MATHEMATICS

ON QUASICONVEX SUBSETS OF HYPERBOLIC GROUPS

Ashot Minasyan

Dissertation under the direction of Professor Alexander Ol'shanskii

A geodesic metric space \mathcal{X} is called hyperbolic if there exists $\delta \geq 0$ such that every geodesic triangle Δ in \mathcal{X} is δ -slim, i.e., each side of Δ is contained in a closed δ -neighborhood of the two other sides. Let G be a group generated by a finite set \mathcal{A} and let $\Gamma(G, \mathcal{A})$ be the corresponding Cayley graph. The group G is said to be word hyperbolic if $\Gamma(G, \mathcal{A})$ is a hyperbolic metric space. A subset Q of the group G is called quasiconvex if for any geodesic γ connecting two elements from Q in $\Gamma(G, \mathcal{A})$, γ is contained in a closed ε -neighborhood of Q (for some fixed $\varepsilon \geq 0$). Quasiconvex subgroups play an important role in the theory of hyperbolic groups and have been studied quite thoroughly.

We investigate properties of quasiconvex subsets in word hyperbolic groups and generalize a number of results previously known about quasiconvex subgroups. On the other hand, we establish and study a notion of quasiconvex subsets that are small relatively to subgroups. This allows to prove a theorem concerning residualizing homomorphisms preserving such subsets. As corollaries, we obtain several new embedding theorems for word hyperbolic groups.