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CHAPTER I

INTRODUCTION

Computer simulations are becoming increasingly common across all fields of en-

gineering. These tools allow engineers to explore the response of a system at input

values (demands, system properties, initial and boundary conditions) that could be

difficult or even impossible to precisely control in the laboratory, and these “virtual

tests” can be performed at far less cost than the laboratory experiments they simulate.

These characteristics have made computer models especially useful in the field of reli-

ability analysis where repeated tests at precise input values are required to investigate

how variations in the inputs could lead to failures in the engineered system. This type

of analysis is vital to ensure the safety and reliability of the system while in service.

One popular and powerful method for estimating reliability is Monte Carlo sam-

pling. This method is favored for its accuracy and ease of implementation, but it can

require a large number of computer simulations, especially for the high-reliability sys-

tems in which engineers are typically interested. As computer models have gained in

fidelity, they have also gained in expense; it is not uncommon for a computer model

to take several hours (or even days) to complete just one simulation. When this sim-

ulation must be repeated many thousands of times, basic Monte Carlo sampling be-

comes practically impossible. Other less computationally expensive reliability anal-

ysis methods are available, but they typically rely on approximations to simplify the

analysis and can therefore be far less accurate. Then engineers are often left with a

choice between an inexpensive method that could produce an inaccurate reliability

estimate, or a more accurate method that they likely cannot afford.

The main contribution of this dissertation is the development of a new method

called Efficient Global Reliability Analysis (EGRA) that bridges this gap. EGRA can

provide the accuracy of Monte Carlo sampling at an expense typically less than that
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required by even the least expensive approximate methods. One way EGRA reduces

cost is through the use of an inexpensive surrogate model to capture the relationship

between the inputs and outputs of the expensive computer simulation. This con-

cept of using a so-called “response surface” is not new, but there are two aspects to

EGRA that make it very different from other response surface methods. First, most

response surfaces are made up of polynomial approximations; these can clearly only

be accurate if the relationship between the computer simulation inputs and outputs

truly follows this rigid structure. EGRA avoids this limitation by using a considerably

more flexible model known as a Gaussian process model. Second, EGRA uses an op-

timization method to greatly reduce the number of expensive simulations necessary

to construct the surrogate model while simultaneously ensuring that the surrogate

provides an accurate representation of the underlying computer model. Using this

optimization, a quality surrogate model can be constructed at a small fraction of the

cost typically required by other response surface methods. Once this surrogate model

has been constructed, it can be sampled to calculate the reliability. Because all of the

simulations now come from this inexpensive surrogate, a large number of samples

can be drawn at little cost, leading to highly accurate reliability estimates.

This chapter provides an introduction to the concepts of reliability analysis and

reliability-based design and the previously available methods for solving these prob-

lems.

I.1 Reliability Analysis

The goal of reliability analysis is to determine the probability that an engineered

device, component, system, etc. will fail in service given that its behavior is dependent

on random inputs. This behavior is defined by a response function g(x), where x

represents the vector of random variables defined by known probability distributions.

Failure is then defined by that response function exceeding (or failing to exceed) some

2



threshold value z̄. The probability of failure, p f , is then defined by

p f =
∫
· · ·

∫
g> z̄

fx(x) dx (I.1)

where fx is the joint probability density function of the random variables x, and the in-

tegration is performed over the failure region where g> z̄. In general, fx is impossible

to obtain, and even when it is available, evaluating the multiple integral is difficult.39

Because of these complications, methods of approximating this integral are used in

practice.

I.1.1 Mean Value Method

The Mean Value First-Order Second-Moment method (MVFOSM)39 is the simplest

and least expensive reliability method. This method approximates the mean and vari-

ance of the response function based only on the response and its derivatives at the

mean values of the random input variables. These statistics of the response can then

be used to calculate the reliability at any response level of interest. The response mean

µg, response variance σ2
g , reliability index β, and probability of failure are approxi-

mated by

µg = g (µx) (I.2)

σ2
g =

n

∑
i=1

n

∑
j=1

Cov
(
xi, xj

) ∂g
∂xi

(µx)
∂g
∂xj

(µx) (I.3)

β =
z̄− µg

σg
(I.4)

p f = Φ (−β) (I.5)

where n and µx represent the number and mean values of the input random variables,

Cov
(
xi, xj

)
is the covariance of xi and xj, and Φ is the standard normal cumulative dis-

tribution function. These approximations are reasonably accurate when the response

function is nearly linear and the input random variables are approximately Gaussian,
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but are not accurate if these conditions are not met.

I.1.2 MPP-Based Methods

These methods involve solving a nonlinear optimization problem to locate the

point on the limit state (the contour on the response function where g = z̄) that has

the greatest probability of occurring. This point is known as the most probable point

or MPP. An approximation to the limit state is then constructed at this point to facili-

tate the integration required to compute the probability of failure.

The MPP search is performed in the space of uncorrelated reduced normal vari-

ables because it simplifies the probability integration; in this space, the distance from

the origin to the MPP is equivalent to the reliability index. The transformation from

correlated non-normal distributions (x-space) to uncorrelated reduced normal distri-

butions (u-space) is denoted as u = T(x) with the reverse transformation denoted

as x = T−1(u). These transformations are nonlinear in general, and possible ap-

proaches include the Rosenblatt,67 Nataf,19 and Box-Cox10 transformations. The non-

linear transformations may also be linearized, and common approaches for this in-

clude the Rackwitz-Fiessler65 two-parameter equivalent normal and the Chen-Lind14

and Wu-Wirsching91 three-parameter equivalent normals. This study employs the

Nataf nonlinear transformation, which occurs in the following two steps. To trans-

form between the original correlated x-space variables and correlated reduced nor-

mals (z-space), the CDF matching condition is used:

Φ(zi) = F(xi) (I.6)

where F() is the cumulative distribution function of the original probability distri-

bution. Then, to transform from correlated z-space variables to uncorrelated u-space

variables, the Cholesky factor L of a modified correlation matrix is used:

z = Lu (I.7)
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where the original correlation matrix for non-normals in x-space has been modified

for z-space.19

The forward reliability analysis algorithm for computing the probability/reliability

level that corresponds to a specified response level is often called the z-level or relia-

bility index approach,78 and the inverse reliability analysis algorithm for computing

the response level that corresponds to a specified probability/reliability level is often

called the p-level or performance measure approach.78 The differences between the z-

level and p-level formulations appear in the objective function and equality constraint

formulations in the MPP searches. For the forward z-level analysis, the MPP search

for achieving the specified response level z̄ is formulated as

minimize uTu

subject to G(u) = z̄ (I.8)

and for the inverse p-level analysis, the MPP search for achieving the specified prob-

ability/reliability level p f , β̄ is formulated as

minimize ±G(u)

subject to uTu = β̄2 (I.9)

where u is a vector centered at the origin in u-space and G(u) ≡ g(x) by definition.

Graphical representations of possible iteration histories for forward and inverse relia-

bility analysis problems are shown in Figure I.1 (adapted from Ref. 52).

In the forward reliability case, the optimal MPP solution u∗ defines the reliability

index from β = ±‖u∗‖2, which in turn defines the probability of failure through the

5



u1 

u2 

g = -10 

g = -5 

g = 0 

MPP 

(a) Forward reliability analysis (z-level).

u1 

u2 

g = -10 

g = -5 

g = 0 

MPP 

||u|| = β 

(b) Inverse reliability analysis (p-level).

Figure I.1: Possible reliability analysis iteration histories.

probability integration, e.g. p f =Φ (−β). The sign of β is defined by

G (u∗) > G (0) : β < 0 (I.10)

G (u∗) < G (0) : β > 0 (I.11)

where G (0) represents the response at the median values of the input random vari-

ables, i.e. the origin in u-space. In the inverse reliability case, the sign applied to G (u)

in the objective function (equivalent to choosing whether to minimize or maximize

the response) is determined by the sign of the target reliability level β̄:

β̄ < 0 : maximize G (u) (I.12)

β̄ > 0 : minimize G (u) (I.13)

The value of the response function at the optimal MPP solution G(u∗) defines the

desired response level result.
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Response Function Approximations

The search for the MPP requires the solution of an optimization problem, which

necessitates multiple evaluations of the response function. If evaluating this function

is computationally expensive, the cost of the MPP search can be prohibitive. To reduce

this cost, the response function can be replaced with an approximation. Several ap-

proaches based on the Advanced Mean Value (AMV) method were explored in detail

in Refs. 26, 87:

1. AMV in x-space: A single linearization of the response function performed in

x-space at the mean values of the input random variables.

g (x) ≈ g (µx) +∇xg (µx)
T (x− µx) (I.14)

2. AMV in u-space: A single linearization of the response function performed in

u-space at the mean values of the input random variables.

G (u) ≈ G (µu) +∇uG (µu)
T (u− µu) (I.15)

where µu=T (µx).

3. AMV+ in x-space: An initial linearization at the random variable means, with

the linearization iteratively updated at each candidate MPP (x∗) until the MPP

converges.

g (x) ≈ g (x∗) +∇xg (x∗)T (x− x∗) (I.16)

4. AMV+ in u-space: An initial linearization at the random variable means, with

the linearization iteratively updated at each candidate MPP (u∗) until the MPP

converges.

G (u) ≈ G (u∗) +∇uG (u∗)T (u− u∗) (I.17)
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Depending on the form of the response function and the variable transformation, ei-

ther g (x) or G (u) may be more linear than the other, meaning the approximation

in the appropriate space (x- or u-space) will be more accurate over a larger range.

This will result in more accurate MPP estimates for AMV, and faster convergence to

the MPP for AMV+. Second-order information can be included to create the AMV2,

AMV2+, and TANA response function approximations, which have been recently ex-

plored in Ref. 24.

Probability Integration

In the forward reliability case, once the MPP is located, the probability integration

is performed based upon the location of the MPP (more specifically, its distance from

the median response, i.e. the reliability index β) and an approximation to the shape

of the limit state at this point. The simplest method assumes the limit state is linear,

simplifying the probability integration to

p f = Φ (−β) (I.18)

Second-order integration methods that provide a curvature correction to the first-

order method are also available, the simplest of which is11

p f = Φ (−β)
n−1

∏
i=1

1√
1 + βκi

(I.19)

where κi are the principal curvatures of the response function at the MPP and β > 0.

An alternate correction in Ref. 43 is consistent in the asymptotic regime (β → ∞) but

does not collapse to first-order integration for β = 0:

p = Φ(−β)
n−1

∏
i=1

1√
1 + ψ(−β)κi

(I.20)
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where ψ() = φ()
Φ()

and φ() is the standard normal density function. Ref. 44 applies

further corrections to Eq. I.20 based on point concentration methods. Ref. 79 devel-

ops full second-order approximations that can generally be more accurate than these

parabolic approximations.

For highly nonlinear limit states, these low-order approximations cannot provide

accurate representations. Additionally, such problems often possess multiple local

solutions to the MPP search problem and are thus termed “multimodal” problems.

Ref. 55 proposed a method where these multiple MPPs are first located, then a sepa-

rate linear approximation is formed at each MPP. These multiple point linearizations

are then combined using methods from system-level reliability analysis (discussed

further in Chapter III) to calculate the probability of failure. Using multiple approx-

imations makes this method more accurate, but locating the multiple MPPs can be

prohibitively expensive. Moreover, the method does not appear to work well for mul-

tidimensional problems with irregular-shaped limit states, due to the difculty in the

identication of union and intersection domains.55

Combining an MPP search that does not use a response function approximation

with first- or second-order integrations results in the common First- and Second-Order

Reliability Methods (FORM and SORM, respectively).

I.1.3 Sampling Methods

Sampling methods are used to numerically integrate Equation I.1. Because they do

not rely on any simplifying assumptions about the shape of the limit state like first-

and second-order integration, they are generally more accurate than these methods,

but they also typically require a large number of function evaluations, making them

impractical if the response function is expensive to evaluate.

9



Monte Carlo Sampling

The simplest sampling method is basic Monte Carlo. First, some number of sam-

ples of the input variables are randomly generated based on their random distribu-

tions and the response function is then evaluated at these input values. The value of

the response function at these sample points is then compared to the response level

that defines the limit state to determine if the observed response is a success or failure.

The probability of failure is then calculated as simply the ratio of observed failures to

the total number of observations:

p f =
N f

N
(I.21)

where N f is the number of observed failures from among all N samples.

One major drawback to this method is that the majority of the samples it generates

lie in the high-probability region of the random variable space. Because engineers

are typically concerned with high-reliability problems, this region is of little interest

as the limit state most likely lies in a much less probable region of the design space.

To ensure that enough samples are generated in these low-probability regions to give

an accurate estimate of the probability of failure, a very large number of samples can

be required. The percent error ε% in the probability estimate can be approximately

related to the number of samples used by:

ε% =

√√√√1− pT
f

NpT
f
× 200% (I.22)

where pT
f is the true probability of failure. This relationship can be inverted to show

that for pT
f = 0.0057 and a desired error of 1%, approximately seven million samples

would be required. These numbers were not chosen arbitrarily. A two-dimensional

example problem presented in Section II.4.2 will show that the Efficient Global Relia-

bility Analysis method developed later in this dissertation is capable of resolving this

probability level with an error below 1% with only 18 function evaluations.
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Because of its simplicity, basic Monte Carlo sampling is widely used, but more

efficient sampling methods are available.

Latin Hypercube Sampling

Latin hypercube sampling (LHS) is an alternative to basic Monte Carlo sampling

that can provide adequate coverage of the random variable space with far fewer sam-

ples. First, each dimension of the space is broken into an equal number of bins of equal

probability. The number of bins defines the number of samples required. The samples

are then randomly placed within the bins so that each one-dimensional projection of

the space will show that each bin contains exactly one sample.

Figure I.2 shows a comparison between sampling two uniformly distributed vari-

ables using basic Monte Carlo and Latin Hypercube sampling. Note that each dimen-

sion is broken into 10 intervals and 10 samples have been generated. It is easy to see

that for the LHS example, each of these intervals contains exactly one sample, but the

Monte Carlo samples obviously do not possess this structure.
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Figure I.2: Comparison of (a) basic Monte Carlo and (b) Latin Hypercube sampling.

By forcing the samples into these bins, coverage throughout the random variable

space is guaranteed. However, because the bins are divided such that each has an
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equal probability, the low-probabilty regions will have larger bins and therefore fewer

samples. To counteract this, more bins are required, which in turn means that more

samples are required. In general, LHS requires considerably fewer samples than basic

Monte Carlo, but still requires too many function evaluations to be a feasible option

for expensive response functions.

I.1.4 Hybrid Methods

Hybrid methods are thus called because they combine MPP-based methods with

sampling. By first locating the failure region via an MPP search, and then focusing the

sampling in this region, hybrid methods are both more accurate and more efficient

than either MPP-based or sampling methods alone.

Importance Sampling

There are two main methods of importance sampling. The first simply centers a

sampling density at the MPP rather than at the mean of the input variables. This

ensures that more samples will lie within the failure region, i.e. the important region,

thereby increasing the efficiency of the sampling. The second, introduced in Ref. 40,

restricts all samples to lie outside of a hypersphere of radius β because it is already

known that no failures exist within this region. Using these methods, the probability

of failure is calculated by:

p f =
1
N

N

∑
i=1

I (xi)
f (xi)

ϕ(xi)
(I.23)

where I is an indicator function (I = 1 if xi is a failure point, otherwise I = 0), ϕ is the

sampling density used to generate the samples xi, and f is the original density of x.

The choice of sampling density depends on the importance sampling method being

used.
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Adaptive Importance Sampling

These methods are termed adaptive because they iteratively update the sampling

density being used based on the sample data from previous iterations. One such

method, introduced in Refs. 89, 90, uses the sample data to form and update an ap-

proximation to the curvature of the limit state. Because this curvature is approximated

from sample data rather than the Hessian information at the MPP, higher-order curves

can be represented. This method can therefore be more accurate than SORM for limit

states that are more nonlinear than a second-order approximation can capture, but it

still only allows for unimodal limit states.

Multimodal Adaptive Importance Sampling

Multimodal adaptive importance sampling20, 94 (MAIS) is a variation of impor-

tance sampling that allows for the use of multiple sampling densities making it better

suited for cases where multiple sections of the limit state are highly probable. MAIS

is performed through the following steps:

1. Generate m0 initial samples using a sampling density centered at the MPP.

2. Find k representative points from these samples:

(a) Select the sample with the largest true probability of occurrence.

(b) Eliminate all samples within a specified distance (e.g. β) of this point.

(c) Repeat steps (a) and (b) until all samples are exhausted.

3. Calculate the coefficient of variation (COV) of p f from the m0 samples.

p f =
1

m0

m0

∑
i=1

f (xi)

ϕ(xi)
I(xi) (I.24)

σ2 =
1

m0(m0 − 1)

m0

∑
i=1

[
f (xi)

ϕ(xi)
I(xi)− p f

]2

(I.25)

COV =
σ

p f
(I.26)
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where ϕ is the multimodal sampling density function defined in Eq. I.28 (ini-

tially, it is the sampling density function centered at the MPP).

4. Use the k representative points to construct a multimodal sampling density ϕ.

(a) Calculate the weight for each representative point, which is based on its

probability density relative to that of the other representative points:

wi =
f (xi)

∑k
j=1 f (xj)

(I.27)

(b) The multimodal sampling density is then the weighted sum of the proba-

bility densities centered at the representative points:

ϕ(x) =
k

∑
i=1

wi fi(x) (I.28)

where fi is the true probability density with the mean shifted to the ith rep-

resentative point.

(c) Generate m1 samples using ϕ. If desired, the variance of fi in Eq. I.28 can

be increased to force greater exploration of the failure region.

(d) Repeat Steps 2-4 until the COV converges, replacing m0 with m1 where

needed.

5. Generate m2 samples using the sampling density ϕ from the final set of repre-

sentative points.

6. Calculate p f and its change δp from these samples.

7. Repeat Steps 5-6 until p f converges and δp is less than some threshold value.

Note that all of these hybrid methods require that the location of the MPP be

known because this point is used as the center of the initial sampling density. How-

ever, current gradient-based, local search methods used in the MPP search may fail to
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converge or may converge to poor solutions, possibly making these methods inappli-

cable or inaccurate.

I.1.5 Surrogate Models

The basic idea of a surrogate model (also known as a response surface or meta-

model) is to use a relatively small number of evaluations from the (presumably ex-

pensive) response function of interest to construct an approximation to that function

that is cheaper to evaluate. Ref. 95 employs a notably different tactic by forming a

surrogate model of the indicator function I rather than the response function. The sur-

rogate model can then serve as a “stand-in” for the real model in a sampling method

to perform a reliability analysis. The first use of a surrogate model was proposed in

Ref. 9 where a second-order polynomial approximation was used. Polynomial models

have remained popular ever since due to their ease of construction and simple eval-

uation, but they are fairly rigid in their form and may produce inaccurate models if

the form of the underlying model is not a polynomial, leading to inaccurate reliability

estimates.

Several more flexible types of surrogate models are available including radial ba-

sis functions,13 multivariate adaptive regression splines,33 polynomial chaos expan-

sions,30, 92 and kriging (or, more generally termed, Gaussian Process) models.18 The

main advantage of these types of models is their ability to adapt to the training data.

Consider the comparison of polynomial models to a kriging model fit to the same

data shown in Figure I.3.73 The quadratic polynomial provides a poor fit to the train-

ing data (the red triangles), and the quartic polynomial provides only a slightly more

accurate fit. However, the kriging model passes directly through all of the training

points and creates a smooth interpolation.

Ref. 83 has shown that Gaussian Process models can be used to provide accurate

reliability estimates for nonlinear response functions using far fewer function evalu-

ations than Monte Carlo sampling alone. EGRA takes additional advantage of some
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special features of this type of model to reduce this cost even further. Additional de-

tails on Gaussian Process models are provided in Section II.1.1.

I.2 Reliability-Based Design Optimization

Reliability-Based Design Optimization (RBDO) is used to perform design opti-

mization (such as minimizing the weight of a component) while accounting for re-

liability constraints. A general RBDO problem is typically of the form:

minimize f (d)

subject to P [g (d, x) ≥ z̄] ≤ p̄ f (I.29)

where the objective function f is a function of only the deterministic design variables

d, but the response function in the reliability constraint g is a function of d and x, a

vector of random variables defined by known probability distributions.

I.2.1 Nested RBDO

The simplest and most direct RBDO approach is the nested approach in which a

full reliability analysis is performed for every evaluation of the constraint function

in Eq. V.1. This involves a nesting of two distinct levels of optimization within each

other, one at the design level and one at the reliability analysis level.

An important performance enhancement for nested methods when MPP-based

reliability analysis methods are used is the use of sensitivity analysis to analytically

compute the design gradients of the probability constraint. When design variables are

separate from the random variables (i.e., they are not distribution parameters), then

the following first-order expression may be used:4, 41, 48

∇d p f = −φ(−β)
1

‖∇uG‖∇dg (I.30)

where β is the reliability index (the distance from the median response to the MPP),
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φ is the standard normal probability density function, u are the random variables

transformed into standard normal space (where the MPP search is performed), and

G(u) ≡ g(x) by definition. Utilizing the higher-order sensitivities that result from

second-order reliability analyses are discussed in Ref. 24.

When the design variables are distribution parameters of the random variables,

∇dg is expanded with the chain rule and Eq. I.30 becomes:

∇d p f = −φ(−β)
1

‖∇uG‖∇dx∇xg (I.31)

where the design Jacobian of the x → u transformation ∇dx can only be obtained

analytically for uncorrelated x.

The ability to provide this kind of sensitivity information is an advantage of MPP-

based methods, but because of the possible inaccuracy in this type of reliability anal-

ysis, they can lead to optimal solutions that do not satisfy the constraint on the proba-

bility of failure. Approximate sensitivities can be derived for Monte Carlo Sampling,

but in a nested formulation, the probability of failure may need to be calculated a

large number of times (depending on the number of iterations for convergence of

the optimization), making Monte Carlo sampling rarely feasible for RBDO due to the

computational expense involved.

I.2.2 Single-Loop RBDO

This formulation of the RBDO problem simultaneously optimizes the objective

function and searches for the MPP, satisfying the probabilistic constraint only at the

optimal solution. The Karush-Kuhn-Tucker (KKT) conditions are used to reformulate

the first-order reliability constraint into an equivalent deterministic constraint. In this

way, the need to locate the MPP for the constraints is completely eliminated, but at

convergence, the MPPs of the active constraints will be found.

Recall that FORM uses a linear approximation to the shape of the limit state in u

space. This is equivalent to using a first-order Taylor series expansion about the MPP.
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G(u) is then a normal variable with parameters defined by:

µG = G(u)−∇uGTu (I.32)

σG = ‖∇uG‖ (I.33)

The general definition of the reliability index is the ratio of the mean output response

and its standard deviation.39 For this first-order approximation, at the MPP u∗ (as-

suming that the limit state value z̄=0, which can always be satisfied), β is therefore:

β =
−∇uGTu∗

‖∇uG‖ (I.34)

The KKT conditions can be used to show that this is equivalent to defining the reliabil-

ity index as β=‖u∗‖.15, 51 Substituting this definition of β into Eq. I.34 and rearranging

gives the KKT optimality condition:

∇uGTu + ‖u‖‖∇uG‖ = 0 (I.35)

Because this condition is only satisfied at the MPP, it can be used as an equality con-

straint in a now deterministic formulation of the RBDO problem:

minimize f (d)

subject to β ≥ β̄

G(d, u) = 0

∇uGTu + β‖∇uG‖ = 0 (I.36)

The first constraint states that the final reliability index must be greater than a min-

imum reliability index β̄, which is derived from the original probability constraint

assuming a first order limit state, β̄=−Φ−1( p̄ f ), where Φ is the standard normal cu-

mulative distribution function. The second constraint ensures that the MPP lies on

19



the limit state. The third constraint is the KKT optimality condition, the derivation of

which (as described above) also relies on the first-order limit state assumption.

Investigations into this formulation of the RBDO problem in Ref. 3, 15, 51, 54 have

shown that it is far more efficient than the nested formulation. Ref. 57 developed

extensions to this method making it applicable to system-level RBDO (discussed in

more detail in Chapters III and V). However, the accuracy of the final solution relies

on the accuracy of the underlying first-order assumption.

I.2.3 Sequential RBDO

An alternative RBDO approach is the sequential approach, in which additional ef-

ficiency is sought by breaking the nested relationship of the MPP and design searches.

The general concept is to iterate between optimization and uncertainty quantification,

updating the optimization goals based on the most recent probabilistic assessment

results. This update may be based on safety factors88 or other approximations.22

A particularly effective approach for updating the optimization goals is to use the

p f sensitivity analysis described in Eq. I.30 in combination with local surrogate mod-

els.96–98 In Ref. 26, first-order Taylor series approximations were explored, and a trust-

region model management framework36 was used to adaptively manage the extent of

the approximations and ensure convergence of the RBDO process. Surrogate models

can be used for both the objective function and the constraints, although the use of

constraint surrogates alone is sufficient to remove the nesting.

In particular, trust-region surrogate-based RBDO employs surrogate models of f

and p f within a trust region ∆k centered at dc:

minimize f (dc) +∇d f (dc)T(d− dc)

subject to p f (dc) +∇d p f (dc)T(d− dc)

‖d− dc‖∞ ≤ ∆k (I.37)
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Sequential RBDO is more efficient than the nested formulation, but generally more

expensive than the single-loop formulation. It can be more accurate than single-loop

results due to the possible inclusion of higher order approximations to the limit state,

but will still be inaccurate if those approximations are poor.

I.3 Summary

This chapter has provided an introduction to prominent methods for reliability

analysis and reliability-based design optimization. It has discussed the challenges

involved in both types of problems and the shortcomings of currently available meth-

ods in solving them. Subsequent chapters will describe proposed new approaches

that provide vast improvements in terms of both accuracy and efficiency.

Chapter II outlines a new approach to reliability analysis termed Efficient Global

Reliability Analysis. Chapters III, IV, and V outline how this new method can be

applied to several challenging problems in reliability analysis and the advantages that

it brings.
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CHAPTER II

EFFICIENT GLOBAL RELIABILITY ANALYSIS

As engineering applications become increasingly complex, they are often char-

acterized by implicit response functions that are expensive to evaluate and perhaps

nonlinear in their behavior. Reliability analysis given this type of response is difficult

with available methods. As previous chapters have discussed, analytical reliability

methods (e.g., FORM, SORM) solve a local optimization problem to locate the MPP,

and then quantify the reliability based on its location and an approximation to the

shape of the limit state at this point. Typically, gradient-based solvers are used to

solve this optimization problem, which may fail to converge for nonsmooth response

functions with unreliable gradients or may converge to only one of several solutions

for response functions that possess multiple local optima. In addition to these MPP

convergence issues, the evaluated probabilites can be adversely affected by limit state

approximations that may be inaccurate.

Engineers are then forced to revert to sampling methods, which do not rely on

MPP convergence or simplifying approximations to the true shape of the limit state.

However, sampling methods typically require a large number of response function

evaluations, which can make their application infeasible for computationally expen-

sive problems. Ref. 77 provides a good overview of the errors in current methods

when applied to nonlinear problems from structural dynamics and material fatigue,

motivating the need for new methods with greater accuracy.

A reliability analysis method that is both efficient when applied to expensive re-

sponse functions and accurate for a response function of any arbitrary shape is needed.

This chapter develops a method based on efficient global optimization47 (EGO) to

adaptively search for multiple points on or near the limit state throughout the random

variable space. By locating multiple points near the limit state, more complicated and
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nonlinear limit states can be accurately modeled, resulting in an accurate assessment

of the reliability.

EGO was developed to facilitate the unconstrained minimization of expensive im-

plicit response functions. The method builds an initial Gaussian process model as a

global surrogate for the response function, then adaptively selects additional samples

to be added for inclusion in a new Gaussian process model in subsequent iterations.

The new samples are selected based on how much they are expected to improve the

current best solution to the optimization problem. When this expected improvement

is acceptably small, the globally optimal solution has been found. The application

of this methodology to equality-constrained reliability analysis is the primary contri-

bution detailed in this chapter. Combining this EGO-based search for the limit state

contour with a sampling method to calculate the probability of failure results in what

is referred to as efficient global reliability analysis (EGRA).

The use of Gaussian process models in reliability analysis was previously inves-

tigated in Refs. 37 and 83. However, there are key differences in the previous work

and the EGRA method introduced here. The earlier methods used a number of ran-

domly selected samples to construct the model and global accuracy of that model was

sought. This results in either a lack of accuracy if too few samples are used, or wasted

expense creating models that are accurate in areas where they need not be. EGRA

avoids these problems by not requiring the surrogate model to have high accuracy

throughout the random variable domain, but only in the vicinity of the limit state.

This is accomplished by focusing the training data around the limit state and greatly

reduces the number of samples required. Additionally, the search for the limit state

is performed using an iterative process with a rigorous convergence criteria, ensuring

that the final model provides an accurate depiction of the limit state.

Section II.1 gives an overview of the EGO algorithm. Sections II.2 and II.3 outline

how EGO is adapted for application to reliability analysis to create the EGRA method.

Section II.4 describes a collection of example problems and compares the performance
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of EGRA to that of other available methods. Finally, Section II.5 provides concluding

remarks on this new method.

II.1 Efficient Global Optimization

Efficient global optimization was originally proposed by Jones et al.47 and has been

adapted into similar methods such as sequential kriging optimization (SKO).45 The

main difference between SKO and EGO lies within the specific formulation of what

is known as the expected improvement function (EIF), which is the feature that sets

all EGO/SKO-type methods apart from other global optimization methods. The EIF

is used to select the location at which a new training point should be added to the

Gaussian process model by maximizing the amount of improvement in the objective

function that can be expected by adding that point. A point could be expected to pro-

duce an improvement in the objective function if its predicted value is better than the

current best solution, or if the uncertainty in its prediction is such that the probability

of it producing a better solution is high. Because the uncertainty is higher in regions of

the design space with fewer observations, this provides a balance between exploiting

areas of the design space that predict good solutions, and exploring areas where more

information is needed. The general procedure of these EGO-type methods is:

1. Build an initial Gaussian process model of the objective function.

2. Find the point that maximizes the EIF. If the EIF value at this point is sufficiently

small, stop.

3. Evaluate the objective function at the point where the EIF is maximized. Update

the Gaussian process model using this new point. Go to Step 2.

The following sections discuss the construction of the Gaussian process model used,

present the form of the EIF, demonstrate EGO through a simple example, and then

provide a description of how that EIF is modified for application to reliability analysis.
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II.1.1 Gaussian Process Models

Gaussian process (GP) models are set apart from other surrogate models because

they provide not just a predicted value at an unsampled point, but also an estimate of

the prediction variance. This variance gives an indication of the uncertainty in the GP

model, which results from the construction of the covariance function. This function is

based on the idea that when input points are near one another, the correlation between

their corresponding outputs will be high. As a result, the uncertainty associated with

the model’s predictions will be small for input points which are near the points used

to train the model, and will increase as one moves further from the training points.

It is assumed that the true response function being modeled g(x) can be described

by:18

g(x) = h(x)Tβ + Z(x) (II.1)

where h() is the trend of the model, β is the vector of trend coefficients, and Z() is a

stationary Gaussian process with zero mean (and covariance defined below) that de-

scribes the departure of the model from its underlying trend. The trend of the model

can be assumed to be any function, but taking it to be a constant value has been re-

ported to be generally sufficient.68 For the work presented here, the trend is assumed

constant and β is calculated through a Generalized Least Squares estimate. The co-

variance between outputs of the Gaussian process Z() at points a and b is defined

as:

Cov [Z(a), Z(b)] = σ2
ZR(a, b) (II.2)

where σ2
Z is the process variance and R() is the correlation function. There are sev-

eral options for the correlation function, but the squared-exponential function is com-

mon,68 and is used here for R():

R(a, b) = exp

[
−

d

∑
i=1

θi(ai − bi)
2

]
(II.3)
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where d represents the dimensionality of the problem (the number of random vari-

ables), and θi is a scale parameter that indicates the correlation between the points

within dimension i. A large θi is representative of a short correlation length.

The expected value µg() and variance σ2
g() of the GP model prediction at point x

are:

µg(x) = h(x)Tβ + r(x)TR−1(g− Fβ) (II.4)

σ2
g(x) = σ2

Z −
[

h(x)T r(x)T

] 0 FT

F R


−1 h(x)

r(x)

 (II.5)

where r(x) is a vector containing the covariance between x and each of the n training

points (defined by Eq. II.2), R is an n× n matrix containing the correlation between

each pair of training points, g is the vector of response outputs at each of the training

points, and F is an n× q matrix with rows h(xi)
T (the trend function for training point

i containing q terms; for a constant trend q=1). This form of the variance accounts for

the uncertainty in the trend coefficients β, but assumes that the parameters governing

the covariance function (σ2
Z and θ) have known values.

The parameters σ2
Z and θ are determined through maximum likelihood estimation.

This involves taking the log of the probability of observing the response values g given

the covariance matrix R, which can be written as:68

log [p(g|R)] = − 1
n

log|R| − log(σ̂2
Z) (II.6)

where |R| indicates the determinant of R, and σ̂2
Z is the optimal value of the variance

given an estimate of θ and is defined by:

σ̂2
Z =

1
n
(g− Fβ)TR−1(g− Fβ) (II.7)

Maximizing Eq. II.6 gives the maximum likelihood estimate of θ, which in turn defines
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σ2
Z.

An advantage to Gaussian process models as compared to other methods such as

polynomial regression is that they directly interpolate the training data rather than

attempting to fit a curve between them. This means that the error in the model at

known points is zero. This is reflected in the GP by the variance in the Gaussian

distribution at the training point being zero. In this way, the variance in the model

is used as a metric for the uncertainty in its prediction. Figure II.1 shows a simple

Gaussian process model. The expected values predicted by the GP model pass directly

through each of the training points and the 95% confidence bounds grow larger as

points move further from the training data.

Figure II.1: Plot of simple Gaussian process model.

The expected improvement function utilizes this measure of the uncertainty to

search for better solutions to the objective function, where “better” refers to lower

solutions since EGO is constructed as a minimizer.
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II.1.2 Expected Improvement Function

The expected improvement function is used to select the location at which a new

training point should be added. The EIF is defined as the expectation that any point

in the search space will provide a better solution than the current best solution (i.e. a

solution with a smaller value than the smallest found so far since the method is seek-

ing the minimum) based on the expected values and variances predicted by the GP

model. An important feature of the EIF is that it provides a balance between exploit-

ing areas of the design space where good solutions have been found, and exploring

areas of the design space where the uncertainty is high. First, recognize that at any

point in the design space, the GP prediction ĝ() follows a Gaussian distribution:

ĝ(x) ∼ N
[
µg(x), σg(x)

]
(II.8)

where the mean µg() and the variance σ2
g() were defined in Eqs. II.4 and II.5, respec-

tively. The EIF is defined as:47

EI
(

ĝ(x)
)
≡ E [max (g(x∗)− ĝ(x), 0)] (II.9)

where g(x∗) is the current best solution chosen from among the true function values

at the training points (henceforth referred to as simply g∗). This expectation can then

be computed by integrating over the distribution of ĝ(x) with g∗ held constant:

EI
(

ĝ(x)
)
=
∫ g∗

−∞
(g∗ − g) f ĝ dg (II.10)

where g is a realization of f ĝ. This integral can be expressed analytically as:47

EI
(

ĝ(x)
)
=
(

g∗ − µg
)

Φ
(

g∗ − µg

σg

)
+ σg φ

(
g∗ − µg

σg

)
(II.11)
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where it is understood that µg and σg are functions of x. A detailed derivation of this

equation is provided in Appendix A.1.

The point at which the EIF is maximized is selected as an additional training point.

With the new training point added, a new GP model is built and then used to construct

another EIF, which is then used to choose another new training point, and so on, until

the value of the EIF at its maximized point is below some specified tolerance.

While not mentioned in Ref. 47, it is clear from Eq. II.11 that the magnitude of

the EIF will be affected by the magnitude of the underlying objective function g(x).

Because the magnitude of the maximum EIF is used as the convergence criterion, this

can cause problems in assessing the convergence of EGO. If the objective function

has a very small response, EGO may appear to converge very rapidly; large response

values may lead the method to never converge. To overcome this, a scaling factor is

introduced. Instead of basing convergence on the EIF as shown, it is first scaled by

the absolute value of the constant term from the trend of the underlying GP model,

i.e. EI=EI/|β(1)|.

It is important to understand how the use of this EIF leads to optimal solutions.

Eq. II.11 indicates how much the objective function value at u is expected to be less

than the predicted value at the current best solution. It contains a balance between

exploiting regions of the design space where good solutions have been discovered,

and exploring regions that have not been well sampled and thus have greater un-

certainty. Because the GP model provides a Gaussian distribution at each predicted

point, expectations can be calculated. Points with good predicted values and even a

small variance will have a significant expectation of producing a better solution (ex-

ploitation), but so will points that have relatively poor predicted values and greater

variance (exploration). The following simple example provides an illustration of how

the EGO algorithm leads to optimal solutions.
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II.1.3 Simple EGO Example

This problem involves minimizing the function

f = 10
sin 5x

2 + 2
x2 + 4

(II.12)

over the bounds −1.5≤ x≤ 3.0 as shown in Figure II.2. The first step is to randomly

draw a small number of samples from this function and construct a GP from those

samples. Here, four initial samples are used. The resulting GP model is shown in

Figure II.3 where the solid line is the mean prediction, the dotted line is the underlying

true function (unknown to the optimizer), and the dashed lines are the 90% confidence

bounds of the GP predictor. Next, the point at which the EIF is maximized is found.

Figure II.4 adds the initial EIF to the previous plot.

Figure II.2: Simple EGO example - True function to be minimized.

This EIF is clearly multimodal with four local optima (at approximately -1.1, -0.2,

2.3, and 3.0), with the global optimum at approximately -1.1. This point appears fa-

vorable to the EGO algorithm because there is a known good value nearby and there

30



Figure II.3: Simple EGO example - Initial GP model.

Figure II.4: Simple EGO example - Initial EIF.

is considerable variance in the GP model. The true function is evaluated at this max-

imization point, its response is added to the training data, and a new GP and EIF are
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constructed. This completes the first iteration of the EGO algorithm and the new state

of knowledge is shown in Figure II.5. Note that after the new point was added, the

EIF in this region has been drastically reduced because the true value at this point

is worse than the current optimal solution. This “bad” value, plus the now-reduced

variance, lead to a low expectation of finding an improved value in this region. The

maximum EIF point is now around 2.2. The predicted value in this region is near the

current best point, and the variance in the GP is high; thus the EIF is high.

Figure II.5: Simple EGO example - Iteration two.

Figure II.6 shows the next four iterations. At each iteration, the EIF is formed and

maximized, the maximizing point is evaluated on the true function, this data is added

to the GP and a new model is built. Note that at each iteration, the value of the EIF at

the maximizing point (shown on the scale on the right of each plot) is reduced in each

iteration. After just six iterations (ten total function evaluations), the maximum EIF

value is sufficiently low for EGO to converge, and the global minimum of this function

has been found. Figure II.7 shows the final state of knowledge for this problem.

The application of EGO to reliability analysis, however, is made more complicated
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(a) Iteration three. (b) Iteration four.

(c) Iteration five. (d) Iteration six.

Figure II.6: Simple EGO example - Iterations 3-6.

because the response function appears within the equality constraint rather than the

objective (see Eq. I.8). In this case, the maximization of the EIF is inappropriate be-

cause feasibility is the main concern. This application is therefore a significant depar-

ture from the intentions of EGO and requires a new formulation. For this problem,

the expected feasibility function is introduced below.

II.2 Expected Feasibility Function

The expected improvement function provides an indication of how much the true

value of the response at a point can be expected to be less (or more) than the current

best solution. It therefore makes little sense to apply this to the forward reliability

problem where the goal is not to minimize the response, but rather to find where
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Figure II.7: Simple EGO example - Final iteration.

it is equal to a specified threshold value. The expected feasibility function (EFF) is

introduced here to provide an indication of how well the true value of the response is

expected to satisfy the equality constraint g(x)= z̄. Inspired by the contour estimation

work in Ref. 66, this expectation can be calculated in a similar fashion as Eq. II.10 by

integrating over a region in the immediate vicinity of the threshold value z̄± ε:

EF
(

ĝ(x)
)
=
∫ z̄+ε

z̄−ε

[
ε− |z̄− g|

]
f ĝ dg (II.13)

where g denotes a realization of the distribution f ĝ, as before. Allowing z+ and z− to

denote z̄± ε, respectively, this integral can be expressed analytically as:

EF
(

ĝ(x)
)
=
(
µg − z̄

) [
2 Φ

(
z̄− µg

σg

)
−Φ

(
z− − µg

σg

)
−Φ

(
z+ − µg

σg

)]
− σg

[
2 φ

(
z̄− µg

σg

)
− φ

(
z− − µg

σg

)
− φ

(
z+ − µg

σg

)]
+ ε

[
Φ
(

z+ − µg

σg

)
−Φ

(
z− − µg

σg

)]
(II.14)
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where ε is proportional to the standard deviation of the GP predictor (ε ∝ σg). In this

case, z−, z+, µg, σg, and ε are all functions of the location x, while z̄ is a constant. The

derivation of this function is detailed in Appendix A.2. Note that the EFF provides the

same balance between exploration and exploitation as is captured in the EIF. Points

where the expected value is close to the threshold (µg ≈ z̄) and points with a large

uncertainty in the prediction will have large expected feasibility values. Like the EIF,

magnitude of the EFF will be affected by the magnitude of the underlying response

function g(x). To prevent this from influencing the convergence, the function is scaled

in the same way that the EIF was, i.e. EF=EF/|β(1)|.

II.3 Efficient Global Reliability Analysis Algorithm

The following process makes up the EGRA algorithm:

1. Generate a small number of random samples from the true response function.

(a) Only (n+1)(n+2)
2 samples are used (where n is the number of random vari-

ables). This initial selection is arbitrary, but the number of samples required

to define a quadratic polynomial is used as a convenient rule of thumb.

(b) The samples uniformly span the random variable space over the bounds

±5σ, though the bounds of this search space can be adjusted if needed.

(c) Latin hypercube sampling (LHS) is used to generate the samples.

2. Construct an initial Gaussian process model from these samples.

3. Find the point with maximum expected feasibility.

(a) The expected feasibility function is built with ε = 2σg.

(b) To locate the global optimum of this multimodal function is, the DIRECT34

method is used.

(c) If the scaled maximum expected feasibility is less than 1E-5, the model has

converged. Go to step 6.
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4. Evaluate the true response function at this point.

5. Add this new sample to the previous set of training data and build a new GP

model. Go to step 3.

6. This surrogate model is then used to calculate the probability of failure using

any sampling method.

In Step 3, DIRECT34 is used to maximize the EFF. This method performs a rela-

tively exhaustive search, first subdividing the search space, then preferentially per-

forming further subdivisions in regions where good solutions have been found, but

also dividing regions that are much larger than others to ensure that these regions

are searched. This iterative procedure of DIviding RECTangles gives the method its

name. By balancing the exploitation of promising regions and the exploration of un-

sampled regions (much like EGO), this method has been shown to reliably locate the

global optimum. Locating the true global optimum, however, is not strictly necessary.

As the EGO demonstration problem in the previous section showed, points that are

good local solutions at a given iteration will likely remain good solutions in subse-

quent iterations. The order in which these local optima are added to the GP model is

not important, so at any iteration, locating a good local optimum would be sufficient.

While gradient-based methods are generally capable of accurately locating local op-

tima (and the analytic gradient of the EIF/EFF can be derived) they cannot be applied

to this problem because of the large regions of the EIF/EFF with zero gradient (see

Figure II.6). In short, DIRECT is used in this work, but any gradient-free global opti-

mization method capable of finding a good local optima could be used in its place.

The Gaussian process model created by EGRA provides a unique opportunity for

applying multimodal adaptive importance sampling (MAIS) because the model pos-

sesses multiple points on or near the limit state with which to construct the multi-

modal sampling density. Previous uses of MAIS have started with only the MPP, and

require multiple iterations of searching just to locate the representative points.20, 94
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Additionally, MAIS would not be easy with methods that use a random selection of

true samples with which to construct the GP model because several iterations would

be necessary to locate the limit state. The main use of MAIS has been to reduce the

sampling cost,20, 94 but it can also be more accurate than using even a large number

of Monte Carlo or LHS samples if enough evaluations can be afforded to allow the

method to converge. Because all of the MAIS samples are evaluated using the GP

model, they can be provided at little cost.

While EGO/EGRA will typically need far fewer evaluations of the true objec-

tive/response function than other methods, they both require a non-trivial amount of

overhead computation to construct the GP models and to solve the global optimiza-

tion problem to maximize the EIF/EFF. If the computational expense of the objec-

tive/response function is small in relation to this overhead, then using these methods

to reduce the number of times this function is evaluated makes little sense. However,

for computationally expensive models (such as large finite element models), reduc-

ing the number of evaluations is paramount. It is this class of problems to which the

application of EGO/EGRA is intended.

II.4 Computational Experiments

This section presents the application of EGRA to several test problems, and com-

pares its performance in terms of efficiency and accuracy to several previously avail-

able methods including FORM, SORM, AMV2+, TANA, and exhaustive LHS sam-

pling. For each test, once the GP model has converged, two types of sampling are

explored: MAIS and LHS using one million samples. As discussed, because MAIS is

a convergent method, it may provide additional accuracy. Using LHS sampling gives

a more direct comparison to the LHS tests on the true response functions.
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II.4.1 Multimodal Function

The first problem has a highly nonlinear and multimodal response defined by:

g (x) =
(
x2

1 + 4
)
(x2 − 1)

20
− sin

5x1

2
− 2 (II.15)

The distribution of x1 is Normal(µ = 1.5, σ = 1) and x2 is Normal(µ = 2.5, σ = 1); the

variables are uncorrelated. The response level of interest for this study is z̄ = 0 with

failure defined by g > z̄. This problem can be formulated as:

p f = P [g (x) > 0] (II.16)

Figure II.8 shows a contour plot in x-space of this response function throughout the

±5 standard deviation search space. This function clearly has several local optima to

the forward-reliability MPP search problem (see Eq. I.8).

Figure II.8: Contour plot of the multimodal function. The solid line is g = z̄ = 0.

To illustrate how the EGRA method works, this problem is explored in detail. A

GP model was built with 10 randomly selected samples. Note that this is larger than

the recommened number of intial samples; this is done only to enhance visualization
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in the early stages of the process. Figure II.9 shows contours of the mean value, the

variance, and the expected feasibility function for this set of samples.

Comparing the mean value plot to the true contours in Figure II.8 shows that this

is a poor approximation. Note that the variance is very low near the training data,

but is large throughout the rest of the space. The ? [near (-3.5,2.4)] on the expected

feasibility function contour shows the point that maximizes the function and is the

new sample that will be added at the next iteration. Selecting this point is a combina-

tion of the mean value and the variance, but at this stage the large variance dominates

and the new point is chosen to explore the search space. Figure II.10 shows the same

contours after this new point has been added to the training data.

This is clearly still a poor approximation to the multimodal function. Again, the

uncertainty in the model dominates the expected feasibility and the maximum point

[at (6.5,7.5)] is chosen to explore. The next few samples follow in a similar fashion, all

chosen to explore due to the high uncertainty from building a GP model with such a

small amount of data. Figure II.11 shows the mean, variance, and expected feasibility

contours after 5 points have been added (15 total samples in the training data).

The new point selected at this iteration (indicated by the ? on the expected feasi-

bility contour plot) is at a point with low variance, but with an expected value very

near the limit state (the solid line on the mean value contour plot). The uncertainty in

the model has dropped to a point where the exploitive terms of the EFF have a consid-

erable effect. Note also that the value of the expected feasibility is much smaller than

it was with just 5 fewer samples, showing that the method is converging. Figure II.12

shows the contours when there are 30 total samples.

At this point, the mean value plot is very close to the true contour and the variance

is very low. The expected feasibilty function is shown without the samples so as not

to hide the very tight contours. The Gaussian process model “knows” where the limit

state is, so all subsequent samples are “exploitation” samples. The samples chosen are

selected by the little uncertainty that still remains. Because the variance is larger as
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one moves away from the sample data, this ensures that samples are not chosen too

close to one another, protecting the structure of the GP. Figure II.13 shows the final

contour plot of the expected values of the GP model. Note that all of the samples

added since Figure II.12 lie almost exactly on the limit state and in general, the much

larger density of samples near the limit state than elsewhere in the search space.

Figure II.13: Final contour of the mean value (solid line is the limit state) with 37
samples. Dots represent the samples used to create the GP.

This problem was also solved using reliability methods that reduce the cost of

the MPP search through the use of local surrogate models. Two response function

approximation methods were investigated:24 second-order iterated Advanced Mean

Value (AMV2+) and Two-point Adaptive Nonlinear Approximation (TANA).82, 93

A case using no response function approximation was also investigated. Combin-

ing this with first-order or second-order integration results in the traditional FORM

and SORM formulations. To produce results consistent with an implicit response

function, numerical gradients and quasi-Newton Hessians from Symmetric Rank 1

updates were used. For each method, at the converged MPP, both first-order and

second-order integration were used to calculate the probability.

For each method, the only algorithmic variation explored here is that the local
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surrogate models can be built in either x-space or u-space. Determining which space

is appropriate depends upon the form of the response and the space transformation.

This choice can have significant effects on both accuracy and efficiency for methods

that use low-order approximations to the response function. For instance, if a linear

approximation is used for a response that is linear in x-space but nonlinear in u-space,

then building the approximation in x-space will yield better results. Gaussian process

models are not greatly affected by this choice because they do not rely on curve-fitting

or any assumptions on the shape of the response, so EGRA is only performed on

models built in x-space.

Table II.1 gives a summary of the results from all methods. To establish an accurate

estimate of the true solution, 20 independent simulations were performed using one

million Latin hypercube samples per simulation. The average probability from these

simulations is reported as the “true” solution. Because EGRA is stochastic, it was

also run 20 times and the average probabilities are reported. Two sampling methods

are explored in combination with EGRA - MAIS and LHS using one million samples.

For each of the 20 runs of EGRA, both sampling methods were used on the same

converged model. This way, the only difference between their results is the sampling

method employed, eliminating any variation in the GP models, providing a more

direct comparison of the sampling methods. To measure the accuracy of the method,

two errors are reported for the EGRA results: the error in the average probability, and

the average of the absolute errors from 20 independent simulations. For comparison,

the same errors are given for 20 runs of LHS studies comprised of 10,000 and 100,000

samples.

Most of the MPP search methods converge to the same MPP and thus report the

same probability. Note, however, that the x-space TANA results are not included

because the method failed to converge. The probabilities are more accurate when

second-order integration is used, but still have significant errors ( 20%). For this mul-

timodal problem, EGRA is more expensive than AMV2+, but cheaper than all the
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other methods. More importantly, EGRA is far more accurate than all but the most

expensive sampling method. EGRA coupled with either the MAIS or LHS sampling

provides accurate results (both have an average absolute error <1%), but the average

absolute error from the LHS samples is approximately the same as that generated by

the same number of LHS samples on the true function. This indicates that the GP

model produced by EGRA is an extremely accurate representation of the true func-

tion. Any uncertainty that may remain in the converged model is far outweighed by

the sampling variance.

II.4.2 Cubic Function

The second example is a two-dimensional nonlinear function from Ref. 94.

g (x) = x3
1 + x3

2 − 18 (II.17)

The distribution of x1 is Normal(µ = 10,σ = 5) and x2 is Normal(µ = 9.9,σ = 5); the

variables are uncorrelated. The response level of interest for this study is z̄ = 0 with

failure defined by g < z̄. The problem formulation is then:

p f = P [g (x) < 0] (II.18)

This problem was introduced by Zou et al.94 to test a method that used a trust-region

managed adaptive response surface method to locate the MPP and then used first-

order integration, second-order integration, and multimodal adaptive importance sam-

pling (MAIS) to calculate the probability of failure.

Table II.2 gives a summary of the results from the same methods investigated in

the previous example plus the published results from Ref. 94. To establish an accurate

estimate of the true solution, 20 independent simulations were performed using one

million Latin hypercube samples per simulation. The average probability from these

simulations is reported as the ”true” solution. Again, two errors are reported for
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EGRA and LHS: the error in the average probability, and the average of the absolute

errors from 20 independent simulations.

This problem only has one significant MPP, so the large disparity in some of the

local search methods clearly indicates convergence to different points. It is interest-

ing to note that for this problem, x-space TANA provides the most efficient solution

while for the previous problem it failed to converge. Once again, second-order inte-

gration provides better results, but is still not an accurate approximation to the true

shape of the limit state, so there are still large errors. Because this test problem is not

multimodal, performing MAIS with only the MPP as a starting point (as is done by

Zou et al.94) is sufficient to capture the higher level of nonlinearity in the limit state

and generate an excellent result. However, if this method were applied to the previ-

ous test problem, it would likely be either much less accurate or require a substantial

increase in cost in order to adequately locate and sample the other significantly prob-

able regions of the space. It should also be pointed out that despite MAIS being a

stochastic method, only the error for a single result is reported by Zou et al.94 and

not an average absolute error as is included for the other sampling methods. For this

nonlinear problem, EGRA is less expensive than all the other methods, and provides

much more accurate results. As with the previous problem, there are is not a large

difference between using MAIS or LHS to perform the sampling once the GP model

has converged.

II.4.3 Cantilever Beam

This problem involves the simple uniform cantilever beam24, 76, 88 shown in Fig-

ure II.14.

L = 100”

w

t
X

Y

Figure II.14: Schematic of the cantilever beam example problem.
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Random variables in the problem include the yield stress R of the beam material,

the Young’s modulus E of the material, and the horizontal and vertical loads, X and

Y, which are modeled with normal distributions using Normal(µ = 40000, σ = 2000),

Normal(µ = 2.9E7, σ = 1.45E6), Normal(µ = 500, σ = 100), and Normal(µ = 1000,

σ= 100), respectively. Problem constants include L = 100 in. and D0 = 2.2535 in. The

design of the beam is assumed to be w = 2.6041 and t = 3.6746. The constraints on

beam response have the following analytic form:

stress =
600
wt2 Y +

600
w2t

X ≤ R (II.19)

displacement =
4L3

Ewt

√
(

Y
t2 )

2 + (
X
w2 )

2 ≤ D0 (II.20)

or when scaled:

gS =
stress

R
− 1 ≤ 0 (II.21)

gD =
displacement

D0
− 1 ≤ 0 (II.22)

Tables II.3 and II.4 give summaries of the results from the same methods investi-

gated in the previous examples. To establish an accurate estimate of the true solution,

20 independent simulations were performed using one million Latin hypercube sam-

ples per simulation. The average probability from these simulations is reported as

the ”true” solution. Again, two errors are reported for EGRA and LHS: the error in

the average probability, and the average of the absolute errors from 20 independent

simulations.

The stress response is well captured by a linear approximation, which can be seen

in the similarity between the first- and second-order integration results and their accu-

racy when compared to the LHS sampling. This simple functional form can be easily

captured with a GP model, so EGRA rarely has to add any additional data beyond its

initial samples to construct an accurate model ( (3+1)(3+2)
2 =10). Even at this extremely
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low cost, the accuracy of EGRA is comparable to the one million LHS samples.

The displacement response is not linear, but the second-order integration provides

a fairly accurate solution. Note, though, that the u-space TANA solution was unable

to provide a second-order result due to numerical problems with the final Hessian.

EGRA required only one third of the number of function evaluations of the cheapest

MPP-based method, but again produced an accuracy comparable to exhaustive LHS.

Because the probability of failure for this problem is small, using EGRA with MAIS

provides a more accurate result (on average) than using one million LHS samples.

II.4.4 Short Column

This problem involves the plastic analysis of a short column with rectangular cross

section (width b and depth h) having uncertain material properties (yield stress Y) and

subject to uncertain loads (bending moment M and axial force P).24, 51 The response

function is defined as:

g = 1− 4M
bh2Y

− P2

b2h2Y2 (II.23)

The distributions for P, M, and Y are Normal(500, 100), Normal(2000, 400), and Log-

normal(5, 0.5), respectively, with a correlation coefficient of 0.5 between P and M

(uncorrelated otherwise). The design of the column is assumed to be b = 8.654 and

h=25.0.

Table II.5 gives a summary of the results from the same methods investigated in

the previous examples. To establish an accurate estimate of the true solution, 20 inde-

pendent simulations were performed using one million Latin hypercube samples per

simulation. The average probability from these simulations is reported as the ”true”

solution. Again, two errors are reported for EGRA and LHS: the error in the average

probability, and the average of the absolute errors from 20 independent simulations.

The MPP-based methods clearly all converge to the same MPP, and the second-

order integration provides a very accurate probability of failure. EGRA outperforms
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all methods, requiring about 40% fewer function evaluations than the most efficient

MPP-based method. The accuracy of the EGRA results compare well to using 100k

LHS samples, but clearly come at a much reduced cost.

II.4.5 Steel Column

This problem involves determining the probability that the stress on a steel column

will exceed its yield stress.51 The response function is dependent on nine random

variables of various distributions.

g = Fs − P
(

1
2BD

+
F0

BDH
Eb

Eb − P

)
(II.24)

where

P = P1 + P2 + P3 (II.25)

Eb =
π2EBDH2

2L2 (II.26)

and Fs is the yield stress (Lognormal, µ/σ= 400/35 MPa), P1 is the dead weight load

(Normal, µ/σ = 500/50 kN), P2 and P3 are variable loads (Gumbel, µ/σ = 600/90

kN), B is the flange breadth (Lognormal, µ/σ= 200/3 mm), D is the flange thickness

(Lognormal, µ/σ = 17.5/2 mm), H is the profile height (Lognormal, µ/σ = 100/5

mm), F0 is the initial deflection (Normal, µ/σ = 30/10 mm), E is the elastic modulus

(Weibull, µ/σ=21/4.2 GPa), and L is the length of the column (Deterministic, 7.5 m).

The response level of interest for this study is z̄ = 0 with failure defined by g < z̄.

This problem presents a significant difficulty for EGRA. For certain combinations

of the inputs (when the yield stress and flange thickness are small and the loads are

large) the value of g is very small - much smaller than its value elsewhere in the search

space. This type of “spike” in the response is impossible for the GP to accurately cap-

ture, and when the GP model breaks down, the behavior of EGRA is unpredictable.

However, this combination of inputs is well within the failure region and since EGRA
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is searching only for the limit state, including this region in the search space is not

strictly necessary. Defining the search space as ±5σ was relatively arbitrary and can

easily be modified as needed and can be changed independently for each variable.

For this problem, the space is defined as [−4σ,5σ] for Fs, [−5σ,3σ] for P1, P2, and P3,

and [−3σ,5σ] for D; all other variables use the usual ±5σ.

Table II.6 gives a summary of the results from the same methods investigated in

the previous examples. To establish an accurate estimate of the true solution, 20 in-

dependent studies were performed using one million Latin hypercube samples per

study. The average probability from these studies is reported as the ”true” solution.

Again, two errors are reported for EGRA and LHS: the error in the average probability,

and the average of the absolute errors from the 20 studies.

For this problem, none of the MPP-based methods provide very accurate results.

The AMV2+ methods converge relatively rapidly to a different (and seemingly er-

roneous) MPP than the other methods. None could provide second-order reliability

estimates.

While EGRA needed some help in defining the search space in order to be able to

solve this problem, with that help it produces accurate results. This shows that the

size of the problem (nine random variables) is not a hindrance to the method, but

that the form of the response function can cause problems if it produces a shape that

cannot be modeled by a GP.

II.4.6 Bistable MEMS Device

This application problem involves the validation of previously reported optimal

results to the reliability-based design optimization of a bistable MEMS device.1, 2, 24, 29

The RBDO problem is focused on the shape optimization of compliant bistable mech-

anisms, where instead of mechanical joints, material elasticity enables the bistability

of the mechanism.6, 46, 50 Figure II.15(a) contains an electron micrograph of a MEMS

compliant bistable mechanism in its second stable position. The first stable position
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is the as-fabricated position. One achieves transfer between stable states by applying

force to the center shuttle via a thermal actuator, electrostatic actuator, or other means

to move the shuttle past an unstable equilibrium, thus making it useful as a micro

switch, relay, or nonvolatile memory.

Bistable switch actuation characteristics depend on the relationship between ac-

tuation force and shuttle displacement for the manufactured switch. Figure II.15(b)

contains a schematic of a typical force–displacement curve for a bistable mechanism.

The switch characterized by this curve has three equilibria: E1 and E3 are stable equi-

libria whereas E2 is an unstable equilibrium (arrows indicate stability). A device with

such a force–displacement curve could be used as a switch or actuator by setting the

shuttle to position E3 as shown in Figure II.15(a) (requiring large actuator force Fmax)

and then actuating by applying the comparably small force Fmin in the opposite di-

rection to transfer back through E2 toward the equilibrium E1. One could utilize this

force profile to complete a circuit by placing a switch contact near the displaced posi-

tion corresponding to maximum (closure) force as illustrated. Repeated actuation of

the switch relies on being able to reset it with actuation force Fmax.

anchors

vernier

shuttle

actuation force

(a) Scanning electron micrograph of a MEMS
bistable mechanism in its second stable position.
The attached vernier provides position measure-
ments.

switch

1

Fmax

Fmin

E2 E3

force

displacement

contact

E

(b) Schematic of force–displacement curve for
bistable MEMS mechanism. The arrows indicate
stability of equilibria E1 and E3 and instability of
E2.

Figure II.15: Bi-stable MEMS mechanism.

The device design considered in Refs. 1, 2, 24, 29 is similar to that in the electron

micrograph in Figure II.15(a), for which design optimization has been previously con-

sidered,46 as has robust design under uncertainty with mean value methods.85 The

primary structural difference in the present design is the tapering of the legs, shown
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schematically in Figure II.16(a). Figure II.16(b) shows a scale drawing of one tapered

beam leg (one quarter of the full switch system). A single leg of the device is ap-

proximately 100 µm wide and 5–10 µm tall. This topology is a cross between the

shuttle
�
�
�
�

�
�
�
�

tapered beam
anchor

actuation force

(a) Schematic of a tapered beam bistable mecha-
nism in as-fabricated position (not to scale).

(b) Scale rendering of tapered beam leg for
bistable mechanism.

Figure II.16: Tapered beams for bistable MEMS mechanism.

fully compliant bistable mechanism reported in Ref. 46 and the thickness-modulated

curved beam in Ref. 62. This tapered geometry offers many degrees of freedom for

design, which are described in detail in Section V.3.5 where the full RBDO problem is

considered.

Due to manufacturing processes, fabricated geometry can deviate significantly

from design-specified beam geometry. As a consequence of photo lithography and

etching processes, fabricated in-plane geometry edges (contributing to widths and

lengths) can be 0.1± 0.08 µm less than specified. This variation in the manufactured

geometry leads to substantial variation in the positions of the stable equilibria and

in the maximum and minimum force on the force–displacement curve. The man-

ufactured thickness of the device is also variable, though this does not contribute

as much to variability in the force–displacement behavior. Variable material prop-

erties such as Young’s modulus and residual stress also influence the characteristics

of the fabricated beam. For this application, two key random variables are consid-

ered: ∆W (edge bias on beam widths, which yields effective manufactured widths of

W + ∆W) and Sr (residual stress in the manufactured device). The distribution of ∆W

is Normal(µ =−0.2, σ = 0.08) measured in micrometers, and the distribution of Sr is

Normal(µ=−11, σ=4.13) measured in MPa.
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Given a set geometric design variables d and the specified random variables x =

[∆W, Sr], the response function is the minimum actuation force Fmin(d, x) and failure

is defined to be an actuation force with magnitude less than 5.0. The problem formu-

lation is then:

p f = P [Fmin (d, x) + 5.0 > 0] (II.27)

Figure II.17 displays the results of a parameter study of the response function

g(x) = Fmin(d, x)+5.0 as a function of the uncertain variables x for the optimal de-

sign reported in Ref. 24. The contour plot is scaled to a ±3 standard deviation range

in the transformed u-space. The limit state g(x) = 0 (equivalent to Fmin(d, x) =−5.0)

is indicated by the solid line. For some design variable sets d (not depicted), the limit

state is relatively well-behaved in the range of interest and first-order probability in-

tegrations would be sufficiently accurate. For the design variable set used to generate

Figure II.17, the limit state has significant nonlinearity, and thus demands more so-

phisticated probability integrations. The most probable point converged to by the

MPP search methods is denoted in Figure II.17 by the circle.

Figure II.17: Contour plot of Fmin(d, x) as a function of uncertain variables x. Solid
line: limit state g(x) = 0.0; ×: mean; circle: MPP.
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Table II.7: Results for the bistable mems device problem.

Reliability Function First-Order Sampling p f
Method Evaluations p f (Avg. Error)
No Approximation 396 0.06815 —
x-space AMV2+ 50 0.06815 —
u-space AMV2+ 50 0.06815 —
x-space TANA 60 0.06816 —
u-space TANA 81 0.06815 —
LHS solution 1k — 0.1130 (3.953%)
EGRA (MAIS) 15.3∗ — 0.1099 (0.153%)

∗The average number of evaluations is reported for EGRA.

Table II.7 gives a summary of the results from the same methods investigated in

the previous examples. Second-order integration results are not provided because

the quasi-Hessians that are computed during the MPP search, while helpful for in-

forming the MPP search algorithm, do not provide adequate curvature information

to generate accurate probability estimates. For this problem, the probabilities cal-

culated by second-order integration were found to be less than those calculated by

first-order integration. Inspection of Fig. II.17 shows that this is clearly not the case.

Moreover, even when numerical Hessians are used, second-order integration is not

possible for this problem because the large, negative principal curvatures create nu-

merical difficulties. For the MPP search methods, the first-order probabilities are the

most accurate available. Finite element analysis of this MEMS device is too expen-

sive for the exhaustive LHS studies used in the previous examples, so 20 simulations

with only 1,000 samples each were performed. Because the true solution to this prob-

lem is not known, the errors in the various solutions cannot be provided. However,

for the stochastic methods, the average absolute error from among the 20 runs is re-

ported. This error is calculated by comparing the individual solutions of a method to

the mean solution of that method, so it is similar to the coefficient of variation of the

solutions.

Because the true solution is unknown, no definitive argument can be made on the

accuracy of the EGRA solution, but given the similarity to the LHS solution and the
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fact that the MPP-search methods rely on low-order approximations to the shape of

a limit state that is known to be multimodal (see Fig. II.17), it is reasonable to say

that EGRA provides a more accurate estimate to the probability of failure than the

MPP-search methods. A remarkable feature of these results is that EGRA requires

less than one-third the number of function evaluations than even the cheapest of the

MPP-search methods and the average error in the EGRA solutions is considerably

smaller than for the LHS solutions. Given the larger variance in the LHS solutions,

the accuracy of EGRA relative to the LHS results for the preceding examples, and

the fact that the average EGRA solution here lies easily within the LHS error bounds,

there is the implication that the average EGRA solution may actually be more accurate

than the average LHS solution. Moreover, that EGRA solution comes at a cost of only

about 15 true function evaluations versus the 1,000 required for LHS.

II.5 Summary

This chapter developed a new Efficient Global Reliability Analysis method and

tested it through a wide array of reliability analysis problems. The results of these

tests show that EGRA is generally less expensive than even the most efficient MPP-

based methods while maintaining an accuracy that rivals even exhaustive sampling.

This new method will allow engineers to estimate the reliability of a design more

quickly, more accurately, and with greater confidence than any previously available

method.

The test problems considered linear, nonlinear, and highly multimodal response

functions with up to nine input random variables with varying distribution types

and correlations. EGRA performed well on all of the tests, consistently proving more

efficient than some or all of the MPP-based methods and producing accuracy similar

to using one million LHS samples.

EGRA is not sensitive to the choice of input distribution or the correlation struc-

ture. This is because the largest computational effort in the EGRA algorithm is in
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training the GP model, which is done independently of the input distributions. The

surrogate model is constructed in the original x-space, so the distributions do not play

a role until the sampling phase, which is easily handled. Because the GP model is built

independently of the input distributions, EGRA can be expected to be equally accu-

rate for any distribution or correlation. This also means that once the model is built, it

will remain accurate for any change in the input distributions - a feature of EGRA that

will be discussed in detail in Chapter IV.

The cost of EGRA is driven by three factors: the size of the search space, the shape

of the response function, and the probability of failure. Larger spaces simply require

more samples to fill the space and reduce the uncertainty. Additionally, because the

number of initial samples is defined by the number of random variables, larger prob-

lems will require more samples just to start the process. For very large problems,

this initial cost could be prohibitive (a problem with 100 random variables would re-

quire 5151 function evaluations for the initial samples alone). In such cases, it may be

more efficient to use an MPP-based method (though the efficiency of these methods

will suffer from the extra dimensionality if finite differences are required to calculate

derivatives), but concerns regarding the accuracy of these methods will remain. At

some point, as the number of variable increases, and the cost of EGRA rises, depend-

ing on the probability of failure and the level of accuracy required, it will become less

expensive to use a sampling method since the cost of these methods does not scale

with the size of the problem. However, for the size and reliability of most problems

that engineers are typically concerned with, the efficiency and accuracy of EGRA re-

mains compelling.

Simpler shapes can be captured by a GP with fewer points, thus reducing the cost

of EGRA. This is apparent when comparing the stress response function in the can-

tilever beam test to the multimodal function. The linear stress function required only

10 samples (and could possibly be modeled with fewer, but this is the number of ini-

tial samples for this three-variable problem), while the multimodal function required
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35 even though it had one fewer random variable.

The last factor driving the cost, the probability of failure, provides a significant

advantage over other methods. EGRA is actually less expensive for lower probabilities

of failure. If the probability of failure is low, then the size of the failure region relative

to the search space is small. Smaller regions require shorter contours to contain them.

This contour is the limit state for which EGRA is searching. If it is short, then it will

require fewer samples to capture its shape, making EGRA less expensive. Because

engineers are typically interested in problems with low probabilities of failure, EGRA

provides a significant benefit when applied to real-world problems.

The “cost” of the method has been defined in this discussion as the number of

required evaluations of the true response function when training the surrogate model.

However, it should be noted that the computational expense of iteratively forming

the GP model and then using an exhaustive global optimizer like DIRECT to find the

maximum expected feasibility (thus requiring a large number of evaluations of the GP

model) is non-negligible. For problems with quick-running response functions, this

overhead cost can far outweigh the expense of a basic Monte Carlo analysis. EGRA is

intended for application to problems with expensive response functions (such as the

bistable MEMS problem explored in Section II.4.6) where this overhead cost pales in

comparison to the expense of even a single analysis of the response function.

Another benefit to EGRA is the confidence that can be placed in its results. These

test problems have shown that the MPP-based methods are inconsistent in terms of

both accuracy and efficiency. For some cases, the different methods converge to dif-

ferent MPPs, and a few times the “No Approximation” method outperformed the

methods that were designed to improve the efficiency of the MPP search. This incon-

sistency makes it difficult, if not impossible, for engineers to trust the results that these

methods produce. On the other hand, for all test problems, the average error in the

EGRA results was shown to be comparable or superior to using 100,000 LHS samples.

However, as the steel column test showed, EGRA is not without its problems. In
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fact, if the underlying GP model fails, EGRA will fail, so any response function that

cannot be well represented by a GP cannot be solved by EGRA. For the steel column

problem, this could be easily dealt with by simply removing the “bad” part of the

response function from the search space. This is an effective solution, but requires

intervention by the user and some knowledge on if and where the response function

might cause problems. Future versions of EGRA might automatically detect this be-

havior and adapt the search space as needed.

The development of EGRA is the major contribution of this dissertation. The re-

maining chapters discuss how EGRA can be used in the solution of traditionally diffi-

cult and/or expensive reliability problems beyond the basic reliability analysis prob-

lems presented here. Chapter III applies EGRA to system-level reliability analysis,

Chapter IV explores unique ways EGRA can be used when performing reliability

analysis using input distributions that are uncertain, and Chapter V applies EGRA

to reliability-based design optimization.
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CHAPTER III

SYSTEM-LEVEL RELIABILITY ANALYSIS

The previous chapters have been concerned with estimating the reliability given

a single failure mode. However, in reality, even seemingly simple engineered sys-

tems can fail in multiple ways. For instance, consider the cantilever beam problem

investigated in the previous chapters. In this problem, two failure modes were clearly

identified - a displacement mode and a stress mode. But the problem was solved as

essentially two separate problems rather than considering the total probability of fail-

ure of the system given that it could fail in either way. A system-level formulation of

the problem would seek to find the probability that either the displacement limit is

violated or the yield stress is exceeded.

The “or” condition is mathematically expressed through the union of the two in-

dividual failure events and defines their effect on overall system failure as a series

system. A system in which all of the individual failure events must occur for the sys-

tem to fail is a parallel system; the probability of failure of the parallel system is the

probability of the intersection of all the failure modes.

Estimating the reliability with respect to a single failure mode is a challenging

problem, necessitating the creation of EGRA to meet these challenges. Solving a

system-level reliability analysis is, as should be expected, even more difficult. This

chapter discusses how EGRA can be applied to this problem in a novel way to pro-

vide accurate assessments of the system reliability at a cost that rivals the reliability

analysis for an individual failure mode (i.e., the reliability of a single component in

the system).
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III.1 Previous Methods

As with component-level analysis, methods for solving system-level reliability

analysis can be generally broken into two groups: MPP-based methods, and sam-

pling methods. And, again, the MPP-based methods are more efficient but rely on ap-

proximations that may be inaccurate while the sampling methods are generally more

accurate, but only if enough samples are used, which can make them prohibitively

expensive.

The probability of failure of a series system is defined as

pseries
f = P[∪

i
gi(x) ≥ z̄i] (III.1)

and for a parallel system,

pparallel
f = P[∩

i
gi(x) ≥ z̄i] (III.2)

where each individual failure is defined as the response gi exceeding the limit z̄i, but

could also be defined as not exceeding z̄, and could be different for each component i.

Solving either Eqs. III.1 or III.2 via Monte Carlo sampling is conceptually simple.

For each random realization of x, all of the component response functions gi are eval-

uated. For a series system, if any component fails, then the random sample is counted

as a system failure. Accordingly, for a parallel system, if all of the components fail, the

sample is counted as a system failure. The system probability of failure is then sim-

ply the ratio of the number of system failures found to the total number of samples

drawn, i.e. psystem
f =Nsystem

f /N.

Solving the system-level problem via MPP-based methods is more complicated.

These methods are generally broken into two steps: First, the MPP for each com-

ponent problem is located, which defines the reliability index β for that component.

Second, various methods have been proposed to combine this component informa-

tion to approximate the system reliability. Ref. 57 provides a good summary of these
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methods.

In general, any of the methods previously discussed can be used to locate the MPP

for each of the components. With these located, let B represent the vector of reliability

indices for each of the components, and let A represent the correlation matrix between

the component failure modes (calculated as the dot products of −∇uGT
i

‖∇uGi‖
). Then, approx-

imating the limit states as linear, for a series system, the probability of failure can be

calculated as 1 − Φ(B, A); for a parallel system it is Φ(−B, A). If only two failure

modes are present, these can be evaluated using the bivariate normal distribution,23

but the more general multivariate case is more difficult. Options include methods

to bound the system probability of failure,21 or various methods to approximately

evaluate the distribution using importance sampling,5 multiple linearizations,42 or

moment-based approximations.61 Because all of these methods require that 1) the

MPP be successfully located for each component, and 2) the component reliability can

be accurately quantified with the applied approximation, these methods may not lead

to accurate reliability estimates.

In short, no method that is both efficient and accurate currently exists for general

system-level reliability analysis. The next section will discuss three possible ways

that EGRA might be applied to this problem, followed by the application of the most

promising of these three to a collection of example problems.

III.2 Formulations Using EGRA

There are multiple ways in which EGRA might be applied to the system-level reli-

ability analysis problem. This section will explore three of them, detailing the advan-

tages and disadvantages of each.

III.2.1 Component Solutions

The first way that EGRA can be used to estimate the reliability of a system is con-

ceptually very simple. The basic idea is to first use EGRA to independently train a
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GP model for each of the component response functions. Note that this step only

constructs the models, it does not sample them to calculate the component reliability

(though that could optionally be performed if the engineer desired this information).

Once a GP model has been built for each component, these models can be sampled in

the same way that sampling might be used to solve the system reliability problem di-

rectly on the “true” response functions (see Section III.1). Because EGRA has already

been shown to be an efficient and accurate method for constructing surrogate models

of the component limit states, this would similarly provide an efficient and accurate

method for solving the system-level problem. However, consider the case where one

(or more) component does not contribute to the system probability of failure because

the probability of the system experiencing its failure mode is much smaller than that

of other components. In such a case, the effort spent resolving the GP model for this

component’s limit state is essentially wasted. While this method of applying EGRA

to the system-level problem would be accurate, its efficiency can be further improved.

The next two methods present ways that EGRA can focus its efforts only on the limit

states that bound the failure region of the system.

III.2.2 Composite Gaussian Process Model

In this second method, rather than construct an independent GP model for each of

the components, EGRA attempts to train a single GP model to capture the so-called

“composite” limit state. This limit state is made up of the portions of the compo-

nent limit states that bound the system failure region. Consider the system problem

depicted in Figure III.1 consisting of the following component response functions:

g1 (x) = x2
1 + x2 − 8 (III.3)

g2 (x) =
x1

5
+ x2 − 6 (III.4)
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The lines in this plot represent the component limit states (where g1 = 0 and g2 = 0);

the shaded area is the system failure region. The composite limit state clearly has

“sides” defined by the g1 limit state and a “top” defined by the g2 limit state.

Figure III.1: Graphical depiction of the composite limit state. The lines are component
limit states; the shaded area is the system failure region.

EGRA can be encouraged to search for this composite limit state through a simple

modification of the response function. Let the system reliability problem be defined

by:

p f = P[g1(x) ≥ 0∩ g2(x) ≥ 0] (III.5)

Because both of these component limit states are defined via a ≥ operator and their

limit state values are both z̄ = 0 (in general, these conditions can always be met

through a simple rearrangement of the component response functions) this problem

can be redefined as:

p f = P[min(g1(x), g2(x)) ≥ 0] (III.6)

where this “min” operation is now the composite response function on which EGRA
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will operate. Note that if this system was concerned with the union of these events

rather than the intersection (a series rather than a parallel system), then the “min”

could simply be replaced with a “max”. Additionally, this concept can be scaled up

for any number of response functions.

With this composite response function in place, EGRA now operates as in the case

of an individual failure mode. For each point at which EGRA requests the response, all

of the component response functions are evaluated and either the minimum or max-

imum (depending on the definition of the system) response is returned. Figure III.2

shows the results of this method applied to the system shown in Figure III.1.
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GP training data
g1=0
g2=0
GP contour

x1

x2

Figure III.2: Results from running EGRA on the composite response function. Note
the error in the limit state contour near the corners.

Conceptually, this method should be more efficient than building GP models sep-

arately for each response function because EGRA might be able to “ignore” portions

of the component limit states that do not contribute to the composite limit state. How-

ever, it is clear from the plot that this is not the case. While EGRA does do a good job

of focusing the training data near the composite limit state, it requires a relatively sub-

stantial number of samples to do so (note the large number of wasted samples from
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from the limit state) and the final form of the limit state contour has poor accuracy

near the corners where the component limit states meet. There are two issues with

solving the system problem in this way that create fundamental problems with the

composite GP model.

The first issue is the relative scaling between the responses. At each sample point,

EGRA receives the response value from only one of the components. Each of the com-

ponents has the same limit state value, but they may diverge from this value as they

move away from the limit state at much different rates. This creates discontinuities

in the composite GP because points that are relatively near one another might have

largely different responses because they actually come from different components.

Because the GP relies on determining the correlation between points based on their

distance from one another and the magnitude of their responses, it is clear how this

kind of response creates difficulty in fitting a GP to the data. This leads to greater

variance in the GP predictions, which leads to greater Expected Feasibility Function

values, which leads EGRA to request more training data to converge the model, mak-

ing this method far more expensive than hoped.

The second problem with fitting a composite GP model is the presence of the sharp

corners in the composite limit state. GP models create smooth responses, so they are

incapable of accurately modeling sharp changes in the limit state contour. For any

case where the composite limit state is made up of portions of the component limit

states, there will be corners where the separate component limit states cross. While

the “sharpness” of these corners may differ, they will always be nonsmooth and thus

create difficulties for the composite GP model.

An additional problem with this method is the computational expense. As was just

discussed, the difficulty with fitting a GP model to the composite response requires

EGRA to request a relatively large number of training points, so it is important to

realize that at each of these training points all of the component response functions

must be evaluated. So while the result in Figure III.2 shows that 52 training points

70



were requested, it actually represents 104 function evaluations.

The final method for applying EGRA to system-level reliability analysis retains

the concept of the composite limit state, but keeps the GP models of the components

independent.

III.2.3 Composite Expected Feasibility Function

The first system-level EGRA method provided an accurate reliability estimate, but

might be overly expensive if one or more components does not contribute greatly to

failure of the system. The second method introduced the concept of the composite

limit state in an effort to reduce this expense, but attempting to form a composite

GP model created problems that actually led to additional expense. The third method

investigated here utilizes the composite limit state, but moves its effect on EGRA inter-

nally to the Expected Feasibility Function, rather than replacing the response function

itself. By keeping the component GP models independent, this removes the difficulty

in training the composite model while still retaining the cost benefit of seeking only

the composite limit state.

First, recall Eq. II.14, which shows that the Expected Feasibility Function (EFF) is

of the form:

EF
(

ĝ(x)
)
=
(
µg − z̄

) [
2 Φ

(
z̄− µg

σg

)
−Φ

(
z− − µg

σg

)
−Φ

(
z+ − µg

σg

)]
− σg

[
2 φ

(
z̄− µg

σg

)
− φ

(
z− − µg

σg

)
− φ

(
z+ − µg

σg

)]
+ ε

[
Φ
(

z+ − µg

σg

)
−Φ

(
z− − µg

σg

)]
(III.7)

In Eq. II.14, this function was derived with only a single component GP model

in mind, ĝ. Forming the composite EFF involves simply selecting the component GP

model from which the mean and standard deviation will be used. This is done us-

ing the same min/max logic as was used to form the composite response function in
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Eq. III.6. The resulting EFF might be rewritten as:

EF(x) =
(

µ∗g − z̄
) [

2 Φ

(
z̄− µ∗g

σ∗g

)
−Φ

(
z− − µ∗g

σ∗g

)
−Φ

(
z+ − µ∗g

σ∗g

)]

− σ∗g

[
2 φ

(
z̄− µ∗g

σ∗g

)
− φ

(
z− − µ∗g

σ∗g

)
− φ

(
z+ − µ∗g

σ∗g

)]

+ ε

[
Φ

(
z+ − µ∗g

σ∗g

)
−Φ

(
z− − µ∗g

σ∗g

)]
(III.8)

where µ∗g is the appropriately chosen min/max predicted response from among all

the component GP model predictions at this particular point x, and σ∗g is the standard

deviation from the corresponding model. Using this max/min relationship will create

discontinuities in the EFF throughout the search space, but because the maximizing

point of this function is sought using DIRECT34 (see Section II.3), which is a gradient-

free global optimizer, this does not create any problems for the method.

The point x that maximizes this function is the point at which there is the greatest

expectation that it lies on the composite limit state. Of course, there may not be a large

expectation that it lies on more than one component limit state. Once this point has

been found, the EFF value for each of the components is calculated at this point. Only

the components with a non-converged EFF value (i.e., EFF > 1E-5) are evaluated and

added to that component’s GP model training data. By restricting the evaluation of

the “true” response functions to only those components that have a large expectation

of contributing to the composite limit state, the wasted evaluations that were found

in the first method are eliminated.

Convergence of this method is measured based on the composite EFF value. When

this value is less than the convergence tolerance, then the entire composite limit state

has been located even though there may be substantial uncertainty remaining for por-

tions of the various component limit states. The results of this method are explored in

more detail in the discussion of the first computational experiment presented in the

next section.
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III.3 Computational Experiments

The third of these methods for using EGRA to solve system-level reliability analy-

sis problems is clearly more promising than the others, so only this method is applied

to the collection of test problems explored in this section. Where available, EGRA is

compared to other methods from published literature, but in all cases it is compared

to varying levels of LHS sampling to demonstrate its accuracy.

III.3.1 Multimodal System

This problem is an adaptation of the component multimodal example presented in

Section II.4.1. Two additional nonlinear response functions have been added to form

a system problem. The component response functions are described by:

g1 (x) =

(
x2

1 + 4
)
(x2 − 1)

20
− sin

5x1

2
− 2 (III.9)

g2 (x) = (x1 + 2)4 − x2 + 4 (III.10)

g3 (x) = (x1 − 4)3 − x2 + 2 (III.11)

The distribution of x1 is Normal(µ = 2, σ = 1) and x2 is Normal(µ = 5, σ = 1); the

variables are uncorrelated. The response level of interest for all response functions is

z̄ = 0 with failure defined by gi < z̄.

Two formulations of this problem are explored. First, it is considered as a parallel

system, followed by its solution as a series system.

Parallel Multimodal System

This parallel system problem can be formulated as:

p f = P [g1 (x) < 0 ∩ g2 (x) < 0 ∩ g3 (x) < 0] (III.12)

Figure III.3 shows a plot in x-space of the three limit state contours throughout the
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±5 standard deviation search space. The shaded area represents the system failure

region. It is clear from this plot that composite limit state is made up of only the g2

component limit state and a portion of the g1 limit state; the g3 limit state does not

bound the system failure region.

Figure III.3: Limit state contours of the multimodal system response functions. The
shaded area is the system failure region for the parallel system.

Figure III.4 shows an example of the resulting GP models when EGRA is applied

to this problem. The solid lines are the approximations to the limit state contours from

the GP models; the dashed lines are the true limit states as shown in the previous plot.

Consider, first, the limit state of g2. This entire limit state is well-captured by the GP

model because a significant portion of it bounds the system failure region. The limit

state for g1, however, is only accurately modeled in the region where it bounds the

system failure region. Far from this region, it is highly inaccurate. This showcases

EGRA’s ability to not only seek accuracy of the model near the limit state, but to only

the portions of that limit state where accuracy is needed.

The circles on this plot show the locations of the training data used by EGRA. These
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are also color-coded and sized to represent the response function on which they were

evaluated. There are six points at which all three response functions were evaluated.

These are the initial points used to begin the EGRA process. Note that after these

initial points, g3 is never again evaluated. Because EGRA is searching only for the

composite limit state, and this component limit state is far from the system failure

region, EGRA needs no additional accuracy for this function and thus never requests

another evaluation of it. There are several additional data points evaluated on g1 and

g2, but it is clear that these are focused near the composite limit state.

Figure III.4: Resulting GP models and training data from a run of EGRA on the parallel
multimodal system. The solid lines represent the GP approximations to the limit state
contours for the three response function.

Table III.1 gives a summary of the results for this test case. To establish an accurate

estimate of the true solution, 20 independent simulations were performed using one

million Latin hypercube samples per simulation. The average probability from these

simulations is reported as the “true” solution. Because EGRA is stochastic, it was also

run 20 times and the average probabilities are reported. To measure the accuracy of
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the method, two errors are reported for the EGRA results: the error in the average

probability, and the average of the absolute errors from 20 independent simulations.

For comparison, the same errors are given for 20 runs of LHS studies comprised of

10,000 and 100,000 samples.

Table III.1: Results for the parallel multimodal system problem.

Reliability Fn Evals Fn Evals Fn Evals p f
Method g1 g2 g3 (% Error, Avg. Error)
LHS solution 10k 10k 10k 0.001135 (0.203%, 13.38%)
LHS solution 100k 100k 100k 0.001156 (2.013%, 4.628%)
LHS solution 1M 1M 1M 0.001133 (“truth”, 1.351%)
EGRA (1M LHS) 17.9∗ 9.1∗ 6.2∗ 0.001134 (0.141%, 1.666%)

∗The average number of evaluations is reported for EGRA.

EGRA is able to provide an estimate of the system reliability that is as accurate as

using three million LHS samples at an average cost of only 33.2 function evaluations

- approximately 0.0011% of the cost. Recall that when using this same multimodal

function in the component test in Section II.4.1, EGRA required an average of 34.9

function evaluations. Because EGRA is able to focus on only portions of the various

component limit states, it is capable of solving this system problem with fewer total

function evaluations than the component problem with the same response function.

Series Multimodal System

A series system problem can be formulated as:

ps = 1− P [g1 (x) < 0 ∪ g2 (x) < 0 ∪ g3 (x) < 0] (III.13)

where the probability of success ps = 1− p f is considered simply to provide a prob-

ability level that is easier to compare to other examples. This has no impact on the

shape of the composite limit state or the behavior of EGRA. Figure III.5 shows the

system failure region for this series system. It is bounded by the limit state of g3 and

a small portion of g1, but the g2 limit state does not bound the system failure region.
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Figure III.5: Limit state contours of the multimodal system response functions. The
shaded area is the system failure region for the series system.

Figure III.6 shows an example of the resulting GP models when EGRA is applied to

this problem. Similar to the result for the parallel system, EGRA focuses the training

data near only the portions of the component limit states that form the composite limit

state (i.e., they bound the system failure region). The GP approximations to the limit

state of g2 and the portions of g1 that are far from the failure region are significantly

inaccurate, but EGRA does not attempt to improve them because accuracy of these

models is not required to determine the reliability of the system.

Table III.2 gives a summary of the results for this test case. To establish an accurate

estimate of the true solution, 20 independent simulations were performed using one

million Latin hypercube samples per simulation. The average probability from these

simulations is reported as the “true” solution. Because EGRA is stochastic, it was also

run 20 times and the average probabilities are reported. To measure the accuracy of

the method, two errors are reported for the EGRA results: the error in the average

probability, and the average of the absolute errors from 20 independent simulations.
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Figure III.6: Resulting GP models and training data from a run of EGRA on the series
multimodal system. The solid lines represent the GP approximations to the limit state
contours for the three response function.

Table III.2: Results for the series multimodal system problem.

Reliability Fn Evals Fn Evals Fn Evals p f
Method g1 g2 g3 (% Error, Avg. Error)
LHS solution 10k 10k 10k 4.000E-4 (3.964%, 26.78%)
LHS solution 100k 100k 100k 3.735E-4 (2.924%, 10.65%)
LHS solution 1M 1M 1M 3.848E-4 (“truth”, 2.229%)
EGRA (1M LHS) 19.8∗ 6.4∗ 9.2∗ 3.790E-4 (1.515%, 1.784%)

∗The average number of evaluations is reported for EGRA.

EGRA is able to provide an estimate of the system reliability that is as accurate as

using three million LHS samples at an average cost of only 35.4 function evaluations

- approximately 0.0012% of the cost. The similarity in both the cost and accuracy of

the EGRA solutions applied to the parallel and series formulations of this multimodal

system demonstrate that EGRA is unconcerned with the definition of the system. The

expense of EGRA is driven by the length and nonlinearity of the composite limit state,

but whether it is operating on a series or parallel system is immaterial.
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III.3.2 Cantilever Beam

This problem revisits the cantilever beam problem76, 88 investigated in the previ-

ous chapters, but combines the stress and displacement response functions to form a

system reliability problem.

Random variables in this problem include the yield stress R of the beam material,

the Young’s modulus E of the material, and the horizontal and vertical loads, X and Y,

which are modeled with normal distributions using N(40000, 2000), N(2.9E7, 1.45E6),

N(500, 100), and N(1000, 100), respectively. Problem constants include L = 100 in. and

D0 = 2.2535 in. The design of the beam is assumed to be w = 2.6041 and t = 3.6746.

The constraints on beam response have the following analytic form:

stress =
600
wt2 Y +

600
w2t

X ≤ R (III.14)

displacement =
4L3

Ewt

√
(

Y
t2 )

2 + (
X
w2 )

2 ≤ D0 (III.15)

or when scaled:

gS =
stress

R
− 1 ≤ 0 (III.16)

gD =
displacement

D0
− 1 ≤ 0 (III.17)

The system problem is defined as:

p f = P [gS (x) < 0 ∪ gD (x) < 0] (III.18)

Table III.3 gives a summary of the results for this test case. To establish an accurate

estimate of the true solution, 20 independent simulations were performed using one

million Latin hypercube samples per simulation. The average probability from these

simulations is reported as the “true” solution. Because EGRA is stochastic, it was also

run 20 times and the average probabilities are reported. To measure the accuracy of

the method, two errors are reported for the EGRA results: the error in the average
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Table III.3: Results for the cantilever beam system problem.

Reliability Fn Evals Fn Evals p f
Method gS gD (% Error, Avg. Error)
LHS solution 10k 10k 0.001180 (7.715%, 17.04%)
LHS solution 100k 100k 0.001263 (1.224%, 6.861%)
LHS solution 1M 1M 0.001279 (“truth”, 1.964%)
EGRA (1M LHS) 10.0∗ 22.3∗ 0.001280 (0.070%, 1.680%)

∗The average number of evaluations is reported for EGRA.

probability, and the average of the absolute errors from 20 independent simulations.

For comparison, the same errors are given for 20 runs of LHS studies comprised of

10,000 and 100,000 samples.

III.3.3 Liquid Hydrogen Tank

The final test problem involves the reliability analysis of a liquid hydrogen fuel

tank on a space launch vehicle.57, 75 The tank has a honeycomb sandwich design with

top and bottom plates made of aluminum alloy AL2024 with the sandwich material

made of Hexcell 1/8-in.-5052.0015. The tank is subjected to stresses caused by ul-

lage pressure, head pressure, axial forces due to acceleration, and bending and shear

stresses caused by the weight of the fuel.

The random variables for this problem include the thickness of the plate tplate ∼

Normal(µ=0.07433, σ=0.005), the thickness of the honeycomb th ∼ Normal(µ=0.1,

σ=0.01), and the loads on the tank Nx ∼ Normal(µ=13, σ=60), Ny ∼ Normal(µ=4751,

σ=48), and Nxy ∼ Normal(µ=-684, σ=11).

Three modes of failure are considered for the tank: von Mises strength, isotropic

strength, or honeycomb buckling. The honeycomb buckling response function is de-

fined by a response surface generated from the structural sizing program HYPER-

SIZER,16 which is given in Ref. 75 as:

gHB = 0.847 + 0.96x1 + 0.986x2 − 0.216x3 + 0.077x2
1 + 0.11x2

2

+ 0.007x2
3 + 0.378x1x2 − 0.106x1x3 − 0.11x2x3 (III.19)
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where x1, x2, and x3 are defined as:

x1 = 4
(
tplate − 0.075

)
(III.20)

x2 = 20 (th − 0.1) (III.21)

x3 = −6000
(

1
Nxy

+ 0.003
)

(III.22)

The response functions for the von Mises and isotropic strengths are defined by:

gvM =
84, 000 tplate√

N2
x + N2

y − NxNy + 3N2
xy

− 1 (III.23)

gISO =
84, 000 tplate

|Ny|
− 1 (III.24)

This system problem is formulated as:

p f = P [gvM (x) < 0 ∪ gISO (x) < 0 ∪ gHB (x) < 0] (III.25)

The particular value of the mean plate thickness used here is chosen because it

is the optimal value reported in Ref. 57 from a reliability-based design optimization

study performed on this liquid hydrogen tank system. To estimate the system reliabil-

ity in that work, FORM is used to locate the MPP for each response, and then Pandey’s

method61 is used to perform the multinormal integration.

Table III.4 gives a summary of the results for this test case. To establish an accurate

estimate of the true solution, 20 independent simulations were performed using one

million Latin hypercube samples per simulation. The average probability from these

simulations is reported as the “true” solution. Because EGRA is stochastic, it was also

run 20 times and the average probabilities are reported. To measure the accuracy of

the method, two errors are reported for the EGRA results: the error in the average

probability, and the average of the absolute errors from 20 independent simulations.

For comparison, the same errors are given for 20 runs of LHS studies comprised of
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Table III.4: Results for the liquid hydrogen tank system problem.

Reliability Fn Evals Fn Evals Fn Evals p f
Method gvM gISO gHB (% Error, Avg. Error)
LHS solution 10k 10k 10k 0.000700 (0.416%, 15.86%)
LHS solution 100k 100k 100k 0.000692 (0.803%, 4.866%)
LHS solution 1M 1M 1M 0.000697 (“truth”, 1.334%)
FORM/Pandey57 — — — 0.001000 (43.45%, — )
EGRA (1M LHS) 18.6∗ 6.3∗ 10.0∗ 0.000702 (0.739%, 1.839%)

∗The average number of evaluations is reported for EGRA.

10,000 and 100,000 samples.

The computational expense of a single analysis of the FORM/Pandey method used

in Ref. 57 is not provided, but it should be noted that throughout the entire RBDO

analysis, only 48 total function evaluations are used to estimate the reliability. This

certainly indicates that this is an efficient method, particularly in a case where ana-

lytic gradients are available, but because it relies on linear approximations to the limit

states, the method can be inaccurate. EGRA is capable of accurately estimating the

system reliability for this problem at an average cost of only 34.9 total function evalu-

ations.

III.4 Summary

This chapter presented the application of the Efficient Global Reliability Analysis

method to system-level reliability analysis. Three formulations for applying EGRA to

this class of problems were explored, but one was identified as the best option. This

formulation uses independent Gaussian process models for each of the component

response functions, but selects the training data for these models based on a search

for the composite limit state. At each new training point selected by EGRA, only the

response functions for which this point is expected to improve the approximation of

its component limit state are evaluated, i.e. all component response functions are not

evaluated at all points.

By focusing the GP training data (points at which the true response functions are
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evaluated) near only the portions of the component limit states that bound the sys-

tem failure region, locally accurate models can be built with very few samples. This

makes EGRA a highly efficient way to perform system-level reliability analysis. The

efficiency and accuracy of this method were demonstrated through its application to

a collection of example problems. Both parallel and series systems were explored, and

EGRA proved equally efficient and accurate for both formulations.
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CHAPTER IV

RELIABILITY ANALYSIS WITH DISTRIBUTION UNCERTAINTY

Thus far, in all the example problems investigated throughout this dissertation,

statistical descriptions of the inputs being treated as random variables have been

provided and assumed known. However, when solving real-world problems, the

probability density functions for these random variables are often estimated by fit-

ting probability distribution models to observed test data. Because there can never be

an infinite amount of test data, there is always some degree of uncertainty associated

with the actual underlying probability density functions that generated the observed

data. Consequently, there is also some amount of uncertainty associated with any

probability of failure estimate that is computed with a reliability analysis based on the

assumed probability distribution models.

Uncertainty associated with a probability distribution model can be broken into

two parts: uncertainty about the probability distribution model form, and uncer-

tainty about the model parameters. Several recent papers have illustrated approaches

for quantifying the effect of distribution parameter uncertainty on reliability predic-

tions.56, 74, 81 However, little effort, especially within the reliability analysis commu-

nity, has been made to quantify the effect of uncertainty about the form of the prob-

ability distribution model. Some recent work has addressed this objective through

the use of so-called generalized probability distribution models, which have as special

cases more well-known probability distribution models, such as the normal distribu-

tion.56 However, this approach is still restricted by the assumption that the observed

sample data came from a probability distribution model with a particular form, albeit

a more general one.

This chapter demonstrates a rigorous approach founded in Bayesian inference for

quantifying the uncertainty in both the distribution model form and its parameters.
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Sometimes referred to as Bayesian Model Averaging, this type of approach allows

one to compute the uncertainty associated with an output of interest (in this case, the

reliability or probability of failure) by averaging over multiple possible models, based

on their relative likelihoods, as indicated by observed data.

It is important to note that while this type of analysis is certainly possible with a

different reliability analysis method, such as Monte Carlo sampling, it is the applica-

tion of EGRA to this analysis that has made quantifying the uncertainty in reliability

estimates due to the distribution uncertainty finally practical due to the vast computa-

tional savings.

IV.1 Bayesian Inference and Model Averaging

Loosely speaking, probability distribution model uncertainty refers to the possibil-

ity that the chosen mathematical representation of a random variable differs from the

actual real-world data-generating process. The extent of the potential for difference

between the postulated model and the reality (this difference is based on currently

available information or lack thereof), as well as the potential impact on some quan-

tity of interest being predicted, are of interest to the analyst employing probabilistic

methods. In this section, a rigorous theory, based on Bayesian inference, is presented

to quantify these effects.

For the remainder of this chapter, the term model (in the context of a probability

distribution) is used to refer to a set of probability distributions. This is synonymous

with the term model form as used in the introduction. For example, a Gaussian (or

normal) model for a random variable X consists of all probability density functions for

which X is normally distributed with some mean and standard deviation. Following

Ref. 84, an individual model M can be written mathematically as

M = {pθ(x)} (IV.1)

where θ is a vector of model parameters. Eq. IV.1 says that M consists of a set of

85



probability densities for a random variable X that depend on the parameters θ.

IV.1.1 Bayesian Inference

First, consider the case where the probability distribution model is known, but

the parameters of that model must be estimated based on some observed data, d =

(x1, . . . , xn)T. As such, the model parameters are subject to uncertainty. Under the

Bayesian framework, this uncertainty is quantified by calculating the posterior distri-

bution of the parameters, which is based on Bayes’ theorem:

p(θ | d) =
π(θ)p(d | θ)∫
π(θ)p(d | θ) dθ

, (IV.2)

where p(θ|d) is the posterior distribution for θ, π(θ) is the so-called prior distribution,

and p(d|θ) is the likelihood function for θ. The integral in the denominator is simply

a normalizing constant, so that the posterior distribution is proportional to the prior

distribution multiplied by the likelihood function. The likelihood function, p(d|θ), is

what relates the data to the unknowns, and it is typically written as L(θ) because the

data hold fixed values once observed.

The prior distribution, π(θ) is expressed as a probability distribution function for

θ, and simply represents the state of knowledge about the unknowns before observing

d. In most cases, though, one would like the inference to be guided solely by the

observed data, so that vague (a.k.a reference) prior distributions are employed. Such

vague prior distributions typically capture the notion that a priori, any value of θ is

equally likely.

Consider a simple example in which the mean and variance of a normal distri-

bution are being estimated using n independent samples from that distribution: d =

x1, . . . , xn. The unknowns are thus the mean and variance: θ=(µ, σ2). The first step is

to specify the prior distribution; the standard vague reference prior for this case is53

π(µ, σ2) ∝ 1/σ2 (IV.3)

86



which is the product of two independent priors, π(µ)∝ 1 and π(σ2)∝ 1/σ2. Because

the underlying distribution is Gaussian, the likelihood function for θ is simply

L(θ) = p(d|θ) =
n

∏
i=1

1√
2πσ2

exp
[
− (xi − µ)2

2σ2

]
, (IV.4)

or equivalently

L(θ) =
(

σ2
)−n/2

exp
[
−S + n(x̄− µ)2

2σ2

]
, (IV.5)

where x̄ is the sample mean and S=∑(xi − x̄)2.

Because the reference prior distribution that was chosen forms a “conjugate pair”

with the likelihood function, the posterior distribution for θ = (µ, σ2) can be con-

structed analytically (see Ref. 53 for the details). If only the marginal uncertainty in a

subset of parameters is of interest, this is expressed mathematically as an integration

over the parameters which are not of interest. For example, the marginal distribution

for µ can be computed as

p(µ|d) =
∫

p(µ, σ2|d) dσ2 (IV.6)

After some simplification, it can be shown that

µ− x̄
s/
√

n
∼ tn−1 (IV.7)

where x̄ and s are the sample mean and standard deviation of the observations (treated

here as summary statistics of d, not random variables), respectively, and tn−1 is a

random variable with Student’s t distribution on n − 1 degrees of freedom. This is

the same distribution from which confidence intervals on the population mean are

traditionally computed.

The difference between the Bayesian perspective and the classical perspective is

that the latter treats the unknown population mean as a constant and the sample

mean as a random variable, whereas Bayesian analysis treats the unknown popula-
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tion parameters as random variables. By treating the unknowns as random variables,

a rigorous, more complete representation about the uncertainty can be obtained. Fur-

ther, Bayesian analysis allows for examination of distribution parameter uncertainty

for any probability distribution which has a computable (at least to a proportional-

ity constant) density function. The drawback is that the posterior distribution will

not be analytically available in many cases, and numerical methods will be required.

However, Markov Chain Monte Carlo sampling (MCMC) has been shown to be an ef-

fective method for simulating (through random sampling) the posterior distribution.

A detailed treatment of MCMC can be found in Ref. 58.

IV.1.2 Bayesian Model Averaging

Now consider that instead of assuming that one particular probability distribution

model is correct, k candidate models, Mj, j = 1, . . . , k, are under consideration, each

with associated unknown parameters, θj. Here the goal is to quantify the relative

support from the data for each candidate model. Bayes’ theorem can be applied again,

here to compute the posterior probability associated with each candidate model:

P(Mj | d) =
p(d |Mj)P(Mj)

∑r p(d |Mr)P(Mr)
, (IV.8)

where P(Mj | d) is the posterior probability of Mj, and P(Mj) is the prior probability

of Mj. In most cases, equal prior probabilities are desired for each candidate model,

in which case the posterior probabilities become

P(Mj | d) =
mj

∑r mr
, (IV.9)

where mj = p(d |Mj) is the likelihood of Mj, which can be shown to be

mj =
∫

Lj(θj)πj(θj) dθj, (IV.10)
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where Lj(θj) = pθj(d) is the likelihood function for θj under Mj. Thus, the posterior

probability of each candidate model is based on the relative likelihood of observing

the sample data under that model, where the unknown parameters are integrated out.

In practice, there are two difficulties associated with computing this posterior dis-

tribution: (1) it is necessary to specify a prior distribution, πj(θj) for each model, and

(2) the integral of Eq. IV.10 can be difficult to evaluate. With regards to the prior dis-

tribution of the unknown parameters, the ideal approach in most cases would be to

employ a noninformative reference prior, as is typically done when making inference

on θ alone. This poses a problem here, however, because most noninformative priors

are improper and are thus only defined up to a constant, which results in an arbitrary

constant in mj. Note that when computing the posterior of θ, this is not a problem be-

cause the constant will get canceled; when computing the posterior of Mj, however,

the constant does not get canceled.

A popular approach for handling both the prior distribution problem and the in-

tegration problem is to compute an approximation to mj that does not depend on the

prior. Let `(θ) = log L (θ), and let θ̂ denote the maximum likelihood estimator. A

fairly accurate approximation to mj is m̂j,49, 84 where

m̂j = exp
(
`j(θ̂j)−

dj

2
log n

)
(IV.11)

and dj is the number of components of θj.

Now posterior probabilities of each candidate model form Mj can be obtained,

as well as posterior distributions for the parameters associated with each candidate

model, θj. Typically, however, one is not interested in these posterior probabilities as

such. Instead, one is interested in the uncertainty that they imply about some depen-

dent quantity of interest.

Say that the quantity of interest is γ, which is a function of the probability dis-

tribution model, M , and its parameters. The quantity of interest, γ, could be, say, a

probability of failure obtained from a reliability analysis. For any particular probabil-
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ity distribution model, Mj, one could compute what could loosely be referred to as a

posterior distribution for γ, p(γ | d, Mj), by propagation of the posterior p(θ | d, Mj)

through the reliability analysis process.

Adding in model form uncertainty, it is easy to show that the posterior distribution

of γ is given by

p(γ | d) = ∑
r

p(γ | d, Mr)P(Mr | d), (IV.12)

where p(γ | d, Mr) is the posterior distribution of γ under Mr, which is simply a

function of p(θr | d). The posterior distribution of the quantity of interest, γ, is then a

comprehensive representation of the uncertainty associated with γ due to uncertainty

in both the probability distribution model form and parameters associated with the

input random variable. This posterior distribution could be used, among other things,

to display a histogram, compute an expected value, or compute confidence intervals.

For example, the posterior expected value of γ is given by

E[γ | d] =
∫

γ p(γ | d) dγ (IV.13)

IV.2 Reliability Analysis Under Uncertainty

The goal of reliability analysis is to determine the probability that an engineered

device, component, system, etc. will fail in service given that its performance is a

function of some random inputs. This performance is defined by a response function

g(x), where x represents the vector of random variables defined by known probability

distributions. Failure is then said to occur when the response function exceeds (or fails

to exceed) some threshold value z̄. The probability of failure, p f , is then defined by

p f =
∫

g> z̄

p(x) dx (IV.14)

where p(x) is the joint probability density function of the random variables x, and the

integration is performed over the failure region where g > z̄.
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Clearly, the probability of failure depends on the specified probability density

function for the inputs, p(x). In practice, though, p(x) may need to be estimated

using observed sample data, in which case it is subject to uncertainty, as outlined in

Section IV.1. Since the probability density p(x) is uncertain, the computed probability

of failure is also uncertain, hence the term reliability analysis under uncertainty.

The approach employed here to account for this uncertainty is to first quantify the

uncertainty associated with p(x) using the methods outlined in Section IV.1, and then

to propagate this uncertainty through to p f . Conceptually, one can think of randomly

generating “realizations” of p(x) from its uncertainty model; for each realization, the

corresponding failure probability, p f , is computed based on Eq. IV.14.

Section IV.1 describes the process for using Bayesian inference to construct what

is essentially a hierarchical uncertainty model for p(x). Uncertainty associated with

model form is quantified by posterior probabilities P(Mj | d), while uncertainty asso-

ciated with model parameters, conditional on a particular model form, is quantified

by the posterior distribution p(θj | d, Mj). It turns out that if the common practice of

calculating the posterior p(θj | d, Mj) using Markov Chain Monte Carlo sampling is

adopted, then it is a simple matter to generate “realizations” of p(x). This is because

the MCMC sampling process itself provides random samples of θj from p(θj | d, Mj).

To put the above concepts together, the uncertainty in p f due to uncertainty in

the specification of p(x) can be quantified by constructing an uncertainty distribution

using the following sampling scheme:

1. Generate a random realization of the probability density function p(x):

(a) Randomly select a probability distribution model Mj based on the model

form posterior probabilities, P(Mr | d), r = 1, . . . , k.

(b) Using the MCMC sampler, generate a random realization of the parameter

vector θj from p(θj | d, Mj).

2. Compute the corresponding value of p f , which represents one sample from its
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uncertainty distribution.

The results from this sampling scheme could be used to derive a variety of metrics

that are useful in conveying the impact of probability distribution model uncertainty

on the results of the reliability analysis. For example, one could compute a confidence

interval or conservative upper bound for p f at a given confidence level.

There is a fundamental challenge, however, with using the above scheme for prac-

tical problems. This is that in practice, the performance function g(x) is typically not a

closed-form function, but instead it may only be observable by exercising a (possibly

expensive) computer simulation, such as a finite element model. As such, direct com-

putation of the failure probability given by Eq. IV.14 is rarely possible, and a variety

of computational methods have been developed specifically for this purpose. Widely

used methods include those based on finding the so-called Most Probable Point (MPP)

and sampling methods.39

Because the sampling scheme outlined above will require multiple reliability anal-

yses, an efficient reliability analysis technique is clearly of paramount importance.

This efficient technique is provided in EGRA. Chapters II and III have demonstrated

several features of EGRA that make it an extremely attractive choice in this context.

First, EGRA is very efficient and has been shown to require a number of function eval-

uations on the same order as MPP-based methods such as Advanced Mean Value.

Second, EGRA has been shown to be very accurate, far-surpassing the accuracy of

MPP-based methods on several nonlinear, multimodal test problems, even rivaling

the accuracy of exhaustive LHS sampling. The most compelling argument for the use

of EGRA in this situation, though, is that no new function evaluations will be needed

each time the distributions of the input random variables change. As such, although

the construction of the uncertainty distribution for p f may require thousands of relia-

bility analyses, EGRA will only require evaluations of g(x) during the first reliability

analysis.

The EGRA method achieves its efficiency and accuracy by constructing a Gaussian
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process surrogate model to g(x). What makes EGRA different from other surrogate-

based methods is that the training points used to construct the surrogate are chosen

deliberately to achieve high accuracy near the limit state, and only near the limit state

(the limit state is the contour of g(x) for which g = z̄). Once the surrogate model

has been constructed, it is then sampled exhaustively to compute p f ; because the sur-

rogate model does not depend on the specific probability distribution models of the

inputs, it does not need to be reconstructed when the distribution models and/or pa-

rameters change. This feature makes the method very well-suited for comprehensive

uncertainty analysis with Bayesian inference.

IV.3 Computational Experiments

This section presents three example problems. The first revisits the cantilever beam

problem, but now assuming that the input distribution parameters are estimated from

varying amounts of test data. Note, however, that the distribution forms are assumed

known in this problem. The second demonstrates the convergence of the Bayesian

Model Averaging to the “correct” distribution as additional test data is gathered. The

final problem revisits the Bistable MEMS problem and performs the reliability analysis

assuming that the distribution model form and its parameters are uncertain for one of

the inputs.

IV.3.1 Cantilever Beam with Parameter Uncertainty

The cantilever beam problem (previously investigated in Sections II.4.3 and III.3.2,

as well as Refs. 24, 26, 63, 76, 81, 88 and others to test reliability analysis and design

methods) is used as an example. This problem has two response functions of interest;

one concerning the stress, gS and one concerning the displacement, gD:

gS = R− 600
wt

(
Y
t
+

X
w

)
(IV.15)

gD = D− 4L3

Ewt

√
Y2

t4 +
X2

w4 (IV.16)
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The limit states for these response functions are at gS = 0 and gD = 0; all variables are

described in Table IV.1.

Table IV.1: Variable detail for the cantilever beam example. The values for t, w, and D
are taken from Ref. 81.

Variable Mean COV Distribution
Horizonal Load, X 500 0.2 Normal
Vertical Load, Y 1,000 0.1 Normal
Yield Strength, R 40,000 0.05 Normal
Modulus of Elasticity, E 29e6 0.05 Normal
Length, L 100 — Deterministic
Beam Width, w 2.6041 — Deterministic
Beam Thickness, t 3.6746 — Deterministic
Max Displacement, D 2.25 — Deterministic

The probabilities of failure at this design for the stress and displacement functions

are: P (gS≤0)=1.111×10−3 and P (gD≤0)=2.093×10−4 (determined from the aver-

age probability of failure reported from 20 independent runs of the EGRA algorithm).

Of course, these numbers are assuming that the distribution parameters are known.

If the variables describing the material properties E and R are known to follow nor-

mal distributions, but their means and standard deviations must be estimated from

a limited number of material tests, Bayesian inference can be used to quantify the

uncertainty in these probabilities of failure.

For this problem, it was assumed that only 5 observations of the material proper-

ties E and R are available. These “observations” are drawn from random sampling of

the assumed unknown distributions listed in Table IV.1. Using these data, 1000 sam-

ples of the unknown distribution parameters are drawn using Markov Chain Monte

Carlo sampling. This is used as the “outer loop” of a nested sampling method similar

to that used in Ref. 81. On the “inner” loop, EGRA is used to calculate the probabil-

ity of failure given the particular set of distribution parameters. For each iteration,

EGRA searches for the limit state over µi
E ± 5σi

E and µi
R ± 5σi

R, which will clearly dif-

fer for each iteration but will largely overlap. Subsequent iterations inherit the GP

model created in previous iterations, but may require training that model in regions
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of the random variable space not previously visited and thus may require additional

function evaluations. For this example, because only 5 observations have been made,

there is considerable uncertainty in the distribution parameters, making the search

space rather large. In total, for the 1000 MCMC samples, EGRA required 11 function

evaluations for the stress response function gS and 74 for the displacement response

function gD. The end result is the posterior distribution of the probability of failure

for each response function, which are shown in Figure IV.1.

(a) Stress function. (b) Displacement function.

Figure IV.1: Posterior distributions of the probability of failure for the stress and dis-
placement response functions, respectively, assuming only 5 observations for the in-
put distributions of the material properties E and R.

From these distributions, several statistics could be calculated, e.g. the expected

probability of failure, upper and lower confidence bounds, or the confidence that the

probability of failure will lie below some value of interest such as a regulatory limit.

It is important to point out that these curves are as accurate as an exhaustive nested

sampling method often used for this type of problem, but at a cost of only 11 and 74

evaluations of the true response functions instead of the possibly billions that might

be required by the nested sampling. This is clearly a substantial cost savings.

Moreover, assume now that further observations of the material properties are

made. These additional data provide additional certainty of the input variable dis-

tributions, i.e. the distributions of their parameters have less variance. Because the
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GP model was built independent of the input distributions and their parameters it

does not have to be rebuilt to accomodate this change in the input distributions. The

same MCMC-MAIS nested sampling can be performed to generate an updated prob-

ability of failure distribution at the cost of zero additional true function evaluations.

Figure IV.2 shows the posterior distributions of the probability of failure assuming

5, 10, 25, 50, 100, and 1000 samples of the input distributions for the stress response

function. Figure IV.3 shows the same for the displacement response function.

Figure IV.2: Posterior probability density and cumulative distribution functions for
the stress response function assuming varying numbers of initial samples.

Figure IV.3: Posterior probability density and cumulative distribution functions for
the displacement response function assuming varying numbers of initial samples.

These plots show a clear convergence of the posterior distributions toward the

true probability of failure. This can be easier seen by plotting the convergence of the
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confidence bounds. Figure IV.4 shows the 5% and 95% confidence bounds on the

probability of failure distribution for both response functions.

(a) Stress function. (b) Displacement function.

Figure IV.4: Convergence of the 5% and 95% confidence bounds on the probability of
failure distributions for the stress and displacement response functions, respectively.

IV.3.2 Convergence of Model Form with Additional Data

The model form (posterior) probability is a representation of the degree of belief

that a random variable may be represented using a particular probability distribution

model form, based on a set of observed data. As such, one would intuitively expect

that as more and more data are collected, the model form probability should converge

to either zero or one, representing an absence of uncertainty about the “correct” model

form. When the amount of data is small, the observations may not be sufficient to dis-

criminate between candidate model forms, in which case one would expect the model

form probabilities to be more evenly distributed among the hypothesized models. In

this section, examples are presented to explore the extent to which these properties

manifest themselves during the practical application of Eqs. IV.9 and IV.11.

Candidate Models: Normal and Lognormal

First, consider the simple case in which two candidate model forms are available

with which to represent a random variable: the normal model and the lognormal
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model. In practice, these two are often used interchangeably, and each may be justi-

fiable on the basis of the central limit theorem. The probability density functions for

the normal and the lognormal model are, respectively:

pθ=(µ,σ)(x) =
1

σ
√

2π
exp

[
−1

2

(
x− µ

σ

)2
]

(IV.17)

pθ=(λ,ζ)(x) =
1

ζx
√

2π
exp

[
−1

2

(
log x− λ

ζ

)2
]

, x > 0 (IV.18)

For a given set of observed data, the approximation of Eq. IV.11 is used to compute

the model form probabilities. This involves evaluating the log of the likelihood func-

tion at the maximum likelihood estimates of the parameters. Under the assumption

that the observed data, d = (x1, . . . , xn), are independent, the log likelihood function

is given by

`(θ) =
n

∑
i=1

log pθ(xi). (IV.19)

For the normal model, the parameters θ̂ = (µ̂, σ̂) that maximize the likelihood func-

tion (and also the log likelihood function) can be shown to be

µ̂ = x̄ (IV.20)

σ̂ =
1
n

n

∑
i=1

(xi − x̄)2 (IV.21)

where the sample mean x̄ = (∑i xi) /n. The maximum likelihood estimates for the

parameters of the lognormal distribution are computed similarly, but with x replaced

by log x.

To illustrate the effect of sample size, data sets were randomly generated with sam-

ple sizes varying from 10 to 400 from a normal distribution with µ = 500 and σ = 100.

For each data set, the model form posteriors for the normal and lognormal models

were computed using Eqs. IV.9 and IV.11. Because the observed data are random, this

experiment was repeated 1,000 times at each sample size. Figure IV.5 plots the median
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value of the posterior probability for the normal model as a function of sample size,

along with 90% confidence intervals.
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Figure IV.5: Posterior probability for the normal model (candidate models being the
normal and lognormal) as a function of sample size. Sample observations are gener-
ated from the normal distribution with µ = 500 and σ = 100.

Since the data are in fact generated from a normal distribution, the posterior prob-

ability of the normal model is expected to approach one (and conversely, the probabil-

ity of the lognormal model to approach zero) as the sample size becomes large. Note

that it takes a sample size of about 150 before the median probability reaches (approxi-

mately) one. However, with 150 observations, the 5th percentile of the probability (i.e.

the lower bound based on a two-sided 90% confidence interval) is only 0.36, which is

an indication that even at this sample size, the occasional spurious sample may be bet-

ter approximated by the lognormal model than the normal. Further, sample sizes of

25 or less tend not to provide much evidence that the normal model is better than the

lognormal model. For most of the cases having small sample sizes, the computation

of the model form probability suggests (correctly) that there is substantial residual

uncertainty about the correct model form.
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Candidate Models: Normal, Lognormal, and Weibull

This example extends the previous one to the case in which there are three candi-

date model forms: normal, lognormal, and Weibull. The Weibull distribution is also

commonly used in engineering applications, and for certain values of its parameters,

it becomes a close approximation to the normal distribution. The probability density

function for the Weibull distribution is defined for x ≥ 0 as

pθ=(α,β)(x) =
β

α

(x
α

)β−1
e−(x/α)β

(IV.22)

Unlike the normal and lognormal distributions, the maximum likelihood estimate of

the Weibull parameters is not available in closed form. For the Weibull distribution,

maximum likelihood estimation can be done using a gradient-based numerical opti-

mization solver.

The previous analysis is repeated with the addition of the Weibull as a candidate

probability distribution model form. The posterior probability for each model form

is plotted in Figure IV.6 as a function of sample size, showing the median and 90%

confidence bounds, as before. Based on the median, the probability of the normal

model does show convergence towards one, but it is much slower than in the previ-

ous example. This is because the Weibull model can be a close approximation to the

normal model, so a larger number of observations are needed before the two can be

distinguished.

IV.3.3 Bistable MEMS

The preceding examples illustrate how Bayesian inference can be used to quan-

tify distribution form uncertainty when modeling random variables, but the primary

purpose of this work is to demonstrate how this type of inference can support reliabil-

ity analysis for engineering systems. This example illustrates how distribution form

uncertainty can be incorporated into the reliability analysis process.
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(a) Normal model
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(b) Lognormal model
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(c) Weibull model

Figure IV.6: Posterior probabilities for the three candidate models as a function of
sample size. Sample observations are generated from the normal distribution with
µ = 500 and σ = 100.
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For this example, the reliability analysis of the bistable MEMS device presented in

Section II.4.6 is repeated, where two key random variables are considered: ∆W (edge

bias on beam widths) and Sr (residual stress in the manufactured device). The prob-

ability distributions used in the original analysis were ∆W ∼ N(µ = 0.2, σ = 0.08)

and Sr ∼ N(µ = 11, σ = 4.13). Note that for this analysis, the signs of the random

variables have been reversed. This is done to provide more flexibility in exploring

distribution model form uncertainty, since negative values preclude the use of several

common models. The probability of failure is defined to be the probability that the

magnitude of the minimum actuation force, Fmin(∆W, Sr) is less than 5.0:

p f = P [Fmin(∆W, Sr) < 5.0] (IV.23)

The calculation of Fmin(∆W, Sr) is achieved using a nonlinear, solution-verified finite

element analysis solver.2

In order to illustrate the process of accounting for distribution model uncertainty, it

is assumed that as opposed to being known, the probability distribution of the random

variable ∆W must be estimated from a finite set of observed data. It is assumed that

the distribution for ∆W follows one of three candidate models: normal, lognormal, or

Weibull. Bayesian inference will be used, as outlined in Section IV.1, to account for

both distribution model form uncertainty and distribution parameter uncertainty.

A hypothetical set of observed data of size n = 20 for ∆W is randomly simulated

from its nominal distribution. For the purpose of the analysis, though, the observed

data set is treated as the only available information about the distribution of ∆W.

Figure IV.7 shows a normalized histogram of the observed data, along with the best

fit estimates (using maximum likelihood) for each of the three candidate distribution

models.

The normal and Weibull models appear to be very similar, and both appear to fit

the data well. The lognormal model appears to be plausible as well, but does not

appear to fit the data as well as the other two. The posterior probabilities associated
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Figure IV.7: Histogram of observed data for random variable ∆W, along with best fit
probability distribution models.

with each distribution model, computed using Eqs. IV.9 and IV.11 are tabulated in

Table IV.2. The reason that the Weibull model shows a higher posterior probability

than the normal model is probably attributable to its fit to the data in the lower tail.

The lognormal model achieves a modest posterior probability, which is expected from

the visual comparison.

The reliability analysis itself is conducted using EGRA, and the accuracy of this

method has already been demonstrated for this particular example problem in Sec-

tion II.4.6. As reported in that section, the probability of failure with the nominal

random variable definitions is 0.1099, requiring an average of only 15.3 function eval-

uations to compute using EGRA. As previously mentioned in Section IV.2, one of the

main advantages of using the EGRA method in this context (in addition to its excel-

lent accuracy and efficiency) is that it allows the exploration of probability distribution

uncertainty without any additional function evaluations. This makes reliability analysis

with sparse data practical even for very expensive response functions.

An initial run with EGRA is performed to collect the “training data” with which

to construct the targeted (for accuracy at the limit state) Gaussian process surrogate

model of Fmin. Once the training data are collected, this surrogate model can be sam-
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Table IV.2: Model form posterior probabilities based on 20 observations of ∆W.

Model P(M | d)
Normal 0.34
Weibull 0.53

Lognormal 0.13

pled based on any feasible probability distribution model for the input random vari-

ables. Because this model is trained within ±5 standard deviations of the mean for

each random variable, it should be valid for all probability distribution models that

the Bayesian inference suggests are feasible.

Once the surrogate model has been constructed, the uncertainty in the failure prob-

ability is quantified through repeated reliability analyses as outlined in Section IV.2.

For each analysis, a probability distribution model form is randomly chosen for ∆W

based on the posterior probabilities given in Table IV.2. The distribution parame-

ters are then randomly chosen as well from their posterior distribution using Markov

Chain Monte Carlo sampling. The resulting posterior distribution (based on 5,000

analyses) of p f is illustrated in Figure IV.8, which shows a normalized histogram of

the 5,000 samples of p f , along with a kernel density estimate72 based on those sam-

ples. The expected value is 0.146 (compare to the true failure probability of 0.1099),

and the 95% confidence upper bound is 0.241.

The impact of distribution model form uncertainty can be further investigated by

repeating the uncertainty analysis for each of the candidate model forms, consider-

ing only parameter uncertainty. The resulting individual posterior distributions are

compared in Figure IV.9. Note that the posteriors for the normal and Weibull mod-

els are quite similar, whereas the posterior for the lognormal model suggests higher

failure probabilities. This is consistent with Figure IV.7, where it can be seen that the

lognormal model shows a significant difference from the normal and Weibull models.

By accounting for the model form uncertainty using the Bayesian posterior probabil-

ities, it is acknowledged that the underlying probability density function might be

represented using different models, but at the same time the observed data is used to
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Figure IV.8: Histogram and kernel density estimate of posterior distribution of p f
considering uncertainty in both distribution model form and parameters for ∆W.

inform the degree of belief associated with each candidate model.

IV.4 Summary

Reliability analysis for engineering systems requires the specification of probabil-

ity density functions for all of the random inputs. In practice, the importance of these

input distributions is often overlooked, with more emphasis placed on the reliabil-

ity method itself when reporting confidence in the results. Nevertheless, recent work

has illustrated several rigorous approaches for quantifying the resulting uncertainty

in reliability when input distribution parameters (such as the mean and standard de-

viation) must be estimated from observed sample data. This chapter extended these

approaches, using Bayesian inference, to quantify the uncertainty associated with both

probability distribution model form and model parameters.

An approach was presented whereby Bayesian inference is used to quantify the

amount of evidence (in the form of posterior probabilities) that an observed sample

gives to each of a set of candidate probability distribution models (e.g. the normal,

lognormal, and Weibull models). For any given distribution model, the uncertainty

associated with the distribution parameters is also quantified using Bayesian infer-
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Figure IV.9: Posterior distributions of p f , considering only distribution parameter un-
certainty for ∆W.

ence.

This chapter also demonstrated how the resulting uncertainty in the input prob-

ability density functions can be used to characterize the uncertainty associated with

the reliability estimate of interest. The approach is based on repeating the reliability

analysis hundreds or thousands of times using feasible realizations of the input prob-

ability density functions suggested by the Bayesian inference. This approach can be

theoretically expensive, but through the use of EGRA this uncertainty analysis can

be performed without requiring many function evaluations beyond what would be

needed for a single reliability analysis.

Several numerical examples are used to illustrate the approaches. First, the can-

tilever beam problem is used to demonstrate how the outlined methods can be used

in conjunction with EGRA to investigate the impact of distribution parameter uncer-

tainty on reliability estimates.

Next, the convergence of the model form posterior probabilities is illustrated us-

ing example problems with two and three candidate model forms. It is shown that

in some cases, a very large number of observations may be needed to discriminate

between similar models. In cases where both models fit the observed data well, the
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difference in reliability computed using the two models may not be significant. For

high-reliability applications, though, where tail behavior becomes important, distri-

bution model form uncertainty may have a significant impact on reliability, even when

the candidate models appear to fit observed data comparably well.

Finally, the quantification of uncertainty in the reliability analysis due to both dis-

tribution parameter and distribution form uncertainty is illustrated via the analysis

of a bistable MEMS device. By assuming a hypothetical observed data set for one of

the input random variables, the posterior distribution of failure probability is com-

puted. This is done using 5,000 repeated reliability analyses with the EGRA method,

but only 15 evaluations of the response function are needed. This example empha-

sizes that these seemingly expensive approaches can be brought to bear on even the

most expensive reliability analysis applications.
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CHAPTER V

RELIABILITY-BASED DESIGN OPTIMIZATION

Determining the optimal (lightest, least expensive, etc.) design for an engineered

component or system that meets or exceeds a specified level of reliability is a problem

of obvious interest across a wide spectrum of engineering fields. Various methods

for this reliability-based design optimization (RBDO) problem have been proposed;

several were discussed in Chapter I. Unfortunately, this problem is rarely solved in

practice because, regardless of the method used, solving the problem is either too ex-

pensive or the final solution is too inaccurate to ensure that the reliability constraint

is actually satisfied. This is especially true for engineering applications involving ex-

pensive, implicit, and possibly nonlinear performance functions (such as large finite

element models). EGRA was developed in earlier chapters to improve both the accu-

racy and efficiency of reliability analysis for this type of performance function. This

chapter explores how EGRA can be used in a design optimization context to create a

method of sufficient accuracy and efficiency to enable the use of RBDO as a practical

design tool.

RBDO is used to perform design optimization (such as minimizing the weight of a

component) while accounting for reliability constraints. A general RBDO problem is

typically of the form:

minimize f (d)

subject to P [g (d, x) ≥ z̄] ≤ p̄ f (V.1)

where the objective function f is a function of only the deterministic design variables

d, but the response function in the reliability constraint g is a function of d and x, a

vector of random variables defined by known probability distributions.
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A common alternate formulation is the case where the design variables are actually

parameters of the distributions of the random variables in x. It is easy to imagine a

situation where the designer could specify the nominal size of a component, but has

no control over the manufacturing tolerance. In such a case, the specified size might

be the mean value of a distribution with the variance set by the known variations in

the manufacturing process. For this type of “variable insertion” problem, the RBDO

problem could be stated as:

minimize f (θ)

subject to P [g (x(θ)) ≥ z̄] ≤ p̄ f (V.2)

Another alternate formulation is to make the reliability the objective subject to

some deterministic constraint. An example would be a situation where the designer

desired to make a system as reliable as possible within some specified budget. For

this type of formulation, the RBDO problem could be stated as:

minimize P [g (d, x) ≥ z̄]

subject to f (d) ≤ f̄ (V.3)

There are two essential ways that the computational expense of RBDO can be re-

duced. The first is to reduce the cost of performing the reliability analysis at a candi-

date design by reducing the number of evaluations of the response function g that are

required. For this, EGRA can be used. The second is to reduce the number of design

points at which the reliability analysis must be performed. To accomplish this, an ef-

ficient optimizer is needed. Moreover, a gradient-free optimizer is needed. Clearly,

analytic derivatives of the probability of failure as a function of the design are not

available. Equation I.30 provides an approximation based on the assumed shape of

the limit state, but this derivative will be inaccurate if the approximation is poor. In

general, this derivative would need to be calculated through numerical differentia-
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tion, with a full reliability analysis required at each finite difference point; clearly this

could require substantial cost.

The Efficient Global Optimization47 (EGO) method discussed in Section II.1 is both

efficient and gradient-free. However, EGO was originally created as an unconstrained

minimizer, so without modification it is not applicable to the RBDO problem. The next

section details a formulation to enable the solution of constrained problems using

EGO.

V.1 Constraint Formulations for EGO

EGO was originally created as an unconstrained minimizer, and several methods

have been investigated to add constraint support to the algorithm. Ref. 70 suggested

multiplying the expected improvement at each point by that point’s probability of be-

ing feasible (where that probability is determined from the variance in the GP model).

Ref. 8 applied a penalty to the expected improvement value at points which are infea-

sible. Ref. 69 enforced the constraints by moving them into the max(EIF) problem.

The probability method70 may be applicable to the RBDO problem, but was shown

to leave slack in the constraints, causing it to converge to sub-optimal solutions.69 The

penalty method8 and the constrained EIF method69 cannot be used as implemented in

those works because they assume that at any point, the true feasibility of that point can

be easily determined. For RBDO problems, assessing the feasibility involves solving

the reliability analysis problem, which will clearly be too computationally expensive.

Instead, a new formulation for enforcing constraints in EGO is introduced here. This

method constrains the max(EIF) problem using an augmented Lagrangian formula-

tion, but uses the so-called “expected violation” since the true violation is unknown.

V.1.1 Augmented Lagrangian Formulation

Optimization methods based on merit functions are commonly used to solve con-

strained optimization problems. This type of method adds penalty terms to the objec-
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tive function based on the constraint violations, thus making them less desirable to the

optimizer. One very successful type of merit function is the augmented Lagrangian

formulation. Using this formulation, the merit function for a constrained optimization

problem can be generally written as:

M = f + λg∆g + rp∆2
g + λh∆h + rp∆2

h (V.4)

where λg and λh are Lagrange multipliers, rp is the penalty coefficient, ∆g is an in-

equality constraint violation (∆g = 0 at feasible points), and ∆h represents an equality

constraint violation. Of course,M, f , ∆g, and ∆h are all dependent on the point x at

which they are evaluated. Note that this equation assumes the presence of only one of

each type of constraint, but λg, λh, ∆g, and ∆h, could easily be replaced with vectors to

form a more general formulation. For use with EGO, Gaussian process models stand

in for f , ∆g, and ∆h:

M = f + λg∆̂g + rp∆̂2
g + λh∆̂h + rp∆̂2

h (V.5)

To drive the EGO algorithm, the expected improvement for this merit function is

needed, but its calculation is not straightforward.

Recall that at any point, the terms f̂ , ∆̂g, and ∆̂h do not represent single values,

but Gaussian distributions. A linear combination of Gaussian distributions results in

another Gaussian distribution, but the square term in Eq. V.5 means that the resulting

distribution ofM is not Gaussian. To accomodate the use of EGO in an augmented

Lagrangian formulation, a deterministic value is needed in place of these distribu-

tions. The predicted violations µ∆g and µ∆h could be used, but they do not account for

the uncertainty in these predictions. To provided a measure based on both the current

prediction and the uncertainty in that prediction, an expected violation function can

be used.
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V.1.2 Expected Violation Function

The Expected Violation Function (EVF) for inequality constraints was originally

introduced in Ref. 7, but was used differently in that work. Here it is used to replace

the constraint violation terms ∆g and ∆h in Eq. V.5 with their expected violation. For an

inequality constraint with an upper bound, the expected violation is calculated in a

similar fashion as the previously derived expected improvement function:

EVg =
(
µg − ḡ

) [
1−Φ

(
ḡ− µg

σg

)]
+ σg φ

(
ḡ− µg

σg

)
(V.6)

For an inequality constraint with a lower bound, this becomes:

EVg =
(

ḡ− µg
)

Φ
(

ḡ− µg

σg

)
+ σg φ

(
ḡ− µg

σg

)
(V.7)

And for an equality constraint:

EVh =
(
µh − h̄

) [
1− 2Φ

(
h̄− µh

σh

)]
+ 2σh φ

(
h̄− µh

σh

)
(V.8)

Using the proper expected violation for each constraint, the augmented Lagrangian

merit function becomes:

M = f̂ + λgEVg + rpEV2
g + λhEVh + rpEV2

h (V.9)

Because this formulation adds deterministic values to the Gaussian distribution f̂ , the

merit function is now truly Gaussian with parameters defined by:

µM = µ f + λgEVg + rpEV2
g + λhEVh + rpEV2

h (V.10)

σM = σf (V.11)

These values can then be used in Eq. II.11 to calculate the expected improvement on

the merit function.
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When EGO converges, the GP models of the objective function and any constraints

are theoretically accurate in the vicinity of the optimum solution due to the sample

density in this region. Recognizing this, a gradient-based optimizer can be used to

refine the EGO solution using these GPs rather than the true functions so that no ad-

ditional true function evaluations are necessary. In this study, the Nonlinear Interior

Point Solver (NIPS) in OPT++59 is used to perform this solution refinement. Addi-

tional details on the implementation of the merit function can be found in Refs. 25

and 80. The scheme used to update the Lagrange multipliers λ and the penalty coef-

ficient rp comes from Ref. 17.

V.1.3 Simple Constrained EGO Example

To demonstrate the effectiveness of this new constrained EGO formulation before

applying it to the RBDO problem, a simple test is presented here. This test involves

the “mystery” function from Ref. 69 and is stated as:

minimize f = 2 + 0.001(x2 − x2
1)

2 + (1− x1)
2 + 2(2− x2)

2 + 7 sin 0.5x1 sin 0.7x1x2

subject to g = − sin(x1 − x2 − π
8 ) ≤ 0

0 < x1, x2 < 5 (V.12)

The EGO solution to this problem is compared to that from the NIPS method.59

Note that because EGO is a stochastic method, an average solution is given with some

additional information on the best solutions found for 10 runs of this method.

Table V.1: Results for the simple constrained EGO example.

Optimization Avg. Obj. Fn Avg. Violation Avg. Fn Evals
Method (Best Obj. Fn) (# violations) (Obj. Fn/Con. Fn)
NIPS -1.174 8.44E-5 51/32
EGO -1.162 (-1.174) -4.22E-3 (0) 25.5/25.5

The average EGO solution is very close to the optimal value found by the NIPS

method,59 and is capable of locating the same optimal value (in fact, for this study, this
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value was found 5 times in the 10 EGO runs). EGO clearly does a good job of enforcing

the constraint; none of the solutions were infeasible. EGO is also less expensive than

NIPS, requiring only 61% of the total function evaluations (on average).

This successful test shows that this constrained EGO method holds promise for

solving the RBDO problem, which also involves a nonlinear inequality constraint.

The next section details several ways that this RBDO problem can be formulated.

V.2 Formulations for RBDO with EGO/EGRA

A variety of ways to incorporate EGO and EGRA into an RBDO formulation are

investigated.

V.2.1 Nested RBDO with Separate Surrogates

In this method, EGO is used as the optimizer and for each candidate design point a

full reliability analysis is performed using EGRA. For each EGRA analysis, the design

point d is set; EGRA operates only over the random variables, x. Because this must

be performed at every design point and there is no sharing of information to either

guide the optimizer or assist subsequent EGRA runs, this is expected to be the most

expensive option. However, due to the efficiency of both EGO and EGRA, this is

still expected to require fewer evaluations of the response function g than previously

investigated nested RBDO methods.

V.2.2 Nested RBDO with a Single Surrogate

In this method, EGRA is first used to locate the limit state and build a single GP of

g over the entire d+x space in one step. With this GP built, any optimizer could be

used at the design level; to calculate the probability of failure corresponding to any

design point, one needs only to sample the GP previously built by EGRA. This opti-

mization requires no additional evaluations of the response function when evaluating

the probabilistic constraints. Because EGRA is allowed to search over the full range
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of d+x at all times instead of being restricted to adding points with set values of d,

this method is expected to be more efficient than the nested method where the models

at each d are formed separately. However, the disadvantage to this method is that it

may “waste” function evaluations by resolving the limit state in regions of the design

space that may never be visited by the optimizer.

For the tests of this method in Section V.3, a full EGRA analysis is run using the

true response function to verify the reliability of the optimal design. The function

evaluations used in this step are not counted in the method’s cost, but the result is

used in determining whether the method converged to a feasible solution.

V.2.3 Sequential RBDO

This formulation uses a GP of the response function in the probabilistic constraint

that spans d+x, but rather than update that model for every iteration of the design

optimizer, it is only updated at its convergence. The algorithm follows this outline:

1. Build an initial GP for the objective function. At each design point, use EGRA to

solve for the p f at that point using a GP for g that spans the design and random

variable spaces.

2. Use EGO to fully solve the RBDO problem. At each design point, to calculate

the corresponding p f , sample the current GP of g, holding d constant.

3. When EGO converges, calculate the true p f using EGRA at d∗. The points used

by EGRA to resolve the limit state are then added to the GP of g.

4. Re-solve the RBDO problem using this new GP. Iterate until the method con-

verges.

This method has one major advantage over the nested method with a single sur-

rogate model: because it only adds points to the GP at candidate optimal points, it

does not waste time increasing the accuracy of the GP in regions of the design space
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that are far from optimal. Assessing convergence of this method is difficult. Due to

the stochastic nature of EGO, the “converged to the same point” technique typically

used for sequential problems cannot be applied. Instead, this study uses a metric on

the accuracy of the underlying constraint function GP models. At the optimal point

from an EGO solution, if the value of all of the constraint functions’ GP models are

within 1% of the actual constraint function values after verification, the method is

said to have converged. However, while the latest analysis may have been necessary

to ensure this accuracy in the models, it is not necessarily the optimal solution found

by the algorithm. All of the candidate optimal designs are post-processed to find the

best solution.

V.3 Computational Experiments

Several test problems are investigated to compare the results of these various for-

mulations of RBDO with EGRA to one another and to other RBDO algorithms. For

each problem, two “baseline” tests were run using the most successful methods from

Ref. 24. The first test is a nested formulation using the Nonlinear Interior Point Solver

(NIPS) from the OPT++59 library for the design optimizer and the second-order it-

erated Advanced Mean Value method24 (AMV2+) to perform the reliability analysis.

This nested formulation is used to find the baseline solution, but is expected to be rel-

atively expensive. To provide a more fair comparison on the expense of the methods,

a second more efficient baseline is run using a sequential, trust-region based method,

again using NIPS and AMV2+. These are both gradient-based methods; to simulate

their use on implicit performance functions, numerical differentiation is used to com-

pute the gradients and, where needed, Hessian information is generated using quasi-

Hessians with Symmetric Rank 1 updating.

Note that while the RBDO discussion above was in terms of the probability of fail-

ure p f , in the examples here, the reliability constraint is actually enforced in the beta-

space, using the generalized reliability index β∗=−Φ−1(p f ). This scheme was found
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to be more computationally efficient in the RBDO studies in Ref. 24 and is therefore

repeated here.

V.3.1 Short Column

The first application problem revisits the short column problem previously inves-

tigated in Section II.4.4. This problem involves the plastic analysis and design of a

short column with rectangular cross section (width b and depth h) having uncertain

material properties (yield stress Y) and subject to uncertain loads (bending moment

M and axial force P).24, 51 The response function is defined as:

g = 1− 4M
bh2Y

− P2

b2h2Y2 (V.13)

The distributions for P, M, and Y are Normal(µ = 500, σ = 100), Normal(µ = 2000,

σ = 400), and Lognormal(µ= 5, σ = 0.5), respectively, with a correlation coefficient of

0.5 between P and M (uncorrelated otherwise).

An objective function of cross-sectional area and a target probability of failure are

used in the design problem:

min bh

s.t. β∗ ≥ 2.5

5.0 ≤ b ≤ 15.0

15.0 ≤ h ≤ 25.0 (V.14)

Table V.2 gives a summary of the results from all investigated methods. Because

both EGO and EGRA are stochastic methods, average solutions are given with some

additional information on the best solutions found for 10 runs of these methods.

The EGO/Separate EGRA test performed well. It used approximately 16% of the

function evaluations required by the Sequential NIPS/AMV2+ baseline test. The ob-

jective function values are competitive with the baselines, and none of the runs pro-
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Table V.2: Results for the short column RBDO example.

Design/Reliability Avg. Obj. Fn Avg. β∗ Violation Avg. g Evals
Methods (Best Feasible) (# violations) (Best Feasible)
Nested NIPS/AMV2+ 216.7 0.0 4123
Sequential NIPS/AMV2+ 216.7 0.0 2434
EGO/Separate EGRA 216.7 (216.2) -0.013 (0) 396.2 (321)
EGO/Single EGRA 218.8 (217.2) -0.010 (5) 161.1 (149)
Sequential EGO/EGRA 217.3 (216.2) -0.036 (0) 222.8 (361)

duced an infeasible result.

The EGO/Single EGRA method is the least expensive of the new methods (requir-

ing less than half of the function evaluations of the EGO/Separate EGRA method),

but its objective function values do not compare as well to those of the other methods.

The average constraint violation is comparable to the other methods, but half of the

runs produced slightly infeasible results. This is likely due to the inaccuracy of the

model at the optimal point. Because the model was trained over the entire d+x space,

the model will be less accurate than if it were trained with d∗ in the training set as it

is for the Nested and Sequential methods.

The Sequential EGO/EGRA test provides a compromise between the nested meth-

ods. It required, on average, just 9% of the function evaluations needed by the Sequen-

tial NIPS/AMV2+ baseline test; the average objective function value is within 1% of

the baseline tests’ results and it produced no infeasible solutions.

V.3.2 Cantilever Beam

This test problem investigates the cantilever beam problem that has been previ-

ously investigated in Sections II.4.3, III.3.2, and IV.3.1, as well as Refs. 24, 26, 63, 76, 88

and others to test both reliability analysis and design methods. This problem demon-

strates the ability of the EGRA-based RBDO formulations to enforce multiple con-

straints.

This problem has two response functions of interest; one concerning the stress, gS
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and one concerning the displacement, gD:

gS = R− 600
wt

(
Y
t
+

X
w

)
(V.15)

gD = D− 4L3

Ewt

√
Y2

t4 +
X2

w4 (V.16)

The limit states for these response functions are at gS = 0 and gD = 0; all variables are

described in Table V.3.

Table V.3: Variable detail for the cantilever beam example.

Variable Mean COV Distribution
Horizonal Load, X 500 0.2 Normal
Vertical Load, Y 1,000 0.1 Normal
Yield Strength, R 40,000 0.05 Normal
Modulus of Elasticity, E 29e6 0.05 Normal
Length, L 100 — Deterministic
Max Displacement, D 2.25 — Deterministic

The design problem is to minimize the weight (or, equivalently, the cross-sectional

area) of the beam subject to probabilistic constraints on the displacement and stress.

This RBDO problem is stated as:

min wt

s.t. β∗S ≥ 3.0

β∗D ≥ 3.0

1.0 ≤ w, t ≤ 4.0 (V.17)

Table V.4 gives a summary of the results from all investigated methods. Because

both EGO and EGRA are stochastic methods, average solutions are given with some

additional information on the best solutions found for 10 runs of these methods.

All of the EGO/EGRA methods converged to better objective function values than

the Sequential NIPS/AMV2+ method, which, given the drastic difference in cost be-

tween this and the Nested NIPS/AMV2+ method, appears to have pre-converged to
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a poor solution.

The EGO/Separate EGRA method is again the most expensive of the new meth-

ods. In a few cases, this method converged to a slightly infeasible solution, but on av-

erage does a good job enforcing the constraints. The EGO/Single EGRA and Sequen-

tial EGO/EGRA methods are comparable in cost, but the Sequential method clearly

does a better job locating feasible solutions. The Sequential EGO/EGRA method, on

average, requires less than 5% and 10% of the function evaluations (for gS and gD,

respectively) of the Sequential NIPS/AMV2+ and clearly produces a better optimal

value. The average optimal solution from Sequential EGO/EGRA is within 1% of that

found by the Nested NIPS/AMV2+ at less than 2% and 4% of the cost.

V.3.3 Liquid Hydrogen Tank

This test problem involves the design of a liquid hydrogen fuel tank on a space

launch vehicle.57, 75 The reliability analysis component of this problem was inves-

tigated in Section III.3.3. This problem demonstrates a special feature of applying

EGRA-based RBDO to the variable insertion problem and also its ability to enforce

system-level probabilistic constraints.

The tank has a honeycomb sandwich design with top and bottom plates made of

aluminum alloy AL2024 with the sandwich material made of Hexcell 1/8-in.-5052.0015.

The tank is subjected to stresses caused by ullage pressure, head pressure, axial forces

due to acceleration, and bending and shear stresses caused by the weight of the fuel.

The random variables for this problem include the thickness of the plate tplate ∼

Normal(µplate, σ=0.005), the thickness of the honeycomb th ∼ Normal(µ=0.1, σ=0.01),

and the loads on the tank Nx ∼ Normal(µ=13, σ=60), Ny ∼ Normal(µ=4751, σ=48),

and Nxy ∼ Normal(µ=-684, σ=11). The mean plate thickness µplate is the design vari-

able.

Three modes of failure are considered for the tank: von Mises strength, isotropic

strength, or honeycomb buckling. The honeycomb buckling response function is de-
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fined by a response surface generated from the structural sizing program HYPER-

SIZER,16 which is given in Ref. 75 as:

gHB = 0.847 + 0.96x1 + 0.986x2 − 0.216x3 + 0.077x2
1 + 0.11x2

2

+ 0.007x2
3 + 0.378x1x2 − 0.106x1x3 − 0.11x2x3 (V.18)

where x1, x2, and x3 are defined as:

x1 = 4
(
tplate − 0.075

)
(V.19)

x2 = 20 (th − 0.1) (V.20)

x3 = −6000
(

1
Nxy

+ 0.003
)

(V.21)

The response functions for the von Mises and isotropic strengths are defined by:

gvM =
84, 000 tplate√

N2
x + N2

y − NxNy + 3N2
xy

− 1 (V.22)

gISO =
84, 000 tplate

|Ny|
− 1 (V.23)

This system probability of failure is defined as:

p f = P [gvM (x) < 0 ∪ gISO (x) < 0 ∪ gHB (x) < 0] (V.24)

The RBDO problem is stated as:

min µplate

s.t. p f ≤ 0.001

0.035 ≤ µplate ≤ 0.1 (V.25)

Note that the bound constraint in Eq. V.25 is not part of the original problem for-

mulation, but is added here to compensate for a weakness in constrained EGO. Similar

121



to EGRA that has problems when the underlying GP model breaks down due to sin-

gularities in the response (see the discussion in Section II.4.5), EGO cannot deal with

the large “flat” spots in the constraint function that are caused by searching regions of

the design space where EGRA reports the probability of failure as either zero or one

(and β∗ is either ∞ of −∞). EGRA will return p f = 0 (or 1) when the limit state is not

found within its search space. Because this space is restricted (in this work at ±5σ)

the true probability of failure may not actually be 0 or 1, the limit state just lies be-

yond these bounds, so this problem arises as an artifact of the EGRA truncation of the

search space. The need to determine bounds on the design space is similar to selecting

a starting point for gradient-based optimization methods, where the user must take

care not to start the optimization in one of these “flat” regions where the constraint

gradient is zero. However, the EGO limitation is more onerous to the user because

rigorous bounds on all design variables must be known rather than a single reason-

able starting position. Future versions of EGO might be able to detect these “flat”

regions and automatically remove them from the design space. Alternatively, EGO

might adapt the bounds of the EGRA search space as needed to mitigate the effect of

the random variable truncation.

EGRA-based RBDO is especially efficient when applied to this type of variable in-

sertion problem. As was discussed extensively in the previous chapter, because EGRA

operates independently of the input distributions, the model it creates remains accu-

rate for changes in those distributions. Because of this, a simple nested formulation of

EGO/EGRA RBDO is extremely efficient. At the first design point, a full EGRA anal-

ysis is performed. At subsequent design points, the GP from the initial search can be

re-used, thus requiring few (if any) additional true function evaluations to determine

the probability of failure at this new point.

Table V.5 gives a summary of the results using the Nested EGO/EGRA RBDO

formulation compared to results for this problem from Ref. 57. This work uses a novel

single-loop RBDO formulation using FORM and Pandey’s method61 to calculate the
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system reliability. Because both EGO and EGRA are stochastic methods, an average

solution is given with some additional information on the best solution found for 10

runs of the method.

Because the RBDO method used in Ref. 57 relies on FORM (and therefore linear

approximations to the limit states), it converges to a conservative solution. The true

probability of failure at this µplate value is approximately 0.0007 rather than the desired

value of 0.001. Moreover, this method required a total of 264 function evaluations to

reach this result. The EGO/Separate EGRA method can find a more accurate result,

and requires an average of only 38.4 function evaluations (only 14.5% of the cost).

V.3.4 Steel Column

This test problem involves the trade-off between cost and reliability for a steel col-

umn.51 Calculation of the reliability at a given design was performed in Section II.4.5.

The cost is defined as

Cost = µBµD + 5µH (V.26)

where µB, µD, and µH are the means of the flange breadth, flange thickness, and pro-

file height, respectively. Nine uncorrelated random variables are used in the prob-

lem to define the yield stress Fs (Lognormal with µ/σ = 400/35 MPa), dead weight

load P1 (Normal with µ/σ = 500000/50000 N), variable load P2 (Gumbel with µ/σ

= 600000/90000 N), variable load P3 (Gumbel with µ/σ = 600000/90000 N), flange

breadth B (Lognormal with µ/σ = µB/3 mm), flange thickness D (Lognormal with

µ/σ = µD/2 mm), profile height H (Lognormal with µ/σ = µH/5 mm), initial deflec-

tion F0 (Normal with µ/σ = 30/10 mm), and Young’s modulus E (Weibull with µ/σ =

21000/4200 MPa). The limit state has the following analytic form:

g = Fs − P
(

1
2BD

+
F0

BDH
Eb

Eb − P

)
(V.27)
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where

P = P1 + P2 + P3 (V.28)

Eb =
π2EBDH2

2L2 (V.29)

and the column length L is 7500 mm.

This design problem demonstrates design variable insertion into random variable

distribution parameters through the design of the mean flange breadth, flange thick-

ness, and profile height. The following RBDO formulation maximizes the reliability

subject to a cost constraint:

max β∗

s.t. Cost ≤ 4000.

200 ≤ µB ≤ 250

16 ≤ µD ≤ 20

100 ≤ µH ≤ 150 (V.30)

Recall that in Section II.4.5, the search space for several variables had to be re-

stricted to prevent problems with the GP model that prevented EGRA from being

effective in solving this problem. Similarly, the search bounds for the RBDO problem

must also be restricted as shown in Eq. V.30.

Table V.6 gives a summary of the results from the investigated methods. For this

test, FORM is used (rather than AMV2+ as in the previous RBDO tests) because the

results in Section II.4.5 showed that the second order reliability analysis methods did

not properly converge when applied to this problem. Also note that no sequential

baseline is provided because the Sequential NIPS/FORM method failed to find an

acceptable result. Because both EGO and EGRA are stochastic methods, average so-

lutions are given with some additional information on the best solutions found for 10
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runs of these methods.

Table V.6: Results for the steel column RBDO example.

Design/Reliability Avg. β∗ Avg. Cost Avg. g Evals
Methods (Best Feasible) (# violations) (Best Feasible)
Nested NIPS/FORM 2.953 4000.0 9500
EGO/Separate EGRA 2.943 (2.986) 3998.08 (0) 156.1 (129)

This problem once again demonstrates the vast savings that EGRA can provide

when applied to variable insertion problems. It is, on average, capable of producing a

result within 0.5% of the baseline result at less than 2% of the cost.

However, this example also demonstrates a minor flaw in performing RBDO with

EGO as the design optimizer. The optimal point found by the Nested NIPS/FORM

method includes µ∗B = µmin
B and µ∗H = µmin

H . Recall that the implementation of EGO

used in this work utilizes the DIRECT34 method to solve the max(EIF) problem. Be-

cause this method repeatedly subdivides the search space, it is impossible for it to find

an optimal solution on the boundaries of that space. This in turn makes it impossible

for EGO to find an optimal solution that involves the variable bounds.

V.3.5 Bistable MEMS

The final RBDO test involves the design of the bistable MEMS device presented in

Section II.4.6. The tapered beam legs of the bistable MEMS mechanism are parame-

terized by the 13 design variables shown in Figure V.1, including widths and lengths

of beam segments as well as angles between segments. For simulation, a symmetry

boundary condition allowing only displacement in the negative y direction is applied

to the right surface (x = 0) and a fixed displacement condition is applied to the left

surface. With appropriate scaling, this allows the quarter model to reasonably repre-

sent the full four-leg switch system.

Given the 13 geometric design variables d = [L1, L2, L3, L4, θ1, θ2, θ3, θ4, W0, W1, W2,

W3, W4] and the specified random variables x = [∆W, Sr], a reliability-based design

optimization problem is formulated to achieve a design that actuates reliably with
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Figure V.1: Design parameters for the tapered-beam fully-compliant bistable mecha-
nism (geometry not to scale). Displacement is applied in the negative y direction at
the right face (x = 0), while at the left face, a fixed displacement condition is enforced.

at least 5 µN force. The RBDO formulation uses the limit state g(x) = Fmin(x) and

failure is defined to be actuation force with magnitude less than 5.0 (Fmin(x) > −5.0).

A probability of failure p f ≤ 0.02275 is required.

max Fmin(d, µx)

s.t. P [Fmin(d, x) > −5.0] ≤ 0.02275

50 ≤ Fmax(d, µx) ≤ 150

E2(d, µx) ≤ 8

Smax(d, µx) ≤ 3000

20 ≤ L1, L2, L3, L4 ≤ 35

0 ≤ θ1, θ2, θ3, θ4 ≤ 5

1 ≤ W0, W1, W3, W4 ≤ 3

2 ≤ W2 ≤ 5

(V.31)

where µx represents the mean values of x and the probabilistic constraint is enforced

through β∗ ≥ 2.0 rather than on the probability of failure as shown.

This problem further illustrates a weakness in EGO-based RBDO. As discussed in

Section V.3.3, EGO cannot properly account for any “flat” regions in the design space
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where the probability of failure is reported by EGRA as either zero or one. For that

RBDO test, the bounds of only a single design variable had to be set to avoid this

issue. However, defining appropriate bounds is considerably more difficult in this 13-

variable design space. To further complicate matters, a given design may not exhibit

the required bi-stability in its load-deflection curve, meaning that Fmin is undefined

and the numerical analysis of that design fails. In either event, whether EGRA gives

p f =0 or 1 or Fmin is undefined, it is essentially impossible to determine which variable

or combination of variables need to be restricted to avoid the problem.

In order to optimize this design, a different strategy had to be employed. Ini-

tial bounds were first tightly set around the MVFOSM solution shown in Table V.7.

An RBDO solution using the EGO/Separate EGRA formulation was then found over

these restricted bounds. If this solution was on the boundary of the design space for

any of the variables, the search space for those variables was translated and the anal-

ysis was repeated. This trust-region-like strategy allowed the EGO/EGRA method to

locate a solution, but has several flaws. First, it requires far greater expense than a

method that could consider the entire design space at once because the entire RBDO

problem (expensive by itself) must be repeatedly solved. Second, by restricting EGO

to a localized region, the method is no longer able to find the global optimum, reduc-

ing the usefulness of this method.

However, the benefits of applying EGRA to this RBDO problem are still clear. The

analysis started at a previously converged optimal solution using a different reliabil-

ity analysis method, which was demonstrated to be infeasible in Section II.4.6, and

then moved away from this infeasible design because of the increased accuracy that

EGRA provides. Table V.7 displays the results from solving this problem with EGRA

compared with previous work using MVFOSM, AMV2+, and FORM.1, 2, 24, 29 The com-

paratively small value of Fmin in the EGRA solution coupled with the slack in the reli-

ability constraint hints that this solution is unlikely to be the global optimum and that

this bistable MEMS design could still benefit from further investigation.
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Table V.7: Results for the bistable MEMS RBDO example.

variable/metric MVFOSM AMV2+ FORM EGRA
L1 (µm) 19.23 28.04 28.06 19.18
L2 (µm) 28.44 24.42 24.45 28.38
L3 (µm) 14.44 30.58 30.68 14.38
L4 (µm) 35.00 30.55 30.66 34.99
θ1 (deg.) 2.733 4.200 4.189 2.749
θ2 (deg.) 2.260 2.481 2.488 2.244
θ3 (deg.) 2.719 2.465 2.478 2.737
θ4 (deg.) 3.230 2.384 2.390 3.265
W0 (µm) 1.058 1.355 1.346 1.100
W1 (µm) 2.038 1.275 1.265 2.052
W2 (µm) 2.390 3.481 3.488 2.340
W3 (µm) 1.312 2.006 2.004 1.319
W4 (µm) 1.000 1.333 1.333 1.072
Fmin (µN) -5.896 -6.188 -6.292 -8.798

β 2.000 1.998 1.999 —
β∗ 1.227 — — 2.401

Fmax (µN) 50.01 57.67 57.33 56.11
E2 (µm) 5.804 5.990 6.008 7.282

Smax(MPa) 1563 1333 1329 1144

V.4 Summary

While reliability analysis is a field of its own and is commonly treated as a stand-

alone task, it is often part of a larger process. The reliability at a given design is first

analyzed, then if that reliability is too low (or even too high) the design is adjusted and

the reliability analysis is repeated. This process of searching for the optimal balance

between some objective (cost, performance, etc.) and the reliability can be automated

through reliability-based design optimization.

This chapter explored how EGRA can be used in solving this class of problems.

Because EGRA does not lend itself to use with gradient-based design optimizers (it

does not provide analytic derivatives in its result and its stochastic nature prevents

the use of numerical differentiation) a gradient-free optimizer is needed. One such

optimizer is the Efficient Global Optimization method on which EGRA is based. EGO

was originally derived for unconstrained optimization, so in order to use it in RBDO, a

constrained formulation was derived based on an augmented Lagrangian formulation
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and the expected violation function.

By coupling EGRA with EGO, it is possible to formulate nested, single-loop, and

sequential RBDO methods, all of which were applied to a collection of example prob-

lems. All of these EGRA-based methods proved to be considerably less expensive

than their MPP-based counterparts, for the sizes of problems investigated. As was

discussed in Section II.5, EGRA may not scale well for problems with large num-

bers of random variables and the same is true of EGO applied to problems with large

numbers of design variables. Because both EGO and EGRA are stochastic methods,

they cannot provide the exact solution like these gradient-based methods can, but the

EGO/EGRA solutions are comparable.

The nested method with a single surrogate model is the most efficient, but also

the least accurate and least consistent. Because this method does not attempt to fully

resolve the limit state at a given design point, it is not uncommon for this method to

converge to an infeasible solution due to the lack of fidelity in the underlying model.

The nested method with separate surrogate models is the most expensive of the

EGO/EGRA methods because it performs a full reliability analysis at every design

point visited by the optimizer. However, it is worth noting that even though it is

the most expensive EGO/EGRA method, it is still considerably less expensive than

the MPP-based methods with which it was compared; consistently requiring less than

20% of the function evaluations. This method occasionally converged to solutions that

were slightly infeasible, but the resulting constraint violation was typically within the

variance of the EGRA solution.

The sequential method typically required a computational expense somewhere be-

tween the nested methods, and consistently converged to feasible solutions. However,

the optimal solutions to which this method converged were occasionally overly con-

servative, leaving slack in the constraint that could be used to improve the objective.

In general, because the nested method with separate surrogates already provides sub-

stantial computational savings over traditional methods, if it can be afforded, it is
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recommended. But for problems where efficiency is of the utmost importance, the

sequential method provides an able alternative.

Using EGO as the design optimizer poses a problem due to difficulties with the

GP models on which it operates. It is not uncommon for combinations of the de-

sign variables near their bounds to create regions where, due to EGRA’s truncation

of the random variable space over which it searches for the limit state, the probabil-

ity of failure is reported as either zero or one. But to accommodate the use of EGO,

these regions must be removed from the search space because these “flat” regions cre-

ate problems for the Gaussian process model of the constraint violation. Finding the

proper bounds for all of the design variables can be an arduous task that will require

more study before these EGO/EGRA methods are adopted in practice.

Using EGRA to perform the reliability analysis in an RBDO process produces a

significant advantage for so-called variable insertion problems where the design vari-

ables are distribution parameters. As was discussed in Chapter IV, because EGRA

constructs the GP model independently of the input distributions, the model it trains

does not necessarily have to be rebuilt when those distributions change. For this type

of RBDO problem, the nested formulation can be used to perform the entire optimiza-

tion at approximately the cost of a single reliability analysis. Moreover, because that

reliability analysis is performed using EGRA, as Chapter II showed, that cost is dra-

matically less expensive than other available methods.
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CHAPTER VI

CONCLUSIONS

Computational modeling and performing reliability analyses using those models

are growing fields across a wide variety of engineering disciplines. As these models

have gained in fidelity, they have become increasingly expensive to evaluate. A single

analysis of a large model can take hours or even days to evaluate. This makes com-

mon reliability analysis methods like Monte Carlo sampling impractical due to their

vast computational expense. To reduce this cost, analytical reliability analysis meth-

ods based on the concept of the Most Probable Point like FORM, AMV, AMV+, etc.,

have been developed. These methods, while efficient, are only accurate if the MPP is

successfully located and the limit state is linear in the reduced normal space. Because

the MPP is sought by solving an equality-constrained optimization problem with a

gradient-based solver, it is not uncommon for this search to fail. This is especially true

when applied to implicit response functions such as finite element models where the

gradients must be calculated numerically and may therefore be unreliable. Addition-

ally, few engineering applications are truly linear in their behavior; even when they

are, they may not remain linear in the reduced normal space, a transformation which

is generally nonlinear. Approximating the response as linear is convenient when esti-

mating the reliability, but will lead to inaccuracies when the approximation is poor.

Throughout the computational experiments performed in this dissertation, MPP-

based methods that incorporate second-order response function information were ex-

plored. These methods were typically more efficient in the search for the MPP than

using first-order information alone. By accounting for some moderate nonlinearity in

the limit state, they can also be more accurate. However, these methods occasionally

failed to converge to the MPP or were forced to resort to first-order limit state approx-

imations due to numerical exceptions in the second-order formulations. In general,
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all MPP-based reliability analysis methods suffer from two basic problems: 1) poten-

tial failure in locating the MPP, and 2) a low-order approximation based solely on

information in the vicinity of this single point on the limit state is rarely accurate.

Another alternative reliability analysis method involves the use of surrogate mod-

els. These methods collect data on the true response function, then use these to con-

struct an approximate that is less expensive to evaluate. This new surrogate model is

then used in place of the true function in a sampling method. Because these samples

are evaluated using the surrogate model, and relatively few samples of the true func-

tion were required to construct that surrogate, this can be a very efficient reliability

analysis method. However, the accuracy of this method depends on the accuracy of

the surrogate model. Low-order polynomial functions are commonly used, but these

can be inaccurate for the same reason that low-order polynomial approximations to

the limit state can be inaccurate when used in MPP-based methods. Recent research

has focused on more flexible surrogate models, such as Gaussian process models, that

can be far more accurate.

The main contribution of this dissertation has been to greatly improve the effi-

ciency with which these surrogate models are constructed. Common practice has

been to seek global accuracy of these surrogate models. Error measures are calculated

throughout the random variable space, and additional data is collected if the errors

are too high. But global accuracy of the model is not needed when the model is only

intended for use in calculating the probability of failure. When the model is sampled,

the actual value of the response at a sample point is not important - only whether that

value is greater or less than the response level of interest, i.e. whether the point is in

the success or failure region. If the contour that separates these regions (the limit state)

is accurately captured, then the accuracy of the model elsewhere in the space is imma-

terial. This type of locally accurate model can be constructed using a Gaussian process

model by collecting training data in the region where accuracy is desired. Of course,

the location of the limit state contour throughout the random variable space cannot
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be known a priori (hence the search for it in the MPP-based methods), so focusing the

training data for the surrogate model in this region is not straightforward.

The Efficient Global Reliability Analysis method was presented in Chapter II to

meet this challenge. This method begins with a small number of randomly selected

training points that are evaluated using the true response function. A Gaussian pro-

cess model is fit to these data; because the data is scarce, the model is inaccurate with

a large amount of variance. The predicted values and the variance in this model are

combined through what has been termed the expected feasibility function to quantify

the expectation that any given point in the random variable space lies on the limit

state. A global optimizer is then used to find the point with the maximum expected

feasibility. This point is then evaluated using the true response function and this new

piece of data is added to the training data and a new Gaussian process model is con-

structed. This process is repeated until the maximum expected feasibility is acceptably

small. By focusing the training data near the limit state, a locally accurate model can

be constructed with a small amount of data, making this method highly efficient. By

iteratively searching for the limit state using a metric that incorporates the variance in

the model and seeking to reduce that variance in areas near the limit state, this method

creates a highly accurate surrogate model. This model can then be sampled using

any appropriate method to create a reliability analysis method that is both efficient

for computationally expensive response functions and accurate for arbitrarily-shaped

limit states.

The advantages of EGRA were demonstrated through several application prob-

lems. It was shown to consistently have a computational cost competitive with (and

often superior to) the most efficient MPP-based methods, coupled with the accuracy

of exhaustive Latin hypercube sampling. The method becomes more expensive as

the number of random variables being considered increases, but appears to scale well

(MPP-based methods also become more expensive with additional random variables

when the numerical differentiation to calculate the gradients requires additional func-
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tion evaluations). By constructing the surrogate model in the original space (rather

than the reduced normal space), EGRA is completely independent of the distribution

types and correlation structure describing the random variables, making it equally

efficient and accurate for any combination of types or correlations.

The cost of EGRA is driven by two factors: the behavior of the limit state (highly

nonlinear contours require more data to model), and the length of the limit state con-

tour in the search space. This second factor leads to an interesting advantage of EGRA;

solving high-reliability problems, which are the problems typically of interest to engi-

neers, is actually less expensive using EGRA than solving low-reliability problems. A

problem has a high reliability if it has a small failure region, which naturally requires

a shorter contour to define than a large region would. This shorter limit state contour

requires fewer samples to model, making EGRA less expensive.

The demonstration problems also illustrated a weakness in EGRA due to its re-

liance on Gaussian process models. These models create smooth interpolations of the

training data. If the true response has abrupt changes or discontinuities, the model

will fail to produce an accurate model, leading EGRA to be both more expensive and

inaccurate. If this behavior in the response is localized (due to a singularity, for in-

stance), then this region can simply be removed from the search space, thus restoring

EGRA to the efficient and accurate method that is expected.

Chapter III discussed the application of EGRA to system-level reliability analy-

sis. For system problems, the failure region is typically bounded by only portions of

the various component limit states. These portions make up the so-called compos-

ite limit state. By reformulating the expected feasibility function to search for points

on the composite limit state, EGRA is able to focus the training data near only the

portions of the component limit states that bound the system failure region rather

than attempting to model the entire limit state. Moreover, if a particular component

does not contribute to the overall system failure (i.e., its limit state does not bound

the system failure region), EGRA is capable of “ignoring” this component, requiring
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no additional evaluations of its response beyond the initial study. Because the cost of

EGRA will be driven, in part, by the length of the composite limit state contour, which

bounds some small failure region, the expense of EGRA when applied to system-level

problems is comparable to solving the much simpler component-level problem (there

is a slight increase in cost due to the initial study that evaluates all of the component

response functions). This makes EGRA a highly efficient way to perform system-level

reliability analysis. The efficiency and accuracy of this method were demonstrated

through its application to a collection of example problems. Both parallel and series

systems were explored, and EGRA proved equally efficient and accurate for both for-

mulations.

Chapter IV presented the challenges of reliability analysis when the input distri-

butions are uncertain. This is a common problem in solving real-world problems be-

cause the input distributions are typically estimated from a limited set of test data.

Unfortunately, the effects of this uncertainty are largely ignored in practice because

available methods for quantifying them have suffered the same problems as existing

reliability analysis methods: they are either too expensive or they rely on simplifying

assumptions that can make them inaccurate. The nested approach based on Bayesian

inference and Markov Chain Monte Carlo sampling that is used in this chapter is not

altogether new, but the application of EGRA to this problem has made such a for-

mulation practical. Using EGRA, the entire posterior distribution of the probability

of failure can be calculated at a computational expense that is little more than per-

forming a single reliability analysis (which, of course, using EGRA, is already more

efficient than other methods).

Chapter V explored how EGRA can be used in solving reliability-based design

optimization problems. By coupling EGRA with the Efficient Global Optimization

method on which it is based, nested, single-loop, and sequential methods were for-

mulated. All of these methods are considerably less expensive than their MPP-based

counterparts, and while, because they are stochastic, they cannot provide the exact
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solution like the gradient-based methods can, they are still very accurate. The single-

loop method is the most efficient, but also the least accurate and least consistent; it

is not uncommon for this method to converge to an infeasible solution. The nested

method is the most expensive of the EGO/EGRA methods, but occasionally con-

verged to solutions that were slightly infeasible. The sequential method typically had

a computational expense between the nested and single-loop methods, and consis-

tently converged to feasible solutions, but its optimal solution was occasionally overly

conservative. The use of EGO as the design optimizer presents a problem due to po-

tential complications with the GP models on which it operates. Regions of the design

space where the probability of failure is either zero or one must be removed from the

search space because these “flat” regions create problems for the Gaussian process

model of the constraint violation. Finding the proper bounds of the design variables

can be an arduous task that will require more study before these methods are adopted

in practice. Using EGRA to perform the reliability analysis produces a significant ad-

vantage when the design variables are distribution parameters. As was discussed in

Chapter IV, because EGRA constructs the GP model independently from the distribu-

tions, the model does not have to be rebuilt when those distributions change. For this

type of RBDO problem, the entire optimization can be performed at approximately

the cost of a single reliability analysis.

VI.1 Future Work

Efficient Global Reliability Analysis has shown great promise, but there are multi-

ple opportunities to seek improvements and extensions to the method. The following

sections will identify a few of these, as well as point out a few additional types of

problems where EGRA might be successfully applied.
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VI.1.1 Extensions to EGRA

Without major changes to the core algorithm, there are several ways that EGRA

could be extended to improve its efficiency and provide additional information in its

results.

The first extension is to develop parallel implementations of both EGRA and EGO.

It is clear from Figures II.4 and II.9 that at each iteration of EGO and EGRA that there

are multiple local optima to the max(EIF) and max(EFF) problems. In fact, it is be-

cause of these multiple local optima that a global optimizer like DIRECT is needed

to locate the global optimum. Furthermore, Figures II.5 and II.10 show that after the

global optimum was found in the previous iteration, points that were local optima re-

main local optima in the next iteration. A parallel implementation of EGO and EGRA

would locate all of the local optima at each iteration. These new points would then be

evaluated in parallel and added to the GP in the next iteration. By locating multiple

points in each iteration, these methods will not necessarily require fewer evaluations

of the response function, but because multiple new points can be evaluated and added

to the GP simultaneously, fewer iterations will be required and the wall time of the

methods will be reduced. The challenge in developing this parallel implementation

is choosing an optimizer that can reliably locate all of the local optima. The DIRECT

algorithm may be capable doing this, but the implementation from Ref. 34 that was

used in this dissertation does not provide this information.

The next extension would allow EGRA to solve for multiple response levels in or-

der to solve for the full CDF of the response rather than the probability of failure at

a single response level. A straightforward way to find the probability at multiple re-

sponse levels with EGRA would be to first train the GP for one response level, then

use this GP as the starting point in the search for the next level, iterating until the limit

states are accurately resolved for all levels of interest. The subsequent solves would

likely require relatively few samples because the variance in the GP has been greatly

reduced in searching for the previous limit states, so this would likely be an efficient
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way to solve for the full CDF. However, it may be possible to extend the algorithm to

solve for the multiple response levels all at once by modifying the expected feasibil-

ity function. If such a formulation is possible, it could improve the efficiency when

multiple response levels are of interest.

The final extension would be to account for any remaining model error when re-

porting the result from EGRA. An important feature of EGRA is how it minimize the

surrogate model error by using a convergence measure that is based in part on the

variance of the GP. Many of the results shown in Chapter II demonstrated that the

remaining error in the model was small enough to be insignificant when compared

to the sampling variance. Of course, this may not be true for all problems; and even

if it is, this is still useful information to report to the user. Quantifying the impact of

the Gaussian process model error on the reported probability of failure is not entirely

straightforward, but should not require any changes to the EGRA algorithm itself.

VI.1.2 Additional Applications of EGRA

Because it is a general-purpose reliability analysis methods, there are a wide va-

riety of engineering applications to which EGRA might be applied. This section will

focus on two classes of problems that EGRA might be successful in solving.

The first class of problems is inverse reliability analysis. Formulations for this type

of analysis were discussed in Chapter I. These MPP-based methods relied on a p→ β

relationship based on either a first- or second-order approximation to the limit state.

They then solved an optimization problem to find a point that lied this distance β

from the mean response. EGO could easily be used to solve this optimization prob-

lem and locate this MPP, but for the arbitrarily-shaped limit states for which EGRA

was created, there is no p → β relationship, so the response level at this MPP loses

meaning - it is not necessarily the response level that corresponds to the desired prob-

ability. One way to solve this problem with EGRA would be to select some candidate

response level, solve the full forward problem, then use the resulting probability to
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update the target response level, and iterate until the level that produces the desired

probability is found. Because the GP model could be reused in each iteration, this

would likely be a sufficiently efficient inverse reliability method. However, fully re-

solving the limit state at these intermediate response levels is potentially wasteful. A

more efficient method might update the response level for which EGRA is searching

in each iteration rather than fully resolving the limit state at any intermediate level.

Chapter III explored the application of EGRA to system-level problems. Both se-

ries and parallel systems were analyzed, but combined systems were not. For in-

stance, the three-component system investigated in Section III.3.1 could be formulated

as a combined system by:

p f = P
[[

g1 (x) < 0 ∩ g2 (x) < 0
]
∪ g3 (x) > 0

]
(VI.1)

A composite limit state can still be formed from portions of the components, so con-

ceptually, EGRA can be applied in the same way as it was for series and parallel sys-

tems. However, more sophisticated logic will be required to modify the expected

feasibility function; the min/max logic used for the simpler systems is insufficient.

VI.1.3 Improvements to EGO and EGRA

While EGRA was successfully applied to a variety of test problems, there are some

weaknesses in both it and EGO that need to be overcome to improve their robustness

and generally applicability.

EGRA had problems with one of the example problems in Chapter II due to a sin-

gularity in the response function. The form of the GP model breaks down due to this

sharp change in the response, causing EGRA to fail. This example problem was suc-

cessfully solved by removing the portion of the search space near this singularity. But

it is unreasonable to expect the user to know a priori where problem areas might exist

in the response function, so EGRA needs to be improved to remove this weakness.

Two possibilities are envisioned. First, it might be possible to reformulate the GP that
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EGRA is training to better deal with potential abrupt changes in the response. Exactly

how this might be done is a point of research, but possibilities might include multi-

ple independent GPs for different regions of the search space, or a single GP with a

discontinuous trend function. Second, EGRA could detect response values that might

cause problems for the GP, choose not to add them to the training data, and automat-

ically reduce the search space. This second idea would be simpler to implement, but

if it removes an area of the search space that contains a significant portion of the limit

state, it will create errors in the reliability estimates.

Another improvement, again involving the potential failure of a GP model, seeks

to make EGO more generally applicable to RBDO problems. As was seen in sev-

eral of the examples in Chapter V, the design space had to be severely restricted to

prevent the optimizer from visiting areas where EGRA estimated the probability of

failure as either zero or one because these “flat” regions cause problems for the GP of

the constraint violation. Determining appropriate bounds can be difficult and time-

consuming, making it difficult to use this method in practice. A potential method

to eliminate this problem might be to introduce trust-region machinery. The user

would need to select an initial point (as is already required for applying gradient-

based methods) and some initial bounds in the vicinity of this point are constructed.

The EGO/EGRA RBDO method (any of the nested, sequential, or single-loop meth-

ods should be possible) then proceeds in this limited space. If a “bad” region of this

space is found, the trust region would be contracted in one or more dimension. If

EGO converged on the bounds of the space, then the trust region would be translated

and/or expanded. By not attempting to search the entire design space all at once, dif-

ficult regions of the space could be avoided and could possibly even make the method

more efficient.

An additional way these “flat” regions might be handled is to allow EGO to adap-

tively select the bounds for the random variables over which EGRA will search for

the limit state. For instance, default bounds of ±5σ might be initially used, but when
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EGRA returns p f =0 or 1, these bounds could be expanded and the analysis re-run to

allow EGRA to resolve the smaller (or closer to 1) probability. This would expand the

design space over which EGO could search, but would add to the expense of EGRA

in these low (or high) probability regions where it might be sufficient (in terms of

assessing feasibility of the design point) to estimate the probability as simply 0 or 1.

The final potential improvement seeks to reduce the already small number of func-

tion evaluations required by EGRA to model the limit state. It is evident from Fig-

ures II.13, III.4, and III.6 that EGRA commonly performs several evaluations of the

response function on the boundaries of the search space. This is because the vari-

ance of the GP is typically large in this region where it is attempting to extrapolate

information into this space rather than interpolating between the training data. How-

ever, accuracy of the limit state in this region is relatively unimportant because the

likelihood of events in this region are so small. A scale factor could be added to the

EFF to enforce that accuracy in the highly probable regions is more important than in

the tails of the distributions. This probability bias will encourage EGRA to focus the

training data near the portion of the limit state where accuracy is needed and could

have a significant impact on the efficiency of the method. However, one disadvantage

to this is that the locations of the sample points are no longer independent of the in-

put distributions, meaning that many of ideas put forth in Chapter IV on propagating

distribution uncertainty with EGRA will no longer be applicable.
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CHAPTER A

DERIVATIONS

A.1 Expected Improvement Function

The expected improvement function is defined as:47

EI(x) = E
[
max

(
G(x∗)− Ĝ(x), 0

)]
(A.1)

where G() is the true response function being modeled, x∗ is the location of the current

best solution found so far, and Ĝ() is the Gaussian process model approximation of

the response function, which, at any point x, provides a normally distributed random

variable: Ĝ(x)∼N[µ(x), σ(x)].

For clarity, the dependence on x is removed from all arguments. The Gaussian pro-

cess predictor is rewritten as Ĝ(g) to emphasize that it predicts values of the response

function; g is then a realization of the normal probability density Ĝ and g∗≡G(x∗). It

is clear that the maximization term in Eq. A.1 follows the relationship:

max (g∗ − g, 0) = g∗ − g for −∞ < g < g∗

= 0 for g∗ < g < ∞
(A.2)

The expected value can then be computed by integrating over the interval where the

function is nonzero:

EI =
∫ g∗

−∞
(g∗ − g) Ĝ(g) dg

=
∫ g∗

−∞
g∗ Ĝ(g) dg−

∫ g∗

−∞
g Ĝ(g) dg

= g∗Φ
(

g∗ − µ

σ

)
−
∫ g∗

−∞
g Ĝ(g) dg

(A.3)
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The second term can be written as:

∫ g∗

−∞
g Ĝ(g) dg =

∫ g∗

−∞

g
σ
√

2π
exp

[
−1

2

(
g− µ

σ

)2
]

dg (A.4)

Now allow the variable transformation v = g−µ
σ , which gives dg = σ dv. Substituting

these in: ∫ g∗

−∞
g Ĝ(g) dg =

∫ v∗

−∞
(v σ + µ)

1√
2π

exp
[
−v2

2

]
dv (A.5)

where v∗= g∗−µ
σ . This equation can then be broken into two parts, giving:

∫ g∗

−∞
g Ĝ(g) dg =

σ√
2π

∫ v∗

−∞
v exp

[
−v2

2

]
dv + µ

∫ v∗

−∞

1√
2π

exp
[
−v2

2

]
dv (A.6)

The second term is the integal of the standard normal PDF, which can be expressed

using the CDF, giving:

∫ g∗

−∞
g Ĝ(g) dg =

σ√
2π

∫ v∗

−∞
v exp

[
−v2

2

]
dv + µ Φ(v∗) (A.7)

In the integral in the first term above, introduce the change of variables w= v2

2 , which

gives dv= 1
v dw. This reduces the integral to:

∫ v∗

−∞
v exp

[
−v2

2

]
dv =

∫ w∗

∞
exp [−w] dw (A.8)

where w∗= 1
2(

g∗−µ
σ )2. Note that the lower bound has changed from −∞ to ∞ because

the transformation involves squaring. Evaluating this gives:

∫ v∗

−∞
v exp

[
−v2

2

]
dv = − exp [−w] |w∗∞ = − exp [−w∗] (A.9)

Now substitute Eq. A.9 into Eq. A.7 to get:

∫ g∗

−∞
g Ĝ(g) dg = − σ√

2π
exp [−w∗] + µ Φ(v∗) (A.10)
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which can be written in terms of the standard normal PDF as:

∫ g∗

−∞
g Ĝ(g) dg = −σ φ (v∗) + µ Φ(v∗)

= −σ φ

(
g∗ − µ

σ

)
+ µ Φ

(
g∗ − µ

σ

) (A.11)

Finally, substitute Eq. A.11 into Eq. A.3 to get:

EI = g∗Φ
(

g∗ − µ

σ

)
+ σ φ

(
g∗ − µ

σ

)
− µ Φ

(
g∗ − µ

σ

)
(A.12)

which can be rearranged to give:

EI = (g∗ − µ) Φ
(

g∗ − µ

σ

)
+ σ φ

(
g∗ − µ

σ

)
(A.13)

A.2 Expected Feasibility Function

Using the EGO concept to find points that lie on the limit state requires finding

points that satisfy the equality constraint G(x)= z̄. To locate these points, the exected

feasibility function is introduced:

EF = E
[
ε−min

(
|Ĝ(g)− z̄|, ε

)]
(A.14)

where ε = ασ and α is some positive constant. It is clear that the minimization term

follows the relationship:

min
(
|Ĝ(g)− z̄|, ε

)
= ε for −∞ < Ĝ(g) < z̄− ε

= |Ĝ(g)− z̄| for z̄− ε < Ĝ(g) < z̄ + ε

= ε for z̄ + ε < Ĝ(g) < ∞

(A.15)
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The expected value can then be calculated by integrating over the interval where the

function is nonzero:

EF =
∫ z+

z−

[
ε− |g− z̄|

]
Ĝ(g) dg

= ε
∫ z+

z−
Ĝ(g) dg−

∫ z+

z−
|g− z̄| Ĝ(g) dg

(A.16)

where z−= z̄− ε and z+= z̄ + ε. Concentrating on the first term:

ε
∫ z+

z−
Ĝ(g) dg = ε

∫ z+

−∞
Ĝ(g) dg− ε

∫ z−

−∞
Ĝ(g) dg

= ε

[
Φ
(

z+ − µ

σ

)
−Φ

(
z− − µ

σ

)] (A.17)

Let X represent the second term, X =
∫ z+

z− |g− z̄| Ĝ(g) dg, which becomes:

X =
∫ z̄

z−
(z̄− g) Ĝ(g) dg

∫ z+

z̄
(g− z̄) Ĝ(g) dg

= z̄
∫ z̄

z−
Ĝ(g) dg−

∫ z̄

z−
g Ĝ(g) dg +

∫ z+

z̄
g Ĝ(g) dg− z̄

∫ z+

z̄
Ĝ(g) dg

= z̄
∫ z̄

−∞
Ĝ(g) dg− z̄

∫ z−

−∞
Ĝ(g) dg−

∫ z̄

−∞
g Ĝ(g) dg +

∫ z−

−∞
g Ĝ(g) dg

+
∫ z+

−∞
g Ĝ(g) dg−

∫ z̄

−∞
g Ĝ(g) dg− z̄

∫ z+

−∞
Ĝ(g) dg + z̄

∫ z̄

−∞
Ĝ(g) dg

= z̄ Φ
(

z̄− µ

σ

)
− z̄ Φ

(
z− − µ

σ

)
− z̄ Φ

(
z+ − µ

σ

)
+ z̄ Φ

(
z̄− µ

σ

)
−
∫ z̄

−∞
g Ĝ(g) dg +

∫ z−

−∞
g Ĝ(g) dg +

∫ z+

−∞
g Ĝ(g) dg−

∫ z̄

−∞
g Ĝ(g) dg

(A.18)

From Eq. A.11 the following are known:

∫ z̄

−∞
g Ĝ(g) dg = −σ φ

(
z̄− µ

σ

)
+ µ Φ

(
z̄− µ

σ

)
∫ z−

−∞
g Ĝ(g) dg = −σ φ

(
z− − µ

σ

)
+ µ Φ

(
z− − µ

σ

)
∫ z+

−∞
g Ĝ(g) dg = −σ φ

(
z+ − µ

σ

)
+ µ Φ

(
z+ − µ

σ

) (A.19)
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Substituting these in and combining terms:

∫ z+

z−
|g− z̄| Ĝ(g) dg = (z̄− µ)

[
2 Φ

(
z̄− µ

σ

)
−Φ

(
z− − µ

σ

)
−Φ

(
z+ − µ

σ

)]
+ σ

[
2 φ

(
z̄− µ

σ

)
− φ

(
z− − µ

σ

)
− φ

(
z+ − µ

σ

)] (A.20)

Now, substituting the first and second term back into Eq. A.16, gives:

EF = (µ− z̄)
[

2 Φ
(

z̄− µ

σ

)
−Φ

(
z− − µ

σ

)
−Φ

(
z+ − µ

σ

)]
− σ

[
2 φ

(
z̄− µ

σ

)
− φ

(
z− − µ

σ

)
− φ

(
z+ − µ

σ

)]
+ ε

[
Φ
(

z+ − µ

σ

)
−Φ

(
z− − µ

σ

)] (A.21)

A.3 Expected Violation Function for Equality Constraints

The expected violation function for inequality constraints is similar to the expected

improvement function, and the derivation follows closely to that shown in Section A.1.

The case of equality constraints is presented here. The expected violation function for

an equality constraint is defined as:

EVh = E
[
|Ĝ(g)− h̄|

]
(A.22)

This expected value can be calculated through the integral:

EVh =
∫ ∞

−∞
|g− h̄| Ĝ(g) dg

=
∫ h̄

−∞
(h̄− g) Ĝ(g) dg +

∫ ∞

h̄
(g− h̄) Ĝ(g) dg

= h̄
∫ h̄

−∞
Ĝ(g) dg−

∫ h̄

−∞
g Ĝ(g) dg +

∫ ∞

h̄
g Ĝ(g) dg− h̄

∫ ∞

h̄
Ĝ(g) dg

= h̄
∫ h̄

−∞
Ĝ(g) dg− h̄

[
1−

∫ h̄

−∞
Ĝ(g) dg

]

−
∫ h̄

−∞
g Ĝ(g) dg +

[∫ ∞

−∞
g Ĝ(g) dg−

∫ h̄

−∞
g Ĝ(g) dg

]
(A.23)
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where
∫ ∞
−∞ g Ĝ(g) dg ≡ µ, and from the previous derivations, it is known that:

∫ h̄

−∞
g Ĝ(g) dg = −σ φ

(
h̄− µ

σ

)
+ µ Φ

(
h̄− µ

σ

)
(A.24)

Substituting these into the previous equation and combining terms, gives:

EVh =
(
µ− h̄

) [
1− 2Φ

(
h̄− µ

σ

)]
+ 2σφ

(
h̄− µ

σ

)
(A.25)
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