AFLATOXIN B_1 ADDUCTS WITH $d(ATCGAT)_2$ AND $d(ATGCAT)_2$: DO METHYLATION AND HYDROXYMETHYLATION INFLUENCE REACTION STOICHIOMETRY?

Ву

Brent Tyler Whitley

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University
in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Chemistry

May, 2013

Nashville, Tennessee

Approved:

Michael Stone

Carmelo Rizzo

TABLE OF CONTENTS

List of fig	guresii
Chapter	
l.	Introduction2
II.	Methods
	Synthesis of dimethyldioxirane
	Synthesis of aflatoxin B ₁ epoxide
	Preparation of aflatoxin B ₁ DNA adducts10
	High-performance liquid chromatography1
	Matrix-assisted laser desorption/ionization mass spectrometry 12
III.	Results
	Dimethyldioxirane
	Aflatoxin B ₁ epoxide
	ATCGAT-AFB ₁
	ATGCAT-AFB ₁
	AT(5-methyl-dC)GAT-AFB ₁
	ATG(5-methyl-dC)AT-AFB ₁
	AT(5-hydroxymethyl-dC)GAT-AFB ₁
	ATG(5-hydroxymethyl-dC)AT-AFB ₁
IV.	Discussion
Riblia	ogranhy 2º

LIST OF FIGURES

Figure

1.	Structures of aflatoxins B ₁ , B ₂ , G ₁ , and G ₂	3
2.	Structure of AFB ₁ -exo-8,9-epoxide	4
3.	Preparation of AFB ₁ -exo-8,9-epoxide by DMDO oxidation of AFB ₁ in	
	dichloromethane	4
4.	Structure of <i>trans</i> -8,9-dihydro-(N7-guanyl)-9-hydroxy AFB ₁	5
5.	Summary of AFB ₁ metabolism	6
6.	¹ H NMR spectrum of DMDO	12
7.	¹ H NMR spectrum of AFB ₁ epoxide	13
8.	ATCGAT before and after reaction with AFB ₁ epoxide	14
9.	ATGCAT before and after reaction with AFB ₁ epoxide	15
10.	AT(5-methyl-dC)GAT before and after reaction with AFB ₁ epoxide	17
11.	ATG(5-methyl-dC)AT before and after reaction with AFB ₁ epoxide	18
12.	AT(5-hydroxymethyl-dC)GAT before and after reaction with AFB $_1$ epoxide	20
13.	ATG(5-hydroxymethyl-dC)AT before and after reaction with AFB ₁ epoxide	21

CHAPTER I

INTRODUCTION

The relationship between fungi and humans has a long and complex history. While certain varieties of mushrooms and yeast have served as food sources for millennia, many fungi produce harmful secondary metabolites known as mycotoxins. The earliest accounts of mycotoxicosis involve the infamous syndrome "ergotism", caused by ergot alkaloids in crops contaminated with *Claviceps purpurea* mold¹. While the ergot alkaloids and most other mycotoxins are not carcinogenic, several carcinogenic mycotoxins have recently been identified. Among these are aflatoxin, luteoskyrin², and sterigmatocystin³.

Aflatoxin was discovered in the 1960's when the widespread hepatotoxicity observed in poultry in the United Kingdom was traced back to ground-nut meal contaminated with *Aspergillus flavus* mold¹. Soon after this finding, *A. flavus* mold was implicated in an outbreak of liver cancer among hatchery-reared rainbow trout⁴. Subsequent laboratory experiments showed that rats fed the contaminated meal developed liver cancer, providing the first evidence for the existence of carcinogenic mycotoxins¹.

Hepatotoxicity has also been documented in humans following aflatoxin exposure. Consumption of 2-6 mg aflatoxin daily for a month or longer leads to acute aflatoxicosis, characterized by jaundice, portal hypertension, and ascites⁵. Far more common, however, is long-term exposure to lower levels of aflatoxin, which is implicated in the high rates of hepatocellular carcinoma seen in some developing countries⁶. Accordingly, aflatoxin has been classified as a Group 1 carcinogen in humans⁷. There is a synergistic relationship between aflatoxin exposure and hepatitis B infection, both of which are prevalent in many developing countries. The risk of liver cancer is doubled by chronic aflatoxin exposure and quintupled by hepatitis B infection. However, the combination of chronic aflatoxin exposure and hepatitis B infection leads to an alarming sixtyfold increase in the rate of liver cancer⁸.

Four toxic compounds have been isolated from *A. flavus* (Figure 1). All share a common difuranocoumarin moiety. Named according to their chromatographic properties, aflatoxin B_1 (AFB₁) and aflatoxin B_2 (AFB₂) fluoresce blue, while aflatoxin G_1 (AFG₁) and aflatoxin G_2 (AFG₂) fluoresce green¹. Of these, AFB₁ is of the greatest concern to human health. AFB₁ is not only highly genotoxic, but it is also the most commonly found aflatoxin in food.



Figure 1. The structures of aflatoxins B_1 , B_2 , G_1 , and G_2 .

Early experiments demonstrated that the metabolism of AFB₁ is integral to its mutagenicity. While treatment of nucleic acid with AFB₁ results in a reversible nucleic acid-carcinogen complex⁹, coincubation of monooxygenases with nucleic acid and AFB₁ leads to the covalent DNA adduct¹. Incubation of *Salmonella typhimurium* with AFB₁ and a rat liver preparation leads to bacterial killing, but this killing effect could be blocked by the addition of exogenous nucleic acid or CYP450 inhibitors to the assay. The nucleic acids in this assay were found to be covalently bound to the AFB₁ metabolite¹.

The structure of AFB₁ led researchers to envision the 8,9-epoxide (Figure 2) as the ultimate carcinogen¹⁰. While the epoxide has never been directly observed in biological systems, likely due to its half-life of less than ten seconds in aqueous solution¹¹, its existence has been confirmed by indirect means. For example, acid hydrolysis of AFB₁-DNA adducts yields AFB₁-8,9-dihydrodiol, a product consistent with the proposed epoxide¹².

Figure 2. Structure of AFB₁-exo-8,9-epoxide.

Early attempts to prepare the epoxide *in vitro* were unsuccessful. Synthetic attempts have included oxidation by m-chloroperbenzoic acid¹³, sensitized photooxidation¹⁴, and solvolysis of 8-(acyloxy)-9-hydroxy AFB₁ derivatives¹⁵. These methods failed largely because of acidic or nucleophilic components of the reaction mixture causing cleavage of the epoxide¹⁶. The ultimate carcinogen, AFB₁-exo-8,9-epoxide, was finally prepared by DMDO oxidation¹¹ (Figure 3).

Figure 3. Preparation of AFB_1 -exo-8,9-epoxide by DMDO oxidation of AFB_1 in dichloromethane.

AFB₁ epoxide is highly genotoxic. Over half of hepatocellular carcinoma cases resulting from aflatoxin exposure are associated with a G to T mutation at the third position of codon 249 in the p53 gene¹⁷. Similar G to T mutations in the first and second positions of codon 12 in the Ha-*ras* protooncogene are also likely to be involved in tumorogenicity¹⁸. Binding occurs preferentially at CpG islands¹⁹. Site-specific mutagenesis assays reveal AFB₁-induced G \rightarrow T transversions at a level of 5% in E. coli²⁰. The major adduct *in vitro* is *trans*-8,9-dihydro-(*N*7-guanyl)-9-hydroxy AFB₁ (Figure 3)¹². DNA is thermodynamically stabilized by the adduct²¹.

Figure 4. Structure of trans-8,9-dihydro-(N7-guanyl)-9-hydroxy AFB₁.

The AFB₁-N7-dG adduct may either depurinate to yield an abasic site, or hydrolyze to the formamidopyrimidine (FAPY) adduct²². The FAPY derivative results from opening of the imidazole ring of the initial cationic adduct¹². While the β anomer is favored in duplex DNA, there is a 2:1 α : β mixture in single-stranded DNA²³. The α anomer blocks replication and the β anomer is mutagenic²³. In fact, the AFB₁- β -FAPY adduct causes G \rightarrow T transversions at levels up to 36%, which is six times as mutagenic as the cationic adduct²⁴. The overall reaction pathway for AFB₁ is summarized below (Figure 5).

Figure 5. Summary of AFB₁ metabolism.

The stereospecificity of the reaction suggests that AFB₁ epoxide is held in a reaction-promoting orientation upon its association with DNA. An intercalated transition state with the epoxide positioned above the 5' face of dG would facilitate nucleophilic attack by $N7^{21}$. The planar difuranocoumarin structure of AFB₁ alone is suggestive of intercalation. In agreement with this hypothesis, molecular modeling studies have demonstrated intercalation of AFB₁ in DNA²⁵. Furthermore, binding of AFB₁ to DNA causes increased proton shielding²¹. Later studies confirmed intercalation of the mutagen above the 5' face of dG by NMR. Interestingly, the sterigmatocystin adduct adopts a similar intercalated structure²⁶.

Intercalation is responsible for the differential stoichiometry of the reactions of AFB₁ with certain oligonucleotide sequence isomers. Only one equivalent of epoxide can react with d(ATCGAT), while two equivalents of epoxide can react with d(ATGCAT). This difference in stoichiometry is due to intercalation of the epoxide above the 5' face of dG, which precludes binding of another AFB₁ equivalent to the complementary strand in d(ATCGAT) but leaves open a second binding site in d(ATGCAT)²¹.

Due to the fact that AFB₁ epoxide binds preferentially at CpG islands, which are frequently methylated²⁷, it is important to know the chemistry of the reaction between AFB₁ epoxide and methylated DNA sequences. Therefore, the current work aims to describe the reaction between AFB₁ epoxide and the methylated sequence isomers d[AT(5-methyl-dC)GAT]₂ and d[ATG(5-methyl-dC)AT]₂, as well as the hydroxymethylated sequence isomers d[AT(5-hydroxymethyl-dC)GAT]₂ and d[ATG(5-hydroxymethyl-dC)AT]₂. Each sequence was reacted with a molar excess of AFB₁ epoxide. The limiting stoichiometry was determined for each sequence by high performance liquid chromatography (HPLC).

The reactions of AFB₁ with d[AT(5-methyl-dC)GAT]₂ and d[AT(5-hydroxymethyl-dC)GAT]₂ reached equilibrium after only half of the strands had reacted, as predicted by the 1:1 stoichiometry of the unmodified sequence. In contrast, the reactions of AFB₁ with d[ATG(5-methyl-dC)AT]₂ and d[ATG(5-hydroxymethyl-dC)AT]₂ reached equilibrium after all of the strands had reacted, as predicted by the 2:1 stoichiometry of the unmodified sequence. These findings suggest that methylation and hydroxymethylation do not influence the equilibrium conditions for the reaction between AFB₁ epoxide and these sequence isomers.

CHAPTER II

METHODS

Synthesis of Dimethyldioxirane (DMDO)

DMDO was prepared by fractional distillation as a 0.025 M solution in acetone²⁸. A fractional distillation apparatus was assembled and equipped with separate attachments for adding solid and liquid. NaHCO₃ (16 g, 0.20 mol) was added to a 250 mL distilling flask. KHSO₅ (30 g, 0.20 mol) was added to the solid addition attachment and 50 mL of a 1:1 mixture of water and acetone was added to the liquid addition attachment. The entire apparatus was placed under a nitrogen atmosphere and cooled to -78°C in a dry ice/acetone bath. The KHSO₅ was added slowly over a period of 15 minutes, then the reaction was allowed to proceed for another 20 minutes. The liquid in the receiving flask was removed and stored over anhydrous MgSO₄ at -4°C. Formation of DMDO was confirmed by NMR spectroscopy by placing ten µL of the solution combined with 600 μ L of dry deuterated chloroform in a 5mm NMR tube. A 1 H NMR spectrum was obtained on a 500 MHz Bruker NMR spectrometer. concentration of DMDO was determined by comparing the height of the methyl peak to the height of the $^{13}\mathrm{C}$ satellite peak of acetone.

Synthesis of Aflatoxin B_1 Epoxide (AFB₁)

Aflatoxin B_1 is extremely hazardous due to its carcinogenicity and should be handled using appropriate safety procedures. All reactions were conducted in a well-ventilated hood using disposable latex gloves. Afterwards, the work area was bleached with NaOCl solution.

DMDO (10.5 μ mol) was added to AFB₁ (10 mg, 7.0 μ mol) dissolved in 0.5 mL dichloromethane. After 20 minutes, excess DMDO solution was removed by evaporation under a stream of nitrogen gas. One mg of the product was dissolved in 600 μ L of dry deuterated chloroform and added to a 5mm NMR tube. A 1 H NMR spectrum was obtained on a 500 MHz Bruker NMR spectrometer. The remaining epoxide was stored at -4°C.

Preparation of AFB₁ DNA Adducts

The oligonucleotides 5'-ATCGAT-3', 5'-ATGCAT-3', 5'-AT(5-methyl-dC)GAT-3', 5'-ATG(5-methyl-dC)AT-3', 5'-AT(5-hydroxymethyl-dC)GAT-3', and 5'-ATG(5-hydroxymethyl-dC)AT-3' were synthesized by Midland Certified Reagent Company. The purity of the samples was confirmed using HPLC and the mass of the oligonucleotides was confirmed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF).

AFB $_1$ epoxide (1 mg, 3 µmol) was dissolved in 0.2 mL dichloromethane and added to the oligonucleotide (0.36 µmol) dissolved in 0.2 mL buffer (10 mM sodium phosphate dibasic, 100 mM sodium chloride, 10 mM magnesium chloride, 0.05 mM ethylenediaminetetraacetic acid). The mixture was stirred at 5°C for 30 min. The aqueous layer was collected and analyzed by HPLC.

High-Performance Liquid Chromatography

The sample was dissolved in water and a glass syringe was used to inject 200 nmol of the sample onto a 5 micron Phenomenex 250 x 10 mm column attached to a Beckman Coulter HPLC. All samples were run in acetonitrile and 0.1 M ammonium formate buffer, adjusted to pH 7.2 by titration with 5 M NaOH. The HPLC gradient was as follows: acetonitrile remained at 5% from 0 to 5 min, slowly raised to 16% from 5 to 60 min, slowly dropped back down to 5% from 60 to 65 min, then kept constant at 5% from 65 to 70 min. Absorbance was read at 254 nm and 360 nm. The area under the peaks was used to determine the ratio of unreacted oligonucleotide (absorbs at 254 nm) to the adduct (absorbs at both 254 nm and 360 nm).

Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry

Ten μL of 3-hydroxypicolinic acid (0.5 M in 50/50 acetonitrile/water), 5 μL of ammonium citrate (0.1 M in 50/50 acetonitrile/water), and 3 nmol of DNA in 1 μL water were added to a vial. One μL of the mixture was added to a 96 well MALDI plate and allowed to dry. The MALDI spectrum was obtained in negative ion mode on a Voyager-DE STR MALDI mass spectrometer.

CHAPTER III

RESULTS

Dimethyldioxirane

The ¹H NMR spectrum of DMDO showed a diagnostic methyl peak at 1.65 ppm (Figure 6). The concentration of DMDO was calculated by comparing the height of the methyl peak to the height of the ¹³C satellite peak of acetone at 1.95 ppm.

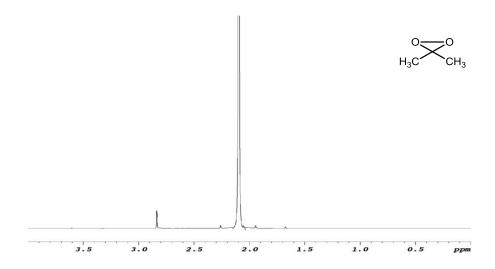


Figure 6. ¹H NMR spectrum of DMDO.

AFB₁ Epoxide

The 1 H NMR spectrum of aflatoxin B_{1} epoxide showed diagnostic epoxide peaks at 3.5 and 5.4 ppm (Figure 7).

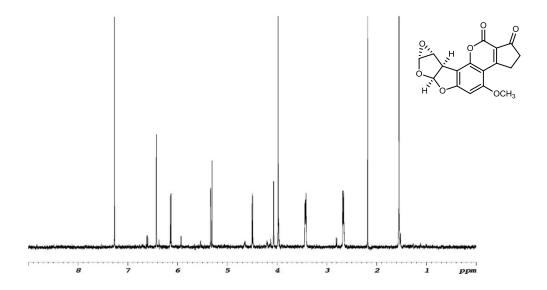
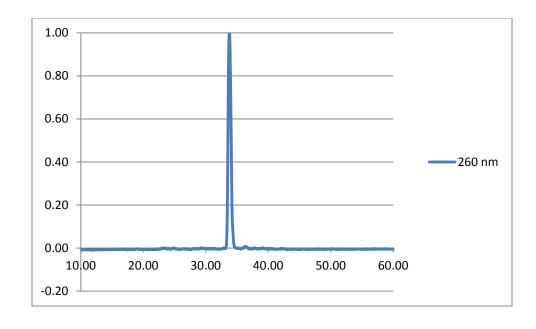



Figure 7. 1 H NMR spectrum of aflatoxin B_1 epoxide.

ATCGAT-AFB₁

ATCGAT was analyzed before and after reaction with AFB₁ epoxide (Figure 8). Pure ATCGAT gave a single large peak at 34 min. After the reaction, two peaks were observed at 34 min (35% intensity) and 53 min (37% intensity). This finding indicates a 1:1 AFB₁:d(ATCGAT)₂ limiting stoichiometry in the formation of the $d(ATC^{AFB}GAT) \cdot d(ATCGAT)$ adduct.

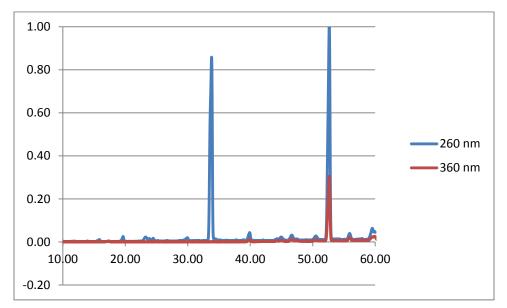
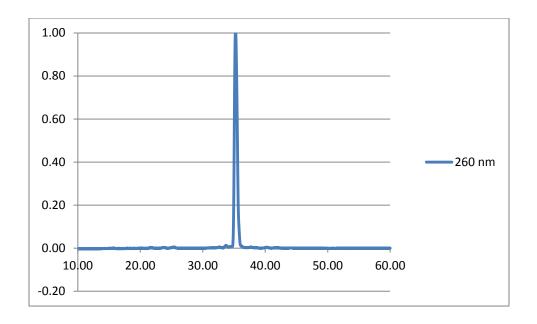



Figure 8. ATCGAT before (above) and after (below) reaction with AFB_1 epoxide.

ATGCAT-AFB₁

ATGCAT was analyzed before and after reaction with AFB₁ epoxide (Figure 9). Pure ATGCAT gave a single large peak at 35 min. After the reaction, two peaks were observed at 35 min (7% intensity) and 54 min (69% intensity). This finding indicates a $2:1 \text{ AFB}_1:d(\text{ATGCAT})_2$ limiting stoichiometry in the formation of the $d(\text{AT}^{\text{AFB}}\text{GCAT})_2$ adduct.

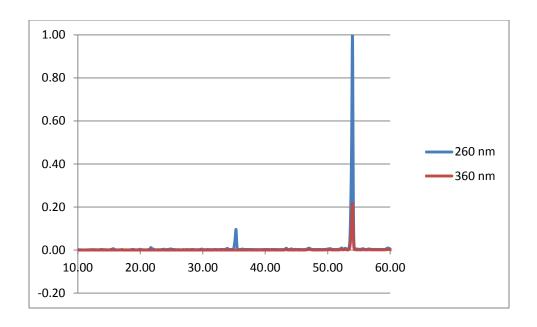


Figure 9. ATGCAT before (above) and after (below) reaction with AFB₁ epoxide.

AT(5-methyl-dC)GAT-AFB₁

AT(5-methyl-dC)GAT was analyzed before and after reaction with AFB $_1$ epoxide (Figure 10). Pure AT(5-methyl-dC)GAT gave a single peak at 36 min. After the reaction, two peaks were observed at 35 min (23% intensity) and 54 min (20% intensity). This finding indicates a 1:1 AFB $_1$:d[AT(5-methyl-dC)GAT] $_2$ limiting stoichiometry in the formation of the d[AT(5-methyl-dC) AFB GAT)·d[AT(5-methyl-dC)GAT] adduct.

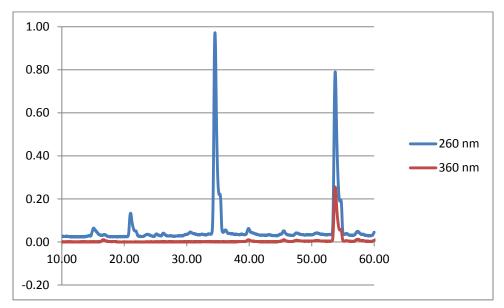
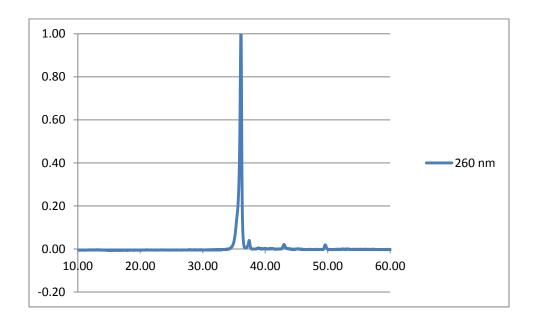



Figure 10. AT(5-methyl-dC)GAT before (above) and after (below) reaction with AFB_1 epoxide.

ATG(5-methyl-dC)AT-AFB₁

ATG(5-methyl-dC)AT was analyzed before and after reaction with AFB₁ epoxide (Figure 11). Pure ATG(5-methyl-dC)AT gave a single peak at 36 min. After the reaction, two peaks were observed at 35 min (2% intensity) and 53 min (58% intensity). This finding indicates a 2:1 AFB₁:d[ATG(5-methyl-dC)AT]₂ limiting stoichiometry in the formation of the d[ATG(5-methyl-dC) AFB AT]₂ adduct.

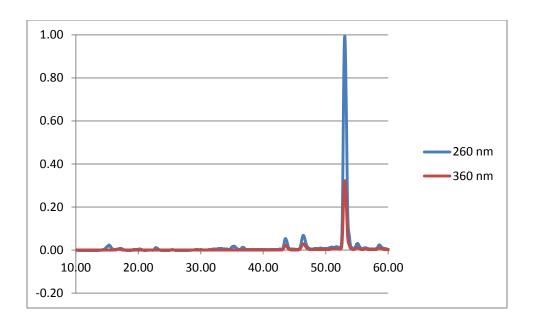
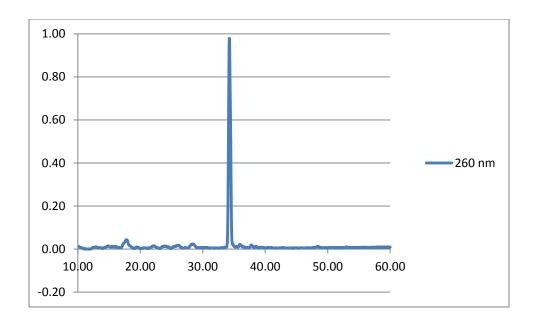



Figure 11. ATG(5-methyl-dC)AT before (above) and after (below) reaction with AFB_1 epoxide.

AT(5-hydroxymethyl-dC)GAT-AFB₁

AT(5-hydroxymethyl-dC)GAT was analyzed before and after reaction with AFB₁ epoxide (Figure 12). Pure AT(5-hydroxymethyl-dC)GAT gave a single peak at 34 min. After the reaction, two peaks were observed at 34 min (22% intensity) and 52 min (19% intensity). This finding indicates a 1:1 AFB₁:d[AT(5-methyl-dC)GAT]₂ limiting stoichiometry in the formation of the d[AT(5-hydroxymethyl-dC)^{AFB}GAT)·d[AT(5-hydroxymethyl-dC)GAT] adduct. However, there were several peaks in the HPLC trace that have not been accounted for.

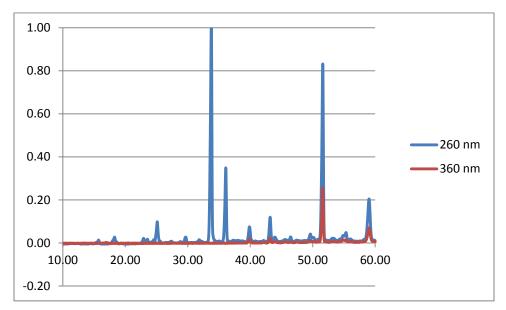
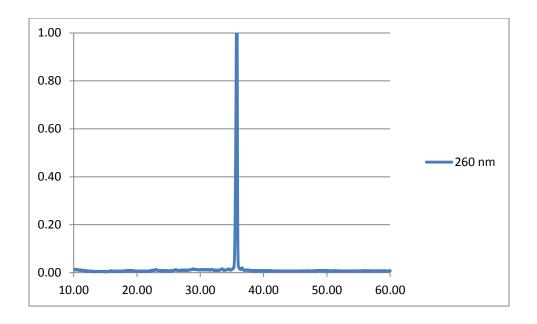



Figure 12. AT(5-hydroxymethyl-dC)GAT before (above) and after (below) reaction with AFB_1 epoxide.

ATG(5-hydroxymethyl-dC)AT-AFB₁

ATG(5-hydroxymethyl-dC)AT was analyzed before and after reaction with AFB₁ epoxide (Figure 12). Pure ATG(5-hydroxymethyl-dC)AT gave a single peak at 36 min. After the reaction, two peaks were observed at 36 min (2% intensity) and 55 min (56% intensity). This finding indicates a 2:1 AFB₁:d[ATG(5-hydroxymethyl-dC)AT]₂ limiting stoichiometry in the formation of the d[ATG(5-hydroxymethyl-dC)^{AFB}AT]₂ adduct.

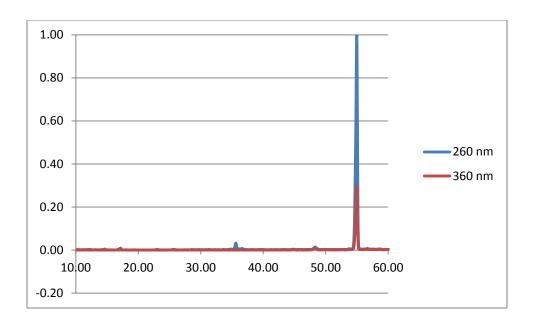


Figure 13. ATG(5-hydroxymethyl-dC)AT before (above) and after (below) reaction with AFB_1 epoxide.

CHAPTER IV

DISCUSSION

The sequence isomers ATCGAT and ATGCAT were selected due to their utility in previous studies of AFB_1 epoxide reactivity²¹. Since the sequence is self-complementary, the task of synthesizing and annealing two different but complementary strands was avoided. Furthermore, palindromic sequences are not susceptible to regionselectivity issues that could arise if the two guanines in the duplex were not identical. The placement of cytosine and guanine beside one another was driven by the finding that 5'-CpG-3' is the preferred binding site for the epoxide¹⁹.

In agreement with previous work by Gopalakrishnan et al.²⁹, the limiting stoichiometry for the reaction between AFB₁ epoxide and the oligonucleotide duplex was found to be 1:1 for ATCGAT and 2:1 for ATGCAT. The epoxide intercalates above the 5' face of dG, preventing another equivalent of epoxide from binding to the complementary strand of ATCGAT, but not ATGCAT. Interestingly, methylation and hydroxymethylation do not cause the reaction to deviate from this limiting stoichiometry.

While the results approximated the predicted stoichiometry, they did not go to completion. One possible explanation is the formation of hairpin loops, which is not uncommon for palindromic sequences such as the ones utilized in this study. The reaction could be optimized by adjusting variables such as pH and salt concentration in order to minimize the formation of hairpin loops. In this reaction, DNA and water compete for reaction with AFB₁ epoxide. Even though the reaction with DNA occurs rapidly, it is known that the epoxide is hydrolyzed to AFB₁-8,9-dihydrodiol in aqueous solution. It is possible that a small portion of the epoxide used in the reaction is hydrolyzed to the diol, which could intercalate the oligonucleotide and effectively block the epoxide binding site. This problem could be addressed by extracting the reaction mixture in dichloromethane to remove hydrolyzed epoxide and adding another excess of fresh epoxide. The protocol could be further optimized by taking aliquots at different times during the reaction to identify the exact point at which equilibrium is reached.

While the current work addresses the stoichiometry of the reaction, it does not answer the important question of the relative stability of the adducts. Previous studies have shown that AFB₁ has a stabilizing effect on DNA²¹. However, the magnitude of this effect is unknown for the sequences in this study. Future work could utilize melting experiments to determine the effect of AFB₁ on the thermodynamic stability of the oligonucleotides.

BIBLIOGRAPHY

- (1) Garner, R. C. *Br. Med. Bull.* **1980**, *36*, 47.
- (2) Uraguchi, K. S., M.; Noguchi, Y.; Takahashi, K.; Enomoto, M.; Tatsuno, T. *Food Cosmet. Toxicol.* **1972**, *10*, 193.
 - (3) Purchase, I. F. H. v. d. W., J. J. Food Cosmet. Toxicol. **1970**, *8*, 289.
 - (4) Halver, J. E. Bull. Off. Int. Epizoot. 1968, 69, 1249.
 - (5) Rubens, J. F. R., J. L. *Rev. Environ. Contam. Toxicol.* **1992**, *127*, 69.
- (6) Hall, A. J.; Wild, C. P.; Eaton, D.; Groopman, J. *The toxicology of aflatoxins: human health, veterinary and agricultural significance.* **1993**, 233.
- (7) IARC Monographs on the Evaluation of Carcinogenic Risks to Humans **1993**, 56, 245.
- (8) Ross, R. K. Y., J. M.; Yu, M. C.; Wogan, G. N.; Qian, G.S., et al. *Lancet* **1992**, *337*, 9343.
 - (9) Clifford, J. I. R., K. R. *Biochem. J.* **1967**, *103*, 467.
 - (10) Garner, R. C. M., E. C.; Miller, J. A. Cancer Res. 1972, 32, 2058.
- (11) Baertschi, S. W. R., K. D.; Stone, M. P.; Harris, T. M. *J. Am. Chem. Soc.* **1988**, *110*, 7929.
- (12) Essigman, J. M. C., R. G.; Nadzan, A. M.; Busby, W. F., Jr.; Reinhold, V. N.; Buchi, G.; Wogan, G. N. *Proc. Natl. Acad. Sci. U.S.A.* **1977**, *74*, 1870.
 - (13) Martin, C. N. G., R. C. *Nature (London)* **1977**, *267*, 863.
 - (14) Buchi, G. F., K. W.; Nadzan, A. M. J. Am. Chem. Soc. 1982, 104, 544.
- (15) Coles, B. F. W., A. M.; Hertzog, P. J.; Lindsay Smith, J. R.; Garner, R. C. *Carcinogenesis* **1980**, *1*, 79.
- (16) Garner, R. C. M., C. N.; Lindsay Smith, J. R.; Coles, B. F.; Tolson, M. R. *Chem.-Biol. Interact.* **1979**, *26*, 57.
 - (17) Bressac, B. K., M.; Wands, J.; Ozturk, M. *Nature* **1991**, *350*, 429.
 - (18) Riley, J. M., H. G.; Sinha, S.; Judah, D. J.; Neal, G. E. Carcinogenesis 1997, 18, 905.
 - (19) Misra, R. P. M., K. F.; Humayun, M. Z. *Biochemistry* **1983**, *22*, 3351.

- (20) Bailey, E. A. I., R. S.; Stone, M. P.; Harris, T. M.; Essigmann, J. M. *Proc. Natl. Acad. Sci. U.S.A.* **1996**, *93*, 1535.
 - (21) Gopalakrishnan, S. S., M. P.; Harris, T. M. J. Am. Chem. Soc. 1989, 111, 7232.
 - (22) Hertzog, P. J. L. S., J. R.; Garner, R. C. Carcinogenesis 1982, 3, 723.
- (23) Brown, K. L. D., J. Z.; Iyer, R. S.; Iyer, L. G.; Voehler, M. W.; Stone, M. P.; Harris, C. M.; Harris, T. M. *J. Am. Chem. Soc.* **2006**, 15188.
- (24) Smela, M. E. H., M. L.; Henderson, P. T.; Harris, C. M.; Harris, T. M.; Essigmann, J. M. *Proc. Natl. Acad. Sci. U.S.A.* **2002**, *99*, 6655.
 - (25) Loechler, E. L. T., M. M.; Whitlow, M. D. J. Biomol. Struct. Dyn. 1988, 5, 1237.
 - (26) Gopalakrishnan, S. L., X.; Patel, D. J. *Biochemistry* **1992**, *31*, 10790.
- (27) Ehrlich, M.; Gama-Sosa, M. A.; Huang, L.-H.; Midgett, R. M.; Kuo, K. C.; McCune, R. A.; Gehrke, C. *Nucleic Acids Research* **1982**, *10*, 2709.
- (28) Adam, W. C., Y.; Cremer, D.; Gauss, J.; Scheutzow, D.; Schindler, M. J. *J. Org. Chem.* **1987**, *52*, 2800.
 - (29) Gopalakrishnan, S. H., T. M; Stone, M. P. *Biochemistry* **1990**, *29*, 10438.