
ON THE USEFULNESS OF THE MULTI-TRACK VALIDATOR FOR

STUDYING SECONDARY VERTEXES IN THE PHASE 1 TRACKER

UPGRADE OF THE SUPER LARGE HADRON COLLIDER

By

Cody Craig Johnston

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Physics

May, 2012

Nashville, Tennessee

Approved:

Dr. Paul Sheldon

Dr. Medford Webster

I dedicate this thesis to the lovely and savvy Sarah Elizabeth Avellar,

my chronologically fourth best friend Eugenio Victor Garcia,

and to all the others who helped turn my life as a Vanderbilt graduate student

from a routine experience, into an unforgettable adventure.

ii

ACKNOWLEDGEMENTS

I first and foremost wish to thank my advisor, Dr. Paul Sheldon, for introducing me to the

world of high-energy particle physics and for all his advice, guidance, and support in helping me

complete this thesis.

Of nearly equal importance, I wish to thank Dr. Eric Brownson, for bringing me on board

the research project that is the topic of this thesis. I am grateful for him taking the time and

energy over multiple Skype chats and e-mails to guide me on my research and being patient with

me while I climbed the substantial learning curve of high-energy physics research. Without Dr.

Brownson's input, this thesis would most likely consist of many blank pages.

I would like to thank the Vanderbilt astronomy professors, Dr. Andreas Berlind and Dr.

Kelly Holley-Bockelmann, for being excellent advisors during the summer of 2008 when I

participated in the Vanderbilt physics REU program. I'd also like to thank Alyce Dobyns for

being such a wonderful REU “mom” during that summer. Y'all were the ones who made me want

to return to Vanderbilt for grad school. Also, I'd especially like to thank Kelly for her support and

assistance in helping me get accepted into the Vanderbilt physics graduate program.

And last but not least, I'd like to thank all my friends and family for a lifetime of support.

iii

TABLE OF CONTENTS

Page

DEDICATION ... ii

ACKNOWLEDGEMENTS ….. iii

LIST OF FIGURES ….. vi

CHAPTER

1 – INTRODUCTION ... 1

2 – BACKGROUND …... 2

 2.1 – Introduction to CMS …... 2

 2.2 – Introduction to Phase 1 …... 5

 2.3 – Design of a Tracker-Based Trigger …... 9

 2.4 – Studies of Trigger Stack Layers ….. 11

3 – MY WORK ON THE PHASE 1 UPGRADE ….. 13

 3.1 – Phase 1 Upgrade ….. 13

 3.2 – Upgrade Tools …... 15

 3.3 – Studying Secondary Vertexes ….. 16

4 – THE “TIP_INNER” SAGA ….. 17

 4.1 – Choosing a test sample and setting parameters …... 17

 4.2 – Checking the Beam-Spot ….. 18

 4.3 – Introducing “tip_inner” …... 18

 4.4 – A Statistical Problem …... 20

 4.5 – A Purity Problem …... 23

 4.6 – Tip Tracking …... 24

 4.7 – I Want My MTV ….. 30

 4.8 – The Kobayashi Maru …... 31

5 – HOW I LEARNED TO STOP WORRYING AND LOVE B-TAGGING …............. 33

6 – FOR FURTHER STUDY …... 35

iv

REFERENCES ….. 36

v

LIST OF FIGURES

Page

FIGURE

1: Diagram of the CMS Detector …... 3

2: Cross-sectional slice of the CMS detector …... 4

3: The four layers of the Phase 1 Barrel Pixel Detector …... 6

4: A “half cylinder” of the Forward Pixel detector showing two half-disks that were

installed on one side of the interaction region. Panels made up of plaquettes of siliconsensors are

visible …... 7

5: One of the half disks in the Phase 1 Forward Pixel Detector ….................................... 8

6: Single muon rates for various L1 and L3 selections ….. 10

7: Illustration of “Stacked Triggers” ….. 12

8: Efficiency of reconstructed tracks in default code vs. tip_inner=0 …......................... 21

9: Two identical runs over the 4-muon sample ….. 22

10: Example of code where I needed to add the new “tip_inner” parameter ….............. 25

11: Comparison of tip_inner greater than 0 with greater than or equal to 0 …................ 27

12: Looking at tip_inner for small values ….. 28

13: Comparing various values of “tip” to look for any statistical differences …............. 29

vi

CHAPTER 1

INTRODUCTION

Particle physics is the study of the elementary constituents of matter and their

interactions. Elementary particles are those particles which are not compositions of other

particles. It has long been known that current scientific understanding of these particles is

summarized in a physics model known as the Standard Model. The Standard Model is composed

of three interactions; electromagnetic, weak, and strong; and twelve elementary particles called

fermions. Fermions are spin half particles which satisfy Fermi-Dirac statistics, and they are

divided into two sub-groups, quarks and leptons. Quarks are further divided into six types: up,

down, charm, strange, top, and bottom. Leptons are also further divided into six types: electrons,

electron neutrinos, muons, muon neutrinos, taus, and tau neutrinos. (1)

Despite this body of knowledge, there are still open questions in particle physics that go

beyond the Standard Model. One avenue of answering these questions is the Large Hadron

Collider (LHC). The LHC, constructed in Geneva, Switzerland, by the European Organization

for Nuclear Research (CERN), is a proton-proton and heavy ion collider with a goal of

answering a plethora of unanswered questions in high-energy particle physics, such as searching

for the Higgs Boson, attempting to understand the nature of space and time at elementary levels

where current theories break down, investigating the nature of dark matter, and answering

questions about the existence of extra dimensions.

The LHC is opening a new energy frontier to recreate conditions present in the early

Universe and understand the physics processes governing fundamental particles. However, the

discovery potential of the machine is also determined by the rate at which interactions occur.

Naturally after an experimental apparatus has been running for a given length of time, it comes

time to upgrade the equipment. The upcoming upgrade is the Super Large Hadron Collider

(SLHC). The maximum expected luminosity of the LHC is 1034 cm-2 s-1, but the SLHC has set a

goal to increase the luminosity by an order of magnitude. (2)

1

CHAPTER 2

BACKGROUND

2.1 – Introduction to CMS

The LHC has a total of six experiments studying a diverse range of topics in high-energy

physics, but the only one this thesis will focus on is the Compact Muon Solenoid (CMS), shown

in Figure 1. The detector consists of several sub-detectors enclosed in different layers: Silicon

Pixels and Silicon Strips for tracking reconstruction, Electromagnetic and Hadronic Calorimeters

for energy measurements and three different kinds of muon detectors. The tracker system, the

electromagnetic calorimeter and a section of the hadronic calorimeter are enclosed in a

superconducting solenoid magnet. In Figure 2, a slice of the CMS detector cross section is

shown, to illustrate that different types of particles will leave different signatures as they travel

through the detector. CMS is a general purpose detector, designed to study multiple aspects of

proton collisions at high energies and answer those unanswered questions in particle physics. (1)

At the center of the detector is the interaction point, where the proton-proton collisions

occur between two beams from the LHC. Immediately surrounding the interaction point is the

tracker, which attempts to match tracks of particles from the vertex from which they originally

emanated. Next is the electromagnetic calorimeter, which measures the energies of electrons and

photons. Then there is the hadronic calorimeter, which measures the energies of hadrons. Next is

the magnet, which determines the charge/mass ratio of particles based on the curvature produced

in their track by a magnetic field. Finally, there is the muon detectors and return yoke, to identify

muons and measure their momenta. (5)

2

3

Figure 1: Diagram of the CMS Detector

4

Figure 2: Cross-sectional slice of the CMS detector

2.2 – Introduction to Phase 1

CERN is carrying out a phased approach for the SLHC upgrade. Phase 1, to be completed

in 2016, would double the current maximum luminosity, and this would be pushed gradually and

with minimal interruptions in operations to quadruple the current maximum luminosity. Finally,

Phase 2 would eventually complete the order of magnitude increase in luminosity. The CMS

detector must be upgraded in order to handle the increased luminosity. My research project

focused on upgrades to the tracker, and this will be the primary focus of this thesis.

The Phase 1 upgrade will, in addition to higher luminosities, provide a smaller beam pipe

at the CMS interaction point. To take advantage of this, the innermost barrel pixel layer can be

moved closer to the interaction point. The addition of a fourth barrel layer and a third forward

pixel disk provide an added layer of coverage throughout the central tracking region, as shown in

Figure 3.

Ideally the detectors would provide at least four hits per track. That fourth hit provides a

level of redundancy within the pixel detector when track seeds are constructed. The current

highest purity track finding requires three hits per seed. Thus any inefficiency within the three

barrel layers and/or two forward disks greatly reduces the number of tracks reconstructed at that

rank. Having the possibility of four hits per track also provides an opportunity to construct track

seeds requiring four hits per seed. This can greatly reduce the rate at which fake tracks are

reconstructed.

The Phase 1 forward pixel disks are constructed in an inner and an outer disk. The inner

radius of the forward disks is also decreased to provide better coverage. Figure 4 shows the

configuration of the current forward pixel sensors, which can be compared to the Phase 1

forward pixel sensor configuration in Figure 5. (2)

5

6

Figure 3: The four layers of the Phase 1 Barrel Pixel Detector

7

Figure 4: A “half cylinder” of the Forward Pixel detector showing two half-disks that were
installed on one side of the interaction region. Panels made up of plaquettes of siliconsensors are
visible

8

Figure 5: One of the half disks in the Phase 1 Forward Pixel
Detector

2.3 – Design of a Tracker-Based Trigger

One of the challenges that CMS must meet when running at the SLHC is to upgrade the

L1 trigger to handle the increased luminosity. The trigger is the set of algorithms designed to

filter events in the detector and select for only “interesting” events. Since proton-proton

collisions result in numerous types of events, some of which have been completely and

thoroughly studied and others which are too complex to understand, there is no need and not

enough available computational resources to store every single piece of experimental data from

the detector. Thus, we have need for a trigger to remove these “boring” results.

There are currently three levels of triggers, with the first level L1 being “quick” and the

third level L3 spending much more time sorting through the data. When the luminosity is

upgraded, as Figure 6 shows and I will explain below, it will “break” the current trigger. We

would like to get the sophistication of L3 information at L1. So we are motivated to change the

geometry, such as to Phase 1. Changing the geometry requires studies to be done to make sure

everything works correctly.

Figure 6 illustrates the single muon rates for various L1 and L3 selections as shown for a

luminosity of 1034 cm−2s−1. It can be seen that a pT threshold of about 20 GeV/c is required to

keep the rate below 10 KHz, which is 10% of the maximum L1 rate. If one assumes that the

trigger rate for a given threshold increases by a factor of 10 if one increases the luminosity by a

factor of 10, it appears from Figure 6 that the L1 trigger would likely no longer work. Without

additional considerations, simply increasing thresholds to account for a 10-fold increase in

luminosity would inhibit physics studies. And as the figure shows, the rejection curve actually

flattens out, so that it appears it might not even be possible to obtain the required rejection at the

SLHC.

This motivates the use of tracking information in the L1 trigger at the SLHC. The

momentum of this track, as determined by the pixel tracker, is also used to sharpen the lepton pT

threshold; the pixel tracker has ten times better resolution than the muon system. Looking at the

L3 rejection curve in Figure 6, there appears to be hope that requiring tracking information will

reduce the trigger rates to acceptable levels. The L3 trigger adds tracking information from the

9

pixel tracker, and requires the presence of a track that is spatially matched to the high-pT lepton

triggered on. However, implementing even this minimal requirement in the L1 trigger introduces

significant technological challenges. The L3 trigger data shown in Figure 6 uses the offline

tracking algorithm to sharpen the muon pT measurement. Detailed studies are needed using a

realistic L1 tracking algorithm to check the performance at L1. (2)

10

Figure 6: Single muon rates for various L1 and L3 selections

2.4 – Studies of Trigger Stack Layers

Providing trigger algorithms fast enough for use in the CMS L1 trigger system will

require a geometry change in at least part of the pixel tracking system. Finding track stubs from

only high pT tracks requires some association of data between different layers. This in turn

requires a readout of a fraction of the data off-detector, thereby introducing complications of

cabling, power, and additional material in the tracking detector. The data rate for the barrel pixel

system has been estimated to be about 10 Gb/cm2/s. Some reduction in the amount of data to be

readout would probably be required either on-chip or on-detector. One suggestion of how this

could be achieved is via closely stacked sensors to create hit pairs before the off-detector

readout. Another possibility is to implement a specialized trigger readout for groups of pixels. An

additional and significant challenge is to keep the amount of material to a minimum; the

introduction of any additional detector layers or other material would be a serious concern.

A promising L1 tracking trigger strategy has been proposed for SLHC called “Stacked

Triggers”, illustrated in Figure 7. The main idea is to use stacks of closely spaced sensors to

quickly find mini-vectors and reduce, by a factor of 10-100, the data that needs to be readout off-

detector. This reduces power and cabling. Furthermore, with an appropriate choice of the

separation between the stacked layers and pixel sizes, reconstructed mini-vectors would meet

suitable minimum pT requirements. This would be done using either one stacked barrel layer, or

several sets of stacked layers. Two sets of stacked layers would be needed to infer the track pT .

Although the proposed Stacked Trigger is a promising idea, there is a lot of work needed

to show that the idea can work in a real detector under real conditions. In addition closely

stacked layers are not ideal for offline track reconstruction. While the pixels of the trigger stacks

provide excellent position resolution it is not the most efficient use of the space available.

Studies are needed to show that a buildable pixel doublet can be used to produce a workable L1

trigger and to ensure that the tracking performance of the complete tracking system is not

compromised by the addition of one (or more) trigger pixel doublets. (2)

11

12

Figure 7: Illustration of “Stacked Triggers”

CHAPTER 3

MY WORK ON THE PHASE 1 TRACKER UPGRADE

3.1 – Phase 1 Upgrade

My area of research during the course of 2011, and the topic of this thesis, was looking

into one area of the Phase 1 upgrade for the SLHC, under the guidance and supervision of Dr.

Paul Sheldon (Vanderbilt), Dr. Eric Brownson (Fermilab), and the rest of the high-energy physics

group at Vanderbilt. Then-postdoc Dr. Brownson was leading our efforts on the CMS detector

upgrades required by the SLHC. He was stationed at the LHC Physics Center (LPC) at Fermilab

where he could interact with other physicists working on these upgrades, in particular the

Tracker Upgrade Simulations Working Group co-led by Harry Cheung of Fermilab.

Upgrading to the SLHC first requires going from the current Standard Geometry to the

Phase 1 upgrades. The more hostile and challenging environment of the SLHC will require new

designs for the CMS tracking system. Two distinct phases of upgrade are proposed. The initial

Phase 1 upgrade would be a replacement of the Pixel Tracking System. This upgrade is driven by

both the higher multiplicities and occupancies in the tracker and by increased radiation exposure

of pixel detector. The extreme intensities produced by the later phases of LHC accelerator

upgrades have motivated CMS to explore the possibility of including the tracker in the first level

trigger. Dr. Brownson was performing studies to help evaluate the possible gains from both

phases of tracker upgrades. He also became the release manager for the SLHC upgrade

simulations. This work provided an excellent introduction to CMS analysis methods and

techniques, and this is one reason why I was brought on-board the project.

Detailed studies are being carried out on the Phase 1 upgrade tracking system. The Phase

1 geometry contains a fourth barrel layer and a third forward disk in the pixel detector. A

significant effort has been made to model the anticipated radiation damage in the tracker. In

addition to radiation damage the high multiplicities of hits will be difficult to read out within the

13

time between collisions. At an average pile up of 50, the current pixel detector is expected to

have an inefficiency from 3% to 16%. The details behind pile up aren't particularly necessary, as

one may just think of it as a measurement of the “junk” left over in the detector from previous or

current collisions. Track finding is complex and a drop in pixel efficiency can be tempered by

other mitigating factors within the tracker. For this reason, detailed analyses of tracking

efficiencies and fake rates for different sources of tracks at high pile up must be made. The track

seeding, resolutions, b-tagging, electron and photon performance for luminosities up to 1035 cm−2

s−1 must also be studied. The performance statistics for the Phase 1 & Phase 2 strawmen

geometries will be compared to those for the standard CMS geometry.

The current CMS tracker geometry has a battery of packages that can be used to study its

effectiveness. The one I utilized for the topic of this thesis is the MultiTrack Validator. The

MultiTrack Validator is a validation utility and tool used to generate histograms and performance

plots (e.g. efficiency, fake rates, resolution) by the Tracking Physics Object Group (Tracking

POG), which are used to test, validate, and debug the track reconstruction chains. It analyzes the

tracking performance by comparing every reconstructed Track with the corresponding

TrackingParticle. It takes as input one or more ROOT files containing previously produced

tracks, and gives as output a ROOT file containing a multitude of plots based on the

reconstruction of the tracks. (6)

For the strawmen geometries, standardized packages must be modified or developed to

verify tracking and triggering performance. As they are developed, studies are carried out to

further refine improved strawmen geometries. The number and location in radius of the trigger

stacks, the stack separation and the pixel size will all be studied to see how well trigger stack

layers can work. Once completed, the packages will be used as part of an automated package for

producing validation like plots. The immediate goals of the task are to provide input on the Phase

1 Pixel Upgrade performance & whether buildable trigger stacks can give sufficient information

to create a working L1 trigger when running at a luminosity of 1035 cm−2 s−1. If so, we can use the

parameter space of acceptable trigger stack geometries to inform our longer term task of reaching

a baseline design for an upgrade tracking system for CMS for the SLHC Phase 2 upgrade. (2)

14

3.2 – Upgrade Tools

Beginning work on the Phase 1 upgrades is by no means an easy task, as there is a vast

infrastructure in place that one must first learn to navigate, and I needed to become intimately

familiar with the tools, methods, and equipment involved in doing research with CMS. First, I

had to successfully clear a few significant international bureaucratic hurdles, such as obtaining a

grid certificate with the proper virtual organization credentials. Next, I needed to acquaint myself

with several of the software tools in use by high-energy physicists from around the globe. These

primarily include CMSSW, CRAB, and ROOT, which I will now describe.

I began my research with CMSSW, the CMS software package. My task involved helping

the group upgrade their analysis software from an aging release of CMSSW (3.6) to a proposed

future release (4.2) by developing a standard set of tracking efficiency plots used to compare the

simulation of the proposed upgrades to the CMS detector between the two releases, and I was

also tasked with varying simulation and reconstruction parameters to study how they change the

tracking performance of various proposed upgraded tracking detectors.

However, the power of CMSSW cannot be truly exploited without utilizing the power of

CRAB. CRAB is the utility that submits and runs CMSSW jobs across a grid of distributed

computational resources located at various institutions, such as CERN, Fermilab, and Vanderbilt.

By using CRAB, one is able to access CMS data distributed to CMS aligned centers worldwide

and exploit their CPU and storage resources. (3)

Results obtained from CRAB and CMSSW cannot be fully appreciated without the use of

ROOT. ROOT is an analysis package containing built-in functions and user-compiled code to

produce graphs, histograms, and trees with data objects. ROOT has the benefit of being able to

generate graphs of CMSSW job results from either the command line, a user-created script, or by

easily navigating its GUI Object Browser. (4)

15

3.3 – Studying Secondary Vertexes

The primary goal of my project, as the title of my thesis would suggest, was to use the

MultiTrack Validator to study secondary vertexes in the Phase 1 Upgrade. I wanted to make

comparisons of the parameters between tracks originating from primary vertexes with those

originating from secondary vertexes. The primary vertex is the one produced by the initial

collision of two protons from the LHC beam. Particles from the primary vertex can later decay

into other particles, and the point at which these tracks split are called secondary vertexes.

Having a good method for differentiating between primary and secondary vertexes is

quite important, because in addition to improving the vertex finding for primary vertexes, the

Phase 1 Tracker Upgrade is expected to contribute to the locating and evaluation of secondary

vertexes. With increasingly complex physics topologies being searched for, secondary vertexing

will play an increasing role in searches for new physics. We are very interested in knowing, how

much will our secondary vertex finding efficiency and resolution increase with the Phase 1

Tracker Upgrade? Thus, we must have a full understanding of secondary vertexes from our

simulated and reconstructed tracks before beginning to run actual experiments.

There are two different, equally valid methods available for tackling the problem of

searching for new physics: the MultiTrack Validator, as I previously discussed, and B-tagging.

B-tagging is a set of algorithms used to tag b-jets for the purposes of physics analysis.

Here, b stands for the bottom quark in a jet produced from a proton-proton collision. B-jets are

important because they are an important signature for new physics, such as the Higgs Boson. B-

tagging works by associating a single, real number called a discriminator with each jet. B-jets

will always tend to show higher values of the discriminator, but the details depend on the specific

algorithm. All algorithms produce a discriminator for each jet to distinguish b-jets from non b-

jets. CMSSW has already implemented several b-tag algorithms, with some exploiting the long

B hadron lifetime, some exploiting its semi-leptonic decay mode, and some using kinematic

variables. All of the algorithms require two inputs: the primary vertex (in a sorted collection, the

first element is used as the signal vertex) and the jets to be tagged and their associated charged

tracks. (7)(8)

16

CHAPTER 4

THE “TIP_INNER” SAGA

Over the course of the spring and summer of 2011, as I've already stated, I utilized the

MultiTrack Validator to study a potential upgrade to the SLHC, going from the Standard

Geometry to Phase 1. At the time of my project, I was using the most up-to-date version of the

CMSSW software package, CMSSW_4_2_3_SLHC2. The primary focus of my particular

project was to study how well simulated tracks were reconstructed and investigate if there were

any statistical differences between tracks originating from primary vertexes, occurring near the

center, and tracks originating from secondary vertexes, occurring at the fringes.

4.1 – Choosing a test sample and setting parameters

Before beginning work, it was necessary for me to choose a test sample to work with. A

single, consistent test sample was necessary as I needed a standard in order to make proper

comparisons. I needed a sample with a consistently high efficiency when tracks were

reconstructed with the original CMSSW software, so that when making my own modifications to

the code, a significant drop in efficiency would be a warning sign that the code had a bug. To that

end, I decided to use the 4-muon sample.

I also needed to choose a standard plot for making my comparisons, so that I would

always make sure I was comparing the same two variables before diverging out into comparing

other variables. To that end, I selected the “efficiency vs ” set of graphs as my standard,ƞ

primarily because it was a simple graph to select. Here, efficiency is how well tracks are

reconstructed compared to the Monte Carlo simulated tracks. is the pseduorapidity, a spatialƞ

coordinate used in particle physics to describe the angle of a particle relative to the beam axis.

The full details behind beyond it being a spatial coordinate are not important for thisƞ

17

discussion. What is of primary importance is the efficiency, because an increase in efficiency is

directly tied to the Phase 1 Upgrade.

When working on this sample, it was up to me to choose certain parameters for running

jobs with CRAB, such as the number of events per job and the number to use for pile-up. At the

time I began my work, there was a problem with the configuration file, causing up to 50% of

jobs to fail due to a vertex error. Given this, I needed to keep the numbers low, so I initially

started using a pile-up of 25, bringing it down from its default value of 50, and kept the pile-up at

25 for most future jobs.

4.2 – Checking the Beam-Spot

Since the purpose of the project was to see if there was a statistical difference in track

reconstruction near the center of the beam-pipe vs. much further away, the first thing I needed to

check was the position of the beam-spot. If the beam was not directly centered along the beam

pipe, collisions would not happen at the origin, and if they were off-center, this would obviously

affect the results we wanted. I modified the code to output the position of the beam-spot over

1000 events of the 4-muon sample. Each event resulted in showing all tracks originated at

(0,0,0), so that meant we could safely say the beam-spot was perfectly centered.

4.3 – Introducing “tip_inner”

When I came onboard the project, the software was written to represent the detector

surrounding the beam pipe as a cylinder. Tracks would originate from the center of the beam pipe

and travel through the layers of the detector. The CMSSW software would reconstruct these

tracks and provide a wide range of statistical information about them as output from jobs ran

over the test samples. The software was compiled by different people on top of pre-existing

software just to do the types of analyses they wanted to do. So my job was to look at this code

and figure out what I needed to modify and how I needed to modify it to study the new

parameters I was interested in and have the intertwined programs continue to work with each

18

other. My parameter of interest was the transverse impact parameter; the default name of this

parameter in the software packages was “tip”. This is the distance of closest approach of a track

to the center of the beam pipe, and it is assumed to be where the tracks originate in the beampipe.

My approach to studying the reconstructed tracks originating from near the center or out

on the fringes was to divide tracks with a “tip” value into two separate zones, meaning I needed

to divide the original “tip” parameter into an outer transverse impact parameter, “tip_outer”, and

an inner transverse impact parameter, “tip_inner.” Both are simply two different values for the

transverse impact parameter emerging from the center of the beam pipe, with “tip_inner” <

“tip_outer”. The “tip_outer” parameter was simply the former “tip” parameter, but renamed.

Within “tip_outer” was a second, inner transverse impact parameter, named “tip_inner”.

Separating “tip” into two separate zones like this enables several ways of studying the results of

simulations.

First, I could set “tip_inner” = 0 and keep “tip_outer” set at the default value for “tip”,

which hypothetically would provide the same results as the unmodified code, as I'm considering

the detector and beam pipe as one entire entity without making separate zones. This was a great

way to check my modifications for bugs. For studying results close to the center of the beam

pipe, I could set “tip_inner” to some small value much less than “tip_outer”, with the final value

being set by experimentally toying with various values and looking at the results, and then focus

on only the portions of reconstructed tracks falling within “tip_inner”. For studying results at the

fringes far from the center of the beam pipe, I could keep “tip_inner” set at the value previously

determined, and only focus on the portions of reconstructed tracks in the areas greater than

“tip_inner” and less than “tip_outer”. I started envisioning this setup as being similar to a

hollowed-out cylinder, where I could remove reconstructed tracks near the center of the beam

pipe and only examine those at the fringes.

The first place for me to add the new “tip_inner” parameter was the file CommonTools /

RecoAlgos / interface / RecoTrackSelector.h in the CMSSW software package. This

configuration file was already in place to declare and process the multitude of parameters being

used in current research on reconstructed tracks, such as the transverse impact paramter from the

beampipe, “tip”, the longitudinal impact parameter along the beampipe, “lip”, min and max

19

rapidity, ptMin, etc. And given this as the parameter file, it was naturally convenient to add my

“tip_inner” parameter in a similar fashion as the rest.

However, RecoTrackSelector.h is only the file that sets up the parameters; numerical

values are assigned in a python script, PhysicsTools / RecoAlgos / python /

recoTrackSelector_cfi.py in the CMSSW software package. This use of a Python script to assign

values was convenient, since every time I modified RecoTrackSelector.h, I needed to recompile

the software package before running a job, but not so for modifying the Python script. This made

it convenient for me to experiment with different values for “tip_inner” and observe the results.

It was at this stage that I began to realize adding “tip_inner” to the configuration file was

going to be a challenge, because the CMSSW software package had been written to depend on a

multitude of interconnected programs and scripts that were dependent on each other. This meant

that the configuration file and Python script I just modified would have cascading effects in the

long term, so I couldn't necessarily trust any immediate results. And since adding a parameter

was challenging enough, it also meant that I couldn't necessarily change the name of a parameter

in one spot without completely breaking the software. At this point, for reasons I will discuss

later, I decided it would be in my best interest, as well as the best interest of the entire CMS

team, to not change the default “tip” parameter to “tip_outer”, as I had originally planned. And

since “tip” and “tip_outer” were the same thing (I just wanted to change the name for purposes

of clarity), I made the decision to leave that parameter name unchanged, even though I

personally still thought of it as “tip_outer” to keep it clear for my own work.

4.4 – A Statistical Problem

Now that I had added “tip_inner” to the configuration files, the next step was to compare

the results of setting tip_inner=0 with the results of the code without any modifications. My

purpose in doing so was to check that my modifications and additions to the code had not had

unintended consequences. It was a reasonable hypothesis to assume that setting tip_inner to be 0

should be the same as the default code where it was non-existent. Thus, I assumed these two

cases should give exactly the same results. In Figure 8, I show efficiency of reconstructing

20

simulated tracks vs , from running the code over the 4-muon sample for two cases: theƞ

unmodified default code (black) and my modified code with tip_inner=0 (red). What one should

immediately notice is that both are slightly different, when my hypothesis was that the black and

red lines should completely overlap, as they're hypothetically the same thing.

So this was a problem. Did I inadvertently change something, causing the code to run

differently with my modifications? Or was there something else going on of which I was

previously unaware? If there was an inadvertent change, it seemed very suspicious to me that the

results would be so close to overlapping.

The next step in my investigation was to see what happened when I ran the default code

over the same sample two different times. I was currently comparing my modifications to the

21

Figure 8: Efficiency of reconstructed tracks in default code vs. tip_inner=0

code with the default code, but I realized I had no idea what results looked like from comparing

results of two different jobs done in the same way and over the same sample. I have shown a plot

of those results in Figure 9. As one should notice, once again the two results are slightly different

in that they are close to overlapping, but they don't when I assumed they should. But this one had

me stumped, because I literally did nothing different between the two jobs, so shouldn't doing the

same thing always give the same result?

Upon further investigation, I eventually discovered that each time a series of jobs is run,

CRAB chooses a different seed from a Poisson distribution depending on the numerical value for

pileup, which introduces a small degree of randomness into the output. Thus, it would be

impossible for me to make direct comparisons over different runs. At most, the closest together a

result from two different sets of jobs could ever be is shown in Figure 9. I attempted to

22

Figure 9: Two identical runs over the 4-muon sample

completely remove any notions of pile-up in a feeble attempt to still be able to make direct

comparisons, but these efforts proved futile, as the jobs would not run without some value set for

pile-up. Thus, I would have to force myself to be comfortable with not being able to make direct

comparisions.

This means my method of comparison must be based on the statistics of the results, not

the results themselves. Thus, I can only make judgements based on whether results are

statistically the same or different. As one may also notice in Figures 8 and 9, the error bars

overlap for most of the points, which implies they are both statistically the same. Therefore, we

must accept that we can't make direct comparisons like I had preferred. For the purposes of this

research project, statistical comparisons would have to suffice.

Fortunately, this also has the implication that my introduction of “tip_inner” into the code

did not disrupt the overall cohesion of the CMSSW software like I feared upon seeing my first

result in Figure 8. Based on the results in Figure 9, I judged the comparisons between the default

code and my modifications to be statistically the same. Given that, I could now proceed further

with my project.

4.5 – A Purity Problem

When getting back reconstructed track collections, samples could be divided into

different categories, like low-purity and high-purity, depending upon extra requirements placed

upon them. Up until this point, my research had focused on the general tracks (i.e. everything),

as any time I ran a non-zero tip_inner value on high-purity tracks, the output that came back was

blank. I was only able to obtain results with a nonzero value for “tip_inner” from keeping the

general tracks. So my next step was to investigate this.

My first method to solve this problem was to modify the file, CommonTools /

RecoAlgos / interface / TrackingParticleSelector.h, found in the CMSSW software package,

along with its associated configuration file, PhysicsTools / RecoAlgos / python /

trackingParticleSelector_cfi.py. These files were needed for initially setting up the true tracks, as

opposed to the reconstructed tracks. I had not added the “tip_inner” parameter to these files,

23

which meant the true tracks were not properly being set up for an inner and outer transverse

impact parameter, so clearly there would be problems in getting back an inner and outer

transverse impact parameter when the tracks were reconstructed. So the next step was to add the

“tip_inner” parameter to these files, just like I had to the previous files.

Unfortunately, this idea turned into a dead end. All jobs I ran with the modifications to

TrackingParticleSelector.h still resulted in the high-purity tracks coming back blank, with the

general tracks still giving similar results as before. I used the “python -i” command to double-

check that the scripts were recognizing the new “tip_inner” paramter, and they were. The next

step was setting signalonlytp to false, but this was also a dead end.

Clearly, all of this indicated to me that there was a major problem in adding the new

“tip_inner” parameter to the established code that went beyond just a few minor bugs. In order to

solve this, I would need to figure out exactly how the original “tip” parameter had been coded so

that I could replicate its results.

4.6 – Tip Tracking

As I previously mentioned, I ran into a few problems when attempting to rename the

original “tip” parameter to “tip_outer”. This was most evident when attempting to extract

information after modifying TrackingParticleSelector.h by running “cmsRun

Harvesting_cfg.py”. Everything worked as expected when I kept the parameter as “tip”, but it all

fell apart when I attempted to change it to “tip_outer”.

After a brief investigation, I discovered that when running the Python script

“Harvesting_cfg.py”, it called another connected script that required the variable name to remain

“tip” as was the default. And this script called another script, which called another script, etc., all

of which required the default name. I eventually backtracked everything to a file called

Validation / RecoEgamma / python / tkConvValidator_cfi.py in the CMSSW software package. I

continued on and tracked “tip” to Validation / RecoEgamma / python / tpSelection_cfi.py, which

seemed to enable “cmsRun Harvesting_cfg.py” to now work when I modified the name of “tip

24

there.” It seems that “tip” is given a value of 3.5 in the default cfg file, but that gets modified to

120 to match the Reco file in the two Python files noted here.

Next, Figure 10 shows a piece of code that I found in Validation / RecoTrack / plugins /

MultiTrackValidator.cc and Validation / RecoMuon / plugins / MuonTrackValidator.h. This call to

“tpSelector = TrackingParticleSelector(...)” is set up for all the original parameters, but as one

can see, this clearly breaks because it does not contain a reference to “tip_inner” after I modified

TrackingParticleSelector.h since this call now no longer pointed to the correct parameters. Thus,

I added a new line “pset.getParameter<double>("tip_innerTP"),” to the above code in the correct

spot to match my modifications to TrackingParticleSelector.h. I attempted to run CRAB jobs

with the edited Validation files, but I get back the error “Error occurred while creating for

module of type 'MultiTrackValidator' with label 'trackValidator'” and “MissingParameter:

Parameter 'tip_inner' not found” in the output files. There was no indication what file is trying to

be called at this instance, so this left another mystery to be solved.

tpSelector = TrackingParticleSelector(pset.getParameter<double>("ptMinTP"),

pset.getParameter<double>("minRapidityTP"),

pset.getParameter<double>("maxRapidityTP"),

pset.getParameter<double>("tipTP"),

pset.getParameter<double>("lipTP"),

pset.getParameter<int>("minHitTP"),

pset.getParameter<bool>("signalOnlyTP"),

pset.getParameter<bool>("chargedOnlyTP"),

pset.getParameter<bool>("stableOnlyTP"),

pset.getParameter<std::vector<int>
>("pdgIdTP"));

Figure 10: Example of code where I needed to add the new “tip_inner” parameter

25

My next approach was to hard-code “tip_inner” into RecoIter_Fullsim_Phase1_cfg.py, as

I discovered certain configuration files weren't recognizing the Python scripts where I originally

added “tip_inner” since they had their own set of the same original parameters. My first result

with “tip_inner” set to 0 worked with my modified MultiTrackValidator.cc, which indicated I

was finally starting to get somewhere. I next compared tip_inner=0 with tip_inner=2 for new

modifications to MultiTrackValidator.cc. I was testing to see if this gets nonzero tip_inner values

recognized for anything but the general track. However, CRAB jobs were still flatlining for the

nonzero “tip_inner”, and now even the general tracks were flatlining for nonzero “tip_inner”

values. This at least indicated some progress as I was getting consistent results for all tracks.

But this started making me wonder, were my jobs really failing for all non-zero

“tip_inner” values, or just the values I had selected? By default, the original software had, in

different places, programmed “tip” to values of 3.5 and 120, so I was selecting my “tip_inner”

parameters to be less than that. Thus I decided to make a comparison, which I show in Figure 11,

between results with the 4-muon sample on the boundary between “tip_inner” being greater than

0 (black and red) and greater than or equal to 0 (green) for the general tracks. As one can see,

nearly all the error bars overlap for both cases, so I can conclude they are statistically the same.

This implies that there are indeed some cases where non-zero tip_inner values are allowed.

26

With this new discovery in mind, I wanted to see if I could place a limit on just how

much greater than 0 that “tip_inner” could be before all the results flatlined at 0. In Figure 12, I

compare 7 samples of 100 events for various small values of tip_inner, changing order of

magnitude from 0.0 to 0.1. One should first immediately notice that for all results that did not

flatline, they are all statistically similar. Only the two samples for 0.1 and 0.01 flatlined. This

implied to me that a value of 0.01 was an upper bound on the maximum allowed value of

tip_inner, and perhaps this meant I could only pick up on tracks that were reconstructed very,

very close to the center. And perhaps the default values of 3.5 and 120 set for “tip” were absurdly

large upper bounds put in place by the original programmers, which would also explain why the

values vary by approximately 2 orders of magnitude.

27

Figure 11: Comparison of tip_inner greater than 0 with greater than or equal to 0

I decided to test my suspicions on how the value for “tip” was initially set by altering my

scripts to set the tip_inner selection to be <= instead of >= and then look for differences in the

output. I compared 4 samples altering the value of tip from 0.1, 3.5, 60, & 120, and my results

are shown in Figure 13. As one will notice, again there were no statistical differences, which

provided further evidence that I was correct in my suspicions. It was important to constrain a

“real” upper bound on “tip” so that I could be more accurate in setting “tip_inner” and also better

understand what the results from adding “tip_inner” would actually mean.

28

Figure 12: Looking at tip_inner for small values

After discussing my findings with Dr. Brownson, my suspicions about “tip” having an

absurdly large upper bound seemed to be justified. However, he also pointed out to me another

possibility. The beam has some smearing involved, which seemed to be around the same value I

found where events were occurring. This makes it harder to separate the primary vertexes from

the secondary vertexes, which was the primary motivation behind this entire project. Thus, things

were starting to look grim for this particular direction of research. However, I was still holding

out hope as I attempted to make a few last, desperate moves...

29

Figure 13: Comparing various values of “tip” to look for any statistical differences

4.7 – I Want My MTV

It was starting to look more and more likely that the MultiTrack Validator was not going

to be useful for finding secondary vertexes in the Phase 1 Upgrade. But I wasn't ready to

completely give up just yet.

My next method involved attempting to try to hardcode “tip_inner” values directly into

*.h files in order to bypass needing configuration files. But I kept getting errors when trying to

compile. When hardcoded inside the main function, the errors imply I couldn't do that. When

hardcoded outside the main function, errors keep referring to multiple definitions of the tip_inner

parameter in the file, even though there shouldn't be any other definitions. I even changed the

variable name to test this and got back the same error. I had no idea what this was about, though I

suspected this was because header files can't have variables declared in them. Regardless, I

decided to just live with needing the configuration files, but I needed to find a way to make them

“cleaner”.

I reconfigured my setup for “tip_inner” so that the value for it was solely contained in a

single parameter file, PhysicsTools / RecoAlgos / python / tip_cfi.py. I also added “tip_outer” to

this file, so that I could set a single value for “tip” for everything. This method seemed better

than hardcoding, since I wouldn't have to recompile everything every time I wanted to run the

script. I now only had one place to change “tip_inner” and “tip” for each run. I set “tip” to be

equal to “tip_outer” in all of the other parameter files I could find that set a value for “tip”. Once

the new parameter was in place, I initiated another set of CRAB jobs to test out the new

parameter file. However, once again, this failed to produce any meaningful results.

I discussed these latest findings with Dr. Brownson, and I learned that apparently the 4-

muon sample I had been using this entire time might not have been the best choice for a test

sample. Apparently the 4-muon sample doesn't produce many secondary vertexes, which is one

possible reason for why I was not seeing tracks outside a small “tip_inner”. Instead, I should be

using the TTBar sample. However, I tried that for 100 events, and found for “tip_inner” >= 0.1

and tip_outer <=3.5, I could only reconstruct events for the general tracks, not the high-purity

tracks.

30

If you haven't been paying attention, that is the same problem I had been facing this entire

time with the 4-muon test sample. This lead me to conclude there was an inherent problem in

configuring the software to introduce “tip_inner”, rather than a problem with any specific test

sample. I had exhausted nearly every idea and option at my disposal to create the new

“tip_inner” parameter, but all my efforts were proving to be futile. I was finally forced to admit

the inevitable...

4.8 – The Kobayashi Maru

I was in a no-win scenario. This particular project was a dead end in the wrong direction.

The MultiTrack Validator simply cannot be used effectively to distinguish primary and secondary

vertexes in the Phase 1 Upgrade. The software just is not set up properly to be configured for it.

I strongly suspect the primary problem is inherent in how the code is set up. In my

opinion, it seems the software was configured for a specific, pre-determined set of parameters,

and the entire CMSSW software package was constructed around that. It is not designed to have

new parameters, like “tip_inner” inserted into it. It essentially feels like the software scripts were

written by various scientists for the specific jobs they wanted to do, so there is unfortunately no

single unifying script. Everything has become a hodge-podge of scripts that were “good enough”

at the time they were originally created and needed. And this idea is consistent with the notion

that high-energy particle physics research is a fast-paced field, where the software needs to

primarily be “usable” instead of “pretty”.

The main problem, and what I suspect is the problem that made this project into a dead

end, is that all of the scripts in the CMSSW software package are too heavily interconnected and

dependent on each other. Remember Figure 10 that showed a sample of code from Validation /

RecoTrack / plugins / MultiTrackValidator.cc? Other scripts in the software package, like

Common Tools / RecoAlgos / interface / TrackingParticleSelector.h, rely on that set of code for

taking in the necessary parameters in a specified order. It also seems to rely on the code

remaining unchanged from how it was initially written. So when I modify one script, e.g.

MultiTrackValidator.cc, to add “tip_inner”, the software doesn't work properly because the other

31

script, e.g. TrackingParticleSelector.h, breaks because it is unable to interpret the input. Or vice

versa. When I modify both scripts to add “tip_inner”, the software still doesn't work properly,

presumably because another unidentified third script somewhere else was relying on those two

first scripts to remain static.

With such a high level of dependency on each script to be written in a certain way and in

a specific order, it becomes a nearly impossible task to track down each and every script that

needs to be modified to make the software work properly if one wants to introduce a new

parameter. For example, I found one place where I needed to insert “tip_inner”, but doing so

caused an error in compiling the code, but if I fixed it so it could compile, the script wouldn't run

properly. I eventually found a work-around, as there was no way to tell which of the hundreds of

scripts in the CMSSW software was responsible for this “damned if you do, damned if you

don't” scenario. But even with the work-around, the jobs still would not run correctly.

Even when I could get the software to compile successfully and tell me that my new

“tip_inner” parameter is being recognized, there's still no guarantee that it's actually being

recognized. It could just mean that one set of scripts is recognizing it, but another set of scripts

that are connected further along the chain won't recognize “tip_inner” once jobs are actually

running because my initial methods to check could only probe a maximum number of degrees of

separation. I make the analogy that attempting to track everything down is like playing the

classic arcade game of Whac-A-Mole. I could fix errors caused by one script not being modified,

only to have that fix reveal another error in a different script that couldn't be previously revealed

when the first script wasn't working correctly.

And in the end, I'm forced to admit, this just is not an efficient or effective way of

proceeding on this project. But, perhaps there is another way...

32

CHAPTER 5

HOW I LEARNED TO STOP WORRYING AND LOVE B-TAGGING

Having concluded that the MultiTrack Validator was the wrong approach to the project,

Dr. Brownson and I concluded that a better approach would be to switch to B-tagging. However,

by the time the project had advanced to this point, it was now the end of the summer of 2011.

This meant that Dr. Brownson's post-doc term with the Vanderbilt HEP group had ended, which

unfortunately forced an end to this particular project. However, I was able to begin looking into a

few rudimentary ideas for making the switch to use the new coding routines of B-tagging, which

I will now describe.

The first hurdle I had to overcome was learning how much different B-tagging was from

the MultiTrack Validator. I initially thought both could be treated as validation packages, as the

initial script just required me to run recbtag_validation_cfg.py instead of Harvesting_cfg.py.

However, I quickly learned there were major differences between B-tagging and the MTV, such

as completely different results for ROOT files.

Dr. Brownson and I outlined a plan of attack for using B-tagging. First, I should begin by

primarily looking at two variables in the outputted ROOT files, flightdistance2dsigall and sigb

and figure out what they actually physically represent. Looking into a path named

IPTag_GLOBAL, we suspected flightdistance2D may be filled with resolution of the secondary

vertex as one of the parameters. Though we had we no concrete evidence of that, just a hunch.

However, I never got a chance to really look into this. I started attempting to run jobs, but

kept getting back the error message:

cms::Exception going through module CastorDigiProducer/simCastorDigis run: 1
lumi: 666685 event: 1901
If you wish to continue processing events after a ProductNotFound exception,
add "SkipEvent = cms.untracked.vstring('ProductNotFound')" to the "options"

PSet in the configuration.

33

My task after that was to track down what this error meant and where I needed to add the

suggested line. I followed the lead to SimCalorimetry / CastorSim / data / CastorDigiReco.py,

but it did not work. After conferring with Dr. Brownson, I discovered I needed to add the line

“pdigi.remove(simCastorDigis)” to the end of SLHCUpgradeSimulations / Geometry / python /

Digi_stdgeom_cff.py and the lines “process.DigiToRaw.remove(process.castorRawData)”,

“process.DigiToRaw.remove(process.siPixelRawData)”, and

“process.RawToDigi.remove(process.siPixelDigis)” to SLHCUpgradeSimulations / Geometry /

test / RecoFull_Fullsim_stdgeom_cfg.py. I still don't fully understand why the error told me to

add a line that did no good, but I wasn't questioning it since all my CRAB jobs ran successfully

after following the advice of Dr. Brownson.

Of course, “ran successfully” and “worked successfully” are not necessarily the same

thing, as I learned when actually trying to retrieve output from certain CRAB jobs and the output

kept coming back as corrupt even though the jobs ran successfully and did not crash. What I

ended up discovering was that generating the results of these CRAB jobs produced excessively

large output files that were bumping up against my disk quota. For example, a 2000 event sample

ended up being 21 GB in size. Obviously, this isn't an efficient or effective way when the

research would require me to study multiple files similar to this. It is clear that much additional

work will be required before a complete understanding of this phenomenon occurs.

But that is the point where this research project stops. Literally.

34

CHAPTER 6

FOR FURTHER STUDY

As it so often goes with scientific research, wrong turns do happen. I still learned a lot

from my time spent on this research project about high-energy particle physics, the inner

workings of Fermilab, CMS, SLHC upgrades, the various software packages used in such

research, etc. And in that regard, I fully believe this project was a successful and worthwhile

endeavor. But it is hoped that this study will stimulate further investigations in this field.

In conclusion, my findings show that the MultiTrack Validator is NOT useful for studying

secondary vertexes in the Phase 1 upgrade. I presume it would be possible to somehow add

“tip_inner” as I originally intended—after all, some collective of scientists originally wrote the

CMSSW software package and made all the default parameters work cohesively—but future

physicists should be warned that modifying that software for a new parameter is no easy task. If

you still wish to do it, the main advice I can offer is that you should be prepared to essentially

rewrite the entire CMSSW software from the ground up.

It is my sincerest wish that this thesis serve as a warning to all who read it that B-tagging

is the best a more suitable way to approach this goal. If someone wishes to continue this project

from where I left off, I strongly recommend proceeding in the direction of B-tagging, as I

outlined in Chapter 5. I wasn't able to make it work, but I suspect that's only because I spent a

mere few weeks looking into B-tagging. I simply was not able to devote the necessary amount of

time to it as I was to the MultiTrack Validator. The next problem that needs to be overcome is

figuring out why I was getting such absurdly large output files and/or find a work-around for it.

Of course, I'm sure there will still be more unforeseen problems ahead pursuing this path, but I

won't be going along for the ride.

But to any high-energy particle physicists pursuing this goal in the future: good luck and

godspeed.

35

REFERENCES

(1) Search For High Mass Resonances Decaying to Tau Pairs at the CMS Experiment,

Carlos Andres Florez Bustos, Ph.D. Thesis, Vanderbilt University, 2011.

(2) Annual Report Number 2 for NSF PHY-0855651, Vanderbilt High-Energy Physics Group,

Internal Publication, 2011.

(3) https://twiki.cern.ch/twiki/bin/view/CMSPublic/SWGuideCrab . Retrieved 26 March

2012.

(4) https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookBasicROOT . Retrieved 26

March 2012.

(5) http://en.wikipedia.org/wiki/Compact_Muon_Solenoid . Retrieved 21 March 2012.

(6) https://twiki.cern.ch/twiki/bin/view/CMSPublic/SWGuideMultiTrackValidator . Retrieved

27 March 2012.

(7) https://twiki.cern.ch/twiki/bin/view/CMSPublic/SWGuideBTagging . Retrieved 27 March

2012.

(8) http://www.quantumdiaries.org/2011/05/12/to-b-or-not-to-bbar-b-jet-identification

36

https://twiki.cern.ch/twiki/bin/view/CMSPublic/SWGuideCrab
http://www.quantumdiaries.org/2011/05/12/to-b-or-not-to-bbar-b-jet-identification
https://twiki.cern.ch/twiki/bin/view/CMSPublic/SWGuideBTagging
https://twiki.cern.ch/twiki/bin/view/CMSPublic/SWGuideMultiTrackValidator
http://en.wikipedia.org/wiki/Compact_Muon_Solenoid
https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookBasicROOT

