
COMPOSITIONAL AND INCREMENTAL MODELING AND ANALYSIS FOR

HIGH-CONFIDENCE DISTRIBUTED EMBEDDED CONTROL SYSTEMS

By

JOSEPH E. PORTER

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Electrical Engineering

May, 2011

Nashville, Tennessee

Approved:

Janos Sztipanovits

Gabor Karsai

Xenofon Koutsoukos

Aniruddha Gokhale

Mark Ellingham

DEDICATION

To God, the Father of us all, for helping me find insight to solve problems, for giving me courage

to face fears and difficulties, and for putting wonderful people all along this journey. To Jesus Christ,

the Son of God, for continuing to drive darkness from my life, replacing it with the light of peace,

truth, joy, and love.

To Rebekah, my dearest companion, for many years of sacrifice and patience. This would never

have happened without you. Thank you for never giving up on me. To my wonderful and patient

children, for their encouragement and prayers.

Finally to our parents, for many years of guidance and for their moral and financial support.

ii

ACKNOWLEDGEMENTS

Special thanks goes to my advisor, Professor Janos Sztipanovits, for his support and for his

patience and willingness to allow me to pursue this line of work. Further, I would like to thank all

of the researchers and students with whom I have worked during these past years. Thank you for

your encouragement, friendship, patience, and enjoyable times working together.

Portions of this work were sponsored by the Air Force Office of Scientific Research, USAF, under

grant/contract number FA9550-06-0312, and the National Science Foundation, under grant NSF-

CCF-0820088. The views and conclusions contained herein are those of the authors and should not

be interpreted as necessarily representing the official policies or endorsements, either expressed or

implied, of the Air Force Office of Scientific Research or the U.S. Government.

iii

TABLE OF CONTENTS
Page

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . vi

LIST OF FIGURES . viii

I. PROBLEMS IN MODEL-BASED DESIGN AND ANALYSIS FOR HIGH-CONFIDENCE
DISTRIBUTED EMBEDDED SYSTEMS . 1

Problems . 4
Contributions . 5
Dissertation Organization . 6

II. RELATED WORK . 7

Modeling Tools . 7
Compositional and Incremental Methods . 8

Incremental Scheduling Analysis . 9
Incremental Deadlock Analysis . 17
Compositional Stability Analysis . 27

III. THE EMBEDDED SYSTEMS MODELING LANGUAGE (ESMOL) 35

Overview . 36
Design Challenges . 36
Solutions . 38

Tools and Techniques . 42
ESMoL Language . 44
ESMoL Tool Framework . 55

Stage 1 Transformation . 55
Stage 2 Transformation . 63

Synchronous Semantics . 71
Evaluation . 74

Communications Test . 77
Quad Integrator Model . 78
Quadrotor Model . 84

Lessons and Future Work . 85

IV. INCREMENTAL SYNTACTIC ANALYSIS FOR COMPOSITIONAL MODELS: AN-
ALYZING CYCLES IN ESMOL . 89

Overview . 89

iv

Syntactic Analysis Challenges . 89
Solutions . 89

Tools and Techniques . 91
ESMoL Component Model . 91
Cycle Enumeration . 92
Hierarchical Graphs . 92

Incremental Cycle Analysis . 93
Formal Model . 93
Algorithm Description . 95
ESMoL Mapping . 96

Evaluation . 98
Fixed-Wing Example . 98
Analysis Results . 99

Future Work . 101

V. INCREMENTAL TASK GRAPH SCHEDULE CALCULATION 104

Overview . 104
Semantic Analysis Challenges . 104
Solutions . 105

Tools and Techniques . 105
Task Graph Scheduling Abstractions . 105
BSA Scheduling Algorithm . 106

Incremental Schedule Analysis . 109
Concepts . 110
Algorithm Definition . 111

Future Work . 113

VI. CONCLUSIONS: WHAT HAVE WE LEARNED? . 115

BIBLIOGRAPHY . 116

v

LIST OF TABLES
Page

1 Common real-time scheduling algorithms . 11
2 Resource supply models and their parameters. 12
3 Quantities for the sector formula. 31

4 Acquisition relation transformation details. 56
5 Actuation relation transformation details. 59
6 Local (processor-local) data dependency relation. 60
7 Transmit relation transformation details. This represents the sender side of a remote

data transfer between components. 61
8 Receive relation transformation details. 61
9 Scheduling spec for the Quadrotor example. 66
10 Stage 2 Interpreter Template for the Scheduling Specification 66
11 Generated code for the task wrappers and schedule structures of the Quadrotor model. 69
12 Template for the virtual machine task wrapper code. The Stage 2 FRODO interpreter

invokes this template to create the wrapper code shown in Table 11. 70
13 Sector value comparisons for simulation and execution on the actual platform. 82

14 Cycle analysis comparisons for the fixed wing model. 100

15 Function and variable definitions. 107
16 Function and variable definitions for incremental BSA. 114

vi

LIST OF FIGURES
Page

1 Facets of model-based CPS design processes. Reconciling all of the details represented
by these models is a significant challenge for design tools. Tools must also support
realistic work flows for development teams. 2

2 Worst-case analysis interval for determining the supply bound function of the periodic
resource model Γ for k = 3. Figure reproduced from [1, Fig. 4.1]. 13

3 DSSF example graphs. Figs. from [2]. 26
4 Block diagram interconnection examples for conic system composition rules. 30
5 Block diagram interconnection example for feedback structure. 32

6 Flow of ESMoL design models between design phases. 40
7 Platforms. This metamodel describes a simple language for modeling the topology of

a time-triggered processing network. 42
8 Basic architecture for the quadrotor control problem. 44
9 Quadrotor component types model from the SysTypes paradigm. 46
10 SystemTypes Metamodel. 47
11 Overall hardware layout for the quadrotor example. 48
12 Quadrotor architecture model, Logical Architecture aspect. 50
13 Triply-redundant quadrotor logical architecture. This is not part of the actual quadro-

tor model, and is only given for illustration. 51
14 Quadrotor architecture model, Deployment aspect. 51
15 Details from the deployment sublanguage. 52
16 Quadrotor architecture model, Timing aspect. 53
17 Details from timing sublanguage. 54
18 Stage 1 Transformation. 56
19 Acquisition relation in ESMoL Abstract, representing the timed flow of data arriving

from the environment. 56
20 Actuation relation in ESMoL Abstract, representing the timed flow of data back into

the environment. 59
21 Local dependency relation in ESMoL Abstract, representing data transfers between

components on the same processing node. 60
22 Transmit and receive relations in ESMoL Abstract, representing the endpoints of data

transfers between nodes. 61
23 Object diagram from part of the message structure example from Figs. 12 and 14. . 62
24 Stage 2 Interpreter. 63
25 Integration of the scheduling model by round-trip structural transformation between

the language of the modeling tools and the analysis language. 64
26 Conceptual development flow supported by the tool chain. 74
27 Hardware in the Loop (HIL) evaluation configuration. 77
28 Communications test model. 77
29 Communications test plant model using the Mathworks xPC Target. 78
30 Simulink model of a simplified version of the quadrotor architecture. 79

vii

31 Simplified quadrotor plant dynamics. The signal lines leading off the picture are signal
taps used for online stability analysis. 79

32 Conceptual nested loop structure of the controller. 80
33 Sector analysis block (SectorSearch) connection around the position controller. . . . 81
34 Sector value evolution over time for the quad integrator. 82
35 Magnitude frequency responses for the quad integrator. 83
36 Simulink model of the Starmac quadrotor helicopter. 84
37 Detail of the Robostix block. 85
38 Detail of the inner loop block. 86
39 Schedule configuration for the quadrotor. 87
40 Timing diagram for the Robostix AVR running the inner loop controller. 87
41 Trajectory tracking for the quadrotor implementation. 88

42 Simulink Fixed Wing Controller Model . 98
43 Synchronous data flow for Fixed Wing Controller . 99
44 Detail of the components involved in the cycle found in the velocity controller. . . . 101
45 Full cycle for the velocity controller. 103

viii

CHAPTER I

PROBLEMS IN MODEL-BASED DESIGN AND ANALYSIS FOR

HIGH-CONFIDENCE DISTRIBUTED EMBEDDED SYSTEMS

High confidence embedded control system software designs often require formal analyses to ensure

design correctness. Detailed models of system behavior cover numerous design concerns, such as

controller stability, timing requirements, fault tolerance, and deadlock freedom. Models for each

of these domains must together provide a consistent and faithful representation of the potential

problems an operational system would face. This poses challenges for structural representation of

models that can integrate software design details between components and across design domains,

as commonly components and design aspects are tightly coupled.

Coupling between separately designed components and modules can prevent model analyses from

scaling well to large designs. Coupling also occurs within individual systems and components between

behaviors represented by different design concerns (as represented by the layers shown in Fig. 1) as

different aspects of the design constrain design structures and parameters in different ways. These

complications combine with other factors to increase the difficulty of system integration. Integration

difficulties are well-documented for embedded systems [3], and for software projects in general [4].

As a simple example from the distributed embedded control systems domain, schedulability,

deadlock-freedom, and stability are three different notions of correctness that must be satisfied for

virtually any distributed real-time control system design. All three of these conditions can depend on

the frequencies at which real-time tasks are run, but each design concern constrains the frequencies

in a different way. For example, increasing sampling frequency can increase the stability of a control

loop, but which could make scheduling requirements difficult or impossible to satisfy. Extending

the same example, specifying additional timing constraints and dependencies between tasks in a

real-time system may improve end-to-end latency, but increase the risk of deadlock. We call this

interaction of constraints between disparate design concerns vertical coupling.

1

Figure 1: Facets of model-based CPS design processes. Reconciling all of the details represented by
these models is a significant challenge for design tools. Tools must also support realistic work flows
for development teams.

A typical example of horizontal coupling (i.e. between components in a design, and within a

single design concern) is the problem of end-to-end latency requirements. The latency incurred

between a change in the physical environment and the control system’s response to that change

is often a critical matter. Numerous sensing, computation, data communication, and actuation

elements may lie on a timing-critical data dependency path between the initial sensing event and

the final actuation event. These elements usually share the same computing and communication

resources, so tightening one latency requirement to meet performance goals can easily render other

seemingly unrelated requirements infeasible. Often horizontal coupling is implicit – we usually

specify component parameters separately, resulting in adverse performance changes at the system

level due to unanticipated coupling.

2

Our solutions to the larger coupling problems in high-confidence embedded systems design revolve

around three main techniques:

1. Model-based design and analysis: Model-integrated computing [5] and related approaches

can prevent numerous structural and conceptual errors by encoding correctness concepts into

Domain-Specific Modeling Languages (DSMLs) used for design, and by resolving and encoding

relationships between details in different design aspects as language structures and constraints.

Inasmuch as system behaviors and behavioral notions of correctness can be encoded in a

modeling language and efficiently analyzed, these notions of correctness can be addressed by

the structure of design models [6].

2. Vertical decoupling: Several research efforts consider the problem of decoupling between

design domains – within a design we want to increase behavioral independence of elements of

the system with respect to a particular property so that design elements in different aspects can

be specified more or less independently. Examples include the Time-Triggered architecture[7],

which decouples functional specifications from timing specifications by providing a set of pro-

tocols to guarantee timing determinism and fault tolerance – protecting requirements in both

design aspects. Synchronous execution models reduce deadlock-freedom and decidability of

correctness properties to constraints on the structure and parameters of the design[8, 9]. Pas-

sive control theory guarantees stability of control loops through the proper interconnection

of passive components to maintain passivity at the system level [10, 11], and decreases the

destabilizing effects of sampling variance and time delays due to hardware [12, 13].

3. Horizontal decoupling: In model analysis we aim to exploit the structure of the model

to increase the scalability of analyses for that model. Two general techniques for addressing

scalability problems are compositional analysis and incremental analysis.

(a) Compositional analysis is a structural property of a formal analysis method (and com-

patible models) allowing the partition of a design into components. As analysis proceeds

we establish correctness properties first for the individual components and second for

the compositions of components using formal models of their interactions. Scalability

3

comes from successive analysis and combination of small component models, as opposed

to analyzing a single, large all-inclusive model.

(b) Incremental analysis relies on information stored in the model regarding previous analyses.

The idea is to isolate the effects of model changes (i.e. adding new components, removing

components, or modifying existing components) on the results of previous analyses. If

done efficiently, analysis must only be computed for components in the vicinity of the

changed components, where “vicinity” can be defined in a number of ways.

Cheaper analysis can yield significant cost reductions over the lifespan of a high-confidence control

software development project. Incremental analysis can further reduce costs by allowing rapid

redesigns when features are added to a deployed design.

Specific Problems

1. Continuous-time feedback control, embedded computer software, and distributed computing

hardware design domains are highly specialized and often conceptually incompatible. Sharing

model artifacts between designers in different domains can lead to inconsistency problems in

software implementations or other engineering artifacts due to incomplete or faulty under-

standing of design issues. These inconsistencies can seriously impact the soundness of model

analyses, and can hide design defects. Current state of the art resolves these problems by

reviewing many of the details in meetings and personal discussions. In the worst cases serious

incompatibilities are not discovered until very late in the development cycle, leading to project

overruns and cancellations.

2. Controller properties which are verified using simulation models may no longer be valid when

the design becomes software in a distributed processing network. Scheduling jitter, data com-

munication delays, and precision loss due to data quantization are all examples of effects that

contribute to instability and performance loss in controller software. Currently control design-

ers use conservative performance margins to avoid rework when performance is lost due to

deployment on a digital platform.

4

3. Long design, analysis, development, deployment, and test cycles limit the amount of iterative

rework that can be done to get a correct design. Currently high-confidence design requires both

long schedules and high costs. Lack of scalable formal model analysis methods is a significant

factor preventing rapid design evaluations.

4. Automating steps in different design and analysis domains for the same models and tools

requires a consistent view of inferred model relationships across multiple design domains. If

integrated tools have different views of the model semantics, then their analyses are not valid

when the results are integrated into the same design.

Contributions

In particular, we propose the following contributions toward solutions of the problems described

above:

1. Model Integration of High-Confidence Design Tools: We have created a DSML for

modeling and generating software implementations of distributed control systems, the Embed-

ded Systems Modeling Language (ESMoL). ESMoL includes aspects for functional modeling,

execution platforms, and mapping of functional blocks to execution platforms. The language

also includes appropriate parameters to capture timing behavior.

2. Extensible Language Interpreter Framework: We use a two-stage interpreter develop-

ment framework to isolate model interpreter code from the details of the front-end ESMoL

modeling language as we experiment with language design. The first stage transforms ESMoL

models to models in a language called ESMoL Abstract, resolving inferred model relations.

The second stage interpreters create analysis models, simulations, and platform-specific code.

We aim to give all of the model interpreters a single, consistent view of model details for

analysis and generation.

3. Integrated Incremental Cycle Analysis: The ESMoL tool suite includes an analyzer that

checks for delay-free loops in the assembled dataflow models.

5

4. Incremental Task Graph Schedule Calculation: We present a conceptual discussion of

an incremental method for calculating task graph schedules.

Dissertation Organization

• Chapter II discusses literature in the field that relates to our chosen solution methods.

• Chapter III discusses the design philosophy and key details of the ESMoL modeling language.

We include a discussion of an interpreter development architecture to improve the extensibility

and maintainability of the language and tools.

• Chapter IV gives an example of incremental syntactic analysis in ESMoL models.

• Chapter V covers incremental schedule calculation.

• Finally, chapter VI addresses lessons learned and potential future work in this area.

6

CHAPTER II

RELATED WORK

Modeling Languages and Tools for Embedded Systems Design

A number of projects seek to bring together tools and techniques which can automate different

aspects of high-confidence distributed control system design and analysis:

• AADL is a textual language and standard for specifying deployments of control system designs

in data networks[14]. AADL projects also include integration with the Cheddar scheduling

tool[15]. Cheddar is an extensible analysis framework which includes a number of classic

real-time scheduling algorithms[16].

• Giotto[17] is a modeling language for time-triggered tasks running on a single processor. Giotto

uses a simple greedy algorithm to compute schedules. The TDL (Timing Definition Language)

is a successor to Giotto, and extends the language and tools with the notion of modules

(software components)[18]. One version of a TDL scheduler determines acceptable communi-

cation windows in the schedule for all modes, and attempts to assign bus messages to those

windows[19].

• The Metropolis modeling framework[20] aims to give designers tools to create verifiable system

models. Metropolis integrates with SystemC, the SPIN model-checking tool, and other tools

for schedule and timing analysis.

• Topcased[21] is a large tool integration effort centering around UML software design languages

and integration of formal tools.

• Several independent efforts have used the synchronous language Lustre as a model translation

target (e.g. [22] and [23]) for deadlock and timing analysis.

7

• RTComposer[24] is a modeling, analysis, and runtime framework built on automata models. It

aims to provide compositional construction of schedulers subject to requirements specifications.

Requirements in RTComposer can be given as automata or temporal logic specifications.

• The DECOS toolchain [25] combines a number of existing modeling tools (e.g. the TTTech

tools, SCADE from Esterel Technologies, and others) but the hardware platform modeling and

analysis aspects are not covered.

We are creating a modeling language to experiment with design decoupling techniques, integra-

tion of heterogeneous tools, and rapid analysis and deployment. Many of the listed projects are too

large to allow experimentation with the toolchain structure, and standardization does not favor ex-

perimentation with syntax or semantics. Due to its experimental nature some parts of our language

and tool infrastructure change very frequently. As functionality expands we may seek integration

with existing tools or standards as appropriate.

Compositional and Incremental Methods

In order to introduce the topic, we will first use some definitions from Edwards et al [26] to clarify

terms and concepts in this research area. We have expanded the definitions and descriptions slightly

to better fit our approach.

A formal design consists of the following elements[26]:

• A specification of system functions and behavior, including any details necessary to determine

correctness with respect to requirements.

• A set of properties which the design must satisfy, that can be checked against the specification.

These are derived from requirements or are assumed for correct operation of any system (e.g.,

deadlock-freedom).

• A set of performance indices allowing us to assess the quality of a particular design.

• Constraints on the performance indices. These are also derived from requirements.

Edwards et al further classify properties as follows[26]:

8

1. Properties inherent to the model of computation (behavior), which can be shown to hold for

all specifications.

2. Syntactic properties can be determined by tractable analysis of the structure of elements in

the specification.

3. Semantic properties can only be determined by examining the actual behavior of the specifi-

cation. This means executing the specification either implicitly or explicitly over the full range

of inputs.

In our work we consider proper design specification and correctness properties, but have not

yet addressed performance indices and constraints beyond timing latency. In particular, we aim

to create modeling tools and techniques which favor correct design by constructing model-based

design environments that provide significant inherent properties for all well-formed models, or ef-

ficient analysis of syntactic properties. For semantic properties we seek abstractions which allow

us to encode correct behavioral relationships into the syntax of the specification language, reducing

expensive semantic analysis to less costly syntactic analysis.

We can now describe our approach to decoupling within this framework. We seek to achieve ver-

tical decoupling by selecting a platform (TTA) which provides timing determinism and synchrony

as inherent properties, and use passive control design methods to reduce the semantic property

of robust stability to a syntactic concern. For horizontal decoupling we aim to use compositional

techniques, which are inherently syntactic – for example, many properties in a design model can

be evaluated from the bottom-up, following the design hierarchy. We also use incremental meth-

ods to make evaluation of both syntactic and semantic properties more compatible with iterative

development processes.

Incremental Scheduling Analysis

Timing is a fundamentally semantic property. Determination of design validity and correctness de-

pend on properties only verifiable by execution of the behaviors of the model. In a design model we

can easily represent the relations between tasks, messages, and hardware for the purposes of syn-

thesizing simulations or even scheduling analysis problem specifications. However, these structures

9

have little bearing on determining the actual admissibility of tasks and messages into an existing

design. We can always draw the connections in the model, but only semantic analysis will yield an

indication of whether or not the model is well-formed with respect to schedulability, and whether it

satisfies latency constraints.

In most cases, useful compositional and incremental techniques for scheduling must introduce

some restriction of behavior or approximation into a problem which is highly coupled over the entire

system design in order to reduce that coupling for scalable analyses. As we will see in the sequel,

for some scheduling algorithms and correctness criteria, compositional and incremental analyses

can proceed without introducing approximations into the behaviors represented by the design. In

these cases the properties are specified locally (i.e. task deadlines), greatly limiting the effects of

dependencies but also greatly limiting the ability to express and enforce constraints which meet end-

to-end deadlines. The much more difficult and general case considers end-to-end latency over the

dependency graphs between tasks and messages. This forces us to properly model global coupling

in the design, but seriously complicates our efforts to find useful decoupling methods.

Hierarchical Schedulability Analysis Using Resource Interfaces

Hierarchical schedulability analysis is a technique for abstracting a set of hard real-time components

in such a way that multiple task sets could efficiently be composed and analyzed. More specifically,

1) we can analyze heterogeneous schedulability models, where different groups of tasks are run

together under different scheduling algorithms; and 2) given a working, feasible real-time system, we

can efficiently determine whether new task sets can be admitted for execution, even if they run under

different scheduling algorithms. Admission depends on safety and resource availability. Beyond the

compositional and incremental structure of models for analysis, hierarchical scheduling also requires

runtime scheduling algorithms that support hierarchical resource sharing.

We deal with computing tasks and data communication messages whose respective execution

times and data transfer times are known and bounded for the contention-free case. In this section

we will refer to all resource consumers (tasks and messages) as tasks for simplicity. We consider only

periodic tasks (or sporadic tasks with a known maximum frequency). A resource provides a known

10

Scheduling algorithm Priority scheme Compositionality
Static schedule Fixed, non-preemptive Adding tasks incrementally requires

a priori restrictions (such as
harmonic periods), or recomputation
of the whole schedule.

EDF (Earliest Dynamic, preemptive Admitting new tasks is a function of
Deadline First) based on the next nearest utilization, which can be calculated

deadline to the current time. easily for the current workload.
RM/DM (Rate Fixed, preemptive Admitting new tasks requires analysis
or Deadline Priority determined against utilizations or demand bounds at
Monotonic) by period or by all higher priority levels.

relative deadline.

Table 1: Common real-time scheduling algorithms

amount of capacity over time, and tasks consume that capacity when executing. Schedulability

implies that the resources supplied by scheduling algorithms are sufficient to meet the demand

imposed by the tasks.

Easwaran [27] clarifies two fundamental approaches to compositional scheduling analysis:

1. A task set may be considered abstractly as a single task demand function under a scheduling

algorithm which is global to all tasks. This approach was proposed by Wandeler [28]. Resources

are abstracted under a supply bound function (sbf), and tasks are composed under a demand

bound function (dbf) using the real-time calculus[29]. In this analysis approach the order in

which tasks are analyzed can affect the satisfaction of the schedulability property for fixed-

priority scheduling, so careful restrictions must be placed on the order of analysis.

2. A task set, its scheduling algorithm, and its resources can be seen as a new resource supply

function, which is the approach we will cover here. This technique has the advantage that

each component then presents a partial resource supply model to its child components, which

may also be composite. The resulting structure is a hierarchy of tasks, each with its own

resource supply function. During design and analysis, each set of supply-demand relationships

is restricted to its own scope in the model hierarchy. The hierarchical scheduling approach was

first proposed by Shin [1], and extended by Easwaran[27] to better model preemption overhead

and deadlines.

A runtime scheduling algorithm controls the execution of a task set to ensure that all tasks get

adequate resources. Scheduling algorithms are usually characterized by their priority policy. Table

11

Supply model Parameters Min sbf(t) Comments
Bounded delay interval [t1, t2] c(t− δ) if t ≥ δ For any time interval

supply rate c 0 if t < δ [t1, t2], supply
delay bound δ c(t2 − t1) units

before time t2 + δ.
Periodic period Π t− (k + 1)(Π−Θ) , Supply Θ units

supply Θ if t ∈ [(k + 1)Π− 2Θ, (k + 1)Π−Θ] every Π time units.
(k − 1)Θ, if not
k = max(d(t− (Π−Θ))/Πe , 1)

EDP (Explicit period Π
⌊

t−(∆−Θ)
Π

⌋
Θ + max{0, Extends the periodic

Deadline supply Θ t− (Π + ∆− 2Θ)−
⌊

t−(∆−Θ)
Π

⌋
Π} model with a deadline

Periodic) deadline ∆ if t ≥ ∆−Θ parameter ∆.
0 otherwise

Table 2: Resource supply models and their parameters.

1 describes some common scheduling algorithms and their priority schemes, along with notes on the

details of incrementally extending models under each particular scheduling algorithm.

For supply models a constant supply is most common (i.e., s(t) = c), but other models have

better compositionality properties. Mok and Feng[30] introduced a bounded delay model for resource

supply. Shin and Lee[31][1] presented a model where a resource is modeled to provide a fixed amount

of supply at a constant periodic rate. Easwaran[27] extended the periodic supply model with support

for user-specified deadlines. The models and their parameters are described briefly in Table 2.

The key concept is that we can specify a real-time component as a collection of periodic tasks, a

scheduling algorithm, and a resource supply interface. The real-time component executes the tasks

according to the specified algorithm, subject to the supply constraints provided by the resource

model. This structure allows real-time components to be specified and executed as a hierarchy, as

each component’s resource interface appears as a single periodic task to the component at the next

higher level. The top level component provides the total (often constant) supply.

As an example we will describe the periodic supply model here in greater detail. A periodic

resource Γ supplies Θ units of resource every Π time units. The actual supply could occur anywhere

in each time interval of length Π, so we interpret the occurrence according to the worst case with

respect to schedulability: supply first occurs as early as possible where it might be missed for a

given analysis interval. In the worst case, the first supply is followed by a blackout interval of length

2(Π − Θ), followed by supply instances which occur as late as possible for all successive periods,

12

Figure 2: Worst-case analysis interval for determining the supply bound function of the periodic
resource model Γ for k = 3. Figure reproduced from [1, Fig. 4.1].

sbfΓ(t) =
{

t− (k + 1)(Π−Θ) if t ∈ [(k + 1)Π− 2Θ, (k + 1)Π−Θ]
(k − 1)Θ otherwise

(1)

k = max
(
d (t−(Π−Θ))

Π e, 1
)

as shown in Fig. 2. In the figure t is the length of the analysis interval, starting at the point of

worst-case supply. The interval t starts with the blackout period 2(Π − Θ), marked by the dark

dashed arrows. During the blackout period the interface provides no supply. This figure shows an

analysis interval with three periods, and ending in the middle of a capacity interval.

Eq. 1 shows an expression for a supply bound function representing the worst-case supply for

a periodic resource interface as depicted in Fig. 2. For more tractable analysis, a linear supply

function is commonly used, as in Eq. 2.

Finally, we give the schedulability condition for fixed-priority systems as described in [1, Theorem

4.5.3]:

“A scheduling unit SU〈W,R, A〉 where W is a periodic [task] workload set, R is a periodic

resource Γ〈Π,Θ〉, and A is the RM scheduling algorithm, is schedulable (with worst-case resource

supply of R) iff

∀Ti ∈W, ∃ti ∈ [0, pi] dbfRM (W, ti, i) ≤ sbfΓ(ti)”.

”.

sbfΓ(t) =
{

Π
Θ (t− 2(Θ−Π)) if t ≥ 2(Π−Θ)

0 otherwise
(2)

13

The final relevant result we will discuss creates an periodic resource interface to model the

supply required by child tasks in a hierarchical scheduling model. This technique is only valid for

EDF scheduling, and includes preemption overhead.

[27, Def. 4.4] Multi-period composition For the child component Ci, let ki be the period at

which its interface provides resources. φki
= 〈ki,Θki

〉 is the resource model in the interface ICi
. For

parent component C and its operating period k, Θk can be found using the optimization problem

in Eq. 3.

minimize Θk

subject to
Θk

k
≥

n∑
i=1

Θki

ki
+ PO(ki)

2(k −Θk) ≤ mini=1...n
{2(ki−Θki

−kiPO(ki))}
2

(3)

Here PO(k) is the preemption overhead function, which bounds the demand contributed by

system overhead for a given interface period k. PO(ki) is then the overhead contributed by the

interface of component Ci due to the period mismatch between the resource interfaces for ICi
and

IC . PO is given as a fraction of the period ki. One suggested form for the preemption overhead

function is PO(k) = A
k , where the constant A is specified by the designer from calibration data.

Multi-period composition for fixed-priority scheduling models and periodic resource interfaces is still

an open problem.

For dynamic scheduling, deadlines and dependencies complicate compositionality when consider-

ing end-to-end properties in a dataflow network. Adjusting the deadline of a single task can lead to

a loss of schedulability (or performance) for components in other parts of the system, affecting tasks

which may not have direct functional dependencies. Dependencies are implemented using offsets or

synchronization mechanisms in dynamic scheduling environments. Offset determination essentially

computes a static schedule for a subset of the tasks in the system to ensure they meet end-to-end

latency requirements. For explicit task synchronization, unbounded nesting of locks across differ-

ent priority levels can lead to undecidable response times for scheduling models. Platforms which

provide priority inheritance protocols can alleviate many situations arising from such task nesting

14

situations. The priority ceiling protocol explicitly limits the depth of chains of blocking calls between

processes at different priority levels, so response time bounds can always be calculated[32].

Incremental Techniques for System Designs

Static scheduling is generally not compositional. Kwok and Ahmad give a detailed survey and

evaluation of static task graph scheduling methods, including a discussion of the abstractions on

which those methods are based[33]. Schild and Würtz [34] and Ekelin and Jonsson [35] describe

constraint models for static real-time scheduling problems, such as would be used in designs based

on time-triggered communication systems. Zheng and Chong give an alternate formulation of the

constraint models which is more complex, but allows the designer to optimize for extensibility[36].

The additional complexity is due to the addition of constraints and variables to model preemption

as well as the need to explicitly model task and message finish times in order to model slack. Using

preallocated slack to achieve incrementality is only a partial solution, as the technique only addresses

the availability of time to modify or change tasks and messages. It is a necessary condition, but not

sufficient. In order to have a sufficient condition we would also have to address changes or additions

to the data dependency graph.

For statically scheduled workloads Zheng and Chong give the following form (Eq. 4) for their

slack metrics[36]. Maximizing slack creates additional time in the schedule for modifying or adding

tasks and messages.

ME =
∑

(ti,tj)∈ω̄

wti,tj × ((sm
ti,tj
− fti) + (stj − fm

ti,tj
)) (4)

In Eq. 4 the set ω̄ is the set of task instance pairs which have remote data dependencies. ti

is task instance i, sti
is a variable representing its start time, and fti

is its end time. sm
ti,tj

is the

start time of the message from task ti to task tj , and fm
ti,tj

is the corresponding end time. wti,tj
is

a designer-specifiable optimization weight for each task pair in ω̄.

In Pop et al[37] the authors describe an incremental approach to the allocation, mapping, and

scheduling problems for a time-triggered platform with non-preemptive statically scheduled tasks

and TDMA communications. The task graph granularity of their models is very coarse, where a

15

vertex corresponds to an application, and edges correspond to dependencies from the perspective of

software maintenance. Two application vertices are dependent if modifying the first will also require

the modification of the second. Their approach relies on the specification of size and probability

parameters to control the provision and distribution of schedule slack in order to accommodate

future capacity. They assume a discrete set of possible task configurations, and then the designer

gives probability values to each element, based on the likelihood of needing to add something similar

to a future design. Their quality metrics are based on a cost function which combines slack size

and distribution. Bin packing is used to maximize the available slack, and a simulated annealing

approach is used to maximize the objective function.

Matic proposes an interface algebra which deals compositionally and incrementally with delay

and data dependencies given task arrival rates, latency bounds, task dependency graphs, and WCET

bounds. The algebraic formalism describes composition, interconnection, abstraction, and refine-

ment of components. Within these operations, the model structures jointly evaluate schedulability

(using the bounded-delay resource supply model of Mok and Feng[30]), causality, and end-to-end

delay[38]. The end-to-end delay bounds are specified cumulatively rather than globally, and the

author does not consider the conservatism of the formalism with respect to the behaviors that it

represents.

Ghosh et al present a formal model for allocation (Q-RAM) which searches over possible quality

levels (bandwidths), delay levels (hops), and routes for a set of communicating tasks[39]. The

immense size of the search space is pruned by considering the hierarchical structure of the network,

and exploiting locality of communication where possible. The objective is to flexibly, scalably, and

incrementally determine resource allocation on the network while maintaining near-optimality for a

utility metric. In [40] the authors present a distributed allocation scheme where each sub-domain

negotiates for a common global set point for its allocated tasks. Their approach is fundamentally

suited to incremental analysis, though their evaluations do not stress this aspect.

16

Incremental Deadlock Analysis

We consider compositional and incremental techniques related to deadlock detection or avoidance

in embedded system designs specified as dataflows. For many of these models deadlock-freedom is

an inherent property. Functional determinism is another important property inherent in dataflow

models of computation, but which we will not cover in detail. We shall rely on the fact that

synchronous data flows (SDF) exhibit both properties inherently. First, it will be important to

review some of the historical and current work in deadlock analysis.

Overview of Compositional Methods

Early work in semantics for distributed computing languages considered functional semantics – for

example, determining whether a given distributed dataflow network would deterministically calculate

a specified function [41]. Kahn showed that under proper assumptions, the network could calculate

the same function deterministically regardless of the firing order of the network. Kahn’s approach

used Scott continuity[42] to ensure the existence of a unique fixed point for the dataflow network. The

difficulty with this formalism is that while it provides compositional deadlock freedom, scheduling a

Kahn network is not compositional – although the data flow elements and their interconnections are

specified independently, scheduling or other analysis of the network may require global determination

of a fixed point (via iteration or symbolic analysis) in order to yield a result. Maximum capacities of

data buffers between components are also not decidable in the original Kahn formalism. Synchronous

data flow models of computation are a subset of the Kahn formalism for which the firing orders and

maximum buffer sizes can be precalculated [8] These data flow formalisms are compositional, and if

structured correctly can be used for incremental analysis.

SDF actors (functional components) are constrained to have fixed data token consumption and

production rates at each clock tick (firing). Balance equations on the topology of the data flow can

indicate whether the specified token flows are consistent, or whether each actor can be assigned a

specific number of firings to satisfy the rates in the specification [8]. For flow rate specifications, Buck

discusses the consequences of allowing richer data token flow models in the specification, such as

conditional execution and nondeterminism[9]. These constructs can easily lead to undecidability for

17

token flow rates on various data links and therefore lead to undecidability for maximum buffer sizes.

Lee and Parks illustrate that balance equations compose easily in hierarchical SDF specifications[43].

Balance equations may be given independently for subcomponents and solved to abstract the token

flow within the parent component to appear as a single actor having fixed token production and

consumption rates. For flow rates adding an actor or changing an existing actor may require firing

order sequence recomputation from the containing component to the top of the model hierarchy, so

the effects of incremental design changes on the analysis could be isolated.

As an example of the formalism, static scheduling of a SDF subsystem on a particular platform

means determining the firing order of all of the components, including the number of times each

component is fired. These values are determined using balance equations as described by Lee and

Messerschmitt[8]. In [8, Eq. 3] Lee gives a dynamic equation relating the amount of data in each of

the buffers to the firing sequence of the nodes and the topology of the SDF graph. We repeat some

of the discussion here to illustrate another fundamental model form for SDF analysis:

Let b[k] ∈ Zm represent the quantity of data in each of the buffers at discrete time tick k. Here

m is the number of edges in the SDF graph, associating one vector component with each buffer. Let

v[k] ∈ {0,1}n represent whether each node is fired at time k, where the components of the vector v

range over the nodes. Let the matrix Γ be defined as follows for the SDF graph:

Γi,j = token rate(nodej , edgei)

nodej is the jth node (component) in the graph, edgei is the ith edge (as in buffer vector b,

above), and token rate is the number of tokens produced on edgei by a single firing of nodej . For

nodes consuming data the value is negative. Then [8, Eq. 3] is given as

b[k + 1] = b[k] + Γv[k].

From the topology matrix Γ we can solve for the number of firings required to balance the SDF

graph or subsystem. If Γ has rank n− 1, then a positive integer vector q exists such that Γq = 0. q

represents the firing quantities. This is proved by Lee in [44].

18

More recently, Gossler and Sifakis proposed a formalism for modeling and analyzing asyn-

chronous designs based on a specification language known as BIP (for Behaviors, Interactions, and

Priorities)[45][46]. Component behaviors are modeled as automata, interactions as structures on

the sets of possible event combinations between connected components, and priorities are global

restrictions of the possible interactions. Bliudze and Sifakis give a formal definition for (possibly

asynchronous) event interactions represented by connectors in BIP[47]. These connectors can be

nested, and algebraic techniques are given for reducing hierarchical connectors to simpler represen-

tations. This provides the foundation for incremental design, as an existing (reduced) algebraic

model for the connectors in a design provides an interface for extending the design with additional

components and their interactions. New interactions can be “connected” to the existing connector

structure and analysis performed with respect to the reduced interaction model for those connec-

tors. Bensalem et al [48] give a detailed description of a formal model for incrementally constructing

the interaction space and efficiently computing behavior invariants for deadlock verification. These

techniques take a step towards reducing the semantic analysis required for deadlock analysis to a

syntactic analysis problem.

Ferrarini[49] deals with compositional design by giving the designer a safe set of building blocks

which allow the incremental construction of discrete control systems which satisfy boundedness,

cyclicness, and liveness. The analysis is reduced to a graph based on connections among tasks.

Synchronous Distributed Platforms

In standard real-time systems, distributed platforms typically do not provide fully synchronous se-

mantics. Synchronization between processes is provided by explicitly specified locking primitives

such as semaphores, mutexes, and monitors. Cyclic dependencies in these specifications can lead to

deadlock if they are not sequenced correctly. In addition, scheduling of tasks at different priorities

along with their dependencies can lead to deadlock or starvation (effective deadlock). For dynam-

ically scheduled tasks, the priority ceiling protocol can completely avoid priority-related deadlocks

by bounding the depth of chains of processes waiting on one another and by implicitly ordering the

acquisition and release of locks[32].

19

The Time-Triggered Architecture (TTA) relies on a priori knowledge of message schedules to

achieve and maintain synchronous execution over distributed processors. Each processor has a full

copy of the message schedule, and all messages are sent and received at precise, precalculated times.

Schedule-driven execution eliminates the need to send control and acknowledgment signals between

processing nodes, reducing horizontal coupling in the design.

The basic semantic assumptions of the TTA can be summarized as follows:

1. All clocks in the system are synchronized, and the schedules run over a global periodic cycle.

2. Data transfers occur on a common, shared bus where all messages are broadcast to all proces-

sors.

3. Data reading and writing are non-blocking for tasks.

4. Data message updates occur outside the execution window for sending/receiving tasks.

5. Messages on the bus do not preempt each other.

The Timed-Triggered Protocol (TTP) realizes the communication mechanism within the TTA.

Each processing node receives a TDMA time slot in which to send messages. TTP provides the

following services (see [50] for details):

• Timed message transport between nodes, reducing latency and jitter for individual transfers.

• Fault-tolerant distributed clock synchronization on all nodes, ensuring deterministic mode

change behavior for replicated computations.

• Fault-tolerant membership service for all nodes.

• Clique avoidance when faulty nodes are isolated from the network.

The Loosely Time-Triggered Architecture (LTTA) attempts to maintain the synchronous capa-

bilities of the TTA without the full clock synchronization between nodes, in order to reduce coupling

in the hardware architecture. LTTA is based on the following assumptions:

1. Assumption 1

20

• Each processing node has an independent local clock.

• Each shared variable (message) has a separate communication channel.

• Data reading and writing is performed independently at all processors without synchro-

nization.

2. Assumption 2. Each update (write) is broadcast to all nodes.

3. Assumption 3. Each cycle in the data flow graph has at least one unit delay (no causality

loops).

4. Assumption 4. Each communication between processors is delayed by at least one tick.

Additional assumptions relate to particular implementations of LTTA (see Benveniste[51] for

details). Causality loop conditions can be problematic to analyze. Often in a dataflow graph

many paths and loops are interconnected, complicating the analytic enumeration of loops to ensure

adequate buffer placement and cycle initialization. The simplest solution is structural – to buffer all

data transfers, as in Kahn networks[41]. Zhou and Lee discuss some of the difficulties in performing

loop analysis for cycles in synchronous dataflows[52].

Tripakis et al describe a synchrony-preserving map from concurrent data-driven synchronous

Mealy automata to an LTTA platform which relies on back pressure and skipping to avoid dead-

locks[53]. In their formalism, buffer sizes are fully decidable and the authors give a lower bound for

the maximum required buffer size to prevent deadlock. The authors use an argument based on the

Kahn process network formalism in order to guarantee determinism in their model, which allows

data-driven mode switching in components[53].

Incremental Causality Profiles

These techniques seek for mathematical structures which ensure deadlock-freedom as a syntactic

property of dataflow models. Zhou and Lee describe an algebraic model which abstracts data

dependencies between interconnected actor ports in order to determine liveness. It is based on

repeated reductions on algebraic expressions representing connectivity[52].

21

Tripakis et al describe a method for addressing the cycle token constraint compositionally in

hierarchical SDF models [2]. They propose the creation of a subsystem profile which abstracts the

dependency information inside the subsystem and provides interface FIFOs where necessary in order

to break causality loops. The causality profile technique seems to provide the right level of support

for incremental component addition and for change isolation with respect to the causal dependencies

within the component and in the larger design. The one drawback is that the profile fundamentally

changes the component from a pure SDF model to a synchronous block with shared FIFOs on its

ports. As an example we will consider Tripakis’ approach in greater detail.

In order to motivate the approach, consider the effects of an addition or a change to a flat SDF

model. Adding a new actor to the model would require a reformulation of the balance equations,

followed by a deadlock assessment by simulating token flows as described in Lee[8]. A similar

analysis would follow for changes to an existing design, if those changes affected the token flow rates

or connectivity of existing components. Adding hierarchy to SDF graphs helps encapsulate token

flow rate calculations. Each subcomponent can be abstracted as a single component with fixed token

flow quantities for its I/O ports. Deadlock assessment is more problematic for complex hierarchical

designs. The number of operations for token flow simulations to assess deadlock in an SDF graph are

bounded by the total number of actor firings in the system, as determined by the minimal solution

to the balance equations. The number could be large. For example, a composite subsystem could

fire N times in the simulation, and have subsystems each of which fire N times to a hierarchy depth

of M , for a total of O(NM) actor firings. Such an expensive analysis prohibits incremental design

and does not isolate changes well.

As with incremental scheduling, we would like to have an interface for each component which

represents the behavior of the component with respect to deadlock analysis. Tripakis et al provide

such an interface called a DSSF profile (Deterministic SDF with Shared FIFOs) , with care to

reduce the conservatism of the interface abstraction in order to keep the technique useful. An

added benefit of these profiles is that they use the knowledge of the order of actions in the firing

interface to safely share input and output FIFOs between ports, reducing the buffer space required

for implementation[2].

22

A DSSF profile is simply a multigraph which has four types of nodes: firing function nodes, input

signal nodes, output signal nodes, and external FIFO nodes. Edges represent dataflow dependencies.

Firing function nodes represent the firing of the actor when the order of actions is determined. Edges

into or out of a firing node are labeled with the quantity of data tokens consumed or produced by that

node when firing. For simple monolithic actors, the DSSF profile is simply a single firing node for

the actor function with input and output edges for its parameters. The edges are labeled according

to their token flow rates. Constructing a DSSF profile for composite actors is more involved. The

steps are outlined here, from Tripakis [2, Section 7].

1. To create a DSSF profile of a composite actor P , first connect the DSSF profiles of its sub-

components according to the topology of the dataflow graph of P .

2. Using the newly created DSSF profile graph of P , solve the balance equations to determine

the required number of firings for each subcomponent (i.e., find the repetition vector for the

nodes as described above). If the balance equations are inconsistent, then the specification for

P is also inconsistent.

3. Simulate the DSSF profile graph as an SDF graph to analyze for deadlock. Initialize each cycle

in the DSSF graph with a data token. If the firing nodes in the graph can each be fired the

proper number of times, then no deadlock exists.

4. Unfold the analyzed DSSF graph to created a directed acyclic graph (DAG) that represents

the I/O dependencies of P . There are two steps:

(a) First, replicate each firing node in the graph according to its number in the repetition

vector. Replicate associated input and output nodes. Add dependencies between the

replicated nodes so that each set of repeated nodes is sequentially ordered. Also replicate

the edges into and out of interface FIFO nodes as necessary (without replicating FIFO

nodes).

(b) Replace the internal FIFO queues with explicit dependencies, according the the formula

given in Eq. 5. Let A1, A2, . . . Aa be the set of firing functions producing data for

the FIFO, and let B1, B2, . . . , Bb be the set of firing functions consuming data from

23

the FIFO. These firing functions come from the DSSF profile graph before replicating

the instances. Now consider a particular producer and consumer pair, Av and Bu, where

v ∈ [1 . . . a] and u ∈ [1 . . . b]. In the instance-replicated graph, the ith instance of Av can be

written Av,i and the jth instance of Bu can be written Bu,j . Then for all combinations of

producer/consumer pairs (v, u) ∈ [1 . . . a]× [1 . . . b] and for each particular (v, u) consider

all of the instances (i, j) ∈ [1 . . . rAv] × [1 . . . rBu]. Then create a dependency directly

between Av,i and Bu,j if the following condition is satisfied:

d + (i− 1)
∑̇a

h=1
kh +

v−1∑
h=1

kh

< (j − 1)
∑̇b

h=1
nh +

u∑
h=1

nh

(5)

d represents the number of initial tokens in the FIFO. kh is the number of tokens produced

in the FIFO by actor Ah. nh is the number of tokens consumed from the FIFO by actor

Bh. If the link between an producing actor A and a consuming actor B is direct (i.e., no

explicit FIFO node exists between them), then repeat this procedure with a = b = 1 to

create the appropriate links between the instances.

The unfolded graph is used in the next step to get clusters that represent the firing functions of

a new DSSF profile for the whole component. Having separate firing functions means that the

abstracted component interface can be safely analyzed for deadlock without approximating.

5. Cluster the unfolded graph. The clusters are created so that no cyclic dependencies exist among

clusters. The DAG clustering algorithm given in [2] aims for maximum reusability, where no

false input-output dependencies will be created, and where the optimal (maximum) number

of clusters or more will be created using a greedy technique (since the optimal technique is

NP-complete). Clusters are also pairwise disjoint. Their algorithm is called greedy backward

disjoint clustering. Backward clustering means that the algorithm works from the outputs

backward. The result is a set of clusters C1, C2, . . . Cq which represent ’independent’ subsets

of dependencies for the component with respect to deadlock analysis.

24

6. Finally we create the new DSSF profile for the composite actor P . This step is somewhat

involved. Let Pc be the initial connected profile (from Step 1), let D be the unfolded graph,

let C = {Ci} be the set of clusters from the previous step, and let Pf be the new abstract

profile graph that we’re trying to create.

(a) In Pf , create an atomic firing node P.fi for each cluster Ci in C.

(b) For each input and output port of Pc, create a single FIFO. Each cluster writes to or reads

from the FIFOs at a rate specified by the sum of the actors in each cluster connected to

the FIFO. This can be determined from Pc, D, and the clusters Ci. If the rate is zero,

then the cluster is not connected to the corresponding FIFO.

(c) Create dependency edges in Pf between the firing nodes P.fi and P.fj if iff there exists

at least one edge between any node of Ci and any node of Cj .

(d) Consider each FIFO L in Pc. Let WL and RL be the ordered collection of clusters,

respectively, that write to and read from L. Create one dependency edge in each of WL

and RL from the last cluster to the first, with an initial token on the edge. This encodes

the requirement to wait to re-fire the cluster set until the last round has finished. If there

is only one cluster in either WL or RL, then do not create the additional edge.

(e) Now consider only the internal FIFOs of Pc (i.e., those not connected to an external port).

Suppose that a given internal FIFO L has d initial tokens. Let m be the number of tokens

produced by the clusters writing to L. m should also be the number of tokens consumed

by the reading clusters (by construction). Now we build a graph between the producer

and consumer clusters as follows: Let the ordered set z0, z1, . . . , zm−1 represent the tokens

produced by the clusters on the consumer side, ordered and partitioned according to the

cluster order and the number of tokens each cluster consumes. Likewise, create the ordered

set w0, w1, . . . , wm−1 for the producing clusters, similarly ordered and partitioned. For

i = 0 . . .m − 1, connect the cluster with token zi to the cluster with token wj , where

j = (d+ i) mod m. Also place bd+m−1−i
m c initial tokens for the edge associated with token

wi.

25

(a) Composite actor example for DSSF
generation. Actors A and B are the com-
ponents of composite actor H. Each input
and output port is labeled with the token
flow quantity. The center edge has six ini-
tial tokens.

(b) Unfolded graph. The dashed outlines
are one proposed clustering, and each is la-
beled with its cluster number (Ci).

(c) Final DSSF profile. Unlike the graph
corresponding to the original diagram, this
representation does not introduce false de-
pendencies.

Figure 3: DSSF example graphs. Figs. from [2].

(f) Clean up the edges created in the last step as follows: remove all self-loops without initial

tokens, and then combine multiple edges between clusters by summing the initial tokens

and token flow values.

We take a simple example from [2, Fig. 10] to illustrate some of the steps in the technique. Fig.

II.3(a) shows a composite actor specification for which we would like to create a profile. After the

connection, unfolding, and clustering steps (1-N), we end up with the graph in Fig. II.3(b). This

is used to create the final profile (Fig. II.3(c)), which abstracts both token flow rate and deadlock

characteristics of the original composite actor H.

26

Compositional Stability Analysis

Compositional techniques in control systems analysis seek to verify stability of a design model us-

ing component properties and interconnection rules. Robust control techniques consider feedback

interconnections of components, seeking to characterize and formalize behavior properties of the

connected components when one or both of the components are perturbed. Teel briefly describes

the development of the robust control approach for stability [54, Section IV]. The robust approach

centers on the explicit modeling of uncertainty in system inputs and parameters, along with tech-

niques for analyzing and optimizing interconnected systems designs that include uncertainties[55].

Passivity is a property of control system behavior that implies stability, composes under particular

interconnections of components, and which reduces the destabilizing effects of data and parameter

quantization [10] as well as delays due to digital processor scheduling and network communications

[56] [57].

Passive Control Design

Let Ein, Eout represent energy input and output for a component. Passivity means that energy

output for a particular component never exceeds its energy input together with any remaining

stored energy. Passive systems are compositional, as discussed below. Bounded-input bounded-

output (BIBO) stability requires Eout ≤ KEin. BIBO stability follows directly from passivity, but

is very weak in terms of our ability to direct the trajectory of the controlled system. Asymptotic

stability is a stronger form of stability that implies convergence of the system trajectories to a

particular point. If the system can be structured to provide a reference trajectory, then asymptotic

stability permits trajectory tracking. Usually a search for a Lyapunov function is used to establish

asymptotic stability for an arbitrary nonlinear system. Lyapunov functions generally represent (or

bound) the behavior of the entire system, so they are not compositional. Passivity can be used to

compositionally establish asymptotic stability with a few more strictness constraints.

To establish passivity for linear system models, Kottenstette gives Linear Matrix Inequality(LMI)

conditions to verify passivity of a linear time-invariant system in state-space form[58] (Eq. 6). If

a positive definite solution Pi exists satisfying the given matrix inequality, then the component is

27

passive. The inequality is interpreted in the sense of semidefinite programming, where for example

M ≤ 0 means “matrix M is negative semidefinite”[59]. Further constraining the matrix P to be

symmetric, we can solve this LMI efficiently using convex optimization techniques[60].

 AT
i Pi + PiAi PiBi − 1

2CT
i

BT
i Pi − 1

2Ci − 1
2 (DT

i CT
i + CiDi)

 ≤ 0 (6)

Desoer and Vidyasagar give frequency domain conditions for passivity for LTI system models[61].

For continuous-time:

H is passive iff H(jω) + H∗(jω) ≥ 0, ∀ω ∈ R.

For discrete-time:

H is passive iff H(ejθ) + H∗(ejθ) ≥ 0, ∀θ ∈ [0, π].

Sector Analysis

Using the formulation in Zames[62], the sector bounds for a possibly nonlinear control component

are a real-valued interval [a, b], where the endpoints come from the expression in Eq. 7.

‖yT ‖22 − (a + b)〈y, u〉T + ab‖uT ‖22 ≤ 0 (7)

For linear (and some nonlinear) system models, sector bounds may be computed symbolically

during system analysis. Each component is assigned a real interval ([a, b] −∞ < a ≤ b ≤ ∞, b ≥

0) representing a range of possible input/output behaviors. Components whose bounds fall in

the interval [0,∞] are passive (and have some notion of stability). Zames also presents rules for

computing sector bounds for systems based on calculated component bounds and different types of

interconnections between components [62]. We describe the sector formulas, rules, and bounds in

greater detail below.

From [62] and [63], another way to look at Eq. 7 is the following formulation. A system

H, (y = Hx) is inside the sector [a, b] if a ≤ b and

〈(Hx)t − axt, (Hx)t − bxt〉 ≤ 0 (8)

28

Where 〈· · · , · · · 〉 is the inner product on the appropriate function space.

Most approaches to nonlinear control system design rely on continuous time assumptions. When

we consider discrete time implementation in software subject to network delays and finite-precision

quantization effects, linear approximations and high sample rates are used to obtain tractable anal-

ysis and realizable execution. In practice we have found that compositional techniques based on

passivity have allowed us to construct reasonably low data rate digital controllers for nonlinear

systems without resorting to conservative linear approximations[64].

Passive control techniques have proven successful for many cases of nonlinear continuous time

controllers, but nonlinear discrete time control poses several challenges. Unfortunately many control

structures are not passive in discrete time. If we can approximate our controlled system as a cascade

of passive systems then we can apply a systematic control design strategy, for which stability can

be validated online.

Digital control for nonlinear physical systems with fast dynamics (such as a quadrotor helicopter)

use a zero-order hold to convert control values produced at discrete time instants into step functions

held over a continuous interval of time. For certain inputs and state trajectories, the hold process can

introduce small amounts of new energy into the environment, violating passivity. The sector bounds

analysis proposed by Zames [62] can be used to assess the amount of “active” (energy-producing)

behavior which we can expect from a design under nominal operating conditions.

Zames’ critical insight was that many causal nonlinear systems’ dynamic input-output relation-

ships can be confined to being either inside or outside a conic region. Systems whose input-output

relationships can be confined inside a conic region are known as interior conic systems. Equivalently

these interior conic systems can be described as residing inside the sector [a, b] in which a and b

are real coefficients[62]. If there exist a real coefficients a and b such that Eq. 7 is satisfied then

the system is an interior conic system inside the sector [a, b] conversely if the inequality of Eq. 7 is

reversed the system is exterior conic and outside the sector [a, b]. Table 3 describes the quantities

used in Eq. 7. For linear time invariant (LTI) single input single output (SISO) systems the term

a is the most negative real part of its corresponding Nyquist plot, it therefore is an approximate

measure of the phase shift of a stable system. A passive system is equivalent to an interior conic

29

Figure 4: Block diagram interconnection examples for conic system composition rules.

30

Quantity Description
u(t) Input signal
y(t) Output signal

Energy produced by the component so far
‖yT ‖22 (output) in a time interval of length T .

Energy received by the component so far
‖uT ‖22 (input) in a time interval of length T .

Correlation between the input and output
〈y, u〉T sample values in a time interval of length T .

This is a measure of dissipation.
a Real-valued lower bound for the sector.
b Real-valued upper bound for the sector.

Table 3: Quantities for the sector formula.

system which is inside the sector [0,∞] therefore a passive LTI SISO system has no more than +/-90

degrees of phase shift in which all real parts of its corresponding Nyquist plot are positive real.

A conic system can also be modeled as a functional relation between the possible input and

output signal spaces. This corresponds intuitively to a causal block diagram where the function

specified in the block relates the inputs to the outputs, as in Fig. 4 (a). See Zames for a complete

formal functional description of sector analysis. Given conic relations H,H1 with H in [a, b] and H1

in [a1, b1] (b, b1 > 0), and given a constant k ≥ 0, we have the following sector composition rules

from [62]:

1. I is in [1, 1] (Fig. 4 (b))

2. kH is in [ka, kb] (Fig. 4 (c))

3. −H is in [−b,−a] (Fig. 4 (d))

4. sum rule H + H1 is in [a + a1, b + b1] (Fig. 4 (e))

5. inverse rule(s) (Fig. 4 (f))

(a) a > 0→ H−1 is in [1b , 1
a].

(b) a < 0→ H−1 is outside [1a , 1
b].

(c) a = 0→ (H−1 − (1
b I)) is positive.

For rule 5 an inverse system model must be well-defined (i.e. exist), as in the case of invertible

linear system models.

31

Figure 5: Block diagram interconnection example for feedback structure.

The sector composition rules illustrate the compositional nature of sector analysis. Zames also

gives conditions under which feedback-interconnected conic systems exhibit stability [62, Theorems

2a,2b]. We will not describe all of the details here, but simply relate the sufficient condition described

in Kottenstette to establish stability of feedback control loops where the included systems are conic

[65, Corollary 2]:

Assume that the combined dynamic system H : [u1, u2] → [y1, y2] depicted in Fig. 5 consists

of two dynamic systems H1 : u1 → y1 and H2 : u2 → y2 which are respectively inside the sector

[a1, b1] and strictly inside the sector [0, 1 + ε], for all ε > 0. Then H is bounded (Lm
2 stable for the

continuous time case or lm2 stable for the discrete time case) if:

− 1
max{|a|, b}

< k < − 1
a1

, if a1 < 0

−1
b

< k <∞, otherwise.

In order to design with sectors, it is important to be able to relate sector conditions for continuous-

time systems with those for discrete-time systems. Kottenstette et al introduce a linear discretization

operator called the IPESH -transform (Inner Product Enhanced Sample and Hold) that preserves

sector conditions during discretization[12]. Briefly put, the IPESH -transform guarantees that a

continuous-time conic system Hct that is inside a sector [a, b] that is discretized using IPESH at a

sample rate of Ts, then the resulting filter will lie in the sector [aTs, bTs] [12, Lemma 3]. Finally, we

give the form for the transformation (Eq. 9).

32

Hp(z) =
(z − 1)2

Tsz
Z{Hp(s)

s2
} (9)

Sector analysis extends our analysis capabilities to many nonlinear and non-passive system mod-

els and control structures. As discussed in the previous section, the mathematical framework by

itself is not sufficient to support incremental design analysis. We must deal with partitions of the

design into interfaces and the relationships of various control loops to each other and to the plant

dynamics. This is an open problem in modeling, and sector analysis is one candidate for a formal

analysis framework which could support incremental design and analysis tools.

Passivity and Platform Effects

Modern passive control techniques demonstrate that passive systems exhibit insensitivity to platform

effects. We will briefly cover a few of these results.

1. Quantization errors Perhaps the best passivity-based framework for quantization effects

is described by Fettweis [10]. Physically realizable passive circuit models are used to derive

compositional digital filter structures with similar passivity constraints.

2. Sampling rate variations (IPESH/multi-rate) Kottenstette presents a technique for dis-

cretizing filters which is less sensitive to changes in sampling rate (IPESH transform) [11]. He

also presents a method for constructing passive networked control designs where individual

components operate at different rates [12].

3. Network delays For communication delays, Anderson and Spong [66] derived passivity condi-

tions for a particular networked control configuration. The two-port scattering matrix formu-

lation make the delay analysis tractable, as it appears as a two-port component in the center of

the control structure. From this they derive passivity conditions. Their digital implementation

was unstable for large time delays. The control analysis used continuous-time models, and a

naive application of discretization.

Niemeyer and Slotine extended the work of Anderson using the observation that physical

waves transmit energy in a stable manner[13]. They introduced discrete wave variables, which

33

surprisingly removed the delay term from the original formulation. This led to a much more

general framework for handling communications in passive control designs. Wave variables

redistribute the values of the effort and flow at a port consistent with the distributed effort

and flow that a wave would use to transmit energy between two points.

34

CHAPTER III

THE EMBEDDED SYSTEMS MODELING LANGUAGE (ESMOL)

Consider the general class of control system designs for use in a flight control system. Sensors,

actuators, and data networks are designed redundantly to mitigate faults. The underlying platform

implements a variant of the time-triggered architecture (TTA) [50], which provides precise timing and

reliability guarantees. Safety-critical tasks and messages execute according to strict precomputed

schedules to ensure synchronization between replicated components and provide fault mitigation

and management. Deployed software implementations of the control functions must pass strict

certification requirements which impose constraints on the software as well as on the development

process. The additional burden of design analysis required to establish safety increases cost and

schedule, decreasing the flexibility of the development process.

In modern embedded control system designs, graphical modeling and simulation tools (e.g. Math-

works’ Simulink/Stateflow) represent physical systems and engineering designs using block diagram

notations. Design work revolves around simulation and test cases, with code generated from models

when the design team reaches particular schedule milestones. Control designs often ignore software

design constraints and issues arising from embedded platform choices. At early stages of the design,

platforms may be vaguely specified to engineers as sets of trade offs [67].

Software development uses Unified Modeling Language Computer-Aided Software Engineering

(UML CASE) tools to capture concepts such as types, components, interfaces, interactions, timing,

fault handling, and deployment. Software development work flows focus on source code creation,

organization, and management, followed by testing and debugging on target hardware. Physical and

environmental constraints are not usually represented by the tools. At best such constraints may be

provided as documentation to developers.

Complete control system software designs rely on multiple aspects. Designers lack tools to model

the interactions between the hardware, software, and the environment with the required fidelity. For

example, software generated from a carefully simulated synchronous dataflow model of the controller

35

functions may fail to perform correctly when its functions are distributed over a shared network of

processing nodes. Cost or availability considerations may force the selection of platform hardware

that limits timing accuracy or data precision beyond originally designed bounds. None of the current

design, analysis, or development techniques support comprehensive (i.e. multi-domain) validation

of certification requirements to meet government safety standards. Model and code analysis tools

must all be integrated to have the same semantic view of the design details.

Overview

We aim to create a Domain Specific Modeling Language (DSML) to address problems of design

consistency across the entire development flow for a distributed embedded control system design.

Often, the best solutions involve iterating the design cycle as problems are discovered or problem

understanding increases. Our DSML captures the relationships between concepts in the different

design domains described, and supports the integration of analysis tools and code generation.

High-Confidence Design Challenges

We identify several specific challenges that arise because of inconsistencies between domains in a

high-confidence embedded development project. Some of the challenges are fundamental, and others

arise because of our attempts to use models to resolve consistency problems.

1. Controller, software, and hardware design domains are highly specialized and often conceptu-

ally incompatible. Sharing model artifacts between designers in different domains can lead to

consistency problems in engineering solutions or implementations based on incomplete or faulty

understanding of design issues. Current state of the art resolves differences in understanding

by reviewing many of the details in numerous meetings and personal discussions. Manual rec-

onciliation of issues occurs as individual designers receive assignments to modify and correct

the design. In the worst cases serious incompatibilities are not discovered until very late in

the design cycle, leading to project overruns and cancellations[4]. Several large modeling tool

projects (for example, AADL [14] and Topcased[21]) work to integrate tools from independent

research and development teams into a common design environment featuring a standardized

36

modeling language. Resolution of semantic consistency between integrated tools to improve

design efficiency is a serious issue in such efforts.

2. Incompatibilities between models and assumptions in different design domains create a related

problem. For example, controller design properties which are verified using simulation models

may no longer be valid when the design becomes software in a distributed processing net-

work. Currently control designers use conservative performance margins to avoid rework when

performance is lost due to deployment on a digital platform.

3. Long development, deployment, and test cycles limit the amount of iterative rework that can

be done to get a correct design. If a particular design analysis is costly or time-consuming,

the team cannot afford to iterate the design from its early stages in order to resolve problems.

Currently high-confidence design requires both long schedules and high costs.

4. Automating steps in different design and analysis domains for the same models and tools

requires a consistent view of inferred model relationships across multiple design domains. If

integrated tools have different views of the model semantics, then their analyses are not valid

when the results are integrated into the same design. Therefore, all of the tools used in the

design process must have a consistent view of design details. Explicitly reconciling semantics

between formalisms and tools is costly and time-consuming. Often the effort cannot be justified

outside of academic research unless the results are applicable to numerous designs.

5. As our research explores new directions in high-confidence design, modification of the ESMoL

meta-model (language specification) creates maintenance problems for ESMoL models and for

interpreter code that translates them into analysis artifacts and generated code. We would like

to isolate interpreter development from the language to a degree in order to allow the ESMoL

language to evolve with our research. ESMoL models can be updated to new versions of the

language using features built into the tools, but nothing exists yet to handle those problems

for interpreter code.

37

Model-Integrated Solutions

We propose a suite of tools that aim to address many of these challenges. Currently under develop-

ment at Vanderbilt’s Institute for Software Integrated Systems (ISIS), these tools use the Embed-

ded Systems Modeling Language (ESMoL), which is a suite of domain-specific modeling languages

(DSML) to integrate the disparate aspects of a safety-critical embedded systems design and main-

tain proper separation of concerns between control engineering, hardware specification, and software

development teams. The Embedded Systems Modeling Language (ESMoL) encodes in models the

relationships between controller functions specified in Simulink, software components that imple-

ment those functions (i.e. dataflow, messaging interfaces, etc. . .), and the hardware platform on

which the software will run. Many of the concepts and features presented here also exist separately

in other tools. We describe a model-based approach to building a unified model-based design and

integration tool suite which has the potential to go far beyond the state of the art.

1. The ESMoL language and tools provide a single multi-aspect embedded software design envi-

ronment so that modeling, analysis, simulation, and code generation artifacts are all clearly

related to a single design model. We aim to incorporate models appropriate to the different

design domains in a consistent way using the Model-Integrated Computing (MIC) approach

discussed below. ESMoL models use language-specified relations to associate Simulink control

design structures with software and hardware design concepts to define a software implemen-

tation for controllers. Further, ESMoL is a graphical modeling language which integrates into

existing Simulink-based control design work flows[68].

2. ESMoL models include objects and parameters to describe deployment of software components

to hardware platforms. Analysis artifacts and simulation models generated from ESMoL mod-

els contain representations of the behavioral effects of the platform on the original design. We

include platform-specific simulations to assess the effects of distributed computation on the

control design [69].

3. ESMoL’s integrated analysis, simulation, and deployment capabilities can shorten design cy-

cles. The ESMoL tool suite includes integrated scheduling analysis tools which converge quickly

38

in most cases ([70]) so that static schedules can be calculated in rapid design and simulation

cycles. We include automatic generation of platform-specific task configuration and data com-

munications code in order to rapidly move from modeling and analysis to testing on actual

hardware.

4. ESMoL uses a two-stage interpreter architecture in order to integrate analysis tools and code

generators. The first stage resolves any inferred model relationships from ESMoL models into a

model in an abstract language (ESMoL Abstract), much in the same way that a parser creates

an abstract syntax tree for a program under compilation. The ESMoL design language allows

relational inference where appropriate in order to make the user experience more productive.

The Stage 1 interpreter resolves object instances, parameters, and relations, and stores them

in an ESMoL Abstract model. Model interpreters for analysis and generation use this ex-

panded model to guarantee a consistent view of the relationships and details, and to share

code efficiently in an integrated modeling tool development project. The two-stage approach

also isolates the interpreter code from the structure of the ESMoL language. Changes to the

language are principally isolated from the interpreter code by the first stage transformation.

5. We generate analysis models and code from the intermediate language using simple template

generation techniques[70]. Round-trip incorporation of calculated schedule analysis results

back into the ESMoL model helps to maintain consistency as models pass between design

phases.

Fig. 6 depicts a design flow that includes a user-facing modeling language for design and an

abstract intermediate language for supporting interpreter development and maintenance. During

design, a software modeler imports an existing Simulink control design into the Generic Modeling

Environment (GME) [71], configured to edit ESMoL models (Step 1). The modeler then uses the

dataflow models imported from Simulink to specify the functions of software components which

will be used to implement the controllers. These component specifications represent synchronous

dataflow models that are realized as C code calls, and which are extended with interfaces defining in-

put and output message structures for data distribution. We also specify the mapping from dataflow

39

Figure 6: Flow of ESMoL design models between design phases.

40

I/O ports to and from fields in the messages (Step 2). Designers specify the hardware topology for a

time-triggered distributed processing network using another integrated design language (Step 3). A

modeler instantiates component instances to create multi-aspect models where logical dependencies,

hardware deployment, and timing models can be specified for the software architecture (Steps 4 and

5).

A completed model is transformed (via the Stage 1 transformation) into a model in the ES-

MoL Abstract language, resolving all implied relationships and structural model inferences (Step

6). Model interpreters for design analysis (in this case calculating time-triggered schedules) are

integrated using the Stage 2 model transformation from ESMoL Abstract models to analysis specifi-

cations (Step 7). Another model interpreter imports results from the analysis (in this case, scheduled

start times) back into the ESMoL Abstract and ESMoL models (Steps 8 and 9). Finally, design-

ers can also create platform-specific simulations and generate deployable code using the Stage 2

transformation (Step 10).

In a later section we discuss the relationship between the behavior represented by the original

Simulink model and the behaviors represented by ESMoL and ESMoL Abstract (Steps 5 and 10).

ESMoL provides a great deal of modeling flexibility, as subsets of the Simulink model are used

in Step 2 to define software components. These subsets can be replicated to model redundant

computation networks, for example. In Step 4 they are aggregated to define dataflows, and then

partitioned to define deployment of those dataflows. With all of the language flexibility provided, we

need to ensure that the synchronous semantics of the original Simulink model are preserved in the

distributed implementation in order to ensure that the inherent correctness properties (functional

determinism, timing determinacy, and deadlock freedom) are also preserved.

The illustrated design flow represents only a single iteration in the overall development work flow

to be discussed later. In the sequel we will use the expression design flow to indicate the work of

modeling, analyzing, and generating code for a single design. Development flow will indicate the

macro-level iterative development process which includes one or more design flow iteration.

41

Figure 7: Platforms. This metamodel describes a simple language for modeling the topology of a
time-triggered processing network.

Tools and Techniques

The models in the example and the metamodels described below were created using the ISIS Generic

Modeling Environment tool (GME) [71]. GME allows language designers to create stereotyped

UML-style class diagrams defining metamodels. The metamodels are instantiated into a graphical

language, and metamodel class stereotypes and attributes determine how the elements are presented

and used by modelers.

The Model-Integrated Computing (MIC) approach[5] builds up DSMLs by creating specific sub-

languages to capture concepts and relationships for different facets of the design domain, and then

integrating those sublanguages into a common modeling language by precisely specifying the struc-

tural relationships between those sublanguages. In a GME metamodel a sublanguage is called a

paradigm. We will use the terms sublanguage, language, and paradigm interchangeably. Confusion

is resolved by explicitly naming the paradigms involved in the discussion.

The GME metamodeling syntax may not be entirely familiar to the reader, but it is well-

documented in Karsai et al [71]. Class concepts such as inheritance can be read analogously to

UML. Class aggregation represents containment in the modeling environment, though an aggregate

42

element can also be flagged as a port object. In the modeling environment a port object will also

be visible at the next higher level in the model hierarchy, and available for connections. One unique

notation in MetaGME (the GME modeling language for creating modeling languages) is the dot used

for relating an association class to its endpoint connection classes. For example, the dot between

the Connectable class and the Wire class (Fig. 7) represents a line-style connection in the modeling

environment. One other useful concept from a GME metamodel is the reference. A reference object

appears in the Metamodel specification associated with another class. This allows the modeler to

create an object with the same interface (port structure) as the associated class, but which actually

refers to the original object, much in the same way that a pointer refers to a different object in

memory in a computer program.

Another key technology used in the ESMoL tool suite is the GReAT model transformation lan-

guage (and its associated code generation tools)[72]. The ESMoL suite contains a pair of platform-

independent code generators for Simulink and Stateflow models. The transformations take Simulink

and Stateflow blocks, and create equivalent models in another language (SFC) that corresponds to

an abstract syntax graph for fragments of C code. Functional code generation proceeds by simply

traversing and printing the SFC models. Other generators use the UDM C++ modeling API [73]

to create code implementing the platform-specific code to wrap functions as tasks, define communi-

cation messages structures, and configure a time-triggered virtual machine to execute the generated

code. These generators as well as generators for platform-resimulation models are described else-

where (see Porter et al [68], Thibodeaux [74], and Hemingway et al [69] for details).

Platform-based design partitions design frameworks into designer-supplied components and plat-

form-provided services[67]. High-confidence systems require services and guarantees for correct and

efficient execution such as real-time execution, data distribution, and fault tolerance. Platform-

based design allows the construction of complex systems by facilitating reuse over common execution

behaviors. The platform also defines a formal model of computation (MoC) [75], which predicts how

the concurrent objects of an application interact (i.e. synchronization and communication). We use

an implementation of the time-triggered architecture as a platform layer in order to reduce timing

variances in sensing, actuation, and distributed data communications [50][74]. The central idea of

43

Figure 8: Basic architecture for the quadrotor control problem.

the time-triggered architecture is to provide deterministic and fault-tolerant synchronous execution

in order to ensure the consistent behaviors of distributed replicas of controller components.

The ESMoL Languages

To motivate our description of the facets of ESMoL, we focus on an actual control design model

for the Starmac quadrotor helicopter [76][77]. Fig. 8 depicts its control architecture, consisting of

two nested control loops. From left to right in the diagram, the Input Filters restrict the input

trajectory commands to prevent maneuvers beyond the physically safe limits of the helicopter. The

Outer Loop PD controller takes the requested position reference and the position data from the

sensors, and calculates the attitude required for the quadrotor to achieve the requested change in

position. Saturation is another limiter to ensure that the commanded attitude actuation is realizable.

The Inner Loop PD controller takes the attitude command from the Outer Loop and measured

attitude data, and calculates the motor thrusts required to achieve the commanded attitude. Motor

Compensator filters the thrust commands to account for response delays in the motors which drive

the rotors. Finally, the Dynamic Model describes the physical behavior of the helicopter, including

the imprecision introduced by the sensors which measure position and attitude. The ESMoL model

examples given below come from the design model for the quadrotor, except where noted.

Requirements Analysis (RA)

Formal requirements modeling offers great promise, but in ESMoL requirements modeling is still in

conceptual stages. Informally, we require stability of the software-implemented closed-loop control

44

system over the full range of possible inputs, and satisfaction of the calculated timing constraints

(task release times and deadlines).

Functional Design (FD)

In ESMoL, functional specifications for components can appear in the form of Simulink/Stateflow

models or as existing C code snippets. ESMoL does not support the full semantics of Simulink. In

ESMoL the execution of Simulink data flow blocks is restricted to periodic discrete time, consistent

with the underlying time-triggered platform. This also restricts the type and configuration of blocks

that may be used in a design. Continuous integrator blocks and sample time settings do not have

meaning in ESMoL. C code snippets are allowed in ESMoL as well. C code definitions are limited

to synchronous, bounded response time function calls which will execute in a periodic task with a

fixed amount of memory.

An automated importer constructs an ESMoL model from a Simulink control design model. The

new model is a structural replica of the original Simulink model, only endowed with a richer software

design environment and tool-provided APIs for navigating and manipulating the model structure

in code. The Simulink and Stateflow sublanguages of our modeling environment are described

elsewhere[78]. The ESMoL language evolved from another DSML known as ECSL-DP. They share

many concepts, but ESMoL departs from many of the modeling structures previously described by

Neema in order to increase the flexibility and generality of the language.

Component Design (CD)

In the component design phase (CD) we specify software interfaces for the functions which will run

in the distributed controller network. A component type has a unique name (i.e. InnerLoop), and

information to find or generate its implementation in C (in this case, the file name and model path to

the Simulink subsystem “QuadRotor/STARMAC/InnerLoop”). A component specification contains

a reference to a Simulink subsystem, as well as references to message structure objects. The message

structure objects will represent message types, and each reference from a component definition

represents an interface through which that message is sent or received. Internally, the direction of

45

Figure 9: Quadrotor component types model from the SysTypes paradigm.

the connection from the message reference to the ports on the Simulink object determine whether

the port sends or receives. We do not allow multi-directional message transfers on the same interface.

When the component is instantiated in the design model (e.g., in the logical architecture diagram

described below) the message references specified here will appear as ports on blocks representing

the instance. Connections to and from those ports represent the transfer of an instance of that data

message into or out of the component instance.

Fig. 9 shows an example of a model from the component interface definition language. Message

fields and their sizes are specified here, as well as component implementations and interfaces. These

specifications define software component types in an ESMoL model, which are instantiated and

assigned to hardware in the architecture and deployment models, respectively. The quadrotor model

has four different component types (each instantiated once) and six message types (instantiated as

the ports objects appearing on the component instances later in the design). The breakout inset

in the figure shows the internals of the DataHandler component specification. The sensor convert

subsystem block in the center is a reference to a Simulink block specifying the data conversions that

transform raw sensor data into scaled, formatted data for use by the controller blocks.

46

Figure 10: SystemTypes Metamodel.

The blocks on the outer edges of the figure (Fig. 9) are references to messages defined at the

top level of the system types model. On the left is the raw data message from the sensors. On the

right are the attitude data message (for local consumption by the inner loop), and the position data

message (sent remotely to the outer loop). The three message reference blocks in the inset appear

as ports on the DataHandler block (top left in the figure). Inside the component type definition,

ports on the message objects correspond to C structure fields. The field types are inferred from the

data types imported from the connected Simulink signal port objects. The connections between the

message ports and the Simulink reference block ports describe the direction and details of data flow

between the implemented message structures and the specified functional block.

Fig. 10 portrays the SystemTypes sublanguage, which encodes these structures and relations.

Components of different types (here Simulink block references or C code blocks) specify the compo-

nent functions. Message references (MessageRef objects) define interfaces on the components, and

ports on message objects (MsgPort objects) represent message data fields as in the DataHandler

47

Figure 11: Overall hardware layout for the quadrotor example.

example. The Input and Output port classes are typed according to the implementation class to

which they belong (i.e., either Simulink signal ports or C function arguments). The connections

between the block reference and the MsgPort objects describe the details required to marshal and

demarshal the data fields in the messages for use by the specified function. Synchronous, periodic,

discrete-time Simulink blocks and bounded-time synchronous C function calls are compatible at this

modeling stage, because their model elements both represent the code that will finally implement

the functions. These units are modeled as blocks with ports, where the ports represent parameters

passed into and out of C function calls. The Trigger and Event types are not discussed here, as

they relate to future work in the ESMoL tool suite.

Hardware Architecture (HwA)

Fig. 11 illustrates the example platform model. The quadrotor architecture is deployed to a small

embedded processor assembly manufactured by Gumstix, Inc. The outer loop position control is

handled by an Intel PXA ARM processor (the Gumstix board), and attitude control and vehicle

I/O are handled by an Atmel Atmega128 AVR processor (the Robostix board). The I/O occurs over

serial connections to the sensors and motor actuators. The serial devices reside within the processor,

and are modeled in the diagram as objects connecting the input and output ports on the processor

to the object representing the plant dynamics. The two processors communicate via a synchronous

I2C bus which runs a software emulated time-triggered protocol.

48

A simple platform definition language (Fig. 7) contains relationships and attributes describing

time-triggered networks. The models contain network topology and parameters to describe behav-

ioral quantities like data rates and bus transfer setup times. Platforms are defined hierarchically

as hardware units with ports for interconnections. Primitive components include processing nodes

and communication buses. Behavioral semantics for these networks come from the underlying time-

triggered architecture. The time-triggered platform provides services such as deterministic execution

of replicated components and timed message-passing. Model attributes for hardware also capture

timing resolution, overhead parameters for data transfers, and task context switching times.

Architecture Language

Logical architecture, deployment, and timing/execution models represent different design aspects

for the same set of component instances. GME allows us to define the language in such a way that

these three model aspects are simply different views of the same set of model elements. Together,

the information in the three aspects define a model which is complete with respect to scheduling

analysis, platform-specific simulation, and code generation.

System design models defined in the architecture language do not necessarily represent complete

designs. For simple designs (such as the quadrotor example) a single architecture model can cap-

ture all of the details of the software model. More complex designs require an additional layer of

organization which is not described here. It suffices to say that designs represented in the ESMoL

Architecture language can be considered as fragments which can be assembled into more complex

structures. This is an active area of research for our ESMoL modeling efforts, as the higher-level

architecture models should also account for fault modeling, evaluation, and performance issues.

• Logical Software Architecture (SwA) Aspect Fig. 12 portrays an ESMoL model ex-

ample specifying logical data dependencies between quadrotor software component instances,

independent of their distribution over different processors. The software architecture model

describes the logical dataflow dependency relationships between component instances. Seman-

tics for SwA Connections are those of task-local synchronous function invocations (with shared

49

Figure 12: Quadrotor architecture model, Logical Architecture aspect.

memory messaging) or message transfers between remote tasks using time-triggered commu-

nication. In this model the interpretations for the dependency links have not been specified.

Those details appear in the deployment model.

For the quadrotor, the RefHandler and DataHandler components receive and process data from

the sensors. They pass their formatted data to the respective control blocks. The OuterLoop

calculates an attitude reference to achieve the requested position. The InnerLoop issues thrust

commands to achieve the requested attitude.

In a design model, creation of a (GME) reference object to one of the component types cor-

responds to instantiation. Fig. 13 illustrates this idea. Using the same controller components

along with a few new components to implement voting logic, we have specified the logical

architecture for a triply-redundant version of the quadrotor model. Each ESMoL component

type is used multiple times in a single design, expanding the model structure far beyond the

size and scope of the original Simulink design. This particular model diagram is only shown

to illustrate the instantiation mechanism.

• Deployment Models (SY, DPL) Fig. 14 displays the deployment model – the mapping of

software components to processing nodes, and data messages to communication ports. Two

of the four components are mapped to each of the two processors. For the quadrotor, the

RefHandler and OuterLoop tasks run on the Gumstix processor. The InnerLoop and Data-

Handler tasks run on the Robostix processor. RefHandler receives position commands from a

socket connection. DataHandler receives sensor data from a UART channel (a processor port

50

Figure 13: Triply-redundant quadrotor logical architecture. This is not part of the actual quadrotor
model, and is only given for illustration.

Figure 14: Quadrotor architecture model, Deployment aspect.

51

Figure 15: Details from the deployment sublanguage.

in the model diagram). Position and attitude data are exchanged over the time-triggered bus,

so the corresponding message ports are connected to bus channel objects on their respective

processors. InnerLoop sends thrust commands through a UART channel, hence the connection

to the appropriate processor port.

In the figure the dashed connection from a component to a node reference represents an

assignment of that component to run as a task on the node. The port connections represent

the hardware channel through which that particular message will travel. Remote message

dependencies are assigned to bus channels on the node. Local data dependencies are not

specified here, as they are represented in the logical architecture. IChan and OChan port

objects on a node can also be connected to message objects on a component. These connections

represent the flow of data from the physical environment through sensors (IChan objects) or the

flow of data back to the environment through actuators (OChan objects). Model interpreters

use deployment models to generate platform-specific task wrapping and communication code

as well as scheduling problem specifications.

The metamodel in Fig. 15 illustrates the classes and relationships for both the logical architec-

ture connections and the deployment mapping. GME metamodels have a separate visualization

aspect that allows us to define aspects in ESMoL and indicate which classes and connections

should be visible in each aspect. ComponentRef objects are software component instances, and

are visible in both aspects. In the logical architecture aspect, Dependency connectors define

52

Figure 16: Quadrotor architecture model, Timing aspect.

message transfers between component instance ports. The ports represent interfaces for each

component instance. For the deployment aspect we add NodeRef objects (node references)

and connectors (ComponentAssignment and CommMapping) to identify the mapping of tasks

and messages to the platform model.

The deployment aspect captures the assignment of component instances as periodic tasks

running on a particular processor. In ESMoL a task executes on a processing node at a single

periodic rate. All components within the task execute synchronously. Data sent between tasks

take the form of messages in the model. For data movement, the runtime provides logical

execution time semantics found in time-triggered languages such as Giotto [79] – message

transfers are scheduled after the deadline of a sending task, but before the release of the

receiving tasks. Tasks never block, but execute with whatever data is available for each period.

• Timing Models Fig. 16 shows the quadrotor timing and execution model, where the designer

attaches timing parameter blocks (of type TTExecInfo) to components and messages. TTEx-

ecInfo block configuration parameters include execution period and worst-case execution time.

In the quadrotor model all task and message transfers are timed. The quadrotor data network

runs at a rate of 20ms. Particular timings for tasks and data transfers will be discussed below

in the evaluation discussion.

53

Figure 17: Details from timing sublanguage.

The timing sublanguage (Fig. 17) allows the designer to specify component execution con-

straints. Individual components can be annotated with timing objects that indicate whether

they should be executed strictly (i.e., via statically scheduled time-triggered means), or as pe-

riodic real-time or sporadic tasks. Messages are similarly annotated. The annotation objects

contain parameters such as period and worst-case execution time that must be given by the

designer. Automated scheduling analysis fills in the schedule fields.

The execution model also indicates which components and messages will be scheduled inde-

pendently, and which will be grouped into a single task or message object. The time order

of the message writer and readers are enforced by the static schedule. The locality of a mes-

sage transfer is specified in the logical architecture and deployment aspects. In the case of

processor-local data transfers, transfer time is neglected – reads and writes occur in locally

shared memory. After a static schedule has been calculated, task and message release times

are also stored in the timing objects.

Behavior of the deployed software components depends on the execution times of the functions

on the platform, the calculated schedule, and coordination between distributed tasks. The

calculated static execution schedule can be used to simulate the control design with additional

delays to assess the impact of the platform on performance.

54

Integrating Tools with ESMoL

Figure 6 depicts a design flow that includes a user-facing modeling language for design and an ab-

stract intermediate language for supporting interpreter development and maintenance. A completed

ESMoL model is transformed (via the Stage 1 transformation, Step 6 in the figure) into a model in

the ESMoL Abstract language, where all implied relationships and structural model inferences have

been resolved. Model interpreters for calculating time-triggered schedules, creating platform-specific

simulations, and generating deployable code are integrated using the Stage 2 transformation.

Rather than designing a user-friendly graphical modeling language and directly attaching trans-

lators to analysis tools, we created a simpler abstract intermediate language whose elements are

similar to those of the user language. The first model transformation flattens the user model into

the abstract intermediate form, translating parameters and resolving special cases as needed. Gener-

ators for code and analysis are attached to the abstract modeling layer, so the simpler second-stage

transformations are easier to maintain, and are isolated from changes to the user language.

In the model integrated computing approach, domain specific modeling languages represent dif-

ferent aspects of the design, with the aim of consistently integrating different concepts and details

for those design aspects and integrated analysis tools. Our tools enforce a single view of structural

inference in the design model. We will cover some of the transformation details to illustrate this

concept. This approach can be considered as an implementation of the tool integration ideas in [80],

but with variations of the details included in the design language.

Stage 1 Transformation

Stage 1 translates ESMoL models into an abstract intermediate language that contains explicit rela-

tion objects that represent relationships implied by structures in ESMoL (Fig. 18). This translation

is similar to the way a compiler translates concrete syntax first to an abstract syntax tree, and then

to intermediate semantic representations suitable for optimization. Stage 1 was implemented using

the UDM model navigation API, and written in C++. The ESMoL Abstract target model is the

source for the transformations implemented in Stage 2.

55

Figure 18: Stage 1 Transformation.

Specified ESMoL Relation Sets ESMoL Abstract Relation

CAidN
= {(objNode, objCompInst) |

id(objNode) = idN}

ACidCh
= {(objIChan, objMsgInst) | Acq = {(objMsgInst, objCompInst,

id(objIChan) = idCh} objN , objCh) |
(objN , objCompInst) ∈ CAidN

NCidN
= {(objNode, objIChan) | ∧ (objCh, objMsgInst) ∈ ACidCh

id(objNode) = idN ∧ (objN , objIChan) ∈ NCidN

∧ parent(objIChan) = objNode} ∧ (objCompInst, objMsgInst) ∈ CC

CC = {(objCompInst, objMsgInst) |
parent(objMsgInst) = objCompInst}

Table 4: Acquisition relation transformation details.

Figure 19: Acquisition relation in ESMoL Abstract, representing the timed flow of data arriving
from the environment.

56

Each analysis translation works from a single view of the design model, simplifying the im-

plementations of tool-specific translations. As an example, consider the model shown in Fig. 12.

Component DataHandler sends data messages to the other two components, as denoted by the de-

pendency arrows. The deployment view (Fig. 14) shows that each component executes on a different

processor. Locally, the port object on each component (in both diagrams) represents the compo-

nent’s view of the data message sent over the wire. The solid connections in the deployment diagram

indicate which device on the processing node will be used to transfer the data. Specified messages

will participate in processor-local synchronous data flows, or time-triggered exchanges over the net-

work. All of these connections and entities are related to a single semantic message object, which

is related to other elements in different parts of the user model (see the FormattedData message in

Fig. 23). The execution aspect contains timing information objects, which provide information for

fully specifying the various data transfers.

The first stage transformation checks constraints to ensure that each object is used correctly

throughout the design, ensuring well-formedness. The Stage 1 transformation then reduces this

complex set of relations to a single message object with relations to the other objects that use it.

Timing parameters from the platform model are used to calculate a behavioral model for messages

and components, including component start times, message transfer times, and the duration of each

message on the bus.

We describe here some of the transformations of user-facing ESMoL language objects and rela-

tions to a more compact set of relations that simplify generation of design artifacts from the model.

The most direct example of such a semantic assumption is the single-message abstraction. Data

transfers between the functional code and the message fields must be compatible. We enforce com-

patibility both by constraint checking, and by the use of a single ESMoL Abstract message instance

object for all participants in the data interchange. The Signal object in the abstract graph repre-

sents the transfer of a single datum to or from the message. For simplicity and clarity we will not

show the Signal objects in the diagrams, as they are numerous.

57

The transformations described here capture different forms of the single-message transforma-

tion. This is not a complete description of the entire first stage transformation, but provides a

representative subset for illustration.

In the formal descriptions below, ObjType (capitalized) is the set of objects of type Type, and

objType (lowercase) is an instance from that set. We also use two functions id : ObjType → Z+ for

a unique identifier of an object, and parent : ObjType1 → ObjType2 to find the parent (defined by a

containment relation in the model of an object). The parent relation is unique.

Acquisition: From the Environment to Data

In ESMoL Abstract Acquisition objects relate all of the different model entities (and therefore,

their design parameters) that participate in the collection of data from an input device such as an

analog to digital converter or serial link. The Stage1 transformation enforces certain cardinality

constraints to ensure the validity of this transformation – for example, each message instance is

related to exactly one sender and possibly multiple receivers. A message relationship can be implied

by different types of connections in ESMoL, so Stage1 must determine that only one such relationship

exists.

The ESMoL relations shown in Table 4 are described as follows:

• CA ComponentAssignment: (the dashed connection shown in Fig. 14) assigns a task to

run on a particular processor (idN).

• AC AcquisitionConnection: (the directed connection from processor object ports to com-

ponent message ports) assigns a hardware input peripheral data channel (modeled as an object

of type IChan) to a data-compatible message structure in the component.

• NC: Containment relationship of the channel object (port) in the Node object.

• CC: Containment of the message instance object (port) in the component instance object.

The metalanguage for ESMoL Abstract captures the structural semantic reductions shown in

Table 4 in a compact form (see Fig. 19), so that all of the consumers of the input data get the same

consistent structural view of the model. This transformation takes the ESMoL objects described

in the left column of the table and produces a single relation for each collection representing an

58

Specified ESMoL Relation Sets ESMoL Abstract Relation

CAidN
= {(objNode, objCompInst) |

id(objNode) = idN}

ACidCh
= {(objOChan, objMsgInst) | Act = {(objMsgInst, objCompInst,

id(objOChan) = idCh} objN , objCh) |
(objN , objCompInst) ∈ CAidN

NCidN
= {(objNode, objOChan) | ∧ (objCh, objMsgInst) ∈ ACidCh

id(objNode) = idN ∧ (objN , objOChan) ∈ NCidN

∧ parent(objOChan) = objNode} ∧ (objCompInst, objMsgInst) ∈ CC

CC = {(objCompInst, objMsgInst) |
parent(objMsgInst) = objCompInst}

Table 5: Actuation relation transformation details.

Figure 20: Actuation relation in ESMoL Abstract, representing the timed flow of data back into the
environment.

ESMoL Abstract data acquisition specification. The modeling tools provide a programming interface

for traversing, reading, and editing the models. The collected relations are also more efficiently

processed by synthesis interpreters, as they avoid extra traversals to gather the objects.

Actuation: From Data to the Environment

The transformation to an Actuation object is nearly identical to that of the Acquisition transfor-

mation, but the data direction, cardinalities, and types involved are different. The chief difference

is that actuation objects can only have one associated task, where acquisition data may be broad-

cast to multiple tasks. Table 5 gives the details of the transformation from relations in ESMoL to

the actuation relation in ESMoL Abstract. Fig. 20 shows the structure of the resulting classes in

ESMoL Abstract.

59

Specified ESMoL Relation Sets ESMoL Abstract Relation

CAidN
= {(objNode, objCompInst) |

id(objNode) = idN}
Locals = {(objMsgInst1, objCompInst1,

LDid1 = {(objMsgInst1, objMsgInst) | objMsgInst2, objCompInst2, objN) |
id(objMsgInst1) = id1} (objN , objCompInst1) ∈ CAidN

∧ (objN , objCompInst2) ∈ CAidN

LDTC = {(objMsgInstj , objMsgInstj+1)| ∧ (objMsgInst1, objMsgInst2) ∈ LDTC

in the sequence ∧ (objCompInst, objMsgInst) ∈ CC
((objMsgInst1, objMsgInst2) ∈ LDid1 ,
(objMsgInst2, objMsgInst3) ∈ LDid2 ,

. . .
(objMsgInstj , objMsgInstj+1) ∈ LDidj)}

CC = {(objCompInst, objMsgInst) |
parent(objMsgInst) = objCompInst}

Table 6: Local (processor-local) data dependency relation.

Figure 21: Local dependency relation in ESMoL Abstract, representing data transfers between
components on the same processing node.

Local Dependencies: Data Movement within Nodes Local dependencies represent not only

direct data dependencies between nodes on a particular processor, but also implied dependencies

through remote data transfer chains starting and ending on the same processor. This is modeled as

the set LDTC of all pairs in the transitive closure of dependencies starting with the message instance

objMsgInst1. The collected set of local dependencies (Locals) intersects this set with those message

instances contained in components on the current processing node (i.e. from the set CAidN
). Table

6 gives the transformation details.

Bus Transfers: Data Movement Between Nodes Bus transfers are slightly more compli-

cated, as they involve two or more endpoints. Table 7 and Fig. 22 contain the details. The send

60

Specified ESMoL Relation Sets ESMoL Abstract Relation

CAidN
= {(objNode, objCompInst) |

id(objNode) = idN}

ACidCh
= {(objMsgInst, objBChan) | Trn = {(objMsgInst, objCompInst,

id(objBChan) = idCh} objN , objCh) |
(objN , objCompInst) ∈ CAidN

NCidN
= {(objNode, objBChan) | ∧ (objCh, objMsgInst) ∈ ACidCh

id(objNode) = idN ∧ (objN , objBChan) ∈ NCidN

∧ parent(objBChan) = objNode} ∧ (objCompInst, objMsgInst) ∈ CC

CC = {(objCompInst, objMsgInst) |
parent(objMsgInst) = objCompInst}

Table 7: Transmit relation transformation details. This represents the sender side of a remote data
transfer between components.

Specified ESMoL Relation Sets Semantic Construct

CAidN
= {(objNode, objCompInst) |

id(objNode) = idN}

ACidCh
= {(objBChan, objMsgInst) | Rcv = {(objMsgInst, objCompInst,

id(objBChan) = idCh} objN , objCh) |
(objN , objCompInst) ∈ CAidN

NCidN
= {(objNode, objBChan) | ∧ (objCh, objMsgInst) ∈ ACidCh

id(objNode) = idN ∧ (objN , objBChan) ∈ NCidN

∧ parent(objBChan) = objNode} ∧ (objCompInst, objMsgInst) ∈ CC

CC = {(objCompInst, objMsgInst) |
parent(objMsgInst) = objCompInst}

Table 8: Receive relation transformation details.

Figure 22: Transmit and receive relations in ESMoL Abstract, representing the endpoints of data
transfers between nodes.

61

Figure 23: Object diagram from part of the message structure example from Figs. 12 and 14.

62

Figure 24: Stage 2 Interpreter.

and receive relations are modeled separately as they have different cardinalities (one sender and

possibly multiple receivers). The platform-specific code generators produce separate files for each

processor (recall that the network may be heterogeneous). Fig. 23 shows an example of the objects

and parameters based on our design example. The object diagram is an instance of the abstract

language constructs shown in Figs. 19, 21, and 22. The diagram depicts ESMoL Abstract relations

of type Acquisition, LocalDependency, Transmits, and Receives. These objects are involved in col-

lecting position data from the sensors (task DataHandler from data channel Robostix UARTChan1),

and then redistributing it locally to the InnerLoop task as well as remotely to the OuterLoop task

through the bus channel interfaces on the Robostix and Gumstix nodes.

Stage 2 Transformation Outputs: Analysis Models and Code

Stage 2 generates analysis models and code from ESMoL Abstract models (Fig. 24). To perform

the actual generation of analysis models and code, we use the CTemplate library[81] called from

C++. The current Stage 2 interpreter is generally used in a particular sequence:

1. Generation of the scheduler specification.

2. Creation of a TrueTime simulation model.

3. Generation of platform-specific code using the FRODO virtual machine API.

63

Figure 25: Integration of the scheduling model by round-trip structural transformation between the
language of the modeling tools and the analysis language.

We will cover details for generation of scheduling problem specifications and FRODO-specific

code. The TrueTime code generation is documented elsewhere[69].

Scheduling Problem Generation

The control design models provide task period configurations, and either profiling or static analysis

provides worst-case execution time parameters for each component instance. Data transfer rates and

overhead parameters for communication buses are stored in the platform model. [70] describes the

mapping of model structure, execution information, and platform parameters into actual constraint

model details, extending earlier work on constraint-based schedule calculation[34]. The Gecode

constraint programming tool [82] solves these constraints for task release and message transfer times

on the time-triggered platform. The scheduling process guarantees that the implementation meets

the timing requirements required by the control design process.

Fig. 25 portrays the steps a model transformation takes while distilling details from ESMoL and

creating a scheduling problem model whose syntax represents the proper sets of behaviors. If the

64

schedule is feasible, task and message release time results are fed back into the ESMoL model as

configuration parameters. We describe the steps indicated in the diagram here:

1. We start with a design model specified using ESMoL.

2. The two-stage transformation converts the model to an equivalent model in ESMoL Abstract,

and then invokes the templates to generate a scheduling problem specification.

3. We invoke the scheduling tool, which performs the following steps:

(a) Parses the problem specification to import the model into the constraint generation en-

vironment.

(b) Calculates the hyperperiod length to determine the number of instances required for each

task and message.

(c) Translates task and message instance relationships into constraints in Gecode (as de-

scribed in [70]).

(d) Solves the constraint problem, possibly indicating infeasibility.

(e) If a valid schedule results, it is written out to a file.

4. The results are imported into the ESMoL model and written to the appropriate objects.

Table 9 contains the distributed schedule specification for our quadrotor example, including the

following elements:

• Resolution (seconds) specifies the size of a single processing tick for the global schedule.

This should correspond to the largest measurable time tick (quantum) of the processors in the

network. All tasks and messages in the schedule timeline are discretized to this resolution.

• Proc specifies a processing node. Parameters are name, processor speed (Hz), and message

send/receive overhead times (these default to zero seconds if unspecified). Processor names

must be unique.

• Comp (or task) belongs to the most recently specified processor. A component is characterized

by its name, period, and worst-case execution time (WCET) (both in seconds). We do not

address the manner in which the WCET is to be obtained.

65

Resolution 1ms

Proc RS 4MHz 0s 0s
Comp InnerLoop =50Hz 1.9ms
Comp DataHandling =50Hz 1.8ms
Comp SerialIn =50Hz 1us
Comp SerialOut =50Hz 1ms
Msg DataHandling.sensor_data_in 1B RS/SerialIn RS/DataHandling
Msg InnerLoop.thrust_commands 37B RS/InnerLoop RS/SerialOut
Msg DataHandling.ang_msg 1B RS/DataHandling RS/InnerLoop

Proc GS 100MHz 0s 0s
Comp RefHandling =50Hz 1us
Comp OuterLoop =50Hz 245us
Msg RefHandling.pos_ref_out 9B GS/RefHandling GS/OuterLoop

Bus TT_I2C 100kb 1.3ms
Msg OuterLoop.ang_ref 20B GS/OuterLoop RS/InnerLoop
Msg DataHandling.pos_msg 8B RS/DataHandling GS/OuterLoop

Table 9: Scheduling spec for the Quadrotor example.

Resolution {{RESOLUTION}}

{{#HOST_SECTION}}Proc {{NODENAME}} {{NODEFREQ}} {{SENDOHD}} {{RECVOHD}}
{{#TASK_SECTION}}Comp {{TASKNAME}} ={{FREQUENCY}} {{WCEXECTIME}}
{{TASK_SECTION}}{{#LOCAL_MSG_SECTION}}Msg {{MSGNAME}} {{MSGSIZE}} {{SENDTASK}} {{RECVTASKS}}
{{LOCAL_MSG_SECTION}}
{{HOST_SECTION}}
{{#BUS_SECTION}}Bus {{BUSNAME}} {{BUSRATE}} {{SETUPTIME}} {{#BUS_HOST_SECTION}}{{NODENAME}} {{BUS_HOST_SECTION}}
{{#MSG_SECTION}}Msg {{MSGNAME}} {{MSGSIZE}} {{SENDTASK}} {{RECVTASKS}}
{{MSG_SECTION}}
{{BUS_SECTION}}
{{#LATENCY_SECTION}}Latency {{LATENCY}} {{SENDTASK}} {{RECVTASK}}
{{LATENCY_SECTION}}

Table 10: Stage 2 Interpreter Template for the Scheduling Specification

• Bus specifies a bus object, characterized by name, transfer speed (bits per second), and transfer

overhead (also in seconds).

• Msg includes a name, byte length, sending task, and list of receiving tasks.

Task and message names are unique only within their scope (processor or bus, respectively).

When used in other scopes they are qualified with their scope as shown (e.g. P3/T1). The timing

constraints include the various platform overhead parameters. For example, once the message length

is converted from bytes to time on the bus, we add the transfer overhead to represent the setup time

for the particular protocol. Engineers must measure or estimate platform behavioral parameters

and include them in models for the platform[67].

66

Scheduling specifications are created in the Stage 2 interpreter from the template shown in Table

10. The Stage 2 scheduler generation logic traverses the ESMoL Abstract model and fills in the

structures which are used to fill in the template when the CTemplate generator is invoked. In

CTemplate, each {{#...}} {{/...}} tag pair delimits a section which can be repeated by filling in

the proper data structure in the code. The other tags {{...}} are replaced by the string specified

in the generation code.

Producing the Proc and Comp lines from the model API is straightforward as the output mirrors

the model hierarchy, so these lines require only simple traversals of the model. Each generated line

uses parameters from the respective model object to fill in the blanks. The parameters are shown

only in the generated output, though the object diagram in Fig. 23 illustrates a good example

of parameter layout and disposition. In order to produce each Msg line, many relations must be

collected (as shown in Table 6 and Fig. 21) and distilled into the right relationships. This requires

more complex traversal code often involving multiple passes through the model objects. To write

a new generator similar to this one, the developer uses the interpreter API and the transformed

abstract syntax graph model. In the abstract language traversal we collect the LocalDependency

objects and filter them by processor. Each LocalDependency object contains all of the information

necessary to fill out the parameters in the template and create a new Msg line in the scheduler

specification file (within the proper Proc scope).

While we do not list here the details related to the solution of scheduling specifications, it may

be useful to document some of the scheduler limitations. More details regarding these limitations

may be found in [70].

• We do not support preemptive scheduling of tasks or messages, as our runtime provides conflict-

free task execution and data communication during nominal operation.

• The overhead parameters may be an overly simplistic model for some cases. Each processor

and bus pair may have different parameters, depending on the bus type and the protocol used.

67

• We do not perform optimization on the schedule, so performance cost functions are not taken

into account. For control problems where the execution time changes yield irregular perfor-

mance changes, this is a more serious issue (see for example [83]).

Platform-Specific Code Generation

Time-triggered execution requires configuration with the computed cyclic schedule. Code generated

for the virtual machine conforms to a particular synchronous execution strategy – each task reads

its input variables, invokes its component functions, and writes its output variables. The schedule

calculation assumes logical execution time semantics, where task input data is ready before task

release, and output data is not assumed ready before the task completes[17]. Data structures describe

the invocation times and configuration parameters for tasks and messages on each processor. Each

message configuration instance also includes local buffer addresses where the timed communication

controller in the virtual machine can store incoming and outgoing message data.

The generated code for the Quadrotor model in Table 11 was produced from the template descrip-

tion for the platform-specific code generator in Table 12. The FRODO virtual machine generation

template brings together all of the ESMoL Abstract relations described in the earlier section. The

template and generated code segment above correspond to the second-stage interpreter that creates

the static schedule structures used by the virtual machine. The tasks, messages, and peripherals

listed here come from the Acquisition, Actuation, Transmit, and Receive relation objects. The var-

ious connected objects are sorted according to schedule time, and then the template instantiation

uses the object parameters to create the tables in a manner similar to that described for the sched-

uler specification generation above. The LocalDependency relations do not appear in this template.

The scheduler creates constraints that must be satisfied for each local dependency, but local message

transfers take place automatically in shared memory as tasks write to and read from processor-local

message structures. Therefore, any valid task and message schedule will satisfy them. In a different

part of the FRODO template, the local dependencies determine which message fields must be used

as arguments to the component function calls (not shown here).

68

////////////////////////////// SCHEDULE TABLE ///////////////////////////////

portTickType hp_len = 20;

task entry tasks[] = {
{ DataHandling, "DataHandling", 4, 0},
{ InnerLoop, "InnerLoop", 9, 0},
{NULL, NULL, 0, 0}

}

msg entry msgs[] = {
{ 1, MSG DIR RECV, sizeof(OuterLoop ang ref),

(portCHAR *) & OuterLoop ang ref,
(portCHAR *) OuterLoop_ang ref c, 7, 0, 0},

{ 2, MSG DIR SEND, sizeof(DataHandling pos msg),
(portCHAR *) & DataHandling pos msg,
(portCHAR *) DataHandling pos msg c, 11, 0, 0},

{ -1, 0, 0, NULL, NULL, 0, 0, 0}
}

per entry pers[] = {
{ 1, "UART", IN, 0, 0, sizeof(DataHandling sensor data in),

(portCHAR *) & DataHandling sensor data in,
(portCHAR *) DataHandling sensor data in c, 2, NULL, 0, 0},

{ 2, "UART", OUT, 0, 0, sizeof(InnerLoop thrust commands),
(portCHAR *) & InnerLoop thrust commands,
(portCHAR *) InnerLoop thrust commands c, 14, NULL, 0, 0},

{ -1, NULL, 0, 0, 0, 0, NULL, NULL, 0, NULL, 0, 0 }
}

Table 11: Generated code for the task wrappers and schedule structures of the Quadrotor model.

69

////////////////////////////// SCHEDULE TABLE ///////////////////////////////

portTickType hp_len = {{NODE_hyperperiod}};

{{#SCHEDULE_SECTION}}
task entry tasks[] = {
{{#TASK}}
{ {{TASK_name}}, "{{TASK_name}}", {{TASK startTime}}, 0},{{TASK}}
{NULL, NULL, 0, 0}

}

msg entry msgs[] = {
{{#MESSAGE NAME}}
{ {{MESSAGE index}}, {{MESSAGE sendreceive}}, sizeof({{MESSAGE name}}),

(portCHAR *) & {{MESSAGE name}},
(portCHAR *) & {{MESSAGE name}} c, {{MESSAGE startTime}},
pdFALSE},

{{MESSAGE NAME}}
{ -1, 0, 0, NULL, NULL, 0, 0}

}

per entry pers[] = {
{{#PER_NAME}}
{ {{PER index}}, "{{PER type}}",

{{PER way}}, 0, {{PER pin number}}, sizeof({{PER name}}),
(portCHAR *) & {{PER name}},
(portCHAR *) & {{PER name}} c,
{{PER startTime}}, NULL},

{{PER_NAME}}
{ -1, NULL, 0, 0, 0, 0, NULL, NULL, 0, NULL }

}
{{SCHEDULE_SECTION}}

Table 12: Template for the virtual machine task wrapper code. The Stage 2 FRODO interpreter
invokes this template to create the wrapper code shown in Table 11.

70

Synchronous Semantics

We will briefly present a formal argument for the preservation of synchronous Simulink block firing

orders as we use the Simulink blocks to define software components, their deployment to the hard-

ware, and impose a time-triggered execution schedule on the design. Our semantic argument is only

valid for synchronous data flow (SDF) specifications. We do not claim to represent the full generality

of Simulink specifications, rather we restrict ourselves to dataflow graphs without conditional execu-

tion. Our graphs must contain only tasks that execute in periodic, discrete time, have no delay-free

loops, all delay elements must be initialized with a data token, and initial block firing orders must

include the outputs of the delay elements This final assumption can be satisfied by considering the

outputs of the delay elements as additional inputs to the component. Then all dependent blocks

will be able to fire as early as necessary in the schedule. Our restrictions on execution are consistent

with those required by the Mathworks Real-Time Workshop Embedded Coder product, which forces

models to have fixed-step execution and task periods harmonic with the configured time step size

for code generation.

Consider a synchronous acyclic graph G = (V,E) representing the connectivity of a Simulink

dataflow model, where edges abstract the transfer of data between blocks (without the data type

information, data capacity, or multiplicity). Let exec : G → R represent the task duration for

vertices (obtained by analysis or measurement), and the communication message transfer time for

edges.

Let CV ⊆ V × Z|V | be the set of all possibly concurrent firing orders for the blocks represented

by the set V which respect the partial order specified by the edge set E (i.e. (v1, v2) ∈ E ⇒ c(v1) <

c(v2)∀c ∈ CV where the pairs in c are interpreted as functions on V). Note that CV should only be

taken up to isomorphism, eliminating orderings that are equivalent.

Consider the synchronous execution of G, where the full graph is executed on a periodic sched-

ule at instants {Tsk}, (k = 0, 1, . . . ,∞), and completes each execution before the next cycle. For

embedded code generation, Simulink requires models to execute with fixed-step semantics, so this

is not an overly strong restriction.

71

Next, we allow manipulations of the dataflow graph G as follows: Let G′ ⊆ G be a subgraph.

Assume that G′ = (V ′, E′) represents a well-formed functional dataflow. Let CV ′ ⊆ V ′ × Z|V ′| be

a set of possible orderings for V ′ created by restricting CV to the vertex set V ′. All orderings in

CV ′ are also valid in CV , if we adjoin proper orderings from CV −V ′ . All orderings in CV ′ are also

synchronous orderings, as they respect the partial order defined by G′. We can also continue this

construction for products. Let G′ ⊆ G and G′′ ⊆ G, where we uniquely identify the vertex sets V ′

and V ′′ so that V ′ ∩ V ′′ = ∅. Then for G′ × G′′ we have CV ′ × CV ′′ . Considering the concurrent

execution of G′ and G′′, both graphs execute synchronously if executed according to an order from

CV ′ × CV ′′ .

Let Gs1 , . . . , GsI
be subgraphs of a Simulink dataflow G. These represent ESMoL-specified

dataflows. Let Gs = ×i∈[1,I]Gsi where each vertex v ∈ Vs is given a unique identity as above.

Consider the product of the restricted orderings CVs
= ×i∈[1,I](Vsi × Z|Vsi

|). Then the specified

dataflow G is synchronous if executed according to an order from CVs
.

Consider the following partitions on Gs:

Let Cp : Vs → [1, P] assign component blocks to physical processors.

Let CT : Vs → [1, N] assign components to computational tasks. We need to ensure that all

components belonging to the same task also belong to the same processor (∀n ∈ [1, N],∃p ∈ [1, P] :

{v ∈ Vs|CT (v) = n} ⇒ {v|CP (v) = p}.

Let {b1, . . . , bB} be a set of physical communication buses, {t1, . . . , tN} be the set of tasks, and

{p1, . . . , pP } be the set of physical processors. Let BE = {b1, . . . , bB} ∪ {t1, . . . , tN} ∪ {p1, . . . , pP }.

Let CE : ES → BE represent the communication mode for each data message represented by a

graph edge. Data can travel remotely (via a data bus bi) or locally in shared memory (between

components within a task tj or between tasks on a processor pk).

Let D ⊆ CVs
be the subset of the orderings for Gs restricted such that if o ∈ D, then

∀v1, v2 ∈ Vs, CP (v1) = CP (v2)⇒ o(v1) 6= o(v2)

72

D is the restriction of the synchronous orderings on Vs to the hardware partitioning, where

two vertices cannot have the same order if they share a resource. Note that if the design is not

schedulable, D will not exist.

Finally, consider the schedule. Let S : Gs → R|Vs|+|Es| represent start times for all elements of

the dataflow graph Gs.

Let D′ ⊆ D satisfy (∀o′ ∈ D′):

∀v1, v2 ∈ Vs, e = (v1, v2) ∈ Es ∧ CP (v1) 6= CP (v2)

⇒ S(v2) > S(v1) + exec(v1) + exec(e) ∧ o′(v2) > o′(v1)

.

If two components have a dependency through a remote message, then their start times are

constrained by the start time of v1, the duration of v1, and the duration of the message represented

by the edge e. This models the logical execution time semantics of time-triggered execution. Note

that the addition of the edge time may push the order values farther apart by allowing other tasks

to execute during the data transfer time, so the reduction involved in D′ may be significant. Again,

we assume that the model is schedulable.

Since the final set of orderings D′ was constructed by reduction from the initial set of orderings

CV , any scheduling policy for ESMoL that enforces the constraints and partitionings shown above

will maintain the synchronous semantics of the original Simulink model if the ESMoL model is

schedulable. Note that we have not dealt with delays. The scheduling tool described in Porter et

al[70] conforms to the constraints as described, if combined with the Stage1 logic to create local

dependencies for transitive remote connections as described above. Unfortunately, the scheduler

does not enforce end-to-end latencies well, an issue addressed conceptually in Chapter V.

73

Figure 26: Conceptual development flow supported by the tool chain.

Evaluation

Our approach for creating high-confidence designs varies somewhat from the traditional V-diagram

development model (see Fig. 26). In the traditional model we move down the V, refining designs

as we proceed, with the level of integration increasing as the project progresses. We recognize

that system integration is often the most costly and difficult part of development. Lessons learned

during integration frequently occur too late to benefit project decision-making. We aim to automate

much of the integration work, and therefore shorten design cycles. Beyond that, we want to enable

feedback of models and analysis results from later design stages back to earlier design cycles (along

the dashed lines in the conceptual diagram) to facilitate rapid rework if necessary. The goal is that

the overall project can rapidly move towards a correct implementation that most accurately reflects

our current understanding of the design problem.

Our case study covers the incremental development of software for the Starmac quadrotor air-

craft [76, 77]. We deployed our software to the same hardware as the Starmac controller (with

the exception of our internal I2C link, where the Starmac design used a UART), and tested in

74

a hardware-in-the-loop environment which simulated the Starmac dynamics. Specifically, we con-

ducted three development phases (each with a corresponding set of design models), each of which

successively refined the design while preserving the component structure:

1. Communications Test: We designed and deployed a shell of the controller architecture,

where the software controller components received and sent messages of the proper size, but

the system functions only copied data from the input ports to the output ports of each com-

ponent. The Mathworks xPC Target Hardware-in-the-Loop (HIL) simulator injected known

data patterns into the deployed dataflow implementation to ensure that all data paths were

valid given the configured schedule.

2. Quad Integrator Test: We designed and deployed a simplified version of the quadrotor which

acted only along a single axis of motion, removing the rotational dynamics. We were able to

validate our control design approach (see [84]), and determine a method for gain adjustments

required for stable operation of the deployed controller.

3. Quadrotor Test: The final phase evaluated the full quadrotor dynamics and controller im-

plementation. We tested trajectory tracking with the full platform delay effects.

Each of the three development phases answers a set of questions regarding the correctness of the

design under nominal operating conditions:

• Communications Test:

1. Is the hardware configuration valid for this software configuration?

2. Does our deployment mapping communicate the right amounts of data round trip?

3. Does the configured schedule avoid communication conflicts?

4. Is data corrupted by the communication protocols or software?

5. How much delay is introduced by the configured schedule?

• Quad Integrator Test:

75

1. Does our methodology for selecting stabilizing gains for the control loops adequately

handle the schedule delay introduced by data buffering, network communication, and the

calculated schedule?

2. Is our sampling process sufficient for the platform and essential control architecture?

3. Are there any numerical problems that arise in our functional dataflow implementation

considering normal input value ranges?

• Quadrotor Test:

1. Given the additional functions and dimensions in the dataflow, can we still properly

answer all of the questions from the previous phase?

2. Does the full configuration track a reference trajectory?

Fig. 27 is a conceptual depiction of our evaluation environment. The Mathworks xPC Target

simulation software runs on a generic small-form-factor PC, with ethernet for configuration and data

collection. The xPC system contains an 8-port RS-232 serial expansion card, which communicates

with the controller hardware on one port. The simulator and controller send sensor and actuator data

back and forth on a single full-duplex serial link running at 57600 baud. The controller hardware

consists of two processor boards – the Gumstix Linux board runs the OuterLoop controller and the

RefHandler data input tasks. The Gumstix board has access to an ethernet port, through which

the host machine sends new controller software for both control boards. We also use secure shell

connections to start and stop the controller, and to monitor for error messages which are printed to

the console. An internal I2C connection allows the two control boards to exchange sensor data and

attitude control commands. The Robostix AVR board runs the InnerLoop attitude controller and the

DataHandler sensor data distribution component. One Robostix UART device connects to the xPC

simulator as described above. Digital I/O pins allow the monitoring of timing information for the

Robostix. We embedded commands to toggle the I/O pins in the controller software, and connected

the pins to the LogicPort logic probe. The probe software shows timing traces for evaluating schedule

operation (as in Fig. 40). A software AVR simulator was also used to evaluate timing and stack

usage for the software running on the AVR. The Robostix board runs FreeRTOS. A Windows virtual

76

Figure 27: Hardware in the Loop (HIL) evaluation configuration.

Figure 28: Communications test model.

machine on the host PC runs the ESMoL modeling tools, logic probe display software, and Simulink

which configures and compiles models for the xPC target software. The Linux-based host itself runs

the cross-compilers for the controller targets, and secure shell connections to the Gumstix board for

status monitoring.

Communications Test

Fig. 28 displays the simple model used to test data flow over the communication channels. The

blocks contain only pass-through elements – multiplexers, demultiplexers, and gains. With this

model we verified that data flowed correctly through all of the data paths in the system. The

77

Figure 29: Communications test plant model using the Mathworks xPC Target.

InnerLoop, OuterLoop, and DataHandler components were all realized in software from an ESMoL

model, and deployed to the hardware platform. The execution of the components is controlled

by a simple time-triggered virtual machine that releases tasks and messages at pre-calculated time

instants.

The Mathworks xPC Target simulated the plant dynamics for this test, which in this case

amounted only to signal generators to create known data for the simplified controller blocks, and

scopes to visualize data received from the controller board. We compared the input and output

traces for (delayed) equality (Fig. 29).

During this phase we found problems with the I2C communications link. The scheduling and

timed execution both required precise coordination to prevent data corruption. We also manually

discovered a deadlock condition in our communications controller logic. Increasing the speed of the

I2C link from 100 kbits/sec to 400 kbits/sec resolved both the scheduling problem and the deadlock.

Quad Integrator Model

Our second evaluation phase controls a continuous-time system whose model represents a simplified

version of the quadrotor UAV. This model still follows the basic component architecture for the

control design (see Fig. 8), but excludes the nonlinear rotational dynamics of the full quadrotor

while retaining the difficult coupled stability characteristics. Fig. 31 shows a Simulink model

78

Figure 30: Simulink model of a simplified version of the quadrotor architecture.

Figure 31: Simplified quadrotor plant dynamics. The signal lines leading off the picture are signal
taps used for online stability analysis.

containing the simplified dynamics. The example model controls a stack of four integrators (and

motor lag) using two nested PD control loops, as shown in the Simulink diagram of Fig. 30. The

Plant block contains the integrator models representing the vehicle dynamics. The two control

loops (InnerLoop and OuterLoop, as shown in Fig. 30) are deployed to the Robostix and Gumstix

processors, respectively. We refer to this example as the Quad Integrator model. All of the controller

components run at a frequency of 50Hz.

Our controller evaluation method is based on sector theory, proposed originally by Zames[62] to

analyze nonlinear elements in a control design. Sectors provide two real-valued parameters which

represent bounds on the possible input/output behaviors of a control loop. Kottenstette presented

a sector analysis block for validating a control design in Simulink[65]. We propose to use the same

79

structure to verify the deployed quadrotor control software online. This method is described more

fully in Porter et al[84]. A few concepts make this approach appealing for our case:

1. For a given component, the sector measures behavior simultaneously over multiple inputs and

outputs, so only one sector analyzer is required per control loop.

2. Our passive abstraction of the system design (described below) allowed us to use a sector

analyzer for each control loop to quickly isolate problem components in the deployed design.

Passive control requires that controllers use energy received from inputs or stored previously,

introducing no new energy into the environment[85]. If the plant dynamics were passive, we would

have considerable freedom in setting gains and choosing control structures. The zero-order hold

outputs can introduce small amounts of new energy to the environment during rapid velocity changes,

so each of the control loops must mitigate small amounts of “active” behavior. The sector bound

a quantifies the energy-generating behavior of each control loop. In our quadrotor system, we

expect the bound a to be small and negative and choose the gains appropriately. The result from

Kottenstette indicates that the condition k < −1/a is sufficient to ensure stability in these situations

(where k is the configured gain of the control loop)[65].

Figure 32: Conceptual nested loop structure of the controller.

This particular design must be evaluated from the innermost loop to the outermost loop in

order to make sense of the gain constraints. Fig. 32 shows the nested loop structure of the design.

The actual design and implementation are complicated by the physical architecture of the digital

realization:

1. Sensors acquire digital attitude and position information only, so velocities must be estimated.

80

2. The controller components are deployed to different processors in the digital implementation,

as described previously. Components on the two processors exchange data messages using a

time-triggered protocol.

3. Motor thrust commands are issued periodically using a zero-order hold. As discussed previ-

ously the hold introduces additional energy back into the environment, violating the passivity

condition.

The sector blocks are attached around each controller, so input and output ports are oriented

from the point of view of the control element. The output of the controller (input to the rest of

the system) is connected to the sector analyzer input port. The signal controlled by the controller

(before the error term is formed) is part of the input to the controller, but from our point of view it

is the output of the system, so it connects to the sector analyzer output port. Fig. 33 displays the

connection of the sector search block around the position control gain for our example. Kx is the

proportional gain for the outer loop PD controller, and Kv is the derivative gain.

Figure 33: Sector analysis block (SectorSearch) connection around the position controller.

For this test we selected a square wave reference input near the highest frequency admissible by

the controller. Platform effects caused a significant deviation from our ideal sector estimates and

bounds, as illustrated by the sector bound changes in Table 13. Fig. 34 illustrates the evolution of

81

(a) Simulink simulation. (b) Execution on hardware (including schedule effects).

Figure 34: Sector value evolution over time for the quad integrator.

Signal Original Simulated Measured Delta New New
Bound Sector Sector Bound Sector

Angular Velocity -1.333 -1.2292 -1.2963 -0.0671 -2.667 -1.4568
Angle -0.5 -0.0295 -0.4831 -0.4536 -1.0 -0.0068
Velocity -0.5 -0.1856 -0.4830 -0.2974 -1.0 -0.9324
Position -3.333 -.7757 -3.8811 -3.1054 -6.667 -1.6081

Table 13: Sector value comparisons for simulation and execution on the actual platform.

the collected sector data over time. For each digital control signal the table records the following

(by column):

1. Original Bound: the sector bound based on the original gain value (− 1
k).

2. Simulated Sector: the sector value recorded in simulation.

3. Measured Sector: the initial sector value measured on the platform.

4. Delta: the sector difference between the measured and simulated values.

5. New Bound: the sector bound based on the newly adjusted gains.

6. New Sector: the sector value measured on the platform with the new gains.

Although the initial platform gains satisfied the sector stability conditions analytically and in

simulation (comparing the Bound column to the Simulated column in the table), the overall sys-

tem response when deployed to the target platform resulted in significant position overshoot. The

measured sector value for position measured the farthest from the predicted value, and exceeded

the gain bound for stability (−1/k), though no evidence of instability was visible in the plot of the

82

output trajectory. As all of the gains moved right up to the edge of their bounds when deployed,

we reduced all of the gains by 1
2 . Note that changing the gains changes the acceptable sector bound

as well as the actual sector bounds themselves (as shown in Table 13). After adjusting the gains all

of the sector values fell within the bounds.

On closer inspection we discovered that the most significant platform effect was a non-ideal

position gain condition for signals with frequencies too close to the sampling rate. Fig. 35 shows

a comparison of the ideal frequency response of the outer loop controller block with an empirically

measured frequency response for the same controller block deployed on the target hardware. Note

the spike at the right-hand side of the plot in Fig. 35(b). This is a nonlinear gain anomaly due to

the effects of the saturation block, and which appears only for signals with frequencies right near

the Nyquist sampling rate. The remedy was to add a simple input filter to cut off frequencies too

close to the sampling rate. This effectively slows down the possible commands that can be issued

to the system. The sector analysis blocks helped identify the position control component as the

element whose behavior was farthest from predicted when deployed to the platform. Adding a rate

limiter block to the reference input resolved the problem. Note that the full quadrotor model already

included a similar (but more complex) rate limiter.

(a) Analytically predicted response. (b) Measured response.

Figure 35: Magnitude frequency responses for the quad integrator.

The Quad Integrator model simulation exposed a few interesting and unanticipated defects in

our design, beyond the gain anomaly detected by the sector analysis. The most significant problem

was the asynchronous arrival of the input sensor data. Since the input data transfers were not

83

synchronized with the controller schedule, we had to add a double-buffer to the UART data handler

in order to eliminate data corruption.

Quadrotor Model

The final development phase integrated the full dynamics of the quadrotor, comprised of the full

data paths and nonlinear functions of the controllers. Figs. 36 - 38 show details from the full

Simulink model for the quadrotor. In the top-level design model (Fig. 36), the robo stix block

(Fig. 37) contains the functional specifications for the DataHandler (sensor convert block) and the

InnerLoop (inner loop block, also Fig. 38) software components. Likewise the gum stix block and

the ref data block specify functions for the OuterLoop and RefHandler software components.

Figure 36: Simulink model of the Starmac quadrotor helicopter.

We used the LogicPort probe to assess the correctness of the schedule. The configured schedule

(Fig. 39) correlates with the schedule points measured by the LogicPort analyzer for the tasks and

messages on the Robostix board (Fig. 40). Our experimental configuration did not provide a similar

means for accurate measurement of the timing on the Gumstix board, though we can observe that

message transfers start and end as predicted when task interference is absent. Task interference

84

Figure 37: Detail of the Robostix block.

was only observed for misconfigured schedules, or when other non-controller Gumstix processes

created heavy loads, delaying the controller. Both schedule-based and load-based interference were

eliminated for nominal operation. Fig. 41 illustrates tracking behavior for the xPC-simulated

Quadrotor, where the real-time controller implementation runs on the actual controller hardware.

The dashed curves represent the commanded x, y, and z positions as shown, and the solid lines show

the actual trajectory achieved by the HIL simulated helicopter using the deployed controller code.

Our first move to the full quadrotor model uncovered numerical problems with some of the emu-

lated floating-point functions provided by the gcc ARM cross-compiler. This forced us to implement

our own versions of the single-precision absolute value, signum, and minimum functions for the Out-

erLoop component. This problem was new to this phase of the evaluation because the rate limiter

was not present in the Quad Integrator model.

Lessons and Future Work

Probably the greatest difficulty in our work has been dealing with the large number of moving parts

involved in the development of the modeling language and tools, the modeling and implementation

85

Figure 38: Detail of the inner loop block.

of design examples, and the configuration of the development tools and execution environment for

the target platform. Our MIC-based solution only covered a part of the entire problem. We only

lightly addressed target system configuration, automated updates of the ESMoL model to track

changes in the Simulink design, and runtime assessment (of both the simulator for plant dynamics

and the target platform with the deployed code). We developed a technique for runtime assessment

of controller stability as covered in Porter et al[84] (described partially in the Quad Integrator

evaluation section), but it was difficult to automate due to the limited number of free data paths

available for debugging in our chosen target system. The integration of third party libraries in the

development of our tools, and variations in platform module behavior were not directly addressed

by our techniques, though they consumed significant development and testing time.

The next frontier in ESMoL development should be control loop modeling and analysis. Control

design formalisms abound, each with its own particular features and capabilities. Passivity and the

more general sector analysis formalisms are good examples of compositional frameworks which could

be encoded in modeling tools[86] and which could support incremental development.

86

Figure 39: Schedule configuration for the quadrotor.

Figure 40: Timing diagram for the Robostix AVR running the inner loop controller.

87

Figure 41: Trajectory tracking for the quadrotor implementation.

88

CHAPTER IV

INCREMENTAL SYNTACTIC ANALYSIS FOR COMPOSITIONAL MODELS:

ANALYZING CYCLES IN ESMOL

The ESMoL language is built on a platform which provides inherent correctness properties for

well-formed models. The properties include functional determinism, deadlock freedom, and timing

determinism. Establishing well-formedness for a particular model sometimes requires sophisticated

syntactic analysis of the global model structure. Where possible, for particular decomposable syn-

tactic analysis problems we would like to use the model structure to improve efficiency of analysis.

As design changes are made to the model, we would like to limit analysis to those components that

are affected by the modification.

Overview

Syntactic Analysis Challenges

One particular analysis problem concerns synchronous execution environments and system assembly.

In dataflow models of computation we are often concerned with so-called “algebraic” or delay-free

processing loops in a design. Many synchronous formalisms require the absence of delay-free loops in

order to guarantee deadlock freedom [87] or timing determinism [8]. This condition can be encoded

structurally into dataflow modeling languages – for example Simulink [88] analyzes for algebraic

loops and attempts to resolve them analytically. In the Ptolemy dataflow design environment,

such causality loops complicate scheduling requiring fixed-point iteration to ensure convergence of

results[89]. In this work we only consider the structural problem of loop detection in model-based

distributed embedded system designs.

Cycle Detection in ESMoL Models

We propose a simple incremental cycle detection technique with the following characteristics:

89

• The algorithm uses Johnson’s simple cycle enumeration algorithm as its core engine[90]. John-

son’s algorithm is known to be efficient[91]. We use cycle enumeration rather than simple

detection in order to provide useful feedback to the designers.

• The algorithm exploits the component structure of hierarchical dataflow models to allow the

cycle enumeration to scale up to larger models.

• A simple incremental interface is created and stored in each component as the analysis pro-

cesses the model hierarchy from the bottom up. The method should scale to large designs

without imposing onerous data storage requirements on the model, and allow highly efficient

recomputation of the cycle analysis when design changes occur in the model.

• The technique will not produce false positive cycle reports, though it may compress multiple

cycles into a single cycle through the abstraction. Fortunately, full cycles can be recovered

from the abstract cycles through application of the enumeration algorithm on a much smaller

graph.

Zhou and Lee presented an algebraic formalism for detecting causality cycles in dataflow graphs,

identifying particular ports that participate in a cycle. [52]. Our work traverses the entire model

and extracts all elementary cycles, reporting all ports and subsystems involved in the cycle. Our

approach is also inspired by work from Tripakis et al, which creates a richer incremental interface

for components to capture execution granularity as well as potential deadlock information[2]. Their

approach is lossless, in that it retains sufficient detail to faithfully represent dataflow structure and

execution granularity. It is much more complex in both model space and computation than our

approach. Our formalism does not aim to pull semantic information forward into the interface

beyond connectivity. In that sense our approach is more general, as it could be applied to multiple

model analysis problems in the embedded systems design domain.

The KPASSA model analysis tool described by Boucaron et al [92] performs task graph schedul-

ing analysis for latency-insensitive synchronous designs. Their formal model leans heavily on loop

structures, and as such one component of their tool relies on an implementation of Johnson’s cycle

90

enumeration algorithm[93]. Their formal model is specific to a particular model of computation,

and their application of cycle checking is only one small component of that solution.

Tools and Techniques

ESMoL Component Model

As the ESMoL language structure is documented elsewhere, we only cover details relevant to in-

cremental cycle checking. ESMoL is a graphical modeling language which allows designers to use

Simulink diagrams as synchronous software function specifications (where the execution of each block

is equivalent to a single bounded-time blocking C language call). These specifications are used to

create ESMoL component type blocks. ESMoL components have message structures as interfaces,

and the type specification includes a map between Simulink signal ports and the fields of the input

and output message structures.

Once software component types and interfaces have been specified, ESMoL designers instantiate

those components into a distributed deployment model. ESMoL allows the separate specification of

the logical data flow, the mapping of component instances to hardware, timing information for tasks

executing those components, and timing for messages sent over a time-triggered communication

bus. Code generated from the models conforms to an API for time-triggered execution. A portable

virtual machine implementation of the API allows execution in simulation, hardware-in-the-loop,

and fully deployed configurations[69].

ESMoL deliberately provides an unusual degree of freedom in creating software component types.

A designer can include Simulink references from any part of an imported dataflow model, and

instantiate them any number of times within the type definitions. The partition of functions into

ESMoL types allows the designer to control the granularity of functions assigned to distributed

tasks. Tasks can distribute functions over a time-triggered network for performance, or replicate

similar functions for fault mitigation. This level of flexibility requires automatic type-checking to

ensure compatibility for chosen configurations. Beyond interface type-checking, structural well-

formedness problems arise during assembly such as zero-delay cycles. Model analysis must ensure

well-formedness.

91

Cycle Enumeration

To implement cycle enumeration we use the algorithm Johnson proposed as an extension of Tiernan’s

algorithm [94] for enumerating elementary cycles in a directed graph[90]. Both approaches rely on

depth-first search with backtracking, but Johnson’s method marks vertices on elementary paths

already considered to eliminate fruitless searching, unmarking them only when a cycle is found.

Johnson’s algorithm is polynomial (O((n + e)c), where n, e, and c are the sizes of the vertex, edge,

and cycle set, respectively), and is still considered the best available general cycle enumeration

method[91]. We created an implementation of Johnson’s algorithm in C++ using the Boost Graph

library[95].

Hierarchical Graphs

For formally describing our incremental approach we use the algebra of hierarchical graphs intro-

duced by Bruni et al[96]. We repeat here their first definition: a design is a term of sort D generated

by

D ::= Lx̄[G] (10)

G ::= 0 | x | l < x̄ >| G ‖ G | (νx̄)G | D < x̄ >

Here term G represents a hierarchical directed graph, D is an edge-encapsulated hierarchical

graph, x is a vertex, x̄ is a list of vertices in G (for which bx̄c is the corresponding set), l ∈ E (edge

labels of G, where edges can have n-ary connectivity), Lx̄ ∈ D (D are the design labels of G and x̄

are interface vertices in L), G ‖ G is parallel graph composition which merges vertices with common

names, (νx̄)G restricts the interface of graph G to exclude vertices in bx̄c, and the notation D < x̄ >

maps the vertices from the interface of D to the vertices listed in x̄ (renaming vertices internal to

the design for the external interface). Finally JGK indicates the graph corresponding to the term G.

Note that the term design is used for components in the hierarchy, each with a type and a set of

interface vertices. Unfortunately in the realm of graph theory the term component has a different

92

meaning. This algebraic model was conceived to more easily compute structural equivalence be-

tween hierarchical graphs. Bruni et al prove that syntactic equivalence between two design models

expressed as term algebras corresponds to isomorphism in their respective graphs[96] and conse-

quently equivalent behaviors in computational formalisms mapped to the algebras. Their formalism

also includes a definition of well-typedness, where types defined on the vertex set are only connected

if their types are compatible. Finally they define well-formedness for hierarchical graphs which in-

cludes well-typedness as a condition. We do not define the entire formalism here, only enough to

understand the essence of the connections between the terms and the graphs that they represent.

Incremental Cycle Analysis

Our intention is to support a design and analysis work flow that includes incremental analysis

steps. For example, a design may analyze part of the design before integrating it into a larger part

of the system. In our work flow, we envision storing the results of that first analysis along with

some interface data to reduce the cost of the second analysis. The same should hold true for the

system design. We should be able to analyze the system design efficiently, calculating incremental

analysis interfaces. When the system models are revised, whether by adding, removing, or modifying

components we can isolate the effects of the change on the cost of the analysis. Cycle analysis is a

useful example, but our aim is to tackle this problem more generally.

Formal Model

Let G be a well-formed hierarchical graph (as in Bruni [96]). To get more comfortable with the

notation, first note that graph G itself (without hierarchical structure) can be given as:

G = (‖ x) ‖ (‖(u,v)∈E l < u, v >) (11)

which is the parallel composition of the individual edge graphs of G, merged at their common

vertices.

Let C(G) be the set of elementary cycles in G, and let P (G, u, v) be the subgraph of G containing

all of the paths from vertex u to vertex v.

93

Consider a design of type W . Let W p
x̄ [G] represent a parent design object in a graph hierarchy

with interface vertices x̄, and let W ci
x̄i

[G] be the design children of W p (JW ciK ⊂ JW pK). Then

neglecting vertex hiding and renaming to simplify the illustration, we have the following:

W p
x̄ [G] = W p

x̄ [(‖h xh) ‖ (‖(j,k) l < j, k >) ‖ (‖i W ci
x̄i

[G])] (12)

Eq. 12 describes the design W p in terms of its design children W ci , internal vertices xh, and

edges l < j, k >.

We introduce a new label lc into the sort for edges (E), which is used to connect vertices at

the boundaries of a design, abstracting the interface connectivity of the design. Introduce a new

mapping A : D → D′ from the designs of G to designs in a new graph G′. G′ is identical to G, but

adds the new edge label. This is the interface that we will use for incremental cycle analysis.

A(W ci
x̄i

[G]) =W ci
x̄i

[(‖h xh) ‖ (‖(j,k)∈bx̄ic∧P (G,j,k) 6=∅ lc < j, k >) (13)

‖ (‖(j,k) l < j, k >) ‖ (‖m W cm
x̄m

[G])])]

In this abstraction function the child designs are replaced by a much simpler connectivity graph.

We introduce two functions to support the algorithm:

R(A(W ci
x̄ [G])) = W ci

x̄i
[(‖x∈x̄i

x) ‖ (‖(j,k)∈lc lc < j, k >)] (14)

S(W p
x̄ [G]) = W p

x̄ [(‖h xh) ‖ (‖(j,k)∈bx̄c l < j, k >) ‖ (‖i R(A(W ci
x̄i

[G])))] (15)

R(·) and S(·) map designs in G to an abstracted design which only has connectivity edges for each

child design. In other words, when analyzing a component of G we use the incremental interface

data for each child component rather than its full details. This is a useful abstraction for cycle

detection: we can exploit the graph hierarchy to enumerate simple cycles more efficiently.

94

Algorithm Description

Assume we have a function FINDALLCYCLES : G → 2G which enumerates all elementary cycles in a

graph G, returning sets of subgraphs. Then Algorithm 1 adapts the general algorithm FINDALLCYCLES

to the hierarchical graph structure described above. We assume that G has a unique root design,

and that we have a function modified : D→ boolean which indicates whether a particular hierarchi-

cal component has been modified since the last run. New components in the model are considered

modified by default.

Algorithm 1 Hierarchical cycle detection
1: cycles← []
2: ifaces← {}
3: function findhcycles(JW p

x̄ [G]K)
4: for all W ci

x̄i
[G] ∈W p

x̄ [G] do

5: FINDHCYCLES(JW ci
x̄i

[G]K)
6: end for

7: modified(W p
x̄ [G])← (modified(W p

x̄ [G]) ∨ (∨cimodified(W ci
x̄i

[G]))
8: if modified(W p

x̄ [G]) then

9: T ← S(W p
x̄ [G])

10: cycles← [cycles; FINDALLCYCLES(T)]
11: ifaces[p]← A(T)
12: end if

13: end function

14: FINDHCYCLES(G)

The algorithm performs a depth-first search on a hierarchical graph. If the component has been

modified, we compute connectivity interfaces for each subcomponent and check for cycles in the

parent component – the connectivity graph interface is substituted for each subcomponent. The

modification status is propagated up the hierarchy as the algorithm progresses. Each component

which has a modified child will also be marked as modified. The cycles are accumulated as the

algorithm ascends to the top of the model.

The runtime for the extended algorithm is slightly worse than Johnson’s algorithm in the worst

case, as it must also compute the interface graphs. In the average case the cycle checking proceeds

on graphs much smaller than the global graph, offsetting the cost of finding paths in each subgraph.

Further, if the incremental interface edges are stored in the model following the analysis, then

95

scalability is enhanced when incrementally adding functions to a design. Cycle analysis is then

restricted to the size of the new components together with the stored interfaces.

ESMoL Language Mapping

Now to map ESMoL logical architecture models onto this cycle-checking formal model we use the

following rules:

Subsys ::= LSubsys
ī,ō

JDataflowK

Dataflow ::= 0 | x | lD < x̄ > | Subsys < x̄, x̄ >

| Dataflow ‖ Dataflow | (νx̄)Dataflow

MsgType ::= Mē,eext (16)

SysTypeDef ::= Subsys < ī, ō > | lS < x, x >

| SysTypeDef ‖ SysTypeDef |MsgType < x̄, y >

SysType ::= LSys
ȳi,ȳo

J(νx̄)(νē)SysTypeDefK

LogicalModel ::= SysType < ī, ō > | lL < o, i >

| LogicalModel ‖ LogicalModel

Briefly (from the bottom rule to the top), logical models consist of component blocks (SysType)

whose interface ports connected by edges. Component blocks are specified by Simulink dataflow

blocks (Dataflow) whose interface ports are connected either to other Simulink dataflow blocks or

to fields in message instances. Each message instance (MsgType) inside a system component type

block also has an interface vertex (y) which faces outward, and all other vertices are hidden within

the component (νx̄)(νȳ)SysTypeDef . At the logical architecture model level, data is exchanged via

messages which aggregate the individual dataflow connections within the components. Dataflow

blocks are built up from connections between functional vertices and between the interfaces on

composite subsystem blocks (Subsys). These each correspond to sorts in the ESMoL term algebra.

96

Let i, o, and e be vertex sorts corresponding to input ports, output ports, and message elements

respectively. Let s, c, f , and d be edge sorts (of lD, above) representing signal edges, connectivity

edges (as described above to support the incremental interface), f for Simulink primitive function

blocks, and d for delay blocks. The f function edge sorts are n-ary, so each function block can have

an arbitrary but finite number of input and output connections. For lS define the sorts (given with

their interfaces) lb,b < o, i >, lm,b < e, i >, and lb,m < o, e >. These represent the three different

connection types in a SysType specification, for connecting between ports of Simulink blocks (from

outputs to inputs) (lb,b), from message elements to Simulink input ports (lm,b), and from Simulink

output ports to message elements (lb,m).

Finally we give an encoding of terms representing ESMoL models into the more general hierar-

chical graph algebra:

x = x

LSubsys
ī,ō

JDataflowK < x̄, x̄ > = Lx̄JGK < x̄ >

Mē,eext
JK < x̄, y > = Lx̄JGK < x̄ >

LSys
ī,ō

J(νx̄)(νē)SysTypeDefK = LȳJGK < x̄ > (17)

lD < x̄ > = l < x̄ >

l∗ < x, x > = l < x̄ >

(νx̄)Dataflow = (νx̄)G

The encoding assigns the various layers of hierarchy from the ESMoL component type system to

hierarchical designs in the graph. Edges from all layers map to (possibly generalized) edges in the

new graph, and ports map to vertices.

The final piece is the application to finding delay-free loops. For a given ESMoL model, simply

remove all delay edges (sort elements d). Then invoke the algorithm. For the results, if a cycle

is found in a component we can construct a more detailed cycle model by substituting paths from

the connectivity edge sort with their more detailed equivalents in the descendants of the component

97

(recursively descending downwards until we run out of cycle elements). Call this subgraph the

expanded cycle. Repeating the cycle enumeration algorithm on these structures should yield the full

set of elementary cycles, and still retain considerable efficiency as we are only analyzing cycles with

possible subcycles, which can be a relatively small slice of the design graph.

Evaluation

Fixed-Wing Aircraft Example

Figure 42: Simulink Fixed Wing Controller Model

Our case study covers cycle analysis of the control design for a fixed-wing aircraft. The Simulink

model (Fig. 42) shows the four controller blocks and the sensor data handler. The particulars

of the control architecture are not important for this example, but Kottenstette covers them in

detail[97]. The controller has five software functions which are specified as Simulink model blocks,

and a dynamics component (the Cessna plant block). The MDL2MGA model importer creates

a structural replica of the Simulink model in the ESMoL modeling language. We use subsystems

from the replica to specify the function of synchronous software components. Fig. 43 illustrates

one possible configuration of the fixed wing controller components. In this particular configuration

(Fig. 43) the entire dataflow is included in one type definition, which means that the entire system

98

Figure 43: Synchronous data flow for Fixed Wing Controller

will execute together as a single synchronous function with all blocks firing at the same rate. This

particular configuration is useful for illustration, but is not the most practical implementation choice.

Incremental Analysis Results

Table 14 contains data from the analysis of the fixed wing model. The first pass was performed

incrementally, with each subcomponent of the top level model analyzed first. Then the top level

is analyzed using the stored path edges in the lower models. The table reports two run times

for the analysis of each component – the first is the processing time required to find the abstract

cycles only, and the second is the full analysis which finds the expanded cycle for each abstract

cycle (enumerating possibly multiple cycles per abstract cycle). The table also displays the number

of hierarchical components visited and the number of individual model elements visited, together

with the number of abstract cycles found and the total number of cycles. The table row labeled

top level (incremental) contains the results for the analysis of the top level of the model once the

individual path interfaces had been created for each of its subcomponents. The second pass (labeled

top level (full)) analyzed the entire fixed wing model at once, reporting the same quantities. Our

assessment of the scalability of the approach is inconclusive for three reasons – 1) the model size is

99

moderate, so overhead is likely large enough to be a significant factor in all of the run times, 2) we

would need a comparison with time taken to process a fully flattened model, including the flattening

traversals, and 3) we need to find larger models for our test set. The analyzer found 18 abstract

cycles and 54 detailed cycles at the top level for both passes. The velocity controller component also

contained a single abstract cycle (consisting of two detailed cycles). Note that we analyzed for all

cycles rather than only delay-free cycles to assess scalability. Total runtime was roughly equivalent

between the full and incremental methods for this particular model. The results so far are promising

but inconclusive as far as improved performance.

Abstract Full Abstract Total
Component Run Run Hier. Total Cycles Cycles

Time (s) Time (s) Comps. Elts. Found Found
alpha beta mu controller 0.9 0.9 9 80 0 0
gamma chi controller 1.6 1.6 7 134 0 0
gamma chi mu sensor 1.3 1.3 8 100 0 0
omega controller 0.9 0.9 9 80 0 0
velocity controller 0.6 0.8 6 60 1 2
Top level (incremental) 2.3 55.1 1 21 18 54
Totals 7.6 60.6 19 872

Top level (full) 7.9 60.5 42 554 19 56

Table 14: Cycle analysis comparisons for the fixed wing model.

Figs. 44 and 45 display a subset of the velocity controller component which contains a cycle,

along with the expanded cycle for the component, in order to illustrate the cycle refinement in

greater detail. The abstract cycle search discovered the presence of a cycle within the component,

but part of the cycle lies within a subcomponent (anti windup control). The cycle detection for

anti windup control created a single path edge in the interface between the In1 port and the Out2

port, which corresponds to two paths within anti windup control. The full cycle as shown (Fig. 45)

is constructed in the analyzer, and then one more pass of Johnson’s algorithm resolves the two cycles

within the full cycle graph as reported in Tab. 14. The extracted cycle graph is much smaller (13

elements) than the corresponding fully flattened velocity controller model, which would contain 60

elements.

100

Figure 44: Detail of the components involved in the cycle found in the velocity controller.

Future Work

The current implementation is integrated into the ESMoL tool suite for the Generic Modeling

Environment[71], but thorough scalability testing requires larger models.

One interesting observation is the generality of the approach. Algorithm 1 very nearly captures

a generic procedure for bottom-up incremental syntactic analysis of hierarchical graphical models.

Algorithm 2 proposes such a generic template. A complete study of such generic structural analysis

techniques should include consideration of the effects of the component processing order on the

accuracy of the result.

101

Algorithm 2 Hierarchical cycle detection
1: results← []
2: ifaces← {}
3: function analyze(JW p

x̄ [G]K)
4: for all W ci

x̄i
[G] ∈W p

x̄ [G] do

5: ANALYZE(JW ci
x̄i

[G]K)
6: end for

7: modified(W p
x̄ [G])← (modified(W p

x̄ [G]) ∨ (∨cimodified(W ci
x̄i

[G]))
8: if modified(W p

x̄ [G]) then

9: T ← ANALYZESTRUCTURE(W p
x̄ [G])

10: results← [results; COLLECTRESULTS(T)]
11: ifaces[p]← CREATEINTERFACE(T)
12: end if

13: end function

14: ANALYZE(G)

Two immediate applications of this generic incremental method in ESMoL embedded control

system designs are 1) automated sector analysis for passivity and/or stability and 2) quantization

interval analysis for data precision and overflow. Both represent a static analysis of possible system

behaviors that can be encoded syntactically. In both cases component interface data requirements

are small, and computation is fairly efficient.

102

Figure 45: Full cycle for the velocity controller.

103

CHAPTER V

INCREMENTAL TASK GRAPH SCHEDULE CALCULATION

Analysis of semantic correctness properties depends on formal representations of the system be-

haviors represented by the model. The difficulty with semantic analysis is that concurrent behaviors

over time may not correlate well with the structure of the model, since a proper behavior model

will capture the numerous interactions between components and their effects on seemingly unrelated

components. Semantic analysis is usually more computationally expensive than syntactic analyses,

because of the need to look at states of the model over time. As discussed previously, incremental

techniques may provide efficient analysis if they do not introduce behavioral approximations which

are too conservative. The difficulty lies in finding useful decompositions of behavioral abstractions

which will allow incremental analysis.

Overview

Semantic Analysis Challenges

A well-formed ESMoL model represents a particular set of system behaviors. Prior to schedule

calculation the set of possible behaviors is underdetermined, leading to phenomenally large numbers

of possible schedule configurations, many of which are essentially equivalent from the point of view of

the requirements. ESMoL requires a scheduling technique which can use the timing and dependency

information in the model to create a valid configuration for the execution of tasks and messages in the

time-triggered network. Of particular concern is the satisfaction of end-to-end latency constraints

for scheduled task graphs. Many scheduling techniques support offsets and local deadlines to support

specified dependencies, but do not specify how those offsets and deadlines should be determined.

We need a scalable schedule calculation tool which supports iterative rework of design components

and round-trip integration of the scheduling tool in the design flow.

104

Schedule Analysis and Calculation

We present here a conceptual design for an incremental scheduling and allocation algorithm which

addresses the problems of scalability by incrementally computing task schedules for additional la-

tency constraints. Specifically we propose a modification of the Bubble Scheduling and Allocation

(BSA) algorithm[98] to handle node-locked tasks and incremental addition of new tasks, network

data communication, and latency requirements.

Tools and Techniques

Task Graph Scheduling and Abstractions

Kwok and Ahmad present a detailed evaluation and comparison of many task graph scheduling

techniques[33]. We will rely on their description of the task graph scheduling problem, and describe

a few of the useful scheduling abstractions that are common to some of the algorithms. We are

most interested in the Arbitrary Processor Network (APN) class of scheduling algorithms, which

assign tasks to processors and start times to tasks in a particular network topology. A task graph

is a directed acyclic graph (DAG) G = (V,E), where vertices correspond to computational tasks

having a known, bounded execution time, and edges correspond to messages transferred over a

communication network. Vertices having no inbound edges are denoted entry vertices or sources,

and vertices having no outbound edges are denoted exit vertices or sinks. Each vertex and edge has

a set of weights, corresponding to the computation time required to execute the task represented

by the node or to transfer the message represented by the edge. These execution times may differ

for each processor or network link, so task and message weights are given as functions of vertex and

processor (or edge and network). Let w(ni, Pk) be the task computation cost (execution time) for

vertex vi on processor Pk. Likewise let c(vi, vj , Nl) be the cost (transfer time) for the message from

vertex vi to vertex vj over network link Nl. If two task vertices are scheduled on the same processor,

then the communication cost of an edge between them is counted as zero. The vertex and edge

weights may be determined by estimation, measurement, or static analysis. For schedule analysis

they should be considered bounds on worst-case execution time rather than nominal values.

105

The b-level (bottom-level) of a task vertex measures the longest path from the vertex to an exit

vertex, counting both vertex execution time and data transfer times on the network. The t-level

(top level) measures the longest path distance from an entry vertex to the vertex in question, not

including its own weight. These levels are frequently used in scheduling heuristics to assign priorities

to tasks during scheduling. The t-level roughly represents the earliest start time for a vertex in the

DAG. A critical path (CP) is the longest path from a particular entry vertex to an exit vertex. In

most of the literature the critical path is abstracted as the longest possible path in the task graph,

bounding the b-level values for that graph. For our purposes the task graphs may have multiple

critical paths, where each corresponds to a latency requirement. More formally, given a task DAG G,

latency requirements can be specified as triples Lm = (vi, vo, tm). Here vi indicates a source vertex,

vo indicates a sink vertex, and tm indicates a time requirement within which all paths between vi

and vo must execute. Then CPm represents the critical path from vi to vo for requirement Lm.

Bubble Scheduling and Allocation (BSA)

The Bubble Scheduling and Allocation (BSA) Algorithm[98] first determines a critical path in the

task graph by considering the b-level and t-level of task vertices. The CP determines a partition

of the graph into IB (in-branch) vertices, CP (critical path) vertices, and NA vertices, which are

successors to other kinds of vertices, originally called out-branch vertices in [98]. We slightly adjust

the b-level so that NA vertices have a value blevel(v) = 0, CP vertices start with blevel(vo) = 1, and

all predecessor b-level values are determined as described. Then the critical path and its in-branch

vertices (IBVs) are scheduled serially to a single processor (the pivot processor) using the routine

SERIALINJECT. The function SERIALINJECT places all of the task graph vertices into descending b-

level order. This is a slightly different presentation from the original description in Kwok[98], but

it satisfies all of the precedence dependencies for each vertex in the critical path as required by the

BSA algorithm. Our slightly modified b-level calculation also ensures that NA vertices are scheduled

after latency-critical tasks.

The BSA algorithm (Algorithm 3) proceeds by iterating over the system processors (starting

with the initial pivot processor) and testing scheduled vertices for migration. If a tested vertex

106

could start earlier on another processor, or if moving the vertex will reduce network data transfers

without impacting the overall length of the critical path then the algorithm migrates the tested task.

We assume that all times are discretized, and thus given as integer values. Table 15 describes the

critical functions, routines, and variables. Some of the algorithmic functions are not fully defined

here to save space.

Function or
Routine Description
SERIALINJECT Sequences the vertices in decreasing order of blevel, scheduling them

to the specified processor.
SCHED Starts from a migrated vertex, calculating start times for it and all

successive vertices based on their processor assignment.
SORTPROCS Orders the processors in the system according to a weighting function

based on available space and cost-based proximity to the processors to
which the start and end vertex are bound.

FINDCRITICALPATH Calculates the b-levels of the specified vertices with respect to the
entry and exit, and marks the CP and IB vertices.

CALCSTART Finds the best start time for a particular task vertex on the specified
processor, subject to data dependencies.

Variable Description
start Array mapping vertices to their currently configured start times.
finish Array mapping vertices to their currently configured end times.
dat The earliest time at which a vertex could be scheduled, based on

the arrival times of its data dependencies.
vip For a given vertex, the immediate vertex predecessor whose data

arrives last.
proc Array mapping vertices to their currently assigned processor.
proclist A priority-sorted list of processors.
pivot The current processor.

Table 15: Function and variable definitions.

107

Algorithm 3 BSA Algorithm
1: start← {(n0, 0), (n1, 0), . . . , (ninf , 0)}
2: finish← {(n0, 0), (n1, 0), . . . , (ninf , 0)}
3: dat← {(n0, 0), (n1, 0), . . . , (ninf , 0)}
4: vip← {(n0, n0), (n1, n0), . . . , (ninf , n0)}
5: function bsa(G,H)
6: proclist← SORTPROCS(H)
7: pivot← proclist[1]
8: CP ← FINDCRITICALPATH(G)
9: proc← SERIALINJECT(pivot, G, CP, H)

10: for all idx ∈ [1, len(proclist)] do

11: pivot← proclist[idx]
12: for all n ∈ {n|proc(n) = pivot} do

13: BestFT ← 0
14: BestProc← pivot

15: if start(n, pivot) > dat(n, pivot) ∨ proc(vip(n)) 6= pivot then

16: for all p ∈ adj(pivot) do

17: FT ← CALCSTART(n, p) + w(n, p)
18: if FT < finish(n, pivot) ∨ (FT = finish(n, pivot) ∧ proc(vip(n)) = p) then

19: BestFT ← FT

20: BestProc← p

21: end if

22: end for

23: if p 6= pivot then

24: proc(n)← p

25: SCHED(G, H, proc, n)
26: end if

27: end if

28: end for

29: end for

30: end function

The rationale for the BSA algorithm is as follows. The authors assume that local data transfers

are zero-cost, so the best starting point for the schedule should have the least message transfers.

Accordingly, SERIALINJECT places all of the vertices on a single processor. All improvements beyond

the serial configuration come from moving vertices to adjacent processors where they can start early

enough to “hide” the network data transfer cost. As iteration proceeds down the critical path, the

migration process reduces the overall potential schedule length with each move of a vertex. The

BSA algorithm can be adapted to handle non-uniform data transfers (i.e. different transfer times

for different routes) in the calculation of start times for adjacent processing nodes. As the authors

108

suggest, using the task finish time in the adjacent processor comparisons also adapts the algorithm to

a heterogeneous network with processors running at different speeds[98]. Once the CP and all of its

input dependencies (CP and IB vertices) have been scheduled, the remaining vertices (marked NA)

can be scheduled anywhere convenient in order to reduce network usage or satisfy other objectives.

Incremental Schedule Analysis

We will add a few more problem constraints and assumptions appropriate to our incremental variant

of the task graph problem, and adapt the BSA algorithm to meet them:

1. In a real-time system particular tasks are bound to specific processors due to I/O require-

ments. We will assume that the starting and ending vertex of each critical path correspond

to processor-locked tasks. The problem input will include the assignments for those particular

processors.

2. We assume that an existing schedule has already been placed on the network, and that

the next task graph contains only a single critical path. The pre-existing schedule tasks

are tagged for each critical path in which they participate. For each latency requirement

(Lm corresponding to a single critical path CPm), any vertex is either critical (CP), an

in-branch dependency (IB), or neither (NA). The resulting vertex list has the form vi :

{(CP1, CP), (CP2, IB), (CP3, NA), . . .}.

3. Any new task graph to be added to the schedule may use existing tasks as part of its speci-

fication. We refer to the shared vertices as merge vertices. However, those composed graphs

may not form a cycle. The full graph is still a DAG with (possibly) multiple input and output

vertices.

4. At the start of the algorithm we have a slack value for each CP in the pre-existing DAG,

which represents an amount by which each CP could expand without violating its end-to-end

deadline.

109

Concepts

The supported work flow for this algorithm proceeds by scheduling the tasks corresponding to

individual requirements sequentially, incrementally adding a DAG with a new CP at each stage

as described below. The critical insights are that the initial pre-existing schedule is packed down

towards the entry tasks, so any flexibility in the schedule will come from expanding those graphs

towards the end of the schedule within the specified slack. That takes a particular form in our

approach. If we consider merging two critical paths at specified vertices, then either they are 1)

disjoint, 2) meet at a single vertex, 3) meet at sequential vertices (i.e. they share a single common

path), or 4) they meet at multiple non-sequential vertices. Case 4 can create problems for our

incremental approach. If the CPs meet at multiple non-sequential vertices, then two or more paths

exist between each pair. As those multiple paths are shared by both CPs, we may have modified

either critical path with a longer segment. This is handled by identifying merge vertices which

create multiple paths between CPs. If the path segment from the new CP is longer, then we use

slack to expand the schedule distance between those vertices (by moving back the later vertex in the

pair). We allow the existing CPs to expand beyond their available slack, but during scheduling all

expanded CPs must be packed back down to within their original deadline (positive slack). Once all

of the multi-path pairs are expanded towards the end of the schedule, the BSA-style optimization

to pack the extra slack back down towards the beginning can proceed.

In BSA, placement of the entry vertex of the new CP is critical, because the BSA algorithm does

not ever move the entry vertex in the schedule. Obviously, if the new CP includes existing vertices,

then a poor scheduling choice for the initial vertex can cause an infeasible or unnecessarily long

schedule. The first segment of the new CP (from the entry vertex to the first merge vertex) will not

pack down, because the first merge point is already “packed”. Our solution is to place the entry

vertex at the start of the earliest empty segment where the serial injection procedure will reach the

merge vertex. Then we use a reverse-BSA algorithm down from the first merge vertex to pack the

start of the new CP forward, and use the forward-BSA algorithm to pack the remaining vertices

backwards, consuming slack that was given during the initial expansion.

110

Algorithm Definition

Assume we are given the following inputs, assumptions, and definitions:

• Existing schedule: Given a network topology H, an original weighted task graph G, a

schedule of start times defined on the vertices of G (start : V (G)→ Z), processor assignments

for all of the vertices of G (proc : V (G) → [1, P]), a set of latency requirements (Lm,m ∈

[1,M]), a collection of tags for the vertices (one for each vertex for each requirement) (tag :

V (G) ×M → {CP, IB, NA}|V (G|), and a set of slacks for each latency requirement (slack :

M → Z),

• New task graph: Given a new weighted task graph G′, with latency requirement Lm+1 and

corresponding critical path CP’. We also have processor assignments for the entry and exit

vertices of CP’ (proc : vi, vf → [1, P]).

• Assume that G ∪G′ is cycle-free.

• Let Vs and Es represent the shared vertices and edges of G ∩G′.

• A vertex v is a pure free vertex if tag(v) = {(l, NA)| ∀l ∈ [1,M]}. Denote this set pfv(G).

• Consider (G ∪ G′) − pfv(G ∪ G′). Scheduling excludes pure free vertices in order to obtain

maximum scheduling freedom, as all significant (i.e. IB and CP) vertices should be involved

in one or more of the critical paths.

111

Algorithm 4 Incremental BSA Setup
1: function ibsasetup(G,G′,H,start,proc,tag,slack)
2: CDS ← SERIALINJECT(dummy, G′, CP ′, H)
3: pairs← FINDFORKS(G, G′, CDS)
4: for all (v1, v2, cp) ∈ pairs do

5: Let v1,n = v|v ∈ CDS ∧ (v1, v) ∈ E′.
6: Let v2,p = v|v ∈ CDS ∧ (v, v2) ∈ E′.
7: Let cost = c(v1, v1,n) +

∑
v∈CDS,v∈path(v1,v2)

w(v) + c(v2,p, v2).
8: Let dist = start(v2, proc(v2)− start(v1, proc(v1)).
9: start(v2, proc(v2)) = start(v2, proc(v2)) + (cost− dist)

10: SCHED(G, H, proc, v2)
11: slack(cp)← slack(cp)− (cost− dist)
12: end for

13: Let v = v1|(v1, v2) ∈ pairs[1]
14: return v

15: end function

The setup for the incremental BSA algorithm (Algorithm 4) performs the following steps:

• Determination of an initial sequence for G′, using a dummy processor with no preexisting task

vertices (line 2).

• Calculating the paired vertices of CP’ which result in multiple branches when merged with the

preexisting CPs (line 3).

• For each pair (v1, v2) and associated preexisting CP (indexed by the integer cp in the algo-

rithm):

– Find the first vertex after v1 in CP’ (line 5).

– Find the last vertex before v2 in CP’ (line 6).

– Calculate the cost of the newly added segment from CP’ (line 7).

– Compare the new segment cost with the distance (dist) from v1 to v2 in the current

schedule, and the slack for CP. (line 9).

– If the move is acceptable, move back v2 by cost− dist, and reschedule the vertices of CP

from that point.

• Return the first vertex of the first pair for splitting the scheduling of CP’ into forward and

reverse segments (line 14-15).

112

Algorithm 5 Incremental BSA
1: start′ ← {(n0, 0), (n1, 0), . . . , (ninf , 0)}
2: finish′ ← {(n0, 0), (n1, 0), . . . , (ninf , 0)}
3: dat′ ← {(n0, 0), (n1, 0), . . . , (ninf , 0)}
4: ldt′ ← {(n0, 0), (n1, 0), . . . , (ninf , 0)}
5: vip′ ← {(n0, n0), (n1, n0), . . . , (ninf , n0)}
6: vis′ ← {(n0, n0), (n1, n0), . . . , (ninf , n0)}
7: function ibsa(G,G′,H,start,proc,tag,slack)
8: proclist← SORTPROCS(G, H, start)
9: pivot← proclist[1]

10: merge← IBSASETUP(G, G′, H, start, proc, tag, slack)
11: proc← ISERIALINJECT(pivot, G′, CP ′,merge, start, G, H)
12: BSAREV(G′, H,merge)
13: BSAADV(G′, H,merge)
14: end function

The incremental BSA (IBSA) algorithm (Algorithm 5) is similar to BSA. The initial processor

sorting includes consideration of the fixed processor assignments of the entry and exit vertices of G′.

The IBSA setup was described previously (Algorithm 4). The reverse and forward progression of

the BSA segments proceed from the first merge vertex discovered in the setup routine.

None of the individually modified operations have a worst-case order of operations different from

that reported by Kwok and Ahmad[98], except as listed in Table 16. The most significant exception

is the modified forward-BSA function (BSAADV), which must process portions of other critical paths

when determining whether to move a vertex. In the worst case, the new CP will be merged with

all of the other existing CPs, leading to a worst case order of operations as listed. The expected

performance gains of the algorithm rely on the small size of the merge sets between the new and

existing CPs, so expected values for the order of BSAADV should be much lower.

Future Work

We have presented a conceptual description of a scheduling algorithm that can incrementally calcu-

late task graph schedules. The next step is to implement the scheduler and evaluate its performance

for realistic randomized workloads. Unfortunately, there are no standard benchmarks for algo-

rithms in the class of incremental task-graph scheduling algorithms allowing graph merging and

113

Function or Order of
Routine Description Operations
FINDFORKS Walk the new CP, finding vertex pairs that cause

forks in the merged paths, and their original CP. O(em)
SORTPROCS Sort the processors according to available time. O(pv)
ISERIALINJECT Perform SERIALINJECT with a few changes: find

the start of the first empty space prior to merge, and as
we move forward, skip over existing vertices. Put all
of the NA nodes back into the schedule. O(e + v)

BSAREV Perform BSA backward from merge. O(p2ev)
BSAADV Perform BSA forward from merge, checking CP

dependencies for merged CP-nodes before moving them. O(p2evm)
Variable Description
ldt The latest time at which a particular vertex could be scheduled,

based on the required send times of its successors.
vis For a given vertex, the immediate vertex successor whose data

must arrive first.

Table 16: Function and variable definitions for incremental BSA.

task-processor binding. Some of the random benchmark graphs described by Kwok and Ahmad

could be adapted for this evaluation[33]. The overall schedule length metric is also not wholly ap-

propriate for comparison, unless we consider only the improvement of each latest addition to the

schedule.

The scheduler is intended as a replacement for the scheduling analysis algorithm for the ESMoL

language originally proposed in Porter et al[70]. The original scheduler created feasible schedules,

but had difficulty enforcing end-to-end latency constraints consistently. This scheduler includes

allocation and scheduling, which makes the integration prospects more interesting for ESMoL. The

next step is integration with the ESMoL scheduling specification language.

If necessary to improve scalability, we should consider encoding some of the useful task graph

scheduling abstractions as constraint problems. Earlier work in constraint programming for schedule

calculation shows that constraint-based techniques scale very well to large problems with many

dependencies [34][70]. BSA is essentially a search over multiple dimensions, with interval narrowing

of the start times towards the beginning of the schedule. It should be possible to investigate this

approach to see if it can yield a more scalable version of the algorithm.

114

CHAPTER VI

CONCLUSIONS: WHAT HAVE WE LEARNED?

The ESMoL language and tools provide sufficient expressiveness and detail to analyze and gener-

ate functional quadrotor control software for deployment on a time-triggered distributed processing

network. The reach of our model-integrated tool environment was not sufficient to capture all of

the difficult details involved in our modeling example, so further work on library integration for tool

development and runtime evaluation are particularly important.

Model structure can facilitate the specification and implementation of incremental syntactic

model analysis. Our example offers a proof of concept, and the expectation that where system be-

havior can be represented compositionally according to the hierarchical structure of the model, such

techniques will prove beneficial. Further work will determine scalability of our analysis approach,

though conceptually the incremental approach already increases the flexibility of the development

process.

For purely semantic properties, a proper choice of behavioral abstractions can permit incremental

analysis as well. Our scheduling approach is only conceptual, but illustrates the richness of this line

of inquiry. Further work will implement and evaluate this potentially useful technique, in order to

assess scalability of the algorithm and conservatism of the results produced by it.

115

BIBLIOGRAPHY

[1] I. Shin, “Compositional framework for real-time embedded systems,” Ph.D. dissertation, Univ.

of Pennsylvania, Philadelphia, 2006.

[2] S. Tripakis, D. Bui, M. Geilen, B. Rodiers, and E. A. Lee, “Compositionality in Synchronous

Data Flow: Modular Code Generation from Hierarchical SDF Graphs,” Univ. of California,

Berkeley, Tech. Rep. UCB/EECS-2010-52, 2010.

[3] T. Henzinger and J. Sifakis, “The embedded systems design challenge,” in FM: Formal Methods,

ser. LNCS 4085. Springer, 2006, pp. 1–15.

[4] S. McConnell, Rapid Development: Taming Wild Software Schedules. Redmond, WA: Microsoft

Press, 1996.

[5] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty, “Model-integrated development of em-

bedded software,” Proc. of the IEEE, vol. 91, no. 1, pp. 145–164, Jan 2003.

[6] E. K. Jackson and J. Sztipanovits, “Towards a formal foundation for domain specific modeling

languages,” Proc. of the Sixth ACM Intl. Conf. on Embedded Software (EMSOFT’06), pp.

53–62, Oct 2006.

[7] H. Kopetz and G. Bauer, “The time-triggered architecture,” Proc. of the IEEE, Special

Issue on Modeling and Design of Embedded Software, Oct 2001. [Online]. Available:

citeseer.ist.psu.edu/kopetz88timetriggered.html

[8] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proc. of the IEEE, vol. 75, no. 9,

pp. 1235–1245, 1987.

[9] J. T. Buck, “Scheduling Dynamic Dataflow Graphs with Bounded Memory Using the Token

Flow Model,” Ph.D. dissertation, Univ. of California, Berkeley, 1993.

[10] A. Fettweis, “Wave digital filters: theory and practice,” Proc. of the IEEE, vol. 74, no. 2, pp.

270 – 327, 1986.

[11] N. Kottenstette, J. Hall, X. Koutsoukos, P. Antsaklis, and J. Sztipanovits, “Digital control of

multiple discrete passive plants over networks,” Intl. Journal of Systems, Control and Com-

munications (IJSCC), no. Special Issue on Progress in Networked Control Systems, 2009, to

Appear.

[12] N. Kottenstette, H. LeBlanc, E. Eyisi, and X. Koutsoukos, “Multi-rate networked control of

conic systems,” Sep 2009.

[13] G. Niemeyer and J.-J. E. Slotine, “Stable adaptive teleoperation,” IEEE Journal of Oceano-

graphic Engineering, vol. 16, pp. 152–162, 1991.

[14] John Hudak and Peter Feiler, “Developing AADL Models for Control Systems: A Practitioner’s

Guide,” CMU SEI, Tech. Rep. CMU/SEI-2007-TR-014, 2007.

116

[15] F. Singhoff, J. Legrand, L. Nana, and L. Marcé, “Scheduling and memory requirements analysis

with AADL,” Ada Lett., vol. XXV, no. 4, pp. 1–10, 2005.

[16] “The Cheddar project : A free real time scheduling analyzer,” http://beru.univ-

brest.fr/ singhoff/cheddar.

[17] T. Henzinger, B. Horowitz, and C. Kirsch, “Giotto: A time-triggered language for embedded

programming,” Proc. of the IEEE, vol. 91, pp. 84–99, Jan 2003. [Online]. Available:

http://www.gigascale.org/pubs/397.html

[18] E. Farcas, C. Farcas, W. Pree, and J. Templ, “Transparent distribution of real-time components

based on logical execution time,” in Proc. of the 2005 ACM Conf. on Lang., Compilers, and

Tools for Embedded Systems (LCTES ’05). New York, NY: ACM Press, Jun 2005, pp. 31–39.

[19] A. Naderlinger, J. Pletzer, W. Pree, and J. Templ, “Model-Driven Development of FlexRay-

Based Systems with the Timing Definition Language (TDL),” in Proc. of the 4th Intl. ICSE

workshop on Software Eng. for Automotive Systems, Minneapolis, May 2007.

[20] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Paserone, and A. L. Sangiovanni-Vincentelli,

“Metropolis: an integrated electronic system design environment,” IEEE Computer, vol. 36,

no. 4, Apr 2003.

[21] N. Pontisso and D. Chemouil, “Topcased combining formal methods with model-driven engi-

neering,” in ASE ’06: Proc. of the 21st IEEE/ACM International Conf. on Automated Software

Engineering. Washington, DC, USA: IEEE Computer Society, 2006, pp. 359–360.

[22] S. Tripakis, C. Sofronis, P. Caspi, and A. Curic, “Translating discrete-time simulink to lustre,”

ACM Trans. Embed. Comput. Syst., vol. 4, no. 4, pp. 779–818, 2005.

[23] D. Park, Innovations and Advanced Techniques in Computer and Information Sciences and

Engineering. Springer Netherlands, 2007, ch. Translation of Safety-Critical Software Require-

ments Specification to Lustre, pp. 157–162.

[24] R. Alur and G. Weiss, “RTComposer: a framework for real-time components with scheduling

interfaces,” in EMSOFT ’08: Proc. of the 8th ACM Intl. Conf. on Embedded software. New

York, NY, USA: ACM, 2008, pp. 159–168.

[25] W. Herzner and R. S. et al, “Model-Based Development of Distributed Embedded Real-Time

Systems with the DECOS Tool-Chain,” in Proc. of SAE 2007 AeroTech Congress & Exhibition,

Los Angeles, CA, USA, Sep 2007.

[26] S. Edwards, L. Lavagno, E. A. Lee, and A. Sangiovanni-Vincentelli, “Design of embedded

systems: Formal models, validation, and synthesis,” Proc. of the IEEE, vol. 85, no. 3, pp.

366–390, Mar 1997.

[27] A. Easwaran, “Advances in hierarchical real-time systems: Incrementality, optimality, and mul-

tiprocessor clustering,” Ph.D. dissertation, Univ. of Pennsylvania, 2008.

117

[28] E. Wandeler, “Modular performance analysis and interface-based design for embedded real-time

systems,” Ph.D. dissertation, Computer Engineering and Networks Laboratory, ETH Zurich,

Switzerland, Sep 2006.

[29] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus for scheduling hard real-time

systems,” in International Symposium on Circuits and Systems ISCAS 2000, vol. 4, Geneva,

Switzerland, 2000, pp. 101–104.

[30] A. Mok and X. Feng, “Towards compositionality in real-time resource partioning based on

regularity bounds,” in RTSS ’01: Proc. of the IEEE Real-Time Systems Symp., Dec 2001, pp.

129–138.

[31] I. Shin and I. Lee, “Compositional real-time scheduling framework,” in RTSS ’04: Proc. of the

IEEE Real-Time Systems Symp., Dec 2004, pp. 57–67.

[32] L. Sha, R. Rajkumar, and J. Lehoczky, “Priority inheritance protocols: an approach to real-time

synchronization,” IEEE Trans. on Computers, vol. 39, no. 9, pp. 1175 –1185, Sep 1990.

[33] Y.-K. Kwok and I. Ahmad, “Benchmarking and comparison of the task graph scheduling

algorithms,” Journal of Parallel and Distributed Computing, vol. 59, no. 3, pp. 381 – 422,

1999. [Online]. Available: http://www.sciencedirect.com/science/article/B6WKJ-45FKTC5-3/

2/9186246cbd7c39c1c1c40633dc2f95b6

[34] K. Schild and J. Würtz, “Scheduling of time-triggered real-time systems,” Constraints, vol. 5,

no. 4, pp. 335–357, Oct. 2000.

[35] C. Ekelin and J. Jonsson, “Solving embedded systems scheduling problems using constraint

programming,” Chalmers Univ. of Technology, Tech. Rep. TR 00-12, 2000. [Online]. Available:

http://www.ce.chalmers.se/∼cekelin

[36] W. Zheng, J. Chong, C. Pinello, S. Kanajan, and A. Sangiovanni-Vincentelli, “Extensible and

scalable time triggered scheduling,” in ACSD ’05: Proc. of the Fith Intl. Conf. on App. of

Concurrency to System Design, June 2005, pp. 132–141.

[37] P. Pop, P. Eles, T. Pop, and Z. Peng, “An approach to incremental design of distributed

embedded systems,” 2001, pp. 450 – 455.

[38] S. Matic, “Compositionality in deterministic real-time embedded systems,” Ph.D. dissertation,

Univ. of California, Berkeley, Feb 2008.

[39] S. Ghosh, R. Rajkumar, J. Hansen, and J. Lehoczky, “Scalable resource allocation for multi-

processor qos optimization,” in Distributed Computing Systems, 2003. Proceedings. 23rd Inter-

national Conference on, May 2003, pp. 174 – 183.

[40] ——, “Scalable qos-based resource allocation in hierarchical networked environment,” in Real

Time and Embedded Technology and Applications Symposium, 2005. RTAS 2005. 11th IEEE,

Mar 2005, pp. 256 – 267.

[41] G. Kahn, “The semantics of a simple language for parallel programming,” in Information Pro-

cessing 74, Proc. of IFIP Congress 74, Stockholm, Sweden, Aug 1974.

118

[42] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. W. Mislove, and D. S. Scott, Continuous

Lattices and Domains. Cambridge: Cambridge University Press, 2003.

[43] E. A. Lee and T. M. Parks, “Dataflow process networks,” Proc. of the IEEE, vol. 83, no. 5, pp.

773–801, May 1995.

[44] E. Lee and D. Messerschmitt, “Static scheduling of synchronous data flow programs for digital

signal processing,” IEEE Trans. on Computers, vol. C-36, no. 1, pp. 24–35, Jan 1987.

[45] G. Gössler and J. Sifakis, “Composition for component-based modeling,” in Proc. of FMCO’02,

Springer LNCS 2852, Leiden, the Netherlands, Nov 2002, pp. 443–466.

[46] A. Basu, M. Bozga, and J. Sifakis, “Modeling heterogeneous real-time components in

BIP,” in SEFM ’06: Proc. of the 4th IEEE Intl. Conf. on Software Eng. and Formal

Methods. Washington, DC, USA: IEEE Computer Society, 2006, pp. 3–12. [Online]. Available:

papers/Basu-Bozga-Sifakis-06.pdf

[47] S. Bliudze and J. Sifakis, “The Algeba of Connectors - Structuring Interaction in BIP,” IEEE

Trans. on Computers, vol. 57, no. 10, pp. 1315–1330, Oct 2008.

[48] S. Bensalem, A. Legay, T.-H. Nguyen, J. Sifakis, and R. Yan, “Incremental invariant generation

for compositional design,” Verimag, Tech. Rep. TR-2010-6, 2010.

[49] L. Ferrarini, “An incremental approach to logic controller design with petri nets,” Systems,

Man and Cybernetics, IEEE Transactions on, vol. 22, no. 3, pp. 461 –473, may. 1992.

[50] H. Kopetz and G. Bauer, “The Time-Triggered Architecture,” Proc. of the IEEE, vol. 91, no. 1,

pp. 112–126, Jan 2003.

[51] A. Benveniste, “Loosely time-triggered architectures for cyber-physical systems,” in DATE

2010: Design, Automation, and Test Europe, Dresden, Mar 2010.

[52] Y. Zhou and E. Lee, “Causality interfaces for actor networks,” ACM Trans. on Emb. Computing

Systems, vol. 7, no. 3, Apr 2008.

[53] S. Tripakis, C. Pinello, A. Benveniste, A. Sangiovanni-Vincentelli, P. Caspi, and M. Di Natale,

“Implementing synchronous models on loosely time triggered architectures,” Computers, IEEE

Trans. on, vol. 57, no. 10, pp. 1300 –1314, Oct 2008.

[54] A. Teel, “On graphs, conic relations, and input-output stability of nonlinear feedback systems,”

IEEE Trans. on Aut. Control, vol. 41, no. 5, May 1996.

[55] K. Zhou and J. Doyle, Essentials of Robust Control. Prentice Hall, 1998.

[56] N. Chopra, P. Berestesky, and M. Spong, “Bilateral teleoperation over unreliable communication

networks,” IEEE Trans. on Control Sys. Technology, vol. 16, no. 2, pp. 304–313, Mar 2008.

[57] N. Kottenstette and P. J. Antsaklis, “Stable digital control networks for continuous passive

plants subject to delays and data dropouts,” in Proc. of the 46th IEEE Conference on Decision

and Control, 2007, pp. 4433 – 4440.

119

[58] ——, “Time domain and frequency domain conditions for passivity,” Inst. for Software Inte-

grated Sys., Vanderbilt Univ. and Univ. of Notre Dame, Tech. Rep. ISIS-2008-002, November

2008.

[59] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge Univ. Press, 2004.

[60] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System

and Control Theory, ser. Studies in Applied Mathematics. Society for Industrial and Applied

Mathematics (SIAM), 1994, vol. 15.

[61] C. A. Desoer and M. Vidyasagar, Feedback Systems: Input-Output Properties. Orlando, FL,

USA: Academic Press, Inc., 1975.

[62] G. Zames, “On the input-output stability of time-varying nonlinear feedback systems part one:

Conditions derived using concepts of loop gain, conicity, and positivity,” Automatic Control,

IEEE Trans. on, vol. 11, no. 2, pp. 228–238, Apr 1966.

[63] ——, “On the input-output stability of time-varying nonlinear feedback systems–part ii: Con-

ditions involving circles in the frequency plane and sector nonlinearities,” Automatic Control,

IEEE Trans. on, vol. 11, no. 3, pp. 465 – 476, Jul 1966.

[64] N. Kottenstette and P. J. Antsaklis, “Stable digital control networks for continuous

passive plants subject to delays and data dropouts,” in 46th IEEE Conference on

Decision and Control, IEEE. New Orleans, LA: IEEE, 12/2007 2007. [Online]. Available:

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4434752\&isnumber=4434000

[65] N. Kottenstette and J. Porter, “Digital passive attitude and altitude control schemes for quadro-

tor aircraft,” in ICCA ’09: 7th IEEE Intl. Conf. on Control and Automation, ChristChurch,

New Zealand, 2009.

[66] R. Anderson and M. W. Spong, “Bilateral control of teleoperators with time delay,” Automatic

Control, IEEE Trans. on, vol. 34, no. 5, pp. 494 –501, May 1989.

[67] L. P. Carloni, F. D. Bernardinis, C. Pinello, A. L. Sangiovanni-Vincentelli, and M. Sgroi,

“Platform-based design for embedded systems,” in The Embedded Systems Handbook, R. Zu-

rawski, Ed. CRC Press, 2005.

[68] J. Porter, G. Karsai, P. Volgyesi, H. Nine, P. Humke, G. Hemingway, R. Thibodeaux, and

J. Sztipanovits, “Towards model-based integration of tools and techniques for embedded control

system design, verification, and implementation,” in Workshops and Symposia at MoDELS 2008

(ACES-MB), LNCS 5421. Toulouse, France: Springer, 2009.

[69] G. Hemingway, J. Porter, N. Kottenstette, H. Nine, C. vanBuskirk, G. Karsai, and J. Szti-

panovits, “Automated Synthesis of Time-Triggered Architecture-based TrueTime Models for

Platform Effects Simulation and Analysis,” in RSP ’10: 21st IEEE Intl. Symp. on Rapid Sys-

tems Prototyping, Jun 2010.

[70] J. Porter, G. Karsai, and J. Sztipanovits, “Towards a time-triggered schedule calculation tool to

support model-based embedded software design,” in EMSOFT ’09: Proc. of ACM Intl. Conf.

on Embedded Software, Grenoble, France, Oct 2009.

120

[71] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. T. IV, G. Nordstrom, J. Sprinkle, and

P. Volgyesi, “The generic modeling environment,” Workshop on Intelligent Signal Processing,

May 2001.

[72] Aditya Agrawal and Gabor Karsai and Sandeep Neema and Feng Shi and Attila Vizhanyo, “The

design of a language for model transformations,” Journal on Software and System Modeling,

vol. 5, no. 3, pp. 261–288, Sep 2006.

[73] E. Magyari, A. Bakay, A. Lang, and et al, “UDM: An Infrastructure for Implementing Domain-

Specific Modeling Languages,” in The 3rd OOPSLA Workshop on Domain-Specific Modeling,

Oct 2003.

[74] R. Thibodeaux, “The specification and implementation of a model of computation,” Master’s

thesis, Vanderbilt Univ., May 2008.

[75] E. Lee and A. Sangiovanni-Vincentelli, “A unified framework for comparing models of compu-

tation,” IEEE Trans. on Computer Aided Design of Integrated Circuits and Systems, vol. 17,

no. 12, pp. 1217–1229, December 1998.

[76] G. Hoffmann, D. G. Rajnarayan, S. L. Waslander, D. Dostal, J. S. Jang, and C. J. Tomlin,

“The stanford testbed of autonomous rotorcraft for multi-agent control,” in the Digital

Avionics System Conference 2004, Salt Lake City, UT, November 2004. [Online]. Available:

pubs/DASC 2004.pdf

[77] G. M. Hoffmann, H. Huang, S. L. Waslander, and C. J. Tomlin, “Quadrotor helicopter flight

dynamics and control: Theory and experiment,” in Proc. of the AIAA Guidance, Navigation,

and Control Conf., Hilton Head, SC, August 2007, aIAA Paper Number 2007-6461. [Online].

Available: pubs/Quadrotor Dynamics GNC07.pdf

[78] S. Neema and G. Karsai, “Embedded control systems language for distributed processing

(ECSL-DP),” Inst. for Software Integrated Sys., Vanderbilt Univ., Tech. Rep. ISIS-

04-505, 2004. [Online]. Available: http://www.isis.vanderbilt.edu/publications/archive/

Neema S 5 12 2004 Embedded C.pdf

[79] T. A. Henzinger, C. M. Kirsch, M. A. Sanvido, and W. Pree, “From control models to real-time

code using giotto,” Control Systems Magazine, vol. 2, no. 1, pp. 50–64, 2003.

[80] A. Pinto, L. Carloni, R. Passerone, and A. Sangiovanni-Vincentelli, “Interchange formats for hy-

brid systems: Abstract semantics,” in Hybrid Systems: Computation and Control, J. Hespanha

and A. Tiwari, Eds., Mar 2006, pp. 491–506.

[81] Google, “CTemplate, A Simple but Powerful Language for C++,”

http://code.google.com/p/google-ctemplate.

[82] C. Schulte, M. Lagerkvist, and G. Tack, “Gecode: Generic Constraint Development Environ-

ment,” http://www.gecode.org/.

[83] K.-E. Arzen and B. B. et al, “Integrated control and scheduling,” Dept. of Automatic Control,

Lund Inst. of Technology, Sweden, Tech. Rep. ISRN LUTFD2/TFRT–7586–SE, Aug 1999.

121

[84] J. Porter, G. Hemingway, N. Kottenstette, G. Karsai, and J. Sztipanovits, “Online stability

validation using sector analysis,” in EMSOFT ’10: Proc. of ACM Intl. Conf. on Embedded

Software, Scottsdale, AZ, Oct 2010.

[85] M. D. la Sen, “Links between dynamic physical systems and operator theory issues concerning

energy balances and stability,” American Journal of Applied Sciences I, vol. 3, pp. 248–254,

2004.

[86] E. Eyisi, J. Porter, J. Hall, N. Kottenstette, X. Koutsoukos, and J. Sztipanovits, “PaNeCS: A

Modeling Language for Passivity-based Design of Networked Control Systems,” in 2nd Work-

shop on the Arch. and Constr. of Emb. Sys – Model-Based (ACES-MB), Denver, Colorado,

2009.

[87] A. Benveniste, P. Caspi, M. di Natale, C. Pinello, A. Sangiovanni-Vincentelli, and S. Tripakis,

“Loosely time-triggered architectures based on communication-by-sampling,” in EMSOFT ’07:

Proc. of the 7th ACM & IEEE Intl. Conf. on Embedded Software. New York, NY, USA: ACM,

2007, pp. 231–239.

[88] The MathWorks, Inc., “Simulink/Stateflow Tools,” http://www.mathworks.com.

[89] UCB, “Ptolemy II,” http://ptolemy.berkeley.edu/ptolemyII.

[90] D. B. Johnson, “Finding all the elementary circuits of a directed graph,” SIAM J. Comput.,

vol. 4, no. 1, pp. 77–84, 1975.

[91] P. Mateti and N. Deo, “On algorithms for enumerating all circuits of a graph,” SIAM J.

Comput., vol. 5, no. 1, pp. 90–99, Mar 1976.

[92] J. Boucaron, R. de Simone, and J.-V. Millo, “Formal methods for scheduling of latency-

insensitive designs,” EURASIP J. Embedded Syst., vol. 2007, pp. 8–8, January 2007. [Online].

Available: http://dx.doi.org/10.1155/2007/39161

[93] J. Boucaron, A. Coadou, and R. De Simone, “Throughput and FIFO Sizing: an Application

to Latency-Insensitive Design,” INRIA, Research Report RR-6919, 2009, RR-6919. [Online].

Available: http://hal.inria.fr/inria-00381644/PDF/RR-6919.pdf

[94] J. C. Tiernan, “An efficient search algorithm to find the elementary circuits of a

graph,” Commun. ACM, vol. 13, pp. 722–726, December 1970. [Online]. Available:

http://doi.acm.org/10.1145/362814.362819

[95] J. G. Siek, L.-Q. Lee, and A. Lumsdaine, The Boost Graph Library: User Guide and Reference

Manual. Addison-Wesley Professional, Dec 2001.

[96] R. Bruni, F. Gadducci, and A. L. Lafuente, “An Algebra of Hierarchical Graphs and Its Ap-

plication to Structural Encoding,” Scientific Annals of Computer Science, vol. 20, pp. 53–96,

2010.

[97] N. Kottenstette, “Constructive non-linear control design with applications to quad-rotor and

fixed-wing aircraft,” Institute for Software Integrated Systems, Vanderbilt University, Nashville,

TN, Tech. Rep. ISIS-10-101, 11 2010.

122

[98] I. Ahmad and Y.-K. Kwok, “On parallelizing the multiprocessor scheduling problem,” IEEE

Transactions on Parallel and Distributed Systems, vol. 10, no. 4, pp. 414–432, Apr 1999.

123

