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CHAPTER I

INTRODUCTION

Motivation

As part of the new frontiers in space exploration innovative robotic control is

sought to enable robotic teams to perform autonomous assembly operations.

The advent of robotics has brought many benefits to society. For example,

robots have increased the productivity and lowered the costs in wide ranging

fields such as the automotive industry, materials handling, food processing,

microchip fabrication, circuit board assembly, and pharmaceutical produc-

tion [Brogardh, 2007]. This has made a vast range of products not only

available, but also affordable, to many people and (ostensibly) increased the

quality of their lives. The current state of the art in industrial robotics is

characterized by the mass produced machine (e.g. , articulated arm, conveyor

system, autonomous guided vehicle) with a high degree of accuracy and re-

peatability with a large mean time between failures [Brogardh, 2007]. The

industrial robot is limited; however, to highly controlled environments and

the repetition of point-to-point algorithms. Sensors if used at all, are mainly

to compensate for the small variations that exist in such environments. Sen-

sors are also used to recognize a small set of objects and perform a number of

different preprogrammed actions on them. Within the research environment,

robots tend to be custom made, one-of-a-kind machines that are notoriously

fragile. It is on these prototypical robots; however, that the state-of-the-art

in robotics is advanced [Pires and da Costa, 1998]. The porting of advanced

technologies from laboratory to to industrial robots poses many interesting

challenges that have yet to be addressed.
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Robots can project human activity into dangerous environments such as

war zones, hazardous material spills, natural disasters, the deep seas, and

outer space. The latter is of particular interest in this work because the

special needs of space exploration present for robotics, interesting problems

whose solutions will significantly expand the capabilities of their terrestrial

counterparts as well.1 In 2004, NASA launched a program to send human be-

ings back to the Moon and later to Mars. NASA requires innovative technolo-

gies to develop and build the infrastructure that can support human habita-

tion and exploration in space and on other worlds [OḰeefe, 2004]. The Moon

and Mars missions presuppose the deployment of robots that can do just that.

It is planned to have robots construct the habitats and prepare them for life

support prior to the arrival of astronauts. The robots work will include the

assembly of modular structures such as solar arrays, radiators, antennas,

propellant tanks, and habitation modules [Rojas and Peters II, 2009].

NASA has carried out several in-depth studies to determine the most suit-

able hardware for the construction of extraterrestrial mission support systems

[Doggett, 2002]. Modular truss structures have repeatedly been selected as

the hardware of choice in keeping with the vision of implementing flexible, af-

fordable, and sustainable structures [Diftler et al., 2005, Rhodes et al., 1990].

Therefore among other tasks, robots will have to assemble trusses, which

requires them to hold, manipulate, and connect the parts through inser-

tion, twisting, and snapping [NASA, 2007]. These tasks require robots that

can work cooperatively with other robots to assemble complex structures,

and do so robustly. The assembly tasks are suited for force control. Force

control by two or more robots, is facilitated if each can take on the roles

of leader or subordinate as needed [Boon-Cheong and Chutatape, 1992]. In

1This work was sponsored by NASA.
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fact, NASA needs robots with reliability that exceeds that of industrial ma-

chines and skills that exceed the current state-of-the-art of research machines

[Angelo, 2007].

The teleoperation of robots or teams of robots to perform tasks like as-

sembly seems like a reasonable approach. However, latencies in space com-

munications limit the use of teleoperation. In [Angelo, 2007], Angelo states,

Future robots with suitable design and instrumentation will also

allow a human controller to perform hazardous planetary explo-

ration from the comfort of a permanent lunar base or Mars surface

base. . .. The major limitation of using this technique in space ex-

ploration will be the speed-of-light distance between the human

participant and the collaborative robot that mimics human be-

haviors. This distance should not exceed a few light-seconds, or

else the human being will not be able to respond properly. . .. In

situations with more than five-second time delays in the com-

munications loop, the brain of the human controller might not

have time to recognize a serious problem and respond before the

at-risk collaborative robot would have become toast-that is, have

injured itself or destroyed itself [Angelo, 2007].

The communications latencies across such long distances2 preclude instanta-

neous teleoperation of the kind that would be required to control such a team

of robots and is now used to control, for example, the NASA Robonaut.

To control Robonaut, a teleoperator dons a VR helmet, data gloves, and

other position sensors that connect to the robot so that the operators mo-

tions are reflected by the robot concurrently with effectively no time delay

[Peters II et al., 2006]. Even without a delay, such minute teleoperation is

2The round-trip signal latency between the Earth and the Moon is about 2.3 seconds.
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difficult, tedious, tiring, and prone to errors that often lead to several at-

tempts at a task before it is completed [Peters II et al., 2003a]. It is tiring

because the operator must pay close attention to even his slightest moves

and the resultant moves by the robot. Seemingly simple behaviors that a

person rarely thinks about, such as grasping an object, become the focus of

intense concentration that rapidly wears the operator out. Moreover, the ob-

ject of manipulation is usually under the complete control of a single robot.

A team of robots individually teleoperated by a number of operators tasked

to jointly handle objects would greatly magnify those problems along with

the challenges associated in coordinating the contributions of all teleopera-

tors. Time latency challenges would render the approach close to impossible.

Fully autonomous robots capable of cooperative assembly do not yet exist

and are unlikely to be developed soon enough for the NASA missions.

Researchers are implementing a framework where an operator and a robot

can vary the degrees of autonomy and do so in a way to maximize the success

rate of the task. Heger, Hiatt, Simmons, Sellner, and Singh have researched

how to optimize human involvement and increase task efficiency and robust-

ness while supervising a robotic team [Heger et al., 2005]. This so-called

“sliding autonomy” –wherein a teleoperator tasks a robot at a level above

basic manipulation– ameliorates both the problems of tedium and of time

delay. A teleoperator could, for example, guide a robot to an optimal po-

sition where grasp or assembly can take place. Then the robot slides to

autonomous mode and performs the lower-level task that is so tiring to tele-

operate and hard to coordinate. If the duration of autonomous behavior is on

the order of the communications latency, then higher-level tasking becomes

possible. Sliding autonomy is the focus of current research and is likely to be

developed sufficiently for deployment on the missions [Simmons et al., 2007].
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The full-autonomy problem is reduced to one of consecutive periods of short-

term autonomy. And the short-term behaviors related to assembly can be

implemented with a combination of position and force control (i.e. , hybrid

control). Therefore, to meet the preassembly goals of the upcoming missions,

NASA needs robots that can act autonomously using hybrid controllers for

periods of time on the order of seconds to minutes. To date, this has been an

open problem; in the literature, there appear to be no teams of heterogeneous

robots that perform joint assembly tasks in open environments.

The goal of the research presented herein was to develop controllers that,

at once, enable short term autonomy and cooperative assembly by two robots

of highly differing morphology. The work advances the capabilities of het-

erogeneous robots to cooperate on some of the low-level tasks necessary for

autonomous assembly. It presents a control strategy that allows independent

robots in loosely structured environments to carry out beginning-to-end in-

sertion tasks. The approach is to modularize and encapsulate the control

problem by recasting it in terms of locally robust and reactive controllers.

The controllers do not require explicit planning, rather through sensory stim-

uli and force control they drive the system to optimal state configurations:

two separate parts joined together.

Contributions

This work takes a distributed approach to the short-term control of teams

of heterogeneous robots so they can perform modular-truss assembly tasks

cooperatively and autonomously. The system uses a control basis approach

that allows both sequential and concurrent execution of position, force, and

moment control primitives in two robots to generate force-driven joint as-

sembly in an open environment. Experiments with two heterogeneous robots
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to join two parts into a stable, rigid configuration have been conducted and

are reported on here. This work is the first of its type and is intended to

solve useful and necessary problems as part of the future developments in

space exploration.

In short, the novel contributions of this work are the following:

1. The design and implementation of controllers that allow the autonomous

joining of two mating parts by two independent, sensory-guided hetero-

geneous robots with articulated arms that operate in an uncalibrated

environment.

2. The use of independent control bases by two robots, in which controllers

reduce contact forces by displacing parts in response to local force,

moment, and position feedback.

3. The coordination of a pneumatically actuated and highly compliant

humanoid robot with a rigid industrial manipulator.

4. The implementation of reactive behaviors on a decidedly non-reactive,

point-to-point, pre-programmable, industrial robot arm.

5. The ability to swap leader and subordinate roles in coordination schemes.

Active-active and active-static coordination schemes are implemented

through inter-robot communication.

It was found that a small set of basis controllers consisting of moment,

force, and position primitives are able to implement simple low-level assem-

bly tasks through force sensing. It was concluded that through appropriately

defined and sequenced control laws, a vast array of tasks can be achieved.

Tasks can be completed individually or through cooperation and under dif-

ferent coordination schemes across robots.
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Based on experimental results, the principal strengths of this work are

decreased task completion times when performed by two active robots as

compared to times obtained by active-static coordination schemes or indi-

vidual robots; and increased fault tolerance as a result of using a compliant

robot. Particularly in cases where jamming occurred. Weaknesses of this

system include an explicit dependance of the robot’s responsiveness to the

sensory stimuli on manually derived controller gains. This dependance limits

the ease and flexibility with which the system is deployed across different

robotic testbeds. Also, while the artificial muscles ease the accommodation

of parts, the stiction associated with the elastic nature of the muscles can

slow the task execution and increase experienced forces in the assembly task.

Document Overview

This document presents the implementation of the control basis and its ap-

plication to joint cooperative assemblies. Chapter II presents prior related

work in the fields of space robotics, multiple-robot manipulators, and au-

tonomous assembly. Chapter III overviews the theory behind the Control

Basis Approach and presents a formal framework for the generation of a

primitive controller as well as a compound controller. An optimization tech-

nique for multiple objectives across controllers is also presented. Chapter

IV defines controllers relevant to the execution of assembly tasks. The first

section describes primitive controllers from which composite controllers are

built. Then, composite controllers used to perform insertion operations in

both robots is described. Chapter V shows experiments that demonstrate

the performance of the basis controllers introduced in Chapter IV, with one

and two robots. Analysis of the efficiency and effectiveness of the system is

7



carried out and comparative evaluations of the performance of the assem-

bly tasks in the different scenarios. Finally, Chapter VI presents concluding

remarks and unsolved problems.
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CHAPTER II

PREVIOUS WORK

The near-term future of space robotics will require both partial autonomy

and multi-robot cooperation [Angelo, 2007]. The study of semi-autonomous

cooperative assembly draws concepts from both multi-robot coordination and

autonomous robotic assembly. This chapter reviews previous work in space

robotics, multi manipulator control, and autonomous assembly is presented.

Space Robots

The development of space robotics has occurred over the past 50 years. The

roles robots have played has been predominantly ones of virtual laborato-

ries that analyze the extraterrestrial objects through instrumentation. New

roles have emerged and use robots as assembly manipulators and human

assistants. The near future holds even a wider variety of uses in space con-

struction and exploration. To such ends, prototype cranes, humanoids, and

heterogeneous robots are being tested and analyzed [Ambrose et al., 2000,

Simmons et al., 2007]. This section presents relevant examples to assembly

as described in [Angelo, 2007] and a more comprehensive overview can be

found in Appendix C.

In 1997, Japan launched a satellite that used a tele-operated robotic ma-

nipulator in space. The ETS-VI1 space craft was used for a number of

experiments to exchange equipment and supply fuel. The inclusion of the

manipulator affected the navigation dynamics of the systems, and so, re-

searchers carried out detailed analysis of how this new equipment affected

the system [Oda, 2000].

9



In 2001, Canada developed the second version of the Canada Arm origi-

nally deployed in 1981. The original mechanical arm was part of space shuttle

remote manipulator system and served to maneuver payloads. The second

generation of the arm, the Mobile Servicing System was part of the Inter-

national Space Station (ISS) and consisted of three parts: the Canadarm2,

the mobile base system, and the special purpose dexterous manipulator. The

3-part system allows the very large robotic manipulator (17.6 meters when

the robot arm is fully extended) to move about the ISS via rails or trusses

positioned in the station. The purpose of the teleoperated crane is to ma-

neuver payloads around the ISS, carry out assembly tasks, and also repair

operations [NASA, 2006a]. The CandaArm has been essential in the cre-

ation of the international space station. The use of a similar system that is

autonomous and mobile on planetary surfaces would greatly benefit surface

missions for future space launches.

NASA scientists have created rovers, which are mobile robots that explore

planetary surfaces. In 2003, NASAs deployed the Mars Exploration Rovers:

Spirit and Opportunity. Both rovers successfully are completing a teleoper-

ated surface exploration mission under the supervision of mission controllers

at NASA’s Jet Propulsion Laboratory [Angelo, 2007]. Communication with

these robots is intermittent yet they are able to complete a variety of exper-

iments that analyze the martian surface. Similar robots with the ability to

perform manipulation and assembly tasks are sought for future missions.

NASA scientists are also developing a humanoid robot, known as Robo-

naut [NASA, 2006b]. The goal of this humanoid robot is to work as an as-

sistant to astronauts during space missions. Other uses for the robot are to

prepare a work-site prior to the arrival of an astronaut. The robot is currently

tele-operated and learning to automate tasks like manipulation and grasping
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[Culbert et al., 2003, Peters II et al., 2003b, Diftler et al., 2005, Peters II et al., 2006,

Peters II and Jenkins, 2006]. This project is focused on a human-robot col-

laboration. Our work focuses on autonomous robot-robot collaborations for

space construction.

Looking ahead, NASA is devising a new types of extra-vehicular robots

that take advantage of microgravity environments to perform a variety of

jobs: a) a minimally invasive tendril for inspection tasks, b) an arachnid

climber for transportation tasks c) a lemur for fine assembly and tool-related

tasks (cutting and fastening), and d) free-flying nanosatellite cameras to

guide systems [Rehnmark et al., 2003, Rehnmark et al., 2005].

This dissertation aims at furthering the capabilities of robots in outer

space. The research done advances the possibility of teams of robots working

together as they are supervised by human operators through teleoperation.

The goal is to facilitate the creation of modular space structures used for

construction and exploration through the use of a control basis for joint

assemblies.

Multi-Robot Manipulators in Assembly Tasks

After the inception of computer-controlled robotic manipulators in the late

1960’s [Whitney, 1987], it was not long before researchers began to work

with multiple robotic arms simultaneously. It was evident that working

with a number of robotic arms permits increased flexibility and reduces

time-to-completion of tasks, higher load capacities, amongst others bene-

fits [Brogardh, 2007]. Multiple robot-arm coordination has been investigated

for nearly four decades amassing a large research literature. Challenges in-

volve the control of position and/or force in the face of uncertainty in the

robot, the manipulated object, or the environment. Historically, control
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schemes have been applied first to single robots and then extended to multi-

manipulators. Such research has been applied to the fields of manufacturing,

object manipulation, parts assembly, and more recently servicing tasks in

space [Namvar and Aghili, 2005]. In the literature, multiple robot coordi-

nation has been predominantly between two identical robots, although the

inclusion of more robots is present in simulation [Sun and Mills, 2002]. Re-

cently, cooperation across heterogeneous robots has been explored along with

a number of coordination schemes to improve task performance across mul-

tiple manipulators. The term robot control will be considered synonymous

with manipulator control in this section. A summary of the development of

key efforts to solve dexterous manipulation challenges leading to assembly

tasks through the use of heterogeneous cooperative robots is presented.

Homogeneous Multi-Robot Manipulators

This section reviews the inception and development of position and force

control in single and multiple robot manipulator systems, which includes the

development of homogeneous robot control, coordination schemes, and their

application to insertion tasks.

Multi-arm robot control research is divided into three different coordi-

nation approaches: the master/slave scheme, the centralized scheme, and

the decentralized scheme [Ishida, 1977, Prisma Lab, 2007]. The master/slave

scheme selects one robotic manipulator as a leader and the other one as a

follower [Arimoto et al., 1987]. This technique has been applied to tasks

requiring simple joint motions, but it exhibited a time-lag by the subordi-

nate manipulator. The centralized systems characterize a number of robotic

systems as one entity, sharing one controller for all robots, and exerting

tight coordination between them. Such systems produce high throughput
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in strictly controlled environments but are susceptible to failure if a single

localized fault occurs [Brookshire et al., 2004]. When the robots have a high

number of degrees of freedom the system suffers from a complicated architec-

ture [Liu et al., 1996]. The decentralized system, on the other hand, requires

robots to work independently without higher-level coordination. Decentral-

ized systems are primarily distributed systems that use communication pro-

tocols to message each other. The manipulators interact physically at the

task level, where each robot has its own controller, thus rendering the system

more fault tolerant and flexible. However, tight coordination is challenging

[Xi et al., 96].

Master-Slave Schemes

The earliest types of multiple robot controllers were master/slave architec-

tures. Ishida implemented one of the first systems [Ishida, 1977]. He coordi-

nated two arms to manipulate an object in free space by using parallel and

rotational motions. The master arm used position control while the slave

used compliance control. Issues of load distribution and stability were not

considered. Alford and Beylen followed with a similar approach were both

robots used position control [Alford and Belyeu, 1984]. The slave arm was

shown to follow the master arm harmoniously without manipulating an ob-

ject [Alford and Belyeu, 1984]. Later, Arimoto, Miyazaki, and Kawamura

extended the system to a multi-fingered hand [Arimoto et al., 1987]. The

hand consisted of one master finger and two slave fingers that held an ob-

ject forming a tight and closed kinematic chain. Spring characteristics were

conidered between fingers in the control problem yielding asymptotically sta-

ble behavior. These initial experiments were a first step in robot coordination

using pre-established trajectories and no force sensing.
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Hybrid Position and Force Control

In 1981, Mason presented his seminal work on compliance and force con-

trol [Mason, 1981]. Raibert and Craig implemented this theoretical work

on a two joint manipulator [Raibert and Craig, 1981], and a few years later,

Hayati, extended this framework to two cooperating arms [Hayati, 1986].

Mason’s seminal paper established the theoretical framework to implement

a hybrid position and force controller. The position and contact forces gen-

erated at the end-effector were controlled in concert to achieve compliance.

The premise was to identify a set of existing position and force constraints

in the task space. It was proposed that any job can be decomposed into

two orthogonal sets of constraints, denominated as the natural and artificial

constraints. The former consists of the position and force elements that are

inherently constrained by the mechanical and geometrical characteristics of

the task. The latter are desired reference values that can be specified by the

user. The theory can be illustrated by considering an example where a peg

is inserted into a hole. First, a reference coordinate frame in world coordi-

nates must be selected and labeled as: C-frame [Asada and Leonard, 2005].

Second, the natural physical constraints are identified. In this case the peg is

unable to move or rotate in the ~x and ~y directions as seen in Figure 1. These

four parameters vx, vy, wx, and wy form part of the set of natural constraints.

On the other hand, the peg can move and rotate in the z-direction: vz, wz.

These values are determined by the user and are considered artificial con-

straints. No net force or torque is generated about z (assuming a frictionless

surface). Hence fz is a natural constraint. The forces and torques about

the x and y direction can be arbitrarily assigned by the user and belong to

the set of artificial constraints: fx, fy. After all sets of constraints have been

established, two diagonal and binary matrices: S and (1−S) are used by the
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Figure 1: Assignment of the C-frame [Asada and Leonard, 2005]

controller to encode the natural and artificial constraints such that the goal of

the task is achieved without negative interference from physical constraints.

A hybrid force-position controller works by computing force and position er-

rors and filtering them through the constraint matrices via two separate force

and position feedback loops. The result is an update motion in joint space

that achieves the desired force and position goals. While many modern force

control strategies use this foundational theory in their work, the technique

is limited to specific situations and requires the manual elaboration of the

constraint matrices ahead of time [Yuan, 2006].

Hayati extended Mason’s theory to include multiple manipulators [Hayati, 1986].

In Mason’s work, multiple robots rigidly held and manipulated an object.

Natural and artificial constraints were defined for each manipulator and to

determine the position of the object through the controller. In contrast to a

single manipulator, additional constraints are necessary to guarantee coordi-

nation and prevent undesired forces across robots. This issue is known as load

distribution and is important in cooperative robotic tasks. Hayati used one
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set of constraints and one common C-frame for all manipulators to simplify

assigning constraints. A centralized controller divided the task space into a

position and force subspace. Position distribution was determined on the ba-

sis of mass and inertia tensors of the links. Force distribution was computed

by minimizing a weighted error function. The stability of the controller was

guaranteed as long as the mass of the arms and the object were accurately

known. Mason’s work suffers the same limitations as Hayati’s. Constraint

parameters and load distribution parameters must be defined ahead of time

for a specific task and robot. This prerequisite makes it difficult to the deploy

the architecture across different robots and to succeed in scenarios were task

conditions are dynamic.

To increase the accuracy and responsiveness of the system, Yoshikawa

[Yoshikawa, 1987] extended Raibert and Craig’s work by including manip-

ulator dynamics into the hybrid position-force controller. The inclusion of

dynamics established a theoretical framework that derived the joint torque

necessary to achieve both position and force goals – a condition not previously

guaranteed. Yoshikawa used hypersurfaces to define the constrained motion

of an object. The surfaces were represented by a unit vectors normal and

tangent to a surface. These surfaces essentially implemented normal and arti-

ficial constraints for the task. The hypersurfaces along with reference position

and force values were used to compute necessary joint torques to complete the

task. Yoshikawa extended his approach to include the coordination of a con-

strained object by a pair of 2 DoF planar robots [Yoshikawa, 1993]. Like Hay-

ati, Yoshikawa coordinated robots by explicitly defining the amount of force

each manipulator would apply to the object (also known as the internal force)

[Yoshikawa and Nagai, 1987, Kumar and Waldron, 1988, Nakamura et al., 1989].
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The total force experienced by a manipulator is a function of the desired con-

straint force and the internal force. The latter is projected onto the null space

of the constraint force to prevent hindrances of the desired motion. Once the

constraint hypersurfaces are determined, the desired position and force are

used in conjunction with the measured internal force to determine the dy-

namics of the manipulator and to compute the joint torques necessary to

complete the task. The projection of one vector quantity onto another can

be used in the optimization of a goal. In this case, the most important goal

is the constraint force. The force applied by each robot to the object must

be subordinate to that of the entire system. While this technique allows

two robots to coordinate, it is rigid in that it can only be applied between

the constraint force and the internal force. This approach produces finer

joint control at the expense of a more complicated derivation of manipulator

dynamics. Manipulator dynamics are not trivial. Highly complex control-

models depend on the accuracy of the dynamics for their stability. This

dependence limits the system’s robustness in the presence of uncertainty,

which is common in dynamic environments. The control basis approach,

on the other hand, generates reactive and robust behavior without off-line

planning or requiring the manual setting of parameters. Primitive controllers

can be combined without the need for complex modeling to achieve multiple

tasks in an optimal way. Chapter III describes the approach in detail.

Adaptive Techniques

Up until that point in time, researchers had derived continuous control mod-

els that assumed precise system knowledge. In these cases, system stability

is dependent on the accuracy of the system model. Model-based systems
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are particularly vulnerable to dynamic environments which often are com-

plex, highly non-linear, and stochastic. Hence, monolithic control laws are

of limited applicability to complex tasks and environments [Walker, 1990,

Huber, 2000]. Due to the complexity of calculating system and environment

parameters, researchers turned to adaptive control methods. These have

been applied to both single and multiple manipulator domains with positive

results.

Jean and Fu, applied adaptive control techniques to perform motion

tracking and internal force computations on simulated multimanipulator sys-

tems moving an object [Jong-Hann and Li-Chen, 1993]. They established a

dynamic equation of motion that considered the contributions of partici-

pating robots and a manipulated object. The authors introduced an adap-

tive control law that estimated the dynamic parameters of two, three de-

gree of freedom, planar, joint manipulators. Global convergence in trajec-

tory tracking errors and internal force errors was achieved. With respect

to the environment, Namvar and Aghili, estimated object parameters when

its geometry was unknown [Namvar and Aghili, 2005]. They implemented

an adaptive control strategy that used adaptive observers and parameter

update laws to estimate the stiffness and geometry of the environment for

a 2 DoF manipulator in simulation. The controller generated force torque

signals that asymptotically tracked desired forces and motion trajectories

[Namvar and Aghili, 2006]. Adaptive strategies relax the dependency on

highly accurate system parameters. Yet adaptive control laws are still con-

strained to the structure of the model used. The same adaptive control law

is generally inapplicable across robots and tasks. One of the key strengths

of the control basis approach is its flexibility. A control basis is composed of

a number of primitive controllers that are locally-robust. If the constituent
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primitive controllers are defined appropriately, a small set of basis controllers

are able to generate robust behavior in multiple tasks and environments. The

control basis approach effectively decomposes a control problem into a num-

ber of interconnected concurrent controllers, where each controller or group of

controllers achieves specific goals and maintains stability [Brock et al., 2005].

Intelligent Control Schemes

Cooperative control of two or more robots is challenging; extending solu-

tions from single manipulators is not trivial. Research surveyed thus far has

covered position and force control, including internal forces and load distri-

bution, and adaptive estimation of system and environmental parameters.

These techniques challenge roboticists to look for intelligent but simplified

ways to control and coordinate robotic manipulators. Mukiyama designed a

simple cooperative scheme that used hybrid position-force controllers to ma-

nipulate an object [Mukaiyama et al., 1996]. A decentralized leader-follower

scheme was implemented where the leader established the goal of the task

using position control and the follower reacted through force-feedback, which

represents an extension of prior master/slave systems but now included force-

feedback. The scheme sought to overcome time lags encountered in inter-

robot communication. However, the force controller, exhibited a slow re-

sponse, creating undesired time lags. Interestingly this approach seeks to

achieve object manipulation by separating position and force control, not

within a controller loop, but across robots. The approach ensures that re-

gardless of where the leader robot moves, the subordinate robot does not

impede the motion of the leader. The control basis approach uses this idea

and applies it across control primitives. The methodology allows multiple

objectives to be optimized within a control policy, which eases automation
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and yields a greater flexibility to achieve different tasks. Section III presents

more details on multiple objective composition.

Another intelligent control scheme is found in [Xi et al., 96]. Xi, Tarn,

and Bejczy developed an event-based, decentralized, hybrid position/force

controller for multi-robot coordination. This scheme used a planner com-

bined with the current state of a system (i.e. the desired position and force

of each robot) within the controller’s closed loop in real-time. Decentralized

communication was used to implement hybrid controllers that used nonlin-

ear feedback to linearize and decouple the output in generalized space coordi-

nates. A projection vector was used to transform the generalized coordinates

to the task space for the robot. The method efficiently coordinated a dual-

arm system that held cardboard boxes of different sizes. This design enabled

tasks to be described in the task space of each robot while the structures

of the controllers were task independent. The feedback scheme also allowed

sensory information, robot planning, and the system control to be integrated

more easily. Like Xi et al. ’s work [Xi et al., 96], the control basis is deployed

through a distributed multi-agent software system that allows for inter-robot

communication with no planning necessary across a team of heterogeneous

robots.

Later, Sun and Mills designed a scheme that although simple to set up,

was applicable to a wide range of applications [Sun and Mills, 2002]. They

observed that a coordination task required manipulators to maintain a syn-

chronous motion with their immediate neighbors. An error criteria was es-

tablished that considered not only the position error, but also the differential

position error across neighboring robots [Sun and Mills, 2002]. The authors

derived a synchronization method known as cross-coupling and embedded
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it into an adaptive controller that used the feedback of position and syn-

chronization error. They guaranteed the asymptotic convergence to zero of

position and synchronization errors when they coordinated the trajectories of

two 6 DoF industrial manipulators. They also used this scheme to simulate

the interaction of four 2 DoF planar manipulators [Sun and Mills, 2002]. The

adaptive synchronized method yielded satisfactory convergence for the posi-

tion tracking and good performance for the position synchronization. While

the manipulation of an object may be encoded through differential motion,

assembly tasks often are more convoluted. Robot motion results from experi-

enced forces during insertion. The control architecture must be able to com-

pensate for local disturbances and drive the assembly using force sensing. In

2006, Yuan carried out an assembly task using force-sensing across two iden-

tical industrial robots [Yuan, 2006]. To the best of the author’s knowledge

this is the only published work that shows multi-manipulator assembly using

force sensing (see Figure 2). The main contribution of the paper was the use

of a self-tuning proportionalintegralderivative (PID) controller that sched-

uled tasks adaptively based on the state of the process [Yuan, 2006]. Yuan

used a real-time force/torque leading controller that included robot dynamics

and admission control to guide force assembly in a peg-in-a-hole experiment.

The admission matrix helped to correct misalignments in insertion and was

designed from the requirements of the task. Yuan compared force readings

of assemblies executed with one robot with those executed with two robots.

Results suggested that force signatures vary greatly in these tasks and that

force sensing must be used to successfully execute an assembly. Yuan’s work

follows a model-based approach like some of the work reviewed earlier in this

section including manipulator dynamics and an admittance matrix. The as-

sembly is controlled through a task sequencer in which a leading robot drives
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the assembly. As part of joint assemblies, Yuan’s robots always acted inde-

pendently and contributed to the task in some way. The work reported in

this dissertation involves two robots in active-static and active-active control

configuations. Interactions in active-active scenarios are uncalibrated and

unplanned. Both robots behave autonomously and reactivly to cooperate in

the insertion task.

Figure 2: Image of two homogeneous robots attempting assembly through
an adaptive PID scheduler [Yuan, 2006].

Finally, NASA’s Johnson Space Center (JSC) and Jet Propulsion Labo-

ratory (JPL) are developing a system that is designed to be low weight and

requires low power [Stroupe et al., 2006]. NASA researchers are working on

an autonomous Robotic Construction Crew (RCC) that consists of two mo-

bile robots, each equipped with a 4 degree of freedom (DoF) arm, a 3-axis

force-torque sensor, and a stereo camera pair (Figure II). The RCC coordi-

nates motion to manipulate, transport, and place a beam on a stanchion.

The robots use their visual system to locate a fiducial that marks pick-up

and drop-off positions. During transport, force data corrects misalignments

of the robots by updating the velocity of the robot designated as follower
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[Huntsberger et al., 2005]. It is worth noting that force feedback is not used

for insertion tasks, but only for coordination during transport. As with our

work, the control basis uses a visual system to determine reference positions

for the insertions fiducially marked. Force sensing is used by each robot to

optimize pose and alignment to successfully drive the insertion.

Figure 3: Two mobile robots, the RCC, coordinate to transport a beam
[Stroupe et al., 2006]

More recently heterogeneous robots for manipulation, transportation, and

assembly have been used. The next section reviews key literature in this area.

Heterogeneous Multi-Robot Manipulators

Teaming up heterogeneous robots to accomplish a task extends the capabil-

ities of the robotic team and increases robustness [Heger et al., 2005]. Hu-

mans often create teams of individuals with specific skill sets, experience, or
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abilities to accomplish a goal. In space construction for example, the en-

vironment forces systems to be low weight and low power. Robots need to

endure hazardous climates and yet be able to assemble modular habitats and

systems. As proposed by NASA’s Human-Robotics working group, teams of

heterogeneous robots coupled with human operators will be most effective in

completing necessary space missions [Culbert et al., 2003].

The use of heterogeneous robots for autonomous assembly tasks has been

studied by two groups: one at the Robotics Institute at the Carnegie Mellon

University (CMU) and another at NASA’s Jet Propulsion Laboratory and

Johnson Space Center. At CMU, research on varying degrees of autonomy

has been ongoing for a number of years. Generally, robotic tasks are executed

through teleoperation or automation. The latter can suffer from environmen-

tal contingencies and complications, while the former can suffer from commu-

nication latencies, constricted bandwidth, and human limitations. For these

reasons, the CMU team designed a system that allowed operator interven-

tion at varying degrees of autonomy and coined the term “Sliding Autonomy”

[Brookshire et al., 2004, Simmons et al., 2007]. The CMU team of heteroge-

neous robots consisted of a roving eye for localization; a 6 DoF crane for

heavy lifting; and a mobile manipulator for fine manipulation tasks. This

diverse team executed tasks in different configurations. All tasks consisted

of docking suspended beams on top of stanchions. Within a task, each robot

had a specific role. The rover eye detected objects using fiducial marks and

communicated goal positions to the rest of the team. The crane moved the

beams to general locations. The mobile manipulator was responsible for

docking the beams on the stanchions [Sellner et al., 2005]. Figure 4 shows

the robots at work at the CMU site. This dissertation studies collaboration
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across robots for specific assembly tasks. Different collaborative strategies

are presented to study force dynamics in insertions.

Figure 4: Two mobile robots coordinate to transport beam
[Simmons et al., 2007]

Finally, researchers at JPL and JSC are prototyping a new generation of

space vehicles and platforms that are flexible and extensible to support ex-

tended human missions and scientific observations. New robotic archetypes

are envisioned to assist in the construction and maintenance of such sys-

tems. The robots may be remotely controlled or automated and are to

be technologically capable of achieving part mating, connecting ancillary

equipment, and verification of assembly completion, amongst other tasks

[Rehnmark et al., 2005]. Three novel robotic prototypes were created and

are currently being updated. An arachnid climber boasts light and smooth

gaits to aid in material transport. A fine manipulation specialist handles
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a wide range of assembly and maintenance tasks with minimal limb recon-

figuration. A minimally invasive tendril loaded with sensors was devised to

inspect and repair worksites with difficult access and to ensure their struc-

tural integrity.

Autonomous Assembly Strategies

The study of parts assembly can be understood as the mating, connection, or

insertion of one part into another. Assembly processes are used extensively

in manufacturing and automotive industries, for fastening parts, and circuit

board assembly. The problem of assembly has been understood as a problem

of mating strategies and contact dynamics [Gottschlich and Kak, 1989]. On

the one had, mating is a function of two kinds of motions: guarded motions

and compliant motions [Inuoe, 1981]. The former is related to the approach

prior to contact, the latter is related to the insertion motion after contact.

On the other hand, assembly motions are influenced by the external forces

exerted on contact. Contact mechanics describe the nature of impacts and

sliding that can help successful insertions, error detection, and error recovery

[Donald, 1987]. Important challenges in autonomous assembly consist of:

misalignment of parts, geometric uncertainties of fixtures, instability of the

system, inaccuracies in control or system parameters, friction, and damage

prevention for the robot or the environment [Mathewson, 1994].

Early research on assembly involved the development of passive and ac-

tive compliant devices. Passive compliant devices are capable of adjusting

to slight misalignments in the assembly tasks and to minimize wedging or

jamming [Asada and Kakumoto, 1988, Peshkin, 1990, Watson, 1981]. They

were designed to respond favorably to the common challenges encountered in

assembly motions. Compliant devices came to be known as Remote Center
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Compliance (RCC) devices. RCC devices commonly used chamfers to facil-

itate insertion and to prevent the system from jamming or wedging. The

experiments in this dissertation do not use an RCC, rather a pneumatically

driven humanoid robot, whose muscles are inherently compliant. We have

found no litereature on compliant robots used to perform assemblies. This

dissertation studies the combination of a stiff industrial robot with a compli-

ant pneumatic robot. The findings are reported in Chapter V.

Active compliance, uses low-level force-feedback to perform force con-

trol explicitly. Force control can be implemented in either cartesian or

joint space and can servo the robot with respect to position, velocity, or

torque [Maples and Becker, 1986]. Active compliance typically is coupled

with high-level strategies that generate planned motions as a function of

the force readings. Examples of high-level strategies are: the use of force-

cones, contact dynamics, and conditional probability strategies. These ap-

proaches require planning strategies for insertion and precise knowledge of

part specifications. The strategies are successful in driving assembly tasks

for specific environments but are limited in their applicability to situations

where the environment changes. Planning is done a priori and may in-

clude the derivation of governing equations of motion and force-cone con-

ditions to insure optimal contact configurations [Gottschlich and Kak, 1989,

Shahinpoor and Zohoor, 1991, Lee and Smith, 1984].

Another method termed ‘Accommodation control’ used force readings to

produce corrective velocity commands and to ensure the proper mating of

a workpiece with its corresponding fixture [Schimmels and Peshkin, 1990].

The technique guides force control to correct misalignments in automated
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assembly. Accommodation, however, must be constrained to low force-

feedback gains to insure stability in high-stiffness environments. The con-

straint on the gains slows assemblies [Mathewson, 1994]. Others attempted

to increase accommodation gains while lowering velocity gains to enhance

the response of the system, but that increased internal friction and the

stiction of the fixture due to increased internal friction. Continued efforts

on accommodation control led to a more advanced level of servo control

known as Natural Admittance Control (NAC) [Hogan, 1985]. NAC sup-

pressed coulomb friction and was more responsive and stable under a variety

of stiffness conditions [Glosser and Newman, 1994]. Since then, a variety

of intelligent strategies have been implemented that incorporate admittance

control [Chen et al., 2007]. The design of virtual attracting regions and an

optimization algorithm was used in [Newman et al., 2001a]. Virtual attrac-

tion points were generated computationally to create nominal trajectories

from end-effector positions to attractor points. A genetic algorithm was

used to select a multi-dimensional vector trajectory and system dynamics

parameters to reduce the time-to-completion of the assembly process. Re-

sults yielded better performance than a human worker doing the assembly.

Similar efforts defined and manipulated regions of attraction, where a part

was geometrically partitioned and analyzed to estimate the best trajectory

for an insertion. An impedance controller was used to push and align a

part compliantly [Stemmer et al., 2007]. This dissertation proposes a similar

approach, where the primitive control elements of the basis set are scalar

potential functions. Using greedy descent, each primitive converges to basin

attractor regions over time to generate autonomous and locally-robust be-

havior.
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Neural networks have been used to study force-moment patterns in as-

semblies to guide intelligent searches [Newman et al., 2001b]. Scientists in-

terpreted moment data and computed corrective motions for the end-effector.

Others used an advanced visual system to perform tight-tolerance, high-

precision assemblies [Chen et al., 2007]. The visual system in this disserta-

tion does not provide very accurate position estimations. The uncertainties

of an dynamic environment are present. The basis controllers, however, com-

pensate for bounded disturbances in the environment.

Computer aided design (CAD) models have been used recently. Thomas,

designed a system that performed offline planning for complex part assem-

bly [Thomas et al., 2005]. Model information was derived from CAD data

and used to render a series of virtual steps to perform an assembly. Assem-

bly plans were performed offline through a series of connected skill primitives

that allowed the sequential construction of a trajectory for the mating of each

set of parts. In [Thomas et al., 2007], the planning process was automated

by using CAD designs and derived force-torque maps of the configuration

space. As in [Thomas et al., 2005], the control basis requires control policies

that sequence composite or primitive controllers to achieve beginning-to-end

behavior. The sequencing of controllers is learned by the designers’ experi-

ence although a control language and learning scheme exist to automate this

process [Platt, 2006]. The correct sequence of controllers is indispensable to

generate asymptotically stable behavior through the task.

While research in robotic assembly has had success creating advanced

execution strategies and control methods, most of the implemented systems

remain bound to the laboratory or the assembly line. Some of these ap-

proaches require the complete modeling of the environmental dynamics as

well as the interactions between the robot and the fixture. Stability analysis,
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such as the one presented in [Stemmer et al., 2007], requires precise knowl-

edge of the system or is forced to make simplifying assumptions. As stated

by Huber [Huber, 2000], the robustness of control policies is limited in the

presence of uncertainty. The challenging process of modeling complex robots

with precision, limits the scalability of the approach to a smaller set of tasks

and environments than one might like.

Similarly, model-based planning solutions suffer some of the same chal-

lenges. They require a priori geometrical information, or the partitioning

of a path into sub trajectories to generate a functional path. While some

of these planning methodologies offer corrective measures in the presence of

position error, the presence of uncertainty often leads to failure.

Using a control basis approach in the assembly process can overcome

the aforementioned limitations. The control basis approach, introduced by

Coelho and Grupen [Coelho and Grupen, 1997] partitions the control space

into lower-dimensional, local control laws that are asymptotically stable un-

der local perturbations and can be run concurrently. This technique requires

no explicit planning to create trajectories, since the system moves to good

configurations reactively.

Summary

Space robotics is advancing at a rapid pace. A new generation of robot

archetypes will be necessary to fulfill future space construction and explo-

ration missions, particularly robots that are able to fulfill their tasks over the

latencies of space communications.

Multi-manipulator robotics has seen significant developments in modeling

and control under constrained environments. As the complexity of robots

and goal tasks have increased, a greater reliance on adaptive and simple yet
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effective control methods have also been evaluated. Methods to increase the

overall efficiency and effectiveness of partially supervised robot teams are

being studied. The future of space robotics will undoubtedly see a more

frequent occurrence of such teams.

Similarly, in assembly research, most solutions require accurate knowledge

of system dynamics and planning strategies. Such requirements significantly

limit the deployment of such systems in dynamic environments. Simple and

flexible automated strategies are desired so they can be applied in a vari-

ety of environments to tasks and can function robustly in the presence of

uncertainty.
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CHAPTER III

THE CONTROL BASIS APPROACH

The control basis is a primitive organizational structure composed of para-

metric closed-loop controllers. The approach decomposes a complex control

system into a series of modular control elements that when connected ap-

propriately synthesize a variety of behaviors. The approach is rooted in

closed-loop control for the following reasons: (i) nearly all actions in robotics

are encompassed under closed-loop control, (ii) it is a basis for error suppres-

sion, and (iii) the interaction between the robot and the world is modeled as a

dynamical system [Huber, 2000, Brock et al., 2005]. This approach was orig-

inally suggested by Coelho and Grupen [Coelho and Grupen, 1997]. A basis

comprises a number of closed loop controllers, which represent primitive ac-

tions, and can be derived from a set of control laws. While similar approaches

appear in the literature [Son et al., 1996, Jameson and Leifer, 1987], the way

that a control basis factors objectives and captures the declarative struc-

ture of a solution was novel when first proposed [Brock et al., 2005]. In

other words, each controller in the basis represents a single objective that is

achieved from sensory inputs and effector (or commonly actuator) outputs.

Single, closed-loop controllers can be referred to as segmental actions, and

are exemplified by spinal cord reflexes, as Brock et al. states:

These reflexes are specific stimulus response mappings in service

to a single objective like the withdrawal reflex that extracts ones

hand from a fire. They can be coupled in intersegmental ar-

rangements such as the contralateral extension reflex that can

accompany the withdrawal reflex. These arrangements serve two,
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concurrent objectives: one to extract a limb receiving a painful

stimulus, and another to extend the other limb in a protective

behavior [Brock et al., 2005].

Each controller in the set is a primitive that synthesizes on-line behavior by

limiting the closed-loop response to specific stimuli and by engaging specific

effector resources on low-dimensional subspaces of the system state-space.

Complex behavior is generated by combining and sequencing a number of

the primitive closed-loop controllers. The sequence is in effect an “instruc-

tion set” for performing complex tasks and provides a structure for larger-

scale control policies. This approach prevents the generation of a monolithic

controller, which is of limited applicability in dynamic environments, it also

increases robustness by reducing the need for complete and accurate system

models [Huber, 2000].

The feedback controllers are derived combinatorially from control laws.

These laws are designed to yield asymptotically stable and predictable be-

havior under different robotic platforms and contexts. The careful selection

of a small set of control laws permits flexible solutions for a wide variety of

tasks. Such has been demonstrated by the implementation of grasp control,

dexterous manipulation, whole body grasping, bipedal walking and other be-

haviors [Huber, 2000, Platt et al., 2006]. Asymptotic stability implies that

the control laws partition the underlying continuous space into discrete basins

of attraction. Each control law, φi in a set Φ is designed from a scalar po-

tential function that maps independent configuration space variables to real

numbers. Figure 5 illustrates a two dimensional representation of equipo-

tential lines across two potential surfaces. Using greedy descent on a given

potential surface, the system converges to the attractor within the basin that

holds the current state. Within a given basin, a control law compensates for
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Figure 5: The task space is partitioned into a number of basins of attraction
used to drive locally stable controllers [Huber, 2000]

limited perturbations and uncertainty while still converging to the attractor.

Asymptotic stability, as asserted by Huber [Huber, 2000], is then a function

of the design of the potential surface and the dynamics of the robot.

Controller Synthesis

As part of the control basis approach, a controller, φi, is synthesized when

parameterized in terms of a sensor transform si and an output effector trans-

form ej . The binding of a potential surface function to sensory inputs and

effecter outputs is designed to bind the objective of the controller to specific

sensor resources and to use specific actuators to accomplish that objective.

The sensor transform, si, effectively represents a mapping from a limited

set of available input control resources, Γi ∈ Γ to a specified domain space,

Xi. That is to say, an input control resource, such as a position or force

sensor, will actually deliver a cartesian position or force reading:

si : Γi → Xi (1)

The artificial potential function then represents a native objective for the

system and can be realized in a number of ways depending on how it is bound
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with possible input sensory resources and output motors. It is important to

select domain general potential functions that prevent the system from being

constrained to specific strategies and allows tasks to adapt during run-time

[Brock et al., 2005]. As such, the shape of the potential function depends on

the input and output resources that are engaged. Each objective function

is optimized by descending the gradient of the surface error through greedy

descent of the form △q = −K ∗ ∇Xi
φi, where

∇Xi
φi =

∂φi(s)

∂Xi

(2)

Finally, the effector transform, ek, maps the error result in terms of a subset

of the output control resources, Γk ∈ Γ, to the output space, Yk. This is

typically done through a Jacobian matrix that converts either position or

force gradient data into the robot’s joint space:

ek(Γk) =

(

∂xγ1

∂yk

,
∂xγ2

∂yk

, ...,
∂xγ|Sk |

∂yk

)T

(3)

where xγ1
represents the configuration of control resource γi. yk is a point

in the output space (i.e. an element of the six DoF joint space vector), and

Γk = {y1,y2, ...,y|Γk|} ∈ Γ is a subset of the control resources (i.e. selecting

one contact finger from a set of two that are available in a multi-fingered

hand).

In summary, the closed-loop controller is implemented by binding an ar-

tificial potential gradient, ∇xi
φi, with a sensor transform, sj(Γj), and an

effector transform, ek(Γk). The input data must be of the same domain type

as the artificial potential function, and the effector transform must have the

same dimensions as the potential function in order to map the result into the

convening output space.
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Examples

Examples for cartesian and force control in a robotic manipulator were origi-

nally presented in [Platt, 2006], the cartesian controller is shown to illustrate

the concept. The same feed-back loops are applied to assembly in this work

and Chapter IV presents detailed descriptions of the synthesis of basis con-

trollers for this work.

A commonly referenced form of cartesian position control is implemented

through the Jacobian transpose control method. In assembly, cartesian con-

trol is used to displace the tip of a mating part to a reference location set

by the six-element vector x, y, z, r, p, y. The controller computes the position

error and multiples it by a gain and the transpose of the manipulator Jaco-

bian. The result is a vector of joint angle updates. The updated positions

are then passed to a low-level joint angle controller that actuates the robot

to the desired position. The last step uses forward kinematics to transform

the output into desired cartesian coordinates. The loop is shown in Figure

6.

JOINT 

SERVO

Jacobian

Transpose
Gain

Desired 

XYZRPY

Actual

XYZRPY

+

-

∑

Updated

Angles

Figure 6: Diagrammatic representation of a position controller as part of the
Control Basis set.

The controller referenced above is a primitive in the set of basis controllers

used in this work. In the position primitive, the Jacobian transform serves

as the sensor transform and the forward kinematics serve as the effector
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transform. The difference between desired position and actual position is

the error measure for the controller: φi(xref − sj(Γj)), and the controller

descends this potential through greedy descent ∇xi
φi. This basis primitive

is mathematically described as:

∇yk
φi = ek(Γk)

T∇xi
φi(xref − sj(Γj)) (4)

Throughout the rest of this thesis, this mathematical notation is represented

for simplicity as:

φi |
sj(Γj)

ek(Γk) (xref) (5)

Note that the reference input in the controller can also be the output of

another basis controller as long as the task space is the same. This allows

for nested controllers to be implemented:

φ1 |
s1(Γ1)
e1(Γ1)

(

φ2 |
s2(Γ2)
e2(Γ2)

)

(6)

When more than one controller is embedded in a system, multiple goal states

are required from the robot’s actuators. This situation can lead to detri-

mental results if not managed appropriately. The next section discusses a

technique to ensure the optimization for multiple objectives.

Multi-Objective Composition

Often when robotic systems are asked to execute a task, robots use an ex-

cess of sensory and motor degrees of freedom. This redundancy can be used

to achieve a number of varying goals. In so doing, one must be careful to

ensure that the pursuit of one goal does not affect the execution of another
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goal. For such an end, the Moore-Penrose pseudo inverse has been a foun-

dational mathematical tool [Brock et al., 2005]. This concept was originally

used to optimize secondary objectives across controllers [Platt et al., 2002].

The pseudo-inverse method can be used to project the gradient result of the

secondary objective onto the equipotential manifold of the primary objec-

tive, thereby achieving two simultaneous goals. Figure 7, illustrates the case

where at different states of the primary controller objective, the number of

states for the secondary controller are possible and allow to optimize the

goals of each.

Gradient

Descent:

Primary

Objective

Controller

Null space of dominant controller

Figure 7: The projection of a secondary objective onto the equipotential
manifold of the dominant controller allows to optimize two simultaneous
goals [Platt et al., 2002].

Platt introduced the formal approach to incorporate the Moore-Penrose

pseudo inverse to the control basis and called it: null space composition

[Platt et al., 2002]. Null space composition enabled controllers to run inde-

pendently of each other while pursuing their own goal states. Controllers

can be combined hierarchically, where dominant and subordinate controllers

exist. The latter are limited to the null space of the dominant controllers,
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yet the goal of the subordinate controllers can still be optimized. A sim-

ple notation is used to represent this composition and it was said that the

subordinate controller is subject-to the dominant controller: φs � φd. Con-

sider a control basis for assembly in which a robot is trying to insert a truss

into a fixture. A force controller can be subject-to a moment controller to

concurrently achieve a corrective alignment motion and an insertion motion:

φforce ⊳ φmoment. Consider the gradient output of two primitives, φm, φf :

∇ym
φm = em(Γk)

T∇xm
φm(sm(Γj)) (7)

∇yf
φf = ef(Γk)

T∇xf
φf(sf (Γj))

where the gradient outputs of both primitives must reside in the same do-

main space, i.e. Y = Y1 = Y2.

When the gradient of the second controller is projected to the null space

of the first gradient, the result is represented as:

∇y(φf ⊳ φm) = ∇yφm + N (∇yφ
T
m)∇yφf (8)

where

N (∇yφ
T
m) ≡ I − (∇yφ

T
m)T (∇yφ

T
m) (9)

and, I, is the identity matrix, y is an n-dimensional space, and ∇yφm is

a (n-1) dimensional space orthogonal to the direction of steepest descent

[Platt, 2006].

In this way, the “subject-to” constraint, φ2 ⊳ φ1, always descends the

potential surface of the dominant controller that has not yet converged to a

minimum, and maintains the stability of the underlying controller without

limiting its actions. A formal presentation of Moore-Penrose pseudo inverse

method can be found in Appendix B.
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Control Policy Construction

Once there is a number of defined primitives in the set of basis controllers, Φ,

it must be determined how to combine them. The size of the set is defined by

Φ×2s ×2e, giving rise to many possible transitions. While this functionality

makes the control basis more powerful and flexible to adapt to new tasks, it is

necessary to successfully transition between segmental actions [Huber, 2000].

Closed-loop controllers interact with the environment over time revealing

information between the system and the world. The asymptotically stable

controllers of the basis tend to equilibria as time goes to infinity: ∂φ

∂t
→

0, as t → ∞. The convergence of a controller can be treated as a discrete

event and used as criteria to join controllers. This phenomena simplifies

the number of possibilities and establishes a framework for controller policy

enaction.

Sequences of controllers can be considered as states in a non-deterministic,

finite-state automata. Each finite state is an asymptotically stable sequence

of controllers and describes patterns of membership across controllers [Brock et al., 2005].

These states can be sequenced to achieve an overall goal. The previously de-

scribed process is visualized in Figure 8. This thesis utilizes a sequence of

controllers composed of position, moment, and force primitives that are pre-

sented in detail in Chapter IV.
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Figure 8: Example of a control policy consisting of a sequence of concurrent
controllers.
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CHAPTER IV

DEVISING A CONTROL BASIS FOR JOINT ASSEMBLY TASKS

As initially stated in Section II, the assembly tasks involve the insertion of

one part into another, i.e. the insertion of a truss into a fixture. Such an

operation can be carried out successfully if a robot displaces its tool-tip to

minimize the moment and force residuals experienced while aligning partici-

pating assembly parts. The points of contact between assembly parts in this

work are referred to as “contacts”. In the past, the control basis approach

has been effectively used to displace contacts and minimize residual forces

in grasp, manipulation, and bipedal gait tasks [Coelho and Grupen, 1997,

Huber, 1998, Platt et al., 2004].

In this Chapter, a control basis set for joint assembly tasks across two

cooperative robots is described. The first Section of this Chapter presents

controllers necessary for a single robot assembly. These controllers respond

to the construction of an assembly process consisting of two stages: (a) a

guarded approach, and (b) a compliant insertion. A series of primitive con-

trollers are used, combined, and sequenced to produce the following compos-

ites: the “guarded move controller” and the “compliant insertion controller”.

A control policy that starts with the guarded move controller and transitions

to the compliant insertion controller is used to achieve an insertion.

Additionally, another set of controllers was designed to encode behavior

particular to a dual-armed and compliant humanoid robot. Two immediate

challenges are presented in the humanoid robot to complete the task: (1) to

control effectively both robot arms to displace the fixture, and (2) to deal

with the elastic nature inherent to the pneumatic muscles in the humanoid.

In [Platt, 2006], “virtual contacts” is a technique used to create a single
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contact from multiple contacts. The technique is used here to more effectively

leverage the contributions of both arms and ease effects related to pneumatic

actuators (see Appendix D).

Finally, the design of the presented controller also considered the effects

of robots assuming different roles as part of a strategy in a cooperative task.

In the literature, cooperative robots often assume a leader or a follower role

[Yuan, 2006]. This work assumes robots have active and static roles (these

roles are described in detail in Chapter V). The presented controllers are able

synthesize both active and static behaviors and enables a robot to switch

between these controllers.

Individual Manipulator Assembly

For an insertion task to be executed successfully a robot must be able to

displace the assembly part to an optimum location for insertion. If the ap-

proach ends at a location outside the interior hole of a fixture, the assembly

cannot succeed. Similarly, if the approach is too quick and jams the truss

into a fixture, a successful insertion is unlikely. The Guarded Move Con-

troller is designed to generate a guarded approach that positions the tool

at an optimum location for insertion. Similarly, once an appropriate in-

sertion location has been achieved, controllers must drive the insertion as

smoothly as possible. To do so, misalignments must be corrected to decrease

the friction, jamming, and wedging phenomena. The Compliant Insertion

Controller was designed to overcome such misalignments. Before presenting

the derivation of the composite controllers (cf. Chapter III), the concept of

a wrench residual controller is used to introduce force error minimization.

A wrench is a 6-dimensional generalized vector of forces and torques ~wi =

[~F ~T ]T . A wrench vector is generated when an assembly part makes contact
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with a mating fixture. A wrench residual ǫ represents the sum over forces

and moments generated across n contact points:

ǫ =

n
∑

i

wi (10)

As introduced in Section III, a control primitive is a scalar potential function

that represents a control goal. Correct insertion for assembly requires that

the wrench residual is minimized. Therefore, the wrench residual potential

surface ρ, is defined as the square of the wrench residual:

ρ = ǫT ǫ (11)

To reach the goal of the function, greedy descent is used to converge to

the attractor of the surface. Descending the surface implies differentiating

the wrench residual with respect to the joint configuration of the robot,

then displacing the contacts in direction of the gradient vector. Coelho and

Grupen [Coelho and Grupen, 1997], noted that local minima sometimes led

to spurious states when the wrench residual was minimized. To prevent

local minima from occurring, they decomposed the wrench residual into two

orthogonal force and moment residuals, such that:

ρfr =

(

n
∑

i=0

fi

)T ( n
∑

i=0

fi

)

(12)

ρmr =

(

n
∑

i=0

ri × fi

)T ( n
∑

i=0

ri × fi

)

where fi is a unit vector normal to the object surface applied by the ith

contact, and ri is the location of the ith contact point in a given coordinate

frame.
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Coelho and Grupen determined that for grasping tasks the force plays a

more dominant role. To achieve an effective grasp controller, they descended

the gradient of the the force residual controller first, then they descended the

gradient of the moment residual second, and finally combined the gradient

updates through a control composition policy. Later, Platt proposed a null

space projection [Platt et al., 2002] (see Section III) where the result of the

subordinate force residual was projected onto the dominant moment residual

and both could be minimized correctly. A similar approach is used for the

compliant insertion controller used in this work and is introduced next.

Compliant Insertion Controller

For a given assembly task, the robot manipulator holds a truss with an

inverted chamfer on the end, as shown in Fig 9. When a force is applied at

Figure 9: Example of an industrial manipulator holding a truss pipe.

the tip of a truss, the exerted force is primarily experienced as an applied

moment by the force-torque sensor, which sits on the wrist of the robotic

manipulator. Through the insertion itself, the truss experiences moments

as it collides with the walls of the mating part, as illustrated in Figure 10.
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Additionally, in order for the “insertion motion” to be carried out, there

must be a driving force in the direction of the axis of insertion that pushes

the truss until a connection is completed.

Truss

Fixture

moment

Figure 10: Illustration of contact between a truss and a fixture.

In effect, the insertion process is subordinate to the moments of the task

and then to the forces of the task. The former deals with the alignment of

the parts, which is crucial for successful task completion. The latter deals

with the forward motion that drives the insertion process as misalignments

are corrected. With these factors in mind, a composite controller, known

as a “Compliant Insertion” controller, was designed. This basis controller is

slightly different from the wrench residual introduced earlier. The residual

controller designates the moment primitive as the dominant actor and the

force primitive as the subordinate actor in correspondence to the task goals.

The derivation of this hierarchical component is now presented.

The moment primitive, φmr, uses the sensed moments to update the joint

angle configuration of the manipulator and, therefore move, the rigidly held

tool to a state where there exist no net moments. The sensor transform,

sq(γmoment), maps the sensed moments in joint torques. The effector trans-

form, eq(γtorque), transforms those updated values into joint coordinates, q.

The controller is represented in simplified notation as:

φmr |
sq(γmoment)

eq(γtorque)
. (13)
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Similarly, the force residual, φfr, displaces the joint angle configuration of

the robot to achieve a reference value. The reference value can be used to

implicitly drive the motion of the insertion:

φfr |
sq(γforce)

eq(γtorque)
(fref). (14)

The objectives of both primitives can be attained through null space compo-

sition. The goal vector of the force controller is projected onto the null-space

of the moment vector, which allows correct alignment and insertion to take

place concurrently:

∇qφmr + N (∇qφ
T
mr)∇qφfr, (15)

where

N (∇qφ
T
mr) ≡ I − (∇qφ

T
mr)

T (∇qφ
T
mr). (16)

The sensor and effector transforms have been omitted for clarity. Composite

controllers, which result from the use of the null-space operation, can be

represented in a simplified notation through the use of a new parameter, πi.

The Compliant Insertion controller is defined as:

πCI |
sCI(γforce)

eCI(γtorque)
= φfr |

sfr(γforce)

efr(γtorque)
(fref) � φmr |

smr(γforce)

emr(γtorque)
. (17)

Guarded Move Controller

Prior to an insertion action it is necessary for the assembly fixture to reach

an appropriate basin of attraction. The assembly fixture must reach a near

optimal location - preferably one in which initial and slight contact is made

between the incoming truss and the interior fixture hull. The goal of the

guarded move controller is to reach a joint configuration that allows the
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potential surface to converge to a state of low moments and forces such that

the transition to the compliant insertion controller is smooth.

The guarded move controller is a composite controller consisting of a

dominant position controller and a subordinate moment residual controller.

The position controller displaces the manipulator and the rigidly held truss

to an optimal location for insertion. The subordinate moment controller acts

as an identifier to determine whether contact has been made.

The position controller receives its goal cartesian position from the stereo

visual system. The latter uses color fiducial marks placed at the tips of

the fixtures to estimate 3D cartesian positions. Color segmentation and

noise filtering are performed on incoming video and processed to compute

image coordinates of the segmented foreground blob that correspond to the

marker. The error centroid position of the blob from the right and left images

(△cr,△cl) is fed through a back propagated neural net (NNbp) to output

appropriate updates for camera motor servos. The cameras verge towards

the region of interest until the object is centered. A detailed description of

this process is found in [?], and represented by the following equation:

servo = k ∗ △q = k ∗ (NNbp(△cr,△cl)). (18)

The motors’ output pan and tilt angles are used to localize the cartesian co-

ordinates of a blue and a green tool-tip (see Figure 11). The tool orientation

is not computed by the visual system. In the experiments in Chapter V,

Section V, the orientation of the wrist is assumed to always point approxi-

mately parallel to the robot’s ~x base-coordinate. This orientation is best for

insertion tasks since both robots apply force perpendicularly to the plane on

which they are pushing. The cycle is performed sequentially for each of the

two tool-tips. The difference in cartesian coordinates between the tips is used
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Figure 11: Tool-tips used in experiments. A blue and a green fiducial mark
is used for the male and female parts respectively

to update the desired goal position in the corresponding position controller.

The guarded move controller drives the assembly tool to the cartesian posi-

tion generated by the sensor transform sp(γvisual sys) and returns the current

joint configuration of the robot. The latter uses forward kinematics as the

effector transform: ep(γjoint). The position controller is thus defined as:

φp |
sp(γvisual sys)

ep(γjoint)
(xactual + △x). (19)

The moment residual controller is bound by a sensor transform, smr(γforce),

that returns the moments experienced by the force sensor, and by an effector

transform emr(γtorque), that converts torque updates into joint angle updates.

The moment residual controller is defined as:

φmr |
smr(γforce)

emr(γtorque)
. (20)

The goal of the guarded move controller is to reach an appropriate location

for insertion; namely, one that is close to the fixture’s interior hull and where

there are no net moments. If contact takes place, the controller displaces the
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robot’s end-effector to minimize the residual error and transitions to compli-

ant insertion controller, πCI , which in turn compensates for the disturbances

through the insertion.

The composite guarded move controller, πGM , is synthesized by having

the moment controller be subject-to the position controller:

πGM |
sGM (γjoint,torque)

eGM (γcart,moment)
= (21)

φmr |
smr(γmoment)
emr(γtorque)

�φp |
sp(γvisual sys)

ep(γjoint)
(xref).

The two hierarchical components presented in this section are able to generate

robust insertion operations for a given manipulator. Our control policy for

the task consists of initiating the job with the guarded move controller and

as it reaches its basin of attraction, a finite state automata moves the system

to the next state where the compliant insertion controller becomes active.

The next section introduces controllers used when two robots are coop-

erating and coordinating for task execution.

Cooperative Assembly

Thus far the assembly task has been framed under the assumption that only

one robot drives the insertion process. This section introduces cooperative

work using two robots. Cooperation implies the robots contribute to the

overall task achievement in synchronous or asynchronous modes. In some

instances, there may only be one “active” robot, in others multiple robots

function jointly in the environment. Coordination, on the other hand, implies

strategy. In this work there are two scenarios: (a) one robot is an active

player, while the other is a passive player: one robot drives the insertion,
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while the other holds the mating part stationary, and (b) both robots actively

drive their part towards insertion.

Counterbalance Controller

The discussion of the compliant insertion controller mentioned that a ref-

erence force was required to drive the insertion of the male truss, and that

this motion ends when an opposite force is exerted on to it. In the case of a

single robot manipulator, the environment provides the counteracting force.

Cooperative assembly requires the other robotic partner to fulfill this role.

The counteracting force attempts to hold the mating fixture as rigidly as

possible. Otherwise, when one robot drives the insertion, the collaborating

robot retracts and the assembly task fails. For this purpose, a counterbalance

controller πCB is proposed. The latter is similar to the compliant insertion

controller, but it differs in that its reference force is zero so as to always

oppose any induced forces in the system:

πCB |
sCB(γforce)

eCB(γtorque)
= φfr |

sfr(γforce)

efr(γtorque)
�φmr |

smr(γforce)

emr(γtorque)
. (22)

Virtual Contacts

Our robotic testbed consists in part of ISAC, an in-house, dual-arm and pneu-

matically driven humanoid robot [Rojas and Peters II, 2005]. A detailed de-

scription of ISAC and the industrial robot, HP3JC, is presented in Chapter

V. ISAC’s pneumatic hardware render it naturally compliant. The elasticity

of air muscles is advantageous in an assembly task as it provides a spring be-

havior that eases accuracy requirements. However, the control of pneumatic

actuators is non-trivial [Daerden and Lefeber, 2001]. Treating both arms as

a redundant manipulator–that is, averaging the contribution each one makes
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to the assembly tasks and coordinating similar motions across both arms–

simplifies the control problem. The concept of averaging the contribution of

sensor and effector resources is known as ”virtual contacts” since the contri-

bution of each of the control resources is represented by a single imaginary

contact resource.

A formal framework can be derived to parameterize sensor and effector

transforms as virtual contacts. Platt parameterized a number of finger con-

tact resources [Platt, 2006]. The sensor transform for the virtual contact,

sj(γvc), is simply the average of the output of the individual contact sensor

transforms:

sj(γvc) =
1

n

n
∑

γi

sj(γi). (23)

Similarly, for the effector transform, the output of the virtual contact is the

average of the updates contributed by the individual transforms:

ek(γvc) =
1

n

n
∑

γk

ek(γk). (24)

For ISAC’s case, the position and wrench data generated through the use of

contact resources in the left and right arm is averaged. The virtual contact

parameterizes incoming moment data as:

σmr(γvc) =
1

2
[smr(γleft + γright)], (25)

where γleft and γright have rectangular coordinates,

m =













~mx

~my

~mz.












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Similarly for the effector transform, the angle updates produced by each of

the control resources are averaged over the two control resources:

emr(γvc) =
1

2
(
∂m

∂θγl

+
∂m

∂θγr

). (26)

With this new approach, each of the presented controllers can be param-

eterized to become virtual in nature and applied to the humanoid ISAC.

That is, the guarded move controller, the compliant insertion controller, and

counterbalance controller, become virtual for ISAC: πV GM ,πV CI , and πV CB.

πV GM |
sGM (γvc visual sys,γvc moment)

eGM (γvc joint,γvc torque)
=

φmr |
smr(γvc moment)
emr(γvc torque)

�φp |
sp(γvc visual sys)

ep(γvc joint)
(xref),

πV CI |
sCI(γvc force)

eCI(γvc torque)
=

φfr |
sfr(γvc force)

efr(γvc torque)
(fref) � φmr |

smr(γvc force)

emr(γvc torque)
,

πV CB |
sCB(γvc force)

eCB(γvc torque)
=

φfr |
sfr(γvc force)

efr(γvc torque)
�φmr |

smr(γvc force)

emr(γvc torque)
.
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CHAPTER V

EXPERIMENTS

Overview

This chapter presents six experiments that demonstrate the effectiveness of

the control basis in recasting the assembly process in terms of a sequence

of composite controllers across robots. Two sets of three experiments are

presented. The first set is preparatory for the second set. For the first set of

experiments, the goal is the determination of several controller parameters:

Error gains within controller loops: Controller gains are multiplied by

the error inside a controller’s loop. They determine the sensitivity of

the system towards sensory stimulus.

Reference values for modular controllers: Every controller can take ref-

erence values. If they exist, the controller converges towards that ref-

erence configuration as its attractor region.

Error thresholds for controller state transition: As part of control pol-

icy, a controller must reach the attractor region before sequencing to

the next state in the policy.

A qualitative analysis is also included and studies the behavior of the assem-

bly task, its accuracy, and its efficiency.

After determining the controller parameters during the first set of exper-

iments, cooperative assembly experiments were conducted with two robots.

These experiments included active-static tasks and active-active tasks. Active-

static tasks required one robot drive the insertion while the other held the

fixture as rigidly as possible. The term leader-follower was not appropriate
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in this context since the second robot did not ‘follow’ the first in any way.

Instead the static robot exhibited an independent reaction based on the ex-

perienced stimuli. The active-active tasks had both robots actively drive

their assembly parts towards insertion. An analysis of the overall behavior,

the force and the moment characteristics, and the efficiency of these tasks

is presented. Averaged values are provided and used for comparison across

experimental results to highlight benefits and challenges in each case.

The described experiments were run in a laboratory but were uncali-

brated. Conditions changed for each trial so that the experiments were

performed in a loosely structured environment. One measure consisted of

placing the industrial manipulator in random positions near the center of

the humanoid robot (i.e. the relative position of both robots in joint tasks

varied across experiments). The second measure consisted of running the vi-

sual system during different times of the day exposing it to small variations in

lighting conditions. The robotic systems responded to current environment

conditions during the tasks [Rojas and Peters II, 2009].

Testbed

The testbed consisted of two robotic platforms, an in-house distributed soft-

ware multi-agent system, and PVC piping.

The robotic team was comprised of two heterogeneous robots: ISAC and

HP3JC. The former is Vanderbilt’s pneumatic humanoid robot. The latter

is a Motoman high accuracy 6 DoF manipulators.

The distributed multi-agent software system is named “Intelligent Ma-

chine Architecture” (IMA). The current version is IMA 2.5. The software

system encapsulated behavior through modular components. IMA grouped

multiple components to produce agents and used the component object model
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(COM) and distributed COM (DCOM) communication protocol for inter-

component communication. For this work’s experiments, multiple agents

encapsulated the hierarchical controllers for the different robots and the vi-

sual system.

The insertion parts were made from commercially available PVC piping.

The male truss was composed of two 0.5 in pipes, connected by a 90 degree

elbow connector. At the truss’ tool-tip an inverted chamfer was placed to

facilitate its entry into a female counterpart. This truss was held by a Barret

hand attached to the HP3JC manipulator. The female insertion part, was

a 1.0 in pipe, connected through a t-connector to two 1.0 in pipes that are

held rigidly by ISAC’s end-effectors.

ISAC

ISAC is an anthropomorphic robot [Rojas and Peters II, 2005] and is shown

in Figure 12. It’s visual hardware includes two Sony XC999 cigar cameras for

Figure 12: Vanderbilt University’s humanoid robot ISAC.

stereoscopic vision. The cameras are compact and lightweight, with a 0.5 inch
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colored CCD array. The cameras are mounted on two Direct Perception 17-

40 pan-tilt units that provide high-speed and accurate servo control reaching

up to speeds of 300 degrees/second [DirectPerception, 2009]. The camera

and servo units are connected to a 3.0GHz computer via two co-axial cables

to frame grabbing cards and two RS-232 connections respectively.

ISAC has two manipulators, each actuated by 12 pneumatic McKibben

artificial muscles. The muscles are linked to replicate human muscles in

agonist and antagonist pairs. Each arm is nominally 6-DoF and has a config-

uration similar to a PUMA1. A detailed overview of pneumatic actuators and

their history can be found in Appendix D. Each set of air muscles is driven

by 12 air-pressured SMC ITV2050 servo valves [SMC, 2009]. The servo and

encoder signals are read through the use of three motion control cards by

VitalSys [VitalSystem, 2009].

Finally, each of ISAC’s end-effectors consist of an ATI six-axis force-

torque (F/T) sensor attached to the wrist as well as a machined aluminum

part specially designed to hold 1.0 in PVC pipes.

HP3JC

The industrial robot is an HP3JC Motoman 6 DoF model. The robot is

a compact, high speed and high-accuracy robot with repeatability at 0.03

mm. The manipulator’s hardware controller is a Yaskawa-Motoman NX100

[Motoman, 2009]. The arm’s physical configuration is a PUMA variant (Fig-

ure 13). The HP3JC has a JR3 six-axis F/T sensor (on loan from NASA

JSC) mounted on the wrist [JR3 Inc., 2009] as well as a three fingered Barret

Hand. [Barrett Technology, 2009].

1The robot has two revolute joints both at the elbow and the wrist. To achieve a

spherical wrist and hence a 6DoF arm, the wrist can be rotated 90 degrees about the pitch
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Figure 13: Motoman’s compact manipulator, the HP3JC.

IMA Architecture

The Intelligent Machine Architecture was developed at the Cognitive Robotics

Laboratory [Pack, 1999, Olivares, 2003] as a platform for distributed concur-

rent programming. It contains agent-based, behavior-based, and reactive

algorithms to provide control for intelligent machines. In IMA 2.5, control

algorithms are encapsulated within intelligent agents - collections of objects

distributed across a network. Agents communicate with each other through

Microsoft’s COM/DCOM communication protocol.

Preparatory Experiments

This set of three experiments was designed to determine the controller pa-

rameters necessary to carry out the three joint assembly experiments.

The first experiment was a static insertion. In this test, the HP3JC

inserted a truss on a rigid fixture. This assembly used the guarded move

controller (πGM ) and the compliant insertion controller (πCI) introduced in

angle. This configuration, however, limits the robots dexterity and was not used for these

experiments.
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Section IV. The reference position (cartesian location) for the guarded move

controller was provided manually in this experiment as was the force reference

used in the compliant insertion controller.

The second experiment extended the first to acquire the reference position

through the visual system. The purpose was to examine the accuracy of the

visual system for insertion tasks.

The third experiment used the results of the previous two experiments

and introduced compliance to assembly. ISAC held a female fixture without

the use of force sensing. The humanoid only used position control. Given

that ISAC is naturally compliant, the goal was to understand the affect of

the elasticity of its pneumatic actuators on assembly tasks.

Criteria to determine the success and length of a task is important. A

task was considered a failure if the truss held by the HP3JC was unable to

enter through the peg and align itself. For all experiments, the timing of the

task began when the guarded move controller transitioned to the compliant

insertion controller. The clock was stopped when the fiducial mark of the

male truss was completely covered by the female fixture – an entry of 4 cm.

The metrics used for comparison of experiments were time-to-completion

and the absolute value of the maximum moment residual error registered in

a task. Note that the moment residual error relates to the alignment of the

wrist. Given that the diameter of the fixture is greater than the diameter

of the truss, a small misalignment is allowed. This is reflected in the data

that shows some residual moment error at the end of successful insertions.

Force residual errors are related to the position of the tool-tip and indicate

a position change.
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Experiment 1: HP3JC Stand-Alone Experiment

This experiment used the HP3JC robot to perform an insertion task under

a rigid and static environment. The HP3JC held a male truss and inserted

it into a female fixture placed rigidly at a distance. This process is shown

through a sequence of images contained in Table V.

Table 1: Images showing the insertion process for HP3JC on a static and
rigid fixture.

The purpose of this first task was to determine baseline performance mea-

sures in terms of: (a) the overall behavior of the process; (b) the position

controller gains, kPi, the moment residual controller gains, kT i, and the force

residual controller gains. kF i; (c) the reference vector for the force subor-

dinate primitive (refF ) in the compliant insertion controller, πCI ; and (d)

error thresholds that yield a smooth transition between the guarded move

controller and the compliant insertion controller.

For this experiment a total of 11 trials were run. The first trial was

an unsuccessful insertion and is presented to show the characteristic of an

unsuccessful insertion. The second insertion was successful but slow; the

third and fourth trials ran faster, and the last trial approached the fixture

from a side instead of straight ahead.
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Results

Trials throughout this experiment are classified as: C MF 00X, where C MF

refer to the use of the cartesian, moment, and force primitives, and X is

the trial number. Each controller has gains and reference values pointing in

the x-, y-, and z-directions. The positive x-direction points in the direction

normal to the face of the F/T sensor and the positive z-direction is upwards.

The first trial, Trial C MF 000, used the following set of controller gains and

reference values:

kFx = 0.00100 kTx = 0.2 refFx = 10.0

kFy = 0.00100 kTy = −0.2 refFy = 0.0

kFz = 0.00025 kTz = 0.2 refFz = 1.3

These parameters yielded an unstable behavior. Gains in the moment resid-

ual primitive were too high. As the truss was inserted into the mating fixture

the controller over-compensated and coerced the fixture out of place. Figure

14 shows the JR3 sensor readings along with moment and force residual er-

rors. The plot shows how during the last 50 seconds of the task the torque

in the y-direction increases steadily. The torque rose from 0 to an absolute

value of 25 in-lbs, which is reflected by the moment residual error. Changes

in the force reference values corresponded to an attempt to modify the be-

havior of the insertion during execution. These reference values affect the

speed and direction of the insertion approach. Controller parameter values

were updated as follows:

kFx = 0.00100 kTx = 0.05 refFx = 10.0

kFy = 0.00100 kTy = −0.0025 refFy = 0.0

kFz = 0.00025 kTz = 0.01 refFz = 0.5

The reference force value in the z-direction compensated for a downward

motion associated with the separation of force and moment components in
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Figure 14: Trial C MF 000: An unstable insertion. The torque and moment
residual error increase as the truss is inserted into the fixture.

the controllers. This separation makes the motion of the first three joints

independent of wrist motions. If there were no separation, the Jacobian

would update the pitch angle of the wrist.

Trial C MF 001 is shown in Figure 15. The results indicate a gradual

reduction in the sensed torques and the moment residual error after initial

contact. The negative force gains shown in the plot were assigned manually

online to extract the truss from its fixture once the insertion was completed.

In the top subplot, readings show that initial impact between the truss struc-

ture and its mating part occured after 430 seconds. The contact generated

significant disturbances in the y-torque. The sinusoidal form of this signal

reflects the adjustment made by the wrist in the vertical plane as the truss

bounces between the upper and lower walls of the inner hull of the female
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Figure 15: Trial C MF 001: A successful but slow insertion. Different force
reference values were used in the task to study system response.

fixture to align itself. A zoomed version of the plot shown in Figure 16

details the behavior of the moments and the force. The compliant inser-

tion controller, πCI , is able to displace the truss to eliminate the moment

residual error after a few seconds. The error presents itself primarily in the

y-direction, but there is also a small error in the z-direction. The force refer-

ence value was set at 10 lbs to drive the insertion. Around 470 seconds this

force was effectively reduced to zero, which indicates a near-complete stop

by the robot. The covering of the inverted chamfer that is a fiducial mark is

prone to friction and is partially responsible for the slowdown of the insertion

process. Larger reference force values were used in future trials to generate a

faster forward motion. The position primitive in the guarded move controller

reached its attractor region when the goal position was achieved. For this
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Figure 16: Trial C MF 001: Zoomed view of torque signals and moment
residual error.

experiment, the goal position provided was a short distance away from the

actual (and optimal) entry point. πGM reached its intended position easily

and transitioned to πCI . Due to the distance, this trial ran for longer periods

of time than those seen in other experiments. Extra time was spent having

the compliant insertion controller reaching the female fixture. To speed up

the system, the reference values were increased. The next successful trial

used the following parameters:

refFx = 20.0,

refFy = 0.0,

refFz = 2.7.

The new parameters resulted in a faster and smoother descent of moment

error in half the time of the previous trial, as shown in Figure 17. Half-way
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through the insertion, the force reference value Fx was attenuated by 50%

to study the response of the manipulator’s motion. The reduction in value

softened the impact during insertion,but increased the time-to-completion.
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Figure 17: Trial C MF 003: Faster insertion with smooth decline in torque
and moment error data.

Two more trials were run to determine if a faster insertion could be

achieved through a different set of force reference values. The force refer-

ence values were set to: 40, 0, and 2.7 lbs. in the x-, y-, and z-directions

respectively. Figure 18, displays the results for trial C MF 006. The in-

sertion in this trial ran faster than previous trials, requiring 85 seconds to

complete. Sensor readings, however, were not as smooth as readings in prior

trials. The force readings registered slightly larger torque signatures due to
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the higher reference force values. Nevertheless, the insertion controller re-

acted favorably to minimize the residual error and successfully complete the

insertion.
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Figure 18: Trial Cart MF 006: A faster insertion due to higher force reference
values. The higher impact is reflected in higher values of torque in the y-
direction.

As part of the 11 trials, 4 of these were executed by having the male truss

approach the female fixture from a side-approach. Instead of positioning the

male truss in front of the fixture, in these trials, it was placed to the side. No

updates were necessary for controller gains or error transition thresholds, the

reference z-force was slightly modified. Figure 19 shows the z-torque values

generated as the manipulator aligned sideways. The sensor experienced 7
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in-lbs of moment in the z-direction. The previous trial (with a straight ap-

proach), on the other hand, registered a much smaller moment in the same

direction, only of approximately 2 in-lbs.
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Figure 19: Trial Side 002: Assembly truss approaches fixtures from a side-
elevated angle. Consequently, torques in the z-direction are registered.

Summary

A total of 11 trials were run as part of two tests. The results are summarized

in Table 2. Successful trials are recorded with an “S” and failed trials are

recorded with an “F” in the results category of the table. Set A, consisted

of seven trials employed a straight approach between the male truss and the

female fixture. Set B, consisted of four trials that employed a side approach.

For each trial, the force reference values were recorded. The force reference

in the x- and z- directions are shown in the table under the “Fx,z” label.
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Similarly, for each trial the maximum absolute values for the moment error

in all three directions: x, y, and z are recorded in the table as “Tx”, “Ty” and

“Tz”. The sum of the absolute value of the moment errors was also recorded

and labeled as “Max Abs. Error”. Time-to-completion and the Max Abs.

Error will be primary metrics for comparison. Averaged values for successful

trials are found at the bottom of the table and are used to compare across

experiments (data for trial C MF 001 was not used as part of the averaged

results).

Results from two experiments show that, generally, with each progressing

trial, the time-to-completion decreased or at least stayed the same, as force

reference values increased. Absolute moment residual values for set A stayed

below 3 in-lbs., while those of set B registered higher average readings for

moments in the y- and z-direction. Set B insertions were slightly rougher

and required more adjustment on both vertical and horizontal planes.

Experiment 2: Visual System Accuracy

The visual system uses the error between the position of the centroid of a

foreground blob that corresponds to a fiducial and the center of the image

to trigger the camera pan and tilt servos. The angles, in turn, are used

to estimate the 3D cartesian position of the gazed object. The accuracy

of the cartesian position relies on how accurately the centroid of the blob

can be positioned in the middle of the screen. To accomplish the desired

accuracy requires robust noise reduction algorithms and accurate servo steps.

Additionally, the visual system does not calculate the cartesian positions

until it has verified that the centroid error is under an empirical threshold.

A snap-shot of the visual imaging process is shown in Figure 20.

This system recognized colored fiducial marks placed on tool-tips of the

68



Table 2 - Experiment 1A and 1B
Experiment 1A and 1B:
Trial Result Fx,z Time Max Abs. Error

(lbs) (secs) Tx Ty Tz Sum
C MF 000 F - - - - - -
C MF 001 S 10,0 470 0 20.26 9.29 29.55
C MF 002 F - - - - - -
C MF 003 S 20,2.7 220 0.37 2.37 1.32 4.06
C MF 004 F - - - - - -
C MF 005 S 40,2.5 82 0.67 3.43 3.08 7.18
C MF 006 S 40,2.7 75 0.54 2.91 2.6 6.05

Average 125.67 0.53 2.90 2.33 5.76

Experiment 1B:
Side 000 F 40,2.7 - - - - -
Side 001 F - - - - - -
Side 002 S 40,3.6 70 1.31 9.67 7.8 18.78
Side 003 S 40, 3.6 85 1.15 10.55 5.82 17.52

Average 77.50 1.23 10.11 6.81 18.15

Table 2: Experiment 1: Summary of trial results.
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Figure 20: Screen shot of visual system performing color segmentation and
tracking of two tool-tips during assembly.

assembly parts. The HP3JC held the truss that used a blue colored tip

and ISAC used the fixture that used a green colored tip. First the visual

system moved to the blue color fiducial mark. When the system verified

the stability of the camera motors it calculated the position. Then it moved

to the green color mark. The process was repeated again. A transform

was derived and used as a reference position for both robots throughout the

remaining experiments.

Results

For the experimental set-up, the HP3JC robot along with the gripped PVC

truss was placed in front of ISAC. The corresponding fixture was positioned

at: (a) the top of a table nearby ISAC, and (b) the truss held rigidly by

ISAC’s end-effectors. The first location allowed for easy set-up and a pre-

liminary analysis of the system. The second set-up had both tool-tips in
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positions close to those used in the rest of the experiments. In both cases

and throughout a number of trials, physical measurements were taken to find

the distance between both tool-tips. Results for 8 trials are shown in Figure

21. The averaged computed position in millimeters with reference to the cen-
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Figure 21: Comparison between computed estimates, measured distances,
and average computed positions.

ter of the robot’s visual system was: < 116.4875~x,−9.3278~y,−73.9001~z >;

the averaged error was calculated to be: < −3.5125~x,−9.3278~y, 46.0999~z >.

The z-coordinate showed the largest margin of error. The cameras presented

some jitter motion when the the system recorded positions in space suggest-

ing that the system’s stability check was loose. To improve stability, three

modifications were made: (a) the velocity and acceleration of each camera

was decreased by half to aid the integrity of the color segmentation process,

71



(b) the error threshold for head stability was decreased, and (c) the mag-

nitude of the standard deviation for the ellipse used to segment the green

fiducial mark was increased. Another set of trials were carried out, with

better results as shown in Figure 22.

1 2 3
−250

−200

−150

−100

−50

0

50

100

150
Estimated Cartesian Positions vs. Measured Cartesian Positions

Trials

P
os

iti
on

 (
m

m
)

 

 
MX
MY
MZ
EstX
EstY
EstZ
AvgX
AvgY
AvgZ

Figure 22: More accurate results after the visual system was refined.

The averaged position for the new set of trials was: < 129.2595~x, 1.6289~y,−223.2044~z >

and errors decreased to: < 14.2595~x, 6.6289~y, 11.7956~z >. Compared to the

previous set of trials, the disparity between computed and measured position

was smaller for ~y and ~z and slightly larger for ~x. These results seemed to

be of good-fit considering that the aperture of the female PVC pipe held

by ISAC was of 25.4 mm. Nonetheless, a bias of 20 mm was applied in the

negative x-direction to decrease the likelihood of having the male truss held
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by the HP3JC to surpass the insertion point of the female fixture during the

guarded move approach. The source of error in the x-direction may have been

due in part to the color segmentation process. The colored fiducial mark for

the HP3JCs covered an inverted chamfer, which was 4 cm long, while the

green fiducial was 3 cm long. Given that the centroid was computed for both

markers, an approximate 3.5 cm error may have been embedded in the color

segmentation process.

The parameter configuration derived was used for the next four experi-

ments. The visual system successfully returned the goal position 90% of the

time across the remaining experiments.

Experiment 3: Assembly with a Compliant Robot

The third experiment studied the effect of a compliant robot on the assembly

process. Compliant devices are commonly used in the end-effector of stiff

robots as described in Section II, but we found no literature reporting on

assembly with a compliant robot. While compliant robots are challenging to

control, their elasticity can compensate for the high strain forces experienced

with industrial manipulators.

This experiment used the industrial HP3JC manipulator, the visual sys-

tem, and the compliant humanoid robot ISAC. ISAC used rigid end-effectors

to hold a female fixture only using position control. The HP3JC robot held

the male truss and began the guarded move approach when the visual system

computed the reference position. As in experiment 1, the compliant insertion

controller was triggered once the reference position was reached.

In this section, a total of seven trials were run and three outcomes are

described here. The first is a failed trial, the second is a smooth insertion,
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and the last is an example where the truss rammed against the edge of the

female fixture. Trials for this third experiment are labeled as Comp 00X.

Results

Initial trials were run with force reference values of << 20~x, 0~y, 0.5~z >>

for a slow entry. Later trials used values twice as large. Trial Comp 005

failed; however, due to an erroneous reference position provided by the visual

system. The truss passed over the fixture by a few centimeters and never

made contact. Figure 23 shows the resulting force and moment signatures

for the industrial robot. This plot shows small readings in moments and no

change in forces. The moment readings do not significantly vary over time

although they decrease at a steady pace. That was probably induced by the

weight of the end-effector as it was displaced over time.

Trial Comp 004 on the other hand is an example of a fast and smooth

entry. This run was completed in 43 seconds. The controllers worked ef-

fectively to minimize the moment residual error. The results are shown in

Figure 24. Torques in the y-direction reached 5 in-lbs, while those in the

z-direction reach 2 in-lbs. Both residual errors were minimized to zero over

the course of the task. Similarly, no force interjections were experienced

such as a force that pushed the manipulator up or down, or even backwards.

Compared to the plots in experiment 1 during the rigid insertion, this plot

exhibited smoother curvature over the duration of the task due to the gentle

adjustments by the compliant robot as the truss was inserted.

Another interesting datum was revealed in trial Comp 007. In this case,

the guarded approach by the HP3JC robot forced the truss against the edge

of the mating fixture for a few seconds. Over time, the forces experienced

by both robots increased steadily and delayed the task’s time-to-completion.
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Figure 23: Trial Comp 005: Force and moment plots for the HP3JC robot
during a failed insertion where the robot moved past the entry point.

After a brief period, the compliant robot snapped in the right direction and

allowed the assembly task to proceed rather quickly. The higher stresses

experienced by the industrial robot are shown in Figure 25. The sensor ex-

perienced the highest reading for Ty reaching a magnitude of 15 in-lbs. This

accumulation reflects the stress experienced by the wrist of the manipulator

as it tried to adjust its motion while ramming against the fixture. After a

backlash motion, the truss quickly entered the fixture and the sensor’s torque

readings dropped drastically – under 5 in-lbs – for the rest of the task.
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Figure 24: Trial Comp 004: Smooth and faster results than prior runs.

Summary

Integrating compliance into the assembly process enhanced results as com-

pared to those in experiment 1. Seven trials were run, five of which were suc-

cessful. A summary is presented in Table 3. The average time-to-completion

of these trials is 69 seconds compared to the average time of 80 seconds for

the trials in experiment 1 that had a side-approach, and the average time

of 251 seconds for the trials in experiment 1 that had a straight approach.

Two sets of force reference values were consolidated, one set for “fast” in-

sertions, the other for “slow” insertions. The former uses reference values of

< 40~x, 0~y, 1~z >, the latter uses < 20~x, 0~y, 0.5~z >. The average moment read-

ings for this set of trials was very low, only slightly larger than those trials in

experiment 1 that had a straight approach due to the ramming of the truss
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Figure 25: Trial Comp 007: Example of a truss ramming into a female fix-
ture. Higher forces, errors, and increased time-to-completion is experienced.

onto the edge of the mating part for the last trial of this experiment. The

compliance of the humanoid robot helped render this last trial successful,

without compliance it would have failed and possibly damaged the assembly

parts or the robots themselves.

The three experiments presented above were preparatory for the the joint

assembly experiments described in the next section. Experiment 1 provided

a baseline for controller gains, error transition thresholds, and general refer-

ence values for the controllers. Experiment 2 served to test the accuracy of

the visual system to ensure a reliable goal position for the active robot. Ex-

periment 3 demonstrated that the use of compliance facilitated the insertion

task for the industrial robot.
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Table 3 - Experiment 3

Trial Result Fx,z Time Max Abs. Error
(lbs) (secs) Tx Ty Tz Sum

Comp 1 F - - - - - -
Comp 2 S 20,.5 95 0 3.86 1.68 5.54
Comp 3 S 20,.5 88 0 5.4 1.45 6.85
Comp 4 S 40,1 43 0.59 4.95 2.22 7.76
Comp 5 F - - - - - -
Comp 6 S 40,1 50 0.4 3.96 2.69 7.05
Comp 7 S 40,1 70 0 14.31 3.19 17.5

Average 69 0.20 6.50 2.25 8.94

Table 3: Experiment 3: Summary of results.

Cooperative Assembly Experiments

The second set of experiments executed assemblies as part of a coordination

and cooperation scheme across robots. Three scenarios were studied. Two of

them involved having one robot drive the insertion while the other performed

as a static partner. The final experiment consisted of two active robots in

which both used force-sensing to drive the insertion. These scenarios were

similar to human behavior, when two individuals carry out an insertion task,

one person may push while the other holds; similarly, there are times when

both people push to speed-up the task.

The following experiments used the πGM and πCI controllers for the in-

dustrial robot. ISAC used the virtual-contact counter balance controller

<< πV CB >> in experiment 4, and the virtual-contact guarded move <<

πV GM >> and compliance insertion << πV CI >> controllers in experiments

5 and 6. One exception was the exclusive use of the πGM controller for the

industrial robot in experiment 5.

For the joint assembly experiments, the same data measurements used for

the HP3JC robot were also used for ISAC. The clock for each task; however,
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was still maintained by the HP3JC robot, except during experiment 5 when

ISAC was the only one using force sensing. Quantitative and qualitative

analysis of ISAC’s results are presented.

Experiment 4: HP3JC-active and ISAC-static

This experiment designated the HP3JC robot as the active contributor and

ISAC as a static holder. In contrast to experiment 3, this set of trials had

the compliant robot run a counter-balance controller. The latter aligned the

orientation and position of the female fixture to facilitate the entry of the

male truss driven by the industrial robot (the counter-balance controller does

not update the position of the virtual contact if it does not sense any stimuli

from the environment).

For this experiment, three scenarios are initially described here: the first

scenario was a wedge situation, the second one a jam, and the third one was

a quick insertion that underwent high strains caused by instability in the

HP3JC robot. Trials in these experiments were labeled Balance 00X.

Before ISAC’s analysis is presented, it is worth noting a few points cor-

responding to the data related to the compliant robot for this and future

experiments:

1. While ISAC uses two force sensors, a virtual contact is used as part of

this robot’s controllers. The πV CI controller averages the contribution

of both sensors and the updated positions of the manipulators; hence,

producing only one plot for the moment residual and force residual

errors.

2. The moment and force residuals do not match the magnitudes of max-

imum registered torques or forces in the individual F/T sensor plots.
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This too is related to the fact that both sensor readings are averaged

before computing any errors.

3. The left and right ATI sensor can experience inversely related forces.

If one sensor experiences a positive moment then the other one may

experience a negative moment. This results from having both sensors

connected by a PVC truss.

4. The legend for all ISAC plots shows Ty before Tx. The ATI sensor

had difficulties applying a rotation transformation to the coordinate

frame in order to align the sensor frame with the robot frame. Data

was read in an order that would represent the appropriate coordinate

axis alignment.

Results

As in experiment 1, an initial set of controller gains and reference force values

are presented, in this case for ISAC through the use of the πV CB controller:

kFx = 0.00100 kTx = 0.002 refFx = 0.0

kFy = 0.00100 kTy = −0.002 refFy = 0.0

kFz = 0.00025 kTz = 0.002 refFz = 0.0

Reference values of zero were used as a reference to always minimize any

force residuals to zero. The first trial: Balance 001, was successful, although

the responsiveness of πV CI was low – in particular the wrist motion. Moment

gains were adjusted and a more responsive set was found to be: kTx = 0.2,

kTy = −0.2, and kTz = 0.2. In first trial to be described in this section is

Balance 010, where “wedging” occurred. Wedging occurs when a truss makes

a two-point contact and the direction of motion prevents the parts from

aligning. One of those contacts, exerts forces at the tip of truss inside the
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fixture’s hull female fixture; the other contact exerts forces at the interface of

the edge of the fixture and the body of the truss. Both of these forces seem to

push in opposite directions. During the trial, wedging tricked the controller

into thinking there was no need for realignment. The robots still moved to

minimize the perceived residual errors and achieved the insertion though the

alignment was not as desired. The trial lasted 95 seconds and it was longer

than all but one trial in experiment 1. The duration was unexpected in light

of ISAC running the counter balance controller. However, due to wedging,

the task duration was increased. Data for the industrial robot is shown in

Figure 26. The force residual plot revealed no significant deviations from
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Figure 26: Trial Balance 010A: The HP3JC inserts the truss into the fixture
although wedging occurs.

the reference values indicating that the HP3JC did not experience exterior

forces that would perturb the path of the truss (i.e. force the truss to move
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upwards, downwards, backwards, or halt). The moment residual plot also

shows a continuous minimization of the residuals, in spite of the wedging

condition, conveying that the HP3JC set of controllers did not detect this

situation. The force readings for ISAC corresponding to trial Balance 010 are

shown in Figure 27. The absolute value of the maximum moment residuals
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Figure 27: Trial Balance 010B: ISAC’s response using a virtual counter bal-
ancing controller in a wedge situation.

for ISAC were of: Tx=1.0, Ty=2.4, and Tz=1.6. These were minimized over

time. The force residual for the compliant robot presented a more intricate

pattern than the one for the industrial robot. The plot describes how the

virtual contact’s position is affected over time. Due to wedging, the fixture

was forced into a backwards and downwards motion. An examination of the

force plot shows how the system experienced intermittent forces in the x-

direction greater than its reference value of 0. Each of these peaks represents
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a backwards motion. For the z-direction, a force greater than zero indicates

a downward motion. Note how the four subplots register initial activity,

synchronously, at ISAC’s clock mark of 60 seconds. This corroborates initial

contact and increased errors in the first half of the plot with decreased errors

in the second half.

The second trial, Balance 011, yielded a successful insertion and align-

ment but experienced a jam. During initial contact, the male truss hit the

edge of the female fixture and pushed back on it. After some time, the com-

pliant robot snapped so as to continue the insertion. The task required less

time than the aforementioned trial but still experienced an above average

time-to-completion compared to other trials. For the HP3JC robot, Figure

28 shows similar data to the prior trial. ISAC registered a higher torque
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Figure 28: Trial Balance 011A: HP3JC robot efficiently completes the inser-
tion task.
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in the y-directions than the prior one due to the impact of the jam. The

duration of these forces is shorter for trial 011 than trial 010, particularly for

the force in the z-direction. Data is shown in Figure 29.
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Figure 29: Trial Balance 011B: ISAC successfully aligns the orientation of
both end-effectors to assist in the mating of the assembly parts.

The third example, trial Balance 005, presented a unique scenario. As the

truss held by the HP3JC entered the fixture, the industrial robot maintained

a significant downwards motion creating a difficult situation for ISAC. ISAC;

however, adapted well to this behavior and over time ISAC’s fixture exerted

an increased upward force on the truss. The HP3JC controller responded by

moving upwards quickly and in large steps. Then another important down-

wards motion proceeded. It was remarkable that both robots continued to

maintain the insertion in spite of the significant vertical motion registered in

this run. This response mimicked the way humans would have behaved in a
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similar circumstance and is an attribute of both the controllers and the hu-

manoid robot’s compliant nature. The data for the ATI force sensors in trial

Balance 005 was corrupted. The force-torque data from both sensor over-

lapped and was not divisible. The residual plots; however, are still included

since they contain very descriptive data and represent a very unique scenario.

The residual plots are shown in Figure 30. The force residual plot depicts
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Figure 30: Trial Balance 005B: ISAC exhibits quick reactions to match mo-
tions exerted by the HP3JC robot.

the vertical motions of the task clearly. Between readings 0-20, the posi-

tive force error denotes a downward motion. There is a sustained and much

greater force that drives the arm upwards followed by an equal downwards

motion during readings 80-95. Around sample index 85, an asymmetrical

correlation between the moment residual error, Tz, and force residual error,

Fz, is present. When the moment residual is positive the error of the force is
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negative. This inverse relationship illustrates how when the arm is moving

up, the wrist is pulled down. ISAC’s controller gains and elasticity allowed

for a fast response.
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Figure 31: Trial Balance 005A: HP3JC experiences important upward and
downward motions.

The experienced moment residual for the HP3JC was minimized over

time, as seen in Figure 31. Toward the end of the task; however, both

the moment in the y-direction and the force in the z-direction rose. The

increment in moment error corresponded to the upward motion that the

system experienced during the task. The force plot also shows the downward

motion after a few seconds. The correlation between ISAC’s results and the

HP3JC’s result corroborates how both systems underwent an unusual vertical

motion as the insertion took place within 57 seconds, the fastest insertion to

this point.
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Summary

The averaged time-to-completion results for this experiment were unexpected.

The average time-to-completion across all trials showed a very small improve-

ment over experiment 3. When trials were separated according to force refer-

ence values (Fx=20 for slow insertions and Fx=40 for fast insertions), it was

seen how the average time-to-completion for trials with Fx=40 had a higher

time to completion. ISAC also experienced higher moment errors than in pre-

ceding experiments. Two trials in this experiment experienced delays due to

a jam and wedging. It was noted that when wedging took place, the robot’s

wrists moved slightly upwards as the πV CB controller was triggered. This

was a reaction to a build-up of forces on the wrists of the robot caused by

the rigid PVC structure connecting both end-effectors. As the wrists rotated

upwards, they in turn rotated the orientation of the fixture and prevented

a clean entry for the male truss. This position favored wedging, which the

controllers and associated control policy were not well suited to detect. As

contact was made at two points, such that a wedge was created, a singular

and compounded force was sensed and controllers were unable to discern the

problematic alignment scenario. The controllers still attempted to minimize

net moments and forces, but did not alleviate the wedging condition.

With regards to the industrial manipulator, increased moment errors (as

seen by the averaged sum of maximum value moments) were experienced

compared to the previous experiment. The moment residual nearly doubled

in size, experiencing a 92% increase. This experiment was the first example

in which two robots ran force controllers. Table 4 presents a summary of

the results for this experiment. Trials 7 - 9 were successful but the data was

corrupted.

Given the unfavorable results in the preceding runs, a new batch of trials
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Table 4 - Experiment 4
HP3JC ISAC

Trial Res Fx,z Time Error Fx,z Error
(lbs) (secs) Tx Ty Tz Σ (lbs) Tx Ty Tz Σ

1 S 40,2.7 53 0.5 4.1 2.2 6.9 0,0 38.0 28.3 49.8 116.0
2 F - - - - - - - - - - -
3 F - - - - - - - - - - -
4 S - - - - - - - - - - -
5 S 40,2.7 43 0.7 12.4 2.1 15.1 0,0 149.6 213.9 157.0 520.5
6 F - - - - - - - - - - -
10 S 40,1 95 1.2 13.3 7.3 21.8 0,0 67.0 188.4 129.7 385.1
11 S 40,1 80 0.5 17.1 7.4 25.0 0,0 75.7 257.1 49.6 382.5
12 S 20,1 48 0.5 9.9 2.5 12.9 0,0 9.6 22.5 39.4 71.52

Avg 63.8 0.7 10.7 4.0 17.2 70.6 139.5 85.0 295.1

Table 4: Experiment 4a: Summary of results including a wedge and a jam.

was run to achieve clean insertions without jamming or wedging. It was im-

portant to see if the time-to-completion of trials without wedging or jamming

would yield better performance than those in Experiment 3. Six more trials

were run. Three used reference value Fx = 20 and three used reference value

Fx = 40. Special attention was paid at the set-up of the fixture for ISAC.

These six trials yielded good results. One trial out of this set is highlighted.

Trial Balance 014 was complete in 54 seconds. This insertion was com-

pleted in nearly half the time than trials Balance 010 and 011. Moments in

the y-direction were reduced efficiently by both the HP3JC and ISAC, and

moments in the z-direction maintained a small presence in both robots. The

approach by the HP3JC was a more marked side approach which exerted

moments in the z-direction and were not completely removed. The magni-

tude of these was not of significance and allowed the insertion to take place

successfully.

A new average across trials was computed (excluding trials Balance 010
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Figure 32: Trial Balance 014A: HP3JC drives a smooth insertion while ISAC
runs the counter-balancing controller.

and 011 which had extreme results) and showed in Table 5. The new av-

eraged results follow the trend seen across experiments 1 and 3. The time-

to-completion for the overall trials and the sub-categories of Fx = 40 and

Fx = 20 was lower in this experiment than in 3. Similarly, the sum of

moment residuals is higher for this experiment than before – even without

the wedge. This result suggests that as cooperation increases so are the

maximum experienced forces by the robots.

Experiment 5: ISAC-active and HP3JC-static

The fifth experiment evaluated ISAC’s ability to lead and drive the insertion.

At ISAC’s home position the HP3JC robot stands much higher than the base

height of the female truss held by ISAC. This experiment was set-up such that
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Figure 33: Trial Balance 014B: ISAC cooperates in the joint assembly where
no jams or wedging took place.

the industrial robot performed a guarded move approach and then halted in

front of the entry point for the insertion. At that time, ISAC’s virtual-contact

compliant insertion controller, πV CI was activated.

The task dynamics were distinct from prior experiments. Insertions

driven by the compliant robot are prone to stiction due to the elastic na-

ture of ISAC’s muscles. In this experiment, stiction played a dominant role

as opposed to cases where ISAC maintained a static position. Sensor and

residual error plots in Figures 37 and 35 present characteristic features of

stiction. Similarly, force residual plots present a minimization or canceling

of force reference values, which correspond to the robot’s slowing down or

halting. Stiction phenomena presents characteristic patterns in the sensor

and moment residual plots in the form of a quick rise in experienced torque
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Experiment 4
HP3JC ISAC

Trial Result Fx,z Time Error Fx,z Error
(lbs) (secs) Tx Ty Tz Sum (lbs) Tx Ty Tz Sum

1 S 40,2.7 53.0 0.5 4.1 2.2 6.9 0,0 0.5 0.4 0.6 1.5
5 S 40,2.7 43.0 0.7 12.4 2.1 15.1 0,0 1.9 2.7 2.0 6.5
12 S 20,1 48.0 0.3 9.9 2.5 12.7 0,0 0.3 0.1 0.5 0.9
13 S 40,2 39 0.9 11.2 4.1 16.2 0,0 3.8 0.8 1.1 5.8
14 S 40,2 54 0.7 3.81 3.56 8.1 0,0 1.0 2.1 1.9 5.1
15 S 40,2 46 0.7 16.1 5.9 22.7 0,0 0.5 1.6 1.1 3.1
16 S 20,1 76 0.0 0.7 1.1 1.8 0,0 0.3 2.2 1.4 3.9
17 S 20,1 72 1.1 16.5 6.6 24.2 0,0 0.9 1.8 0.9 3.6

Avg 54.0 0.6 9.3 3.5 13.5 1.1 1.5 1.2 3.8

Table 5: Experiment 4b: Summary of results with new trials and no wedge
and jam.

followed by an immediate drop in it. The quick drop corresponds to a back-

lash motion experienced by the fixtures once forces overcome friction caused

by stiction.

For the HP3JC robot, plots contain two subplots that display the robot’s

cartesian position and the associated error for the position as part of the

guarded move controller. For ISAC, force and moment plots are displayed

as in previous experiments. Seven trials were run in this experiment and

labeled as ISAC 00X. All of them were successful. Two trials are reported

in the next section. The first one is an example of a smooth entry for the

humanoid, and the last one shows high stiction in the assembly.

Results

Trial ISAC 005 is an example of a successful insertion driven by ISAC with

light stiction. The cartesian plot shown in Figure 34began with no change in

position, which corresponded to a wait in time of the πGM controller for the
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goal position. The executed trajectory for the industrial robot was non-linear,
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Figure 34: Trial ISAC 002A: HP3JC moves towards its reference position
using the guarded move controller.

Figure 34 shows smooth curves for the system’s trajectory. The controllers

drove the displacement of the end-effector to converge to the attractor region.

The top plot shows the change in cartesian position as the HP3JC robot

moved to the reference position. In the top sub-plot the x-position increased,

representing a forward motion by the robot; and the z-position decreased,

representing a decrease in height. All other variables had minimum change.

The lower sub-plot depicts how the error for all elements of the position

vector converged to zero over time.

In Figure 35, ISAC’s clock determined the task’s duration. In trial

ISAC 005, the task lasted 79 seconds. At clock time 10, a quick rise was
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Figure 35: Trial ISAC 002B: ISAC drives the insertion through a virtual
compliant insertion controller.

recorded in Tz values and to a lesser degree in the Tx values. This action is

reflected in both the moment residual and force residual curves. In the latter,

force references of Fx=-0.5, Fy=0, and Fz=-0.31 were used (as in experiment

6). The force residual plot revealed that when stiction began (between sam-

ples 7 and 25) that the driving reference force in the x-direction was canceled.

This corresponded to a halt in ISAC’s forward motion. The moment residual

error also increased during this time, further corroborating the phenomena.

Once stiction was overcome by the corrective forces of the controllers, the

error was minimized. Once the insertion took place the moment error in the

z-direction increased due to light stiction on the left sensor. The plot for the

left ATI sensor shows a sinusoidal form for the torque in the z-direction from

time 50-79 seconds, suggesting a stick-and-slip behavior.
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The second example, trial ISAC 004, smoothly reached its reference posi-

tion as shown in Figure 36. For ISAC, Figure 37 shows rich plots representing
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Figure 36: Trial ISAC 004A: HP3JC moves towards its reference position
using the guarded move controller.

a few instances of strong stiction points. Both ATI sensor plots registered

high torque changes around clock times 200, 280, and 295. A summary is

presented in the Table 6.

Clock Left Right
(secs) △T △T
200 △Ty = 6.75 △Ty = -3.67
280 △Ty = 4.42 △Tx= 12.94
295 △Ty = 3.31 △Ty = 3.00

Table 6: Stiction is represented by high changes in torques for trial
ISAC 004B
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Figure 37: Trial ISAC 004B: ISAC experiences very high stiction points in a
few instances.

The force residual plot shows the presence of stiction through two in-

stances in which refFx is canceled and refFz is minimized over time. At

sample index 57, Fx changed quickly from 0 to -0.5 lbs corresponding to a

quick forward boost and at sample index 133 Fx changed quickly from 0.07

to 0.75 lbs. The moment residual error minimized the forces twice. The

resurgence of force residuals, after being minimized, is related to another set

of stiction points. A summary of results for this experiment follows.

Summary

The averaged time-to-completion for these trials was 164 seconds. A higher

duration than the average values recorded across experiments for the indus-

trial manipulator. The control of the compliant robot is more difficult than
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that of its industrial counterpart. Slower speeds were used to ensure a better

system control. With respect to moments residuals (in all three directions

and the sum) sensed through the virtual contact, the average values were

lower than in the fourth experiment, and the maximum torque values regis-

tered by the ATI sensors were generally higher due to stiction. The average

sum of the errors was lower than in the previous experiment, which reflects

the HP3JC’s lack of active participation in the task. A summary of the

results is shown in Table 7.

Experiment 5 ISAC

Trial Result Fx,z Time Max Abs. Error
(lbs) (secs) Tx Ty Tz Sum

1 S (-.5,-.3) 253 35.6 119.9 45.4 200.9
2 S (-.5,-.3) 239 86.1 233.6 72.1 391.8
3 S (-.5,-.3) 172 78.3 112.3 88.9 279.5
4 S (-.5,-.3) 296 72.6 140.7 43.3 256.6
5 S (-.5,-.3) 79 41.0 124.0 164.0 329.0
6 S (-.5,-.3) 47 84.0 135.0 157.0 376.0
7 S (-.5,-.3) 63 29.0 93.0 241.0 363.0

Avg 164 61 137 116 314

Table 7: Experiment 5: Summary of results.

Experiment 6: Two Active Robots

The sixth experiment was the most involved and built on all previous evalua-

tions. Four controllers were used in this experiment. The HP3JC robot used

πGM and πCI , while ISAC used πV GM and πV CI . The experiment used the

stereo cameras to compute the goal position for the πGM controller. When the

guarded move controller received the reference position, the approach motion

was triggered. Upon completion of the motion, the controller transitioned to

the compliant insertion controller. ISAC, concurrently, executed the πV GM

96



controller, with a reference position pointing to the home state. When the

HP3JC made initial contact with the female fixture, ISAC transitioned to

the πV CI controller. A series of images contained in Table 8 illustrate the

assembly task.

Table 8: Experiment 6: Two heterogeneous robots cooperate to perform a
joint assembly using force sensing.

Nine trials were run for this experiment. Six were successful and two

are reported in the next section. The first trial used “slow” force reference

values, while the second used “fast” values, as defined in Experiment 3. Both

trials yielded smooth force readings during the joint robot assembly. Data

for these experiments is presented through sensor readings and residual error

plots for both robots. Trials are labeled as Two 00X.

Results

Trial Two 007 reported a smooth insertion. The maximum torques experi-

enced by the industrial robot were among the lowest across all trials, only

3 in-lbs and -4 in-lbs for the y- and z-moments respectively. This is due

to the force reference parameters used that drove a slower insertion, which

took 70 seconds. The sensed force curves were smooth and similar to those
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experienced in experiment 3 and reflect the interaction with the compliant

robot as shown in Figure 38.
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Figure 38: Trial Two 007A: HP3JC force data for a “slow” approach in
cooperative assembly task with ISAC.

The moment residual errors for ISAC were smaller than all other trials in

all experiments. There were two exceptions, one in experiments 3, and one

in experiment 4. Registered residuals were: Tx=0.38, Ty=0.7, and Tz=0.48

in-lbs. The low errors registered for both robots yielded the slowest assembly

for all trials in this experiment. Though seemingly counterintuitive, the con-

trollers produced larger update steps when the residuals were also large. This

relationship yields to kinds of dynamics: slow insertions with low moment

errors and fast insertions with high moment errors. As expected for a low

impact assembly, the force plot was minimally affected throughout the trial,
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only experiencing a small slow-down in its forward motion between readings

15 and 20, as conveyed in Figure 39.
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Figure 39: Trial Two 007B: ISAC coordinates its motions to assist in the
joint assembly with the HP3JC robot.

Trial Two 001 produced the fastest assembly in all the experiments, re-

quiring only 25 seconds. The speed of the assembly also induced the highest

torques on both the HP3JC and ISAC. The plot for the former is shown in

Figure 40. ISAC’s force plots featured characteristics seen in prior exper-

iments. High and fast rises in torques followed by sharp drops as seen in

both the sensor plots and the moment residual plot, around time 110 sec-

onds, show a brief jam experience for the assembly parts. The force residual

error showed how both Fx and Fz were canceled suggesting a halt in forward

motion as seen in Figure 41.
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Figure 40: Trial Two 001A: HP3JC increases its speed in the cooperative
task with ISAC.

Summary

Experiment 6 yielded the fastest averaged time-to-completion assembly of all

experiments. This result is important and provides evidence that the assem-

bly task was more efficient when the two heterogeneous robots coordinated

their activity to mate the PVC pipes. Trial 9 was completed with the fastest

time of all trials in all experiments. With regard to moments, experiment 6

has larger average moments for the HP3JC than previous experiments (ex-

cept for when wedging is present as happened in a trial in experiment 4).

Similarly, ISAC experienced higher average moments in experiment 6 com-

pared to previous ones. Data suggests that as cooperation levels increase so

do the exerted forces across the robots. Even so, the system is able to reach

its goal state and achieve assembly in less time than previous experiments.
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Figure 41: Trial Two 001B: ISAC experiences increased stress as the HP3JC
drives truss more speedily.

Summary for the results across 6 successful and 3 failed trials is presented

along with averaged values in Table 9.

Analysis

This section provides a comparison of the results. The analysis draws con-

clusions regarding the relative benefits and weaknesses of the control basis

in executing joint assembly tasks through a team of heterogeneous robots

and through different coordination schemes. In order to compare the per-

formance of the system three metrics are used: (a) time-to-completion, (b)

the sum of the maximum absolute value of the moment residuals in the x,

y, and z directions (described as “moment error” throughout the remainder
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Experiment 6: Both active
HP3JC ISAC

No Res. Fx,z Time Max Abs. Error Fx,z Max Abs. Error
(lbs) (secs) Tx Ty Tz Σ (lbs) Tx Ty Tz Σ

1 S 40,1 25 0.7 22.8 9.0 32.5 -40,-25 116 357.4 696 1169.4
2 S 20,.5 37 0.0 0.4 5.3 5.8 -40,-25 94.1 130.0 16.2 240.3
3 F - - - - - - - - - - -
4 F - - - - - - - - - - -
5 S 20,.5 60 0.0 11.0 6.0 17.0 -40,-25 77.9 171.3 204 453.2
6 F - - - - - - - - - - -
7 S 20,.5 70 0.0 3.0 4.0 7.0 -40,-25 32.8 56.6 38.4 127.8
8 S 40,2 21 1.2 5.6 6.7 13.5 -40,-25 32.6 144.3 240.7 417.6
9 S 40,2 14 1.3 6.3 5.8 13.3 -40,-25 70.3 172.3 289.7 532.3

Avg 38 0.5 8.2 6.1 14.8 70.6 172.0 247.5 490.1

Table 9: Experiment 6: Summary of results.

of this section), and (c) the force reference parameters. The force reference

parameters, more specifically refFx, effectively set the task’s execution speed

and is useful to categorize data into groups belonging to fast insertions or

slow insertions.

It is of interest to understand how the time-to-completion correlates to

the associated moment error for a given force reference. Five different com-

parisons are carried out to evaluate the relationships between completion

time and moment error. The comparisons are detailed below:

Comparison 1 Compares the averaged times-to-completion and averaged

moment errors for the HP3JC robot in experiments 1, 3, 4, and 6.

This initial analysis is a blind comparison as it uses values from trial

that have different force reference values in the x-direction, refFx.

Comparison 2 Carries out the same comparison as in 1, but only looks at

average results for trials that used refFx = 40
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Comparison 3 Carries out the same comparison as in 1, but only looks at

average results for trials that used refFx = 20

Comparison 4 Compares the averaged times-to-completion and averaged

moment error’s for ISAC across experiments 4 and 6. Experiment 5

is not included since the timing for that experiment was inherently

different than the other two.

Comparison 5 Same as comparison 2, but in this case the moment errors

attained for experiments 4 and 6 for the ISAC robot are averaged with

the error moments for the HP3JC robot.

The results of the comparisons are now presented and displayed through the

use of bar charts.

Comparison 1

The averaged time-to-completion results from experiments 1, 3, 4, and 6 are

plotted along with the corresponding averaged moment errors for the HP3JC

robot with disregard for what force reference was used. The results are shown

for the aforementioned four experiments in Figure 42.

The plot reveals that as the level of cooperation across robots increases so

does the moment error. That is, with each subsequent experiment a greater

maximum moment error is registered. As the amount of cooperation in-

creases with subsequent experiments so do the stresses exerted mutually by

the robots. The moment error is always minimized although a greater amount

of error is accumulated with subsequent experiments. Similarly, data shows

that with increased levels of cooperation the task time-to-completion is re-

duced. Experiment 1 registered one trial with exceptionally high moment
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Figure 42: Comparison 1: Average values for all trials for the HP3JC.

errors and time-to-completion that was not considered here. Also, Experi-

ment 4 had one trial that jammed and one that had wedging that had longer

than average durations and higher moments that were not considered here.

Experiment 6 was 30% faster than the next fastest experiment and 70%

faster than the slowest experiment. With respect to moments errors, exper-

iment 6 had 110% higher moment errors than 4 and 257% higher moment

residuals than experiment 1.

Comparison 2

The second comparison is a subset of the 1st and only looks at average values

that come from trials that used refFx = 40. This comparison narrows in on

faster trials across experiments. The results are shown in Figure 43.

The trend mentioned in Comparison 1 is seen here as well. The moment

error steadily increased across experiments. The averaged moment error in
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Figure 43: Comparison 2: Average values for all trials consisting of refFx =
40 for HP3JC.

experiment 6 was 115% higher than experiment 4 and nearly three times

greater than in experiment 1. With respect to time, this comparison also

shows that with increased cooperation assembly tasks are executed faster.

The duration for experiment 6 in this category was 58% faster than that in

experiment 4; 63% than experiment 3, and 75% faster than the experiment

1. In this case, by classifying the data according to the same force refer-

ence parameter, a heightened degree of efficiency is discerned from the data.

The speed increase recorded with subsequent experiments greatly reduces

the task’s time-to-completion, specially when both robots are active in the

assembly.

Comparison 3

The third comparison looks at the slower force reference parameter, refFx =

20. The results are presented in Figure 44.
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Figure 44: Comparison 3: Average values for all trials consisting of refFx =
20 for HP3JC.

Even for the slower insertions, the trend found in the previous two com-

parisons still holds. In this comparison, experiment 6 was 15% faster than

experiment 4, 39% faster than experiment 3, and 75% faster than experiment

1. One can see that the increase in speed across experiments is proportional

to the numbers recorded in comparison 2. In terms of moment error, experi-

ment 6 was 139% higher than experiment 4, 289% higher than experiment 3

and 442% higher than experiment 1.

Comparison 4

This comparison focuses on performance metrics for ISAC. Data comparisons

for ISAC are more challenging due to a number of factors: (1) the number of

experiments including ISAC were lower than those for the HP3JC robot and;

hence limit the availability of comparable data. (2) Experiment 5 cannot be

used since the HP3JC’s clock was not used as opposed to experiments 4 and
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6. (3) The force reference values for experiments 4 and 6 were different for

ISAC. The former had zeroed force reference values for the counter-balance

controller, and the latter had force reference values equal to Fx=-0.5, Fz=-

0.31 lbs, to drive the insertion. The comparison is made, but is blind in that

regard. The results are shown in Figure 45.
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Figure 45: Comparison 4: Average values for all trials for ISAC.

Figure 45, nonetheless, provides the same patterns found in previous com-

parisons. The task time-to-completion decreases with increased cooperation

and moment error increases. Experiment 6 has moment errors 162% higher

than experiment 4.

Comparison 5

The last comparison looks at the HP3JC average values that use refFx = 40

lbs, but averages the moment errors for the HP3JC and ISAC in experiments

4 and 6. This is an attempt to look at the combined contribution of both
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robots when they use force sensing in the assembly. Results are presented in

Figure 46.
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Figure 46: Comparison 5: Average values for all trials consisting of refFx =
40 for HP3JC and ISAC.

The last comparison confirms the general trend seen throughout the

previous comparisons. As before, experiment 4 presents a higher time-to-

completion than experiment 3, but in general with each subsequent exper-

iment faster assemblies are achieved albeit with higher stresses. The time

benefits are the same as those in comparison 2 and the moment increases are

an average of those found in comparison’s 2 and 4.

Conclusion

The results suggest that larger moment errors increase the speed with which

the controllers update the robot’s configurations. Assembly tasks were ex-

ecuted successfully in all experiments, even for the last experiment where
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higher moment errors were recorded. In both cases, the controllers were able

to mitigate heightened stresses.

The increase in speed recorded by the active-active coordination scheme

in experiment 6 cannot be overstated. Experiment 6 recorded 70% faster

task completion times than the case where the industrial robot performed

the assembly rigidly. More so, the fastest trial lasted 14 seconds as part of

active-active coordination scheme. Having said this, it is worth noting that

the duration of an insertion task is also a function of the location of the

parts before insertion begins. Faster trials occurred when the tool-tip of the

truss held by the HP3JC reached a perfect location to easily complete the

insertion. Trials in which the tool-tip of the truss was close to the edge of

the fixture, or even on the edge itself were delayed.

Moment errors also increased across experiments. These errors represent

specific instances during a trial. Factors that contributed to the higher errors

are on the one hand: (a) higher initial impacts produced as cooperation

increased, (b) larger stresses exerted as one or two robots respond to stimuli

in the environment, (c) the elasticity of the compliant robot allows muscles

to give some before the sensors experience the strain. On the other hand,

there is a trade-off between force and moment controller gains and velocity

feedback gains. Lower force and moment gains provide the system with more

stability but less responsiveness. Increasing the force and moment gains and

lowering the velocity gains increase the amount stiction in the task. In this

sense, the control primitives used as part of our basis suffer from a limited

response and contribute to the accumulation of error in the tasks.

Data from Experiment 4 showed that in jam scenarios, the controllers

successfully completed the insertion albeit in a longer period of time. On

the other hand, the same data showed that the controllers did not resolve
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wedging phenomena. Jamming scenarios did slow down the task but the

controllers along with compliance enabled insertions to complete successfully.

With respect to wedging, the controllers allowed the insertion to take place

but did not correct the misalignments present in wedging. The controllers

designed in this work were well suited for simple low-level assembly tasks but

did not resolve wedging phenomena characterized by two contact points.

Finally, it would be of interest to compare the performance of: a) two

industrial robots, and b) different heterogeneous robots (as compared to the

ones used in this work) performing the same assembly tasks in dynamic

environments. This would provide more insight as to which robots are better

suited to work in a team scenario and yet provided comparative advantages

for a specific task. For our case, the industrial robot was better at driving

male truss insertions and doing so with high accuracy. The compliant robot

on the other hand was useful at rendering tasks that were at critical points

into successful tasks by conforming to the path and alignment of the truss

held by the industrial robot in difficult situations.
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CHAPTER VI

CONCLUSION

As part of new frontiers in space exploration, innovative robotic control ap-

proaches are sought to enable teams of heterogeneous robots to perform

autonomous modular truss assembly operations during the window of com-

munication latency common to space operations. Robot teams will operate

under variable autonomy modes supervised by human operators to perform

material transport, assembly, and maintenance of human life support systems

on the moon and martian surfaces.

NASA desires a control architecture that enables the execution of multi-

ple tasks across different robot configurations. The control basis approach is

a good candidate as the approach effectively optimizes multiple goals to pro-

duce robust behaviors with ease and flexibility. The ability to decompose a

complex control problem into sequences and combinations of controllers sim-

plifies the solution implementation very much like distributed modular pro-

gramming eases code implementation. Challenges concerning this approach

relate to the way in which primitive control laws are defined and joined, in

[Platt et al., 2006] an efficient approach was presented to autonomously learn

effective control policy formations from experience.

This work focused in advancing the capabilities of autonomous hetero-

geneous robots in the area of low-level automated assembly. It presented

a control strategy that enabled independent robots in a loosely structured

environments to carry out insertion tasks. The control basis approach is an

effective approach to modularize and sequence the assembly process across

two heterogeneous robots using force sensing. The designed guarded move

controller and compliant insertion controller were successfully implemented
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on the industrial HP3JC robot to achieve single robot autonomous assembly.

The counter-balance controller and the virtual contact controllers were suc-

cessfully implemented on the pneumatically driven humanoid robot, ISAC.

Position, force, and moment goals were achieved as a series of hierarchical

controllers across the robots. This composition enabled the deployment of

active-static and active-active coordination schemes for both robots. The

use of a compliant robot as part of the heterogeneous team increased the

likelihood of success in assembly tasks by accommodating its configuration

in problematic situations. The use of a virtual contact helped ease control

challenges related the actuation of artificial arms. Finally, the use of two

active robots as a coordination scheme yielded faster assemblies and makes

a case for use in space construction for future moon and Mars missions.

The contributions made by this work are the following:

1. The implementation of basis controllers that allow the autonomous

joining of two mating parts by two independent, sensory-guided het-

erogeneous robots with articulated arms.

2. The use of independent control bases by two robots, in which controllers

reduce contact forces by displacing parts in response to local force,

moment, and position feedback.

3. The coordination of a pneumatically actuated and highly compliant

humanoid robot with a rigid industrial manipulator.

4. This is the first project of heterogeneous robot teams that jointly per-

form assembly. At this time, there is no team of autonomous robots

that coordinate their work to perform an assembly task via mutual

force-torque feedback guidance.
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5. The implementation of reactive behaviors on a decidedly non-reactive,

point-to-point, pre-programmable, industrial robot arm.

6. The ability to swap leader and subordinate roles in coordination schemes.

Active-active and active-static coordination schemes are implemented

and possible through inter-robot communication.

7. Experimental results that demonstrated faster completion times when

members of the assembly team assume active roles in the task.

This work has shown that a small set of basis controllers consisting of

moment, force, and position primitives is able to implement simple low-level

assembly tasks through force sensing. This work continues a line of research

performed on the control basis approach, which now has been shown to effec-

tively generate: grasping, statically dexterous manipulation, bipedal gaits,

and joint assembly tasks. Through the selection of appropriate potential

surfaces for primitive controllers, a vast array of tasks have been achieved in

multiple robotic testbeds [Huber, 2000, Platt, 2006].

Directions for Future Work

A number of challenges were encountered through the design, implemen-

tation, and testing of this work. There a number of important aspects to

consider to consolidate the control basis approach for assembly tasks as a

viable approach in space construction.

The control primitives designed in this work deal with simple assembly

insertions. No consideration was given to insertions with complex geometrical

configurations. Further research is required to understand if other primitive

or compound controllers are necessary along with different control policies
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to perform assembly of complex parts. Even for simple assembly tasks, two-

point contact scenarios sometimes yielded wedging that the controllers were

unable to discern. This inability prevented the controllers from properly

aligning the mating parts. The use of more informative visual data may assist

in these cases. It may be of interest to use a visual system that provides pose

information. The position controller could include pose information and help

align the orientation of the fixtures before and during an insertion.

Additionally, throughout testing it was evident that different force pa-

rameters affected the speed and efficiency with which an assembly task was

completed. The author believes that an adaptive estimation of these param-

eters based on the current state of the system may increase the flexibility

and robustness of the system. More so, perhaps a three-tier controller that

includes position and pose goals may improve performance.

Another issue that has been implemented in other research in autonomous

assembly, but not addressed in this dissertation is that of error prevention.

A mechanism to detect and recover from errors is crucial in order to increase

the system’s fault tolerance, particularly if the latter functions as part of a

larger multi-player task.

Finally, while this research demonstrated complete insertions under dif-

ferent coordination schemes, no evaluation was done on how performance is

affected when coordination schemes are dynamically changed during a task.

Dynamically switching coordination schemes in a task could be beneficial if

that switch improved the performance. Similarly, no evaluation was done on

the relative advantages of having a certain type of heterogeneous robots. A

more thorough understanding of how the specialized nature of a particular

robot might benefit a task could further the understanding of what robots
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to select as part of a team of heterogeneous robots for a given task or sets of

tasks.
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APPENDIX A

TABLE OF SYMBOLS

This appendix serves as a reference guide to the variety of symbols used in

this thesis referring to control law’s, controllers, and gradient nomenclature.

The control basis sensor and effector transforms are defined in Table 10.

Transforms Name

si(Γk) Sensor transform

ek(Γk) Effector transform

Table 10: Transforms introduced in Chapter III.

Gradient descent and null space projections are defined in Table 11.

Surface Error Gradient Name

∇xi
φi Error gradient for domain x

N (∇yφ
T
D)∇yφS Null space operator

Table 11: Surface error gradients introduced in Chapter III.

Residual Error Parameters are defined in Table 12.

A summary of the controllers used in this dissertation are summarized in

Table 13.
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Error Functions Name

ǫ Wrench residual error function

ǫf Force residual error function

ǫm Moment residual error function

Table 12: Error functions introduced in Chapter IV.

Primitive Controllers Name

φp |
sp(γvisual sys)

ep(γjoint)
(xref) Position controller

φfr |
sfr(γforce)

efr(γtorque)
(fref) Force residual controller

φmr |
smr(γforce)

emr(γtorque)
(mref) Moment residual controller

Table 13: Primitive Controllers.

117



Compound Controllers for Industrial Manipulator Name

πGM |
sGMC(γjoint ,γtorque)

eGMC(γcart,γmoment)
= Guarded Move Controller

φmr |
smr(γmoment)
emr(γtorque)

�φp |
sp(γvisual sys)

ep(γjoint)
(xref )

πCI |
sCI(γforce)

eCI(γtorque)
= Compliant Insertion Controller

φfr |
sfr(γforce)

efr(γtorque)
(fref) � φmr |

smr(γforce)

emr(γtorque)

πCB |
sCB(γforce)

eCB(γtorque)
= Counter Balance Controller

φfr |
sfr(γforce)

efr(γtorque)
�φmr |

smr(γforce)

emr(γtorque)

Table 14: Composite controllers used in Motoman’s industrial manipulator
HP3JC.

Virtual Controllers for dual-arm humanoid Name

πV GM |
sGM (γvc visual sys,γvc moment)

eGM (γvc joint,γvc torque)
=

φmr |
smr(γvc moment)
emr(γvc torque)

�φp |
sp(γvc visual sys)

ep(γvc joint)
(xref) Virt. Guarded Move Ctrller.

πV CI |
sCI(γvc force)

eCI(γvc torque)
=

φfr |
sfr(γvc force)

efr(γvc torque)
(fref) � φmr |

smr(γvc force)

emr(γvc torque)
Virt. Compliant Insertion Ctrller.

πV CB |
sCB(γvc force)

eCB(γvc torque)
=

φfr |
sfr(γvc force)

efr(γvc torque)
�φmr |

smr(γvc force)

emr(γvc torque)
Virt. Counter Balancing Ctrller.

Table 15: Virtual controllers used in the dual-arm humanoid ISAC.
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APPENDIX B

MOORE-PENROSE PSEUDO INVERSE

Multiple goals from concurrent controllers can be optimized by projecting

the output goal of a subordinate controller unto the null-space of the locally-

linear gradient dominant controller [Platt, 2006]. In the control basis ap-

proach, the operation is referred to as having the subordinate controller be

“subject-to” the dominant controller.

The derivation presented here was originally shown in [Platt, 2006], and

is presented here for convenience. An illustrative example is appended at

the end of this section. Consider two primitive controllers whose outputs are

desired velocities in joint angle configuration space, q. The first controller

outputs velocity q̇d, while the second one outputs velocity q̇s. A way to

integrate the result from both such that their goals can be optimized is

by ensuring that the controller results are orthogonal to each other. This

could be understood as having the velocity of the secondary controller run

tangent to the goal function of the primary controller. If the goal state of

the dominant controller is defined as: φd(qref ) = q and the gradient of the

output of the controller is defined as: ∇φd(qref) = q̇, then one could say that

a velocity q̇′ is orthogonal to the gradient output of the controller ∇xφd if

their dot product is zero:

∇xφ
T
d .q̇′ = 0

Now consider, if the output of the subordinate controller is: ∇xφ2 = q̇s and,

a second and different value for a velocity q̇′
s

and produces a dot product of

zero with the dominant controller: ∇xφ
T
d q̇′

s
= 0. Then we would like to find
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the velocity q̇′
s that minimizes:

f(q̇′
s) =

1

2
(q̇s − q̇′

s
)T (q̇s − q̇′

s
)

The velocity q̇′
s

can be found via the Lagrange multiplier method. The

gradient of the function to be minimized is set equal to the product of a

constant and the gradient of the constraint:

∂f(q̇′
s)

∂q̇′
s

= λ
∂(∇xφ

T
d q̇′

s)

∂q̇′
s

−(q̇s − q̇′
s) = λ∇xφd (27)

∇xφ
T
d (q̇′

s − q̇s) = λ∇xφ
T
d ∇xφd

Recalling that∇xφ
T
d q̇′

s
= 0, the equation reduces to:

−∇xφ
T
d q̇s = λ∇xφ

T
d∇xφd (28)

We can solve for λ:

λ = −(∇xφ
T
d∇xφd)

−1∇xφ
T
d q̇s (29)

Substituting back into equation 27 yields:

−(q̇s − q̇′
s) = −∇xφd(∇xφ

T
d ∇xφ1)

−1∇xφ
T
d q̇s (30)

Solving for q̇′
s produces:

q̇′
s = q̇s −∇xφd(∇xφ

T
d ∇xφd)

−1∇xφ
T
d q̇s

= (I −∇xφ1(∇xφ
T
d ∇xφd)

−1∇xφ
T
d )q̇s (31)
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Observing that ∇xφd(∇xφ
T
d∇xφd)

−1, is the pseudo-inverse of ∇xφ
T
d , yields:

q̇′
s = (I − (∇xφ

T
d )#∇xφ

T
d )q̇s

= N (∇xφ
T
d )q̇s (32)

where

N (∇xφ
T
d ) = I −∇xφd(∇xφ

T
d∇xφd)

−1∇xφ
T
d

And, N (∇xφ
T
d ) is the null space projection matrix. It guarantees that the

result is orthogonal to the primary controller goal function, ∇xφd. Equation

32 projects the subordinate controller velocity q̇s, unto the null space of the

gradient of the dominant controller, ∇xφ
T
d .

Illustration

By looking at the null space matrix operator one can see that it is composed

of two operations. There is a vector outer product which produces a matrix.

There is also an inverted inner product which effectively serves as a normal-

ization factor. We can prove that this matrix operator projects unto the null

space.

Consider a 2D case where the vector ~g(x, y) is set equal to the control

basis output φd:

~g(x, y) = ∇xφd

The vector representation of ~g(x, y) is visualized as the column vector:

~g(x, y) =







gx

gy






(33)

In substituting 33 into the null space representation of 32 the following matrix
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representation is obtained:

N (∇xφ
T
d ) = I −

1

g2
x + g2

y







g2
x gygx

gygx g2
y






(34)

The null space of a vector is defined to be any vector x such that the product

Ax = 0. A vector of the form A = [lxly]
′ is sought such that A[gxgy] = 0. It’s

simple to see that if we set:







lx = gy

ly = −gx






(35)

And substitute 35 into 32 the result = 0, i.e. gyg
2
x − gyg

2
x.
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APPENDIX C

HISTORY OF SPACE ROBOTICS

In this section, a wide overview of space robotics from its inception is in-

cluded. It contains a description of early machines produced by NASA and

other space agencies consisting of probes, orbiters, telescopes, and others.

The summary is based on Angelo’s work [Angelo, 2007].

NASA began it’s exploratory space efforts with the Pioneer space probes.

All in all there were 13 probes launched beginning in 1958 and ending in 1978.

These were space robots designed to first reach the moon and later to reach

other planets in the solar system. The Pioneer probes served primarily as in-

strumentation devices that sent researchers telemetry data on interplanetary

phenomena like cosmic radiation, magnetic and electric fields, amongst other

data. The Pioneer 4 probe was the first NASA robot to achieve an earth-

moon trajectory. Russian lunar probes known as Luna’s, always achieved

their goals before those of their American counterparts, where Luna 2 was

the first to space craft to land on the moon, and Luna 3 was the first to take

pictures of the moon. Pioneer 5 visited the interplanetary space between the

Earth and Venus; and Pioneer 10 & 11 twin robots, were the first to to visit

Jupiter, Saturn, and the first to leave the solar system, Pioneer 13 was a

multi-probe craft that entered the Venusian atmosphere and had one probe

land on Venus’ surface.

With the creation of the Jet Propulsion Laboratory, a second generation of

space probes was born and known as the Ranger probes. The Ranger probes

were designed to prepare the way for the Apollo project by testing spacecraft

navigational performance and photographing the surface of the moon. These

probes were launched in the first half of the 1960’s. It wasn’t until probes 7-9
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that completely successful missions were achieved and returned thousands of

lunar surface images that allowed for the advancement of scientific knowledge

of the moon.

Next, NASA developed the Surveyor landers and launched them between

1966 and 1968. These robots were versatile spacecrafts used to study soft-

landing techniques as a precursor to the Apollo project. Surveyor 1 landed

on the moon in 1966 and helped establish that lunar soil would be adequate

to support the Apollo crafts. The third probe was able to dig a trench

using a robotic manipulator fixed with a shovel and discover that the load-

bearing strength of the lunar soil increased with depth. Surveyors 5-7 pro-

vided amongst other things information on the chemical composition of the

lunar soil and on-surface navigation data.

It is worth noting that in early 1970’s the Soviets launched a number of

spacecraft with mobile rovers, namely the Lunokhod 1 and 2. Both of these

rovers were deployed on the lunar surface. The first rover covered 6.5 miles

of lunar surface providing soil analysis from a number of locations 20,000

images. The second version was more impressive. The rover was radio-

controlled from Earth, it traveling around 23 miles and also provided soil

analysis and numerous images.

JPL conducted a parallel mission denoted the Mariner Project. This effort

studied the inner planets of the Solar System. Mariner 2, was launched in

1962 and was the first robot spacecraft to fly by another planet. Mariner

2, studied Venus and discovered data related to surface temperatures and

pressures, atmospheric characteristics, rotation nuances, cosmic dust density,

amongst others. Mariner 4, was the next successful launch, in 1964, and it’s

target was to study planet Mars. Mariner 4, traveled the interplanetary

space for 8 months before arriving to Mars to then provide the first close-up
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pictures of another planet up to that point. Mariner 9, was launched in 1971

and orbited Mars becoming the first man-made robot to orbit another planet.

Mariner 10, then became the first spacecraft to use a gravity-assist boost to

send it from one planet to another. This orbiter was able to fly by Venus to

later, in 1974, encounter Mercury. To this date, this is the only spacecraft

that has visited the innermost planet in our solar system.

The next mission, in 1975, would entail an intense search for life on Mars,

and would be known as the Viking mission. The latter consisted of two

orbiters and two lander spacecrafts.

After Viking, would come the spacecrafts that would visit the most giant

planets. In 1977 the twin crafts Voyager 1 and 2 were launched, taking

advantage of the very sporadic alignment of Jupiter, Saturn, Uranus, and

Neptune. The former visited the first 2, while the latter flew by all of them.

In the next two decades to come, important advances in sensor, computer,

and aerospace engineering would allow a new generation of sophisticated air-

craft that would significantly advance the scientific investigation of outer

space. In 1995, The Galileo space mission began when the aircraft was de-

ployed in low Earth orbit by the Atlantis space shuttle. The robot’s goal was

to study Jupiter and it’s surrounding moons. To do so, the mission would

employ gravity-assisted flybys through Venus, Earth, and Mars. Galileo had

a detachable atmospheric probe that would gather data of the Jovian at-

mosphere. In a two year lapse, the spacecraft would perform 10 flyby’s of

Jupiter’s major moons. In late 1997, focused examination of Jupiter’s moons

Europa and Io would proceed. In 2000, extended missions to Ganymede and

Callisto were carried out, in this case with a special collaboration with the

Cassini capsule.

The Cassini/Huygens mission consisted of the former as an orbiter and
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the latter as a probe. The Huygen’s probe would be attached to the Cassini

capsule and would remain dormant until it approached its final destination.

This was a joint effort between the NASA space agency and the European

Space Agency to study the largest of Saturn’s moons, Titan. Titan is the

only moon in the Solar system with a dense atmosphere that precludes Earth

observers from seeing its surface. So, it was Cassinni/Huygen’s mission to

enter this natural satellite and provide data of it’s atmospheric composition,

distribution of trace gases and aerosols, winds and temperatures, and the

composition of the surface. A noteworthy fact of the Cassini orbiter is it’s

on-board intelligent machinery. Given that Saturn is 1.43 billion km away

from Earth, the one-way speed-of-light time from Saturn to Earth is of 84

minutes. For this reason, real-time control of the orbiter is not a possibility

and the orbiter must function properly while unsupervised.

We conclude this overview by presenting NASA’s launch four space labs

that would investigate the full portions of the electromagnetic spectrum.

This project was known as the Great Observatories Program. The latter

eventually deployed four telescopes. The Hubble Telescope was the first to

be launched in 1990 and was designed to observe light in the visible, ultra-

violet, and near-infrared spectrum. The second telescope was the Gamma

Ray Observatory. It was launched in 1991 with the purpose to observe high-

energy gamma rays from violent process in the universe. The third facility

was the Advance X-ray Astrophysics Facility and put into Earth’s orbit in

1999. this observatory examined X-ray emissions from suppernovas and the

accretion disks around suspected black holes. The fourth craft in this group

was the Space Infrared Telescope Facility, it was launched in 2003 and cap-

tured infra-red data from the formation of galaxies, stars, and planets.
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The use of advanced robotic manipulators, cranes, and agents is further

covered in II.
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APPENDIX D

ARTIFICIAL MUSCLES

Artificial muscles, especially McKibben muscles used in both in-

dustry and biomedical engineering have overwhelming benefits as

compared to other actuators like servo motors[Yaman, 2000].

Historically, manipulators of all varieties have been characterized by a high

degree of stiffness which improves the positioning accuracy, but makes the

arm difficult to control when it is in contact with a dynamic surface. Main-

taining contact with a dynamic surface requires compliance. Robot designs

usually trade one for the other: accurate position control or accurate force

control. A stiff manipulator can deliver a strong force to a surface with rel-

atively small joint displacements. These systems can become unstable when

interacting with rigid surfaces as a manipulator would insist on reaching a

certain location yet the physical constraints of the environment would pre-

clude that task [Williamson, 1995].

To mimic the low stiffness of human appendages, some researchers have

developed light, compliant actuators that possess high force-to-weight ratios

and low friction. These actuators mitigate the effects of inertia and backlash

and facilitate force control since they are able to deform on contact. The

following section presents a historical account of compliant muscles, which

are used in this thesis.

General Characteristics

Since the 1930’s different kinds of artificial muscle actuators have been built.

In [Daerden and Lefeber, 2002], Daerden ascribes a number of characteristics
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to artificial muscles consisting of: (a) pneumatic or hydraulic actuators, (b)

overpressure or underpressure performance, (c) braided or embedded mem-

branes, and (d) stretching or rearranging membranes. A description of the

two most important types of pneumatic muscles: braided and pleated follows.

Braided pneumatic muscles consist of an air-tight elastic inner tube cov-

ered by a braided sleeving (weave, braid, or sleeve). The braid fibers run

helically about the muscle’s long axis. When pressurized, the tube expands

radially, pressing against the sleeve. The force produced by the expansion of

the membrane is counteracted by the tensional force in the braiding. Braided

muscles, then, only operate in overpressure where the force generated at the

interface between the inner tube and the braid is translated into force on the

load. The rubbing of the inner membrane against the weave is a source of

friction, that also exhibits stiction. So, when the muscle is inflated, the rub-

bing of both surfaces creates a sticking effect. Commonly, when the muscle is

inflated and deflated, the sticking effect precludes the system from returning

to its original state, an effect known as hysteresis.

Pleated pneumatic muscles were developed within the last decade by

Daerden and Lefeber [Daerden and Lefeber, 2002] and shown in Figure 47.

Pleated membranes are said to be of the ”rearranging type”. The axial pleats

of the muscle, unfold when the muscle is pressurized, leading to a radial ex-

pansion but a shortening in the axial direction. Another significant char-

acteristic is the negligible effect of membrane stresses perpendicular to the

axis. As a result, a muscle requires small amounts of energy to expand and

the absence of the friction seen in the sleeved muscles minimizes hysteresis.
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Figure 47: Pleated Muscle, fully stretched and inflated
[Daerden and Lefeber, 2002].

Pneumatic Actuators

The current section provides a historical overview of pneumatic actuators,

beginning with their motivation and continuing with their evolvement over

time. A detailed description of the behavior and characteristics is presented

along with an evaluation of its disadvantages. The section provides insight

into the advantages and challenges posed in their use for manipulation tasks

in robots.

History of Pneumatic Actuators

J. L. McKibben developed the pneumatic actuator for use in orthotic reha-

bilitation [Klute et al., 1999]. Friendly actuators were desired for orthopedic

patients. The rigidity of electric and hydraulic drives would not comply

with human motion. On the other hand, the pneumatic actuator elicited the

desired compliance and did not compromise actuating power. These pneu-

matic muscles were used to actuate orthotics in the 1950s for polio patients

[Nickel et al., 1963], see Figure 48. Since then different types of pneumatic
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actuators have been developed and have been used in factory floor automa-

tion [Daerden and Lefeber, 2002], biomedical engineering [Yaman, 2000], and

humanoid robotics [Rojas, 2004].

Figure 48: Pneumatic actuator for use in patient [Nickel et al., 1963]

In the 1960’s McKibben muscles for orthotics were replaced by smaller

and more accurate electric motors. Interest did not resurface until two

decades later when Bridgestone Corporation redesigned them and distributed

them as actuators for industrial painting robots [Chou and Hannaford, 1996].

Inspired by the previous use of PAMs in orthotics, Kawamura combined two

Bridgestone arms to make the first humanoid robot expressly designed for in-

teraction with people [Kawamura et al., 1995]. Other groups work with this

technology and continue to develop more robust models and ways to con-

trol them [Ozkan et al., 2000, Yaman, 2000, Schreder, 2003]. The Shadow

Robot Company developed its own version of a pneumatic artificial muscle

[Shadow Company, 2007] and shown in Figure 49. Their model exhibits an

improved inner membrane that reduces stiction and hysteresis allowing the

muscle to operate more smoothly than previous McKibben models. Festo is
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Figure 49: Shadow Muscle [Schreder, 2003]

another company that produces pneumatic muscles for industrial use. Festo

produced muscles are comprised of intermingled thread and inner mem-

brane to minimize coulomb friction [Festo, 2007]. Also, researchers at the

Massachusetts Institute of Technology (MIT) created series elastic actua-

tors that consist of traditional electric motors with a compliant load sensor

(spring) positioned between the gear’s train output and the load. The MIT

design, reduces motor inertia and friction at the output while increasing the

fidelity of force control and force control stability over typical electric drives

[Yobotics, 2007].

Physical Description

Klute and Hannaford [Klute and Hannaford, 1998] describe pneumatic arti-

ficial muscles as actuators made from an inflatable, tubular inner bladder

sheathed with a nylon double helix weave that shortens lengthwise when ex-

panded radially, see Figure 50. The tubular inner bladder and the nylon
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weave are clamped with fittings at both ends, one of which contains an air

intake as shown in Figure 50.

Figure 50: Braided pneumatic muscle [Shadow Company, 2007]

Physical Behavior

Daerden [Daerden and Lefeber, 2002] provides an excellent description of

PAMs; his research is referred to throughout this chapter. As the inner

membrane is inflated, the actuator contracts along the axis of the tube. Sim-

ilarly, as it deflates it expands along the same axis. If one end is fixed, the

other moves a load in an approximately linear fashion generating a force.

An experiment of Daerden’s clarifies the behavior of the PAMs [Daerden and Lefeber, 2002].

Consider a vertically oriented muscle fixed at the top end with a mass, M ,

attached to the other end. The pressure in the membrane is increased from

an initial value of zero. At zero gauge pressure the volume in the muscle is

minimal, Vmin, and its length maximal, lmax. If the pressure is increased to

p1, the muscle expands radially and exert a pulling force of magnitude MG,

where G is the gravitational pull. The volume of the membrane increases to

V1, and its length contracted to l1. This tendency continues if the pressure

is increased to a new level p2. This behavior is depicted below in Figure 51

133



Figure 51: Muscle behavior as pressure is increased
[Daerden and Lefeber, 2002]

Physical Properties

Air muscles are uniquely compliant among actuators. This is a result of two

constituent factors: the actuator operates on the basis of gas compressibility

and its inner bladder is elastic. Even if the gas pressure remains unchanged,

an applied force that changes the length produces a spring-like behavior in the

rubber material of the bladder. The elasticity of the membrane enhances the

compliance of the actuator beyond the compressibility of the gas (especially

true at lower pressures). This particular behavior is what distinguishes the

air muscle from other actuators and makes it similar to the spring-like motion

of the human limbs [Rojas and Peters II, 2005].

Static Load Characteristics

The length of a pneumatic actuator is a function of the applied pressure, the

external load, and the contractile characteristics of its materials. Consider a

muscle at pressure p over a time interval, dt, which leads to an increase in

volume, dV . The muscle will have done pdV work and the actuator’s length

will have changed by dl ( < 0 for shortening). The mass, M , produces a
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load, F , that is displaced over the same distance requiring an amount of

work, −Fdl. Disregarding the work needed to deform the membrane and

assuming quasi-static conditions one can write,

F = −p
dV

dl
(36)

As the air muscle contracts, the cylindrical shape of the muscle degenerates

because of membrane deformation. This requires a correction factor to the

contraction ratio, the relative change in length of the muscle with respect to

its original length.

ǫ =
(lo − l)

lo
(37)

To show the force-contraction relationship, Daerden and Lefeber [Daerden and Lefeber, 2001]

define the contraction ratio as the the change in length with respect to the

maximum length l0, shown in Equation 37. The static load characteristics

as a function of contraction percentage (i.e. a contraction of 10% denoting a

shortening to 9/10th of the maximum length) are shown in Figure 52. Each

curve plots the value of degenerated muscle force as a function of the con-

traction ratio for a constant pressure value. Different pressure values act as

scaling factors in the family of curves. The figure contains typical curves

for PAMs, although the curve can be modified slightly based on the elastic

properties of the particular membrane.

Antagonistic Pairs

As with the skeletal system, pneumatic artificial muscles were designed to

work as antagonistic pairs. Two muscles are coupled around a wheel, one

actuator is the agonist or active muscle while the other is the antagonist

muscle. This coupling provides stability to the system by countering the
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Figure 52: PAM isobaric force-contraction diagrams
[Daerden and Lefeber, 2002]

motion of the opposing muscle. Force is thus generated by applying an

equal but opposite change in pressure to both air muscles. Driving the sys-

tem this way provides enough stiffness for stable operation of the muscles

throughout their workspace. Figure 53, represents the differential pressure

Figure 53: Antagonistic set-up [Schreder, 2003]
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as: △p = 1
2
(p2 − p1); the torque as: T = (F2 − F1)r; and the angle as:

φ = l2−l1
r

. In [Ozkan et al., 2000], Ozkan derived equation 38 by expanding

the Bridgestone Model equation (shown in next section) to represent a cou-

pled system. This equation shows that pressure is proportional to the change

in torque in the coupled system and inversely proportional to the contraction

ratio.

Pki = Poki ±

[

τi

2r(βki − αkiǫi)
−

γki

(βki − αkiǫi)

]

(38)

where

i = the joint number

k = the muscle index

P0 = the equilibrium pressure

± = positive for agonist, negative for antagonist

τi = the torque for the joint

Pki = is the resulting pressure for muscle at the ith joint.

Advantages and Disadvantages

As a result of their constituent materials, pneumatic muscles are lightweight

and have a high force to weight ratio when compared to electric motors.

Other significant features include easy replacement and safety due to their

natural compliance. This technology, nonetheless, affords non-trivial diffi-

culties. As part of its compliant nature, non-linearities in the system are

significant, increasing the complexity to control the system. For example, an

inherent challenge in the control of pneumatic actuators is hysteresis.
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Pneumatic Actuator Models

Mathematical models of pneumatic actuators show the relationships between

force, pressure, and contraction. In particular, these models derive joint

torque as a function of change in pressure and contraction. Several models

have been derived and a good overview is found in [Schreder, 2003].

Schulte presented the first static model [Schulte, 1961]. The Bridgestone

Company followed when they commercialized the “rubbertuator” [Tondu et al., 1994].

In 1994, Chou and Hannaford developed a model that accounts for the wall

thickness of the shell and the bladder [Chou and Hannaford, 1994]. The lat-

ter has been a foundation for many later models. Later, Caldwell et al.

used an adaptive controller that estimates polynomial parameters to cre-

ate a model [Caldwell et al., 1995]. Cai and Yamamura soon constructed a

dynamical model [Cai and Yamamura, 1996]. Repperger used a second or-

der nonlinear differential equation and adaptive methods to approximate the

model [Carbonell et al., 2001]. Tsagarakis and Caldwell, improved the model

by considering distortion effects at the termination nodes and radial pressure

loss as a consequence of elasticity [Tsagarakis and Caldwell, 2000].

The Schulte Model

Schulte published a static physical model of the McKibben actuator in 1961

[Schulte, 1961]. The muscle force is proportional to the pressure, diameter

of the actuator, and weave angle at rest.

F =
πD2p

4
(3 cos2(Θ) − 1) (39)

where

F = actuator force,

138



π = 3.142,

p = internal pressure,

Θ = weave angle at rest, and

D = diameter of the actuator when Θ is 90 degrees.

The Bridgestone Model

Two decades later the Bridgestone corporation published their static air mus-

cle model. Similar to Schulte’s, the force is proportional to the pressure of

the muscle and its diameter, but uses a contraction ratio as opposed to a

weave angle.

F = D2
op[4(a(1 − ǫ)2 − b)], (40)

where

F = actuator force,

p = internal pressure,

ǫ = contraction ratio,

a = muscle specific coefficient,

b = thread length, and

D = effective diameter at rest.

Both models are similar, the Bridgestone can be converted into the Schulte

through the following substitutions: a = π 3
4

l2o
b2

, b = π
4
, l = cos Θ, ǫ = lo−l

lo
,

and D = D0.
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The Chou and Hannaford model

Chou and Hanaford used a static model based on the conservation of energy.

The force of the muscle is a function of the work done, pdV , and the change

in actuator length, dl:

F = −p
dV

dl
(41)

The volume of the cylinder is approximated by a perfect cylinder:

V =
1

4
πD2l (42)

where l = cos θ and D = b sin θ
nπ

. Hence:

V =
b3

4πn2
sin2 θ cos θ, (43)

where b is the thread length, θ is the angle between the thread and the

longitudinal axis (90 degrees at rest), and n is the number of turns in the

thread.

By substituting equation 43 into equation 41, the resulting force is ex-

pressed as:

F = −p
dV

dl
= −p

dV/dθ

dl/dθ
=

b2(3cos2θ − 1)

4πn2
(44)

At rest, θ is 90 degrees. This information is used to introduce a variable

for the diameter at rest, D0, where D0 = b
nπ

. Hence, the force equation is

simplified to:

F =
πD2

0p

4
(3cosθ − 1) (45)

Finally, the Schulte model was derived similarly except that the model con-
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siders wall thickness, d of the shell. The volume is expressed as:

V =
1

4
π(D − 2d)2l (46)

Using the modified volume in equation 46 gives:

F =
πD2

0p

4
(3cosθ − 1) + pπ

[

D0d

(

2 sin θ −
1

sin θ

)

− d2

]

(47)

The model demonstrates that hysteresis is velocity-independent, and is pre-

dominantly caused by coulomb friction within the actuator.
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