRNA-injected larvae in the presence of 1.6 mg/ml yeast paste and a 10-3 
v/v dilution of DEET. Larval movement (A), velocity (B), and resting time 
(C) behaviors of larvae in response to yeast paste and DEET. Knockdown 
of AgOr7 mRNA levels has no effect on the ability of larvae to respond to 
yeast paste yet evokes significant behavioral alterations in larval 
responses to DEET (p<0.01). Results are shown as means +/- SE, n = 10. 
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transcripts. These data (Figure 5) confirm that microinjection of siRNAs 

targeting AgOr40 resulted in dramatic decreases in AgOr40 transcript 

levels without significantly altering AgOr7 mRNA pools. Taken together, 

these data directly validate the role of AgOR40 as a DEET-specific 

conventional AgOR in the larval olfactory system of An. gambiae, but does 

not rule out the involvement of other AgORs, especially in adults. 

 

AgIRs Mediate AgOR Independent Olfactory Responses 

Based on the AgOr7-independent response of larvae to yeast paste, 

we next investigated whether AgOr7-dependent and -independent 

olfactory signaling exists in An. gambiae larvae. In doing so, we 

considered that AgOr7 independence of the larval yeast response might, 

in part, reflect that yeast paste is a complex mixture, some components of 

which may activate AgOr7- independent olfactory signaling pathways. In 

contrast, DEET is a unitary compound that specifically elicits AgOr-

dependent behavioral responses in An. gambiae larvae and physiological 

responses in Xenopus oocyte-based AgOR functional assays (Xia et al. 

2008). 

To examine further the possibility that distinct signaling pathways 

are active in this system, we searched the An. gambiae genome for 

homologs of variant ionotropic glutamate receptors that have recently 

been shown to function as novel chemosensory proteins in D.  
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Figure 8. Differential sensitivity of larval responses in An. gambiae to 
siRNA-mediated knockdown of AgOr40 is odorant dependent. Larval 
responses exhibited by uninjected larvae as well as those receiving mock 
(buffer-alone), non-specific, or siRNA injections in response to DEET (A) 
and yeast paste (B) were assessed independently over a 5 min time lapse. 
Larval responses to 1.6 mg/ml yeast paste were unaffected by any siRNA 
treatments while larvae receiving AgOr40 siRNAs displayed significant 
reductions in turning rates (top panel) in response to a 10-3 v/v dilution of 
DEET. Buffer and non-specific siRNA-injected animals displayed a 
comparable reduction of the number of turns (p<0.05). Larval movement, 
velocity, and resting time behaviors (from top to bottom) of larvae in 
response to DEET (A) and yeast paste (B) where knockdown of AgOr40 
mRNA levels had no effect on the ability of larvae to respond to yeast 
paste yet evoked significant behavioral alterations in larval responses to 
DEET (p<0.01). Results are shown as means +/- SE, n = 10. 
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melanogaster (DmIRs) (Benton et al. 2009). We have identified a family of 

46 An. gambiae variant ionotropic glutamate receptors, which we have 

named AgamGLUVIRs, and 9 homologs of ionotropic glutamate receptors, 

named AgamGLURs or AgamNMDARs, all according to the convention 

established by the An. gambiae genome consortium 

(www.Vectorbase.org). For convenience we refer to the AgamGLUVIR 

genes as AgIrs and their conceptual peptide products as AgIRs. Another 

group of researchers has independently identified the same family of 

genes (Croset et al. 2010) and we have agreed with them on a unified 

nomenclature in order to avoid confusion in future publications. A listing of 

the entire gene family and their chromosome positions is given in Table 1. 

A phylogenetic reconstruction comparing the amino acid sequences 

of AgIRs and DmIRs shows deep branching and low bootstrap support for 

many of the implied relationships, reflecting the considerable sequence 

diversity between these proteins both within and across species (Figure 9). 

The most convincing relationships are observed within the iGluRs, 

suggesting conservation of function (Figure 9). Very few strong homologs 

are observed between AgIRs and DmIRs. Despite their diversity, topology 

predictions indicate conservation of 4 hydrophobic stretches of amino 

acids that likely correlate to the transmembrane and pore regions (Figure 

10) of known ionotropic glutamate receptors (for review see Mayer 2006). 

Interestingly, two of the strongest AgIR homologs of DmIRs are 

found within the iGluR clade (Figure 9). AgIR25a shares 68% amino acid 
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identity (84% similarity) with DmIR25a, and AgIR8a shares 42% identity 

(63% similarity) with DmIR8a, genes that are broadly expressed in 

coeloconic sensilla neurons in the third antennal segment of D. 

melanogaster (Benton et al. 2009). These 2 peptides are also much longer, 

891aa and 946aa, respectively, than other AgIRs (average length 664aa) 

and are closer in size to the iGluRs (avg. 974aa, including partial peptides). 

Moreover, AgIR25 has retained 2 of the 3 amino acids, an arginine and an 

aspartic acid (Figure 10A), in positions that are known to be important for 

glutamate binding (Mayer 2006). Importantly, some classes of NMDA 

receptors also lack the 3rd residue (Mayer 2006). AgIR8a has potential 

glutamate-binding residues in all three conserved positions, while several 

other AgIRs, including AgIR76b, retain one or more (Figure 10B). Most 

other AgIRs are divergent at those positions (unpublished data). 

As a first step toward characterizing the potential role of AgIRs in 

larval olfactory signaling, we carried out RT-PCR using cDNA derived from 

An. gambiae larval antennae and gene-specific primers to 5 AgIr genes. 

These studies indicated that multiple members of this class of candidate 

chemosensory genes are expressed in the larval antenna (Figure 11) as 4 

of the 5 AgIrs could be amplified from larval antennae. Additionally, 

expression of one member of the ionotropic glutamate receptor family, 

AgNMDAR2, was observed in larval antennae (Figure 11). Moreover, 

broad expression of AgIrs in adult An. gambiae chemosensory tissues 

was observed (Table 2). In-situ hybridization using an AgIr25a-specific 
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Gene peptide name VectorBase ID Chromosome: base pairs (strand) 
AgamGLURI AgGLURI AGAP006027 2L: 25,274,226-25,314,781 (+) 
AgamGLURIIa AgGLURIIa AGAP000803 X: 14,739,086-14,744,472 (+) 
AgamGLURIIb AgGLURIIb AGAP000801 X: 14,618,285-14,702,072 (-) 
AgamGLURIIc AgGLURIIc AGAP000798 X: 14,600,998-14,612,301 (-) 
AgamGLURIId AgGLURIId AGAP002797 2R: 27,638,116-27,644,376 (-) 
AgamGLURIIe AgGLURIIe AGAP012447 unk: 1,553,896-1,557,262 (+) 
AgamNMDAR1 AgNMDAR1 AGAP001478 2R: 5,390,305-5,394,755 (+) 
AgamNMDAR2 AgNMDAR2 AGAP012429 unk: 284,129-400,942 (-) 
AgamNMDAR3 AgNMDAR3 AGAP005527 2L: 16,640,867-16,647,151 (-) 
AgamGLUvir7h.1 AgIR7h.1 AGAP013154 X: 12,751,181-12,753,181 (-) 
AgamGLUvir7i AgIR7i AGAP013363 2R: 26,793,376-26,795,314 (+) 
AgamGLUvir7n AgIR7n AGAP000714 X: 12,757,892-12,760,135 (-) 
AgamGLUvir7s AgIR7s AGAP013409 X: 12,762,561-12,764,534 (-) 
AgamGLUvir7t AgIR7t AGAP002763 2R: 26,797,736-26,799,713 (+) 
AgamGLUvir7u AgIR7u AGAP013285 2R: 26,795,525-26,797,440 (+) 
AgamGLUvir7w AgIR7w AGAP013416 2R: 26,799,941-26,801,942 (+) 
AgamGLUvir7x AgIR7x AGAP013520 X: 12,767,186-12,769,138 (+) 
AgamGLUvir7y AgIR7y AGAP013172 X: 12,771,474-12,773,520 (+) 
AgamGLUvir8a AgIR8a AGAP010411 3L: 2,867,389-2,870,222 (-) 
AgamGLUvir21a AgIR21a AGAP008511 3R: 11,468,382-11,471,590 (-) 
AgamGLUvir25a AgIR25a AGAP010272 3R: 51,917,004-51,920,704 (-) 
AgamGLUvir31a AgIR31a AGAP009014 3R: 23,550,606-23,552,617 (-) 
AgamGLUvir40a AgIR40a AGAP004021 2R: 47,922,057-47,924,755 (+) 
AgamGLUvir41a AgIR41a AGAP002904 2R: 29,130,386-29,133,257 (-) 
AgamGLUvir41b AgIR41b AGAP008759 3R: 17,137,047-17,139,240 (+) 
AgamGLUvir41c AgIR41c AGAP012951 2R: 39,202,960-3’,205,188 (-) 
AgamGLUvir41n AgIR41n AGAP003531 2R: 39,207,749-3’,210,030 (-) 
AgamGLUvir41t.1 AgIR41t.1 AGAP004432 2R: 55,960,058-55,962,321 (+) 
AgamGLUvir41t.2 AgIR41t.2 AGAP012969 2R: 55,988,209-55,990,472 (+) 
AgamGLUvir60a AgIR60a AGAP011943 3L: 35,436,382-35,438,481 (-) 
AgamGLUvir64a AgIR64a AGAP004923 2L: 6,087,139-6,107,636 (-) 
AgamGLUvir68a AgIR68a AGAP007951 3R: 3,275,939-3,278,326 (+) 
AgamGLUvir75d AgIR75d AGAP004969 2L: 7,301,252-7,303,528 (+) 
AgamGLUvir75g AgIR75g AGAP013085 2R: 10,846,334-10,848,911 (-) 
AgamGLUvir75h.1 AgIR75h.1 AGAP001811 2R: 10,851,283-10,853,577 (+) 
AgamGLUvir75h.2 AgIR75h.2 AGAP001812 2R: 10,855,568-10,857,858 (+) 
AgamGLUvir75k AgIR75k AGAP007498 2L: 46,923,249-46,925,420 (+) 
AgamGLUvir75l AgIR75l AGAP005466 2L: 15,949,821-15,952,169 (-) 
AgamGLUvir76b AgIR76b AGAP011968 3L: 35,687,053-35,692,621 (-)  
AgamGLUvIR93a AgIR93a AGAP000256 X: 4,900,441-4,905,540 (-) 
AgamGLUvir100a AgIR100a AGAP000140 X: 2,149,577-2,152,578 (+) 
AgamGLUvir100h AgIR100h AGAP000293 X: 5,199,638-5,204,600 (+) 
AgamGLUvir100i AgIR100i AGAP004475 2R: 56,749,587-56,751,832 (+) 
AgamGLUvir101 AgIR101 AGAP013425 2R: 42,015,346-42,017,474 (+) 
AgamGLUvir133 AgIR133 AGAP005677 2L: 18,651,360-18,653,143 (-) 
AgamGLUvir134 AgIR134 AGAP005678 2L: 18,657,551-18,659,242 (-) 
AgamGLUvir135 AgIR135 AGAP005679 2L: 18,662,281-18,664,071 (-) 
AgamGLUvir136 AgIR136 AGAP006440 2L: 31,959,226-31,960,962 (-) 
AgamGLUvir137 AgIR137 - 2L: 31,957,279-31,958,959 (-) 
AgamGLUvir138 AgIR138 - 2L: 31,954,985-31,956,676 (-) 
AgamGLUvir139 AgIR139 AGAP006691 2L: 36,737,099-36,738,805 (-) 
AgamGLUvir140.1 AgIR140.1 AGAP013242 2R: 16,645,150-16,647,020 (+) 
AgamGLUvir140.2 AgIR140.2 AGAP013436 2R: 16,642,268-16,643,951 (+) 
AgamGLUvir141 AgIR141 AGAP013473 2R: 31,458,247-31,463,898 (+) 
AgamGLUvir142 AgIR142 AGAP006407 2L: 31,561,183-31,564,566 (+) 

 
  



	
   88	
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1. Annotation of AgIR family members. Nomenclature, and 
chromosome positions of ionotropic glutamate (AgamGLUR and 
AgamNMDAR) and variant ionotropic glutamate receptor (AgamGLUvir) 
families in An. gambiae. Column headers indicate: (1) long form of gene 
name; (2) short form of peptide name; (3) VectorBase gene identification 
number; (4) chromosome location and base pair position (plus, + or minus, 
- strand in parentheses) of updated gene annotation; and (5) conceptual 
peptide sequence of new gene model (single letter amino acid code). 
AgGLURI and AgGLURIIb represent partial peptides where the 5’ end of 
the gene has not been annotated. 
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Figure 9. AgIR/DmIR phylogenetic tree. Neighbor-joining tree based on 
amino acid alignments of AgIR and DmIR peptides. AgIR names are 
shown in bold type and DmIR names are shown in plain type. Black dots 
indicate branch points where bootstrap support is less than 50%. 
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Figure 10. Representative alignments of AgIR and DmIR homologs. (A) 
IR25a peptide alignment. (B) IR76b peptide alignment. Amino acid 
sequences (single letter code) were aligned using ClustalX. Identical 
residues are shaded. Bold lines above residues indicate predicted 
transmembrane helices, while the dotted line above residues indicates the 
potential pore loop. Boldface letters represent amino acids arginine (R), 
threonine (T), or glutamic acid/aspartic acid (E/D) at positions that are 
found in known glutamate receptors. 
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probe in antennal sections revealed broad expression in antennal cells 

that are likely to be olfactory receptor neurons (Figure 12; note: Table 2 

and Figure 12 added after publication). 

In order to examine whether AgORs and AgIRs perform distinct 

functional roles in the olfactory system of An. gambiae, we carried out 

behavioral assays using two additional unitary odorants that have been 

used successfully in previous behavioral  and functional studies (Xia et al. 

2008). The first was 3-methylphenol (3MP), which was shown to activate 

AgOR-dependent pathways and evoke robust behavioral responses in 

larvae (Xia et al. 2008). In our current studies, larvae manifest dose-

dependent reductions in turns and overall movement, as well as threshold-

dependent increases in average resting time (Figure 13). Furthermore, 

larval responses to 10-4 dilutions of 3MP were significantly altered in 

larvae injected with AgOr7 siRNA, whereas control or buffer-injected larval 

responses were statistically equivalent to uninjected control larvae 

(Figures 14 and 15A). AgOR40 is one of 3 larval AgORs with a 

demonstrated sensitivity to 3MP (Xia et al. 2008). In that light, we also 

tested the ability of siRNA mediated silencing of AgOr40 expression to 

alter larval responses to 3MP—in these studies a marginal but not 

statistically significant effect was observed (unpublished data) that is 

consistent with the role of multiple AgORs in mediating larval sensitivity to 

3MP. 
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Figure 11. Expression of AgIrs in larval antennae. Composite image of 
agarose gel lanes showing cDNA (lower) and gDNA (upper) bands 
following RT-PCR using AgIr-specific primers as indicated above lanes. 
Minus (2) and plus (+) signs below lanes indicate the presence or absence 
of reverse transcriptase in first strand cDNA synthesis reaction, 
respectively. Bands (base pairs): AgIr8a cDNA (319); AgIr25a cDNA (271), 
gDNA (334); AgIr41a cDNA (245); AgIr41n cDNA (336, not present), 
gDNA (417); AgNMDAR2 cDNA (328); AgIr76b cDNA (770), gDNA 
(1414); rps7 cDNA (460), gDNA (609). No genomic bands were expected 
for AgIr8a, AgIr41a, and AgNMDAR2 as the forward primers spanned an 
exon-exon junction. All bands that appeared in gels are shown and 
Photoshop was used only to adjust the brightness and contrast of each 
panel. Marker lane shows 100 bp ladder (New England Biolabs). 
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gene fa RPKM ma RPKM fp RPKM mp RPKM 
AgIr7h.1 0.14 0.03 0.03 0.09 
AgIr7i 5.85 0.24 1.05 2.35 
AgIr7n 0.76 0.76 0.12 0.16 
AgIr7s 0.52 0.11 0.20 0.07 
AgIr7t 13.55 3.54 1.89 2.35 
AgIr7u 7.29 0.92 1.03 1.85 
AgIr7w 23.63 8.78 4.76 4.68 
AgIr7x 0.14 0.00 0.00 0.07 
AgIr7y 0.00 0.00 0.00 0.05 
AgIr8a 49.04 8.90 0.71 0.55 
AgIr21a 14.84 5.54 0.14 0.22 
AgIr25a 121.59 41.08 55.81 9.55 
AgIr31a 38.18 2.76 0.13 0.20 
AgIr40a 1.69 0.54 0.00 0.06 
AgIr41a 16.20 3.61 2.67 0.58 
AgIr41b 5.53 1.50 0.39 0.60 
AgIr41c 62.07 6.86 2.53 1.56 
AgIr41n 65.11 6.04 3.67 2.25 
AgIr41t.1 9.02 3.63 0.85 1.25 
AgIr41t.2 33.18 5.57 0.74 1.26 
AgIr60a 0.00 0.06 0.00 0.00 
AgIr64a 41.41 6.31 1.09 3.21 
AgIr68a 0.45 0.23 0.00 0.04 
AgIr75d 10.61 4.82 1.18 0.25 
AgIr75g 15.30 13.28 0.38 0.51 
AgIr75h.1 3.50 1.83 0.00 0.00 
AgIr75h.2 33.39 3.85 0.44 0.43 
AgIr75k 21.63 5.87 4.77 2.51 
AgIr75l 79.07 9.77 0.24 0.28 
AgIr76b 167.67 58.34 13.11 12.32 
AgIr93a 49.00 6.47 0.31 0.47 
AgIr100a 19.62 3.95 13.13 2.96 
AgIr100h 1.58 1.08 1.32 1.27 
AgIr100i 2.83 0.53 0.15 0.43 
AgIr101 0.44 0.16 0.42 3.35 
AgIr133 0.33 0.73 1.03 0.51 
AgIr134 0.12 0.32 0.58 0.24 
AgIr135 0.16 0.19 0.38 0.33 
AgIr136 0.04 0.02 0.26 0.01 
AgIr139 0.04 0.00 0.00 0.00 
AgIr140.1 0.02 0.00 0.04 0.02 
AgIr140.2 0.02 0.07 0.00 0.03 
AgIr141 0.00 0.12 0.00 0.05 
AgIr142 0.15 0.58 0.10 0.03 

 
 
Table 2 Expression of AgIr family members in antennae and maxillary 
palps. Columns: AgIr gene names; Normalized Expression Values in 
antennae and maxillary palps. fa – female antenna, ma – male antenna, fp 
– female palp, mp – male palp. RPKM – Reads Per Kilobase per Million 
reads (see Methods, Chapter III for explanation). RPKM values <1.0 are 
shown in gray type, RPKM values >1.0 are shown in boldface type and 
green highlight. 
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Figure 12. Expression of AgIr25a in adult female antennae. (A) Dig-
antisense probe (with anti-dig Cy3) showing labeling of cells in antennal 
flagellomeres 4-5. (B) Dig-antisense probe (with anti-dig Cy3) showing 
labeling of cells in antennal flagellomere 1. (C,D) Dig-sense probe (with 
anti-dig Cy3) showing low background labeling in flagellomeres 4-5 and 1, 
respectively. JO: Johnston’s organ. Scale bars are 50µm. 
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The next set of studies employed butylamine, a unitary odorant that 

has been shown to activate grooved-peg ORNs in An. gambiae (Qiu et al. 

2006) and Culex quinquefasciatus mosquitoes (Syed et al. 2009). As was 

the case for 3MP, uninjected An. gambiae larvae displayed robust dose-

dependent responses to butylamine (Figure 13). In contrast to the AgOr7-

dependent nature of larval responses to 3MP, larval responses to 

butylamine were indistinguishable among animals treated with AgOr7 and 

control siRNAs or microinjected with buffer alone (Figures 14 and 15B). 

Based on their homology to DmIRs, which have been shown to mediate 

responses to amines and other odorants in Drosophila (Benton et al. 

2009), we postulated that AgIRs mediate larval responses to butylamine. 

To test this hypothesis, siRNA-mediated gene knockdowns were used in 

an attempt to silence larval AgIRs and subsequently examine the 

responses of larvae to butylamine. Of the AgIrs tested, microinjection of 

only one—AgIr76b—displayed siRNA-specific effects on larval responses 

to butylamine. Microinjection of AgIr76b siRNAs reduced AgIr76b mRNA 

levels (Figure 16) and led to significant alterations in larval responses to 

butylamine (Figures 14 and 15B). Larval responses to butylamine were 

unaffected in AgOr7 knockdowns and by microinjection of non-specific 

siRNAs or buffer-alone controls (Figures 14 and 15B). 
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Figure 13. Behavioral effects of 3MP and Butylamine on An. gambiae. 
Larval responses to increasing dilutions (v/v) of 3MP and butylamine are 
displayed: total number of turns/assay (A), average number of 
movements/assay (B), average velocity (C), and resting time (D). With the 
exception of average velocity, for which no significant effects were 
detected, both odorants evoked dose-dependent responses on larval 
activity when compared with the no-odor control (p<0.05). Results are 
shown as means +/- SE, n = 10. 
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Figure 14. Olfactory responses to 3-methylphenol and butylamine are 
mediated by distinct signaling pathways. The turning rates exhibited by 
uninjected larvae as well as those receiving mock (buffer-alone), non-
specific, or siRNA injections in response to 10-4 v/v dilutions of 3-
methylphenol or butylamine were assessed independently over a 5 min 
time lapse. (A) Larval responses to 3-methylphenol were significantly 
altered by AgOr7 knockdown but unaffected by AgIr76b silencing. (B) 
Conversely, responses to butylamine were sensitive to reduction in 
AgIr76b mRNA levels but indifferent to silencing of AgOr7 expression. 
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Figure 15. Odorant-specific differential effects of AgOr/AgIr knockdown. 
Averaged responses of buffer, non-specific, AgOr7, and AgIr76b siRNA 
injected larvae in the presence of 10-4 v/v dilutions of 3-methylphenol 
(3MP, left panels) or butylamine (BA, right panels). Histograms of larval 
movement (A), velocity (B), and resting time (C) are presented. 
Knockdown AgOr7 mRNA in larvae displayed significant behavioral 
alterations in response to 3MP without affecting BA-evoked behavior. 
Conversely, reduction of AgIr76b levels altered larval responses to BA 
without significantly affecting 3MP responses. Alteration of behavioral 
responses did not occur in the controls (p,0.05). Results are shown as 
means +/- SE, n = 10. 
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Discussion 

In the face of a dearth of traditional genetic tools and a robust 

transgenic capacity, the ability to carry out RNAi-mediated gene silencing 

on individual An. gambiae larva provides an opportunity to examine the 

molecular basis for olfactory driven behaviors in this disease vector. 

Furthermore, the relative simplicity of the larval nervous system provides a 

considerably more tractable model within a non-model system for 

understanding similar processes that are presumed to underlie 

chemosensory responses in adults that directly contribute to Anopheline 

vectorial capacity. 

In this study, we have developed a simple behavioral paradigm that 

can be used to track the olfactory responses of individual An. gambiae 

larva to a range of chemical stimuli. Overall, these data are consistent with 

the hypothesis that when larvae are exposed to a repellent compound, 

such as DEET, they exhibit an increased rate of turning and a rise in 

overall movement and velocity. In contrast, an attractant such as yeast 

paste or 3MP leads to a reduction in the number of movements, turns, and 

average velocity while the average resting time is increased. 

Together with gene-silencing approaches, we have employed a 

novel behavioral assay to provide compelling in vivo evidence that, for the 

first time, supports a direct in vivo role of AgORs in olfactory processes in 

An. gambiae. Furthermore, these studies go further to address the 

molecular mechanism responsible for DEET-mediated repulsion of insects. 
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Figure 16 Quantitative mRNA analysis demonstrates significant transcript 
level reduction of AgIr76b after siRNA treatment. Larval cDNAs for qRT-
PCR were generated using equal amounts (<3.5 µg) of RNA extracted 
from hand-dissected larval heads from each injection treatment group. 
Two independent biological replicates were performed, each consisting of 
three technical replicates for every experimental group. AgIr76b mRNA 
levels were quantified as fold-changes relative to Rps7 using the method 
of Pfaffl (2001). AgIr76b levels are shown as averaged values of both 
biological replicates after normalization to buffer alone controls in each of 
three technical replicates. Histograms showing averaged AgIr76b levels 
normalized to buffer alone injection controls. Standard errors were +/-0.04 
and +/-0.003 for non-specific and AgIr76b siRNA injections, respectively. 
Raw data from each qRT-PCR reaction indicating cycle-threshold (CT) 
and primer efficiency information for each biological/technical replicate. 
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Previous studies (Ditzen et al. 2008) suggesting that DEET’s mode 

of action is to inhibit the activation of a subset of insect ORs that would 

otherwise be activated by attractants are in contrast to models that 

suggest DEET acts via direct excitation of OR-expressing ORNs that, in 

turn, evoke downstream behavioral repulsion. The excito-repellent 

hypothesis is consistent with our previous study on the larval olfactory 

system in An. gambiae (Xia et al. 2008) that showed robust DEET-

mediated behavioral responses that correlated with a discrete population 

of larval ORNs co-expressing AgOR7/AgOR40 as well as specific DEET 

stimulation of Xenopus oocytes injected with AgOR7/AgOR40 cRNAs. 

This hypothesis is also supported by other studies that describe DEET- 

mediated activation of a subset of ORNs in Culex mosquitoes (Syed et al. 

2008) and more recent work in Aedes aeqypti suggesting that DEET 

sensitivity is a genetically determined characteristic affecting the 

functionality of discrete ORNs (Stanczyk et al. 2010). While the reduction 

in DEET-mediated repellent responses in larvae undergoing RNAi 

mediated silencing of AgOr7 is consistent with a general requirement for 

AgOR-based signaling, the similar effects of AgOr40 silencing specifically 

supports the role of both these molecular targets in mediating DEET 

repellency. That these behavioral effects were manifest by DEET alone, 

i.e. in the absence of any other stimuli, further validates our earlier study 

and supports a direct excito-repellent mechanism for DEET activity. 
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Lastly, these studies uncover the existence of at least two parallel 

chemosensory transduction systems in larval-stage An. gambiae that 

respond to distinct classes of odorant stimuli. One pathway, which is in 

keeping with the established literature for insect olfactory signal 

transduction, is based on the obligatory role of the non-conventional 

Anopheline Or83b family member AgOr7, which acts together with other 

conventional AgORs in the formation of functional receptors. It is likely that 

AgOR-dependent signaling pathways impact responses to a wide range of 

odorant cues that play important roles in several aspects of Anopheline 

behavior. These pathways are exemplified by the dramatic alterations in 

the DEET and 3MP responses of An. gambiae larvae after RNAi- 

mediated silencing of AgOr7 transcripts (Figures 6, 14). The other 

pathway depends on the function of the AgIr gene family, which likely 

recognizes different odor classes than the AgOr pathway. Moreover, the 

similarities between AgIRs8a and 25a and iGluRs suggest that cellular 

receptors for glutamate in the antenna could act as a neuromodulator of 

ORN function. This hypothesis is consistent with the inability of AgIr25a 

siRNAs to alter larval behavioral responses to odors (unpublished data). 

Recent functional analyses (Carey et al. 2010; Wang et al. 2010) of 

AgOR-based odor coding against a diverse panel of compounds suggest 

that, in An. gambiae, olfactory pathways respond to a wide range of 

odorant stimuli with particular affinity for heterocyclics and aromatics that 

are associated with human skin emanations (Cork and Park 1996; Bernier 
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et al. 2000). These groups of odorants are thought to play essential roles 

in host-seeking, oviposition, and other behaviors that are critical for 

Anopheline life cycles (Meijerink et al. 2000). Coincidently, this AgOR-

based odor space is characterized by sparse responses to the majority of 

acids, aldehydes, and esters that were tested in addition to being 

particularly devoid of amine-elicited responses (Carey et al. 2010; Wang 

et al. 2010). This raised the suggestion that sensitivity to these classes of 

odorants might lie outside of AgOr-dependent olfactory signaling pathways. 

We have identified several AgIrs that are expressed in larval 

olfactory tissues (Figure 12) and have used RNAi-mediated gene silencing 

to demonstrate the role of one of these genes in mediating larval 

responses to the AgOR-independent odorant butylamine. Critically, while 

knockdown of AgIr76b specifically altered larval responses to butylamine, 

there was no effect on responses to two other unitary odorants that were 

dependent on AgOr7 expression. These data are consistent with the 

hypothesis that, in contrast to the AgOR-dependent sensitivity to 3MP, 

DEET, and a broad range of ‘‘general’’ odorants (Carey et al. 2010; Wang 

et al. 2010), Anopheline responses to other odorants (e.g., butylamine) 

are mediated through AgIr-dependent signaling. There is reason to 

assume that these parallel pathways persist through to adult An. gambiae 

where AgIrs are likely to be responsible for olfactory sensitivity to 

important human kairomones, such as ammonia and lactic acid that are 

known to activate ORNs in grooved peg sensilla (Meijerink et al. 2001) 
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that are devoid of AgOR7 (Pitts et al. 2004). Indeed, we have observed 

expression of multiple AgIrs in adult olfactory appendages (Table 2), 

supporting the hypothesis that this family of genes is involved in 

chemosensory signaling in adults (see Chapter III). 

Current efforts are directed toward expanding our understanding of 

AgIr-based odor coding in An. gambiae. Improving our understanding of 

olfactory signal transduction in An. gambiae may lead to new opportunities 

to target olfactory mediated behaviors at the molecular level. In turn, this 

may reduce the vectorial capacity of An. gambiae and help reduce the 

transmission of malaria and other important human diseases. 
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CHAPTER III 

 

TRANSCRIPTOME PROFILING OF CHEMOSENSORY APPENDAGES 

IN THE MALARIA VECTOR ANOPHELES GAMBIAE REVEALS 

TISSUE- AND SEX-SPECIFIC SIGNATURES OF ODOR CODING 

 

Preface 

The following manuscript by Pitts et al. was submitted to BMC 

Genomics on 3/24/11 and is currently under review (4/1/11). My 

contribution to this work included experimental design, mosquito tissue 

dissections, data analysis, figure preparation, and manuscript writing. 

 

Introduction 

Insects rely heavily upon chemosensation, the ability to detect and 

react to environmental chemical cues, in virtually every aspect of their life 

cycle (Gillott 2005). Chemosensation is critical to food source 

identification, predator avoidance, oviposition site selection, kin 

recognition, mate choice, and toxic compound avoidance.  In insects, 

chemosensory neurons are contained within distinct tissues on many parts 

of the body, most conspicuously on the antennae and the maxillary palps 

located on the head. These appendages are decorated with sensory hairs, 

or sensilla, that house the neurons in which families of insect-specific 

receptors and other proteins transduce chemosensory signals (for reviews 
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see Sato and Touhara 2009; de Bruyne and Baker 2008; Gilliott 2005; 

McIver 1982). Some insect sensory neurons have become highly 

specialized for the detection of single compounds, while others function 

more generally and are sensitive to multiple compounds (Kaissling 2009; 

Touhara and Vosshall 2009; Hallem et al., 2006). While the physiological 

and cellular basis of insect chemosensation has been studied for many 

years, its molecular underpinnings have only recently begun to be 

elucidated. 

In mosquitoes, host-seeking behavior is driven largely by olfaction 

(Zwiebel and Takken 2004; Takken and Knols 1999). An. gambiae 

females display a strong preference for human hosts (anthropophily), 

which contributes substantially to their ability to transmit human diseases, 

including malaria (Zwiebel and Takken 2004; Takken and Knols 1999; 

Costantini et al., 1999). The identification of chemoreceptor gene families 

in the An. gambiae genome (Hill et al., 2002; Liu et al., 2010) has 

facilitated the correlation of behavioral observations and physiological 

sensitivities to receptor expression (Fox et al., 2001; Pitts et al., 2004; 

Kwon et al., 2006; Lu et al., 2007). Specific chemoreceptors expressed in 

antennal and palpal neurons of An. gambiae are sensitive to host odors, 

including volatile components produced from bacteria associated with 

human skin (Hallem et al., 2004; Carey et al., 2010; Wang et al 2010; 

Verhulst et al., 2010). As a consequence, the function of select 

chemoreceptor genes in An. gambiae has been linked to semiochemicals 
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that are integral to specific host seeking behaviors. Despite this progress, 

very little of the downstream signaling events and regulation of 

chemoreceptor function is known. Moreover, the potential chemosensory 

bases of sexually distinct behaviors in An. gambiae are poorly understood 

(Howell and Knols 2009; Zwiebel and Takken 2004; Clements 1999).  

RNA-seq offers great potential to comprehensively study gene 

expression in head appendages of An. gambiae to provide insight into the 

molecular foundations of chemoreception.  While several microarray-

based studies have examined global transcript abundance in An. gambiae 

(Aguilar et al., 2010; Das et al., 2010; Cook and Sinkins 2010; Baton et al., 

2009; Warr et al., 2007; Marinotti et al., 2006; Aguilar et al., 2005; 

Marinotti et al., 2005), none has focused exclusively on chemoreceptive 

tissues. Moreover, unlike microarrays and older methods, RNA-seq 

provides transcriptome-wide sequence coverage with unbiased, highly 

quantitative results (Wang, Gerstein, Snyder, 2009) and greatly improved 

sensitivity (‘t Hoen et al., 2008; Mortazavi et al., 2008).  To date, RNA-seq 

has been used to address several functional and evolutionary questions 

pertaining to mosquito biology (Gibbons et al., 2009; Hittinger et al., 2010; 

Crawford JE et al., 2010; Neira-Oviedo 2010; Bonizzoni et al, 2011).  

Here we have utilized RNA-seq to quantify global abundance levels 

of poly-adenylated transcripts of An. gambiae whole adults, antennae and 

maxillary palps across sexes. By mapping the generated short read 

sequences against the full set of annotated An. gambiae transcripts we 
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have generated six tissue- and sex-specific transcriptome profiles.  As 

expected, gene families with well-established chemosensory function 

display antenna- or palp-enhanced abundance, with antennae showing 

enhancement of a larger number of these genes. We also have identified 

numerous members of other gene families that are enhanced in either 

antennae or maxillary palps, such as biotransformation enzymes, 

transcription factors, transmembrane receptors, ion channels, transporters 

and proteases which are likely to function in chemosensory pathways. Our 

data also revealed an unanticipated level of sexual monomorphism with 

respect to the abundance and distribution of known chemoreceptive 

functional classes in the antenna and the maxillary palp.  Taken as a 

whole, this study greatly broadens our understanding of the molecular 

processes involved in peripheral sensory appendages, raising new 

questions about basic dipteran biology and offering the potential for novel 

targets for insect control. 

 

Methods 

 

Mosquito Rearing 

An. gambiae sensu stricto, which originated from Suakoko, Liberia 

(della Torre et al 1996), were reared as described (Qiu et al 2004). 

 

RNA Isolation and Sequencing 
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Tissues were hand dissected from 4-6 d.o. adult An. gambiae at 

~ZT12 and immediately placed in RNA Later Ice (Ambion Corp.; Austin, 

TX) on ice. Total RNA was isolated from each sample using RNeasy 

columns (Qiagen Inc.; Carlsbad, CA) according to the manufacturer’s 

protocol. mRNA isolation and cDNA library preparation were carried out 

using the Illumina mRNA sequencing kit (Illumina Inc.; San Diego, 

CA).  Libraries were sequenced using an Illumina Genome Analyzer II. 

 

AgOr and AgObp Reannotations 

Novel AgOrs were identified by tBLASTn searches (www.ncbi.org; 

default parameters) using the previously identified AgOR peptides as 

queries. Two new candidate AgOrs were identified and have been named 

AgOrs 80 and 81. Furthermore, AgOrs 12, 67, 78 and 79 have been 

purged from the AgOr family as apparent duplication errors in the original 

assembly (Table 2). Three new candidate AgObps (69, 70 and 71) were 

identified using similar tBLASTn searches and were added to the family 

based on two criteria: the candidate genes possessed motifs that 

exemplify the Obp family (Vogt 1981; Kruse 2003; Xu et al., 2003; 

Hekmat-Scafe et al., 2002) and each gene model encoded a unique 

transcript. Other genes resembling Obps were identified, but have not 

been included in the named members of the AgObp family. However we 

recognize the possibility that these genes may ultimately prove to be 

unique, or function as odor-carriers. These will be discussed in more detail 
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below. Similarly, AgObps 16, 17, 24, 58, 59, 61, 61, and 65 were purged 

from the AgObp family as apparent duplication errors in assembly. All 

modifications to the AgOr and AgObp families have been submitted to 

VectorBase. 

 

Data Processing and Expression Profiling 

Individual Illumina read files were mapped to the recently updated 

(Dec. 2010) soft Repeat Masked version of the assembled An. gambiae 

genome, to the mitochondrial genome, and to the annotated An. gambiae 

transcripts (www.VectorBase.org). For purposes of mapping, all alternate 

transcript isoforms for a given gene were condensed under that gene’s 

respective AGAP designation. Prior to mapping, individual reads were 

quality checked and uniformly trimmed by 4 and 12 nucleotides on their 5- 

and 3-prime ends respectively to account for spurious adapter 

incorporation (5’) and for sequencing reaction degeneration (3’). Mapping 

was carried out using seqmap software, configured to allow for a 

maximum of three mismatches per read. Processed mapping data was 

then consolidated based upon AGAP number and the results summarized 

by rseq.  Abundance level output by rseq is reported in terms of unique 

reads, total weighted reads, and transcript length. Total weighted reads 

and AGAP transcript lengths were used to calculate a normalized 

abundance level of Reads per Kilobase per Million reads mapped 

(RPKMs), for every AGAP in every tissue type (Mortazavi et al., 2008). 
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PfamA Categorization 

Peptide sequences from AgamP3.6 conceptual peptides 

(n=12,669) were compared to the PfamA dataset (The Pfam protein 

families database: Finn et al. 2010) using the default e-value threshold of 

1.0. 

 

Comparison of Tissue Expression Profiles 

Statistical significance was assigned to each pairwise tissue 

comparison (antenna:body, palp:body, body:body) by setting up a Fisher’s 

Exact test, evaluating gene-by-gene differences of weighted, mapped 

reads and total mapped reads for a given sample. The Agam3.6 transcript 

annotation contains 13319 unique, annotated transcripts and the statistical 

significance of the Fisher’s Test was evaluated against a Bonferroni 

corrected p-value of 3.8x10-6. 

 

AgOr RT-PCR Amplifications 

 Antennae from female and males, and male reproductive tract 

tissues (terminal abdominal segments) were hand dissected. RNA was 

isolated using a Trizol extraction as described (Lu et al. 2007). First strand 

cDNA was synthesized using the Transcriptor kit (Roche). PCR primers 

specific for AgOrs were as follows: AgOr7: TGCTGCTACACATGCTGAC 

and TAGGTGACAACGGCTCCAA; AgOr35: 
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TTCCTGTTCAACTGTGACTC and TATGAAGCCACCTTTGGTGA. PCR 

amplification conditions were: 92 degrees C for 1 min.; 35 cycles of (92C, 

20s – 58C,20s – 72C,45s); 72C, 5min. 

 

Results and Discussion  

 

RNA Sequencing and Gene Mapping 

As a means of inferring gene expression in chemosensory 

appendages we employed single-end short read (43bp) RNA-seq 

technology to characterize the relative abundances of poly-adenylated 

RNAs in antennae, maxillary palps and whole bodies of female and male 

adult mosquitoes. We established tissue- specific gene expression profiles 

for each of our six samples by mapping the read sequence files against 

the annotated An. gambiae transcriptome, using an approach that 

quantitated transcript abundance per gene and which accounted for all 

annotated transcripts per gene (see Materials and Methods). As our 

reference transcriptome, we used the AgamP3.6 version of the An. 

gambiae gene annotation, which contains 12,669 protein-coding genes 

and 650 non-coding RNAs (www.VectorBase.org). For each of the tissue 

types assayed, we obtained an average 30.5 million sequence reads per 

tissue type and mapped them to the An. gambiae transcriptome, nuclear 

and mitochondrial genomes (Table 1). On average, 57.4% of the reads 
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Figure 1. Read coverage of An. gambiae genome. Read count coverage 
of the nuclear genome (magenta) and of the transctiptome (blue). Vertical 
bars represent counts of sequence reads per 250kB interval along each of 
the three chromosomes.  
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per sample mapped to annotated genes, 91.5% to the nuclear genome 

(Table 1), and 2% to the mitochondrial genome (Table 1). Table S1 

contains the complete RNA-seq data set described above, including the 

number of reads from each tissue sample that mapped to all 13,319 

annotated An. gambiae genes. 

On a whole-genome level, comparison of the density of reads 

sequenced from the female body along all chromosomes showed a high 

degree of correspondence between the number of reads mapped to the 

nuclear genome and the number of reads mapped to the transcriptome 

(Figure 1). That said, there are a few areas of asymmetry where a higher 

degree of mapping to either the transcriptome or to the genome was 

observed, most noticeably in the gene-rich autosomal telomeres and in 

several regions of the X chromosome (Figure 1). Greater mapping 

frequency to the transcriptome can generally be explained as reads that 

map to exon-exon junctions, which by their nature would not map to the 

genome. For example, the observed asymmetry in the 2R telomeric region 

is due to the high number of exon junction reads that mapped to two 

rhodopsin-family genes (Figure 1). Of the reads that mapped only to the 

genome, many of them are likely to represent unannotated 5’or 3’ 

untranslated regions (UTRs). Moreover, there likely remain regions of the 

genome, most notably the Y-chromosome, where novel exons and 

transcripts remain (Li et al., 2006). 
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Overall 
Totals  

Weighted Mapped Read 
Counts  Gene Expression Summary  

tissue reads mapped reads 
(%) 

transcriptome v3.6 
(%) nuc. mito. # genes median 

RPKM 
mean 
RPKM 

std.dev. 
RPKM 

FB 27.87M 25.36M (90.96) 16.61M (59.57) 14.68M 0.26M 12145 8.87 59.74 543.15 

FA 25.98M 24.12M (92.85) 14.62M (56.26) 15.28M 0.08M 11722 9.38 59.22 732.65 

FP 27.45M 25.98 (94.66) 15.29M (55.71) 16.70M 0.42M 12297 10.37 56.44 496.05 

MB 31.88M 30.23M (94.82) 17.60M (55.22) 16.02M 2.41M 12253 8.34 54.01 424.05 

MA 33.95M 32.14M (94.68) 18.23M (53.70) 21.43M 0.24M 11986 10.34 46.01 229.14 

MP 35.71M 33.34M (93.37) 22.60M (63.29) 17.63M 0.54M 12146 8.40 49.14 286.49 

 
 
Table 1. An. gambiae RNA-seq mapping and expression data. Cells in 
each row contain information corresponding to the tissue type listed. 
Overall Totals: reads - total number of short reads generated from each 
sample. mapped reads - the number (and percentage) of total reads that 
were mapped to the transcriptome, nuclear genome, and/or the 
mitochondrial genome. Weighted Mapped Read Counts: transcriptome 
v3.6 - the number (and percentage) of reads mapped to version 3.6 of the 
An. gambiae transcriptome. nuc. - the number the number of reads 
mapped to the assembled An. gambiae genome. mito. - the number of 
reads mapped to the An. gambiae mitochondrial genome. Gene 
Expression Summary: # genes - the total number of annotated genes in 
each tissue type having an RPKM greater than zero. median, mean, and 
std. deviation – calculated using RPKM values for each tissue type. 
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Figure 2. Gene expression in An. gambiae female antenna vs body. 
Volcano plot showing the relative abundance levels of genes in female 
whole body versus female antennae. The x-axis represents the log2 of the 
expression ratio (antenna RPKM: body RPKM) for each gene of the An. 
gambiae transcriptome. The y-axis represents the negative log10 of the p-
value of Fisher’s Exact test. White points (n=2201) represent genes that 
were both statistically significant (red horizontal line; p< 3.91e-06) and 
biologically significant (red vertical lines; greater than 2-fold difference in 
RPKMs). Gray points (n=10603) represent genes that either fell outside 
one or both of these significance criteria. Red points indicate the 
expression values of major chemosensory genes: AgOrs, AgIrs, AgGrs, 
and AgObps. RPKM values of 0.00 were transformed to 0.10 prior to 
calculating antenna:body ratios, such that those genes could also be 
represented on the plot. 
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To quantify relative differences in gene abundance levels, we 

calculated the Reads Per Kilobase per Million (RPKM) reads value for 

each gene within a sample, a self-normalized value of absolute gene 

transcript abundance (Mortazavi et al., 2008). Mean and median RPKM 

values for each tissue type in this study were very similar across samples, 

as were the number of genes showing basal or greater levels of 

transcription (Table 1). RPKM values spanned more than 6 orders of 

magnitude for each of the tissue types examined. 

We assessed fold-differences in transcript abundance by 

independently comparing ratios of RPKM values between pairs of tissues 

within each sex: antennae to bodies and maxillary palps to bodies. For 

each of these pairwise comparisons we performed a Fisher’s Exact Test 

on counts of mapped reads to determine statistical significance using a 

Bonferroni-corrected p-value (p < 3.9x10-6; see Materials and Methods). 

Furthermore, we use the term “enhanced” to describe any gene that 

displayed at least 2-fold significant difference in abundance between 

samples (Figure 2). These conservative criteria were applied to avoid false 

positives stemming from variations within the sample themselves, as well 

as to reduce the number of genes that was used for subsequent analyses 

(Robinson et al, 2010; Balweirz et al, 2009). 

 

Gene Expression Profiling in Chemosensory Tissues 
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Figure 3: An. gambiae enhanced gene pairwise tissue comparisons. 
Proportional Venn diagrams showing the various pairwise comparisons 
made in this study. Overlap represents the subset of genes that are 
significantly enhanced in both tissues. 
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To examine global gene expression patterns, we compared RPKM 

values pairwise for whole bodies versus either antennae or maxillary palps 

in both sexes; one such comparison is shown in Figure 2. Specifically, 

4,587 genes displayed directional enhancement in the female antenna to 

body comparison (Figure 2, white dots). Of those, 2,277 were enhanced in 

the antenna (Figure 2, right half). Similarly, we found that 1,906 genes 

were enhanced in female palps, 3,037 genes were enhanced in male 

antennae, and 2,284 genes were enhanced in male palps. These 4 gene 

sets formed the basis of our subsequent analyses where we compared 

enhanced gene profiles between chemosensory tissues and across sexes 

(Figure 3).  

Comparing the enhanced gene sets between the female antennae 

and palps revealed significant overlap, with 1,158 genes (61% of palp set) 

enhanced in both tissues (Figure 4). Similarly, male antennae and palps 

showed significant overlap with 1,208 genes enhanced in both tissues 

(53% of palp set; Figure 5). Interestingly, the most well-represented gene 

families in both of these overlapping sets were 7-transmembrance 

receptors (PF00001), protein kinases (PF00069), cytochrome P450s 

(PF00067), trypsins (PF00089), carboxylesterases (PF00135), and 

potential transcription factors (PFs 00046 and 00096; Figures 4 and 5, 

bottom tables). However, we also observed several differentially enhanced 

gene sets between the antennae and palps (Figures 4 and 5). The An. 
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Figure 4: Female antenna vs. palp enhanced gene sets. Proportional 
Venn diagram showing the numbers of genes that are significantly 
enhanced in male antenna and maxillary palps. Overlap represents the 
subset of genes that are significantly enhanced in both tissues. Boxes 
contain ranked lists of the most prevalent PfamA families in each data set. 
  



 
	
  

126 

 

 

 

 

 

Figure 5: Male antenna vs. palp enhanced gene sets. Proportional Venn 
diagram showing the numbers of genes that are significantly enhanced in 
male antenna and maxillary palps. Overlap represents the subset of genes 
that are significantly enhanced in both tissues. Boxes contain ranked lists 
of the most prevalent PfamA families in each data set. 
  



 
	
  

127 

 

 

 

 

Figure 6. Female vs. male antenna enhanced gene sets. Proportional 
Venn diagram showing the numbers of genes that are significantly 
enhanced in female and male antenna. Overlap represents the subset of 
genes that are significantly enhanced in both sexes. Boxes contain ranked 
lists of the most prevalent PfamA families in each data set. 
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Figure 7. Female vs. male palp enhanced gene sets. Proportional Venn 
diagram showing the numbers of genes that are significantly enhanced in 
female and male maxillary palps. Overlap represents the subset of genes 
that are significantly enhanced in both sexes. Boxes contain ranked lists of 
the most prevalent PfamA families in each data set. 
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gambiae Ors (AgOrs; Hill et al., 2002; PfamA family PF02949) were the 

most prevelant class in female antennae (Figure 4, left table) and second-

most in the male antennae (Figure 5, left table). Other chemosensory 

gene families, such as ligand-gated ion channels, which include the 

recently identified ionotropic receptors (AgIrs; Liu et al., 2010; PF00060), 

and odorant binding proteins (AgObps; Xu et al., 2004; PF01395) were 

highly represented in the antennae (Figures 4 and 5). It is clear from these 

antennae-to-palp analyses that both extensive overlap and significant 

distinctions in gene expression profiles exist. The consistent identification 

of the same Pfam familes in all enhanced gene sets implicates functional 

groups that can be studied in greater detail to elucidate their potential 

roles in mosquito chemosensation.  

To attempt to distinguish similarities and differences in gene 

expression patterns between sexes, we compared the 2,277 female, and 

the 3,037 male antennal-enhanced genes and identified a common set of 

1381 genes (Figures 3 and 6). Once again, this set included AgOrs, AgIrs, 

and AgObps (Figure 6, bottom table). Despite many commonalities in 

gene expression, there were also 896 female antennae-specific enhanced 

genes and, surprisingly, nearly 1700 male antennae-specific enhanced 

genes (Figures 3 and 6). 

Given the obvious sexual dimorphism of An. gambiae antennae 

(Figure 7), the comparison of female to male antennae is not 

straightforward.  Chemosensory sensilla, and AgOr-containing neurons in 
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particular, are found over the full length of the female antenna, whereas 

male antennae house ~3-fold fewer chemosensilla that are restricted the 

two most distal segments (Sutcliff 1993; McIver 1982; Ismail 1964; 

Schymura et al., 2010). Furthermore, while female antennae are 

predominantly chemosensory, male antennae are also highly specialized 

for hearing (Pennetier et al., 2010; Gibson et al., 2010). Accordingly, the 

An. gambiae orthologs of the D. melanogaster trpV channels Nanchung 

and inactive, which are required for hearing in the fruitfly, were enhanced 

in antennae of both An. gambiae sexes (AGAPs 012241 and 000413, 

respectively), but their absolute abundances were much higher in male 

antennae (RPKMs of 183.92 and 104.49 in males and 20.54 and 7.66 

respectively, in females). This elevated abundance of auditory-associated 

genes in the male antenna is consistent with male An. gambiae mating 

behavior where an acute sense of hearing facilitates the recognition of 

female wing beats (Charlwood and Jones 1979; Pennetier et al., 2010; 

Gibson et al., 2010).  Given that wild female mosquitoes are likely to mate 

just once, while males swarm daily in search of a mate (Goma 1963; 

Charlwood and Jones 1979; Howell and Knols 2009), the specialization 

shift away from olfaction and toward audition in the principle male sensory 

organ is reasonsable presumably as a mechanism to increase male 

mating success. 

In the maxillary palps, as in the antennae, considerable overlap 

was found in gene expression profile between the sexes. In the palp, 778 
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genes were common between the 1,906 female palp-enhanced gene set 

and the 2,284 male palp-enhanced gene set (Figure 3 and Figure 8).  

Interestingly, the fraction of enhanced gene overlap was much lower in the 

palps than in the antennae (Figures 6 and 8); only 41% of the total female 

palp-enhanced set was shared with males, compared to 61% of the total 

female antennal-enhanced set that was shared with males. In light of the 

antennal sexual dimorphism the even greater divergence in overlapping 

gene sets between female and male palp may indicate the presence of 

cryptic sex-specific specializations. 

These comparisons also revealed multiple classes of genes outside 

the expected chemosensory gene families that displayed enhanced tissue 

abundance. A detailed examination of the abundance patterns of a subset 

of other gene families is provided in Table 2, many of which are 

represented in Figures 3 and 4. Nearly half of the members of the large 

superfamily of 7-transmembrane (7tm) receptors (114 of the 241 

recognized by PfamA), exclusive of the AgOrs, were enhanced in at least 

one of the chemosensory tissues examined (Table 2). This may indicate 

unrecognized roles in sensory reception or regulation of chemoreceptor 

neuron or accessory cell function. Importantly, efferent projections from 

serotonergic, or tachykinin neuroendocrine cells have been identified in 

mosquito chemosensory appendages (Siju et al., 2008; Meola et al., 2000, 

2002). Thus the expression of serotonin (AGAPs 002232, 002679, 

004222, 004223, 007136, and 011481), and tachykinin (AGAPs 001592 
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    Enhanced >2x ------------------------------- 

gene class PfamA PfamA description #An.gambiae FA MA FP MP 

7tm Receptor PF00001 7tm receptor (rhodopsin family) 84 28 20 18 14 

7tm Receptor PF02949 7tm Odorant receptor (Or) 78 56 31 3 3 

7tm Receptor PF08395 7tm Chemosensory receptor (Gr) 52 1 4 3 4 

7tm Receptor PF00002 7tm receptor (Secretin family) 11 2 1 0 2 

7tm Receptor PF00003 7tm sweet-taste receptor of 3 GCPR 7 4 5 2 1 

lipophilic carrier PF01395 PBP/GOBP family 62 18 17 6 4 

lipophilic carrier PF00650 CRAL/TRIO domain 43 17 9 17 16 

lipophilic carrier PF06585 Haemolymph juvenile hormone binding 24 10 5 15 9 

lipophilic carrier PF00188 Cysteine-rich secretory protein family 20 7 2 9 7 

lipophilic carrier PF03392 Insect pheromone-bind. family, A10/OS-D 7 2 2 4 1 

CD36/SNMP PF01130 CD36 family 14 5 1 7 5 

channel/transporter PF07690 Major Facilitator Superfamily 65 21 16 16 13 

channel/transporter PF00083 Sugar (and other) transporter 49 7 4 7 8 

channel/transporter PF00060 Ligand-gated ion channel 29 22 20 5 3 

channel/transporter PF00520 Ion transport protein 27 15 10 9 3 

channel/transporter PF02931 Neurotrans.-gated ion-channel ligand 
bind. 24 10 6 4 0 

channel/transporter PF00858 Amiloride-sensitive sodium channel 23 5 2 1 1 

channel/transporter PF01061 ABC-2 type transporter 19 10 4 12 11 

channel/transporter PF00005 ABC transporter 18 4 3 5 2 

channel/transporter PF00664 ABC transporter transmemb. 15 4 2 2 4 

channel/transporter PF07885 Ion channel 9 3 3 1 1 

biotransformation PF00067 Cytochrome P450 113 30 19 34 24 

biotransformation PF00135 Carboxylesterase 50 15 13 14 14 

biotransformation PF00043 Glutathione S-transferase, C-term. 18 6 1 4 1 

biotransformation PF02798 Glutathione S-transferase, N-term. 17 5 3 4 3 

transcription factor PF00096 Zinc finger, C2H2 type 114 21 50 21 24 

transcription factor PF00046 Homeobox domain 76 17 19 14 13 

transcription factor PF00651 BTB/POZ domain 54 17 26 5 7 

transcription factor PF00010 Helix-loop-helix DNA-binding 41 6 6 5 6 

transcription factor PF00250 Fork head domain 19 6 8 3 4 

transcription factor PF07716 Basic region leucine zipper 14 3 4 1 3 

transcription factor PF00292 Paired box domain 10 3 5 3 3 

transcription factor PF00907 T-box 11 8 6 8 5 

transcription factor PF00170 bZIP transcription factor 8 3 3 2 2 

transcription factor PF00157 Pou domain - N-terminal to homeobox 4 2 3 3 1 
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Table 2. Enhanced gene classes in An. gambiae chemosensory tissues. 
Cells in each row contain information corresponding to the gene class 
listed. PfamA: PfamA family number. PfamA description: PfamA family 
description. # in An. gambiae: number of genes identified in PfamA 
searches of An. gambiae transcriptome. enhanced >2x: number of genes 
in each PfamA family that were enhanced relative to bodies in the 
specified tissues, relative to bodies. FA – female antenna, MA – male 
antenna, FP – female palp, MP – male palp 
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Figure 8. Sexual Dimorphism in An. gambiae chemosensory tissues. 
Brightfield images of An. gambiae female and male heads. Antennae and 
maxillary palps are indicated. Scanning electron micrographs show details 
of the fifth and thirteenth flagellomeres (segments) of female and male 
antennae, respectively. 
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and 012824) receptor homologs in An. gambiae antennae and maxillary 

palps is consistent with a neuromodulatory role for these compounds. 

Other gene families with multiple members that displayed 

chemosensory enhancement include the CD36 family, some members of 

which function in insect olfaction (Rogers et al., 1999; Benton et al., 2009); 

ion channels and transporters, which include the recently identified 

chemosensory ionotropic receptors (Liu et al., 2010; Croset et al., 2010; 

Abuin et al., 2011).  In addition biotransformation enzymes, such as 

carboxyesterases and cytochrome P450s that are potential odor 

degrading/biotransformation enzymes (Durand et al., 2010a, 2010b; 

Maibeche-Coisne et al., 2002); carbonic anhydrases involved in carbon 

dioxide detection in mammals (Chandrashekar J, et al., 2009) and 

transcription factors, including the An. gambiae homologs of acj6 and 

pdm3, D. melanogaster pou-type transcription factors involved in DmOr 

gene regulation and ORN axon targeting (Bai and Carlson 2010; Bai et al 

2009; Tichy et al., 2008; Lee and Salvaterra 2002; Clyne et al., 1999; Ayer 

and Carlson 1992,1991) were observed.  

We also identified a number of small, soluble proteins with 

enhanced chemosensory tissue abundance in both sexes (Table 3), such 

as the CRAL-TRIO (PF00650) and cysteine-rich secretory (PF00188), and 

hemolymph juvenile hormone binding proteins (JHBP, PF06585). To our 

knowledge, the first two gene families have not been linked to 

chemosensation, but the members of the JHBP family have been 
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identified in screens of high abundance genes in mosquito antennae 

(Justice et al., 2003; Bohbot and Vogt 2005).  Moreover the JHBP gene, 

takeout, links the circadian clock and feeding behavior in D. melanogaster 

(Sarvo-Blot et al., 2000) and modulates aggregation behavior in Locusta 

migratoria (Guo et al., 2011). The extremely high abundance levels of 

some members of these 3 gene families suggest potential chemosensory 

functions analogous to other soluble lipophilic carriers such as the Obps. 

Grooved peg sensilla on mosquito antennae are sensors of many 

key host kairomones, including ammonia, which has been recognized as a 

mosquito attractant for nearly 100 years and acts as a potent synergist for 

eliciting host-seeking behavior (Qiu et al. 2006; Smallegange et al. 2005; 

Zwiebel and Takken 2004). Despite its recognized importance in host 

seeking and thus in human disease transmission, virtually nothing is 

known about the sensory signaling events that lead to ammonia 

perception. Importantly, grooved pegs seem to lack expression of any of 

the other known molecular odorant receptors that are encoded in the An. 

gambiae genome and expressed in the trichoid sensilla (Hill et al. 2002; 

Pitts et al. 2004). Accordingly, identifying potential kairomone receptors 

and especially those tuned to ammonia, that are expressed in sensilla 

beyond the trichoids may prove to be critical for the development of novel 

chemical-based control or monitoring strategies. As described in Chapter 

II, the AgIrs (Liu et al. 2010) may underlie odor sensitivities to grooved peg 

sensilla. The Drosophila homologs of the AgIrs are expressed in non-
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trichoid sensilla and one of those receptors confers sensitivity to ammonia, 

although at a high threshold (Benton et al. 2009). However, there is no 

mosquito homolog of the Drosophila ammonia receptor (unpublished 

observation) indicating that mosquitoes are likely to utilize a novel 

mechanism for ammonia sensing. 

Among the genes that we have identified is an ammonium 

transporter homolog (AGAP003989) that is highly enriched, if not 

exclusively expressed, in the antennae (Figure 9). In fact, the expression 

level of AGAP003989 in the antennae is even higher than almost any of 

the antennal odorant receptors (Figure 10). Ammonium transporters of the 

Amt and RH families are primarily known to be regulators of cellular 

ammonia levels in virtually all organisms (Tremblay and Hallenbeck 2009). 

Importantly, the expression level of a second ammonium transporter 

homolog in An. gambiae is non-tissue specific (Figure 9). More recently, 

ammonium transporters have been shown to carry out signaling functions 

in bacteria and yeast (Tremblay and Hallenbeck 2009). We speculate that 

AGAP003989 may participate in ammonia sensitivity in the grooved peg 

sensilla of An. gambiae and other mosquitoes. In support of the second 

conjecture, we have identified orthologs of AGAP003989 in the genomes 

of Aedes aegypti and Culex quinquefasciatus (Figure 9). AGAP003989 

therefore represents a potentially novel and important finding that whole 

transcriptome profiling has facilitated. 
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Figure 9. Top panel - Expression of ammonium transporter homologs in 
An. gambiae female antennae (black bars) and bodies (white bars). 
Bottom panel - Schematic representation of ammonium transporter 
orthologs from Ae. aegypti, An. gambiae, and Cx. quinquefasciatus. 
Peptides are represented as shaded boxes with regions of homology 
indicated in different shades. Percent identical residues are listed 
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Chemosensory Gene Families 

In light of the existing literature on the molecular mechanisms 

underlying the processes of peripheral chemosensation in vector 

mosquitoes, we examined in detail the abundance patterns AgOrs, AgIrs, 

AgObps and gustatory receptors (AgGrs). As expected, the vast majority 

of AgOrs were highly enhanced in antennae. Of the 76 AgOrs, 58 showed 

significantly higher expression in female antennae as compared to only 36 

in male antennae (Figure 10). The entire set of male-enhanced AgOrs was 

contained within the female enhanced set. None of the larval-specific 

AgOrs: 37, 40, 52, or 58, was enhanced in adult antennae or palps, 

supporting previous observations (Xia et al., 2008). In the palps, only 

AgOrs8 and 28 and AgOrco (recently renamed from AgOr7 to reflect its 

capacity as an obligate co-receptor in Or signaling) were enhanced in 

female maxillary palps (Figure 10), a result consistent with our previous 

study on odor coding in the An. gambiae maxillary palps (Lu et al., 2007). 

The same 3 AgOrs were enhanced in male palps (Figure 10). 

Several members of the recently described AgIr gene family (Liu et 

al., 2010; Croset et al., 2010) displayed significant enhancement in 

antennae of both sexes (Figure 11), further supporting their potential roles 

as chemosensory receptors in An. gambiae. A high degree of overlap was 

observed between the sexes, where 21 AgIrs were enhanced in both. 

Similar to the AgOrs, there were many fewer AgIrs enhanced in the palps 
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Figure 10. AgOr Expression Profile. Left panel is an expression profile 
map. Green color intensity scale (below map) indicates increasing RPKM 
values from left to right. (FP – female palp; FB – female body; FA – female 
antenna; MA – male antenna; MB – male body; MP – male palp). Middle 
panels – volcano plots showing the relative abundance of AgOrs in body 
versus antennae. Individual data points were plotted at the intersection of 
the log10 of Fisher’s exact test (y-axis) and the log2 of the ratio of antenna 
(or palp) RPKM: body RPKM (x-axis) for each gene. Red diamonds or 
blue circles represent significantly enhanced AgOrs in antenna (top panel) 
or maxillary palps (bottom panel) of females and males, respectively. Gray 
points represent AgOrs that fell below the significance threshold of 3.91e-
06 or the 2-fold differential expression cutoff. RPKM values of 0.00 were 
transformed to 0.10 prior to calculating RPKM ratios, such that those 
genes could also be represented on the plot. Right panels – Proportional 
Venn diagrams showing the number of AgOrs that are significantly 
enhanced in female and male antenna (top) and maxillary palp (bottom). 
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compared to the antennae, with 7 and 6 enhanced in female and male 

palps, respectively. Furthermore, the degree of overlap (3 genes) between 

the sexes was much less pronounced in the palp (Figure 11). 

The AgGrs were the only class that did not overlap in the antennae 

between the sexes, with very few showing enhancement in either females 

or males (Figure 12). Only AgGr1 was enhanced in female antennae, 

while AgGrs, 33, 48, 49, and 50 were enhanced in male antennae. 

Notably, one member of this large gene family, AgGr33 was strongly 

enhanced in the male antenna (Figure 12), perhaps indicating a 

specialized function in male antennae. In contrast to the acute sexual 

dimorphism displayed in the antennae, both sexes showed high 

abundance of AgGrs 22, 23, and 24, in their maxillary palps (Figure 12). 

These three AgGrs are homologs of the D. melanogaster carbon dioxide 

receptors (Kwon et al., 2007; Cayirlioglu et al., 2008; Robertson and Kent 

2009) and are expressed in capitate peg sensilla on the maxillary palps 

where they have been directly implicated in An. gambiae CO2 sensing (Lu 

et al., 2007). 

Enhanced chemosensory abundance of members of the large 

AgObp family was evident across all tissues and sexes (Figure 13). 

Sixteen classical and three C-plus AgObps were significantly enhanced in 

the female antennae (Figure 13). Of these, 17 were also significantly 

enhanced in the male antennae (Figure 13) including the LUSH homolog, 

AgObp4 (Kim et al., 1998). AgObp19 was the only one to demonstrate  
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Figure 11. AgIr Expression Profile. Left panel is an expression profile 
map. Green color intensity scale (below map) indicates increasing RPKM 
values from left to right. Column labels same as Figure 9. Middle panels – 
volcano plots showing the relative abundance of AgIrs in body versus 
antennae. Individual data points were plotted at the intersection of the 
log10 of Fisher’s Exact test (y-axis) with the log2 of the ratio of antenna (or 
palp) RPKM: body RPKM (x-axis) for each gene. Red diamonds or blue 
circles represent significantly enhanced AgIrs in antenna (top panel) or 
maxillary palps (bottom panel) of females and males, respectively. Gray 
points represent AgIrs that fell below the significance threshold of 3.91e-
06 or the 2-fold differential expression cutoff. RPKM values of 0.00 were 
transformed to 0.10 prior to calculating abundance ratios, such that those 
genes could also be represented on the plot. Right panels – Proportional 
Venn diagrams showing the number of AgIrs that are significantly 
enhanced in female and male antenna (top) or palp (bottom). 
  



 
	
  

143 

significantly enhanced abundance in the female antennae and in no other 

tissue. In the maxillary palp, enhancement of AgObp transcripts also 

displayed substantial overlap between sexes, where the 4 male enhanced 

AgObps were all enhanced in females. Overall, AgObp abundance was 

nearly identical between male and female chemosensory tissues (Figure 

13). 

In contrast, atypical AgObps were not enhanced in any of the 

tissues examined, which is consistent with previous results suggesting 

that expression of this subfamily is limited to pre-adult stages (Xu et al., 

2005). With the exception of AgObps 47, 48, 57, which had RPKMs of 

>1000, abundance of the members of the Plus-C AgObp subfamily was 

very low. Of these, it is noteworthy that AgObp48 was one of the most 

highly expressed genes (RPKM=32311) in any tissue, with significant 

abundance in both the male and female olfactory tissues. While AgObps, 

and insect Obps in general are among the most highly expressed gene 

families in chemosensory tissues their role in non-pheromone 

chemosensation remains largely undefined. 

It has been hypothesized that Obps act as molecular 

shuttles/chaperones, which deliver to receptors and/or transiently protect 

specific odorants from biotransformation enzymes (Vogt, 1987 Lerner et 

al., 1990). If individual Obps bind a subset of odorants, it is reasonable to 

hypothesize that in tissues with high Or and therefore odor-coding 

complexity such as the antennae, the Obp landscape would need to be  
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Figure 12. AgGr Expression Profile. Left panel is an expression profile 
map. Green color intensity scale (below map) indicates increasing RPKM 
values from left to right. Column labels same as Figure 9. Middle panels – 
volcano plots showing the relative abundance of AgGrs in body versus 
antennae. Individual data points were plotted at the intersection of the 
log10 of Fisher’s exact test (y-axis) with the log2 of the ratio of antenna (or 
palp) RPKM: body RPKM (x-axis) for each gene. Red diamonds or blue 
circles represent significantly enhanced AgGrs in antenna (top panel) or 
maxillary palp (bottom panel) of females and males, respectively. Gray 
points represent AgGrs that fell below the significance threshold of 3.91e-
06 or the 2-fold differential expression cutoff. RPKM values of 0.00 were 
transformed to 0.10 prior to calculating expression ratios, such that those 
genes could also be represented on the plot. Right panels – Venn 
diagrams showing the number of AgGrs that are significantly enhanced in 
female and male antenna (top) or palp (bottom). 
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similarly complex in order to bind the required range of odorants. The 

converse would also be expected for tissues with reduced odor coding 

complexity such as the maxillary palp. 

The female antenna expresses transcripts for 58 conventional 

AgOrs whose levels are significantly enhanced over the body, while the 

female palp expresses only 3. Furthermore, the odorant response profiles 

of the palp- expressed AgOrs8 and 28 are also vastly different from the 

de-orphanized antennal AgOrs (Lu et al., 2007; Carrey et al., 2010; Wang 

et al., 2010). These differences in AgOr coding capacity and their 

expression profiles strongly suggest that the ability of the female antennae 

to sense odors is much greater than the maxillary palp.  

In An. gambiae females both the antennae and maxillary palps 

expressed 21 AgObp family members with an RPKM >10, of which 19 

were found in both (Figure 13). While not all of these AgObps’ abundance 

levels meet our significance criteria for enhancement, these genes are 

nevertheless expressed in these tissues. Thus although the AgObp 

complexity is almost identical, these two appendages, display a vastly 

different AgOr complexity and odor coding capacity (odor space). This 

analysis confounds standing theories about Obp function; if all antennal 

Obps are required for signaling, then their presence in the palp, with its 

much more limited odor space, would appear superfluous. Given this 

broad expression, and a demonstrated lack of functional overlap, this 

analysis instead suggests that in at least some instances, Obps act as 
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low-pass filters for environmental odorants rather than as specific odorant-

carrier agents. Therefore, Obps may act to solubilize odors in some cases, 

but as molecular sinks in others, adding yet another dimension to 

peripheral odor coding. 

 

Diverse Roles for Chemosensory Tissues 

To explore the effect of morphology on observed AgOr expression, 

we attempted to normalize sex-specific differences in transcript 

abundance by scaling up male AgOrs in proportion to the number of 

female chemosensilla. AgOrs are known to be expressed in the trichoid  

sensilla, the predominant sensillar type and not in grooved peg sensilla 

(Pitts et al., 2004). Sensilla counts indicate that female antennae house an 

average of 630 trichoid sensilla while male antennae house an average of 

225 trichoid sensilla (Pitts and Zwiebel 2006; McIver et al., 1982; Ismail 

1964). We therefore multiplied the male AgOr RPKMs by a factor of 

630/225 or 2.8. After normalizing, AgOr expression profiles were 

qualitatively very similar in females and males (Figure 14), although the 

male AgOr RPKM values remained lower than those in females. Based on 

the same logic, we also normalized AgIr expression in male antennae 

(Figure 14). Because we postulated that AgIrs are localized in neurons 

housed in grooved peg sensilla (GP) as they are in D. melanogaster 

(Benton et al., 2009; Liu et al., 2010), we used a GP normalization factor 

of 4.2, which is the fold difference in GP numbers between female and 
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Figure 13. AgObp Expression Profile. Left panel is an expression profile 
map. Green color intensity scale (below map) indicates increasing RPKM 
values from left to right. Column labels same as Figure 9. Middle panels – 
volcano plots showing the relative abundance of AgObps in body versus 
antennae. Individual data points were plotted at the intersection of the 
log10 of Fisher’s exact test (y-axis) with the log2 of the ratio of antenna (or 
palp) RPKM: body RPKM (x-axis) for each gene. Red diamonds or blue 
circles represent significantly enhanced AgObps in antenna (top panel) or 
maxillary palps (bottom panel) of females and males, respectively. Gray 
points represent AgObps that fell below the significance threshold of 
3.91e-06 or the 2-fold differential expression cutoff. RPKM values of 0.00 
were transformed to 0.10 prior to calculating expression ratios, such that 
those genes could also be represented on the plot. Right panels – Venn 
diagrams showing the number of AgObps that are significantly enhanced 
in female and male antenna (top) or palp (bottom). 
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male An. gambiae antennae (McIver 1982). As with AgOrs, the AgIr gene 

expression patterns were qualitatively similar in both sexes after 

normalization (Figure 14). These results suggest that male antennae 

express similar AgOr and AgIr chemoreceptor repertoires as the female 

antennae, although, importantly, at reduced absolute levels. 

The AgOr and AgGr abundance profiles in the maxillary palps 

support a similar conclusion. Although AgOrs 7, 8, and 28 and AgGrs22-

24 were enhanced in both sexes, their abundance levels were lower in 

males than in females (Figures 10 and 12). As is the case for An. gambiae  

antennae, the maxillary palps are sexually dimorphic and in males they 

house about 4-fold fewer chemosensilla (McIver 1982; Lu et al., 2007). 

This could account for the apparent lower chemosensory gene transcript 

abundances in males. Normalizing male palp AgOrs and AgGrs by this 

factor brings their absolute RPKM values closer to those of females, but 

does not affect the qualitative observation that the identical 

chemoreceptors are enhanced there (data not shown). The same can be 

said for AgObps in the antennae and maxillary palps (Figures 11 and 13), 

where this gene family is generally more enhanced in females than in 

males. Assuming that the transcript abundance profiles seen here are 

meaningful at the functional level, both sexes would potentially be 

receptive to a qualitatively similar odor space, with females perhaps 

having a lower threshold response to odors and thus greater 

chemoreceptive power. In either case, the aforementioned differences in 
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Figure 14. Sensilla-normalized AgOr and AgIr Expression Profiles. 
Expression profile maps using a green color scale to represent RPKM 
values for AgOr (top panel) and AgIr (bottom panel) families. MA – male 
antenna RPKMs. FA – female antennae RPKMs. MA norm – male 
antenna normalized RPKMs. Male antennae AgOrs were scaled up by a 
factor of 2.8. Male antennae AgIrs were scaled up by a factor of 4.2. 
Scales shown below expression maps. Color scales shown below maps 
indicate increasing RPKM values from right to left. 
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gene abundance profiles could also be functionally relevant and serve as 

the basis for distinguishing qualitatively and quantitatively female and 

male chemosensory abilities. These competing hypotheses are directly 

testable using a combination of electrophysiological recording and 

behavioral response assays. Moreover, the requirement in 

chemoreception for any of the differentially expressed genes could 

potentially be explored by gene silencing. 

 

AgOr Expression in Male Bodies 

We observed enhanced expression of a small number of AgOrs in 

male bodies as compared to antennae or palps (Figure 15). When we 

compared the AgOr expression patters in male and female bodies directly, 

a surprising result appeared. 5 AgOrs (7, 13, 15, 24, and 35) were 

enhanced in male bodies. This raises the exciting possibility that males 

have a cryptic chemosensory capacity that is lacking in females. 

Interestingly we were able to amplify both AgOr7 and AgOr35 in RT-PCRs 

using cDNA isolated from male reproductive tissues (Figure 16). This is a 

potentially important outcome of our analyses and indicates another level 

of discovery that whole transcriptome surveys can provide. Further study 

is required to elucidate the nature of this difference, but we speculate that 

AgOrs might be expressed in sperm and mediate chemotaxis toward 

spermatheca or oocytes. Such mechanisms are thought to be important in 
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mammals, where sperm have been shown to express odorant receptors 

and chemotax toward their cognate ligands (Spehr et al. 2004; 2006). 

 

Conclusion 

We are interested in understanding the molecular components of 

the chemosensory pathways that distinguish blood-feeding, female 

mosquitoes that carry out disease-transmission and males that do neither. 

Considerable effort has been devoted to catalog the semiochemicals 

released by potential blood-meal hosts that act as attractive signals for 

female mosquitoes (Takken and Knols 1999; Zwiebel and Takken 2004) 

as well understand the odorant response profiles of AgOrs (Lu et al., 

Carey et al., 2010; Wang et al., 2010). Differential gene expression 

between the sexes may serve as a potential mechanism for modulating 

peripheral sensitivity. Thus we have carried out a comprehensive 

comparative analysis of the chemosensory transcriptomes of adult male 

and female An. gambiae. In addition to identifying genes that may function 

in sexually differential responses, this analysis has revealed many genes 

that are enhanced in the antennae and maxillary palps of both sexes and 

are therefore likely to play essential roles in maintaining neuronal and or 

chemosensory functionality. 

 RNA sequencing has provided unparalleled resolution for the 

examination of global gene expression profiles in chemosensory tissues 

and bodies of an organism of great medical importance. By their very 
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nature, this data are not only broad, covering nearly the entire 

transcriptome of the organism, but deep, allowing one to observe not only 

gene expression patterns, but address questions regarding gene 

structure, alternative splicing, and polymorphisms to name just a few 

possibilities. This study has begun to explore the potential of this data set 

and establishes an important precedent in the use of RNA-seq for the 

study of chemosensation in a disease vector. 
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bodies. 
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Figure 16. AgOr expression in An. gambiae male reproductive organs. 
Agarose gel showing RT-PCR amplicons for AgOrs 7 and 35 in female 
and male tissues. Arrows indicate expected sizes of cDNAs for AgOr7 
(346bp) and AgOr35 (526bp). Plus (+): amplification using cDNAs 
synthesized with reverse transcriptase. Minus (-): amplification using 
negative control cDNAs synthesized without reverse transcriptase. 
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CHAPTER IV 

 

OBSERVATIONS ON THE BIONOMICS OF M FORM ANOPHELES 

GAMBIAE FROM A RICE GROWING AREA OF GHANA. 

 

Preface 

The following publication by Charlwood et al. has been reviewed by 

Medical and Veterinary Entomology and is under revision. I was a listed 

author on this publication based on my contributions to the work 

performed in Okyereko, Ghana in late June and early July 2010. My direct 

contributions in the field included mapping the rice fields, assisting in 

mosquito collections, and observing mating swarms. I returned from the 

study site with several thousand frozen mosquitoes, collected from various 

sites and at various developmental stages. I sampled from those 

collections to determine the exact An. gambiae sub-species and molecular 

forms (M vs. S) by using single fly DNA isolations and diagnostic PCRs. 

Additionally, I contributed to the data analysis, writing, and editing of the 

manuscript. Most notably I drafted the final section of the discussion, 

which suggests the use of intermittent irrigation as a possible mosquito 

control measure in the village. The idea was not original, as Derek 

Charlwood first introduced the topic to me while in the village. However, I 

subsequently researched the method in order to inform my own opinion 

about its potential utility in Okyereko. I intend to return to the village in 
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2011 to continue this research and to discuss intermittent irrigation in 

more detail with the village elders and local farmers. 

 

Introduction 

Mosquito survival is an important parameter affecting the 

transmission of malaria since even in species considered 'good' vectors 

only a small proportion of the population survives through the extrinsic 

cycle of the parasite. In many instances survival rates per cycle of malaria 

vectors are similar (Hii et al., 1990) and may be higher than non-vectors 

(Gillies and De Meillon, 1968). It used to be thought that mortality in 

mosquitoes was independent of age, and that, as such, dividing the 

population into nulliparous (insects which have never laid eggs) and 

parous (those which have) classes was sufficient to determine survival 

rates if the time taken to complete the first cycle was known. This is 

because Anophelines are generally gonotrophically concordant, at least 

after the first gonotrophic cycle, and a single blood meal is usually 

sufficient to complete egg development. More detailed data has generally 

indicated, however, that survival is age dependent and that parous rate 

data by itself is not an especially useful measure (Clements and Paterson, 

1981). Survival is linked to the activities performed in each oviposition 

cycle, some of which are more hazardous than others, rather than the time 

taken to complete them, hence survival per cycle is more important than 

survival per day (Burkot et al., 1990).  
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For estimating vectorial capacity, however, an estimate of calendar 

age may be more important. Calendar age depends, to a certain extent, 

on the feeding frequency of the mosquito, which itself depends, in part, on 

the time taken by the mosquito to return to feed following oviposition. In 

tropical conditions a mosquito which returns to feed immediately after 

oviposition, is likely to have a two-day feeding frequency and will go 

through five gonotrophic cycles (with all their associated hazards) before 

being a possible vector; one with a delay between oviposition and re-

feeding has a three-day frequency and only need complete three cycles 

before becoming a vector. Factors affecting post-oviposition behaviour in 

malaria vectors, however, remain poorly studied or understood. Different 

species may have inherently different behaviours, a delay being perhaps 

obligatory in some species but rarely occurring in others (e.g. Anopheles 

triannulatus and Chagasia bonnea in Brazil, Charlwood and Wilkes 1981; 

Wilkes and Charlwood, 1979). In practice no population is likely to consist 

exclusively of one or other kind of mosquito and environmental factors 

may determine post-oviposition behaviour as much as, or more than, 

inherent behavioural or physiological ones. For example, both An. farauti 

from Papua New Guinea and An. funestus from Mozambique return to 

feed more rapidly in the presence of moonlight (Charlwood et al, 1986; 

Birley and Charlwood, 1989; Kampango et al., 2010). The time taken to 

return to feed can be determined by examination of the female’s 
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reproductive system, those that return to feed shortly after oviposition 

having large ovariolar sacs that contract over a 24hr period.  

The behaviour of vectors from emergence to their first oviposition is 

also critical for malaria transmission since mosquitoes that acquire an 

infection during their first oviposition cycle are more likely to survive and 

transmit the disease than those that become infected during later cycles. 

In many instances some or all of the emerging population go through a 

‘pre-gravid’ phase and require two blood-meals to complete the first cycle 

(Gillies 1953, 1956; Charlwood et al., 1997, 2003). The number of insects 

that do this can also be determined by the examination of the ovaries. 

Between emergence and oviposition, in addition to taking an eventual 

blood-meal sufficient for maturation of the ovaries, the mosquitoes need to 

mate. This only needs to be done during this first cycle. Males of 

Anopheles gambiae s.l., a principal malaria vector group in Africa, deposit 

a gelatinous ‘plug’ in the females’ common oviduct at the time of 

insemination (Gillies, 1956). This is easily seen upon dissection. The plug 

is absorbed over the following 24 hrs. The behaviour of females during 

their first oviposition cycle can therefore be determined by examination of 

their ovaries. This was therefore done with a population of An. gambiae 

from a rice growing area in Ghana.  

 

Methods 
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Description of Study Site 

The Okyereko Irrigation Project (5o 24.87’ N 0o 36.25 W), some 70 

km to the west of Accra, was constructed in 1974 for sustainable rice 

agriculture (Okoye et al., 2005; Dzodzomenyo and Simonsen 1999). The 

village of Okyereko consists of 80 relatively rundown cement houses, circa 

5km from the coast and is bordered on two sides by extensive irrigated 

rice fields (Figure 1). The collection and dissection methods used were the 

same as those described from a study in the village in 2009 (Charlwood et 

al. 2011). In particular a Furvela tent-trap with two hosts inside was run for 

23 consecutive nights in the middle of the village. The trap was similar to 

that described by Govella et al. (2009) with the slight difference that wire 

instead of string was used to support the trap away from the edge of the 

opening in the tent. Since the collection periods were similar in both years 

a comparison of population growth rates and estimates of mosquito 

survival was possible. Ad hoc searches for resting mosquitoes were 

undertaken in 7 houses and kitchens scattered throughout the village.  

 

Dissection  

Mosquitoes were dissected according to the schedule described by 

Charlwood et al. (2011, in press). Briefly insects were divided into the 

following categories: Virgin with ovarioles at Stage I, spermatheca empty; 

Plug unfed sperm in the spermatheca with a mating plug (probably the 

same calendar age as virgins (Charlwood et al., 2003); Nulliparous 
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Stage I with ovarioles at Stage I with sperm in the spermatheca but 

without a mating plug; Nulliparous Stage II with sperm in the 

spermatheca in which yolk was present in the terminal ovariole; Parous 

with sacs with a sac with some distension still present – these 

mosquitoes were considered to have oviposited on the night that they 

were collected; Parous without sacs in which the sac from the previous 

ovipostion had contracted and in which, therefore, there had been a delay 

between oviposition and returning to feed.  

Together these enabled a number of measurements to be made. 

Specifically, the sac/no-sac ratio provides an estimate of the mean 

oviposition cycle duration in parous insects and hence the number of 

oviposition cycles needed to complete the extrinsic cycle of the malaria 

parasite and the proportion of the parous population being sampled. The 

virgin/plug ratio provides an estimate of mating success in newly emerged 

females. The number of insects feeding with undeveloped ovaries 

provides an estimate of the pre-gravid rate in first feeding insects. The 

parous rate can be used to estimate survival using time-series analysis if 

certain conditions are met.  

On four occasion’s mosquitoes that were dead on arrival at the 

laboratory and those that were alive were dissected separately. In order to 

dissect dead mosquitoes the abdomen was punctured with needles so 

that the saline solution entered and re-hydrated the internal organs. After 
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Figure. 1. Map of Okyereko village showing the location of sample sites 
and a selection of fields. The other fields to the south, east and west of the 
village were not mapped. The rice paddies observed to contain large 
numbers of Anopheles gambiae larvae at the start and end of the study 
are indicated by a star. Map created by D. Charlwood and J. Pitts using 
hand-held GPS unit (Charlwood et al. 2011). 
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being left for 10 or 15 minutes they could, with care, be dissected in the 

usual manner.  

Selected samples were preserved in a solution of RNA Later 

(Ambion Inc.) + Triton X-100 (0.1% V/V). These were stored at 4 degrees 

centigrade for the duration of the field collection period then frozen at -20 

degrees centigrade until removal for PCR analysis. Single fly PCRs were 

performed as follows: Heads of selected individuals were removed. 

Carcasses were crushed in 25ul of a buffered solution (10mM Tris pH8.2, 

1mM EDTA, 25mM NaCl, 200ug/ml proteinase K) and incubated at 37 

degrees for 20 minutes. Samples were heated to 95 degrees for 2 minutes 

to inactivate proteinase K and centrifuged briefly at 4 degrees. 1ul of each 

sample was used as a PCR template to determine M or S molecular form 

using the S200 X6.1 method as described (Santolamazza et al., 2008). 

Individual samples displaying the S-form PCR amplicon were subjected to 

subsequent PCR analysis to clarify An. gambiae complex species as 

described (Scott et al., 1993). The presence of circumsporozoite (CS) 

antigens of P. falciparum was determined using the sandwich Enzyme-

Linked Immunosorbent Assay (ELISA) using the protocols of Wirtz (1987).  

 

Environmental Monitoring 

Air temperatures were measured with a digital logger (Tiny-tag) that 

recorded every half hour with the exception of a number of evenings when 

temperatures were recorded every minute.  
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Data Analysis 

Survival rate estimation by time-series analysis according to the 

methods of Birley and colleagues (Charlwood et al., 1985; Holmes and 

Birley, 1987; Hii et al., 1990; Mutero and Birley, 1989) were applied to the 

data as were estimates of Garrett-Jones and Grab (1964), which depends 

on knowing the relative feeding frequencies of the different aged 

mosquitoes. These were determined by determining cross-correlation lag 

lengths between successive age groups using the program MINITAB. 

Following Holmes and Birley (1987) cross-correlations (R) were 

considered to be significant if R=2/sqrt(d). Where d = the number of 

observations (in our case 23) = 0.416. The Simpson index of species 

diversity (1-D), which is sensitive to changes in the more abundant 

species, was obtained for both tent and light-trap using the formulae 

described by Krebs (1999) where (1- D) = 1-Σp2i where pi. = proportion of 

species in the community. The index ranges from 0 (low diversity) to 

almost 1 (1-1/number of species in the sample). 

 

Results 

Anopheles gambiae s.l. was by far the most common mosquito 

collected (Table 1). As was the case in 2009 (Charlwood et al., 2011) the 

great majority of those identified to species and form were M form An. 

gambiae. However, a larger proportion of the individuals from 2010 were 
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of the S form (Table 2). Of 107 An. gambiae females identified to form 

from the light trap, 17 were of the S form (16%). Similarly, 10 out of 116 

(9%) examined from the tent trap were S form. No statistical difference in 

the collected samples was observed (Fisher’s exact test, p=0.105), such 

that the combined sample was 12% S (27 S, 196 M). A sample of An. 

gambiae collected from puddles in a fallow rice field showed a similar 

composition, being 8% S form (6 S, 74 M), while a sample collected from 

a puddle in the village was composed entirely of M form individuals (n=48). 

Moreover, of the individuals collected by sweep net from swarms or as 

mating pairs and identified to molecular form, all were of the M form (110 

males, 8 females). The latter result demonstrates that the M form was 

mating within the village itself, while swarming sites for the S form 

remained undiscovered. Twice the proportion of blood-fed and gravid 

females was caught in the light-trap compared to the tent-trap but in 

neither trap was the other possible vector, An. funestus Giles common, a 

total of 44 being caught during the whole study period. 

The most severe flooding of the previous 19 years occurred on the 

days following a day of heavy rain on the 21st of June. This inundated 

much of the surrounding area and many of the rice fields close to the 

village. Following this rain, however, with the exception of a single evening, 

when there was sufficient wind to disrupt swarming, conditions were 

uniformly calm. Indoor mean temperatures from 29 June - 3 July were 
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 Anopheles    Culex  Mansonia Aedes 

 
gam. 
M 

gam. 
S fun. phar. zie. quin. tri. afr. uni. aeg. 

Tent 11491 1567 34 139 5 961 178 20 118 5 
Light 937 127 10 4 0 16 4 15 17 0 
 
 
 

Table 1. Numbers of the different species collected in the tent-trap (n = 
24) and light-trap (n= 8). Abbreviations: (gam. M) – Anopheles gambiae M 
form; (gam. S) – Anopheles gambiae S form; (phar.) – Anopheles 
pharoensis; (zie.) – Anopheles ziemanni; (quin.) – Culex quinquefasciatus; 
(tri.) – Culex tritaeniorhynchus; (afr.) – Mansonia africana; (uni.) – 
Mansonia uniformis; (aeg.) – Aedes aegypti. 
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 tent light field village swarms 
M 106 90 74 48 118 

S 10 17 6 0 0 
 
 
Table 2. Molecular forms of Anopheles gambiae collected by various 
methods. 
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27.14 ± 2.13 oC and outdoors from the 3rd -12 July 26.63 ± 3.66 oC. 

Hence the observed changes in the population reflect rates under 

apparently ‘ideal’ characteristics rather than merely responses to 

environmental perturbation, as was the case in 2009 (Charlwood et al., in 

press). Figure 2 shows the population changes observed from the tent-

trap collections. Despite the possible elimination of many potential 

breeding sites due to the flooding populations of An. gambiae and An. 

pharoensis increased during the study while those of Cx. tritaeniorhynchus 

and Cx. quinquefasciatus remained more or less stable. While the 

population of An. pharoensis continued to increase, An. gambiae declined 

in the last three days of collection. The increase of An. pharoensis was 

best described by an exponential function while that of the An. gambiae, 

excluding the final decline, by a linear function. Despite being a growing 

population some of the An. pharoensis were multi-parous (in fewer than 

15 mosquitoes dissected two insects were 3-parous and one was 5-

parous). The Simpson’s index (1-D) was 0.357 from the tent-trap and 

0.299 from the light-trap (calculated treating the 12% of the An. gambiae S 

form as a separate species to the M form). Thus the tent-trap collected a 

more diverse population of mosquitoes than the light-trap.  

1787 An. gambiae females were dissected. Total numbers of the 

different age groups dissected by trapping method are shown in Table 3. 
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Figure 2. Numbers of Anopheles gambiae, An. pharoensis, Culex 
tritaeniorhynchus and Cx. quinquefasciatus collected in a ‘Furvela’ tent-
trap from the village of Okyereko, Ghana, June-July 2010. 
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The age structure among the An. gambiae dissected was similar from the 

two types of trap (Chi-square light and tent trap in this group = 1.161, p = 

0.281). On four days of collection live and dead insects from the tent-trap 

were sorted and dissected separately. 2119 (68%) of the 3133 unfed 

females collected at these times were alive at the time of collection. These 

proportions were similar for the other abdominal stages of An. gambiae 

and for Cx. quinquefasciatus. A greater proportion of the An. pharoensis 

(0.625) had, however, died before collection (Chi-square 54.01 p = 

0.0001). With the exception of an excess number of N I’s among the live 

An. gambiae (Fishers two tail test comparing (virgin+ plug) and N I’s, p = 

0.0431) the age of the 166 dead females dissected was similar to the 206 

dissected that were alive on collection (Table 4). Following the initial light-

trap collections samples were restricted to the sentinel tent trap. The rate 

of increase of the An. gambiae was lower than that observed in 2009. This 

was in part due to a drop in the numbers of parous mosquitoes in the 

population. Thus, the estimated growth rate of the pre-gravid population 

was higher than the other age groups (Figure 3). Given the major changes 

in density observed estimates of survival based on a stationary population 

are not, strictly, valid. Table 4 gives the correlation coefficients between 

the different age groups with up to six days lag. The correlation between 

parous and total population, with and without the correction for the 

numbers pre-gravid failed to produce any significant cross correlations 
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 virgin plug NI NII sac no-sac 
Light-trap 28 46 20 18 27 43 
Tent-trap 241 388 233 163 218 362 

Total 269 434 253 181 245 405 
 
 
Table 3. Age structure of the An. gambiae dissected from Okyereko June 
–July 2010. (see Methods for explanation of categories). 
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 virgin plug NI NII sac no-sac 
dead 25 48 25 15 23 30 
live 25 49 47 13 22 50 

Total 50 97 72 28 45 80 
 
 
Table 4. Age structure of An. gambiae that were dead or alive at the time 
of collection from the tent-trap, Okyereko, Ghana. (see Methods for 
explanation of categories). 
  



	
   180	
  

 
 
 
 
 
 
 

 
 
 
Figure 3. Estimated number of Anopheles gambiae by gonotrophic age 
collected in a ‘Furvela’ tent-trap from the village of Okyereko, Ghana, 
June-July 2010. 
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(beyond that of Day 0). Thus, time series methods (Holmes and Birley, 

1987; Mutero and Birley 1989) cannot be applied to the data to estimate 

survival.  

The data does, however, enable an estimate of the feeding 

frequency to be obtained. Correlations between virgin and recently mated 

females were significant at a lag on one day while that between 

(virgin+plug) and NI was significant at one and two days. It was four days 

between (virgin+plug) and NII’s and three between NI and NII’s (Table 5). 

The estimated oviposition cycle duration of 2.65 ±0.17 days was the same 

for light-trap and tent-trap and did not differ among the live and dead 

mosquitoes dissected (2.55 ±0.18 days versus 2.71± 0.18 days, Chi-

square p = 0.1972). These estimates indicate that the population of An. 

gambiae in Okyereko fed on days 2,4,7,10,13 after emergence and 

oviposited for the first time sometime between day 4 and day 7. In other 

words they followed cycle number 5 described by Garrett-Jones and Grab 

(1964). With such a feeding schedule and a parous rate of 0.36 the daily 

survival rate obtained from the published curve is 84%. The mosquitoes 

have to survive 13 or 16 days before they might transmit malaria. The 

shorter period assumes that the initial pre-gravid meal can be infectious. 

Under such circumstances (and assuming density independent survival) 

10.4% of the mosquitoes will survive long enough to be vectors. If it is not 

infectious then only 7.3% will survive the minimum time to be possible 

vectors. Overall, 10% of those that acquire the parasite in any of their first  
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 Lag 
Comparison Day 0 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 
Virgin (V) /Plug 
(P) 

0.63 0.51* 0.29 0.32 0.16 0.20 0.06 

V/(V +P) 0.84 0.54* 0.32 0.33 0.24 0.23 -0.001 
(V+P)/ N I 0.60 0.60* 0.50* 0.24 0.25 0.32 0.21 
N II/ (V+P+N I) 0.64 0.39 0.40 0.39 0.51* 0.41 0.38 
N II/(V+P) 0.59 0.36 0.40 0.30 0.54* 0.39 0.35 
N II/ N I 0.56 0.33 0.30 0.46* 0.30 0.33 0.38 
(NI + NII)/(V+P) 0.67 0.56 0.39 0.32 0.45* 0.43 0.33 
        
Sac/No-sac 0.40 0.50* 0.17 -0.04 -0.16 0.25 0.31 
        
Parous/Total 0.92 0.62      
Parous/(Total –V-
P) 

0.79 0.76 0.71 0.31 0.09 0.11 0.12 

Parous/ (NI + N 
II) 

0.69 0.63 0.30 0.33 0.25 0.34 0.44 

Parous/N II 0.72 0.58 0.37 0.28 0.09 0.15 0.15 
 
 
Table 5. Cross correlations at different lags between age classes of An. 
gambiae from Okyereko village, June-July 2010. Asterisk (*) marks 
significant correlations according to the formula of Holmes and Birley 
(1987). 
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three cycles will survive to transmit. These proportions will be smaller if 

age specific mortality affects survival (Clements and Paterson, 1981).  

With the exception of one windy night the mean proportion of the 

most recently emerged insects (i.e. virgin and plug) with a mating plug 

was 0.63 ± 0.04. (Figure 4). Following the one evening that windy 

conditions at sunset prevented the males from swarming over these 

markers only three of the nine newly emerged insects collected the 

following morning had mating plugs. Although not quite significantly 

different from the expected proportion (Fishers exact test p = 0.094) this 

was the lowest proportion observed of any night (four times this number 

would normally have been collected). The following day18 of 21 newly 

emerged insects had mating plugs. This was the highest proportion (0.86) 

observed on any night and implies that most mating takes place (in 

swarms) at dusk and that failure to mate on one night may not incur a high 

mortality cost. 2933 mosquitoes from 10 days of collection were analyzed 

for the presence of circumsporozoite protein. Eighteen (0.61% s.d. ± 

0.49%) were positive. The rate among tested insects varied considerably 

from day to day, six of the ten days not having any positive insects. 

Among the estimated 1435 parous mosquitoes included in the samples 

tested by ELISA the overall mean sporozoite rate was 1.25%, similar to 

that obtained in 2009. 
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Figure 4. The proportion of newly emerged Anopheles gambiae with 
mating plugs, by date of collection, Okyereko, Ghana, June-July 2010. 
The black square denotes the collection following an evening when wind 
disrupted swarming behaviour and the grey triangle the night after that. 
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Discussion 

Despite collecting mosquitoes in a slightly more central location in 

the village, compared to the collection sites of 2009, there was still a great 

preponderance of pre-gravid ‘first-feeding’ insects in the collections. While 

time-series estimates failed to produce an appropriate estimate of survival 

and prevented a sensible estimate to be determined the data enabled 

estimates of the feeding and oviposition rhythms to be made which 

together with the parous rate enabled an estimate of daily survival to be 

made using the methods of Garrett-Jones and Grab (1964). 

Notwithstanding the caveat that the population was not stationary, the 

estimated daily survival rate of 84% is similar to estimates obtained for An. 

arabiensis and S form An. gambiae from Tanzania (Gillies and Wilkes, 

1965;Charlwood et al., 1995). At the highest observed rate of transmission 

one in a hundred mosquitoes (or up to 10 per night) was a vector of 

malaria and, despite the ‘paddy paradox’ (Ijumba and Lindsay, 2001), the 

disease remains a problem in Okyereko.  

At the lowest densities the proportion of new recruits in the 

population was 30%. The increase to 70% observed at the highest 

densities was in part due to a decline in the number of parous insects in 

the population rather than a proportionate increase in new recruits. In 

other areas mortality is extremely high among larvae (Charlwood, 2003; 

Service, 1977). For the population to suffer the extreme ‘mortality’ 



	
   186	
  

observed in newly recruited adults would seem to be a double blow. It may 

be that in a population like Okyerko survival through to the adult stage is 

high and that the loss among new recruits to the adult population is the 

larval mortality carried through to the adult stage. Housing in Okyereko is 

not conducive to mosquito resting and ad hoc collections produced very 

few insects. It is also possible that outdoor resting is costly, particularly for 

the new recruits.  

It is perhaps not an accident that the populations that failed to be 

useful for time-series analysis have all been high density ones (Mutero 

and Birley, 1989; Charlwood JD and Smith TR unpublished observations, 

1994). There are a number of reasons why even under the ideal 

environmental conditions experienced during the latter part of the study 

the time series methods might not have worked. One is that the 

dissections were inaccurate. There are two categories where decisions in 

classification might be biased since they are continuous rather than 

discrete conditions. These are the classification into sac or no-sac and the 

separation into mated Nulliparous insects with ovaries at Stage I or II. 

While errors in the former do not affect survival estimates (since both sets 

are parous), that of the latter affects estimates of numbers in the pre-

gravid and Nulliparous categories. Nevertheless, summing the different 

categories and considering the NI population to be either gonotrophically 

inactive (pre-gravid) or gonotrophically active did not improve estimates. 

The relatively smooth increase in estimated numbers of pre-gravids in the 
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population implies that the dissections were relatively accurate, as do the 

‘sensible’ lags at which peak correlations occurred in young age groups 

(and even between the sac and no-sac population). Although for much of 

the study the population increased regularly this increase was as well 

described linearly as exponentially (there being no difference in the r2). 

Although starting from a much smaller base the rise in numbers of the An. 

pharoensis was exponential. Although the number of An. pharoensis 

dissected was too small for survival rate estimation the observation of 

several multi-parous insects implies that this species could be a potentially 

important vector in Okyereko. Interestingly in their study of filariasis from 

the village Dzodzomenyo et al., (1999) found that despite An. gambiae 

being the main vector two of three specimens of An. pharoensis examined 

were infected, one of which was infectious. The rise in the An. gambiae 

population was lower than that observed in An. arabiensis from Tanzania 

(Charlwood 2003; Takken et al, 1995) but was higher in the new recruits 

than in the population as a whole; estimated numbers of parous 

mosquitoes actually going into a decline even as the number of new 

recruits was rising. Govella et al., (2009) report that the efficiency of both 

light-trap and Furvela tent-trap for S form An. gambiae is density 

dependent. It is possible that other traps would have collected even more 

than the 1000 or so An. gambiae at peak times. A comparison between 

different tent-traps in an area like Okyereko might provide useful data. 
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Another factor that might affect the estimates is that one age group 

may belong to a more closed population than another. For example, the 

virgin and recently mated insects may disperse away from the area while 

the N I’s may be immigrants. Their relative contribution to the parous 

population may differ. The history and future of the ‘first-feeding’ insects is, 

therefore, still difficult to determine, in particular the mosquitoes that had 

poorly developed ovaries, had mated but no longer had a mating plug. 

The plug lasts for approximately 24hrs (Gillies, 1956) thus N I insects had 

presumably mated more than 24hrs before being collected but, unlike the 

insects with a plug, had not taken a blood-meal immediately after mating. 

Had they mated at dawn the plug may have been absorbed by the time 

they were examined. Even in places such as São Tomé where swarms of 

An. gambiae have been recorded the activity at dawn was a fraction of 

that observed at dusk (Charlwood et al., 2002). So mating at dawn is not 

likely to be the cause. It is possible that the insects find it hard to obtain a 

blood meal the night they mate and so are basically the remnants of the 

previous nights ‘plug-positive’ cohort.  

Alternatively virgins that have previously fed may mate and digest 

their initial bloodmeal before returning a day later as mated N I’s. Egg 

development in mosquitoes is dependent on JH levels, which do not rise 

until Day 3 post-eclosion, and/or mating (Noriega, 2004). Virgin 

mosquitoes that take a blood meal are presumably very young. We do not, 

however, know whether this second meal leads to ovarian development or 
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not (i.e. whether they take two pre-gravid meals) and what affect this 

might have on both survival and vectorial capacity.  

Swarms of M form male An. gambiae were seen within the middle 

of the village. Numbers of pairs observed leaving swarms was far too low 

to account for the amount of mating that must have been occurring, (as 

judged by the number of plug positive females in the collection) indicating 

that mating was taking place elsewhere. Where mating was taking place, 

however, remains unknown. Nevertheless most mating probably occurs in 

swarms at dusk since in the tent-trap collection on the night following the 

one evening sufficiently windy at dusk to prevent swarming was the 

collection with the lowest proportion of plug-positive mosquitoes among 

newly emerged insects indicating that mating had been curtailed on that 

night. The following day the proportion of newly emerged insects with 

plugs was higher than on any other day. Since the wind ceased shortly 

after dusk these results imply that mating only takes place at dusk.  

Rice fields are often major breeding sites for Anophelines 

(Mwangangi et al., 2010) as appears to be the case in Okyereko. 

Dzodzomenyo et al., (1999) describe a substantial increase in numbers of 

An. gambiae when the fields of Okyereko are irrigated at the end of the 

dry season. Given the large numbers of new recruits to the population 

anti-adult control measures will produce very little perceptible change in 

the mosquito population biting people even though they may reduce 

malaria transmission. Environmental management techniques, such as 
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intermittent irrigation in well-leveled fields and a planned irrigation systems, 

as is Okyereko, offer alternatives to adulticide-based interventions and 

indeed can have a great effect on local mosquito populations (Keiser et al., 

2005a, b). Frequent draining, drying and subsequent re-flooding of rice 

fields can greatly increase Anopheline larval mortality (Mutero et al., 2000) 

ultimately reducing the adult population, which can sometimes 

dramatically lower rates of malaria transmission (Keiser et al., 2005a,b). 

Another potential benefit of intermittent irrigation would be the reduction in 

local mosquito diversity (Mwangangi et al., 2010), which might affect both 

disease-transmitting and nuisance biting mosquitoes. Establishing 

intermittent irrigation may take several years, during which time side-by-

side test fields would be alternatively managed either by intermittent or 

continuous irrigation, while mosquito breeding and rice yields are carefully 

monitored in each. The already intense interest among villagers for 

malaria-reducing interventions may improve the likelihood of adoption if it 

can be demonstrated that mosquito breeding is reduced and that rice 

yields are at least equivalent if not improved, which often occurs in 

intermittently irrigated fields (Mutero et al., 2000;Keiser et al., 2005a,b). 
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CHAPTER V 

 

SUMMARY AND FUTURE DIRECTIONS 

 

Key Findings and Follow Up 

 By using the tools of molecular biology, behavior and computational 

biology, we have conducted studies in An. gambiae that offer new insights 

into the biology of one of the major malaria mosquitoes in sub-Saharan 

Africa. The identification AgIrs, a new class of chemoreceptors, adds 

significantly to our understanding of olfaction in An. gambiae. These 

genes are homologous to the DmIrs (Benton et al. 2009), which have 

proven roles in odor reception in coeloconic sensilla. Their expression is 

significantly enhanced in An. gambiae antennae and maxillary palps. Next 

we will need to determine whether AgIrs are expressed in grooved pegs. 

Furthermore, we will attempt to express AgIrs in heterologous systems to 

elucidate their chemoreceptive spectra. We speculate that AgIrs may be 

responsible for sensing important volatiles that AgOrs lack significant 

responses to, including amines like butylamine and ammonia or lactic acid 

that elicit grooved peg responses. The requirement of AgIr76b in larval 

behavioral responses to butylamine gives us an early target. Finally, it will 

be critical for us to be able to demonstrate in-vivo that AgIrs and AgOrs 

are required for odor responses, both at the physiological and behavioral 

levels. RNAi technology gives us an immediate opportunity to attempt to 
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transiently knock down chemoreceptor targets in adult stage mosquitoes 

for this purpose. We are also exploring transgenic technologies that are 

designed to stably knock down gene expression in the laboratory. I believe 

that making the leap from strong correlative data that link An. gambiae 

odor sensitivity with chemoreceptor expression and AgOr or AgIr function, 

will be an imperative that our field needs to meet in order to completely 

justify the potential for this line of research to impact disease transmission. 

We can no longer assume that these gene families are responsible for 

mediating olfactory signaling and must provide direct evidence for their 

necessity. Otherwise we risk spending a lot of time and resources 

pursuing pharmacological agents that target AgOrs or AgIrs that will have 

little or no effect on mosquito behavior. To that end we are currently 

working with mosquito behaviorists to address questions about 

modifications of host seeking using compounds identified in 

pharmacological screens. 

 The transcriptome profiles of the antennae and maxillary palps of 

female and male An. gambiae have also moved us in a new and exciting 

direction. Documenting more of the molecular components of An. gambiae 

chemosensory tissues that are like to mediate signal transduction is 

necessary if we hope to fully understand the process. To that end we have 

identified numerous gene families that are enhanced in chemosensory 

tissues, including many that have not been implicated in insect olfaction. 

For example, the ammonium transporters described in Chapter II may 
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participate in ammonia sensing. We have the tools at our disposal to study 

the localization patterns of the genes, examine their potential functions in 

heterologous expression systems, and to attempt to knock down their 

transcripts in live animals. 

Not surprisingly, we uncovered similarities as well as differences in 

the gene expression profiles of antenna and maxillary palps and between 

females and males. The former result may give us insights into specific 

signaling mechanisms that are either shared or divergent between 

antennae and palps. The latter result may open up new comparative 

avenues of research that could determine differences in olfactory 

processes between the sexes. Importantly, very little research has 

focused on male mosquito chemosensory biology. Ultimately, more 

studies of male An. gambiae biology will be needed in order for us to 

appreciate the potential meaning of differential gene expression. For 

example, the higher overall expression of AgOrs in female antennae and 

palps could result in increased sensitivity to odors. This hypothesis is 

testable using electrophysiological and behavioral assays. In addition, we 

have observed enhanced expression of AgOrs in male bodies. We intend 

to explore the nature of this result, looking specifically for AgOrs in sperm, 

where they may mediate chemotaxis. We may also address the possibility 

of cryptic olfactory (perhaps pheromonal) function in other male 

appendages, like legs and wings. Ultimately, gene expression profiling is 

not an end unto itself, but is only a tool useful for identifying new genes of 
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interest. Those genes could become targets for novel olfactory-based 

interventions that interfere with mosquito-host interactions.  

 Although the work presented in Chapter IV was only indirectly 

related to An. gambiae olfaction, the experience was invaluable to me. 

The trip was my first to Africa and therefore was my first opportunity to 

observe An. gambiae in its natural environment. I got to spend quality time 

with excellent mosquito researchers, learning more about mosquito 

ecology. Moreover, I’ve established some important contacts that may 

lead to future collaborations. We have a long-standing interest in studying 

AgOr evolution, from the perspective that these genes are undergoing 

rapid evolution and that AgOr polymorphisms among local populations of 

An. gambiae may be relevant to endophily, anthropomorphism, or other 

other aspects of sensory biology. Having collaborators in the field could 

open up the possibility of gathering samples from many sites that we can 

use for this purpose. I intend to return to Ghana this summer (2011) and 

bring back some field collected mosquitoes with an eye toward initiating a 

pilot study.  

 Finally, there is another interesting research objective that has not 

been addressed in this work, but that could be followed using the 

techniques described herein. The possible involvement of the circadian 

clock in An. gambiae chemosensation has yet to be explored. Nearly all 

organisms express daily rhythms as a result of living in a world dominated 

by the 24-hour solar cycle (Yu and Hardin 2006). Mosquitoes display overt 
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rhythms in behaviors that include flight activity, bloodfeeding, oviposition, 

diapause, and pupal eclosion (Clements 1999; Wanji et al. 2003; Beach 

and Craig 1977; Charlwood and Jones 1979, 1980; Pandian 1980; 

Charlwood et al. 2002; Charlwood et al. 2003; Sumba et al. 2004). Many 

of the behavioral reports include data from diel field observations and 

therefore do not represent controlled laboratory experiments. Indeed few 

of the rhythms described in mosquitoes have been determined to be 

endogenous in their nature and by definition cannot accurately be 

described as circadian. Flight activity is perhaps the best exception of a 

behavior that is known to be under circadian control, showing persistent 

rhythms under constant lighting conditions and varying temperatures 

(Clements 1999; Jones 1972; Jones 1976; Jones and Reiter 1975; Jones 

and Gubbins 1977; Chiba and Tomioka 1985; Pandian 1994). One study 

also indicates that the circadian rhythm of flight behavior of the mosquito, 

Culex pipiens, is not under the control of a central clock in the optic lobe, 

but may reside in a decentralized oscillator that is sensitive to light (Kasai 

and Chiba 1987). 

 The An. gambiae flight rhythm is regulated by the circadian clock 

(Clements 1999). As expected for a nocturnal animal, An. gambiae flight 

activity has a free running period of less than 24 hours with a distinct peak 

of activity at the lights off transition (Clements 1999; Jones and Gubbins 

1978).  Interestingly, the flight pattern changes following insemination, with 

a loss of the subjective dusk activity peak and an increase in the overall 
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activity in scotophase (Jones and Gubbins 1978). This pattern of 

behavioral modification has been observed in at least one other nocturnal 

mosquito species, An. stephensi (Rowland 1989).  Perhaps the enhanced 

activity following insemination facilitates the initiation of host seeking as 

females search for a blood meal, required for ovule development. Two 

studies have addressed the issue of host seeking in An. gambiae following 

a bloodmeal, with conflicting results. In the first, An. gambiae females 

continued to host seek, based on upwind flight in a wind tunnel, with a 

rhythmicity that mirrored unfed females (Klowden and Briegel 1994). In the 

second, An. gambiae females were refractory to host seeking for the first 

72 hours following a bloodmeal (Takken et al. 2001). 

 A PubMed survey of the available scientific literature suggests that 

there is a lack of studies that have identified rhythms in mosquito 

physiology or gene expression, one exception being a recent paper that 

demonstrates gene rhythmicity in a timeless homolog in Ae. aegypti, the 

yellow fever vector (Gentile et al. 2006). The genomes of both An. 

gambiae (Holt et al. 2002) and Ae. aegypti (Nene et al. 2007) encode 

homologs of the D. melanogaster clock genes clk, cyc, per, tim, cry, dbt, 

ck2, sgg, vri, and pdp1 (unpublished observation). The existence of 

behavioral circadian rhythms and clock gene homologs in mosquitoes 

strongly suggests that the circadian clock is well conserved among 

dipterans and that the mechanisms controlling clock outputs are likely to 

be similar. Whether An. gambiae utilizes a strong central clock like those 
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found in many nocturnal species such as cockroaches, or relies on 

distributed clocks like those generally found in diurnal species such as D. 

melanogaster, has yet to be determined. 

 It is worth noting that the blood sucking sandfly, Lutzomyia 

longipalpis, a vector for leishmaniasis, exhibits circadian locomotor activity 

and rhythmic expression of clock genes per, tim, and cyc in heads 

(Meireles-Filho et al. 2006a,b).  The activity rhythm is depressed after 

blood feeding and the expression of per and tim are also downregulated 

(Meireles-Filho et al. 2006a).  The potential for circadian/post-blood 

feeding regulation of olfactory sensitivity have not been studied in the 

sandfly.  Nonetheless it can be speculated that the observed post-blood 

meal downregulation of clock genes may lead to sensory depression via 

regulation of clock-controlled olfactory genes.  This is a testable 

hypothesis that, if supported, could form the basis for a reduction in host 

seeking that activity depression implies. 
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