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CHAPTER I 
 
 
 

REVIEW OF NEURAL CODING WITH POPULATIONS 

 

Introduction 

Since the evolution of man, we have been guided by our senses to perceive and 

respond to the myriad of sensations that describe our environment.  The senses of hearing 

and vision allow us to communicate with others and navigate our surroundings.  The 

senses of taste and smell help us locate food and alert others of sexual preparedness.  The 

sense of touch allows us to protect our bodies and stay clear of danger.  Each one of our 

senses is reliable, yet adaptable, juggling such roles for the sake of dependability as well 

as allowing for processes such as learning.  Each sense may work alone or in concert to 

give rise to the perception of our environment.  But how is sensory information 

transformed into perception? 

The brain, as the control center of our bodies, interprets sensory information and 

motivates a perception and/or behavioral response appropriate to the environment.  The 

brain is able to integrate the senses, separate figure from ground, perform invariant 

recognition, complete partially occluded objects, and recognize shape from coherent 

motion.  Modern neuroscience seeks to understand the human brain and determine how 

electrochemical interactions among neurons can generate such perceptions and behaviors.  

On a molecular level, sensory stimulation induces neurons to relay signals to one another 

in a manner that reflects a given stimulus.  Neural coding describes how these salient 

stimulus features are represented in neuronal responses.  A great deal has been learned 

about what happens in the brain, yet how the brain encodes sensory information with 
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neuronal representations that govern emergent properties like perception or action 

remains unknown. 

Synchronization of neuronal responses is an attractive candidate to play a role in 

generating perception.  Operationally defined, synchrony is the simultaneous response of 

two or more neurons within some margin of error known as the integration time period.  

Synchrony exists between visual cortical neurons, but its functional significance is 

largely unknown.  As a hypothetical neural substrate for encoding salient stimulus 

properties, synchrony enhances the probability of eliciting postsynaptic action potentials, 

thus ensuring propagation of this information to subsequent levels of the cortical 

hierarchy.  The physical mechanism underlying synchrony would allow for neurons to be 

"effectively" connected and form dynamic regional circuits to reliably and efficiently 

transmit information throughout the cortex while minimizing metabolic demands. 

Although synchrony could constitute a suitable encoding scheme, proving its 

importance in signaling is difficult since adequate methods to measure synchrony have 

not been developed.  Current approaches quantify synchrony as a relationship between 

two neurons.  However, synchrony allows for the formation of transient functional groups 

which could include tens, hundreds, thousands, or even larger numbers of neurons.  Pair-

wise distance calculations increase exponentially as group size increases and can be 

computationally exhaustive for large assemblies.  Furthermore, very few studies have 

investigated how to measure the quality of synchrony in an assembly as well as develop 

some means to display these quantities. 

The work presented here derives a measure for synchrony within assemblies of 

arbitrary size and evaluates synchrony's role as a possible neural substrate for contour 

integration by investigating dynamic grouping and characteristics of group membership.  
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The layout of this paper is as follows: in the first chapter, we will follow the development 

of the theory of synchrony as a possible neural code by discussing the history of single-

unit coding schemes and their associated problems.  Next, we will cover the subsequent 

evolution of multi-unit coding schemes including synchronization and oscillation.  

Previous research involving roles for synchronization will be summarized.  Lastly, earlier 

approaches for quantifying population activity will be discussed.  In Chapter 2, we will 

introduce a novel method to detect and quantify synchrony among large neural 

assemblies.  The method has been applied to multi-electrode array recordings in the 

visual cortex of paralyzed and anesthetized cats and results concerning dynamic 

grouping, comparison of this method to the well-known Joint Peri-Stimulus Time 

Histogram method (Aertsen et al. 1989), and characteristics for group membership are 

discussed.  Finally, the third chapter explores future applications involving natural 

images and implicating synchrony as a sparse code for natural vision. 

 

Neural Coding 

 

Encoding Sensory Information with Single Units 

The function of the brain has been the focus of scientific investigation for 

thousands of years.  In his book, Bear (2001) describes the history of brain study and how 

its function was eventually realized through the collective works of many researchers.  

Early thinkers postulated that the heart, not the brain, was the center of man's life force 

and the seat of mental ability.  In ancient Egypt, brains were removed from the deceased 

while the heart and other organs were preserved through the process of mummification.  

Ancient Greeks like Aristotle also held the belief that the heart was the seat of 
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intelligence, and the brain functioned merely as a radiator to cool the heart's blood.  It 

wasn't until 300 B.C. that Alexandrian biologists Herophilus and Erasistratus, after 

dissecting a human body, concluded that the brain was the seat of thought and ability.  

The Roman anatomist Galen theorized that movement of fluid through the ventricles 

governed brain function.  In the Age of Reason, Descartes believed fluid mechanics could 

explain brain function in animals, but the higher mental abilities of humans were fulfilled 

by the soul.  The fluid mechanic approach to brain function was dispelled in favor of an 

electrical theory developed by Galvani in the 1700s.  Eventually, a modern framework 

for the brain was laid out in the 1800s when the collective works of Broca, Wernicke, and 

Brodmann showed that different areas of the brain controlled specific functions (Kandel, 

2001). 

At the turn of the 20th century, the study of individual neurons in the brain became 

a reality through the anatomical works of Ramon y Cajal and Golgi.  The field of 

neurophysiology was pioneered with a novel experimental protocol and recording 

technique introduced by Adrian and Zotterman (1926).  Using a capillary electrometer 

and three-stage amplifier, Adrian and Zotterman recorded the impulses produced in the 

plantar digital nerves of the cat when stimulated by contact or pressure.  They noted that 

the frequency of the impulses (action currents – related to action potentials through 

Ohm's Law) varied with the intensity of the stimulus, but the magnitude of individual 

impulses did not.  These results supported an all-or-none relationship between stimulus 

and nerve impulses. 

A binary, all-or-none response to a stimulus could signal the presence or absence 

of the stimulus, but what property of a cellular response represents stimulus intensity?  

Since action potentials are indistinguishable events, the strength of a stimulus cannot be 
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reflected in the shape or size of an impulse and therefore must be reflected in the 

temporal characteristics of the neuronal spike train, such as average firing rate, spike 

count, spike patterns, interspike intervals, or precise spike arrival times.  While the 

relationship between stimulus intensity and firing frequency described by Adrian and 

Zotterman remains central to our understanding of information transmission by neurons, 

a great number of more subtle properties have been proposed as graded signalling 

mechanisms.  For instance, Strehler and Lestienne (1986) found distinct patterns in 

individual spike trains that occurred more often than chance with submillisecond 

precision.  Also, Victor (2000) showed that different stimulus features (contrast, 

orientation, spatial frequency) could be represented at different temporal resolutions of 

interspike interval histograms.  In this manner, stimulus features can be multiplexed in a 

spike train. 

While temporal properties like spike patterns or interspike intervals have gained 

some support in the field as a means to encode stimulus information, traditional studies 

have concentrated on average firing rate.  To address the relationship between the firing 

of single neurons and perceptual experience, Barlow (1972) proposed a single-neuron 

doctrine emphasizing the role of average firing rate as a stimulus-encoding mechanism.  

His classic view of the cardinal cell holds that individual neurons, each responsive to a 

particular set of local features, modulate their firing rates to reflect salient information in 

the visual field.  The most complex features are detected via convergence up the cortical 

hierarchy. 

While feature detection via correlation filtering by discrete receptive field 

organizations has inspired much work on the neural representation of visual structure, 

this concept ultimately fails as a foundation for neural coding.  One reason is that 
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response gradations are limited by an action potential's refractory period.  A cell therefore 

has a maximum firing rate, which imposes a limit on the dynamic range for encoding 

stimulus intensity.  Furthermore, average firing rate is highly variable across stimulus 

repetitions, so reliable responses must be obtained by averaging across repeated stimulus 

presentations (Gershon et al. 1998).  From a biological perspective, this cannot happen as 

the brain usually recognizes objects with a single viewing.  Finally, the most important 

challenge to a rate code based on cardinal cells is that every feature requires a unique 

unit, and the dimensionality of the visual world overwhelms even the imposing numbers 

of neurons in the visual cortex. 

 

Encoding Sensory Information With Multiple Units 

Alternative theories for the neural representation of structure involve dynamic 

assemblies of neurons, which contribute to a population code.  Due to the dynamic nature 

of grouping, the combinatorial possibilities of such a scheme offer a vastly increased 

dimensional magnitude for encoding visual information and also have implications for 

learning and plasticity.  In 1941, Sherrington proposed that groups of neurons may 

cooperate synergistically such that the whole is more than the sum of its parts.  Hebb 

(1949) and Hayek (1952) expanded on this theory and suggested that groups of cells 

could form dynamic regional circuits or spatiotemporal assemblies to represent structures 

in a visual scene.  Indeed, they hypothesized that connections and interactions between 

neurons, defining a neural network architecture, were more functionally significant than 

the individual properties of the neurons themselves.  In this manner, visual information 

would not only be inherent in the activity of individual neurons, but could be extracted 

from the collective activity of the group. 
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Originally, Hebb (1949) and Hayak (1952) proposed that cooperative 

relationships in cell assemblies were formed based on anatomical connections, perhaps 

defined by plasticity during brain development.  However, noting the adaptive nature of 

the brain, Hayak (1952) also suggested that the formation of cell assemblies could result 

from short-term enhancement of synaptic effectiveness initiated by changes in the 

temporal structure of spike trains (becoming effectively connected) instead of requiring 

actual anatomical changes in synaptic connections.  In this manner, groups of cells could 

assemble and disassemble during certain tasks and individual cells could belong to more 

than one functional group.  Furthermore, uncorrelated groups could coexist without 

interference.  The temporal binding theory (Milner 1974; von der Malsburg 1981) 

postulates that dynamic assembly formation is the physical basis for certain perceptual 

phenomena such as shape perception, figure-ground separation, long and short-term 

plasticity, and memory.  According to this theory, perceptually-related features are linked 

through correlated firing among subpopulations of cells.  Grouping into subpopulations is 

defined by perceptually-based relationships, e.g. feature proximity, similarity, or motion 

coherency.  In this scheme, only simple feature detectors are required and complex 

features are extracted through the activities of multiple assemblies.  Experimental support 

for the temporal binding theory was provided independently by Eckhorn et al. (1988) and 

Gray et al. (1989).  In both studies, synchrony between cell pairs was found to depend on 

the orientation and coherence of the visual stimulus.   

In the synfire chain model of the cortex (Abeles et al. 1991), precise spike arrival 

times from multiple neurons (synchrony) govern the processing and transmission of 

neural information in a network of converging and diverging connections when 

postsynaptic neurons act as coincidence detectors (Abeles 1982).  Synchronous inputs 
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lower spike threshold, increasing the sensitivity to these inputs (Azouz and Gray 2000).  

In theoretical simulations of the synfire chain model, Diesmann (1999) showed that 

assemblies on the order of one hundred neurons could achieve submillisecond precision.  

Arguments against the synfire chain model cite the unreliability of synaptic transmission 

and propose instead that neurons act as integrators (Shadlen and Newsome 1994).  

Confirmation of population theories presents the significant challenge of both 

acquiring responses from multiple neurons and understanding the significance of 

information derived from joint activity.  As early as 1981, a population of 19 neurons was 

recorded simultaneously in monkey visual cortex using a 30-electrode array (Kruger and 

Bach 1981).  In the last two decades, there have been advances in the areas of 

microelectrode and tetrode arrays, and the improvements and availability of this 

technology have stimulated many recent reviews (Pouget et al. 2000; Milton and Mackey 

2000; Buzsaki 2004; Brown et al. 2004).  Simultaneous population recordings (> pairs) 

have been made in the retina (Warland et al. 1997), LGN (Mehta et al. 2000), visual 

cortex (Gray et al. 1995; Nordhausen et al. 1996; Reich et al. 2001), and frontal cortex 

(Abeles et al. 1993; Vaadia et al. 1995; Prut et al. 1998) and in general have shown 

distributed (multi-task) levels of activity and overlapping and changing levels of 

interaction that are highly dependent on stimulus parameters and behavioral states. 

 

Synchrony as a Population Code 

 

Synchronization/Oscillation as a Basis for "Feature Binding"? 

A population code (i.e. any coding strategy involving multiple cells – not just 

synchronization), requires a specific association among cells.  One possibility is that cells 
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have correlated relative firing rates (oscillation).  However, the integration of firing rate 

must take place over some finite time and given the required broad temporal resolution 

distinct populations can become confounded.  On the other hand, synchronization is 

believed to be more effective than elevation of firing rates (Abeles 1991; Azouz and Gray 

2003) in forwarding information because the transmission efficiency in the cortex is 

generally low (Nicoll and Blakemore 1993; Thomson and West 1993).  The precise 

timing of synchronization allows expression of unambiguous relationships between cells 

in an assembly.  Simulations suggest that the effective summation interval is less than 10 

ms (Softky and Koch 1993), permitting rapid and dynamic assembly and disassembly as 

well as the coexistence of numbers of independent groups. 

Exploring temporal coding began with the identification of local stimulus-specific 

firing correlations associated with oscillations of firing probability and field potentials 

(Gray and Singer 1989).   Synchronous discharges were strongest when adjacent neurons 

with similar tuning preferences were optimally stimulated.  The oscillations could be 

found over a large cortical distance and were enhanced by coherent stimuli and destroyed 

by incoherent stimuli (Gray et al. 1989).  Oscillations could even retain synchrony across 

cortical areas (Engel et al. 1991a).  Cells with different orientation preferences could 

synchronize to single light bars, but when presented with bars of differing orientations, 

cells segregated into groups according to their orientation preferences, demonstrating 

dynamic reorganization of assemblies as hypothesized (Engel et al. 1991b).  Qualitatively 

similar results and conclusions, focusing mainly on oscillations, have also been reported 

(Eckhorn et al. 1988; Bauer et al. 1989; Eckhorn and Obermueller 1993; Eckhorn 1994). 

This work has however been met with skepticism, due in part to inconsistencies.  

Singer's work is based mainly on field potentials or unresolved population recordings and 
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does not necessarily provide an accurate picture of single unit behavior. Much of the 

emphasis has been on oscillations in the gamma frequency range, but these patterns are 

by no means ubiquitous and are often hard to detect (Bair et al. 1994; Samonds and 

Bonds 2005) in recordings from single cells (aside from intrinsically oscillatory cells in 

layer 5; Gray and McCormick 1996).  We find that oscillation is not needed to generate 

synchrony, although it can help to sustain it (Samonds and Bonds 2005).  More recently, 

several laboratories have been unable to find unambiguous relationships between 

synchrony and specific visual tasks designed around segmentation or figure/ground 

discrimination (Lamme and Spekreijse 1998; Thiele and Stoner 2003; Roelfsema et al. 

2004; Palanca and DeAngelis 2005), indicating that synchrony is not directly supportive 

of feature binding, at least in the classic sense.  There is even considerable controversy 

over whether correlated firing (or the measures commonly used for its representation) 

actually adds information (e.g. Shadlen and Newsome 1998; Nirenberg et al. 2001; 

Petersen et al. 2001; Averbeck and Lee 2004). 

These reports do not however critically examine the dependencies between 

temporal structure/synchrony and differences in stimulus information.  We suggest that 

cooperation exists when the response of multiple neurons contains emergent information, 

in the form of constructive correlation that is not already represented in the individual 

responses of the neurons.  One example of this is when the synchrony modulates to 

changes in stimulus features in a way that is independent of firing rate (e.g. Engel et al. 

1991a,b; Kreiter and Singer 1996 (but see Palanca and deAngelis 2005); Castelo-Branco 

et al. 2000; Frien et al. 2000).  We have found synchrony/cooperation to be especially 

important and useful in the cases of fine angular discriminations where firing rate is 

essentially constant (Samonds et al 2003, 2004). 
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Synchrony as a Substrate for Higher-Order Correlations 

The successive hierarchies of the brain (as nonlinear networks) could 

progressively extract higher-order spatial and temporal relationships within the visual 

stimulus.  At the level of the cortex and beyond, these features become progressively 

harder to detect as the higher-order correlations become more abstract and global (e.g. 

Purpura et al. 1994).  This might explain why it is typically more difficult to find 

synchronization and the appropriate stimulation to identify functional properties of single 

cells as we move up the visual system hierarchy (Ursey and Reid 1999).  Therefore, we 

prefer to think of synchrony as a reliable signal transmission mechanism that extracts 

higher-order visual relationships as a Gestalt rather than as an active structural binding 

mechanism that represents a secondary code within a system of simple feature extraction.  

The importance in the distinction between an active intracortical binding mechanism 

versus higher-order filtering is that the latter process need not pass every possible test of 

feature binding (e.g. Shadlen and Movshon 1999). 

One conceptual framework that we believe to be consistent with the synchronous 

activity in V1 is the association field (Field et al. 1993; Hess et al. 2003), which is based 

on studies of the perception of contours and continuity.  Association field theory predicts 

linking between orientation-tuned cells that is dependent on their joint relative orientation 

and spatial position.  In natural images, contours are predominantly linear with a 

decreasing probability of greater curvature (Geisler et al. 2001; Sigman et al. 2001; Elder 

and Goldberg 2002).  The probability for linking is strongest between elements with 

shallower relative angles and closer separations, but greater distances can support greater 

angular differences.  What is important is the relative variance, i.e. the extent to which 

receptive fields are aligned along notional contours.  Synchrony can overcome the 
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ambiguity of firing rate to identify salient contours, which then have the potential to be 

integrated at subsequent locations in the extrastriate hierarchy. 

We have found experimental evidence that supports synchrony's role as a 

substrate for contour detection (Samonds et al. 2005).  By using an experimental protocol 

consisting of drifting concentric rings, we found that neuron pairs with proper receptive 

field alignment tangent to the rings would synchronize their responses, despite wholly 

different orientation preferences.  Synchronous responses were more reliable than 

changes in average firing rate in discriminating between concentric ring and grating 

stimuli.  And as theorized above, group membership was found to be dynamic in that 

individual cells could belong to more than one functional group, which assembled based 

on the spatiotemporal properties of the stimulus. 

 

Significance 

The extraordinary progress of the last four decades in understanding the process 

of vision has relied extensively on our knowledge of single neurons in the visual 

pathways.  However, properties of single cells cannot account for perceptual phenomena 

such as contour detection or shape recognition.  The discovery of the strategy by which 

information is assembled by groups of cells is critical to understanding the overall 

function of the brain.  Synchrony is an attractive candidate for participation in this 

process.  It occurs in the olfactory, auditory, and somatosensory systems and is found in 

the hippocampus, frontal cortex, and motor system (for review see Engel et al. 1999).  

Across a population, rate coding can define but a single neural assembly, whereas given 

timing constraints, synchrony can support numbers of assemblies simultaneously (e.g. 

Singer and Gray 1995).  Synchrony is a code that can be transmitted coherently through 
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multiple levels (Abeles 1991; Reinagel and Reid 2000) and is readily discriminated by 

cells acting as coincidence detectors (Azouz and Gray 2003).  Encoding of information 

through populations of neurons defined by synchrony may be key in linking 

neurophysiology and perception as well as providing a crucial bridge between single unit 

and global population (EEG, fMRI) studies.  Finally, knowing how information is 

encoded by groups of cells in the visual cortex has numerous applications such as vision 

prosthetics or understanding and treating certain visual pathologies. 

 

Methods for Population Analysis 

 

Introduction 

By the mid-1960's, automatic data processing for neurophysiological experiments 

was widely available and enabled researchers to record the precise timing of spike events 

over long periods.  In 1967, Perkel et al. introduced a variety of statistical techniques for 

the analysis of neuronal spike trains.  Mathematical descriptions of output behavior could 

in turn be used to make inferences about input or cell processing behavior.  Perkel and his 

colleagues operated under the assumption that details about the nervous system are 

inherent in the structure of a neuronal spike train.  Since action potentials are essentially 

identical, all-or-none events, only the timing of such events could relay information about 

the processes which lead to their generation. 

The principle working assumptions (Moore et al. 1966) are: 1) the precise timing 

of action potentials carries enormous amounts of information about the structure and 

function of the nervous system and it is in this timing that information is processed; 2) 

analysis of spike trains can provide insight into the cellular mechanisms responsible for 
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spike production, input to the cell, and the cell's transfer function; and 3) interconnections 

and functional interactions can be derived from the analysis of simultaneous spike trains.  

They also acknowledge that all neuronal processes involve a probabilistic element, which 

must be accounted for in quantitative descriptions of neuron behavior or models of 

neuron function. 

 

PST and Shuffle Predictor 

By treating spike trains as stochastic point processes, where each spike event is 

instantaneous and indistinguishable, a framework for quantifying spike train properties 

and the information inherent in the spike trains became available.  In a peri-stimulus time 

(PST) histogram (Gerstein and Kiang 1960), effects of repeated stimulation on one spike 

train can be quantified.  A PST histogram displays the probability of one neuron firing as 

a function of time around the onset of the stimulus (see Figure 1.1).  Since all stimulus 

presentations are identical and only the timing of such presentations is of significance, a 

stimulus "train" can also be treated as a point process.  A PST histogram is thus 

effectively a "cross-correlation" of the spike train and a "train" of stimulus presentations.  

If the stimulus had no effect on the neuron, then the probability of firing will be constant 

and the PST histogram will be flat.  If, on the other hand the stimulus produces a time-

locked evoked response, then fluctuations in the PST histogram will be seen.  For 

instance, peaks in the histogram reflect a higher probability of firing at a certain time 

after the stimulus presentation and usually represent excitatory processes.  Conversely, 

depressions in the histogram reflect a lower probability of firing and usually correspond 

to inhibitory or refractory processes. 
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To provide a control with which to statistically compare the PST histogram, the 

interspike intervals (elapsed time between two spikes) in a spike train can be randomly 

shuffled to destroy serial independence, but preserve order-independent statistics (Cox 

and Lewis 1966).  The recomputed PST histogram, also known as the shuffle predictor, 

then represents chance firing events (see Figure 1.1). 

 

 

 

Figure 1.1:   Top: A peri-stimulus time (PST) histogram displays the effects of repeated 
stimulation on one spike train.  In this diagram, the firing probability of the neuron 
increased on average after the onset of the stimulus.  This reflects an excitatory process.  
Bottom: The shuffle predictor is used to estimate the amount of chance firing events by 
recomputing the PST histogram after randomly shuffling the interspike intervals to 
destroy serial independence. 

 

CCH and Shift Predictor 

If all data are assumed stationary at all time scales in the absence of stimulation, 

statistical comparisons between two simultaneously recorded spike trains can reveal 

information about possible anatomical connections, common sources of activation, 

responses to stimuli, or synaptic input-output relations.  However, moderate non-

stationarities do not affect the detection of interactions between two spike trains (Perkel 

et al. 1967).  When comparing spike trains from two neurons, A and B, the cross-
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correlation represents the probability of encountering any spike in train B as a function of 

time before or after a spike in train A.  A cross-correlation histogram (CCH, or cross-

correlogram) can be constructed of the intervals between all train A events and all train B 

events, forward and backward, out to some designated time (see Figure 1.3).  An 

observed dependence in the CCH can reflect functional interaction or common input (see 

Figure 1.2).  Functional interaction is when the firing of one neuron affects the 

probability of firing of the other neuron and these effects can be synaptic (direct or 

indirect), ephaptic, or arise from field effects.  Common input describes any mechanism 

that influences the firing properties of both neurons at the same time, such as input from a 

common presynaptic neuron or some other outside source. 

 

 

 

Figure 1.2:   Functional relationships between stimulus and two neurons A and B.  a. 
Functional interaction where the stimulus affects either neuron A or neuron B, who in 
turn affects the firing probability of the other.  b. Common input where the firing 
probabilities of both neurons are affected by the same source (the stimulus in this 
example).  Note that these schematics depict direct relationships, but could also be 
indirectly activated through intermediate networks. 

 

In the presence of stimulation, the shape of the correlogram may be influenced by 

the firing rate change of one or both neurons, the direct or indirect input to both cells 

from a common source that responds to the stimulus, the effect of the stimulus on 

interaction mechanisms between the cells, or any combination of these effects.  It is 
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assumed that effects produced by the stimulus are independent and additive.  However, 

several arrangements of functional interaction may lead to the same CCH.  It is difficult 

to develop a statistical test of independence for the CCH because successive bins are not 

independent due to a decreased probability of firing during a neuron's refractory period.  

The CCH can however be predicted by offsetting stimulus trials by the length of one 

stimulus presentation, which destroys any temporal relationship, and recomputing the 

CCH (shift predictor – see Figure 1.3) (Perkel et al. 1967; Gerstein and Perkel 1969; 

1972).  This shift predictor is based on the concept that most neuronal interactions occur 

on a shorter time scale than the time between two successive stimulus presentations.  By 

shifting, the spike trains still contain all direct stimulus effects, but the interaction effects 

are destroyed because the time shift is so large.  The shift predictor reflects the null 

hypothesis that spikes from the two neurons are statistically independent and only the 

firing probabilities are related to the stimulus. 

 

 

 

Figure 1.3:   Top: A cross-correlation histogram (CCH) is constructed of the intervals 
between all train A events and all train B events, forward and backward, out to some 
designated time lag.  An observed dependence in the CCH can reflect functional 
interaction or common input.  Bottom: The shift predictor is used to estimate the amount 
of chance firing events by recomputing the CCH after shifting one spike train by the 
length of one stimulus period to destroy serial independence. 
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While analysis with the CCH has provided insight into the "effective" underlying 

neuronal architecture and interactions among neurons, there are some disadvantagaes to 

using this method.  Due to high variability in neuronal responses, the CCH must represent 

an average over many stimulus repetitions.  Temporal dynamics of the cellular 

interactions cannot be resolved.  Furthermore, there are several pathways of functional 

interaction that may lead to the same CCH.  Determinations of the underyling network 

configuration are estimates at best because of the ambiguity inherent in the CCH.  

Finally, a cross-correlation can only be applied to pairs of neurons and pair-wise 

calculations increase in a power relation for larger neural assemblies.   

 

JPST Scatter Diagram 

To examine the temporal dynamics of neuronal firing correlation, the idea of a 

joint peri-stimulus time (JPST) scatter diagram was introduced (Gerstein and Perkel 

1969; 1972).  Each spike train from a target pair form the axes of a scatter plot in which a 

dot represents the (delayed) coincidence of the spike trains relative to the stimulus onset 

(see Figure 1.4a).  The dot density is built up by carrying out many stimulus repetitions.  

The temporal dynamics of cooperation can be visualized in the patterns of the dots.  For 

instance, regions of high or low density in rows or columns represent stimulus-locked 

activation or suppression of either neuron.  The variation in density reflects the stimulus-

induced modulation of firing rate in the corresponding neuron.  Regions of high or low 

density parallel to the line y = x represent delayed coincidence firing, whereas the line y 

= x represents synchrony.  Note that the JPST scatter diagram does not handle 

superposition of dots from different stimulus trials. 
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Similar to the CCH, the JPST scatter diagram reflects interactions among only 

pairs of neurons.  In an attempt to resolve this, the JPST scatter diagram has been 

extended to compare three neurons  (Gerstein and Perkel 1972; Perkel et al. 1975), where 

the resulting Joint Impulse Configuration Scatter Diagram uses a non-traditional 

triangular coordinate system (see Figure 1.4b).  The axes intersect at 120° and represent 

pair-wise time differences among the three neurons.  Synchronous events between pairs 

of neurons are represented by high (or low) dot densities midway between coordinate 

axes and synchronous events among all three neurons are concentrated at the origin.  

Direct stimulus effects are reflected in dot densities along lines parallel to the coordinate 

axes.  Generalizing this method to four spike trains requires a tetrahedrally arranged 

coordinate axes and so on.  Besides poor generalization of this method to incorporate 

large numbers of neurons, these results only provide a qualitative description of joint 

interactions. 

 

 

 

Figure 1.4:   Joint Peri-Stimulus Time Scatter Diagrams.  a. The (delayed) coincidences 
of spike events in two spike trains can be visualized with a scatter diagram.  b. For three 
neurons, the plot is called the Joint Impulse Configuration Scatter Diagram and uses 
triangular coordinate axes.  Synchronous events from all three neurons are clustered near 
the origin. 
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JPSTH 

Aertsen et al. (1989) developed methods to quantify and normalize the JPST 

scatter diagram.  These new procedures allowed the separation of raw correlation into 

correlation caused by direct stimulus effects and correlation caused by interaction 

between the two neurons.  Instead of using a scatter diagram where dot superposition 

does not occur, the joint peri-stimulus time histogram (JPSTH) uses the PST histograms 

from each neuron along the coordinate axes to produce a two-dimensional scatter 

histogram (see Figure 1.5).  Joint spike events along the main diagonal comprise the raw 

PST coincidence histogram, which represents the modulation of raw synchrony over the 

duration of the stimulus.  A CCH can be produced by averaging across bins parallel to the 

main diagonal.  In order to remove direct stimulus modulations of single-neuron firing 

rates, a predictor computed from the cross-product of the two single-neuron PST 

histograms can be subtracted from the raw JPSTH.  The predictor represents the null 

hypothesis of independent firing and is mathematically equivalent to an average over the 

set of all possible shift predictors (Palm et al. 1988).  The corrected JPSTH is 

subsequently scaled by the cross-product of the standard deviations of the single-neuron 

PST histograms to produce the normalized JPSTH. 

The information-theoretical concept of surprise (Legendy 1975; Palm 1981) is 

used for significance testing.  The surprise of a value is the negative natural logarithm of 

the probability of finding that value or one more deviant and is computed for every bin in 

the normalized JPSTH.  Regions of the normalized JPSTH are determined to be 

significant if there is an extreme value in most of the bins in that region.  This 

requirement for spatial coherence ensures that isolated bins with extreme values are 
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considered noise.  However, the concept of spatial coherence is fuzzy and somewhat 

subjective and requires the additional process of smoothing. 

 

 

 

Figure 1.5:   Joint Peri-Stimulus Time Histogram (JPSTH).  This figure shows the 
components of the raw JPSTH. The JPSTH matrix displays the (delayed) coincidences of 
spike events in each neuron's PST histogram where color indicates number of spike 
events.  The PST coincidence histogram shows those events along the main diagonal of 
the matrix and represents synchronous events over the duration of the stimulus.  A CCH 
is computed by averaging across bins parallel to the main diagonal of the matrix.  Image 
obtained from http://mulab.physiol.upenn.edu/jpst.html. 

 

The JPSTH method provides a measure of correlation between two neurons 

without making any assumptions about the structure of the underlying neuronal 

architecture.  However, analysis of the normalized JPSTH can recover the "effective 

connectivity" of the underlying network, or the simplest neural network that would 

replicate the observed patterns in the JPSTH.  As in the discussion of the CCH, there are 

numerous neuronal configurations that could produce the same JPSTH and any analysis 

based on the effective connectivity derived from this method should be done with 

caution.  Although this method provides a way to quantify neural relations compared to 

the JPST scatter diagram,  significance testing with the surprise measure is subjective and 

makes it difficult to produce definitive conclusions.  Numerous spike events are needed 

 21 



and non-stationarities in the data could produce incorrect results.  Finally, this procedure 

is also designed to measure interactions between pairs and cannot be applied practically 

to larger assemblies. 

 

Gravitational Clustering 

In order to investigate the cooperative activity of assemblies with more than two 

neurons, other approaches were developed.  The gravitational clustering algorithm was 

introduced to characterize the time-varying organization and extent of neural assemblies 

(Gerstein et al. 1985; Gerstein and Aertsen 1985; Aertsen et al. 1986).  Gerstein et al. 

(1985) acknowledged that characterizing neural relationships meant defining what is 

meant by cooperation and developing quantitative criteria to recognize and describe this 

cooperation.  The gravitational clustering algorithm relates the activity of neurons to the 

motion of particles in a multidimensional Euclidean space.  A spike generated by a 

neuron results in an increment of charge, which can add to or decay before the next spike 

depending on how close in time the second spike is fired relative to the first.  The force 

exerted between particles is proportional to the product of their charges and inversely 

related to their separation distance.  The force on a particle affects its velocity and results 

in clustering of particles that tend to fire together.  Separate aggregates of particles 

represent independent neural assemblies. 

While this method identifies groups of cooperative neurons, we still cannot escape 

combinatorial arithmetic since the force on each particle is a vector sum of all pair-wise 

relationships.  And although each relationship is based on a quantitative measure of 

attraction, there is no quantitative description of the cooperation in an entire assembly 

besides, perhaps, the aggregation time of these fictitious particles in a hypothetical 
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multidimensional space.  Thus, statistical comparisons are difficult.  Furthermore, this 

algorithm does not readily identify cells that belong to more than one functional group or 

subsets of cells within larger functional groups.  Finally, this method cannot be 

practically displayed without using projections through hyperspace (Gerstein and Aertsen 

1985) or pair-wise distance plots (see Figure 1.6).  Although there have been 

improvements to the sensitivity of this technique (Baker and Gerstein 2000), the current 

problems make it unsuitable for extensive population analysis. 

 

 

 

Figure 1.6:   Graphical illustration of the gravitational clustering technique.  The activity 
of cooperative neurons is mapped onto the motion of particles in a multidimensional 
space.  Particles gravitate towards each other following rules of attraction and repulsion 
governed by spike discharges.  This plot displays the distance between pairs of neurons 
over time.  As the distance between particles becomes very small, they are clustered and 
considered a neural assembly.  Adapted from Gerstein and Aertsen (1985). 

 

Information Theory 

In an effort to measure the amount of cooperative activity in an assembly of 

arbitrary size, some methods were developed using information theory as a mathematical 

foundation.  For instance, type analysis (Johnson et al. 2001) considers a point process 

spike train as a binary sequence (using an appropriate bin width) and uses the firing 

patterns of all the cells in the target population to create a unique response sequence.  
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After repeated presentations of the stimulus, a probability distribution for each bin can be 

estimated.  Probability distributions from two different stimulus conditions can be 

compared using a distance measure such as the modified Kullback-Leibler or Resistor 

Average distance (Johnson et al. 2001).  Advantages of this method include that 

discharge history can be included in the calculations and there are no assumptions about 

the nature of the neural code.  However, drawbacks include the requirement for large 

amounts of data that increases in a power fashion with the number of neurons in the 

population and the need for additional bootstrap procedures to estimate the bias inherent 

in the distance measure (Efron and Tibshirani 1993; Johnson et al. 2001). 

Metric space analysis (Victor and Purpura 1996) uses cost-based metrics to 

calculate a distance between spike trains.  The metrics are based either on the spike 

arrival times or spike intervals and the cost of translating one spike train into another 

spike train is determined by qt, where t is the time required to move a spike or change the 

length of an interspike interval and q is the cost scaling parameter.  The method has been 

recently developed for population analysis (Victor 2000; Aronov 2003; Aronov et al. 

2003) by including an additional cost scaling parameter k, where k scales the cost of 

changing the cell-label of a spike (i.e. which cell fired the spike).  By clustering metric-

based distances over a set of stimuli, the mutual information is calculated to assess the 

role of population coding.  Although quantitative, methods like this are abstract and 

increasingly more difficult to apply to larger neural assemblies. 

 

Other Methods for Quantitative Comparison of Cooperative Activity 

Assemblies could be represented by more complex interactions that require more 

subtle discrimination.  One method of multivariate signal processing that has been 
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developed for neural ensemble analysis is principle component analysis (PCA) (Chapin 

and Nicolelis 1999).  PCA transforms data into linear combinations by rotating the data 

into a new coordinate system defined by the direction of greatest variance.  PCA does not 

detect nonlinear interactions, so independent component analysis (ICA) has been used to 

detect these higher-order interactions (Laubach et al. 1999).  The problems with ICA 

include the requirement of low firing probabilities and relatively high correlations within 

assemblies.  Furthermore, these methods are designed for pair-wise interactions. 

Another approach to characterizing population dynamics has been to search for 

statistically significant patterns of spikes.  The approach was initially developed by 

Dayhoff and Gerstein (1983a,b) and has been refined to account for various levels of 

jitter and models of significance (Abeles and Gerstein 1988; Tetko and Villa 2001a,b).  

Spike pattern recognition has also been developed to search for higher-order interactions 

among assemblies (Martignon et al. 2000).   

Grun et al. (2002a), Gal et al. (2003) and Czanner et al. (2005) have introduced 

several other novel methods for analysis of multispike information but they are largely 

theoretical and have not been applied to analysis of data from the visual cortex.  Despite 

the creativity of these approaches and the identification of some forms of information in 

spatially and temporally extended spike trains, there remains no clear identification of the 

visual features this information might represent or, more critically, how the brain might 

make use of it. 

 

Other Methods for Qualitative Comparison of Cooperative Activity 

Although there are display techniques for population activity (e.g. raster plots), 

there have been very few methods that specifically display the organization of 
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cooperative activity within a population.  One such method is the synchrony colormap 

described by Samonds and Bonds (2005).  Rooted in the sorting procedures used by 

Johnson et al. (2001), this technique creates an N-bit firing pattern for every instance in 

time where N is the number of cells in a neural assembly.  By converting these patterns to 

their decimal equivalents and arranging each number as a square on a checkerboard, a 

continuum of activation can be created where the upper left portion of the board 

represents no synchrony and the lower right portion represents all N cells synchronizing.  

This map can be used for a real-time or post-experiment visualization of synchrony.  

However, drawbacks of this method include the requirement to identify and monitor a 

specific assembly and that the identities of cells in cooperative subsets are not readily 

identified.  Furthermore, this display is qualitative and claims of weak, moderate, or 

strong synchrony may be misleading in that strength is determined by number of 

cooperative cells and not by interactions among cells. 

 

Conclusion 

The previous pages detail the formidable task of describing synchrony among 

large neural assemblies.  Multielectrode array technology allows for the simultaneous 

single-unit recording of dozens of cells, but current analysis methods are unsuitable to 

accurately and completely describe cooperative population activity.  Therefore, 

development of a new method is imperative if we are to understand how synchrony and 

assembly formation contribute to the perception of our environment.  The next chapter 

describes a method that quantifies cooperative activity within a neural assembly of 

arbitrary size and introduces a new parameter that measures the quality of synchronous 

relationships.  Furthermore, this new procedure can identify dynamic grouping and track 
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temporal dynamics of cooperative relationships.  No binning or smoothing techniques are 

required and all results are subject to simple significance testing.  Computation time 

increases linearly with the number of cells involved so that exploration of group 

characteristics and size trends is no longer an unattainable goal. 
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CHAPTER II 

 

QUANTIFICATION OF MAGNITUDE AND QUALITY OF SYNCHRONOUS 
ACTIVITY WITHIN NEURAL ASSEMBLIES OF ARBITRARY SIZE 

 
 

Introduction 

Our brains process and interpret sensory information in order to generate 

perceptions of the environment or motivate behavior.  However, the underlying 

mechanisms by which salient stimulus qualities are represented by neuronal response 

patterns remain a mystery.  Precise coordination of spike events, or synchrony, is an 

attractive candidate to play a role in (visual) coding since it exists among (visual) cortical 

neurons, but its functional significance is largely unknown.  Recent experimental 

evidence demonstrates that synchronous activity in cat visual cortex can discriminate 

between co-linear and co-circular contours (Samonds et al. 2005), suggesting that 

synchrony may be involved in the representation of contours or shape.  As a hypothetical 

neural substrate for encoding salient stimulus properties, synchrony enhances the 

probability of eliciting postsynaptic action potentials when neurons behave as coincident 

detectors (Azouz and Gray 2003), thus ensuring propagation of this information to 

subsequent levels of the cortical hierarchy.  Synchrony allows for neurons to be 

effectively connected and form dynamic regional assemblies to reliably and efficiently 

transmit information throughout the cortex while minimizing metabolic demands. 

To measure cooperative interactions within neural assemblies, researchers have 

traditionally used single electrodes, tetrodes, or small arrays to record simultaneously 

from small numbers of neurons.  Perkel et al. (1967) introduced the cross-correlogram 
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method to quantify cooperative relationships between pairs of neurons to determine 

whether observed dependences were consistent with functional interaction or common 

input.  Current multielectrode array technology allows recording of dozens of neurons 

simultaneously, but cross-correlograms and other techniques such as the Joint Peri-

Stimulus Time Histogram (JPSTH; Aertsen et al. 1989) cannot characterize the 

synchrony between more than two cells.  The cross-correlogram has been extended to 

include cooperation among three cells (Gerstein and Perkel 1972; Perkel et al. 1975; 

Abeles and Goldstein 1977), but the resulting display is limited to triangular coordinates 

and cannot be applied practically to larger assemblies. 

Other techniques such as gravitational clustering (Gerstein and Aertsen 1985; 

Gerstein et al. 1985) identify cells that fire together, but the results are qualitative and 

still based on pair-wise distance calculations.  Correlated group activity quantified 

through information theory (Johnson et al. 2000; 2001; Pola et al. 2003) or metric-space 

analysis (Victor and Purpura 1996; 1997) describes the amount but not the nature of 

cooperative information.  Methods based on principle component analysis and 

independent components analysis (Laubach et al. 1999), those based on separating 

synchrony and oscillatory firing patterns (Konig 1994), and many others (Lee 2002; 

Panzeri et al. 1999) aimed at quantifying synchrony in an assembly all apply to pairs and 

cannot be extended to larger groups.  A few methods have been developed to display 

population activity (Ortega et al. 2004; Samonds and Bonds 2004), but these displays are 

qualitative and do not quantify the amount of synchrony or quality of membership in a 

neural assembly.   

Although synchrony could constitute a suitable encoding scheme, implicating 

synchrony in neural coding is challenging because adequate methods to measure 
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synchrony have not been developed.  Most of the methods mentioned above quantify 

synchrony as some distance between two neurons.  However, synchrony allows for the 

formation of transient functional groups which could include tens, hundreds, thousands, 

or even larger numbers of neurons.  Pair-wise distance calculations increase 

exponentially as group size increases and can be computationally exhaustive for large 

groups.  Furthermore, very few studies have investigated how to measure the quality of 

synchrony as well as develop some means to display these quantities.  A formal and 

informative means of analyzing the correlated behavior across larger groups of cells is 

needed if we are to understand the significance of this information to the visual process. 

This chapter describes a method to quantify the magnitude and quality of 

synchrony within assemblies of arbitrary size (N ≥ 2), where computation time increases 

linearly with the number of neurons involved.  The results of this method can be used to 

measure average synchrony or track the temporal dynamics of synchrony within the 

assembly.  This method was applied to multielectrode array recordings in the visual 

cortex of paralyzed and anesthetized cats to characterize properties of assembly 

membership. 

 

Method 

As synchrony may serve to detect relevant information in the visual field by 

increasing the probability of eliciting postsynaptic action potentials, our basic algorithm 

is designed to reflect the relevance of group synchrony to postsynaptic neurons by 

modeling the temporal and spatial summation of postsynaptic potentials (PSPs).  We will 

first describe the steps in quantifying the magnitude and quality of synchrony and then 

show how the results can be integrated into a visual display. 
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Quantifying the Magnitude of Synchrony in a Neural Assembly 

The purpose of this method is to measure the timing similarity between neuronal 

spike trains in an assembly of arbitrary size.  Neurons with similarly timed events are 

considered synchronous and the magnitude of synchrony depends on the degree of 

similarity. 

Step 1: Convert Spikes to Trains of Point Events 

If we assume that action potentials are instantaneous and indistinguishable, then 

only the timing of such events is sufficient to describe visual information.  The activities 

recorded simultaneously from all neurons in a target assembly (N neurons with NTS total 

spikes and NCS coincident spikes, where coincident spikes are defined as events that occur 

within some integration time period defined below) are preprocessed to retain only spike 

initiation times, creating point-event spike trains (Si(t) is the spike train from neuron i).  

Spike trains for a given evaluation must have the same duration, LS.  Note that this does 

not imply that all spike trains have the same number of spikes. 

Step 2: Generate PSP Trains 

The comparison of simultaneous spike trains requires deriving a similarity 

measure that is conscious of time.  This can be accomplished by convolving a point-event 

spike train, Si(t), with a PSP waveform, W(t), that has area A and duration LW. 

( ) ( ) ( ) ( ) ( )i i it
P t S t W t S W t dτ τ τ= ∗ = −∫                   (2.1) 

This yields a PSP train, Pi(t) with length L.  A PSP waveform is often approximated 

using an alpha function, but any waveform can essentially be chosen based on its desired 

Weight Function (see Figure 2.1).  For instance, an alpha waveform nonlinearly weights 

events so that spikes occurring closely in time are weighted more than those occurring 
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towards the end of the integration time period.  Alternatively, waveforms can be chosen 

to reflect linear or constant weighting schemes.  For example, the JPSTH method 

(Aertsen et al. 1989) effectively uses a constant weighting scheme by binning.  For all 

subsequent illustrations and analysis, an alpha function will be used to model PSP 

waveforms. 

 

 

 

Figure 2.1:   a. This table shows different functions used to approximate a PSP 
waveform.  The two-dimensional weight function (N = 2) for each waveform is shown in 
the last column.  In order to produce a constant weight function, no matter how two 
waveforms from different neurons are arranged within the integration time period, their 
overlap is given the same weight.  This can be accomplished without using a PSP train by 
simply multiplying the number of coincident waveforms in an assembly by a constant 
weight.  b. A weight function is created by integrating the overlapping area under two 
coincident waveforms as the waveforms are shifted by lengths up to the integration time 
period, LW (see c.).  In the case of an alpha function (b), two waveforms that occur at the 
exact same time (lag = 0) have the most overlapping area and therefore have the most 
weight.  Note that the weight function is a conceptual tool and will not be implemented or 
discussed further. 
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Step 3: Filter PSP Trains 

The next step is to create a filtered PSP train, , by removing parts of the PSP 

trains that do not overlap with all other PSP trains in the selected assembly.  Note that 

coincident waveforms from different neurons occur when the respective spike events are 

within L

( )iP t

W of each other.  Therefore, LW is the integration time period (Figure 1c).  Here, 

we will define coincident waveforms as waveforms in which all or part of the waveforms 

are overlapped in time.  The actual overlapping portion will be referred to as the 

overlapped area of coincident waveforms.  A filtered PSP train is created by multiplying 

each PSP train by a filter, F(t), which has a value of 1 at times when the waveforms are 

overlapping (synchronous) and 0 elsewhere (see Appendix for how to create F(t)). 

( ) ( ) ( )i iP t P t F t= ⋅         (2.2) 

Step 4: Calculate Raw Score 

The magnitude of synchrony is computed as the ratio of the area under the 

overlapped portion of coincident waveforms to the total area under all waveforms in the 

assembly.  To determine the Raw Score, the filtered PSP trains are integrated and the area 

is divided by the area computed from integrating the original PSP trains.  Alternatively, 

the area under the filtered PSP trains can be normalized by the area under one waveform, 

A, and the total number of spikes in the assembly, NTS.  The Raw Score is a number 

between 0 and 1 and represents the percentage of total waveforms that are overlapped in 

an assembly.  An assembly with a large Raw Score is comprised of neurons whose 

responses occur at similar times and are thus very synchronous. 

( ) ( )

( )
i iL N L N

raw
TSiL N

P t didt P t didt
Score

ANP t didt
= =∫ ∫ ∫ ∫
∫ ∫

       (2.3) 
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Step 5: Calculate the Chance Score and Determine Significance 

The Chance Score is the percentage of waveforms expected to overlap by chance 

under the null hypothesis that all neurons in the assembly are firing independently.  This 

value can be predicted by calculating the shift predictor (Perkel et al. 1967).  Successive 

trials of stimulus presentations are shifted in time, which destroys any temporal 

relationships and preserves order-independent statistics.  The Chance Score is computed 

by completing steps 1-4 with spike trains that are shifted in time by the length of at least 

one stimulus trial compared to all other trains.  This was found to be not significantly 

different (t-test, p > 0.05) than averaging the scores from all possible shift combinations 

in assemblies where N = 2.  However, it is beneficial to perform this step a number of 

times with different shift combinations to build a distribution with which to statistically 

compare the Raw Score. 

Step 6: Compute Normalized Score 

A Normalized Score can be computed by subtracting the Chance Score from the 

Raw Score and renormalizing the resulting value to be between -1 and 1, which represent 

Scores that are far less than or greater than Chance, respectively, and Chance is assigned 

a value of 0.  A Normalized Score is independent of firing rate and Scores ≥ 0 represent 

the percentage of waveforms that are synchronous, but not due to chance from firing rate-

induced modulation of synchrony.  For instance, a Normalized Score of 0.5 means 50% 

of waveforms are synchronous beyond chance.  The absolute values of Scores ≤ 0 

represent the percentage of waveforms less than Chance that are synchronous.  For 

instance, a Normalized Score of -0.1 means that the coordinated activity in an assembly is 

10% less than activity expected by Chance.  Renormalizing the score ensures that 

assemblies with different spike counts and Chance Scores can be compared and 
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assemblies with identical spike trains have a Normalized Score of 1.  Similarly, spike 

trains with no coincident spikes have a Normalized Score of -1. 

    for Raw Score  Chance Score
1   
    for Raw Score  Chance Score

 

Raw Score Chance Score
Chance ScoreNormalized Score

Raw Score Chance Score
Chance Score

−⎧ ≥⎪⎪ −= ⎨ −⎪ <
⎪⎩

(2.4) 

Figure 2.2 depicts a graphical representation of the steps in quantifying the 

magnitude of synchrony.  Although this method was developed to measure the temporal 

similarity of spike trains within an assembly and not to determine underlying functional 

anatomy (e.g. like the JPSTH, Aertsen et al. 1989), this method can reveal some aspects 

of effective connectivity.  Individual Scores can be calculated by integrating the area 

under each filtered PSP train and dividing by the Score (this is usually done with the Raw 

Score).  The resulting values represent individual contributions to the collective group 

synchrony.  When using an asymmetric waveform like an alpha function in the PSP 

trains, this information can reveal whether some neurons tend to fire before or after 

others.  Neurons with similar contributions reflect a shared input while uneven 

contributions reflect direct interactions.  Although there are no assumptions about the 

underlying configuration of the network, these results can be compared to those from a 

known network configuration to determine whether they are consistent with a certain 

neuronal architecture. 

( )iL
individual

raw

P t dt
Score

Score
= ∫         (2.5) 
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Figure 2.2:   Steps involved in calculating the magnitude of synchrony within an 
assembly of arbitrary size (demonstrated for 3 neurons). 

 

Quantifying the Quality of Synchrony in a Neural Assembly 

Consider two neural assemblies:  One assembly synchronizes often, but the 

amount of overlap is small each time.  The other assembly synchronizes only a few times, 

but the amount of overlap is large.  Based on the total amount of overlapping area, these 

two assemblies may have similar magnitudes of synchrony, but the nature of synchrony is 
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different (see Figure 2.3).  To quantify the nature of synchrony, we have developed two 

measures of quality – one based on the number of coincidences (indirectly measured by 

duration of synchrony) and the other based on average degree of overlap during 

synchronous events. 

Step 1: Calculate Duration of Synchrony 

Determining the number of instances when an assembly is cooperative is not a 

trivial task.  However, we can measure the total amount of time the assembly cooperates.  

The percentage of time a neural assembly synchronizes is computed as the ratio of 

duration of synchronous activity to the duration of all activity.  This can be calculated by 

simply integrating the Filter function (value is 1 when waveforms are overlapping and 0 

elsewhere) and dividing by the total time covered by all waveforms, LTS, which may not 

be equal to NTSLW if spike events from the same neuron occur within the integration time 

period and those PSP waveforms are superimposed. 

( )
L

time
TS

F t dt
Q

L
= ∫         (2.6) 

Step 2: Calculate Average Overlapped Area of Coincident Waveforms 

The average percentage of overlapped area per cooperative instant is computed by 

dividing the area under overlapped portions by the total area under coincident 

waveforms.  Pseudo code for computing the number of coincident spikes, NCS, is 

provided in the Appendix. 

( )iL N
overlap

CS

P t didt
Q

AN
= ∫ ∫         (2.7) 

 37 



 

 

Figure 2.3:   Quality of synchrony is determined by the number of coincidences and the 
average amount of overlapping area per coincidence.  Top: The responses of three 
neurons in an assembly would be more synchronized if (Bottom-Left) there were more 
instances of coincident waveforms and/or (Bottom-Right) the time lag between 
synchronous spikes was shorter, increasing the average overlapping area of coincident 
waveforms.  Counting the number of coincidences is not trivial, so we use duration of 
synchronous activity instead.  Note that increasing the overlapping area increases the 
duration of synchrony, but it is possible to increase the duration of synchrony (by 
increasing the number of coincidences) without increasing the average overlapping area 
of coincident waveforms. 

 

The magnitude and quality of synchronous activity are both normalized so that a 

neural assembly with identical spike trains will yield values of unity.  Therefore, each 

quantity is a percentage of its maximum synchrony potential.  Note that maximum 

potential is a conceptual, mathematical quantity and may not have a real-life correlate.  

The maximum synchrony potential occurs when all spikes within an assembly are 

completely synchronized.  However, this may not be realistic if for instance, one non-

bursting cell (A) has 25 spikes and another non-bursting cell (B) has 75 spikes (N = 2).  

This pair cannot achieve their maximum potential to obtain a score of 1 (100 spikes 

synchronized).  Therefore, their highest score (with 50 synchronized spikes – 25 from 

each cell) is a fraction of their maximum potential (50/100 or 0.5).  (Note that bursting 

 38 



could increase the score since two partially overlapping spikes from cell B could coincide 

with one spike from cell A.) 

 

Visual Display of Synchronous Activity 

Understanding the rules (and roles) of group synchrony requires comparison of 

the spatial properties of the stimulus with the receptive fields of participant cells.  To 

accomplish this, we have developed an informative display of a population’s spatial and 

temporal properties (Figure 2.4).  It contains a dynamic image of the stimulus overlaid on 

receptive fields from all of the cells in the measured population.  Non-synchronous 

receptive fields are transparent.  With significant cooperation (e.g. p < 0.05) active 

receptive fields will assume a color that indicates their individual contributions to 

synchrony (see Figure 2.5).  The central bar in a receptive field outline delineates the 

cell's preferred stimulus orientation. 

Temporal information in the display is shown as the image changes in time and 

also with a plot of the summed PSP trains for the currently active neural assembly.  Even 

if there is no constructive cooperation between the cells in the assembly, occasionally 

synchronous events can occur simply due to chance collisions resulting from the firing 

rates of the cells.  The plot has a line indicating the chance level of synchronous events as 

well as a second line indicating when the strength of synchronous events exceeds 

significance (t-test, p > 0.05).   Subthreshold activity can be observed below these levels.  

The solid red bar indicates the current time.  The plot of synchronous waveforms can be 

used to reveal information about the stimulus and the assembly.  For instance, the 

example in Figure 2.4 shows an active assembly (N = 3) during concentric ring 

stimulation.  The plot shows synchronous activity during one cycle (black/white) of the 
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stimulus.  Gray dotted lines in the graph denote where synchrony peaks, then decays in 

accordance with the change in contrast.  Peaks in the graph with similar magnitudes 

(arrows) represent a common relationship among spikes in the assembly (i.e. they 

coincide in fixed proportion to produce the same amount of overlapping area).  

The display also contains an image of the multi-electrode array to show the spatial 

relationship between the locations of each cell belonging to the assembly on the surface 

of the cortex.  By identifying the stimulus features that are within the receptive fields of a 

group of cells when synchrony occurs, we can determine the relationships between 

receptive field properties and stimulus patterns that are conducive to cooperative activity.  

Finally, the magnitude and quality of synchrony (see Method) are displayed numerically 

and graphically with colored slide bars.   

 

 

 

Figure 2.4:   Dynamic display of assembly activity.  Features include an image of the 
stimulus with superimposed receptive fields from the cells in the currently active 
assembly, slide bars to display the magnitude and quality of synchrony in a group, an 
image of the multi-electrode array, and a plot of the summed PSP trains for the currently 
active group. 
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Figure 2.5:   Individual contributions to synchrony.  Receptive fields and array channels 
assume colors indicated by the relative area overlapping with other waveforms.  Similar 
colors reflect similar contributions and the actual color indicates the amount contributed. 

 

Applying PSP Method to Experimental Recordings 

We applied the PSP method to assemblies in the visual cortex of paralyzed and 

anesthetized cats when viewing drifting grating and concentric ring stimuli.  We wanted 

to confirm previous results of stimulus-dependence and dynamic grouping (Samonds et 

al. 2005) and extend these findings to larger neural assemblies.  We compared results to 

those from the JPSTH (Aertsen et al. 1989) to gauge the effectiveness of this method in 

identifying synchronous pairs and describing the amount of activity within those pairs.  

We show how magnitude and quality depend on assembly size and demonstrate how the 

variance of Individual Scores can be used to measure quality.  Finally, we show how 

results of the PSP method can be used to increase experimental efficiency. 

 

Materials and Methods 

 

Preparation 

During recording, cats were paralyzed with pancuronium bromide (Pavulon; 0.3 

mg/kg hr) and artificially ventilated with a mixture of N2O, O2, and CO2 (75:23.5:1.5) to 

 41 



hold expired pCO2 at 3.9%.  An infusate also contained Propofol (0.3 mg/kg hr) to 

maintain effective anesthesia.  Rectal temperature was maintained at 37.5° C with a servo 

controlled heat pad.  Eyelids were retracted and the natural pupils dilated by instillation 

of phenylephrine HCl 10% and atropine sulfate 1% in the conjunctival sacs.  Contact 

lenses with 4 mm pupils were placed on the corneas and auxiliary spectacle lenses were 

added as dictated by direct ophthalmoscopy to render the retinas conjugate with the 

stimulus plane 57 cm away.  At this distance, a visual angle of 1° is equivalent to 1 cm on 

the screen. 

 

Data Acquisition 

Simultaneous single-unit recordings were made via the "Utah Intracortical 

Electrode Array" (UIEA; Jones et al. 1992) from complex cells in the visual cortex of 

two cats.  This is a square 10 x 10 (100 total) silicon array on 400 micron centers (4 x 4 

mm footprint).  The electrodes had a length of 1.0 mm inserted to a depth of 0.6 mm with 

a pneumatic implantation tool (Rousche and Normann 1992) that minimizes tissue 

damage (Schmidt et al. 1993; Rousche and Normann 1998).  The insertion depth 

concentrated the electrodes in layers II/III, minimized tissue displacement (estimated at 

4%) due to the volume of the electrodes, and avoided impact to the cortical surface by the 

electrode base.  Amplification and signal processing were provided for each individual 

electrode (Guillory and Normann 1999), recordings were displayed in real time, and the 

waveform of each neural event was stored for later analysis by a comprehensive software 

system (Bionics, Salt Lake City, UT).   
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Stimuli 

For stimulation, we used both drifting sinusoidal grating and concentric ring 

stimuli (see Figure 2.6).  Gratings were oriented in ten degree increments from 10° to 

360°.  Both stimuli had the following properties: 0.5 cycles/degree spatial frequency, 2 

Hz temporal frequency, and contrast set to 0.5.  The center location of drifting concentric 

rings varied throughout the experiments and depended on manually mapped locations of 

receptive fields.  All stimuli were displayed on a computer monitor with a 120 Hz refresh 

rate through a circular aperture against a mean luminance background (73 cd/m2).  Each 

stimulus was presented for 2 seconds followed by a 1 second mean luminance interval 

and repeated 100 or 200 times for reliability.  Further details on the preparation, data 

acquisition, and stimuli are discussed elsewhere (Samonds et al. 2005). 

 

 

 

Figure 2.6:   Stimuli. Left: Drifting sinusoidal grating.  Right: Drifting sinusoidal 
concentric ring.  Each stimulus covered the classical receptive fields of the population 
and was displayed against a mean luminance background. 

 

Results 

Although the PSP method can quantitatively describe synchrony within large 

assemblies, the membership of meaningful assemblies (i.e. all cells that might fire 

synchronously) must be defined.  Because assembly membership is to some extent 

stimulus-dependent (dynamic grouping; see below), it may be impossible to identify 
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unambiguously members of a single assembly based solely on spike train properties.  

Each member may belong to numerous groups and the specific spike train properties 

relevant to a group of interest are unknown.  Therefore, due to the combinatorial 

arrangement of cells from the population, there are a large number of possible inputs to 

the PSP algorithm.  If we assume that only a small fraction of subsets in the population 

will synchronize to any given stimulus, then the probability of randomly testing 

combinations of cells and finding a significant assembly is very low.  Fortunately, we 

have found that members of larger assemblies can, in general, be predicted based on 

Normalized Scores from smaller assemblies.  Therefore, we can compute a relatively low 

number of small assembly scores and progressively cluster cells that synchronize well to 

create an assembly of arbitrary size that has a high probability of synchronizing.  (Note 

that cells are "clustered with replacement" so they can belong to more than one 

assembly.)  These large assemblies can then be analyzed using the PSP algorithm to 

determine if, in fact, their grouping is significant. 

We simultaneously recorded single-unit activity from 28 and 23 complex cells in 

the visual cortex of two paralyzed and anesthetized cats.  Using an alpha function (non-

linear weighting scheme), where τ = 1 ms and LW = 10 ms (Softky and Koch 1993), we 

applied the PSP method to compute Normalized Scores for all pair-wise combinations of 

cells (631 pairs).  The scores obtained from these groups were used to estimate larger 

assemblies (N = 3, 4, 5, 6) for each cell.  For instance, with 28 cells, there were 28 

assemblies for each size group (N = 3, 4, 5, 6) where the first assembly in each size group 

was comprised of cell 1 and the cells with which it synchronized the best.  Then the 

method was applied to these larger assemblies to measure their collective synchrony.  

This procedure is helpful to pinpoint larger assemblies to investigate although not 
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necessary if promising groups can be identified through other means, e.g. receptive field 

analysis.  As a reminder, pair-wise calculations are not needed to evaluate the score for a 

larger assembly. 

Significance testing was accomplished by comparing the distribution of Raw 

Scores to the distribution of Chance Scores (1 Raw Score and Chance Score obtained per 

trial) in a Paired Student's t-test under the condition that the difference of scores was 

normally distributed.  Most score distributions were normal as determined by the 

Lilliefors test for goodness of fit to a normal distribution.  Although the t-test is fairly 

robust to deviations from normalcy, nonparametric tests like the Wilcoxon signed rank 

test or the sign test can be used in situations where the distributions are not normal.  

Alternatively, the data can be transformed into a normal distribution before testing with a 

Paired Student's t-test (e.g. the natural logarithm transform can correct for skewness to 

the right). 

 

Stimulus-Dependence 

For drifting grating and concentric ring stimulation, we found that 100% of 

Normalized Scores from significant 2-cell assemblies (p < 0.01) exhibited stimulus-

dependence.  In general, synchrony was highest for stimuli that were optimal for the 

group.  Each neuron synchronizes with others best during its preferred stimulus 

(determined by maximum average firing rate).  In a pair of cells with different preferred 

stimuli, this tug-of-war results in highest synchrony for the average stimulus between the 

two.  For gratings, this explains why cells with similar orientation preferences tend to 

synchronize best.  This was even true for cells with large differences in average firing 

rate (> 20 sps).  Normalization corrects for synchrony's correlation with firing rate, but 
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these results suggest that significant synchrony is not directly coupled to or caused by 

firing rate.  Otherwise, a highly discharging cell would contribute more to synchrony and 

the optimal stimulus would be closer to the preferred stimulus for that cell. 

These results extended to larger neural assemblies, involving up to five cells for 

gratings and six cells for rings.  These assembly sizes are limited by the nature of the 

recording sample and its relationship to the form of the stimuli.  In samples of 28 and 23 

cells, we generally find only up to five cells with the same orientation preference (for 

gratings) and six cells that are reasonably configured for a concentric ring stimulus.  

Whether larger assemblies exist is currently unknown; rather larger recorded samples will 

be required to find this out.  Figure 2.7a shows the orientation tuning curves for three 

cells: X, Y, and Z (preferred orientations at 30°, 40°, and 70°, respectively).  These cells 

form a significant functional assembly (Figure 2.7b) when presented with gratings that 

are optimal for the group (20° to 70°) and exhibit the maximum synchrony response for a 

grating near the mean orientation preference of the group (40°).  In Figure 2.7c, a tightly 

tuned assembly (maximum orientation difference of 10°) synchronizes well for a grating 

at the mean orientation of the group, but synchronizes poorly for an appropriately placed 

concentric ring.  On the other hand, Figure 2.7d shows a loosely tuned group (maximum 

orientation difference of 60°) that synchronizes well to a ring stimulus when all members 

are aligned properly, but does not synchronize as well for a grating at the mean 

orientation for the group. 
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Figure 2.7:   Normalized Synchrony is stimulus-dependent. a. Orientation tuning curves 
for three cells (X – 30°, Y – 40°, Z – 70°) in an assembly.  b. Normalized Scores for the 
assembly(X,Y,Z) for each grating stimulus (10° to 360° in 10° increments).  The cells 
form a significant functional group during stimuli that are optimal for the group (20° – 
70°) with the most amount of synchrony during a stimulus close to the mean orientation 
preference for the group (40°).  c. A tightly tuned assembly (N = 3, largest difference is 
10°) has high synchrony for an optimal grating stimulus, but low synchrony for a ring 
stimulus.  d. A loosely tuned assembly (N = 3, largest difference is 60°) has high 
synchrony when configured to the appropriate ring stimulus, but low synchrony for a 
grating at the mean orientation for the group. 

 

Dynamic Grouping 

In general, we found that grouping between pairs of cells was dynamic, in that 

neurons could belong to more than one assembly and that grouping was stimulus-

dependent as mentioned above.  Dynamic grouping can occur across different stimuli 

(see Figure 2.8a), but also during the same stimulus (see Figure 2.8b).  For instance, a 

cell that prefers 40° could form a significant assembly with a cell that prefers 20° when 

presented with a 30° grating stimulus or the cell that prefers 40° could synchronize with a 

cell that prefers 60° when presented with a 50° grating stimulus.  Alternatively, some of 

the discharges from one spike train could synchronize with one cell while others 
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synchronize with a different cell during presentation of the same stimulus.  Qtime values 

can be very low for pairs (< 5%), which means that cells are synchronizing for less than 

5% of the duration of their total activity.  This information, together with the finding that 

approximately 80% of spikes from one spike train are synchronized with at least one 

other spike from another cell in the population (28 cells), suggests that dynamic grouping 

during the same stimulus is a common occurrence.  Since cells can be involved in more 

than one task at a time (multitask or multiplex information in their spike trains), this 

increases the amount of information represented by a subpopulation of cells.  This is 

efficient and beneficial, especially during complex stimuli where a large amount of 

information can be represented by a relatively few number of assemblies without having 

to recruit metabolically demanding numbers of cells. 

The grouping within larger assemblies was also dynamic as the stimulus 

configuration changed or stayed the same.  For instance, Figure 2.8a (left) shows 

synchronous contributions across a group of cells (N = 4) for a 240° drifting grating.  

(Here colors are arbitrary and used to distinguish cells.)  The red cell only contributes 

13% of the overall synchrony in the group.  In Figure 2.8a (right), the red cell joins with a 

different group for a 290° grating and contributes 26%.  Synchrony in the second group is 

more significant (p < 0.0004) and more evenly shared than in the first group (p < 0.05).  

The coupling of more even synchrony with stronger synchrony was a noticeable trend.  

Figure 2.8b graphically depicts how cells can belong to more than one functional 

assembly during the same stimulus.  Cell B can form a significant group with A or C, but 

a successful group of 3 (ABC) does not exist.  Similarly, Cell C forms groups with B and 

D, but group (BCD) does not exist. 
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Figure. 2.8:   Dynamic grouping. a. (Top-Left) Receptive fields (preferred orientations: 
230°, 240°, 270°, 290°) superimposed on a 240° drifting grating.  Lines are drawn in the 
direction of preferred motion, which is orthogonal to the preferred orientation.  (Bottom-
Left) Individual contributions to synchrony are resolved in a pie chart. (Top-Right) A 
different group with receptive fields (preferred orientations: 280°, 290°, 290°, 300°) 
superimposed on a 290° drifting grating. (Bottom-Right) Individual contributions to 
synchrony.  Note that the cell in red (290°) contributes more activity when it views a 
more optimal stimulus and forms a group with individuals that have tuning properties 
similar to itself.  b. Dynamic grouping during the same stimulus occurs by sharing spikes 
with multiple partners.  Cell B forms groups with Cells A and C, but group (ABC) does 
not exist since there are no spikes all three cells have in common. 

 

Compare to JPSTH 

To establish our algorithm as a viable method for quantifying synchrony, we 

compared it to the Joint Peri-Stimulus Time Histogram method (JPSTH, Aertsen et al. 

1989).  The JPSTH can only quantify synchrony among pairs of neurons, so we focused 

on assemblies where N = 2.  We found that the PSP method identified the same 

significant neuron pairs as the JPSTH, but relative magnitudes of synchrony between 

assemblies differed.  This was attributed to the non-linear weighting scheme employed by 

the PSP method compared to the constant (via binning) weighting scheme employed by 
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the JPSTH.  However, selectively emphasizing spike activity that occurred closely in 

time allowed for the further identification of other significant assemblies that were not 

recognized by the JPSTH method. 

To visualize whether descriptions of synchrony among neurons within the same 

assembly were consistent with the JPSTH method, we constructed "cross-correlograms" 

by shifting one spike train relative to the other and calculating the magnitude of 

synchrony at each lag from -100 ms to 100 ms (see Figure 2.9).  This procedure is 

slightly different than the one used to calculate the cross-correlogram in the JPSTH 

method, where coincident spikes are simply summed at each time lag and the resulting 

histogram is smoothed and normalized. The top graph in Figure 2.9 shows the cross-

correlogram for a significant neuron pair during grating stimulation constructed via the 

PSP method and the bottom graph shows the cross-correlogram from the JPSTH method, 

after further smoothing with a 5-point moving average filter.  Peaks in both graphs were 

normalized to unity.  As seen in Figure 2.9, both cross-correlograms are qualitatively 

similar, with large central peaks indicating significant synchrony, and periodic side lobes 

resembling gamma oscillation.  The smooth appearance of the top graph is most likely 

due to the graded values available in the PSP method as opposed to discrete spike counts 

in the JPSTH method, which makes the resulting cross-correlogram noisy and require 

smoothing techniques. 
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Figure 2.9:   Cross-correlograms constructed via the (top) PSP method (detrended) and 
(bottom) JPSTH method (after further smoothing with a 5-point moving average filter).  
The peaks in each graph were normalized to unity for assessment of qualitative features.  
Each graph contains a large peak at 0 lag indicating significant synchrony.  Although the 
main lobe in the top graph seems wider, the widths of both are comparable at 0 
synchrony (normalized) and are approximately 20 ms, reflecting a 10 ms integration time 
period (forwards and backwards).  Gamma oscillation (~ 40 Hz) is seen as side lobes in 
each graph.  The cross-correlogram derived from the JPSTH method is noisier due to the 
discrete spike counts in each histogram bin as opposed to graded synchrony values at 
each lag in the PSP method. 

 

Magnitude, Quality & Individual Contributions 

As more and more cells are added to an assembly, the probability of having all N 

cells synchronize within the integration time period (e.g. 10 ms) diminishes rapidly.  For 

example, in an assembly of 6 cells firing independently at 10 sps, the probability of 

encountering an instance of synchronization is approximately one in a million.  However, 

we observed numerous assemblies (N = 6) during ring stimulation with an average 

Normalized Score of 0.001.  When Chance encounters are negligible, the Normalized 

Score is approximately equal to the Raw Score and can be interpreted as the percentage 

of synchronous activity in an assembly.  In this case, six-member assemblies are 

coordinating their responses 1000 times more often than that expected by chance under 
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the null hypothesis that all cells are firing independently.  In a few instances, Normalized 

Scores were higher than 0.05 for six-member assemblies, demonstrating significant 

activity that was more than 50,000 times the expected amount. 

In given assemblies, the magnitude of synchrony tends to decrease with group 

size.  However, the capacity of synchrony or the magnitude of collective synchrony 

within an assembly including synchronous activity generated in all subassemblies 

increases in a power relation to group size (see Figure 2.10a).  Therefore, if synchrony 

increases in proportion to stimulus salience, the amount of information represented by an 

assembly including all subsets of assemblies increases in a power fashion with the 

number of members.  Similar to dynamic grouping, this helps to reduce the number of 

cells needed to describe visual scenes, which reduces metabolic demands and increases 

efficiency. 

The increase in information capacity of a large assembly is intuitive as it reflects 

the combinatorial arrangements of a large number of cells.  Likewise, intuition tells us 

that as synchronous activity increases, the quality of synchrony should increase (per the 

definition of quality).  As synchrony increased, we found a proportional increase in the 

average amount of waveform overlap and not the number of coincidences measured via 

duration of synchrony.  (Note: as both quality measures involve an increase in the 

duration of synchrony, we found an excess in time spent during synchronous activity that 

was accounted for by the increase in overlapping area of waveforms.)  Recall that 

individual contributions to synchrony within an assembly can determine whether cells, on 

average, fire together or tend to fire with a time delay.  Relatively asynchronous 

discharges (but still within the integration time period) are reflected in a large variance of 

individual contributions, which indicates a low Qoverlap score.  Figure 2.10b shows that as 
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assemblies become more significant (have more synchrony compared to chance), the 

variance of individual contributions decreases linearly, which indicates a linear increase 

in quality.  Therefore, for highly synchronous assemblies (see Figure 2.8a), each member 

contributes nearly equal amounts to maximize the amount of overlapping waveforms to 

increase synchrony without increasing the number of coincidences and taking spikes that 

could be used in other assemblies (see Figure 2.8b).  For 1 out of 2 concentric ring 

experiments, quality increased with assembly size.  As can be seen in Figure 2.10b, the 

largest ring assemblies (N = 6) were already producing near-maximal overlap. 

 

 

 

Figure 2.10:   a. The magnitude of collective synchrony (measured from an assembly and 
all subsets within the assembly) increases in a power relation to assembly size.  b. The 
quality of synchrony (measured inversely as the variance of individual contributions to 
synchrony) increases as assemblies become more significant and, in 1 out of 2 concentric 
ring experiments, increases with assembly size. 

 

Synchrony and Reliability 

While the PSP method can be used for data analysis, results from the method can 

also be used to streamline experimental protocols and improve efficiency.  For instance, 

we calculated the number of trials needed to reliably produce synchrony.  We found that 
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total spike number in an assembly is a good indicator of reliability.  In 3 different 

experiments, we measured the significant synchrony among 295 pairs (n = 27 cells) and 

found that 90% achieved 90% reliability with less than 1527 spikes (top, Figure 2.11).  If 

the average neuron fires 15.15 spikes/sec (bottom graph), a pair of average neurons 

would fire 30.30 spikes/sec and they would need to generate spikes for 50.4 seconds to 

yield a synchrony score that is 90% reliable.  Thus for the average neuron, 26 repetitions 

of a stimulus duration of 2 seconds would be required to yield this general level of 

reliability.  We have previously used 100 or 200 repetitions, but future experiments can 

test 4 – 8x more stimuli in the same amount of time and yield the same quality of data. 

 

 

 

Figure 2.11:   Top: Histogram of total spike count required to measure significant 
synchrony 90% of the time (n = 295 pairs). Bottom: Firing rate in spikes per second 
during 3 experiments (n = 27 cells). 

 

Discussion 

We have derived a method based on the biological process of postsynaptic 

potential integration to quantify the magnitude and quality of synchronous activity within 
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neural assemblies of arbitrary size.  As a substrate for encoding stimulus properties like 

contours (Samonds et al. 2005), synchrony enhances the probability of eliciting 

postsynaptic action potentials when neurons behave as coincidence detectors (Azouz and 

Gray 2003).  This ensures the propagation of information to subsequent levels of the 

cortical hierarchy.  Synchrony allows for neurons to be effectively connected and form 

dynamic circuits to reliably and efficiently transmit information throughout the cortex. 

By introducing a method whose output is relevant to the postsynaptic neuron, we 

have also derived a measure of efficiency.  Higher scores reflect more efficient 

transmission in that threshold can be reached more quickly than with assemblies with 

lower scores.  Synchrony, itself, represents an efficient coding strategy as described in the 

sections on dynamic grouping and magnitude of collective synchrony.  Dynamic 

grouping allows for the formation of transient functional groups during different stimuli 

or separate functional groups during the same stimulus.  Victor (2000) suggested that 

stimulus information is multiplexed at different temporal resolutions of the interspike 

interval histogram, but we suggest that cells can multiplex information in their spike 

trains by forming separate assemblies during the same stimulus.  These multiple 

assemblies may form a larger assembly whose collective synchrony increases with a 

power relation to group size.  Therefore, synchrony allows for multitasking so that visual 

information can be processed with a minimum number of cells.  Conversely, a larger 

number of cells can process more complicated stimuli. 

This method is advantageous because: (1) It can be applied to an arbitrary number 

of cells.  (2) Any waveform can be chosen and parameters like PSP amplitude, 

integration time and threshold are adjustable.  (3) The spike trains from excitatory and 

inhibitory cells can both be represented (an IPSP train results from convolution with a 
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negative alpha function).  (4) Simple significance testing can be used.  (5) We can 

normalize synchrony scores by subtracting the shift predictor.  (6) Members of large 

groups can be predicted from the scores of smaller groups, thus drastically reducing the 

number of group permutations that need to be computed.  (7) No binning or smoothing 

techniques are required.  (8)  This method is based on biological principles and the results 

are physically meaningful (i.e. a score of 0.15 means that 15% of all waveforms in a 

group were coincident).  The flexibility of this approach allows us to investigate the 

effects of increased/decreased integration times, examine group characteristics, and 

decipher trends correlated with group size.   In order to understand group dynamics and 

document rules governing group membership, we can use this method to measure 

collective responses and explore temporal characteristics of neural assemblies. 

 

Conclusion 

Focus has centered on recording techniques and the invention of novel ways to 

measure population activity.  The assumption is that the more neurons we can record 

from simultaneously, the more we will understand about population effects in the brain.  

However, even if we could measure from every neuron in the brain, we still would not 

know how cells interact on a large scale because we do not have a way to analyze large 

populations.  The PSP method was introduced to remedy this situation.  As the 

technology grows, so with it must grow our analytical resources.  By studying pairs of 

neurons and their interactions, we have learned a great deal about what the brain is doing 

beyond that known for single cells.  Expansion of this study to relationships between 

tens, hundreds, or thousands of cells or more offers an entirely new frontier in 

neuroscience. 
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CHAPTER III 

 

FUTURE EXPLORATIONS 

 

Introduction 

 For decades, study of cooperative relationships was mostly confined to 

interactions among cell pairs because simultaneous recording of the behavior of large 

populations was impractical.  This in turn discouraged the development of analysis 

techniques for comparing more than two simultaneous neuronal responses.  In the 

previous chapter, we introduced a novel method to describe cooperative activity among 

any neural assembly of arbitrary size.  By modeling the biological process of postsynaptic 

potential integration, both the magnitude and quality of synchrony in an assembly can be 

quantified.  Introduction of this method is timely and addresses the need to explore the 

characteristics of larger neural assemblies.  Neither the properties of single neurons nor 

pairs of neurons can explain the behavioral and perceptual repertoire of the brain.  

Understanding the functional interactions and emergent properties of larger neural 

networks is crucial to linking neurophysiology and perception.  The basis for our current 

models for functioning of the visual system has been developed from the analysis of 

individual or pairs of neurons, but we cannot grasp the foundations of perception without 

exploring how cells work together in local networks to describe the visual environment. 

 By stepping outside the abstract frameworks for identifying synchrony, we move 

closer to exploring synchrony as a physical neural mechanism for transmission of salient 

information.  However, as our measures become more realistic, so must our experimental 

paradigm.  For future research, we suggest an in-depth investigation into the role of 
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synchrony and assembly formation in the context of natural vision.  Furthermore, 

synchrony should be investigated as a viable sparse code employed by the visual cortex 

to represent high-order stimulus features in natural scenes.  The following pages discuss 

natural stimulation and natural scene statistics, sparse coding as an information 

processing strategy, synchrony as a viable sparse code, and some possible experiments to 

investigate which natural stimulus features induce synchrony.  Finally, we will end with 

some concluding remarks.  

 

Using Natural Stimulation 

The historic use of spatially or spectrally pure stimuli (lines, gratings) allowed 

controlled and systematic manipulation of the visual environment.  This was founded on 

the presumptions (from linear systems theory) that responses to simple stimuli could be 

used to describe the processing of more complex stimuli and has contributed immensely 

to our understanding of neuronal response properties.  However, more recent descriptions 

of previously unsuspected interactions such as receptive field reorganization due to 

stimulation of the "non-classical" periphery (Pettet and Gilbert 1992) suggest that we 

may not yet have a realistic model for cell behavior in the context of complex, natural 

scenes.  For instance, David et al (2004) found that natural tuning properties are not well-

predicted from responses to grating sequences.  This could be due in part to the reduced 

effectiveness of simple stimuli as opposed to natural scenes to drive cortical cells (Rieke 

et al. 1995).  Since responses of V1 neurons to natural stimuli are both qualitatively and 

quantitatively different from those to simple stimuli (Baddeley et al. 1997; Kayser et al. 

2003), it follows that an investigation of natural stimulation is necessary for 

understanding cell behavior in the context of natural vision.  
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Unlike simple stimuli, natural scenes have complex high-order spatial correlations 

(Field et al. 1993; Schwartz and Simoncelli 2001).  In an image, neighboring locations 

have similar color and intensity values and line segments tend to be arranged in a co-

linear or co-circular fashion.  For example, Figure 3.1 shows three pictures of a lamb with 

corresponding pixels being averaged from left to right.  Averaging neighboring pixel 

values mostly removes redundancy in the image and results in minimal loss of salient 

information.  Despite the loss in resolution, the lamb can still be identified in all three 

images.  This situation is different from white noise, in which there is no identifiable 

structure because neighboring pixel intensities are random and uncorrelated.  First-order 

image statistics describe individual pixel intensities, whereas second-order statistics 

describe correlations between pairs of pixel values.  Higher-order statistics are needed to 

describe local features such as contours, surfaces, and textures.  In order to represent the 

salient stimulus features in a natural scene, neuronal responses must be able to represent 

high-order image statistics. 

 

 

 

Figure 3.1:   There are high-order spatial correlations in natural images.  This is an image 
of a lamb rendered at three different resolutions.  Left: 64 x 64 pixels, Center: 32 x 32 
pixels, Right: 16 x 16 pixels.  The lamb can still be identified because neighboring pixel 
values are correlated and the process of averaging removes this redundancy with only 
minor information loss. 
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Sparse Coding as an Information Processing Strategy 

But how can neuronal responses represent contours, surfaces, and textures in 

natural scenes?  This is dependent on the more general question of how information about 

the natural environment is encoded by the early visual system.  While the traditional 

model involving cells acting as independent filters doubtless contributes to this process, it 

fails to account for any interactions between the filters making up the population and, as 

discussed above, the previously-unsuspected dynamic nature of the filters.  Although 

current technology allows us to monitor the interactions of hundreds of neurons 

simultaneously, we cannot understand their contribution to visual perception without a 

conceptual framework that describes their information processing strategy.  Discussions 

from Chapter 1 present the advantages of employing a population code in which subsets 

of the neural population form assemblies to accomplish tasks.  Two competing theories 

within this general approach include compact coding and sparse coding, both of which 

take advantage of redundancy in natural scenes to produce more efficient representations 

of the environment. 

In a compact coding strategy (see Figure 3.2), the goal of visual coding is to 

reduce the redundancy in natural scenes by creating a representation with the minimum 

number of cells (Field 1994).  This idea is closely related to Barlow's theories of 

redundancy reduction (Barlow 1961) as well as dimensionality reduction using Principal 

Components Analysis.  Different objects are represented by the different firing patterns 

of the same subset of cells.  Although a number of studies have suggested that spatial 

coding by the visual system is consistent with a compact code (e.g. Atick and Redlich 

1990, 1992; Barlow and Foldiak 1989; Daugman 1988, 1991; Linsker 1988; Sanger 

1989), there are several inconsistencies in accounting for receptive field properties of 
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cells in the retina and primary visual cortex.  By not including phase information due to 

the stationarity of natural scenes (i.e. features do not prefer any specific spatial location), 

compact coding cannot account for the localized nature of receptive fields (Field 1994). 

On the other hand, the visual system may be optimized for processing the 

statistics of natural scenes (Barlow 1961; Kersten et al. 1987; Simoncelli 2003) by 

employing a sparse coding strategy where natural scene information is represented with 

the minimum number of active cells.  In this strategy (see Figure 3.2), the dimensionality 

is not reduced, but the redundancy in the input is transformed into the redundancy in the 

firing pattern of the cells.  All cells have an equal response probability across the class of 

input images, but have a low response probability for any single image.  In this manner, 

information about the environment is distributed across all cells and objects are 

represented by which cells are active and not by the relative activity or overall amount of 

activity of a specific subset.  This approach has been found to be consistent with the 

representations of natural scenes (Field 1987, 1989, 1993, 1994; Zetsche 1990) as well as 

other sensory information (Barlow 1972, 1985; Palm 1980; Baum et al. 1988). 

One of the main advantages of sparse coding is that it can assist in the process of 

recognition and generalization (Field 1994).  Since the response of any one cell is 

relatively rare, tasks that require matching or detecting corresponding features are more 

successful.  As a code becomes more sparse (i.e. lowered probability of one cell 

responding), the probability of detecting a correct correspondence increases.  

Furthermore, if the probability of any cell response is low, the probability of two cells 

responding is even lower, assuming response independence (this is still true even though 

cortical responses to natural stimulation are not completely independent – Field 1994).  

Higher-order relations requiring large neural assemblies are increasingly rare and thus 
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more informative when present.  High-order features in nature can then be represented by 

a unique subset of cells. 

 

 

 

Figure 3.2:   Two competing theories of information processing (adapted from Field 
1994).  Left: In a compact coding strategy, the redundancy in the input is reduced by 
representing data with the minimum number of units.  This reduces the dimensionality 
and objects in the visual scene are represented by the relative activity across all cells in 
the subset.  Right: In a sparse coding strategy, the redundancy in the input is transformed 
into the redundancy in the firing rate of each unit and only a few units are active for any 
given input.  Different objects are represented by which cells within the broader 
population are active. 

 

In fact, Hoyer and Hyvarinen (2002) have shown that a multi-layer sparse coding 

network is capable of learning contour coding from natural images in an unsupervised 

fashion.  By modeling complex cell responses in which firing rate response distributions 

were both sparse and non-negative (Hyvarinen and Hoyer 2000), contour coding and end-

stopped receptive fields emerged.  Neural network models have also shown that when 

inputs to the network are sparse, they can store more information and provide more 

effective retrieval with partial information (Palm 1980; Baum et al. 1988).  Storage and 

retrieval with associative memories are biologically plausible and so efficient that 

preprocessing in many networks artificially sparsifies data so that learning or classifying 

fewer higher-order relations requires less computation. 
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Although the work mentioned above is theoretical and based on neural network 

implementations, there is also experimental evidence that supports a biological sparse 

coding scheme for natural vision.  For instance, neurons produce sparse, distributed 

responses to natural stimulation (Vinje and Gallant 2000; Weliky et al. 2003) and average 

firing rates are low compared to that from optimal grating stimulation, which reduces the 

metabolic demands of visual processing (Baddeley et al. 1997; Guo et al. 2005).  

Furthermore, natural scenes are large and typically cover cells' classical and non-classical 

receptive fields.  Large stimuli produce high sparseness values (Vinje and Gallant 2000), 

and Guo et al (2005) found that the majority of center-surround interactions in V1 cells 

are sensitive to high-order structures in natural images.  Center-surround interactions 

enable neurons to integrate information outside their classical receptive fields, which is 

important for contour integration (Gilbert 1998; Gilbert and Wiesel 1990; Fitzpatrick 

2000).  

 

Synchrony as a Viable Sparse Code 

So far, we have speculated that the brain may employ a population code and that 

the population code may be organized as a sparse code.  Recall, however, that a 

population code requires specific rules for association among cells.  While sparse coding 

requires a subset of cells to be active for any given input, what properties of the input 

define the subsets formed?  Is formation guided by intrinsic properties such as anatomical 

connections among cells with similar tuning preferences, extrinsic properties such as 

features within the stimulus, or both?   Furthermore, how is this property represented by 

the subset?  Since a given subset is particular to certain inputs, logic tells us that this 

property may be stimulus-dependent and relatively rare across the population of inputs.  

 63 



As mentioned above, higher-order features (contours, surfaces, textures) may be 

represented in a sparse code.  We propose that this representation is reflected in the 

cooperative activity of the subset.  In other words, synchrony is a way to implement a 

sparse coding strategy where higher-order stimulus information is represented in the 

precise temporal pattern of a neural assembly.  Precise temporal coordination among 

neurons preserves the requirements for sparse coding in that information is transmitted 

efficiently (through cooperation) and by a few neurons (assembly). 

We have shown that responses from synchronized assemblies in cat visual cortex 

can represent curvilinear contours (see Figure 3.3; Samonds et al. 2005).  When presented 

with a concentric ring stimulus, two cells of differing orientation preferences that lie 

tangent to the same ring can show synchronized responses as measured by the normalized 

JPSTH (Aertsen et al. 1989).  Responses from neuron pairs were compared when 

stimulated with drifting sinusoidal grating and concentric ring stimuli and the results 

suggested that synchronous activity was more selective and reliable than changes in firing 

rate in discriminating between the two stimuli.  Extending assembly formation to cells 

with spatial relationships that are not collinear is vital in establishing whether synchrony 

might serve as a general mechanism for contour integration and shape detection. 

 

 

 

Figure 3.3:   Synchrony can represent curvilinear contours.  Left: Cell pairs with differing 
orientation preferences are stimulated with a drifting concentric ring stimulus.  Right: 
Normalized cross-correlogram (JPSTH, Aertsen et al. 1989) with a large central peak 
indicating significant synchrony. 
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Possible Experiments 

Given that artificial sparse coding networks can learn contour coding (Hoyer and 

Hyvarinen 2002) and our in vivo results suggesting that synchrony may encode contours 

(Samonds et al. 2005), a logical inference may be that synchrony forms an 

implementation of a sparse code in the (visual) cortex.  However, more experiments 

showing that synchrony is consistent with a sparse coding strategy must be performed 

before any definitive conclusions can be drawn.  For instance, our results are based on 

pair-wise responses to artificial concentric ring stimulation and the neural network results 

were only found for collinear contours.  Whether our findings extrapolate to larger neural 

assemblies under natural stimulation and the neural network results extrapolate to 

curvilinear contours are unknown.  Furthermore, we do not yet know what properties of 

the stimulus affect synchrony and whether these same properties influence sparse codes.  

Field (1994) proposed that the property of an image that allows for a sparse code is the 

phase spectrum and that sparse codes should have response distributions with high 

kurtosis ("peakedness").  Three possible experiments that investigate whether synchrony 

fits this criterion are discussed. 

 

Experiment #1: Does synchrony signal contours in natural images? 

We can explore which stimuli are most effective for forming neural assemblies by 

presenting many natural images with a variety of features.  In a method adapted from 

Smyth et al (2003), natural image sequences can be presented and images that elicit a 

synchronized group response can be identified.  Those images can be summed together 

and weighted by the magnitude of the response.  The resulting composite will synthesize 
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a stimulus attribute seen in each picture or combine different structural features to create 

a new attribute that is ideal for the assembly. 

 We expect that this approach will yield contours that are preserved in the response 

set or piece segments from different images to produce a contour not present in the 

stimulus sequence.  As a preliminary finding, we have applied this method to two groups 

of three cells each from V1 of an anesthetized cat.  We presented each group with a set of 

drifting gratings, oriented 10° to180° in 10° increments.  The gratings eliciting significant 

cooperative responses (t-test, p<0.01) were weighted and summed.  The results are shown 

in Figure 5.  For the tightly tuned group (preferred orientations: 60°, 60°, and 70°), the 

optimal stimulus appears to be a grating at the mean orientation for the group (60°).  For 

the loosely tuned group (preferred orientations: 90°, 100°, and 110°), however, the 

optimal stimulus appears to be a ring that is tangent to the orientation and location of 

each cell in the group.  In fact, when presented with a ring stimulus, the synchrony in the 

loosely tuned group was higher than that measured for a grating in the mean direction for 

the group (100°).  These results indicate that it is possible to find an optimal group 

stimulus or create one by combining salient features.  We note that a limited stimulus set 

was used in this case and that a truly optimal stimulus may involve higher-order features 

that cannot be defined by simple combination of gratings.  In response to this, many 

natural images with a variety of structural features and stimulus properties can be 

presented. 
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Figure 3.4:   Composite stimuli with superimposed receptive fields of the cells in an 
assembly.  Left: The composite from a tightly tuned group resembles a grating at the 
mean orientation for the group.  Right: The composite stimulus for a loosely tuned group 
resembles a ring.  

 

Experiment #2: Does synchrony depend on the phase spectrum of a natural image? 

Field (1994) suggested that the phase spectrum of a natural image describes the 

redundancy necessary for sparse coding (when the input has stationary statistics).  We 

can determine whether synchrony depends on the phase spectrum of an image by altering 

it.  For instance, a stimulus (Figure 3.5 left) can be separated into its power and phase 

components in the frequency domain.  By swapping components with, say, a random 

white noise stimulus (Figure 3.5 left-middle), images can be produced that have a natural 

phase spectrum and random power spectrum (Figure 3.5 right-middle) or a random phase 

spectrum and natural power spectrum (Figure 3.5 right)(Yang Dan, pers. comm.).  

 

 

 

Figure 3.5:   Swapping image components in the frequency domain to create hybrid 
stimuli.  Left: Natural image.  Left-middle: Random white noise stimulus.  Right-middle: 
Image created with the phase spectrum from the natural image and the power spectrum 
from the random stimulus.  Right: Image created with the phase spectrum from the 
random stimulus and the power spectrum from the natural image. 
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If Field's theory on sparse coding is correct and synchrony reflects the 

implementation of a sparse code in the cortex, we would expect to find that synchronized 

activity is stronger when viewing hybrid images with natural phase spectra than when 

stimulated with images that have random phase spectra. 

 

Experiment #3: What other properties of natural images affect synchrony? 

One challenge in analyzing neuronal responses to natural stimuli lies in pairing 

the responses to a specific stimulus attribute.  Spatial, temporal, and luminance properties 

may combine in any number of ways to elicit a given response.  To investigate any other 

specific properties of natural stimuli that encourage assembly formation, differential 

measurements can be utilized.  A general strategy is to measure a response to an original, 

control image and then systematically vary the properties of that image.  Cooperative 

responses can be compared to those elicited from the original image and the difference 

represents the consequences of the imposed modification.  Such modifications may 

include: polarity-reversal, noise-addition, edge-enhancement, low-pass filtering, or high-

pass filtering. 

 

 

 

Figure 3.6:   Image modifications.  Top-Left: Original image serves as a control.  Top-
Right: Polarity-reversed  image.  Bottom-Left: Image with noise added.  Bottom-Right: 
Edge-enhanced image. 
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The use of a difference approach allows us to examine whether the modifications 

mentioned above affect neural assembly activity and formation without having to know 

exactly which features are preferred by a group.  For instance, if the receptive fields in a 

neural assembly cover the eye of the toucan (Figure 3.6), we can assess sensitivity to 

noise-addition without having to analyze which specific feature (curvature, pixel 

intensity, shape of surroundings) induces synchronization.  We expect to find that 

modifications that increase the ability to detect contours will increase synchrony, while 

modifications that destroy structure will decrease synchrony.  This result will support our 

hypothesis that synchrony signals high-order stimulus features such as contours.  

Collectively, these results address whether synchrony depends on specific local structure 

or more general qualities such as shape or contour. 

 

Conclusion 

Encoding of salient stimulus information by the brain has been a topic of 

discussion for over a century.  Similarly, the benefits of sparse coding have been known 

to the computational world for decades.  Speculations on a biological sparse coding 

strategy have surfaced, but the technology was never available to confirm or dispute such 

theories.  The introduction of a method as described in Chapter 2 allows us to move 

beyond the analysis of a couple neurons to investigate such theories and determine how 

populations of neurons may be working together, perhaps with a synchronous sparse 

code, to generate emergent behavior such as contour integration and perception of our 

visual environment.   
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APPENDIX 

 

Determining the filter, F(t). 

The filter, F(t), has a value of 1 at times when the waveforms are synchronous and 

0 elsewhere.  Although there are many ways to create this filter, a simple method is 

described here.  Each PSP train in an assembly is multiplied together, ensuring that 

positive values in the resulting train are synchronous.  The resulting train is then 

normalized by the largest value to create values between 0 and 1.  Finally, the ceiling 

function is used to make all positive values equal to 1. 
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Calculating the Number of Coincident Spikes, NCS. 

The number of coincident spikes within an assembly can be calculated by 

comparing spike initiation times from spike trains with the Filter train.  At a certain spike 

initiation time, check the next LW elements of F(t).  If any element is a 1, then count that 

spike as a coincident spike.  This algorithm is demonstrated below in MATLAB. 

NCS = 0; 
for t = SpikeTimes 

if sum(F(t:t+LW-1)) > 0 
    NCS = NCS + 1; 
end 

end 
 

where SpikeTimes is a vector containing spike initiation times for all cells in the 

assembly. 
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