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CHAPTER 1

INTRODUCTION

This thesis develops mathematical theory and algorithms for clustering high dimensional data

that lives in a union of lower dimensional subspaces. The first focus is to develop theory for

modeling signals in terms of union of subspaces. The second focus is to develop algorithms for

clustering high dimensional data that can be modeled as a union of subspaces. The third focus is to

apply the proposed techniques and algorithms in some computer vision problems including motion

segmentation.

1.1 Subspace Segmentation Problem

The problem of subspace clustering is to find a nonlinear model of the form U =
⋃

i∈I Si where

{Si}i∈I is a set of subspaces that is nearest to a set of data W = {w1, ...,wN} ∈RD. The model can

then be used to classify the data W into classes called clusters.

In many engineering and mathematics applications, data lives in a union of low dimensional

subspaces [1, 2, 3, 4]. For instance, consider a moving affine camera that captures F frames of

a scene that contains multiple moving objects. Let p be a point of one of these objects and let

xi(p),yi(p) be the coordinates of p in frame i. Define the trajectory vector of p as the vector

w(p) = (x1(p),y1(p),x2(p),y2(p), . . . ,xN(p),yN(p))t in R2F . It can be shown that the trajectory

vectors of all points of an object in a video belong to a vector subspace in R2F of dimension no

larger than four [5, 6]. Thus, trajectory vectors in videos can be modeled by a union M =∪i∈IVi of l

subspaces, where l is the number of moving objects. It can also be shown that human facial motion

and other non-rigid motions can be approximated by linear subspaces [7, 8]. Another clustering

problem that can be modeled as union of subspaces is recognition of faces. Specifically, the set

of all two dimensional images of a given face i, obtained under different illuminations and facial
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positions, can be modeled as a set of vectors belonging to a low dimensional subspace, Si, living

in a higher dimensional space RD [9, 10, 4]. A set of such images from different faces is then a

union U =
⋃

i∈I Si. Similar nonlinear models arise in sampling theory where RD is replaced by an

infinite dimensional Hilbert space H , e.g., L2(RD) [11, 12, 1, 13].

This area of research has attracted high interest from computer science, engineering, and ap-

plied mathematics in recent years. Most of the notable research has been developed very recently

and this work complements and extends theory and techniques from subspace clustering and (com-

pressive) sampling theory. Interactions between certain areas of mathematics and computer science

(such as non-linear approximation, optimization, probability theory, and algorithms) are required

for solving the subspace segmentation problem.

The goal of subspace clustering is to identify all of the subspaces that a set of data W =

{w1, ...,wN} ∈ RD is drawn from and assign each data point wi to the subspace it belongs to. The

number of subspaces, their dimensions, and a basis for each subspace are to be determined, even in

the presence of noise, missing data, and outliers. The subspace clustering or segmentation problem

can be simply stated as follows (as more detailed statement is given in Problem 3 of Section 4.1):

Problem 1. Subspace Segmentation Problem

Let U =
⋃M

i=1 Si where {Si ⊂H }M
i=1 is a set of subspaces of a Hilbert space H . Let W ={

w j ∈H
}N

j=1 be a set of data points drawn from U . Then,

1. determine the number of subspaces M,

2. determine the set of dimensions {di}M
i=1,

3. find an orthonormal basis for each subspace Si,

4. collect the data points belonging to the same subspace into the same cluster.

Note that often the data may be corrupted by noise, may have outliers or the data may not

be complete, e.g., there may be missing data points. In some subspace clustering problems, the

number M of subspaces or the dimensions of the subspaces {di}M
i=1 are known.
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1.2 Main Approaches

A number of approaches have been devised to solve the problem above or some of its special cases.

The key approaches can be summarized as follows:

1.2.1 Sparsity Methods

In a general compressive sampling framework [14, 15], a k-sparse signal x∈RD (at most k nonzero

entries) can be reconstructed by solving the following convex optimization problem.

min ||x̃||1 subject to y = Ax̃ (1.1)

where y ∈ RN (with N < D), and A a measurement matrix satisfying the so called restricted isom-

etry property (RIP) [16].

Using ideas similar to the ones in compressed sensing, Eldar [17] recently considered the recov-

ery of signals that lie in a structured union of subspaces instead of a single subspace. Specifically, a

signal x is assumed to lie in a union of k disjoint subspaces with known bases. Although x is in one

of the subspaces, it is not known which a priori. She then shows that the problem of reconstructing

x can be cast as a sparse recovery problem, in which a sparse vector with particular sparsity pattern

is recovered based on minimizing an `2/`1 norm from given measurements.

Elhamifar et al. extended Eldar’s work and developed an algorithm for linear and affine sub-

space clustering using sparse representation of vectors [18, 19]. They assume that the data points

are drawn from a union of independent [18] or disjoint [19] linear or affine subspaces. They further

assume that the collection of data points are self-expressive, i.e., any data point y ∈V in the collec-

tion, where V is a d dimensional subspace, can be expressed as a linear combination of any other d

points that are in the collection and in V . This method, combined with a spectral clustering, gives

good results for motion segmentation and it is more general than Eldar’s work in compressed sens-

ing [17]. However, the proof of the main theorem in [18] is not convincing since the `1 norm could

be replaced by the `2 norm without a change in the proof. Also, as stated in [20, 21], this method
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is more suitable to model union of bouquets (a concentrated subregion of a subspace) rather than

the subspaces.

Liuo et al. [22, 20] developed a method that finds the lowest rank representation of the data

matrix. The lowest rank representation is used to define the similarity of an undirected graph,

which is then followed by spectral clustering. Favaro et al. in [23] extends [18, 19, 22, 20].

1.2.2 Algebraic Methods

Generalized Principle Component Analysis (GPCA) is the main algebraic approach for subspace

clustering [4, 24, 25]. It models U =
⋃

i∈I Si with a set of polynomials whose derivatives at a point

are used to determine a set of basis vectors for the subspace passing through that point. The basis

vectors are then used for segmenting the data. GPCA can distinguish subspaces of different dimen-

sions. Since it is algebraic, it is computationally inexpensive, however, its complexity increases

exponentially as the number of subspaces and their dimensions increase. It is also very sensitive

to noise and outliers. Rao et al. [26] developed an algebraic method (called Robust Algebraic

Segmentation) to partition image correspondences to the motions in a 3-D dynamic scene (that

contains 3-D rigid body and 2-D planar structures) under perspective camera projection.

1.2.3 Iterative and Statistical Methods

Iterative methods such as nonlinear least squares [12, 3] and K-subspaces [27] start with an initial

estimation of subspaces (or estimation of the bases of the subspaces). Then, a cost function reflect-

ing the “distance” of a point to a each subspace is computed and the point is assigned to its closest

subspace. After that, each cluster of data is used to reestimate each subspace. The procedure is

repeated until the segmentation of data points does not change.

The statistical methods such as Multi Stage Learning (MSL) [2, 28] are typically based on

Expectation Maximization (EM) [29]. The union of subspaces is modeled by a mixture of proba-

bility distributions. For example, each subspace is modeled by a Gaussian distribution. The model

parameters are then estimated using Maximum Likelihood Estimation. This is done by using a
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two-step process that optimizes the log-likelihood of the model which depends on some hidden

(latent) variables. In E-Step (Expectation), the expectation of the log-likelihood is computed using

the current estimate of the latent variables. In M-Step (Maximization), the values of the latent

variables are updated by maximizing the expectation of the log-likelihood.

The success of the iterative and statistical methods highly depends on initialization of model

parameters or segmentation. They generally assume that the number of subspaces as well as their

dimensions are known, and they are robust to noise and outliers. RANdom SAmple Consensus

(RANSAC) [30], which has been applied to numerous computer vision problems, is successful

in dealing with noise and outliers, however, it assumes that the dimension of each subspace is

known and each subspace has the same dimension. RANSAC uses certain number of samples

to fit a model to the samples. Then, it applies a threshold to the residual of each point in the

data set to the model to determine inliers and outliers. The process is repeated until the number

of inliers are acceptable. In [31], a Grassmannian minimization approach is used for segmenting

linear subspaces by determining the subspace with the maximum number of inliers (maximum

consensus subspace).

1.2.4 Spectral Clustering and Other Methods

A detailed treatment of spectral clustering is given in Section 2.3. Spectral clustering [32] is often

used in conjunction with other methods as the final step in clustering. Some of the latest sub-

space clustering algorithms (such as [18, 19, 33]) aim at defining an appropriate similarity matrix

between data points which then can be used for further processing using the spectral clustering

method (see Algorithm 1 below). An application of spectral clustering to motion segmentation can

be found in [34]. [35] provides a spectral clustering algorithm that aims at reducing the computa-

tional complexity. The motion segmentation algorithm (Local Subspace Affinity - LSA) developed

by Yan and Pollefeys [36] first estimates a local linear manifold for each trajectory data and then

computes an affinity matrix based on the principle subspace angles between each pair of local

linear manifolds. The algorithm then uses spectral clustering for segmenting the trajectories of
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independent, articulated, rigid, and non-rigid body motions. Spectral curvature clustering (SCC)

[37, 38] is a variant of LSA. SCC uses polar curvature as the similarity measure instead of prin-

ciple angles (between the estimated local subspaces). It also estimates the local subspaces using

iterative random sampling. [39] uses local linear embedding for clustering and [40] extends [39]

for clustering data lying in different submanifolds of a Riemannian space. [41] gives a detailed

treatment of various related algorithms.

Algorithm 1 Spectral Clustering Algorithm

Require: Assume {xi}N
i=1 are data points in RD. Subspace clustering algorithms based on spectral

clustering generally gets the followings as input:

• A similarity (affinity) matrix S = (si j), where si j determines how “close” xi is to x j. For
example, si j = exp(−||xi− x j||22/2σ2) if i 6= j and sii = 1.

• The number of subspaces, m.

1: Compute the diagonal degree matrix D = Diag(d1, · · · ,dN) where di = ∑
N
j=1 si j.

2: Compute the normalized graph Laplacian matrix L = D−1/2SD−1/2. L is positive semi-definite
with the smallest eigenvalue 0.

3: Compute the m eigenvectors u1, · · · ,um corresponding to m highest eigenvalues.
4: Build the matrix W = [u1 u2 · · · um] ∈ RN×m.
5: Apply a traditional clustering technique (such as k-means) in Rm to the rows of W .

The reduction methods initially build a data matrix that contains the data points as columns.

They perform dimensionality reduction and noise elimination. This is typically done by factoring

the data matrix by Singular Value Decomposition (SVD). These methods then generate an interac-

tion (similarity) matrix to be used to cluster the data points in the original data matrix. Some related

work can be found in [42, 43, 44, 45, 36]. The main drawback of these methods is their sensitivity

to noise and outliers. Although some of the noise is reduced by SVD, it becomes difficult to elimi-

nate the remaining noise. Yan and Pollefeys [36] developed an algorithm that uses local affinity of

the data points to cluster them (the subspace angles are explained in Section 2.1). Each data point

is first projected on a unit sphere and some neighboring points are found by calculating the angle

between the points. Then, a local subspace is fitted to the neighboring points. In other words, each

point is represented by a local subspace. The distance between the local subspaces are calculated

6



and a similarity matrix is computed. Finally, spectral clustering is applied to the similarity matrix.

This method fails to cluster the data points around the intersection of the subspaces and it is not

guaranteed that the algorithm will work even with perfect data matrix (noise and outliers free with

no missing data points).

1.3 Thesis Overview

1.3.1 Thesis Goal

There is a growing interest in computer science, engineering, and mathematics for modeling sig-

nals in terms of union of subspaces and manifolds. Subspace segmentation and clustering of high

dimensional data drawn from a union of subspaces are especially important with many practical

applications in computer vision, image and signal processing, communications, and information

theory. The research goal of this thesis is to develop mathematical theory and algorithms for mod-

eling and clustering high dimensional data that lives in a union of lower dimensional subspaces.

This work conducts balanced research that brings the theoretical foundation of subspace segmenta-

tion and high dimensional data clustering together with practical applications in computer science

and engineering.

1.3.2 Associated Objectives

The associated objectives are three-fold. The first objective is to develop mathematical theory for

modeling signals in terms of union of subspaces. The second objective is to develop mathematical

algorithms for clustering high dimensional data that can be modeled as a union of subspaces.

The third objective is to apply the proposed techniques and algorithms in some computer vision

problems including motion segmentation.
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Theory for Signal Modeling

For subspace clustering, the data set is assumed to be drawn from a union of subspaces. The data

set is typically corrupted by noise, some data points are simply outliers, and some data vectors

may have missing components. For example, motion segmentation can be considered as a special

case of subspace segmentation. First, a 2F ×N data matrix W is constructed by using N feature

points that are tracked across F frames. Then, each column of W (i.e. the path of a feature point)

is treated as a data vector and it is shown that all of the data vectors that correspond to the same

moving object lie in at most 4-dimensional subspace of R2F . The number of subspaces corresponds

to the number of moving objects. However, the components of the data vectors may be corrupted

by noise, some data vectors may be outliers due to unreliable computer vision algorithms, or some

of the component of the data vectors may be missing due to occlusion. The first objective is to

establish data (signal) models for such high dimensional data sets. The models will be robust to

noise, outliers, and missing data components.

Algorithms for Subspace Segmentation and Data Clustering

The second objective is to develop novel algorithms for subspace segmentation and high dimen-

sional data clustering. Almost all of the existing algorithms assume that the noise is light-tailed

(e.g. Gaussian distributed noise). However, in many practical applications, such as tracking fast

moving targets, the noise is heavy-tailed (e.g. Laplacian distributed noise), and the traditional noise

reduction techniques (e.g. SVD) are not effective. This work develops algorithms that can handle

light any heavy tailed noise.

Applications and Evaluation

The third objective is to apply the theory and algorithms to some important applications in com-

puter vision and image processing. The algorithms are evaluated using multiple means. First, a set

of synthetic data is generated for evaluating various cases of subspace segmentation problem. This

is especially used extensively in evaluating the reduced row echelon form based subspace segmen-
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tation algorithms. Different types of noise are added to the synthetic data to measure robustness

for light-tailed and heavy-tailed noise. Second, the algorithms are evaluated using the Hopkins 155

Dataset and compared with some state-of-the-art subspace and motion segmentation algorithms.

1.4 Thesis Contributions

1. This work develops theory and algorithms for solving the general subspace segmentation and

data clustering problem described in Section 1.1. We prove that, in the absence of noise, the

Reduced Row Echelon Form (RREF)-based algorithm fully determines the subspaces and it

clusters the data points. The algorithm is based on the binary reduced row echelon form of a

data matrix.

• An approach based on reduced echelon form was proposed by Gear in [43] for the

special case related to motion segmentation. His approach was based on the observation

that the reduced echelon form gives a matrix decomposition that can be used for the

segmentation. However, as stated by Gear, this fact was based on observation, and

he did not provide a mathematical proof. In our case, we solve the general subspace

segmentation problem with full mathematical proofs and justifications.

• We provide a comprehensive theoretical analysis of our algorithm and determine its

limitations and strengths in the presence of light-tailed/heavy-tailed noise distributions

and outliers.

2. We also present a clustering algorithm for high dimensional data that are drawn from a union

of low dimensional subspaces of equal and known dimensions. The algorithm is applicable

to the motion segmentation problem and uses some fundamental linear algebra concepts.

Some of our ideas are similar to those of Yan and Pollefeys [36]. However, our algorithm

differs from theirs fundamentally as described below:

• Yan and Pollefeys’ method estimate a subspace Si for each point xi, and then computes

the principle angles between those subspaces as an affinity measure. In our work,
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we also estimate a subspace for each point, however, these local subspaces are used

differently. They are used to compute the distance between each point x j to the local

subspace Si for the data point xi.

• In their method, an exponential function for affinity of two points xi and x j is used,

and this exponential function depends on the principle angles between the subspaces Si

and S j that are associated with xi and x j, respectively. In our case, the affinity measure

is different. We first find the distance between x j and Si and then apply a threshold,

computed from the data, to obtain a binary similarity matrix for all data points.

• The method of Yan and Pollefeys uses spectral clustering on the normalized graph

Laplacian matrix of the similarity matrix they propose. However, our approach does

not use the spectral clustering on the normalized graph Laplacian of our similarity

matrix. Instead, our constructed binary similarity matrix converts our original data

clustering problem to a simpler clustering of data from 1-dimensional subspaces which

can be solved by any traditional data clustering algorithm.

3. Our algorithm is reliable in the presence of noise and applied to the Hopkins 155 Dataset it

generates the best results to date for motion segmentation. The two motion, three motion,

and overall recognition rates for the video sequences are 99.43%, 98.69%, and 99.24%,

respectively.

4. Many of the subspace segmentation algorithms use SVD to represent the data matrix W as

W = UΣV t and then replace W with the first r rows of V t , where r is the effective rank of

W. This work provides a formal justification for this in Proposition 4.2.1.

1.5 Thesis Organization

Chapter 2 introduces some concepts including angles and distances between subspaces, indepen-

dent subspaces, and spectral clustering. We heavily use the concepts of subspace principle angles

in Chapter 4. A detailed treatment of motion segmentation problem, which is a special case of
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general subspace segmentation problem, is given in Chapter 3. Chapter 4 presents theory and as-

sociated algorithms for solving general subspace segmentation problem. The limitations of the

theory and algorithms are discussed in detail. Some simulations with synthetic and some experi-

ments with real world data are also provided in this chapter. Chapter 5 focuses on a devised method

that is suitable for subspaces of equal and known dimensions.
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CHAPTER 2

PRELIMINARIES

For the purpose of subspace segmentation, it is important to define a measure of distance or

separation that can describe the relative positions of two subspaces. The principle (or canonical)

angles can be used to quantify the separation of two subspaces. In Chapter 4, it is shown how

the subspace separation affects the subspace segmentation accuracy in the presence of noise. In

this chapter, we first define the principle angles between subspaces and then we provide some

related theory pertaining to independent subspaces. Finally, we introduce the spectral clustering

technique, which is highly utilized by many of the existing state-of-the-art subspace segmentation

methods. Although we do not directly use spectral clustering, our subspace segmentation method

in Chapter 5 is implicitly related to some fundamental concepts of spectral clustering and we point

out this in the associated discussion of Chapter 5.

2.1 Angles and Distances between Subspaces

In order to separate two subspaces of RD, we may measure the (principle or canonical) angle

between them. However, defining the angle between subspaces may not be easy for the subspaces

of RD for D > 3 compared to the subspaces of R2 or R3 due to the difficulty of visualization.

Definition 1. (Minimal Angle) Let F and G be subspaces of RD. The minimal angle between F

and G is defined as

θmin = arccos

 max
f∈F
g∈G

|| f ||2=||g||2=1

f T g

 (2.1)

Definition 2. F and G are complementary subspaces of RD if F
⊕

G = RD.

The minimal angle defined above is useful for complementary subspaces, however, it may not
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be very useful for subspaces with nontrivial intersection. If F and G have a nontrivial intersection

(i.e., F
⋂

G 6= 0), then θmin = 0. However, this does not necessarily mean that there is no separation

between F and G . For example, in Figure 2.1 the minimal angle is 0 but separations are different.

Figure 2.1: Subspace angles.

Therefore we can define another concept to measure the gap between F and G . This is shown

in Figure 2.2.

d(F ,G ) = max
g∈G
||g||2=1

dist(g,F ) = max
g∈G
||g||2=1

||(I−PF )g||2 (2.2)

Figure 2.2: Distance between two subspaces.

Note that d(F ,G ) does not need to be equivalent to d(G ,F ) and therefore d(F ,G ) is a

directed distance. Also

d(F ,G ) = max
g∈G
||g||2=1

||(I−PF )g||2 ≤ max
g∈G
||g||2=1

||(I−PF )||2||g||2 = 1 (2.3)
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So, d(F ,G )≤ 1. Therefore the distance between F and G is defined as

gap(F ,G ) = min(d(F ,G ),d(G ,F )) (2.4)

Definition 3. (Maximal Angle) The maximal angle between F and G is defined as

θmax = arcsin(gap(F ,G )),

where 0≤ θmax ≤ π/2 [46].

Note that the minimal angle is useful for complementary subspaces and the maximal angle

is useful for the subspaces of equal dimension. However, the general subspaces require a more

comprehensive definition of separation. For example, consider two subspaces of RD that have

different dimensions (with a nontrivial intersection). Then, θmin = 0 and θmax = π/2 and they do

not convey too much information. Therefore, we will define some other principle angles that are

between θmin and θmax [46, 47].

Definition 4. Let F and G be subspaces of RD. Let k = min(dimF ,dimG ). Then, the principle

angles θ1,θ2, . . . ,θk are the numbers 0≤ θi ≤ π/2 and they are defined as

cosθi = max
f∈Fi
g∈Gi

f ||2=||g||2=1

f tg = f t
i gi i = 1, . . . ,k (2.5)

where F1 = F and G1 = G , || fi||2 = 1, ||gi||2 = 1, Fi = f⊥i−1
⋂

Fi−1, and Gi = g⊥i−1
⋂

Gi−1. Note

that θ1 ≤ θ2 ≤ ·· · ≤ θk.

The vectors { fi}k
i=1 and {gi}k

i=1 are called principle vectors. The principle vectors f1, g1 and

the principle angle θ1 are first computed. In order to find the second principle angle θ2, two

subspaces orthogonal to f1 and g1 respectively are computed. This process continues until all of

the principle angles and vectors are determined.
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Definition 5. Grassmannian Space Gr(m,RD) is the set of all m-dimensional subspaces of RD with

manifold structure.

Let F ,G ∈ Gr(m,RD). Since F and G are curved, the shortest distance between F and G is

geodesic. It is shown in [48] that

d(F ,G ) = ||Θ||2 =

√√√√ k

∑
i=1

θ 2
i (2.6)

Since this distance is not differentiable everywhere, another measure of geodesic distance (called

chordal distance) is defined in [49] as

d(F ,G ) = ||sinΘ||2 =

√√√√ k

∑
i=1

(sinθi)2 (2.7)

2.2 Independent Subspaces

Definition 6. Subspaces {Si ⊂ RD}n
i=1 are called independent if their dimensions satisfy the fol-

lowing relationship:

dim(S1 + · · ·+Sn) = dim(S1)+ · · ·+dim(Sn)≤ D.

Lemma 2.2.1. Let W = {Si}n
i=1 be a set of independent subspaces. Then, any non-empty subset of

W is a set of independent subspaces.

Proof. Since W is a set of independent subspaces, we have

dim(
n

∑
i=1

Si) =
n

∑
i=1

dim(Si) (2.8)
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Let G = {Si} j∈J⊂{1,...,n} ⊂W.

dim(
n

∑
i=1

Si)≤ dim( ∑
j∈J⊂{1,...,n}

S j)+dim( ∑
j∈{1,...,n}−J

S j)

Assume G is not a set of independent subspaces, then dim(∑ j∈J⊂{1,...,n} S j)<∑ j∈J⊂{1,...,n} dim(S j).

Therefore,

dim(
n

∑
i=1

Si)< ∑
j∈J⊂{1,...,n}

dim(S j)+dim( ∑
j∈J⊂{1,...,n}−J

S j)

Since ∑ j∈J⊂{1,...,n} dim(S j)+dim(∑ j∈{1,...,n}−J S j)≤∑
n
i=1 dim(Si), we get ∑

n
i=1 dim(Si)<∑

n
i=1 dim(Si).

Thus, G is a set of independent subspaces.

Lemma 2.2.2. Let S and V be two linear subspaces. Then, dim(S∩V )≥ 1 if and only if dim(S+

V )< dim(S)+dim(V ).

Proof. Obvious.

Corollary 2.2.3. The intersection of two independent subspaces is {0}.

Proof. Let S and V be two linearly independent subspaces. This implies that dim(S +V ) =

dim(S)+dim(V ). By Lemma 2.2.2, dim(S∩V ) = 0. Therefore, S∩V = {0}.

Theorem 2.2.4. Let {Si}n
i=1 be subspaces of a vector space V . Then, the following are equivalent.

1. Any {vi}n
i=1 such that vi 6= 0 and vi ∈ Si is a set of linearly independent vectors.

2. {Si}n
i=1 are independent subspaces.

3. Let θmin(Si,∑
n
j=1, j 6=i S j) be the smallest principle angle between Si and ∑

n
j=1, j 6=i S j. Then,

mini(θmin(Si,∑
n
j=1, j 6=i S j))> 0.

4. Si∩ (∑n
j=1, j 6=i S j) = {0} for all i.

Proof. (3)⇒ (4)

If mini(θmin(Si,∑
n
j=1, j 6=i S j))> 0, then θmin(Si,∑

n
j=1, j 6=i S j)> 0 for all i. Then, Si∩(∑n

j=1, j 6=i S j) =
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{0}, otherwise θmin(Si,∑
n
j=1, j 6=i S j) = 0.

(4)⇒ (3)

Obvious.

(1)⇒ (2)

By way of contradiction, assume α1v1 +α2v2 + · · ·+αnvn = 0 implies that αi = 0 for all i but the

spaces are not independent. Then,

dim(S1 +S2 + · · ·+Sn)< dim(S1)+dim(S2)+ · · ·+dim(Sn) (2.9)

We claim that there exits v1 ∈ Si∩∑
n
j=1, j 6=i S j with v1 6= 0. Otherwise, we have

dim(Si +
n

∑
j=1, j 6=i

S j) = dim(Si)+
n

∑
j=1, j 6=i

dim(S j)

(2.9) implies that

dim(
n

∑
j=1, j 6=i

S j)<
n

∑
j=1, j 6=i

dim(S j)

By induction, we obtain a subspace Sk for which dim(Sk) < dim(Sk) for a k ∈ {1, . . . ,n}. Thus,

dim(Si +∑
n
j=1, j 6=i S j)< dim(Si)+∑

n
j=1, j 6=i dim(S j), i.e., Si∩∑

n
j=1, j 6=i S j 6= {0}.

Therefore, v1 = v2 + v3 + · · ·+ vn, where v j ∈ S j for j 6= i. Since v1 6= 0, some of v j for j 6= i

are not zero. Thus, v1 +(−1)×∑ j,v j 6=0 v j +0×∑ j,v j=0 v j = 0, which is a contradiction.

(2)⇒ (4)

Suppose dim(Si∩(∑ j 6=i S j))≥ 1. Then, by Lemma 2.2.2, dim(Si+∑i 6=i S j)< dim(Si)+dim(∑ j 6=i S j),

which contradicts with the independence assumption.

(4)⇒ (1)
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Let α1v1 +α2v2 + · · ·+αnvn = 0. Then, αivi︸︷︷︸
∈Si

=−∑
j 6=i

α jv j︸ ︷︷ ︸
∈∑ j 6=i S j

for all i. Since, Si∩ (∑n
j 6=i S j) = {0} for

all i, we must have vi 6= 0 for all i. This implies that αi for all i must be 0.

2.3 Spectral Clustering

Spectral clustering is a relatively new clustering technique, however, it has become popular due

to its simplicity and efficiency. This section briefly gives the motivation behind the algorithm

described in Algorithm 1. A more detailed treatment is given in [32].

Spectral clustering algorithms are based on similarity graphs. Consider a weighted undirected

graph G = (V,E) with the data points V = {x1,x2, . . . ,xn} as vertices. The weight wi j for the edge

between xi and x j depends on a similarity function s with s(xi,x j)≥ 0. Then, a weighted adjacency

matrix W is constructed as

W = (wi j)
n
i, j=1

It is important that the similarity graph represents or models locality well. Given V = {xi}n
i=1,

we can consider different ways of generating weights between vertices. In the fully connected

graph approach, wi j is set to be s(xi,x j) for each vertex. In this case, the similarity function should

model the local neighborhood relationships well. The Gaussian similarity function s(xi,x j) =

exp
(
− ||xi−x j||2

2σ2

)
is an example of such similarity functions (σ simply controls the degree of the

local relationships). In the k-nearest neighborhood approach, xi is connected to x j if x j is among

the k-nearest neighbors of xi using some distance measure. Again the weight wi j is set to be

s(xi,x j). Even though this approach leads to a directed graph (x j is in the k-nearest neighborhood

of xi does not imply that xi is in the k-nearest neighborhood of x j), the graph can be converted to a

undirected graph (for example, xi and x j are connected if x j is in the k-nearest neighborhood of xi

or xi is in the k-nearest neighborhood of x j). In the ε-neighborhood approach, two vertices xi and

x j are connected if the distance (typically inverse of the similarity) is smaller than for some ε . The

weights are (typically) set to be uniform (for example wi j = 1 for connected vertices and wi j = 0
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otherwise). Any one of the mentioned graphs can be used for spectral clustering although special

care should be given depending on the application. If we choose a symmetric similarity function,

then the weighted adjacency matrix W becomes symmetric as well. In the following discussion,

we assume W is symmetric.

As the next step of Spectral Clustering, a graph Laplacian is computed. Let the degree di of a

vertex xi be defined as

di =
n

∑
j=1

wi j

Note that if the graph us not weighted, then di is the number of the edges from xi. We then can

define a degree matrix as:

D =



d1 0 · · · 0

0 d2 · · · 0
...

... · · · ...

0 0 · · · dn


.

Using D, the graph Laplacian matrix is defined as follows:

L = D−W =



−w11 +∑
n
j=1 w1 j −w12 · · · −w1n

−w21 −w22 +∑
n
j=1 w2 j · · · −w2n

...
... · · · ...

−wn1 −wn2 · · · −wnn +∑
n
j=1 wn j


.

Note that L does not depend on the diagonal elements of W , i.e., the self-edges do not affect the

graph Laplacian. Clearly, 0 is an eigenvalue of L with 1̄ (constant one vector) as a corresponding

eigenvector. All of the eigenvalues of L are real since L is symmetric. It is also easy to show that

0 is the smallest eigenvalue and therefore L is positive semidefinite. The algebraic multiplicity

of the eigenvalue 0 simply determines the number of clusters. For example, let V1 = {x1, . . . ,xk},

V2 = {xk+1, . . . ,xm}, and V3 = {xm+1, . . . ,xn} be the vertices from three sets that are disconnected
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from each other. In this case,

L =


L1 0 0

0 L2 0

0 0 L3


where L1, L2, and L3 are the graph Laplacians of the three disconnected sets (components). Then,

0 is an eigenvalue with an algebraic multiplicity 3 and the corresponding eigenvectors are 1̄V1 =
1̄

0

0

, 1̄V2 =


0

1̄

0

, and 1̄V3 =


0

0

1̄

, which are the indicator vectors with 1 at entry i if xi ∈Vi for

i = 1,2,3. If we generalize this, we can conclude that if the graph is decomposed into m connected

components V1, V2, ..., Vm, then there are m zero eigenvalues and the eigenspace of eigenvalue 0

is spanned by the indicator vectors 1̄V1 , 1̄V2 , ..., 1̄Vm . Although this finding of the eigenspace of

eigenvalue seems to solve the clustering problem, computation techniques will not generate eigen-

vectors in the format of indicators functions. We will end up with an arbitrary eigenbasis which is

any combination of the indicators functions 1̄V1 , 1̄V2 , ..., 1̄Vm . Also, in a general clustering setting,

we do not require that the components are totally disconnected. Therefore, instead of finding the

eigenvectors of 0 eigenvalue, we find eigenvectors corresponding to k smallest eigenvalues. That

is, we will use the eigenbasis corresponding to k smallest eigenvalues instead of the eigenbasis of

eigenvalue 0. We should also mention that normalized graph Laplacians are also used instead of

graph Laplacians [32]. For example,

Lsym := D−1/2LD−1/2 = I−D−1/2WD−1/2

Lrw := D−1L = I−D−1W

where Lsym is a symmetric matrix and Lrw is a matrix whose entries are closely related to the

probabilities assigned to each node in a random walk process.
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CHAPTER 3

MOTION SEGMENTATION PROBLEM

The motion segmentation problem can simply be defined as identifying independently moving

rigid objects in a video. It can be formally stated as follows:

Problem 2. Motion Segmentation Problem

Assume that F frames of a scene with k independently moving objects are given. Let {pi1, . . . , piN}F
i=1

with pi j ∈ R3 be the N feature points tracked across the F frames. Then,

1. determine the number of moving objects, k.

2. determine clusters {Ci}k
i=1 of {pi j}i=F, j=N

i=1, j=1 so that Ci includes only the feature points that

belong to the ith moving object.

We will below show that all of the feature points that belong to the same moving object lie in

at most 4-dimensional subspace of R2F . Thus, when Problem 2 is compared with Problem 1 of

Section 1.1, it is concluded that the motion segmentation problem is a special case of the general

subspace segmentation problem. In Chapters 4 and 5, in order to check accuracy of our techniques,

we use a dataset that consists of videos of 2 or 3 moving objects.

3.1 Mathematical Derivation

Assume that there is a rigid body that rotates around a vector in a given coordinate frame as shown

in Figure 3.1. We define two coordinate frames: (1) World Frame (X ,Y,Z) and (2) Object Frame

(x,y,z). Initially, the World Frame and the Object Frame coincide. As the object rotates, the

Object Frame deviates from the World Frame. Let r1,r2, and r3 be the orthogonal unit vectors of

the Object Frame (which forms an orthonormal basis for R3). Let p ∈ R3 be a feature point on the

object. Let pw = [Xp Yp Zp]
t and po = [ap bp cp]

t be coordinates of p with respect to the World
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Frame and the Object Frame, respectively. Since {r1,r2,r3} forms an orthonormal basis for R3,

we have pw = apr1 +bpr2 + cpr3. That is, pw = [r1 r2 r3]
tpo = Rpo, where R is a rotation matrix.

If the object both rotates and translates (Figure 3.2), then pw = Rpo + tw, where tw is the world

Figure 3.1: Point p on an object that rotates around the World Frame.

coordinates of the center of the object. If the object is sufficiently away from the camera, then the

Figure 3.2: Point p on an object that rotates and translates with respect to the World Frame.

camera projection can be modeled as an affine projection [50]. In Figure 3.3, the Z-axis is assumed

to be the optical axis of the camera. Therefore, the projection is parallel to the Z-axis. We then can
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Figure 3.3: Affine camera projection model.

write

pw(k) = R(k)po + tw(k)
Xp(k)

Yp(k)

Zp(k)

=

[
r1(k) r2(k) r3(k)

]
ap

bp

cp

+


Xt(k)

Yt(k)

Zt(k)


Xp(k)

Yp(k)

= apr̃1(k)+bpr̃2(k)+ cpr̃3(k)+ t̃w(k) (3.1)

where r̃1(k), r̃2(k), r̃3(k), and t̃w(k) correspond to r1(k),r2(k),r3(k), and tw(k) with 3rd rows trun-

cated, where k denotes the kth frame.

Figure 3.4 illustrates the projection of a feature point on the camera frame as the object moves.

Since the moving body is considered to be rigid, all of the feature points move together with the

same translations and rotations. Let Xs(k) and Ys(k) be coordinates (in World Frame) of the sth

feature point in frame k.
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Figure 3.4: Affine projection of path.

We can then define the following data matrix for N feature points collected across F frames:

W =



X1(1) X2(1) · · · Xs(1) · · · XN(1)

Y1(1) Y2(1) · · · Ys(1) · · · YN(1)
...

...
...

...
...

...

X1(F) X2(F) · · · Xs(F) · · · XN(F)

Y1(F) Y2(F) · · · Ys(F) · · · YN(F)


2F×N

(3.2)

where sth column of W corresponds to the coordinates of the sth feature point across F frames and

(2i−1)th and (2i)th rows correspond to the coordinates of N feature points in ith frame. We get the

following by using (3.1):
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Paths =



Xs(1)

Ys(1)
...

Xs(F)

Ys(F)


= as



Xr̃1(1)

Yr̃1(1)
...

Xr̃1(F)

Yr̃1(F)


+bs



Xr̃2(1)

Yr̃2(1)
...

Xr̃2(F)

Yr̃2(F)


+ cs



Xr̃3(1)

Yr̃3(1)
...

Xr̃3(F)

Yr̃3(F)


+



Xt̃(1)

Yt̃(1)
...

Xt̃(F)

Yt̃(F)


. (3.3)

Therefore, the points {Path1,Path2, · · · ,PathN} in R2F belongs to the 4-dimensional subspace

of R2F spanned by the four vectors on the right hand side of (3.3). In fact, if the motion is trans-

lational in the XY plane and rotational in the Z axis, then r3(k) = [0 0 1]t and r̃3(k) = [0 0]t and

therefore the third vector on the right hand side of (3.3) is zero. Hence, {Path1,Path2, · · · ,PathN}

lies in a 3-dimensional subspace. A similar derivation is described in [51]. Another proof of this

result uses “motion and shape matrix factorization” and is given in [45].

3.2 Relation to Subspace Principle Angles

The following lemma (the proof can be found in [47]) describes the relationship between the prin-

ciple angles of two subspaces and the singular values of a data matrix whose columns are drawn

from these two subspaces.

Lemma 3.2.1. Let F and G be two subspaces of Rn with p= dim(F )≤ dim(G ) = q. Let columns

of matrices QF ∈Rn×p and QG ∈Rn×q form orthonormal bases for the subspaces F and G . The

reduced SVD of Qt
F QG =Y diag(σ1, . . . ,σp)Zt with 1≥ σ1 ≥ σ2 ≥ ·· · ≥ σp ≥ 0, where Y ∈Rp×q

and Z ∈ Rq×q both have orthonormal columns. Then, the principle angles can be computed as

θk = arccos(σk) k = 1, . . . , p (3.4)

where 0 ≤ θ1 ≤ ·· · ≤ θp ≤ π/2 and the principle vectors are uk = QF yk and vk = QG zk for

k = 1, . . . , p.
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3.2.1 Motion and Subspace Angles

Let us assume that there are only two moving rigid objects (OF and OG ) in the following scenarios.

Case1: The objects do not rotate but translate with the same speed in the same direction.

This case assumes that both of the objects only translate in the same direction with the same speed

(with different starting points). In this case, the subspaces are 3-dimensional and all of three

principle angles are zero. We can see this by checking the basis vectors in (3.3). Let

u1 =

[
Xr̃1(1) Yr̃1(1) . . . Xr̃1(1) Yr̃1(1)

]t

(3.5)

u2 =

[
Xr̃2(1) Yr̃2(1) . . . Xr̃2(1) Yr̃2(1)

]t

u3 =

[
Xr̃3(1) Yr̃3(1) . . . Xr̃3(1) Yr̃3(1)

]t

u4 =

[
Xt̃(1) Yt̃(1) . . . Xt̃(F) Yt̃(F)

]t

u5 =

[
Xt̃(1)+a Yt̃(1)+b . . . Xt̃(F)+a Yt̃(F)+b

]t

The vectors B1 = {u1,u2,u3,u4} and B2 = {u1,u2,u3,u5} are the basis vectors for the trajecto-

ries of OF and OG , respectively. The motion starting point difference for the objects is represented

by (a,b). We can apply the Gram-Schmidt process to find a set of orthonormal vectors for each

basis. The first two vectors for each basis after the Gram-Schmidt process will be the same since

{u1,u2,u3} are common for each basis and the rank of
[

u1 u2 u3

]
is two. Let us call them as

v1 and v2. Let v3 and v4 be the third orthogonal vector for B1 and B2, respectively, after the Gram-

Schmidt orthogonalization. Note that we can always assume that we also normalize each basis

vector in the process. Then,

v3 =
u4− (u4,v1)v1− (u4,v2)v2

||u4− (u4,v1)v1− (u4,v2)v2||2
(3.6)

v4 =
u5− (u5,v1)v1− (u5,v2)v2

||u5− (u5,v1)v1− (u5,v2)v2||2
(3.7)
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Simple calculation shows that v3 and v4 are identical. Since QF =

[
v1 v2 v3

]
and QG =[

v1 v2 v4

]
(as in Lemma 4.3.2) and v3 = v4, we conclude that all of the singular values of

Qt
F QG are one and therefore all of the principle angles are zero. This means that the objects OF

and OG are indistinguishable and motion cannot be segmented.

Case 2: The objects have the same rotation.

This case assumes that both of the objects have exactly the same rotation in each frame and they

translate freely. In this case, the subspaces are 4-dimensional and three of the principle angles are

zero. Let

u1 =

[
Xr̃1(1) Yr̃1(1) . . . Xr̃1(F) Yr̃1(F)

]t

(3.8)

u2 =

[
Xr̃2(1) Yr̃2(1) . . . Xr̃2(F) Yr̃2(F)

]t

u3 =

[
Xr̃3(1) Yr̃3(1) . . . Xr̃3(F) Yr̃3(F)

]t

u4 =

[
Xt̃(1) Yt̃(1) . . . Xt̃(F) Yt̃(F)

]t

u5 =

[
Xt̂(1) Yt̂(1) . . . Xt̂(F) Yt̂(F)

]t

Note that {u1,u2,u3,u5} in (3.5) and (3.8) are different. As in Case 1, the vectors B1 = {u1,u2,u3,u4}

and B2 = {u1,u2,u3,u5} are the basis vectors for the trajectories of OW and OG , respectively. We

can apply the Gram-Schmidt process to find a set of orthonormal vectors for each basis. Since the

rank of
[

u1 u2 u3

]
is three, each subspace (corresponding to each trajectory) is 4-dimensional.

We apply the same process described in Case 1, we end up with the same three orthonormal basis

vectors after the Gram-Schmidt process for each basis. This means that three of the singular values

of Qt
F QG are one, that is, the first three principle angles are zero.
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Case 3: The objects have the same rotation about z-axis.

This case assumes that the objects rotate only around z-axis and at the same rate in each frame.

They can freely translate. In this case, the subspaces are 3-dimensional and the first two principle

angles are zero. Note that this is similar to Case 2. The difference is the rotation is always around

the z-axis. Therefore, the third basis vector in (3.3) is 0-vector. The same argument of Case 2

applies to this case.

Case 4: The objects have different rotation about z-axis.

This case assumes that the objects rotate only around the z-axis, although not necessarily with the

same rate in each frame. The objects can also freely translate. In this case, the third basis vector in

(3.3) is 0-vector and the subspaces are 3-dimensional.
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CHAPTER 4

SUBSPACE SEGMENTATION

Given a set of data W= {w1, ...,wN}∈RD that comes from a union of subspaces, subspace seg-

mentation focuses on determining a nonlinear model of the form U =
⋃

i∈I Si, where
{

Si ⊂ RD}
i∈I

is a set of subspaces, that is nearest to W. The model is then used to classify W into clusters.

Our approach in this chapter is based on the binary reduced row echelon form of a data matrix.

We prove that, in absence of noise, our approach can find the number of subspaces, their dimen-

sions, and an orthonormal basis for each subspace Si. We provide a comprehensive analysis of our

theory and determine its limitations and strengths in the presence of outliers and noise. Chapter

5 will devise another technique for the special case when the subspaces have equal and known

dimensions.

4.1 General Subspace Segmentation Problem

The subspace segmentation problem, for both the finite and infinite dimensional space cases, can

be formulated as follows:

Let B be a Banach space, W = {w1, . . . ,wm} a finite set of vectors in B. For i = 1, . . . , l, let

C =C1×C2× . . .Cl be the cartesian product of l families Ci of closed subspaces of B. Thus, an

element S ∈ C is a sequence {S1, . . . ,Sl} of l susbpaces of B with Si ∈Ci.

Problem 3. General Subspace Segmentation Problem

1. Given a finite set W⊂B, a fixed p with 0< p≤∞, and a fixed integer l≥ 1, find the infimum

of the expression

e(W,S) := ∑
w∈W

min
1≤ j≤l

dp(w,S j),

over S = {S1, . . . ,Sl} ∈ C , and d(x,y) := ‖x− y‖B.
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2. Find a sequence of l-subspaces So = {So
1, . . . ,S

o
l } ∈ C (if it exists) such that

e(W,So) = inf{e(W,S) : S ∈ C }. (4.1)

Definition 7. For 0 < p≤ ∞, a set of closed subspaces C of a Banach space B has the Minimum

Subspace Approximation Property p-(MSAP) if for every finite subset W ⊂ B there exists an

element S ∈C that minimizes the expression e(W,S) = ∑w∈W dp(w,S) over all S ∈C.

Under the assumption that each family of subspaces Ci satisfies p-(MSAP), problem 3 has a

minimizer:

Theorem 4.1.1. Assume that each i = 1, . . . l, Ci satisfies p-(MSAP), then problem 3 has a mini-

mizer.

Proof. Let P(W) be the set of all partitions of W into l subsets, i.e., P = {W1, . . . ,Wl} ∈P(W)

if W =UiWi, and Wi∩W j = /0. Let P = {W1, . . . ,Wl} be a partition in P(W). For each subset

Wi in the partition P, find the subspace So
i (P) ∈ Ci that minimizes the expression e(Wi,S) =

∑w∈Wi dp(w,S) over all S ∈Ci. Let m = min{
l
∑

i=1
e(Wi,So

i (P)) : P ∈P(W)}, and denote by Po =

{Wo
1, . . . ,W

o
l } any partition for which m =

l
∑

i=1
e(Wo

i ,S
o
i (P

o)). Then, for any S = {S1, . . . ,Sl} ∈ C

we have that

e(W,S) =
l

∑
j=1

e(X j,S j)≥
l

∑
j=1

e(X j,So
j(PS))≥

l

∑
j=1

e(Wo
j ,S

o
j(P

o)) = e(W,So)

where PS = {X1, . . . ,Xl} is any partition of W generated using S by

X j = {w ∈W : d(w,S j)≤ d(w,Si), i = 1, . . . , l}.

It follows that e(W,So) = m = inf{e(W,S) : S ∈ C }.

Theorem 4.1.1 suggest a search algorithm for the optimal solution So. Obviously, this solution
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can be obtained by Algorithm 2. This algorithm will work well if a good initial partition is chosen.

Otherwise, the algorithm may terminate in a local optima instead of the global optima.

Algorithm 2 Optimal Solution So

1: Pick any partition P ∈P(W)
2: For each subset Wi in the partition P find the subspace So

i (P) ∈Ci that minimizes the expres-
sion e(Wi,S) = ∑w∈Wi dp(w,S)

3: while
l
∑

i=1
e(Wi,So

i (P))> e(W,So(P)) do

4: for all i from 1 to l do
5: Update Wi = {w ∈W : d(w,So

i (P))≤ d(w,So
k(P)), k = 1, . . . , l}

6: Update So
i (P) = argmin

S∈Ci

e(Wi,S)

7: end for
8: Update P = {W1, . . . ,Wl}
9: end while

10: So = {So
1(P), . . . ,S

o
l (P)}

Remark 4.1.2. In Step-2 of Algorithm 2, we need to determine a subspace So
i (P) ∈ Ci that min-

imizes the expression e(Wi,S) = ∑w∈Wi dp(w,S). If the data is contaminated with a light-tailed

noise distribution (such as Gaussian distributed noise), we set p = 2 and minimize ||Wi−UiV t
i ||2,

where the columns of Ui form a basis for So
i (P). It is known that SVD (which is an `2-based ap-

proach) can achieve this. However, SVD is not a very effective subspace matching approach if the

data is contaminated with a heavy-tailed noise distribution (such as Laplacian distributed noise). In

this case, a better way is to estimate a subspace that minimizes e(Wi,S) = ∑w∈Wi d(w,S) (p is set

to 1). This is the `1-based approximation of So
i (P), in which the minimization ||Wi−UiV t

i ||1 gener-

ally leads to a non-convex optimization problem. However, it can be recast as convex optimization

with an iterative reformulation of the problem. The justifications for `1-based and `2-based ap-

proaches are given in Section 4.4.1 and Section 4.4.2, respectively. The iterative approach of the

`1-based approximation is explained in detail in Section 4.4.2 (and given in Algorithm 5).
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4.2 RREF-Based Subspace Segmentation for Noiseless Data

In this section we consider the problem in which a set of vectors W = {w1, . . . ,wm} are drawn

from a union U =
⋃

i∈I Si of l subspaces Si ∈ RD of dimension di. In order to find the l subspaces

from the data set W it is clear that we need W = {w1, . . . ,wm} to be of sufficient size. In particular

for the problem of subspace segmentation, it is necessary that the set W can be partitioned into l

sets W = {W1, . . . ,Wl} such that spanWi = Si, i = 1, . . . , l. Thus, we need to assume that we have

enough data for solving the problem, and that the data is drawn randomly and independently. In

particular, we assume that any k ≤ d vectors drawn from a subspace S of dimension d are linearly

independent, and we make the following definition.

Definition 8. Let S be a linear subspace of RD with dimension d. A set of data W drawn from

S⊂RD with dimension d is said to be generic if (i) |W|> d and (ii) every d vectors from W form

a basis for S. In particular, spanW = S.

Another assumption that we will make is that the union of subspaces U =
⋃

i∈I Si from which

the data is drawn consists of independent subspaces (see Definition 6).

In particular, if {Si ⊂RD}n
i=1 are independent, then Si∩S j = {0} for i 6= j. Note that if the data

W = {w1, . . . ,wm} is generic and is drawn from a union U =
⋃

i∈I Si of l independent subspaces

Si ∈ RD of dimension di, then the solution to Problem 3 is precisely the subspaces Si from which

W is drawn. However, for this case, the solution can be obtained in a more efficient and direct way

as will be developed below.

We note that to find the subspaces Si it would suffice to find the partition P(W) = {W1, . . . ,Wl}

of the data W. From this partition, the subspaces can be obtained simply by Si = spanWi. Con-

versely, if we knew the subspaces Si, it would be easy to find the partition P(W) = {W1, . . . ,Wl}

such that Wi ⊂ Si. However, all we are given is the data W, and we do not know the partition

P(W) or the subspaces Wi. Our goal for solving Problem 3 from this case is to find the partition

P(W) = {W1, . . . ,Wl} of W. To do this, we construct a matrix W = [w1, . . . ,wm] whose columns

are the data vectors wi ∈RD. The matrix W is a D×m matrix, where D maybe large, thus our first
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goal is to replace W by another matrix W̃ while preserving the clustering:

Proposition 4.2.1. Let A and B be m×n and n×k matrices. Let C =AB. Assume J⊂{1,2, · · · ,k}.

1. If bi ∈ span
{

b j : j ∈ J
}

then ci ∈ span
{

c j : j ∈ J
}

.

2. If A is full rank and m≥ n then bi ∈ span
{

b j : j ∈ J
}
⇐⇒ ci ∈ span

{
c j : j ∈ J

}
Proof. The relation bi = ∑ j∈J α jb j implies that Abi = ∑ j∈J α jAb j, and (1) follows from the fact

that the columns cl of C and bl of B are related by cl = Abl . For (2), we note that AtA is invertible

and (AtA)−1AtC = B. We then apply part (1) of the proposition.

It can be paraphrased by saying that for any matrices A,B,C, a cluster of the columns of B is

also a cluster of the columns of C = AB. A cluster of C however is not necessarily a cluster B,

unless A has full rank.

The proposition above suggests that, for the purpose of column clustering, we can replace a

matrix B by matrix C as long as A has the stated properties. Thus by choosing A appropriately, the

matrix B can be replaced by a more suitable matrix C, e.g. C has fewer rows, is better conditioned

or is in a format where columns can be easily clustered. One such useful format is if C is a row

echelon form matrix, as will be demonstrated in reduction method of Section 4.3. In fact, the first

r rows of the reduced echelon form of C = AB and B are the same if B has rank r:

Proposition 4.2.2. Let A be an m×n full rank matrix, B be an n× k matrix with m≥ n. Then

rref(AB) =

rref(B)

0

 .
In particular, if B has rank r then rref(B) can be obtained by the first r rows of rref(AB).

In particular in the absence of noise, a data matrix W with the SVD W =UΣV t has the same

reduced row echelon form as that of V t up to its rank r. This fact together with Proposition 4.2.1

will help us devise a reduction algorithm for subspace clustering. Before proving Proposition 4.2.2,
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recall that there are three elementary row operations that can be used to transform a matrix to its

unique reduced row echelon form. The three elementary row operations can be performed by the

elementary row operation matrices.

Proof of Propostion 4.2.2. Since the reduced row echelon form of A can be obtained by taking

product of the elementary matrices corresponding to the elementary row operations, we have

rref(A) = Ek · · ·E1A =

In

0

 . (4.2)

Applying the same elementary row operations to AB, we get

D := (Ek · · ·E1)AB = (Ek · · ·E1A)B =

In

0

B =

B

0

 , (4.3)

from which we obtain

rref(D) = rref(AB) = rref(

B

0

) =
rref(B)

0

 . (4.4)

Corollary 4.2.3 will be utilized in the development of our subspace segmentation algorithm

based on the reduced row echelon form.

Corollary 4.2.3. Assume that rank(W) = r and let UΣV t be the singular value decomposition of

W. Then

rref(W) =

rref
(
(V t)r

)
0

 ,
where (V t)r is the first r rows of V t .
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Proof. Using Proposition 4.2.2, we have that

rref(W) = rref(U tW) = rref(ΣV t) = rref

D(V t)r

0

=

rref
(
D(V t)r

)
0

=

rref
(
(V t)r

)
0


where D = diag(σ1, . . . ,σr) is an r×r diagonal matrix whose diagonal are the r (nonzero) singular

values of W.

Definition 9. Matrix R is said to be the binary reduced row echelon form of matrix A if all non-

pivot column vectors of the reduced row echelon form of A are converted to binary vectors, i.e.,

non-zero entries are set to one.

Theorem 4.2.4. Let {Si}k
i=1 be a set of non-trivial linearly independent subspaces of RD with

corresponding dimensions {di}k
i=1. Let W = [w1 · · ·wN ] ∈ RD×N be a matrix whose columns are

drawn from
⋃k

i=1 Si. Assume the data is drawn from each subspace and that it is generic. Let

Brref(W) be the binary reduced row echelon form of W. Then

1. The inner product (ei,b j) of a pivot column ei and a non-pivot column b j in Brref(W) is one,

if and only if the corresponding column vectors {wi,w j} in W belong to the same subspace

Sl for some l = 1, . . . ,k.

2. Moreover, dim(Sl) = ‖b j‖1, where ‖b j‖1 is the `1-norm of b j.

3. Finally, wp ∈ Sl if and only if bp = b j or (bp,b j) = 1.

This theorem suggests a very simple, yet effective, approach to cluster the data points. The

data W can be partitioned into k clusters {W1, . . . ,Wk}, such that spanWl = Sl . The clusters can

be formed as follows: Pick a non-pivot element b j in Brref(W), and group together all columns bp

in Brref(W) such that (b j,bp)> 0. Repeat the process with a different non-pivot column until all

columns are exhausted. For example, consider the following data matrix that contains data points
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drawn from the union of three (3) linearly independent subspaces as column vectors.

W =


2872 138 342 263 1956 2016 1793 801 195 360 1076 1882 1918 2350 83
4041 249 467 516 129 288 2612 769 312 174 241 176 3019 3270 219
2906 4292 352 7240 2861 3072 1847 665 6968 646 1709 2794 2080 2366 1012
5803 1405 657 2498 549 864 3854 687 2158 390 629 628 4711 4654 545
5124 744 2092 1335 662 1056 2835 1116 1131 484 774 762 4867 4546 309
6701 3192 757 5420 775 1248 4502 578 5148 578 919 896 5638 5354 812
7102 1625 802 2862 888 1440 4793 522 2522 672 1064 1030 6059 5666 585
495 223 117 577 322 960 266 247 169 668 866 520 275 430 388

1184 2910 192 8282 435 1152 755 200 1482 762 1011 654 951 970 6320
2065 1117 287 3027 4040 4800 1376 159 715 1360 2920 4100 1797 1662 2172

 (4.5)

The computed (binary) reduced row echelon form of W is Wb:

Wb =



1 0 0 0 0 0 0 1 0 0 0 0 1 1 0

0 1 0 0 0 0 0 0 1 0 0 0 0 0 1

0 0 1 0 0 0 0 1 0 0 0 0 1 1 0

0 0 0 1 0 0 0 0 1 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0 1 1 1 0 0 0

0 0 0 0 0 1 0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



(4.6)

Then, our algorithm (Algorithm 3, below) correctly clusters columns of W as {1,3,7,8,13,14},

{2,4,9,15}, and {5,6,10,11,12}.

Proof of Theorem 4.2.4. The reduced row echelon form of W is of the form

rref(W) =

R

0

 . (4.7)

Let P be an N ×N permutation matrix such that WP =

[
U V

]
, where the columns of U are

the columns associated with the pivots rref(W) and preserving their left to right order. Thus, U
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forms a basis for
⋃k

i=1 Si. This can be done, since the data is drawn from each subspace and it is

generic, and that the {Si} are independent. In particular, U includes exactly di points from each

Si, and U ⊂ RD×r with rank r = ∑
k
i=1 di. Moreover, because of the generic assumption of the data,

|V | ≥ k. In addition, every column of V is a linear combination of the columns of U , that is, there

exists an r× (N− r) matrix Q with V = UQ. Therefore

WP =

[
U V

]
=U

[
Ir Q

]
, (4.8)

where Ir is r× r identity matrix. Let E := El · · ·E1 be the product of elementary row operation

matrices such that EWP = rref(WP). Then,

EWP = EU
[

Ir Q

]
=

Ir X

0 0

 . (4.9)

Thus EU =

Ir

0

, and X = Q. By the choice of U above, we get that
[

Ir Q

]
= RP. It follows

that, WP =U
[

Ir Q

]
=URP, and since P is invertible, W =UR.

(ei,b j) = 1 if and only if (ei,r j) 6= 0 where r j is the column in R that corresponds to the column

b j in Brref(W). Now r j =
r
∑

i=1
ciei. If (ei,r j) 6= 0, then ci 6= 0. Thus w j = Ur j = ciwi + ∑

k 6=i
clUel .

If wi ∈ Sl , then wi = Uei is one of the basis vectors of Sl , and since ci 6= 0, independence of the

subspaces implies that w j ∈ Sl . Conversely, if w j =Ur j and wi =Uei belong to the same subspace

Sl , then w j = ciwi + ∑
Uek∈Sl

ckUek, due to independence of the subspaces. This, together with the

assumption that the data is generic implies that ci 6= 0. Hence r j = ciei +∑k ckek, and we get

(ei,r j) = ci 6= 0. This proves part (1).

Now let us assume that w j ∈ Sl . Since the data is generic and subspaces are independent, w j

can be written as a linear combination of exactly dl columns of U . This means there are dl nonzero

entries in the corresponding column r j in R. Since all the nonzero entries are set to 1 for Brref(W),

the `1-norm of the corresponding non-pivot columns must be dl . This proves part (2).
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Finally consider part (3). If wp and w j belong to Sl , then if wp = Uep then part (1) implies

(ep,b j) = 1. Otherwise the fact the subspaces are independent and the data generic imply that

bp = b j.

Now let bp be a column of Brref(W) with bp = b j. Let rp,r j be the corresponding columns

in R. Then, wp = Urp and w j = Ur j. Since w j ∈ Sl , and wp and w j are in the span of the same

column vectors of U corresponding to Sl , it follows, wp ∈ Sl . Finally if bp 6= b j and (bp,b j) = 1,

then rp is a pivot column of R. Part (1) then implies that {wp,w j} belong to the same subspace

Sl .

4.2.1 Segmentation Algorithm for Noiseless Data

Algorithm 3 summarizes the algorithm for subspace clustering when the data points are not cor-

rupted by noise. The algorithm can find a basis for each subspace and it correctly clusters all of

the data points.

4.3 Subspace Segmentation for Noisy Data

In practice the data W is corrupted by noise. In this case, the rref-based algorithm cannot work,

even under the assumption of Theorem 4.2.4, since the noise will have two effects: 1) The rank of

the data corrupted by noise W+η ⊂ RD becomes full; i.e., rank(W+η) = D; and 2) Even under

the assumption that r = D, none of the entries of the non-pivot columns of rref(W+η) will be

zero. One way of circumventing this problem is to use the rref-based algorithm in combination

with thresholding to set to zero those entries that are small. The choice of the threshold depends

on the noise characteristics and the position of the subspaces relative to each other. Thus the goal

of this section to estimate this error in terms of these factors.

Let us first assume that W ⊂ RD×N and that dim(∑k
i=1 Si) = D. Thus, under the assumption

that the data is generic, rank(W) = D. Without loss of generality, let us assume that W =

[
A B

]
where the columns of A form basis for RD, i.e., the columns of A consist of di linearly independent

vectors from each subspace Si, i = 1, . . . ,k. Let W̃ = W+N be the data with additive noise. Then
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Algorithm 3 Subspace Segmentation - Row Echelon Form Approach - No Noise
Require: D×N data matrix W.

1: Find rref(W) of W.
2: Find Brref(W) of W by setting all non-zero entries of rref(W) to 1.
3: for all j from 1 to N do
4: Pick the jth column b j of Brref(W).
5: if b j is pivot then
6: continue
7: end if
8: for all i from 1 to j−1 do
9: if bi is non-pivot and (bi,b j)> 0 then

10: Place {bi,b j} in the same cluster Ci.
11: break
12: end if
13: end for
14: end for
15: for all Ci do
16: Pick any b ∈Ci.
17: Separate b into unit vectors u1

i , . . . ,u
di
i . {These vectors form a basis for a subspace Si with

dimension di.}
18: for all k from 1 to N do
19: if bk ∈ {u1

i , . . . ,u
di
i } then

20: Place bk in the same cluster Ci. {This is for handling pivot columns.}
21: end if
22: end for
23: Place the corresponding columns in W into the same cluster Wi.
24: end for
25: Renumber indices i’s of Si starting from 1.
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the reduced echelon form applied to W̃ is given by rref(W̃) =

[
I Ã−1B̃

]
. Let bi and b̃i be the

columns of B and B̃ respectively, and let ei = Ã−1b̃i−A−1bi. Let ∆ = Ã−A, and νi = b̃i− bi we

have

ei = Ã−1b̃i−A−1bi = (I +A−1
∆)−1A−1(bi +νi)−A−1bi

Let σmin denote the smallest singular value of A, then if ||∆|| ≤ σmin(A), we get

‖ei‖2 =
∥∥∥(I−A−1

∆+(A−1
∆)2− (A−1

∆)3 + . . .
)

A−1(bi +νi)−A−1bi

∥∥∥
2

=
∥∥∥A−1

ε +
(
−A−1

∆A−1 +(A−1
∆)2A−1− (A−1

∆)3A−1 + . . .
)
(bi +νi)

∥∥∥
2

≤ ‖A−1‖‖νi‖2 +
(
‖A−1‖2‖∆‖+‖A−1‖3‖∆‖2 +‖A−1‖4‖∆‖3 + . . .

)
(||bi||2 + ||νi||2)

=
‖νi‖2

σmin(A)
+
‖∆‖

σ2
min(A)

(
1

1− ‖∆‖
σmin(A)

)
(‖bi‖2 +‖νi‖2) (4.10)

where ‖ · ‖ denotes the operator norm ‖ · ‖`2→`2 . Unless specified otherwise, the noise N will

be assumed to consist of entries that are i.i.d. N (0,σ2) Gaussian noise with zero mean and

variance σ2. For this case, the expected value of ‖∆‖ can be estimated by E‖∆‖ ≤C
√

Dσ using

the following Theorem in [52, 53].

Theorem 4.3.1 (Latala’s Theorem). Let A be a random matrix whose entries ai j are independent

and centered random variables with finite fourth moment. Then,

Eσmax(A)≤C
[

max
i

(
∑

j
Ea2

i j
)1/2

+max
j

(
∑

i
Ea2

i j
)1/2

+
(
∑
i, j

Ea4
i j
)1/4

]
(4.11)

where C is a universal constant and σmax is the largest singular value of A.

Note that to estimate the error in (4.10) we still need to estimate σmin(A). This singular value

depends on the position of the subspaces {Si}k
i=1 relative to each other which can be measured

by the principle angles between them. The principle angles between two subspaces F ,G , can be

obtained using any pair of orthogonal bases for F ,G as described in the following Lemma [47]:
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Lemma 4.3.2. Let F and G be two subspaces of RD with p = dim(F ) ≤ dim(G ) = q. Let

QF ∈RD×p and QG ∈RD×q be matrices whose columns form orthonormal bases for the subspaces

F and G . Let 1 ≥ σ1 ≥ σ2 ≥ ·· · ≥ σp ≥ 0 be the singular values of Qt
F QG . Then, the principle

angles are given by

θk = arccos(σk) k = 1, . . . , p. (4.12)

Theorem 4.3.3. Let {Si}k
i=1 be independent subspaces of RD with corresponding dimensions

{di}k
i=1 such that ∑

k
i=1 di = D. Let {θ j(Si)}min(di,D−di)

j=1 be the principle angles between Si and

∑ 6̀=i S`. Let A =

[
a1 . . . aD

]
be a matrix whose columns {a1, . . . ,aD} ⊂ ∪k

i=1Si form a basis

for RD, with ‖ai‖2 = 1, i = 1, . . . ,D. Then,

σ
2
min(A)≤min

i

(
min(di,D−di)

∏
j=1

(
1− cos2(θ j(Si))

))1/D

(4.13)

where σmin(A) is the smallest singular value of A.

Corollary 4.3.4. Under the same conditions of Theorem 4.3.3, a simpler but possibly larger upper

bound is given by:

σ
2
min(A)≤min

i
(1− cos(θ1(Si))

1/D41/D, (4.14)

where θ1(Si) is the minimum angle between Si and ∑ 6̀=i S`.

Corollary 4.3.5. Let {Si}k
i=1 be independent subspaces of RD with corresponding dimensions

{di}k
i=1 such that ∑

k
i=1 di = D. Let {θ j(Si)}min(di,D−di)

j=1 be the principle angles between Si and

∑ 6̀=i S`. Let W = [w1 · · ·wN ] ∈ RD×N be a matrix whose columns are drawn from
⋃k

i=1 Si. Assume

the data is drawn from each subspace and that it is generic. Let P be a permutation matrix such

that WP =

[
AP BP

]
, and AP is invertible. Then

sup
P
{σ2

min(AP)} ≤min
i

(
min(di,D−di)

∏
j=1

(
1− cos2(θ j(Si))

))1/D

. (4.15)
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In particular,

sup
P
{σ2

min(AP)} ≤min
i
(1− cos(θ1(Si))

1/D41/D, (4.16)

where θ1(Si) is the minimum angle between Si and ∑ 6̀=i S`.

Remark 4.3.6. If we know an estimate of mini (1− cos(θ1(Si))
1/D 41/D, then no matter which AP

we choose, we cannot do any better. Therefore, our best case is always controlled by this estimate.

Clearly, if the minimum principle angle between the subspaces is small, we do not expect the upper

bound to be high. If we know the angles between subspaces and if we choose a permutation matrix

P, we may assess how good it is by checking σmin(AP). Also, if we know the angles between

subspaces, we can state the best case scenario for AP by maximizing σmin(AP), which cannot be

bigger than mini (1− cos(θ1(Si))
1/D 41/D.

4.3.1 Proof of Theorem 4.3.3

Theorem 4.3.7. Let S1 and S2 be subspaces of Rn with dimensions d1 and d2, respectively, with

d1 ≤ d2. Let Q1 and Q2 be orthonormal bases for S1 and S2, respectively, λ 2
1 ≥ λ 2

2 , . . . ,≥ λ 2
d1
≥ 0

be the singular values of Qt
1Q2, and let A =

[
Q1 Q2

]
. Then,

1. If d2 > d1, then the spectrum σ(AtA) = {1}∪{1−λ 2
i ,1+λ 2

i }
d1
i=1.

2. If d2 = d1, then the spectrum σ(AtA) = {1−λ 2
i ,1+λ 2

i }
d1
i=1.

Remark 4.3.8. Note that Q1 is n×d1, Q2 is n×d2, and d1 +d2 = n.

Qt
1Q2 =UΣV t =⇒ Σ =


λ 2

1 0 . . . 0 . . . 0

0 λ 2
2 . . . 0 . . . 0

0 0 . . . λ 2
d1 . . . 0


d1×d2

Let θ1,θ2, . . . ,θd1 be the principle angles between S1 and S2. Then, cos(θi) = λ 2
i for i = 1, . . . ,d1

by Lemma 4.3.2.
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Proof of Theorem 4.3.7. AtA is given by

AtA =

Qt
1

Qt
2

[Q1 Q2

]
=

Qt
1Q1 Qt

1Q2

Qt
2Q1 Qt

2Q2

=

Id1 C

Ct Id2

 (4.17)

where C := Qt
1Q2, and Id denotes the d×d identity matrix . Then,

CtC =V Σ
t
ΣV t .

Σ =


λ 2

1 0 . . . 0 . . . 0

0 λ 2
2 . . . 0 . . . 0

0 0 . . . λ 2
d1 . . . 0


d1×d2

Σ
t =



λ 2
1 0 . . . 0

0 λ 2
2 . . . 0

0 0 . . . λ 2
d1

0 0 . . . 0
...

... . . .
...

0 0 . . . 0


d2×d1

Σ
t
Σ =



λ 4
1 0 . . . 0 . . . 0

0 λ 4
2 . . . 0 . . . 0

0 0 . . . λ 4
d1 . . . 0

0 0 . . . 0 . . . 0
...

... . . .
...

...
...

0 0 . . . 0 . . . 0


d2×d2

So, ΣtΣ = diag{λ 4
1 ,λ

4
2 , . . . ,λ

4
d1
,0, . . . ,0︸ ︷︷ ︸

d2−d1

}, i.e., the diagonal elements are the eigenvalues of CtC.

43



Using (4.17), µ2 is an eigenvalue of AtA, if and only if

Id1 C

Ct Id2


 x1

x2

= µ
2

 x1

x2



for some x =

 x1

x2

 6= 0 where x1 is d1×1 and x2 is d2×1. Thus, we have

Cx2 = (µ2−1)x1,

Ctx1 = (µ2−1)x2,

from which we have, CtCx2 = (µ2− 1)2x2. Thus, if x2 6= 0 then (µ2− 1)2 belongs to the eigen-

values {λ 4
1 ,λ

4
2 , . . . ,λ

4
d1
,0, . . . ,0︸ ︷︷ ︸

d2−d1

} of CtC. If x2 = 0 then µ2 = 1, and x1 is an eigenvector for CCt ,

corresponding to the eigenvalue λd1 = 0.

Thus, If d2 > d1, then σ(AtA) ⊂ {1}∪ {1− λ 2
i ,1+ λ 2

i }
d1
i=1, and if d2 = d1, σ(AtA) ⊂ {1−

λ 2
i ,1+λ 2

i }
d1
i=1.

To show the other inclusions, let λ 4 ∈ {λ 4
1 ,λ

4
2 , . . . ,λ

4
d1
} and let x2 6= 0 be the corresponding

eigenvector. If λ 6= 0 define x1 =
1

λ 2Cx2. Then, using (4.17) we get,

Id1 C

Ct Id2


 x1

x2

=

 x1 +Cx2

Ctx1 + x2

 (4.18)

Since λ 2x1 =Cx2, we have that λ 2Ctx1 =CtCx2 = λ 4x2 so that (since λ 6= 0) we get Ctx1 = λ 2x2.

Thus for λ 6= 0 we have

Id1 C

Ct Id2


 x1

x2

=

 x1 +λ 2x1

λ 2x2 + x2

= (1+λ
2)

 x1

x2

 .
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In particular 1+ λ 2 is an eigenvalue of AtA with the eigenvalue

 x1

x2

. If λ = 0, then CtC is

singular. Thus C, is singular as well. Let x2 be a nonzero vector in the null space of C and define

x1 = 0. Then Id1 C

Ct Id2


 0

x2

=

 0+Cx2

0+ x2

=

 0

x2

 ,
so that 1∈ σ(AtA). Thus in all case λ 4 ∈ {λ 4

1 ,λ
4
2 , . . . ,λ

4
d1
} implies that 1+λ 2 ∈ σ(AtA). A similar

proof yield that 1−λ 2 ∈ σ(AtA).

Finally, if d2 > d1, C has a nontrivial kernel. Let x2 6= 0 be such that Cx2 = 0 and x1 = 0. Then,

an argument similar to the last one implies that 1 ∈ σ(AtA). Thus we have proved that if d2 > d1

then {1}∪{1−λ 2
i ,1+λ 2

i }
d1
i=1 ⊂ σ(AtA), and if d2 = d1, then {1−λ 2

i ,1+λ 2
i }

d1
i=1 ⊂ σ(AtA).

Proof of Theorem 4.3.3. We first consider two subspaces {S1,S2} ⊂ RD with dimensions d1 and

d2 respectively, and d1 + d2 = D. We note that if AP = AP where P is any permutation matrix,

then AP and A have the same singular values. Thus, without loss of generality, we assume that

A =

[
A1 A2

]
, where the columns of A1 and A2 are unit norm bases of S1 and S2 respectively.

Using the QR decomposition, we get

A =

[
A1 A2

]
=

[
Q1R1 Q2R2

]
=

[
Q1 Q2

]R1 0

0 R2

= QR

where Q1 and Q2 are orthonormal and R1 and R2 are upper triangular matrices with unit column

vectors.

det(AtA) = det(RtQtQR) = det(RtR)det(QtQ)≤ det(QtQ). (4.19)

where for the last inequality we have used the fact that the column vectors of R1 and R2 have unit

norm. Let {µ̃i}D
i=1 and {µi}D

i=1 be the singular values of A and Q, respectively. Then, by (4.19) we

get
D

∏
i

µ̃
2
i ≤

D

∏
i

µ
2
i .
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Using Theorem 4.3.7 we get

D

∏
i

µ̃
2
i ≤

D

∏
i

µ
2
i = (1−λ

2
1 )(1−λ

2
2 ) . . .(1−λ

2
d1
)(1+λ

2
d1
)(1+λ

2
d2−1) . . .(1+λ

2
1 ). (4.20)

Thus, noting that µ̃1 is the smallest singular value for A, and using Lemma 4.3.2 we obtain

σ
D
min(A) = (µ̃2

1 )
D ≤ (1−λ

4
1 )(1−λ

4
2 )(1−λ

4
3 ) . . .(1−λ

4
d1
) (4.21)

≤
d1

∏
j=1

(
1− cos2(θ j(S1))

)
. (4.22)

For the general case of k subspaces, we replace S1 by Si, and S2 by ∑ 6̀=i S`, and d1 by min(di,D−di)

and let i run from 1 to k.

Proof of Corollary 4.3.4. As in the previous proof, for two subspaces {S1,S2} ⊂ RD with dimen-

sions d1 and d2 respectively, and d1 +d2 = D, we use (4.21) to get

σ
D
min(A) = (µ̃2

1 )
D ≤ (1−λ

2
1 )(1+λ

2
1 )(1−λ

4
2 )(1−λ

4
3 ) . . .(1−λ

4
d1
)

≤ (1−λ
2
1 )(1+λ

2
1 )(1−λ

4
d1
)

≤ (µ2
1 )(1−λ

2
d1
)(2)2.

This implies that inequality gives

σmin(A)≤ µ
2/D
1 41/D = (1− cos(θ1(S1)))

1/D41/D.

To finish the proof, as before, we replace S1 by Si, and S2 by ∑ 6̀=i S`, and let i run from 1 to k.

Figure 4.1 displays the relationship between µ̃1 and µ1. Figure 4.2 shows the relationship

between µ̃1 and θ1, which is the first principle angle between the subspaces S1 and S2. This

implies that when the minimum principle angle between the subspaces is large, we should try to
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Figure 4.1: The relationship between µ1 and µ̃1.

select orthonormal bases for Q1 and Q2. However, if the minimum principle angle is small, the

selection of orthonormal bases does not matter too much. In other words, when µ1 is small, it

is highly unlikely that µ̃1 will be smaller than µ1. But as µ1 gets higher, µ̃1 is more likely to be

lower than µ1 (Figure 4.1). So as µ1 gets higher, we should try to pick up an orthonormal basis

to minimize the effect of noise. Similarly, as the angle between subspaces gets higher, we should

pick an orthonormal basis (Figure 4.2).

Figures 4.3-4.5 show some simulations for Theorem 4.3.3 and Corollary 4.3.4. In Figure 4.3,

two 2-dimensional subspaces of R4 that span R4 is randomly generated. Then, 7 data points from

each subspace is randomly generated and they are placed as the columns of a data matrix W. All

possible 4×4 matrices from the columns of W are found. Among those matrices, the one with the

highest minimum singular value is picked as the matrix A. All of the principle angles between the

subspaces are computed and the upper bounds of Theorem 4.3.4 and Theorem 4.3.3 are calculated.

This is repeated for 100 times and a scatter plot is provided in Figure 4.3. The same process is

repeated for 3-dimensional and 5-dimensional subspaces of R8 (Figure 4.4). The same results for

three 2-dimensional subspaces of R6 are shown in Figure 4.5.

Figure 4.6 shows the relationship between the minimum angle and the segmentation rate. For
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Figure 4.2: The relationship between θ1 and µ̃1.

this simulation, 10 data points that come from two 2-dimensional subspaces of R4 was generated.

The angles between the subspaces are computed. Then, some white noise was added to the data

in a controlled fashion, i.e., the noise variance was increased from 0.00 to 0.40 with 0.01 incre-

ments. The segmentation rate for each step is calculated and then the average segmentation rate

is computed. The experiment is repeated 200 times and the scatter plots for three techniques are

displayed in Figure 4.6. The best-A method refers to the segmentation by using matrix A with the

highest minimum singular value. The modified RREF method refers to the segmentation by giving

priority to the highest pivoting rows and columns in reduced row echelon form calculations. the

regular RREF method refers to the segmentation using the traditional reduced row echelon form

calculation. After computing the reduced row echelon forms using those three techniques, a spec-

tral clustering technique was applied. The similarity matrix entries consist of the inner products of

the columns of the reduced row echelon form matrix. Figure 4.6 also shows the linear fitting of the

scatter plots.
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Figure 4.3: Two 2-dimensional subspaces of R4 with total of 14 data points.

Figure 4.4: 3-dimensional and 5-dimensional subspaces of R8 with total of 14 data points.
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Figure 4.5: Three 2-dimensional subspaces of R6 with total of 15 data points.

Figure 4.6: Relationship between minimum angle and three methods of RREF.
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4.4 Combining Algorithms

Algorithm 2 described in Section 4.1 starts with a partition of the data matrix W and it may not find

the global optimum solution if this initial partition is not good. Algorithm 3 described in Section

4.2.1 works perfectly for noiseless data (it determines a basis for each subspace and it correctly

clusters all of the data points). However, it is likely to fail for noisy data due to difficulty of finding

an appropriate threshold to set the small values of rref(W) to zero. rref(W) does not have the

properties of those in Theorem 4.2.4, in general, and therefore cannot be used to determine the

subspaces, their dimensions, or the clusters. However, the thresholded reduced echelon form can

be used to determine a set of clusters that can in turn be used to determine a good initial set of

subspaces in Algorithm 2.

This is achieved as follows if the number of subspaces, l, is known and each subspace is d-

dimensional: First, the reduced row echelon form rref(W) of W is computed. Since the data is

noisy, the non-pivot columns of rref(W) will most likely have all non-zero entries. The error in

those entries will depend on the noise and the positions of the subspaces as in (4.3.3) and (4.3.3).

Since each subspace is d-dimensional, the highest d entries of each non-pivot column is set to 1

and the all other entries are set to 0 to determine the binary reduced row echelon form Brref(W)

of W (note that, according to Theorem 4.2.4, each non-pivot column of Brref(W) is supposed

to have d entries). The next step is to have an l groups of the equivalent columns of Brref(W).

Those l groups is then used as the initial partition for Algorithm 2. This process is described in

Algorithm 4. Note that a dimensionality reduction is also performed (according to Corollary 4.2.3)

to speed up the process.

In Step-7 of Algroithm 4, we find the subspace So
i (P) that minimizes the expression e(Wi,S) =

∑w∈Wi dp(w,S) for each subset Wi in the partition P. This can be achieved using `2-based SVD for

data with light-tailed noise (e.g. Gausian distributed noise) and `1-based subspace approximation

for heavy-tailed noise (e.g. Laplacian distributed noise) as described below (please see Remark

4.1.2).
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Algorithm 4 Combined Algorithm - Optimal Solution So

Require: Normalized data matrix W.
1: Set r = l×d.
2: Compute the SVD of W and find (Vr)

t as in Corollary 4.2.3.
3: Replace the data matrix W with (Vr)

t .
4: Compute rref(W)
5: Compute Brref(W) by setting the highest d entries of each non-pivot column to 1 and all the

others to 0.
6: Group the non-pivot equivalent columns of Brref(W) into l largest clusters {W1, . . . ,Wl} and

set the initial partition P = {W1, . . . ,Wl}.
7: For each subset Wi in the partition P find the subspace So

i (P) that minimizes the expression
e(Wi,S) = ∑w∈Wi dp(w,S).

8: while
l
∑

i=1
e(Wi,So

i (P))> e(W,So(P)) do

9: for all i from 1 to l do
10: Update Wi = {w ∈W : d(w,So

i (P))≤ d(w,So
k(P)), k = 1, . . . , l}

11: Update So
i (P) = argmin

S
e(Wi,S)

12: end for
13: Update P = {W1, . . . ,Wl}
14: end while
15: So = {So

1(P), . . . ,S
o
l (P)}

4.4.1 Light-Tailed Noise

Let W be D×N dimensional matrix of data that is drawn from a single d dimensional subspace

S ∈RD. In order to find S, W can be factorized as W =UV t where the columns of the D×k matrix

U form a basis for S and V t is a k×N matrix. However if the data is noisy, we must estimate U .

If the noise is additive and Gaussian, the maximum likelihood estimation of U (and V ) can

be stated as an optimization problem [54]. Let columns {W1, . . . ,WN} of the measured data W be

given by

Wi = wi + ei i = 1, ...,N (4.23)

where wi and ei are the unknown vector and noise respectively. Then,

wi =Uvi (4.24)
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for some vi ∈ Rk.

Assume that the components of ei are independent and ei is modeled by independent and iden-

tically distributed (i.i.d) Gaussian distribution. Then,

p(Wi|wi)∼ exp{−
||Wi−wi||22

σ2 } (4.25)

where σ2 is a scale parameter.

If we assume that {W1, . . . ,WN} are independent measurements, then

p(W |w1,w2, . . . ,wN) =
N

∏
i=1

p(Wi|wi)∼ exp{−
N

∑
i=1

||Wi−Uvi||22
σ2 } (4.26)

In order to maximize (4.26), we need to minimize ∑
N
i=1 ||Wi−Uvi||22. This is equivalent to mini-

mizing

E(U,V ) = ||W−UV t ||22 (4.27)

It is known that the SVD- based matrix factorization gives the global minimum of (4.27). In Step-

7 of Algroithm 4, we apply this approach for each Wi, i.e., we factor Wi = UiΣiV t
i and assign

So
i (P) = span{ui1, . . . ,uid} where {ui1, . . . ,uid} are the columns of Ui.

4.4.2 Heavy-Tailed Noise

In many computer vision applications such as motion segmentation and target tracking, noise is

modeled as non-Gaussian heavy-tailed distribution based on empirical studies [55, 56, 57]. It is

therefore important to analyze this case. Now, assume that the components of ei in (4.23) are

independent and ei is modeled by i.i.d Laplacian distribution, which is a heavy-tailed distribution

[58]. Then,

p(Wi|wi)∼ exp{−||Wi−wi||1
σ

} (4.28)
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where σ is a scale parameter. Also,

p(W |w1,w2, . . . ,wN) =
N

∏
i=1

p(Wi|wi)∼ exp{−
N

∑
i=1

||Wi−Uvi||1
σ

} (4.29)

We now need to minimize ∑
N
i=1 ||Wi−Uvi||1. If we use matrix notation,

E(U,V ) = ||W−UV t ||1 (4.30)

This is generally a non-convex optimization problem. However, if U is known, E(U,V ) becomes a

convex function with respect to V and similarly if V is known, E(U,V ) becomes a convex function

with respect to U . Therefore, we will need to determine U and V iteratively [54]. In Step-7 of

Algroithm 4, we factor Wi = UiV t
i based on `1 norm approach as described in Algorithm 5 and

assign So
i (P) = span{ui1, . . . ,uid} where {ui1, . . . ,uid} are the columns of Ui.

Algorithm 5 Iterative Solution for (4.30)
1: Initialize U by SVD: W =UΣV t

2: while not converged do
3: V = argmin

V
||W−UV t ||1

4: for all i from 1 to N do
5: vi = argmin

v
||Wi−Uv||1. (Note that ||W−UV t ||1 = ∑

N
i=1 ||Wi−Uvi||1 where vt

i is the ith

row of V .)
6: end for
7: U = argmin

U
||W−UV t ||1

8: for all i from 1 to m do
9: Q := Wt

10: ui = argmin
u
||Qi−Vu||1. (Note that ||W−UV t ||1 = ||Q−VU t ||1 = ∑

d
i=1 ||Qi−Vui||1

where ut
i is the ith row of U .)

11: end for
12: end while

4.4.3 Outliers and Missing Data Points

It is known that SVD-based matrix factorization cannot handle outliers and missing data [59, 54,

60, 61, 62]. `1 norm factorization approach can handle outliers robustly compared to least square

54



approach (`2 norm approach). Missing data points can be handled in Algorithm 5 by simply

ignoring the missing data points (or steps corresponding to the missing data points).

Remark 4.4.1. In order to reduce the dimensionality of the problem, we compute the SVD of W

W =UΣV t (4.31)

Algorithm 4 assumes that each subspace is d-dimensional and there are k subspaces. Therefore, it

replaces W by (Vr)
t , where r = k×d. If we do not know the rank r of W, we may try to estimate

it using a modal selection algorithm [36]:

r = argminr
σ2

r+1

∑
r
i=1 σ2

i
+κr (4.32)

where σ j is the jth singular value and κ is a suitable constant.

Remark 4.4.2. In Step-5 of Algroithm 4, Brref(W) is computed by setting the highest d entries

of each non-pivot columns to 1 and the others to 0. If we do not know the dimensions of the

subspaces, we may need to determine a threshold. Such a threshold depends on the noise level and

the positions of the subspaces (please refer to (4.3.3) and (4.3.3))

4.5 Simulations and Experiments

4.5.1 Simulations

This section provides various simulations performed on synthetically generated data. The data

is first added with Gaussian distributed noise (light-tailed noise). The data is then contaminated

with Laplacian distributed noise (heavy-tailed noise). We also evaluated the effect of outliers and

missing data points. In all of the experiments, subspaces with known dimensions are simulated to

avoid computing a data driven threshold. Also, the rank of the data matrix is assumed to be known.

This is to make sure that simulations evaluate intended cases properly.
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Simulations - Light-Tailed Noise

Algorithm 4 is used for implementations of this section. Figure 4.7 shows a sample result for

segmenting data that comes from union of two 4-dimensional subspace of R12. Each data point

(each column of data matrix) was normalized using `2-norm. Gaussian distributed noise was added

in each step of simulation. Since the data is normalized noise variance represent approximately

percentage noise added to the data. Figure 4.8 shows another simulation for three 4-dimensional

subspaces of R20 with different number of points. The algorithm is robust for around 15% noise

level, which is a considerably high measurement noise rate.

Figure 4.7: Segmentation rate for: Two subspaces of R12 with dim(Sub1) = 4, dim(Sub2) = 4,
number of data points for Sub1 = 500, number of data points for Sub2 = 300, and contaminated
with Gaussian distributed noise.

Simulations - Heavy-Tailed Noise

Figure 4.9 displays a sample result for segmenting data that comes from union of two 4-dimensional

subspaces of R12. Each subspace contains 100 data points. We used a linear programming soft-

ware library for implementing Algorithm 5. It is shown that the algorithm is robust for almost 15%

noise level.
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Figure 4.8: Segmentation rate for: Three subspaces of R20 with dim(Sub1) = 4, dim(Sub2) = 4,
dim(Sub3) = 4, number of data points for Sub1 = 300, Sub2 = 400, Sub3 = 500, and contaminated
with Gaussian distributed noise.

Simulations - Outliers

Figure 4.10 shows the segmentation rates for noise-free data with outliers. In order to generate

the outliers, certain number of data points from each subspace are randomly picked. Then, those

points are randomly corrupted and Algorithm 5 is applied to the corrupted data. The data contains

only outliers but no noise.

Discussion of Simulation Results

The simulations confirm validity of the proposed algorithms. The data matrix W of each subspace

is factored as W = UV t , where U forms a basis for the best approximation of the subspace and

V t contains the projection of W onto the subspace spanned by the columns of U . SVD-based data

matrix factorization is used for handling Gaussian noise and `1-norm based factorization is used

for Laplacian noise as well as for handling outliers.
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Figure 4.9: Segmentation rate for: Two subspaces of R12 with dim(Sub1) = 4, dim(Sub2) = 4,
number of data points for Sub1 = 100, number of data points for Sub2 = 100, and contaminated
with Laplacian distributed noise.

4.5.2 Experiments

The Hopkins 155 Dataset

The Hopkins 155 Dataset [25] was created as a benchmark database to evaluate motion segmen-

tation algorithms. It contains two (2) and three (3) motion sequences. There are three (3) groups

of video sequences in the dataset: (1) 38 sequences of outdoor traffic scenes captured by a mov-

ing camera, (2) 104 indoor checker board sequences captured by a handheld camera, and (3) 13

sequences of articulated motions such as head and face motions. Cornerness features that are

extracted and tracked across the frames are provided along with the dataset. The ground truth seg-

mentations are also provided for comparison. Figure 4.11 shows two (2) samples from the dataset

with the extracted features.

Experimental Results

Table 4.1 displays the results when Algorithm 4 (with SVD-based subspace approximation) is

applied to the two-motion data from the Hopkins 155 Dataset. Th RREF-based algorithm is ex-

tremely fast and works well with two-motion video sequences. The average error for all two-
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Figure 4.10: Outliers versus segmentation rate for: Two subspaces of R12 with dim(Sub1) = 4,
dim(Sub2) = 4, number of data points for Sub1 = 100, number of data points for Sub2 = 100.

Figure 4.11: Samples from the Hopkins 155 Dataset.

motion sequences is 11.45%. However, the error is very high for three-motion sequences and

obviously it does not work well with such video sequences. We believe that this is due to unknown

nature of the noise in data.
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Checker (78) RREF-Based Approach
Average 8.81%
Median 5.44%

Traffic (31) RREF-Based Approach
Average 16.04%
Median 11.94%

Articulated (11) RREF-Based Approach
Average 17.25%
Median 12.69%

All (120 seq) RREF-Based Approach
Average 11.45%
Median 6.78%

Table 4.1: % segmentation errors for sequences with two motions.

60



CHAPTER 5

NEARNESS TO LOCAL SUBSPACE APPROACH

We provided a detailed treatment of the motion segmentation problem as a special case of the

subspace segmentation problem in Chapter 3. First, a 2F×N data matrix W is constructed using

N feature points that are tracked across F frames. Then, each column of W (i.e., the trajectory

vector of a feature point) is treated as a data point and it is shown that all of the data points that

correspond to the same moving object lie in an at most 4-dimensional subspace of R2F .

In this chapter, we develop a specialized algorithm for the case when the dimensions of the

subspaces are equal and known. Such cases occur in many data clustering problems, such as

motion segmentation and face recognition. The algorithm is reliable in the presence of noise and

applied to the Hopkins 155 Dataset, it generates the best results to date for motion segmentation.

5.1 Algorithm for Subspace Segmentation

In this section, we develop a specialized algorithm for subspace segmentation and data clustering

when the dimensions of the subspaces are equal and known. First, a local subspace is estimated

for each data point. Then, the distances between the local subpaces and points are computed

and a distance matrix is generated. This is followed by construction of a binary similarity matrix

by applying a data-driven threshold to the distance matrix. Finally, the segmentation problem

is converted to a one-dimensional data clustering problem. The precise steps are described in

Algorithm 6 and in the explanation that follows.

5.1.1 Dimensionality Reduction and Normalization

Let W be an D×N data matrix whose columns are drawn from a union of subspaces of dimensions

at most d, possibly perturbed by noise. In order to reduce the dimensionality of the problem, we
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Algorithm 6 Subspace Segmentation
Require: The D×N data matrix W whose columns are drawn from subspaces of dimension d
Ensure: Clustering of the feature points.

1: Compute the SVD of W as in (5.1).
2: Estimate the rank of W (denoted by r) if it is not known. For example, using (5.2) or any other

appropriate choice.
3: Compute (Vr)

t consisting of the first r rows of V t .
4: Normalize the columns of (Vr)

t .
5: Replace the data matrix W with (Vr)

t .
6: Find the angle between the column vectors of W and represent it as a matrix. {i.e.,

arccos(WtW).}
7: Sort the angles and find the closest neighbors of column vector.
8: for all Column vector xi of W do
9: Find the local subspace for the set consisting of xi and k neighbors (see (5.3)).

{Theoretically, k is at least d− 1. We can use the least square approximation for the sub-
space (see the section Local Subspace Estimation). Let Ai denote the matrix whose columns
form an orthonormal bases for the local subspace associated with xi.}

10: end for
11: for i = 1 to N do
12: for j = 1 to N do
13: define H = (di j) =

(
||x j−At

ix j||p + ||xi−At
jxi||p

)
/2

14: end for
15: end for{Build the distance matrix}
16: Sort the entries of the N×N matrix H from smallest to highest values into the vector h and set

the threshold η to the value of the T th entry of the sorted and normalized vector h, where T
is such that ‖χ[T,N2]−h‖2 is minimized, and where χ[T,N2] is the characteristic function of the
discrete set [T,N2].

17: Construct a similarity matrix S by setting all entries of H less than threshold η to 1 and by
setting all other entries to 0. {Build the binary similarity matrix}

18: Normalize the rows of S using `1-norm.
19: Perform SVD St =UnΣn(Vn)

t .
20: Cluster the columns of Σn(Vn)

t using k-means. Σn(Vn)
t is the projection on to the span of Un.
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compute the SVD of W

W =UΣV t (5.1)

where U =

[
u1 u2 · · · uD

]
is an D×D matrix, V =

[
v1 v2 · · · vN

]
is an N×N matrix, and

Σ is an D×N diagonal matrix with diagonal entries σ1, . . . ,σl , where l = min{D,N}.

To estimate the effective rank of W, one can use the modal selection algorithm [36] to estimate

the rank r if it is not known:

r = argminr
σ2

r+1

∑
r
i=1 σ2

i
+κr (5.2)

where σ j is the jth singular value and κ is a suitable constant. Another possible model selection

algorithm can be found in [63]. UrΣr(Vr)
t is the best rank-r approximation of W = UΣV t , where

Ur refers to a matrix that has the first r columns of U as its columns and Vr refers to the first r rows

of V t . In the case of motion segmentation, if there are k independent motions across the frames

captured by a moving camera, the rank of W is between 2(k+1) and 4(k+1).

We can now replace the data matrix W with the matrix (Vr)
t that consists of the first r rows of

V t (thereby reducing the dimensionality of data). This step is justified by Proposition 4.2.1. Also,

[24] discusses the segmentation preserving projections and states that the number of subspaces and

their dimensions are preserved by random projections, except for a zero measure set of projections.

It should also be noted that this step reduces additive noise as well, especially in the case of

light-tailed noise, e.g., Gaussian noise. The number of subspaces corresponds to the number of

moving objects. Vidal et al. [64] uses an alternative method (power method) for SVD to project

incomplete motion data (trajectories) into a 5-dimensional subspace and then applies GPCA and

spectral clustering for subspace segmentation. Dimensionality reduction corresponds to Steps 1,

2, and 3 in Algorithm 6.

Another type of data reduction is normalization (Figure 5.1). Specifically, the columns of (Vr)
t

are normalized to lie on the unit sphere Sr−1. This is because by projecting the subspace on the unit

sphere, we effectively reduce the dimensionality of the data by one. Moreover, the normalization

gives equal contribution of the data matrix columns to the description of the subspaces. Note
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Figure 5.1: Projection onto unit sphere in R3.

Figure 5.2: `2, `1, and `p balls with p < 1.

that the normalization can be done by using lp norms of the columns of (Vr)
t (Figure 5.2). This

normalization procedure corresponds to Steps 4 and 5 in Algorithm 6.

5.1.2 Local Subspace Estimation

The data points (i.e., each column vector of (Vr)
t) that are close to each other are likely to belong

to the same subspace. For this reason, we estimate a local subspace for each data point using

its closest neighbors. This can be done in different ways. For example, if the `2-norm is used

for normalization, we can find the angles between the points, i.e., we can compute the matrix

arccos(Vr× (Vr)
t). Then we can sort the angles and find the closest neighbors of each point. If

we use lp-norm for normalization, we can generate a distance matrix (ai j) = (||xi−x j||p) and then
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sort each column of the distance matrix to find the neighbors of each xi, which is the ith column of

(Vr)
t .

Once the distance matrix between the points is generated, we can find, for each point xi, a set

of k+1≥ d points {xi,xi1, ...,xik} consisting of xi and its k closest neighbors. Then we generate a

d-dimensional subspace that is nearest (in the least square sense) to the data {xi,xi1, ...,xik}. This

is accomplished by using SVD

X = [xi xi1 ... xik ] = AΣBt . (5.3)

Let Ai denote the matrix of the first d columns of A associated with xi. Then, the column space

C(Ai) is the d-dimensional subspace nearest to {xi,xi1 , ...,xik}. Local subspace estimation corre-

sponds to Steps 6 to 10 in Algorithm 6.

5.1.3 Construction of Binary Similarity Matrix

So far, we have associated a local subspace Si to each point xi. Ideally, the points and only those

points that belong to the same subspace as xi should have zero distance from Si. This suggests

computing the distance of each point x j to the local subspace Si and forming a distance matrix H.

The distance matrix H is generated as H = (di j) =
(
||x j−At

ix j||p + ||xi−At
jxi||p

)
/2.

A convenient choice of p is 2. Note that as di j decreases, the probability of having x j on the same

subspace as xi increases. Moreover, for p = 2, ||x j−At
ix j||2 is the Euclidean distance of x j to the

subspace associated with xi.

Since we are not in the ideal case, a point x j that belongs to the same subspace as xi may

have non-zero distance to Si. However, this distance is likely to be small compared to the distance

between x j and Sk if x j and xk do not belong to the same subspace. This suggests that we compute

a threshold that will distinguish between these two cases and transform the distance matrix into a

binary matrix in which a zero in the (i, j) entry means xi and x j are likely to belong to the same

subspace, whereas (i, j) entry of one means xi and x j are not likely to belong to the same subspace.

To do this, we convert the distance matrix H = (di j)N×N into a binary similarity matrix S =

(si j). This is done by applying a data-driven thresholding as follows:

65



1. Create a vector h that contains the sorted entries of HN×N from smallest to highest values.

Scale h so that its smallest value is zero and its largest value is one.

2. Set the threshold η to the value of the T th entry of the sorted vector h, where T is such that

‖χ[T,N2]− h‖2 is minimized, and where χ[T,N2] is the characteristic function of the discrete

set [T,N2]. If the number of points in each subspace are approximately equal, then we would

expect about N
n points in each subspace, and we would expect N2

n2 small entries (zero entries

ideally). However, this may not be the case in general. For this reason, we compute the

data-driven threshold η that distinguishes the small entries from the large entries.

3. Create a similarity matrix S from H such that all entries of H less than the threshold η are

set to 1 and the others are set to 0.

The construction of binary similary corresponds to Steps 11 to 17 in Algorithm 6. In [36], Yan and

Pollofeys uses chordal distance (as defined in [48]) between the subspaces F (xi) and G (x j) as a

measure of the distance between points xi and x j

d2
c (F ,G ) =

p

∑
i=1

sin2(θi) (5.4)

where {θi}p
i=1 are the principle angles between p-dimensional local subspaces F and G with

θ1≤ ·· · ≤ θp. In this approach, the distance between any pairs of points from F and G is the same.

We find distances between points and local subspaces and our approach distinguishes different

points from the same subspace. To see this, let v ∈ span{QF}, ||v||2 = 1, where the columns of

QF form an orthonormal basis for F . Thus v = QF x for some x with ||x||2 = 1. Let QG form an
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orthonormal basis for G , then the Euclidian distance from v to G squared is given by

‖v−PG (v)||22 = ‖QF x−QG Qt
G QF x‖2

2

= ||x||22− xtQt
F QG Qt

G QF x

= ||x||22− xtY ΣZtZΣ
tY tx

= xtYY tx− xtY ΣΣ
tY tx

= xtYY tx− xtY Σ
2Y tx

= z
(
I−Σ

2)z

where Y ΣZt is the SVD for Qt
F QG and z := Y tx. Thus, using the relation cosθi = σi between

principle angles and singular values [47], we get

d2(v,G ) =
p

∑
i=1

z2
i sin2(θi). (5.5)

Hence, our approach discriminates distances from points in F to subspace G . We also have

∑
p
i=1 z2

i sin2(θi)≤ ∑
p
i=1 sin2(θi) and therefore dc is more sensitive to noise.

Using (5.5), we get 0 < sinθ1 ≤ d ≤ sinθp. Assuming a uniform distribution of samples from

F and G , h can be approximated by a function depicted in Figure 5.1.3. The goal is to find the

threshold at the jump discontinuity T from 0 to sinθ1. Our method minimizes the highlighted area.

Under this model, a simple computation shows that our data driven thresholding algorithm picks

Td = T for sinθ1/sinθp ≥ 1/2, e.g., if θ1 ≥ 30o. In other situations, our algorithm overshoots in

estimating the threshold index depending on θ1 and θp.

5.1.4 Segmentation

The last step is to use the similarity matrix S to segment the data. To do this, we first normalize

the rows of S using `1-norm, i.e., S̃ = D−1S, where D is a diagonal matrix (di j) = ∑
N
j=1 si j. Note

that S and S̃ are not symmetric. S̃ is related to the random walk Laplacian Lr (S̃ = I−Lr) [65].
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Figure 5.3: Linear modeling for h

Although other lp normalizations are possible for p≥ 1, however, because of the geometry of the

`1 ball, `1-normalization brings outliers closer to the cluster clouds (distances of outliers decrease

monotonically as p decreases to 1). Since SVD (which will be used next) is associated with `2

minimization it is sensitive to outliers. Therefore `1 normalization works best when SVD is used.

Observe that the initial data segmentation problem has now been converted to segmentation

of n 1-dimensional subspaces from the rows of S̃. This is because, in the ideal case, from the

construction of S̃, if xi and x j are in the same subspace, the ith and jth rows of S̃ are equal. Since

there are n subspaces, then there will be n 1-dimensional subspaces.

Now, the problem is again a subspace segmentation problem, but this time the data matrix is

S̃ with each row as a data point. Also, each subspace is 1-dimensional and there are n subspaces.

Therefore, we can apply SVD again to obtain

S̃t =UnΣn(Vn)
t .

Using Proposition 4.2.1, it can be shown that Σn(Vn)
t can replace S̃t and we cluster the columns of

Σn(Vn)
t , which is the projection of S̃ on to the span of Un. Since the problem is only segmentation

of subspaces of dimension 1, we can use any traditional segmentation algorithm such as k-means

to cluster the data points. The segmentation corresponds to Steps 18 to 20 in Algorithm 6.
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5.2 Experimental Results

Tables 5.1, 5.2, and 5.3 display some of the experimental results for the Hopkins 155 Dataset

(please see Section 4.5.2 for more information about the Hopkins 155 Dataset). Our Nearness to

Local Subspace (NLS) approach have been compared with six (6) motion detection algorithms:

(1) GPCA [24], (2) RANSAC [30], (3) Local Subspace Affinity (LSA) [36], (4) MLS [2, 28],

(5) Agglomerative Lossy Compression (ALC) [66], and (6) Sparse Subspace Clustering (SSC)

[18]. An evaluation of those algorithms is presented in [18] with a minor error in the tabulated

results for articulated three motion analysis of SSC-N. SSC-B and SSC-N correspond to Bernoulli

and Normal random projections, respectively [18]. The minor error in [18] is the listing of error

as 1.42% for articulated three motions. It is replaced with 1.60% in Table 5.2. In Tables 5.1-

5.3, we used the number of neighbors k = 3. Since each point is drawn from a 4-dimensional

subspace, a minimum of 3 neighbors are needed to fit a local subspace for each point. Using the

same assumption as the algorithms that we compare with, we take the rank of the data matrix to

be 8 for two motion and 12 for three motion. Table 5.1 displays the misclassification rates for

the two motions video sequences. NLS outperforms all of the algorithms for the checkerboard

sequences, which are linearly independent motions. The overall misclassification rate is 0.57%.

This is 24% better than the next best algorithm. Table 5.2 shows the misclassification rates for the

three motion sequences. NLS has 1.31% misclassification rate and performs 47% better than the

next best algorithm (i.e. SSC-N). Table 5.3 presents the misclassification rates for all of the video

sequences. Our algorithm NLS (with 0.76% misclassification rate) performs 39% better than the

next best algorithm (i.e. SSC-N). In general, our algorithms outperforms SSC-N, which is given

as the best algorithm for the two and three motion sequences together.

Table 5.4 shows the performance of the data driven threshold index Td compared to various

other possible thresholds. We provide the results for ±20%, ±10%, and ±5% deviations from Td .

Table 5.5 displays the robustness of the algorithm with respect to the number of neighbors

k. The second portion of the table excludes one pathological sequence from two-motion checker
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Checker (78) GPCA LSA RANSAC MSL ALC SSC-B SSC-N NLS
Average 6.09% 2.57% 6.52% 4.46% 1.55% 0.83% 1.12% 0.23%
Median 1.03% 0.27% 1.75% 0.00% 0.29% 0.00% 0.00% 0.00%

Traffic (31) GPCA LSA RANSAC MSL ALC SSC-B SSC-N NLS
Average 1.41% 5.43% 2.55% 2.23% 1.59% 0.23% 0.02% 1.40%
Median 0.00% 1.48% 0.21% 0.00% 1.17% 0.00% 0.00% 0.00%

Articulated (11) GPCA LSA RANSAC MSL ALC SSC-B SSC-N NLS
Average 2.88% 4.10% 7.25% 7.23% 10.70% 1.63% 0.62% 1.77%
Median 0.00% 1.22% 2.64% 0.00% 0.95% 0.00% 0.00% 0.88%

All (120 seq) GPCA LSA RANSAC MSL ALC SSC-B SSC-N NLS
Average 4.59% 3.45% 5.56% 4.14% 2.40% 0.75% 0.82% 0.57%
Median 0.38% 0.59% 1.18% 0.00% 0.43% 0.00% 0.00% 0.00%

Table 5.1: % segmentation errors for sequences with two motions.

sequence for k = 4 and k = 5. When k is set to 3 - which is the minimum number of neighbors

required - the algorithm performs better.

Table 5.6 displays the increase in the performance of the original LSA algorithm when our

distance/similarity and segmentation techniques are applied separately. Both of them improves the

performance of the algorithm, however, the new distance and similarity combination contributes

more than the new segmentation technique.

Recently, the Low-Rank Representation (LRR) in [22, 20] was applied to the Hopkins 155

Datasets and it generated an error rate of 3.16%. The authors state that this error rate can be reduced

to 0.87% by using a variation of LRR with some additional adjustment of a certain parameter.
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Checker (26) GPCA LSA RANSAC MSL ALC SSC-B SSC-N NLS
Average 31.95% 5.80% 25.78% 10.38% 5.20% 4.49% 2.97% 0.87%
Median 32.93% 1.77% 26.00% 4.61% 0.67% 0.54% 0.27% 0.35%

Traffic (7) GPCA LSA RANSAC MSL ALC SSC-B SSC-N NLS
Average 19.83% 25.07% 12.83% 1.80% 7.75% 0.61% 0.58% 1.86%
Median 19.55% 23.79% 11.45% 0.00% 0.49% 0.00% 0.00% 1.53%

Articulated (2) GPCA LSA RANSAC MSL ALC SSC-B SSC-N NLS
Average 16.85% 7.25% 21.38% 2.71% 21.08% 1.60% 1.60% 5.12%
Median 16.85% 7.25% 21.38% 2.71% 21.08% 1.60% 1.60% 5.12%

All (35 seq) GPCA LSA RANSAC MSL ALC SSC-B SSC-N NLS
Average 28.66% 9.73% 22.94% 8.23% 6.69% 3.55% 2.45% 1.31%
Median 28.26% 2.33% 22.03% 1.76% 0.67% 0.25% 0.20% 0.45%

Table 5.2: % segmentation errors for sequences with three motions.

All (155 seq) GPCA LSA RANSAC MSL ALC SSC-B SSC-N NLS
Average 10.34% 4.94% 9.76% 5.03% 3.56% 1.45% 1.24% 0.76%
Median 2.54% 0.90% 3.21% 0.00% 0.50% 0.00% 0.00% 0.20%

Table 5.3: % segmentation errors for all sequences.

All-2 (120 seq) Data Driven Td 0.8Td 0.9Td 0.95Td 1.05Td 1.10Td 1.20Td

Average 0.57% 0.95% 1.17% 0.62% 0.58% 1.05% 0.77%
Median 0.00% 0.00% 0.35% 2.27% 2.27% 0.00% 0.00%

All-3 (35 seq) Data Driven Td 0.8Td 0.9Td 0.95Td 1.05Td 1.10Td 1.20Td

Average 1.31% 4.39% 3.18% 1.42% 1.20% 1.24% 2.06%
Median 0.45% 0.60% 0.57% 0.46% 0.45% 0.42% 0.37%

All (155 seq) Data Driven Td 0.8Td 0.9Td 0.95Td 1.05Td 1.10Td 1.20Td
Average 0.76% 1.84% 1.67% 0.83% 0.74% 1.10% 1.11%
Median 0.20% 0.00% 0.00% 0.20% 0.20% 0.18% 0.19%

Table 5.4: % comparison of the data driven threshold index Td with other choices.
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ALL SEQ INCLUDED 1 SEQ EXCLUDED
Checker-2 (78) k=5 k=4 k=3 k=5 k=4

Average 0.65% 1.59% 0.23% 0.23% 0.97%
Median 0.00% 0.00% 0.00% 0.00% 0.00%

Traffic-2 (31) k=5 k=4 k=3 k=5 k=4
Average 1.56% 1.66% 1.40% 1.56% 1.66%
Median 0.00% 0.00% 0.00% 0.00% 0.00%

Articulated-2 (11) k=5 k=4 k=3 k=5 k=4
Average 2.44% 2.33% 1.77% 2.44% 2.33%
Median 0.00% 0.00% 0.88% 0.00% 0.00%

All-2 (120 seq) k=5 k=4 k=3 k=5 k=4
Average 1.04% 1.75% 0.57% 0.77% 1.35%
Median 0.00% 0.00% 0.00% 0.00% 0.00%

Checker-3 (26) k=5 k=4 k=3 k=5 k=4
Average 0.44% 0.43% 0.87% 0.44% 0.43%
Median 0.24% 0.22% 0.35% 0.24% 0.22%

Traffic-3 (7) k=5 k=4 k=3 k=5 k=4
Average 6.59% 7.18% 1.86% 6.59% 7.18%
Median 1.81% 4.37% 1.53% 1.81% 4.37%

Articulated-3 (2) k=5 k=4 k=3 k=5 k=4
Average 20.54% 4.05% 5.12% 20.54% 4.05%
Median 20.54% 4.05% 5.12% 20.54% 4.05%

All-3 (35 seq) k=5 k=4 k=3 k=5 k=4
Average 2.82% 1.98% 1.31% 2.82% 1.98%
Median 0.65% 0.47% 0.45% 0.65% 0.47%

All (155 seq) k=5 k=4 k=3 k=5 k=4
Average 1.50% 1.81% 0.76% 1.30% 1.50%
Median 0.21% 0.00% 0.20% 0.21% 0.00%

Table 5.5: % segmentation errors - NLS algorithm for various k.
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Checker-2 (78) LSA(Original) LSA(New Dist/Similarity) LSA(New Segmentation)
Average 2.57% 0.97% 1.71%
Median 0.27% 0.00% 0.00%

Traffic-2 (31) LSA(Original) LSA(New Dist/Similarity) LSA(New Segmentation)
Average 5.43% 1.59% 4.99%
Median 1.48% 1.11% 0.65%

Articulated-2 (11) LSA(Original) LSA(New Dist/Similarity) LSA(New Segmentation)
Average 4.10% 2.10% 4.26%
Median 1.22% 0.43% 1.21%

All-2 (120 seq) LSA(Original) LSA(New Dist/Similarity) LSA(New Segmentation)
Average 3.45% 1.22% 2.27%
Median 0.59% 0.00% 0.35%

Checker-3 (26) LSA(Original) LSA(New Dist/Similarity) LSA(New Segmentation)
Average 5.80% 2.66% 4.67%
Median 1.77% 0.30% 0.91%

Traffic-3 (7) LSA(Original) LSA(New Dist/Similarity) LSA(New Segmentation)
Average 25.07% 6.38% 24.46%
Median 23.79% 1.28% 31.20%

Articulated-3 (2) LSA(Original) LSA(New Dist/Similarity) LSA(New Segmentation)
Average 7.25% 6.18% 7.25%
Median 7.25% 6.18% 7.25%

All-3 (35 seq) LSA(Original) LSA(New Dist/Similarity) LSA(New Segmentation)
Average 9.73% 2.45% 8.78%
Median 2.33% 0.20% 1.94%

All (155 seq) LSA(Original) LSA(New Dist/Similarity) LSA(New Segmentation)
Average 4.94% 1.84% 3.96%
Median 0.90% 0.18% 0.61%

Table 5.6: % segmentation errors for LSA with various parameters.
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CHAPTER 6

CONCLUSIONS

6.1 Conclusions

This thesis developed theory and associated algorithms to solve subspace segmentation problem.

Given a set of data W = {w1, ...,wN} ∈ RD that comes from a union of subspaces, we focused on

determining a nonlinear model of the form U =
⋃

i∈I Si, where
{

Si ⊂ RD}
i∈I is a set of subspaces,

that is nearest to W. The model is then used to classify W into clusters.

Our first approach is based on the binary reduced row echelon form of data matrix. We prove

that, in absence of noise, our approach can find the number of subspaces, their dimensions, and an

orthonormal basis for each subspace Si. We provide a comprehensive analysis of our theory and

determine its limitations and strengths in presence of outliers and noise.

Our second approach is based on nearness to local subspaces approach and it can handle noise

effectively, but it works only in special cases of the general subspace segmentation problem (i.e.,

subspaces of equal and known dimensions). Our approach is based on the computation of a binary

similarity matrix for the data points. A local subspace is first estimated for each data point. Then,

a distance matrix is generated by computing the distances between the local subspaces and points.

The distance matrix is converted to the similarity matrix by applying a data-driven threshold. The

problem is then transformed to segmentation of subspaces of dimension 1 instead of subspaces of

dimension d. The algorithm was applied to the Hopkins 155 Dataset and generated the best results

to date.

The binary reduced row echelon based subspace clustering approach solves the general sub-

space segmentation problem in the absence of noise, but it does not perform well when the data

is noisy. The main reason for this is the difficulty of finding an appropriate threshold while con-

structing the reduced row echelon form of the data matrix W. Such a threshold depends on the
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noise level and the relative positioning of the subspaces. Therefore, it should likely be data-driven

and can be applied at the each step of construction of the reduced row echelon form rref(W) of

W. Although we have applied certain thresholding approaches (e.g. similar to the thresholding

approach in Section 5.1.3), this problem may be explored more in the future.

In this research, we considered the ambient space H to be finite dimensional. There may be

situations in which the ambient space is better modeled an infinite dimensional Hilbert space. Such

cases can be found in analog signal processing and modeling. This topic has theoretical as well as

practical appeal and maybe a subject of future exploration.
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