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CHAPTER I 

 

GENERAL INTRODUCTION 

 

One question that has attracted the interest of scientists for decades is how 

the vascular system of the lung is formed and maintained. To generate a 

structurally and functionally complex system with enough surface area and 

circulation for gas exchange, cells of the lung endothelium must undergo 

extensive temporally and spatially regulated developmental processes involving 

proliferation, differentiation and migration (Chuang and McMahon, 2003; Price 

and Stiles, 1996; Warburton et al., 1998) Furthermore, the adult lung is constantly 

under challenges of injury caused by environmental or intrinsic factors. In order to 

protect the endothelial barrier from extensive damage and maintain proper lung 

functions, the endothelial cells possess a highly sophisticated protective 

machinery and self-renewal abilities (Orfanos et al., 2004; Ryan, 1986). In the 

past few years, several key factors that mediate these processes have been 

identified and it is becoming clear that they are well-coordinated by cross-talk 

between endothelial and epithelial cells (Blume et al., 1998; Calabrese et al., 

2005; Hermanns et al., 2004; Jakkula et al., 2000; Maeda et al., 2002; Parera et 

al., 2005; Wendt et al., 1994). However the precise molecular profile of lung 

organogenesis still remains to be established. This introduction reviews the 
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general processes of lung angiogenesis and summarizes what is known about 

endothelial damage and repair, as well as discusses the possibility that inhibitor of 

differentiation-1 (Id1) may be a key factor that mediates these processes. 

 

Part I  Development of the Pulmonary Vasculature 

 

Most of our current understanding of mammalian lung development comes 

from studies using mouse models. In the mouse, the lung first originates from the 

laryngotracheal groove at embryonic day 9-9.5, and then divides laterally into two 

primordial lung buds, which invade the surrounding splanchnic mesenchyme. 

Starting at around E10.5, a sequence of highly ordered patterning events termed 

branching morphogenesis occur in the epithelium, generating the bronchial tree 

and the proximal-distal axis of the lung (Cardoso, 2006). Together with the 

formation of the bronchial tree, its surrounding mesenchyme differentiates into 

airway smooth muscle (ASM), which is juxtaposed around the tubules, and also 

gives rise to the vasculature and neural networks (Tollet et al., 2001). The 

formation of the vascular system begins as early as E9.0, when intercellular 

spaces are apparent in the lung mesenchyme. Yet precisely how the vasculature 

develops is not clear. There are three distinct lung vascular morphogenesis 

models (Fig1.1) (Parera et al., 2005). The first model (vasculogenesis & 

angiogenesis) proposes that lung mesenchymal cells firstly regroup to generate 
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Fig 1.1 Proposed models for embryonic lung 
endothelial morphogenesis.  

Reprinted from Parera et al. Am J Physiol Lung Cell 
Mol Physiol 2005 
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endothelial cells. Then sprouting of new vessels from the central pulmonary 

vascular trunks to the peripheral lung mesenchyme occurs and connections 

between peripheral and central vascular systems take place later on (deMello et 

al., 1997). The second model (vasculogenesis) proposes that distal 

vasculogenesis alone is the main mechanism that forms the lung vasculature 

(Hall et al., 2000). The third model, which is favored by more researchers than the 

others, claims that distal angiogenesis (formation and sprouting of new capillaries 

from pre-existing vessels accompanied by lung bud growth) is a major player in 

embryonic lung vascular development (Parera et al., 2005).  Regardless of the 

differences between these proposed models, it is agreed that angioblast 

aggregation, endothelial differentiation and migration as well as formation of 

capillary plexus are the primary processes that take place during lung endothelial 

morphogenesis.  

       Defects in the developmental processes of embryonic lung endothelial 

morphogenesis may contribute to a variety of neonatal pulmonary disorders 

involving circulation problems.  One particular type of human disease that 

attracted growing attention in recent years is called Bronchopulmonary Dysplasia 

(BPD). BPD is a chronic lung disease of infancy characterized by arrested lung 

growth with impaired vascular and alveolar development, which results in 

persistent respiratory problems (Stenmark and Abman, 2005). The 
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underdeveloped vessels in lungs of BPD patients often appear dilated and the 

microvascular structure disorganized. It is believed that disrupted vascular growth 

plays a key role in the pathogenesis of BPD (Lang et al., 2004; Stenmark and 

Balasubramaniam, 2005). However, detailed knowledge about the molecular 

mechanisms controlling prenatal vascular development is still needed to 

understand how BPD develops and to generate effective therapeutic modalities. 

Other examples of development-related pulmonary vascular diseases include 

pulmonary arteriovenous malformations (PAVMs), persistent pulmonary 

hypertension of the newborn (PPHN) and congenital diaphragmatic hernia (CDH) 

(Lang et al., 2004). Development of future therapies will rely primarily on the 

discovery of new cellular and molecular machineries responsible for the 

pathogenesis of these diseases. 

Extensive studies have been done on the branching and differentiation of 

the respiratory epithelium, but relatively little is known about the mechanism 

underlying the regulation of lung mesenchyme development, particularly vascular 

development. It has been proposed that Notch signaling regulates multiple 

aspects of vascular morphogenesis through its primary effectors, the HERP family 

of bHLH proteins (Iso et al., 2003b). Other growth factors, such as the VEGF 

family (Gebb and Shannon, 2000; Healy et al., 2000), angiopoietin family 

(Koblizek et al., 1998; Maisonpierre et al., 1997) and ephrin family (Hall et al., 

2002) are also involved in pulmonary vascular development. The detailed 
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mechanisms remain poorly understood and many issues wait to be addressed. 

Thus identification of novel key regulators controlling mesenchymal development 

of the lung is crucial to gain insight into the cellular processes governing 

pulmonary vascular development.  

 

Part II  Acute Lung Injury and Pulmonary Fibrosis 

 

Acute Lung Injury (ALI) and Acute Respiratory Distress Syndrome (ARDS) 

The terms Acute Lung Injury (ALI) and its more severe form, Acute 

Respiratory Distress Syndrome (ARDS), refer to a spectrum of increasingly 

severe syndromes of lung injury. This disease is characterized by widespread 

alveolar epithelial and capillary endothelial cell damage that occurs rapidly after 

external or internal insults, causing dyspnea, severe hypoxemia, decreased lung 

compliance and pulmonary edema (Matthay and Zimmerman, 2005; Matthay et 

al., 2003). ALI/ARDS have been diagnosed in adults as well as children, and often 

lead to acute respiratory failure with high mortality (30-40%) in critically ill patients. 

It is estimated that as much as 36,000 deaths per year in the U.S. are contributed 

by ARDS (Hudson and Steinberg, 1999). Currently the only effective treatment 

available for acute respiratory failure caused by ALI is mechanical ventilation 

(Matthay and Zimmerman, 2005). Considerable work is still needed to provide 

additional therapeutic approaches.  
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The insults leading to ALI can be either directly targeted to the lung, such 

as lung infection or aspiration, or indirectly by sepsis, trauma or large volume 

blood replacement and other systemic problems. The most common feature of 

ALI at early phase is pulmonary edema, largely due to increase in lung vascular 

permeability. Systemic conditions can injure cells of the pulmonary endothelial 

barrier more rapidly than other cell types in the lung, which makes the 

endothelium the initial mediator in permeability changes associated with ALI 

(Groeneveld, 2002) caused by sepsis or trauma. Epithelial damages, together 

with inflammatory responses are also major contributors of ALI pathogenesis 

(Abraham, 2003; Goodman et al., 2003). 

Rodent have become the most widely used animal models in ALI research 

in recent years. Currently available models enable investigators to choose 

between cell-type specific and systemic approaches. Intratracheal administration 

of lipopolysaccharide (LPS) in mice triggers local infection that targets pulmonary 

epithelial cells (Thorn, 2001). Intravenous injection of bleomycin induces 

endothelial cell death directly, which leads to altered pulmonary vascular 

permeability (Azuma et al., 2000). Other more complex models include cecal 

ligation and puncture (CLP), which causes systemic sepsis in mice and ALI 

indirectly due to poly-microbial infection (Ebong et al., 1999; Guo et al., 2002; 

Laudes et al., 2004). The availability of mouse knockout and transgenic strains 

provides a great advantage to the study of the important roles of specific genes 
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and pathways involved in ALI. Tumor Necrosis Factor (TNF) alpha and interleukin 

(IL) signaling are two major players during the initial phase of ALI, mainly 

functioning by mediating and amplifying inflammatory responses in the lung 

epithelium and endothelium (Folkesson et al., 1995; Goldblum et al., 1989; Ortiz 

et al., 1998; Smith et al., 1998). It is believed that the key transcriptional factor 

involved in ALI pathogenesis is NF-κΒ, which induces the transcription of many 

injury-response genes such as cytokines, growth factors or adhesion molecules. 

And the transcriptional control of NF-κΒ is well coordinated through interaction 

with other transcription factors (Fan et al., 2001). 

 

Idiopathic Pulmonary Fibrosis (IPF)  

Idiopathic interstitial pneumonias consist of a group of six different types of 

devastating lung diseases of which idiopathic pulmonary fibrosis (IPF) is the most 

common type (Garantziotis et al., 2004). IPF is a progressive lung disease of 

unknown etiology with poor prognosis and no effective treatment. It is often 

diagnosed in individuals between 50 to 70 years of age, manifested as shortness 

of breath due to impaired gas exchange. The estimated annual incidence is 10 

cases per 100,000 (Selman et al., 2001) although the true prevalence can vary 

depending on the population studied (Hodgson et al., 2002; Johnston et al., 1997). 

IPF is characterized by accumulation of inflammatory cells, epithelial and 

endothelial apoptosis, fibroblast proliferation and an abundance of myofibroblasts 
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in the lung interstitium, increased deposition of extracellular matrix proteins 

resulting in substantial loss of intact respiratory alveoli and irreversible distortion 

of the lung architecture (Kuhn et al., 1989; Phan, 2002; Phan, 2003; Selman et al., 

2001; Tomasek et al., 2002; Zhang et al., 1994).  

The disease is thought to result from persistent or recurrent episodes of 

lung injury triggering a pathophysiological response (Gross and Hunninghake, 

2001; Katzenstein and Myers, 1998; Mason et al., 1999; White et al., 2003). IPF 

has been associated with identified mutations in the gene for surfactant protein C 

(Lawson et al., 2004), however, it is believed that adverse environmental 

conditions play a role in sporadic cases (Garantziotis et al., 2004; Green, 2002). 

Environmental factors can generate oxidant stress that has adverse effects in the 

lung (Gillissen and Nowak, 1998; Kim et al., 2000; Kinnula et al., 2005; Quinlan et 

al., 1994). IPF patients have higher levels of oxidant stress with elevated reactive 

free oxygen radical levels, reduced antioxidant defense and increased lipid 

peroxidation than control patients (Beeh et al., 2002; Gillissen and Nowak, 1998; 

Jack et al., 1996; Kinnula et al., 2005; Kurup and Kurup, 2003; Lenz et al., 1996; 

Rahman and Kelly, 2003; Rahman et al., 1999; Schunemann et al., 1997). 

Significant deficiency of the cellular antioxidant, reduced glutathione, has been 

reported in the lower respiratory tracts of IPF patients confirming the established 

role of oxidant/antioxidant imbalance as a major cause of cell damage in the 

pathogenesis of IPF (Beeh et al., 2002; Rahman and MacNee, 2000). Antioxidant 
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defense therapy has been suggested for lung diseases involving high alveolar 

oxidant burden such as IPF (Buhl et al., 1996; Gillissen and Nowak, 1998; Kinnula 

et al., 2005; Meyer et al., 1995). 

Bleomycin is used clinically as a chemotherapeutic cancer drug (Fig1.2-A). 

However, it often causes detrimental toxic side effects including lung fibrosis (Hay 

et al., 1991). Intratracheal instillation of bleomycin is routinely used to induce 

pulmonary fibrosis in animal models. Mice treated with bleomycin generally 

develop fibrotic foci from the second week after injection (Fig1.2-B). The effect of 

bleomycin is, in part, mediated by TGF-β signaling, consistent with the 

established involvement of this important fibrogenic cytokine in wound healing by 

promoting myofibroblast differentiation, survival and persistence (Breen et al., 

1992; Cutroneo and Phan, 2003; Desmouliere et al., 1993; Izbicki et al., 2002; 

Lawson et al., 2005b; Nakao et al., 1999; Phan and Kunkel, 1992; Zhang et al., 

1996; Zhang et al., 1995). Alveolar epithelial cells in IPF are known to secrete, 

among other factors, cytokines such as TGF-β and TNF-α, which have been 

shown to promote fibroblast activation (Kapanci et al., 1995; Khalil et al., 1991; 

Miyazaki et al., 1995). In bleomycin-induced lung fibrosis, it is believed that early 

inflammation occurs in response to epithelial injury (Adamson and Bakowska, 

1999; Deterding et al., 1997; Guo et al., 1998; Sugahara et al., 1998; Yi et al., 

1996). Release of chemoattractants by injured epithelial cells can promote 

recruitment of inflammatory cells, which adhere to and migrate across the lung 

10



Fig 1.2 Intratracheal bleomycin induced mouse lung 
injury model A. Chemical structure of bleomycin molecule 
and mechanism of bleomycin induced cell apoptosis.  
Adapted form B. Time frame for acute (0-1 week) and 
chronic (2-6 week) phases of lung injury triggered by 
intratracheal administration of bleomycin.  
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endothelium into the airways (Liu et al., 1996). Epithelial injury and defects in 

re-epithelialization may lead to disruption of normal epithelial-fibroblast 

interactions, hence promoting the fibrotic process (Adamson et al., 1988; 

Chapman, 2004; Kasper and Haroske, 1996; Pardo and Selman, 2002a; Pardo 

and Selman, 2002b; Selman et al., 2001; Selman et al., 2004; Thannickal et al., 

2004; White et al., 2003). Contributions by circulating fibroblasts as well as 

extracellular matrix (ECM) to the pathologic mechanisms have also been brought 

into consideration (Pardo and Selman, 2002a; Selman et al., 2001). 

 

Pulmonary endothelium and response to injury 

The adult lung microvascular endothelial structure originates from 

embryonic mesenchyme that gradually develops into a highly sophisticated 

vascular network system along with epithelial development. Besides providing a 

blood barrier and an interface for gas exchange, the endothelial cells also 

possess other important functional properties such as the secretion of enzymes 

and growth factors or participation in immune responses (Reviewed in Orfanos et 

al., 2004). Since the pulmonary endothelium is a major component of the adult 

lung structure and its integrity is crucial for maintaining lung homeostasis, its 

critical role in the pathogenesis of ALI is well recognized (Block, 1992; Orfanos et 

al., 2004; Wenzel et al., 2002). Insults affecting endothelial cell survival and 

functions often directly result in breakdown of the permeability balance, which is 
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an early pathological feature of acute lung injury. The pulmonary endothelium is 

not only a major target of insults, but also serves as a transmitter and amplifier of 

the damaging effects. Upon activation of endothelial cells by initial injury-induced 

signaling pathways, endothelial cells express E-selectin and ICAM-1, molecules 

that are essentially required for neutrophil recruitment, adhesion, transmigration 

and subsequent inflammatory responses (Albelda et al., 1994). On the other hand, 

activated endothelial cells also produce hemostatic modulators such as von 

Willibrand Factor (vWF) (Ware et al., 2001; Ware et al., 2004), thrombomodulin 

(TM) (Kawanami et al., 2000; MacGregor et al., 1997) and plasminogen activator 

inhibitors (PAI) (Wenzel et al., 2002). Release of these molecules contributes 

significantly to the decrease of hemofluidity in the circulation system of ALI 

patients. The role of pulmonary endothelial cells to mediate injury response is 

delicately counterbalanced by the protective and repair machineries they possess. 

Angiotensin-converting enzyme (ACE), for instance, is an ectoenzyme produced 

by endothelial cells that maintains endothelial barrier homeostasis. Reduction of 

ACE activity is one of the earliest signs of ALI and the protective role of ACE-2 

against ALI has been established through examination of ACE-2 knockout mice 

(Imai et al., 2005; Lazo et al., 1986; Newman et al., 1980). Plasminogen activators 

(PA) are also synthesized and released by pulmonary endothelial cells. They 

serve as inducers of endothelial fibrinolytic activities that are required during 

repair and restoration processes (Block, 1992; Idell, 2003).  
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While recent focus has been on the role of epithelial dysfunction in IPF 

(Chapman, 2004; Pardo and Selman, 2002a; Selman et al., 2001; Thannickal et 

al., 2004; White et al., 2003), much less is known about the specific roles of the 

endothelium which is also a target tissue in lung injury. It has been suggested that 

aberrant vascular remodeling, resulting in net increase in angiogenesis, likely 

plays an indispensable role in the development and progression of lung fibrosis 

(Burdick et al., 2005; Keane et al., 1999; Keane et al., 2001). To date, the extent 

of neovacularization and its role in the pathogenesis of IPF remains contradictory 

and unresolved. Recent studies indicate elevated serum levels of endostatin, an 

anti-angiogenic factor, in IPF patients suggesting a correlation between endostatin 

and lung fibrosis (Sumi et al., 2005). Vascular heterogeneity and remodeling was 

found in patients with IPF (Ebina et al., 2004; Renzoni et al., 2003) and it has 

been suggested that functional defects of the lung microvessels may play a role in 

the pathogenesis of lung fibrosis (Koyama et al., 2002; Renzoni et al., 2003).  

The level of vascular endothelial growth factor (VEGF), an angiogenic factor, was 

significantly depressed (Meyer et al., 2000) while pigment epithelium-derived 

factor (PDGF), an angiostatic factor, was increased in IPF patients (Cosgrove et 

al., 2004). However, it remains unclear as to how vascular remodeling 

mechanistically contributes to lung fibrosis. Importantly, host responses to lung 

injury involving molecular cytoprotective mechanisms of the lung endothelium 

remain to be elucidated. 
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Part III  The Inhibitor of Differentiation family proteins 

 

Id proteins as transcriptional repressors  

The first member of the Id family of proteins was discovered in 1990, in a 

screen for cDNAs encoding novel helix-loop-helix (HLH) proteins in murine 

erythroleukemia cells (Benezra et al., 1990). The Id family is a distinct subfamily 

of HLH proteins that lack a DNA-binding region and function by dimerizing with 

other transcriptional regulators, primarily basic-HLH (bHLH) factors (Fig1.3-A). 

Basic-HLH transcription factors are well-known cell differentiation stimulators (Lee, 

1997; Massari and Murre, 2000; Olson and Klein, 1994). In general, 

tissue-specific bHLH factors form dimers with ubiquitously expressed bHLH 

factors, bind to DNA and trigger tissue-specific gene expression that promotes 

cell differentiation. However, once bHLH proteins interact with Id proteins via their 

HLH domain, they are no longer able to bind to DNA or form functional 

heterodimers with other bHLH partners. Thus, Id proteins negatively regulate 

bHLH factors, leading to the inhibition of differentiation (Fig1.4) (Norton, 2000). In 

addition to bHLH factors, several other families and types of non-bHLH proteins 

also interact with and are functionally antagonized by Id proteins such as the 

ETS-domain transcription factors. Id proteins physically interact with the TCF 

subfamily of ETS proteins to inhibit their DNA binding and ability to induce 

immediate early genes (Yates et al., 1999). Other identified Id interacting partners 
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Fig 1.3 The inhibitor of DNA binding/differentiation 
family proteins.  A. Biochemical structure of Helix-Loop-Helix 
(HLH) domain in Id family proteins and the conformation of the 
dimerization. Adapted from Wibley et al. Biochimica 
Biophysical Acta 1996 B. Mammalian Id proteins and their 
conserved HLH domain sequences.
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include paired-domain homeobox (PAX) transcriptional factors (Roberts et al., 

2001), Z-DNA-binding protein (Shoji et al., 1995) as well as the pRB tumor 

suppressor and related “pocket” proteins (Iavarone et al., 1994). A summary of 

identified interaction partners of Id proteins is outlined in Table 1.1.  

Id proteins are highly conserved throughout evolution. Genes encoding 

Id-like proteins have been cloned in organisms such as Drosophila (Ellis et al., 

1990; Garrell and Modolell, 1990), Xenopus (Wilson and Mohun, 1995), Zebrafish 

(Sawai and Campos-Ortega, 1997), mouse and human (Ellmeier et al., 1992). In 

Drosophila, a single locus termed extramicrochaetae (EMC), encodes an HLH 

protein showing high degree of structural and functional similarity to the murine Id 

proteins (Campuzano, 2001). EMC is apparently required for normal development, 

as EMC deficient flies die during embryogenesis. Studies on various partial loss- 

and gain-of-function mutants revealed that EMC is required for multiple processes 

in Drosophila development such as wing morphogenesis, neurogenesis and sex 

determination. In the Drosophila trachea, a functional counterpart of the 

mammalian lung, EMC is expressed in cells surrounding and including the 

invaginating tracheal pits. Interestingly, in EMC mutants, tracheal development is 

often affected; exhibiting structural alterations of the tracheal tree, similar to the 

phenotypes found in mutants for Notch and Breathless (Cubas et al., 1994). 

These studies may provide a paradigm for understanding how Id proteins function 

in mammalian lung development.  
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Fig 1.4 Schematical representation of the molecular 
mechanism of Id proteins’ role as transcription inhibitor.  
Id proteins are produced in the cytoplasm and translocated 
into the nucleus upon binding to bHLH factors. The 
interaction between Id proteins and bHLH factors disrupted 
the formation of functional dimers of bHLH proteins that can 
recognize and bind to E-box DNA sequence. The subsequent 
gene activation is then inhibited.
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Currently, four Id family members have been identified in mammals 

(Fig1.3-B). The sequences within the HLH domains are highly conserved among 

mammalian Id family members (Fig1.3-B), whereas the sequences outside the 

HLH domain display extensive divergence (Norton et al., 1998). The Id genes 

exhibit widespread and overlapping expression patterns in multiple tissues during 

mouse development. In general, Id1, Id2 and Id3 are readily detected in organs 

undergoing active morphogenetic activities, such as gut, lung, kidney, tooth and 

some glandular structures, whereas Id4 expression is only restricted to neuronal 

tissues and stomach. In organs that arise from mesoderm-endoderm interactions, 

Id1 and Id3 are usually expressed in mesenchymal cells surrounding the 

endodermal epithelium, while Id2 is located in the epithelium. In particular, strong 

Id1 and Id3 signals can be detected in the mesenchyme of the mouse lung, 

suggesting their importance in lung morphogenesis (Evans and O'Brien, 1993; 

Jen et al., 1996; Jen et al., 1997; Zhu et al., 1995).   

Id proteins have distinct functions in development and disease, playing 

important roles in regulating proliferation and differentiation of various cell types 

including epithelial, endothelial, fibroblast and neural precursor cells (Benezra et 

al., 2001; Engel and Murre, 2001; Fong et al., 2003; Jen et al., 1997; Li et al., 

2005; Lyden et al., 2001; Lyden et al., 1999; Ruzinova and Benezra, 2003; Sikder 

et al., 2003). One characteristic function of Id proteins is their ability to inhibit 

Smooth muscle alpha-actin-positive myofibroblast differentiation by disrupting 
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transcription complex formation between bHLH protein E2A and MyoD (Sun et al., 

1991). Another important role of Id proteins is their active engagement in cell cycle 

regulation as well as promoting cell survival and delaying onset of cellular 

senescence (Zebedee and Hara, 2001). Id proteins positively regulate cell 

proliferation mainly through repressing the expression of CDK inhibitors such as 

p15, p16 and p21 (Yokota and Mori, 2002; Zebedee and Hara, 2001). Ids exert 

these functions by directly binding to and disrupting transcriptional dimers formed 

by either bHLH proteins or ETS family proteins.  

As in Drosophila, Id genes are essential for mouse development, although 

functional redundancy exists among the four Id members. Among Id 

single-knockout mice, only Id2-/- mice displayed obvious abnormalities such as 

retarded growth and neonatal morbidity (Yokota et al., 1999). However, all 

combinations of double knockouts of Id1, Id2 and Id3 are embryonic lethal 

(Fraidenraich et al., 2004; Norton et al., 1998). In addition, severe defects in 

neurogenesis and angiogenesis were observed in the brain when Id1 and Id3, the 

two Id members showing extensive overlapping expression patterns during 

development, were inactivated simultaneously (Lyden et al., 1999).  Id1-/-Id3-/- 

mice die at E13.5 due to intraventricular hemorrhage. Starting from E11.5, 

neuroblasts are prematurely withdrawn from the cell cycle in the mutant, 

accompanied by increased expression of CDK inhibitors and neural-specific 

differentiation markers. Id1-/-Id3-/- mice also exhibited vascular malformations in 
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the forebrain and absence of branching and sprouting of blood vessels into the 

neuroectoderm. Consistently, the expression of VEGF, Flk-1 and Smooth muscle 

α-actin were reduced within the malformed vascular structures (Lyden et al., 

1999). The apparent defects in proliferation and differentiation of the Id1-/-Id3-/- 

brain underscore the critical role of these genes in the endothelium as only Id1 

and Id3 are detected in endothelial cells of the brain (Jen et al., 1996). A similar 

situation can be found in the lung mesenchyme, where only Id1 and Id3 are 

expressed (Jen et al., 1996), suggesting a potential role for these Id proteins in 

neurogenesis, myogenesis and vascular development, all of which occur in the 

lung mesenchyme.  

 

The roles of Id proteins in vascular development and maintenance 

Id proteins are prominently expressed in endothelial cells throughout 

development and in some adult organs. Id1, Id2 and Id3 are all expressed in 

blood vessels in most parts of the mouse embryo except for the embryonic brain 

where only Id1 and Id3 are expressed (Jen et al., 1997; Lyden et al., 1999). 

Although Id gene expression is normally downregulated or turned off in most adult 

organs, they are frequently upregulated exclusively in endothelial cells in most 

tumor tissues (Perk et al., 2006). Upregulation of Id1 expression in endothelial 

cells is also detected during hypoxic vascular remodeling in pulmonary 

hypertension, suggesting a contributory role of Id1 in maintaining endothelial 
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homeostasis (Frank et al., 2005). 

Increasing evidence suggests that Id proteins function as key players in 

endothelial function and homeostasis (Benezra et al., 2001). Mice lacking Id1 and 

Id3 functions display brain hemorrhage during development and defects in 

tumor-promoted angiogenesis (Lyden et al., 1999). Deregulated Id1 expression in 

endothelial cells substantially affects angiogenesis and tumor growth in various 

tumor models (de Candia et al., 2004; Iavarone and Lasorella, 2004; Li et al., 

2004a; Ling et al., 2005). In vitro studies demonstrated that overexpression of Id 

genes reduces human endothelial cell apoptosis rate (Nishiyama et al., 2005) 

(Valdimarsdottir et al., 2002) although the underlying molecular mechanisms 

governing this process remain unknown. Id1 has also been shown to delay 

endothelial senescence by suppressing the expression of CDK inhibitors p16 and 

p21. Thus Id function may be an important component of the cellular stress 

response pathway (Alani et al., 2001; Sharpless et al., 2001; Tang et al., 2002). 

Forced expression of Id1 in Human Umbilical Vein Endothelial Cells (HUVECs) 

promotes angiogenic properties such as migration and tube formation (Nishiyama 

et al., 2005; Sakurai et al., 2004; Valdimarsdottir et al., 2002). Transplantation of 

Id1-overexpressing HUVECs into mice increased capillary density and limb 

salvage rate, indicating involvement of Id1 in endothelial repair (Nishiyama et al., 

2005). 
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It has been proposed that the in vitro angiogenic activity of Id proteins may 

be partly mediated by induction of angiopoietin-1 (Ang-1) transcription, an 

endothelial survival factor that augments endothelial cell migration and reduces 

the rate of apoptosis. However no evidence is yet available to prove that the 

regulation of Ang-1 by Id1 is direct. The function of Id1 in angiogenesis has also 

been associated with its ability to regulate the expression of matrix 

metalloproteinases (MMPs) and integrins. (Benezra et al., 2001; Coppe et al., 

2004; Desprez et al., 1998; Sakurai et al., 2004). The MMPs are a family of Zn2+- 

or Ca2+-dependent endopeptides, which function primarily to degrade 

extracellular matrix. They are actively engaged in capillary formation and 

sprouting during endothelial morphogenesis and compromised MMP activity may 

result in defects in angiogenesis in vivo (Bergers et al., 2000; Hiraoka et al., 1998; 

Hotary et al., 2000; Vu et al., 1998). So far two MMP family genes, MMP-2 and 

MMP-9, are shown to be transcriptionally regulated by Id proteins in different 

contexts. Forced expression of Id1 and Id3 in HUVEC cells induces increase in 

mRNA levels of both MMP-2 and MMP-9 (Sakurai et al., 2004). Knockdown of Id1 

and Id3 by RNAi specifically abolished induction of MMP-2 expression by VEGF, 

but not that of MMP-9 (Sakurai et al., 2004). In addition, tumor endothelial cells 

lacking Id1 function also showed downregulation of MMP-2 expression (Ruzinova 

et al., 2003). Although the detailed transcriptional controlling system is not yet 

established, it remains an interesting subject for future studies. 
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CHAPTER II 
 
 
 

ID1 AND ID3 FUNCTIONS IN EMBRYONIC LUNG VASCULAR DEVELOPMENT 
 
 
 

Introduction 
 

Previous studies have suggested that Id proteins are crucial for vascular 

development both in the mouse forebrain and in tumors (de Candia et al., 2004; 

Iavarone and Lasorella, 2004; Li et al., 2004a; Ling et al., 2005; Lyden et al., 

1999). As mentioned in the introduction, in the E12.5 lung mesenchyme, the 

expression domains of Id1 and Id3 overlap with the region where pecam-1 

positive endothelial cells are generated (Jen et al., 1996), suggesting that these 

Ids may be involved in vascular development. Moreover, in vitro studies using 

cultured endothelial cells from various tissue origins revealed that the Id genes 

could facilitate endothelial cell proliferation, migration and tube formation during 

angiogenesis, indicating the critical influence of Id proteins on vascular 

development (Nishiyama et al., 2005; Sakurai et al., 2004; Valdimarsdottir et al., 

2002). In this chapter, I will mainly address the potential roles of Id1 and Id3 in 

vascular development during embryonic lung mesenchymal cell differentiation 

and the molecular mechanisms contributing to those functions.  
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Experimental Procedures 
 

In situ hybridization 

Cryosection in situ hybridizations were performed as previously described 

(Litingtung et al., 1998). Id1 and Id3 cDNAs generated outside of the conserved 

HLH domain (gift of Dr. Benezra, (Jen et al., 1996)) were used as templates for 

synthesizing digoxygenin-labeled riboprobes.  

 

Immunohistochemistry 

Labeling using antibodies against Pecam/CD31 and MMP-2 were 

performed on 5-µm tissue sections from paraffin-embedded embryos fixed in 4% 

paraformaldehyde for 2 hours at 4°C. Paraffin sections were deparaffinized and 

rehydrated according to standard protocols. Endogenous peroxidase activity was 

blocked using 3% H2O2 in methanol for 10 min at room temperature (RT). To 

reveal Pecam-1 and MMP-2 antigen, sections were antigen-retrieved by trypsin 

digestion using 0.75mg/ml at RT for 5 min. The antibodies used were rat 

anti-CD31 (BD Pharmingen, 1:10 dilution) and mouse anti-MMP2 (Neomarkers, 

1:100 dilution). Alexa 488 (green)- or Alexa 568 (red)-conjugated secondary 

antibodies (Molecular Probes) were applied at 1:600 dilution for 1 h at room 

temperature. 

For whole-mount immunohistochemistry of CD31, cultured embryonic 

lungs were collected and fixed in 4% paraformaldehyde for 2 hours at 4°C. After 
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staining, lungs were immersed in PBS solution before visualization. Confocal 

images were taken using the Zeiss LSM510 confocal microscope at the Vanderbilt 

Cell Imaging Core. Results were presented as screen captures of 3D z-stack 

overlays. 

 

Terminal deoxynucleotidyl transferase–mediated dUTP Nick End Labeling 
(TUNEL) 

For cell death detection in lung tissue sections, paraformaldehyde-fixed 

paraffin sections were treated with trypsin for 5 min and apoptotic cells were 

detected by TUNEL using the In situ Cell Death Detection Kit (Chemicon) 

according to manufacturer’s protocol.  Slides were subsequently double-stained 

with CD31 to mark endothelial cells. 

 

Kidney Capsule 

Kidney capsule implantation of embryonic lungs was performed as 

previously described (Vu et al., 2003). Briefly, adult male C57BL6 mice were 

anesthetized and a dorsal incision was made to expose the kidney on one side. 

Freshly dissected E11.5 lungs were placed underneath the membranous capsule 

through a small opening (1-2mm) using blunt-end glass needles. Two embryonic 

lungs were implanted in each kidney. The kidney was then placed back into 

position and the wound was resealed using surgical suture. Host mice were 
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sacrificed 6 days after surgery and grafted lungs were collected and fixed for 

analysis. 

 

Lung organ culture under hypoxic condition 

The lung culture method used was performed essentially as previously 

described (Li et al., 2004b). Briefly, wildtype or Id1-/-Id3-/- lungs were dissected 

out at E11.5 and cultured on nucleopore polycarbonate filters (8um pore size, 

Millipore) in standard DMEM medium with 10%FBS for 48 h in a hypoxia chamber 

with 3% oxygen before being collected and fixed for staining.  
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Results 
 

Embryonic Id1 and Id3 expression are predominantly in the distal lung 
mesenchyme 

Expression of Id1 and Id3 in the developing lung were reported more than 

a decade ago (Evans and O'Brien, 1993; Jen et al., 1996; Jen et al., 1997; Zhu et 

al., 1995), but detailed examination is lacking. In order to elucidate the role of Id 

proteins during lung mesenchymal development, we started by establishing the 

precise spatial expression patterns of Id1 and Id3 in the embryonic lung 

mesenchyme. The riboprobes for Id1 and Id3 genes were generated outside of 

the conserved HLH domain to ensure specificity (gifts of Dr. Benezra). RNA in situ 

hybridization was performed on E12.5 wildtype lung cryosections. As presented in 

Fig2.1, both Id1 and Id3 mRNA are localized mainly in the distal mesenchyme, 

with little expression in the cell layers immediately adjacent to the proximal 

epithelium (Fig2.1 arrows). Interestingly, when we correlated the expression 

patterns of Id1 and Id3 with that of endothelial marker CD31/Pecam-1 (Fig2.1-B), 

we observed that they have similar expression patterns in the lung. These results 

corroborate well with previous studies, which showed that Id1 and Id3 are 

frequently detected in endothelial cells throughout the mouse embryo. This finding 

also points to a potential role of Id proteins in lung endothelial morphogenesis.  

 

Id1-/-Id3-/- lungs exhibit vascular defects in vivo and in culture 

The interesting expression patterns of Id genes led us to investigate the 
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Fig 2.1 Expression domains of Id1 and Id3 overlap with that 
endothelial marker CD31.
A. Representative photographs showing RNA in situ hybridization of 
Id1 and Id3 transcripts in E12.5 wildtype lungs. Dotted circles outline 
boundary between mesenchyme and epithelial layer in the lung lobe. 
Magnification 400x. B. Endothelial cell distribution as illustrated by 
CD31 immunohistochemistry of E12.5 wildtype lung. Note that both
the Id genes and CD31 are expressed in distal mesenchymal cells 
away from the epithelial layer. Magnification 400x.
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functional roles of these genes in embryonic lung vascular development. We 

examined whether loss of Id gene function in embryonic lungs under normal 

developing conditions would result in detectable vascular defects. E11.75 wildtype 

and Id1-/-Id3-/- lungs were collected and alteration in Pecam-1 expression was 

examined by immunohistochemistry. Staining revealed that there is no obvious 

change in Pecam-1 expression level or patterns in Id1-/-Id3-/- double knockout 

lung mesenchyme compared to the wildtype (data not shown). However, since 

major vascular development happens later than E11.5, it is critical to obtain Id1 

and Id3 double knockout lungs at later stage. Unfortunately, most Id1-/-Id3-/- 

embryos die before E12.5 due to brain hemorrhage (Lyden et al., 1999). To 

overcome this obstacle, we collected and cultured E11.5 Id1-/-Id3-/- double 

mutant lungs in vitro under hypoxic condition (van Tuyl et al., 2005) or in vivo 

under the renal capsule to allow recovery of more differentiated lung tissues for 

analysis. E11.5 wildtype and Id1-/-Id3-/- lungs were dissected out and cultured in 

hypoxic chambers with 3% oxygen for 48 hours. Lungs were then collected and 

expression of CD31/Pecam-1 was analyzed by immunohistochemistry. As shown 

by whole-mount CD31 immunostaining in Figure 2.2, the vascular density in 

cultured Id1-/-Id3-/- lungs is greatly reduced compared with wildtype lungs, 

suggesting impaired distal angiogenesis due to complete removal of Id function in 

lung endothelial cells. Moreover, section immunohistochemistry revealed that the 

capillary tubes in Id1-/-Id3-/- lungs appear to be more dilated and disrupted 
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Id1+/+Id3+/+                          Id1-/-Id3-/-

Fig 2.2 Id1-/-Id3-/- lungs display defects in endothelial 
morphogenesis under hypoxia culture condition.  
Whole mount immunostaining of CD31 to show the morphology of 
vascular network in the lung. Representative photographs showing
E11.5 wildtype and Id1-/-Id3-/- lungs at 48 hours post culture in 3% 
Oxygen. Magnification 400x.  The lungs devoid of Id gene function 
display reduced vascular density compared with wildtype control.
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compared with Id1 single mutant (Id1-/-Id3+/+) lungs with two functional alleles of 

Id3 (Fig2.3, arrows). I observed that the reduced vascular density defect is 

recapitulated in the renal capsule experiment. As shown by section 

immunostaining for CD31/Pecam-1, there is marked reduction of CD31-positive 

endothelial cells in the grafted Id1-/-Id3-/- double knockout lung compared to 

wildtype lungs within the same capsule (Fig2.3). This finding suggests that Id1 

and Id3 appear to play an important role during vascularization of the embryonic 

lungs, consistent with their pivotal roles in brain vascularization.  

 
Id1-/-Id3-/- lungs show decreased MMP-2 expression in the mesenchyme in 
vivo and in culture 

Id1 has been shown to attenuate endothelial apoptosis rate in HUVEC cells 

(Nishiyama et al., 2005; Valdimarsdottir et al., 2002). In order to determine the 

contribution of apoptosis to the vascular defects observed in Id1-/-Id3-/- lungs, we 

examined the endothelial apoptotic profile in cultured wildtype and mutant lungs. 

Sections of cultured wildtype and Id1-/-Id3-/- lungs were stained with TUNEL (cell 

death marker) and CD31/Pecam-1 (endothelial marker). Double-labeling results 

showed that neither wildtype nor Id1-/-Id3-/- lung endothelial cells undergo 

extensive cell death, as very few TUNEL-positive cells co-stained with CD31 

(Fig2.4). This observation suggests that endothelial cell death is not a major event 

during lung vascular development and does not contribute significantly to the 

defects of angiogenesis in Id1 and Id3 double knockout lungs. 
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Fig 2.3 Impaired vascular development of Id1-/-Id3-/- lungs at both 
in vitro and in vivo culture conditions. 
CD31 immunostaining of lung sections of E11.5 Id1-/- and Id1-/-Id3-/-
lungs at 48 hours post hypoxia culture (left panel) or 6 days after renal 
capsule implantation. Magnification 200x.
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Fig 2.4 Endothelial apoptosis is not a major event during lung 
vascular development. 
Endothelial cell death detection in Id1-/-Id3+/+ and Id1-/-Id3-/- lungs by 
TUNEL (green) and CD31 (red) double-labeling. Representative 
sections are shown for E11.5 lungs at 48 hours post-hypoxia culture. 
Magnification 400x.
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We reasoned that compromised vascular development caused by lack of 

Id function might also be linked to defects in endothelial cell migration. Id1 and Id3 

has been shown to induce MMP-2 and MMP-9 expression, two pro-angiogenic 

MMP family genes that function to degrade ECM scaffolds during endothelial cell 

morphogenesis (Benezra et al., 2001; Coppe et al., 2004; Desprez et al., 1998; 

Sakurai et al., 2004). Hence we examined the expression of MMP-2 in cultured 

wildtype and Id1-/-Id3 -/- lungs by immunohistochemistry. Although we did not 

detect a significant change in MMP-2 level in freshly dissected E11.5 lungs 

(Fig2.5-A), MMP-2 expression was significantly upregulated after culturing for two 

days in hypoxic chambers (Fig2.5-B). Interestingly, we observed dramatic 

decrease of MMP-2 protein level in Id1-/-Id3-/- lung mesenchyme compared with 

Id1 single mutant controls (Fig. 2.5-B). In addition, double labeling of MMP-2 and 

CD31 revealed that endothelial CD31 expression in Id1-/-Id3-/- lungs rarely 

co-localized with reduced MMP-2 expression, suggesting that loss of Id function in 

endothelial cells results in downregulated MMP-2 protein synthesis (Fig 2.5-B). 

Taken together, our results indicate that expression of Id1 and Id3 in embryonic 

lung mesenchymal cells are required to maintain MMP-2 expression, which may 

facilitate endothelial cell migration. 

 
 

Discussion 
 

Great emphasis has been focused on the functions of Id proteins in 
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Fig 2.5 MMP-2 expression is compromised in Id1-/-Id3-/- lung 
mesenchyme under culture conditions.
Representative photographs MMP2 (red) and CD31(green) double-
immunostaining of E11.5 Id1-/- and Id1-/-Id3-/- lungs freshly dissected 
(A) or cultured for 48 hours in 3% Oxygen (B). Magnification 400x.
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angiogenesis during embryonic brain development and during tumorigenesis, 

whereas little is known regarding their roles during endothelial morphogenesis in 

other organs. In this study, I have shown that Id1 and Id3 have overlapping 

expression patterns in embryonic lung mesenchyme and overlap with a region of 

active endothelial morphogenesis in the lung. Analysis of vascular defects in 

cultured or implanted Id1-/-Id3-/- lungs revealed that proper Id function is required 

for normal endothelial morphogenesis in the embryonic lung. The Id1 and Id3 

double knockout lung serves as an ideal model for studying Id function in 

angiogenesis, given the fact that no other known Id family proteins are expressed 

in the lung mesenchyme. Furthermore, by culturing Id1-/-Id3-/- lungs in vitro under 

hypoxic condition or in renal capsules, I was able to overcome the early 

embryonic lethality problem and obtain more differentiated double knockout lungs 

representing late pseudoglandular stages. This model system may be valuable for 

future investigations into the other roles of Ids such as neurogenesis and 

myogenesis during lung development.  

Id1 and Id3 are known to facilitate endothelial survival by either preventing 

senescence or apoptosis and by promoting proliferation (Alani et al., 2001; 

Nishiyama et al., 2005; Sharpless et al., 2001; Tang et al., 2002; Valdimarsdottir 

et al., 2002). In this study, I have shown that endothelial cells in the embryonic 

lung do not undergo extensive apoptosis (Fig2.4). Therefore it is unlikely that the 

anti-apoptotic function of Id proteins plays a key role during normal endothelial 
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morphogenesis in the embryonic lung. However since the endothelial cells are 

highly proliferative during development, it is reasonable to speculate that the 

presence of Id1 and Id3 is indispensable for maintaining proliferation of 

endothelial cells.  Further examination of the association between loss of Id 

function and alteration in endothelial proliferation is needed to establish the role of 

Id proteins in endothelial cell proliferation. 

The MMP family protein consists of 25 related endopeptidases. They are 

synthesized and secreted as precursor forms then activated upon proteolytic 

cleavage. The MMPs are primarily engaged in the regulation of ECM composition, 

with secondary functions in modulating growth factor bioactivities (Visse and 

Nagase, 2003). The crucial roles of MMP proteins in angiogenesis and metastasis 

have been well established through in vitro studies and tumor models (Bergers et 

al., 2000; Haas and Madri, 1999; Hiraoka et al., 1998; Pagenstecher et al., 2001; 

Pozzi et al., 2000; Vu et al., 1998). Numerous studies suggest that the MMPs may 

also be involved in lung vascular development, although detailed examination of 

the embryonic vascular network phenotypes in multiple MMP knockout mice is 

required to firmly establish the roles of MMPs in lung endothelial morphogenesis. 

MMP-2, MMP-9 and MMP-14 are all found to be highly expressed in the 

embryonic mouse lung mesenchyme during a period of extensive angiogenic 

activity (Kheradmand et al., 2002; Ryu et al., 2005). Mild defects in the alveolar 

space have been observed in MMP-2 null mice, an indication of an impaired 
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alveolization process that involves migration of capillary endothelial cells 

(Kheradmand et al., 2002). A premature capillary structure, a double capillary 

network forming on both sides of the septa, was also documented in MMP-14 null 

mice (Irie et al., 2005).  My finding that loss of Id1 and Id3 function results in 

decreased MMP-2 expression in embryonic lungs underscores the 

pro-angiogenic role of Id proteins. MMP-2 has been shown to be transcriptionally 

regulated by Id proteins in both cultured endothelial cell lines and in mouse tumor 

grafts (Benezra et al., 2001; Coppe et al., 2004; Ruzinova et al., 2003; Sakurai et 

al., 2004). Sequence analysis revealed that MMP-2 promoter activity is under 

direct repression by p16, a well-known downstream target of Id proteins. 

Therefore it is possible that the presence of Id1 and Id3 in the lung mesenchyme 

maintains MMP-2 expression by inhibiting its negative regulator p16 expression. 

Examination of alterations in p16 transcript level upon ablation of Id function in the 

lung may provide valuable information about the molecular connection between Id 

proteins and MMP-2.  
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CHAPTER III 
 
 
 

ID1 FUNCTION IN ENDOTHELIAL DAMAGE DURING BLEOMYCIN-INDUCED 
ACUTE LUNG INJURY 

 
 
 

Introduction 
 

Although Id1 is highly expressed in the lung mesenchyme during 

embryogenesis, its expression is downregulated after birth and is barely 

detectable in the normal adult murine lung, suggesting that Id1 function is likely not 

essential in healthy adult lungs. In agreement, Id1 loss-of-function mutant mice are 

viable and fertile under pathogen-free housing conditions (Yan et al., 1997). 

Upregulation of Id1 in bleomycin-treated rat lungs has been reported in previous 

studies although the detailed expression pattern and specific function of Id1 was 

not thoroughly investigated (Chambers et al., 2003). In this study, we found that 

upon bleomycin-induced injury, Id1 is upregulated in different lung cell types but 

predominantly in endothelial cells, suggesting a potential role of Id1 in these cell 

types upon lung injury. Loss of Id1 function in the lung endothelium resulted in 

increased vascular permeability and endothelial cell death after bleomycin 

instillation. Likewise, we found that Id1-/- lung microvascular endothelial cells 

showed decreased survival in culture. Taken together, our studies reveal a new 

function of Id1 as part of the self-defense response system in the lung, protecting 
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pulmonary endothelial cells from undergoing extensive damage upon bleomycin 

challenge. 

 

Experimental Procedures 

Mice and bleomycin treatment  

Id1 null mice (Id1-/-) (gift of Dr. Robert Benezra) and Tie1-Cre mice 

(Gustafsson et al., 2001) were bred in the C57BL/6J background and 

ShhCre-ZEG mice (Li et al., 2006) were bred in the C57BL/6J;129 background. 

For the Id1 time-course study, C57BL/6J mice (8-10 week old) were purchased 

from the Jackson Laboratory. Mice were treated with either saline or bleomycin 

(0.08U) by intratracheal injection in a total volume of 50ul saline (Lawson et al., 

2005b). The experimental protocol was reviewed and approved by the 

Institutional Animal Care and Utilization Committee at Vanderbilt University.  

 

Immunohistochemistry  

ShhCre-GFP embryonic lungs were fixed in 4% PFA for 5h at 4oC and 

embedded in OCT cryo embedding medium. 15um sections were cut and 

immunostained with Pecam-1 antibody (BD Pharmingen) followed by Alexa-568 

conjugated secondary antibody (Molecular Probe) for signal visualization. 

ShhCre-GFP adult lungs were perfused using phosphate-buffered saline (PBS), 

then inflated and fixed in 4% PFA for 5h at 4oC. Subsequently, OCT was injected 
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intratracheally into fixed lung to preserve the lung architecture. Lungs were 

embedded in OCT and 15um sections were collected and GFP fluorescence 

visualized using an Olympus BX60F5 microscope. 

Adult Lungs were perfused, inflated, excised, and fixed in 4% 

paraformaldehyde at 4oC overnight. Subsequently, lungs were embedded in 

paraffin blocks and 5 um sections were collected and processed for 

immunolabeling. Antibodies against smooth muscle alpha-actin (Sigma, 1:300), 

CD34 (Labvision, 1:100) and β-galactosidase (LacZ) (Sigma, 1:2000) were used 

for immunostaining. For general immunolabeling, slides were antigen-retrieved 

using citrate buffer (pH6.0) and incubated at 4oC overnight with primary antibody. 

Alexa-conjugated secondary antibodies or horseradish peroxidase 

(HRP)-conjugated secondary antibodies (Jackson ImmunoResearch) and HRP 

detection kit (Labvision) were used for signal visualization.  

For Id1 immunolabeling, lungs were perfused with phosphate-buffered 

saline (PBS) and fixed in EFA solution (100% ethanol, 37% formaldehyde and 

100% acetic acid at V/V ratio of 6:3:1) at 4°C for 5 hours. Subsequently, lungs 

were dehydrated and embedded in paraffin blocks and 5 um sections were 

collected and processed for immunolabeling. Slides were incubated at 4oC 

overnight with primary antibody, Id1 (Santa Cruz Biotechnology), at 1:6000. 

Detection was performed using polymer-HRP secondary antibodies (Zymed) 

diluted at 1:4 and visualized using the TSA Plus Fluorescence System (Perkin 
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Elmer) diluted at 1:200. Slides were counterstained with TO-PRO-3 (Invitrogen) to 

highlight nuclei. For double-labeling involving Id1, sequential immunostaining 

were performed instead of a one-step double-labeling. Confocal images were 

taken using the Zeiss Upright LSM510 Confocal microscope at the Vanderbilt Cell 

Imaging Core. Regular images were taken using the Olympus BX60F5 

microscope. 

 

Western blotting  

Left lungs of bleomycin-treated wildtype and Id1-/- mice were harvested 

and homogenized in RIPA lysis buffer at pH7.4. Protein lysates of 100ug each 

were resolved on SDS-polyacrylamide gels (Bio-Rad). Primary antibodies against 

Id1 were used for detection. Equal loading of protein samples was monitored by 

and normalized to the level of α-tubulin (Calbiochem-EMD Biosciences, 1:2000). 

Blots were analyzed using QuantityOne software (Bio-Rad). For western blotting 

using FACS-sorted cells, cells were immediately frozen in liquid nitrogen after 

collection. Sorted cells were lysed in RIPA buffer and loaded at 50ug/lane on 

SDS-polyacrylamide gels. Additional antibodies used for blotting were Pecam-1 

(BD Pharmingen, 1:500), TTF-1 (labvision, 1:200), Bcl-2 (Santa Cruz 

Biotechnology, 1:500), Bcl-xL (Santa Cruz Biotechnology, 1:500), MEK1/2 (Cell 

Signaling, 1:1000), phospho-MEK1/2  (Cell Signaling, 1:1000), ERK1/2  (Cell 

Signaling, 1:1000) and phospho-ERK1/2  (Cell Signaling, 1:1000). Blots were 
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scanned and quantified as described above.  

 

Pulmonary vascular permeability assay  

Vascular permeability was examined using the Evans blue extravasation 

method as previously described (Londhe et al., 2005). Briefly, Evans blue dye at 

20mg/kg body weight was injected into each animal via the retro-orbital sinus. 

Three hours after injection, lungs were perfused and homogenized in saline. 

Evans blue was extracted and quantified by dual wavelength at 620nm and 

740nm using Bio-Rad Smartspec3000. Corrected pulmonary Evans blue 

absorbance at 620nm was calculated as A620nm–(1.426xA740nm + 0.03). 

Permeability index was generated by dividing the corrected pulmonary Evans 

blue absorbance by the plasma Evans blue absorbance at 620nm.  

 

Pulmonary endothelial cell culture 

Adult lung microvascular endothelial cells were isolated and cultured as 

previously described (Pozzi et al., 2000). Briefly, lungs were perfused with 0.25% 

Trypsin (Mediatech) and 2ug/ml collagenase (Roche Applied Science). Perfused 

lungs were incubated at 37 oC for 20min. Then lung lobes were trimmed with a 

sterile scalpel and washed 10-20 times with 1ml DMEM medium containing 10% 

fetal bovine serum (FBS). Detached cells were collected and centrifuged at 2,000 

rpm. Cell pellet was washed once and resuspended in EGM2-MV medium 

(Cambrex) with 2% FBS. Cells were grown on 6-well dishes (BD Falcon) or 
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coverslips (Fisher) for 3 days before application of treatment. All cells were 

maintained at 37oC and 5% CO2 in a Hera Cell incubator unit (Kendro 

Laboratories). Cells from triplicate wells were harvested for p21 immunodetection 

by Western blotting as above.  

 

Terminal deoxynucleotidyl transferase–mediated dUTP Nick End Labeling 
(TUNEL) 

For cell death detection in lung tissue sections, paraformaldehyde-fixed 

paraffin sections were boiled in citrate buffer (pH6.0) for 20min and apoptotic cells 

were detected by TUNEL using the In situ Cell Death Detection Kit (Chemicon) 

according to manufacturer’s protocol. Detection was performed using an 

HRP-conjugated secondary antibody and visualized using the TSA Plus 

Fluorescence System (Perkin Elmer).  Slides were subsequently double-stained 

with CD34 to mark endothelial cells.  

For TUNEL staining of cultured endothelial cells, freshly isolated lung 

microvascular endothelial cells were grown in culture dishes for 3 days before 

treatment with 250ng/ml bleomycin for 6 hours. The bleomycin-containing media 

were then removed and replaced with fresh EGM2-MV media for 3 hours. The 

cells were subsequently stained with TUNEL according to manufacturer’s 

protocol.  

 

46



Quantification of apoptotic endothelial cells by FACS analysis  

For FACS analysis on freshly isolated murine lung microvascular 

endothelial cells, saline or bleomycin-treated lungs were perfused with 25units/ml 

dispase (BD Biosciences) plus 2ug/ml collagenase (Roche Applied Science) then 

incubated in digestive solution at 37oC for 20min. The lungs were then minced and 

a single cell suspension was obtained by passing cells through a 40um cell 

strainer (BD Falcon).  After centrifugation at 1000rpm for 5min, collected cells 

were resuspended in Red Cell Lysis buffer (Lorimore et al., 2001) and incubated at 

room temperature for 10min. The cells were then washed twice with PBS and 

stained with apoptotic marker using the Annexin-5 Apoptosis Detection Kit 

(Biovision) according to the manufacturer’s protocol.   

For FACS analysis on cultured lung microvascular endothelial cells, freshly 

isolated lung microvascular endothelial cells were grown in culture dish for 3 days 

before treatment with 250ng/ml bleomycin for 6 hours. Cells were collected by  

dispase/collagenase digestion and labeled with Annexin-5 to mark apoptotic cells. 

FACS sorting was performed at the Vanderbilt HHMI Flow Cytometry Facility. 

 

Statistics 

To assess differences among groups, statistical analyses were performed 

using a one-way analysis of variance (ANOVA) with Microsoft Excel (Microsoft 

Corporation) and significance accepted at p<0.05. Results are presented as mean 
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+/- SEM. 
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Results 

Id1 expression is significantly upregulated in the lung upon bleomycin 
injury 

Although Id1 is highly expressed in the embryonic lung mesenchyme 

during a period of epithelial-mesenchymal interaction (Jen et al., 1996), its 

expression is not detectable in normal adult lung tissue sections by 

immunohistochemistry (Fig. 3.1, Saline 1wk). By Western blot analysis, which is a 

more sensitive detection method using whole lung homogenates, we detected 

weak Id1 expression (Fig 3.2, Saline). To investigate whether Id1 expression is 

upregulated upon pulmonary insult, we treated 8 week-old adult wildtype mice 

with a single 0.08 unit dose of bleomycin intratracheally and harvested lungs at 1 

week post-bleomycin for Id1 immunohistochemistry. Interestingly, we found 

significant induction of nuclear Id1 expression in the bleomycin-treated wildtype 

lung compared with saline control (Fig. 3.1, Bleo 1wk). The specificity of Id1 

antibody staining was confirmed using Id1-/- lung as a negative control (Fig 3.1, 

Bleo 1wk, Id1-/-). To evaluate the level and time course of Id1 induction in 

wildtype mice, we examined Id1 protein levels from lung samples collected at 1, 2 

and 3 weeks after bleomycin instillation (N=3, Fig. 3.2).  As shown by Western 

blotting, Id1 expression is significantly upregulated at 1 week post-bleomycin 

compared with saline control, and its upregulation is maintained for 2 and 3 weeks 

post-bleomycin (Fig. 3.2).  
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Fig 3.1 Id1 expression is significantly upregulated in the 
adult lung upon bleomycin injury. Representative 
photographs showing sections from 8 week-old wildtype and 
Id1-/- lungs treated with saline or 0.08U bleomycin and 
collected after 1 week. Sections were immunostained with 
Id1 (red) and nuclei were counterstained with TO-PRO3 
(green). Note the nuclear Id1 expression in wildtype lungs 
treated with bleomycin but not in saline controls. The 
specificity of Id1 staining is confirmed by using bleomycin-
treated Id1-/- lungs as negative control. Magnification 400x 
and 1000x. 
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A

B

Fig 3.2 Id1 expression is significantly upregulated in the 
adult lung upon bleomycin injury.
A. Protein extracts from 8 week-old C57BL/6 wildtype 
lungs or Id1-/- lungs treated with saline or 0.08U bleomycin 
and collected after 1, 2 and 3 weeks (N=3 for each time 
point) were immunoblotted with Id1 antibody. α-tubulin was 
used as a loading control.  B. Densitometric measurements 
of Id1 bands were performed and normalized to the density 
of α-tubulin bands. 
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Id1 protein expression is upregulated predominantly in the lung 
endothelium  

We found that a large proportion of Id1 expression localized to lung 

endothelial cells as revealed by double immunolabeling with Id1 and endothelial 

marker CD34, which labels the capillary bed (Balyasnikova et al., 2005). As 

shown in Fig. 3.3, Id1-positive cells displayed nuclear Id1 expression surrounded 

by membrane and cytoplasmic expression of CD34 (Fig. 3.3, arrows). There were 

only a few Id1-expressing cells that appeared to be CD34-negative (Fig. 3.3, 

arrowhead). To determine the fraction of Id1 protein expression level derived from 

endothelial cells, we performed fluorescence-activated cell sorting (FACS) 

analysis of Tie1Cre-GFP labeled endothelial cells to quantify the relative level of 

endothelial-derived Id1 expression by Western blotting. Tie-1 is a receptor 

tyrosine kinase expressed during early stages of vascular development and Tie-1 

promoter driven Cre-GFP reporter expression specifically marks endothelial cells 

in the adult mice (Gustafsson et al., 2001). By crossing Tie1Cre to ZEG mouse, 

which contains a transgene harboring a conditional Green Fluorescent Protein 

(GFP) reporter that is activated in the presence of Cre recombinase (Novak et al., 

2000), mice were indelibly marked by GFP in all lung endothelial cells. The 

enrichment of the FACS-sorted endothelial cells was confirmed by Western 

blotting with endothelial marker, Pecam-1 (Fig. 3.6-A). By Id1 Western blot 

analysis, we found that the GFP-positive endothelial cell population expressed a 
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Fig 3.3 Id1 expression is upregulated prominently in the 
injured lung endothelium. 
Representative photographs showing sections from 8 week-
old wildtype lungs at 1 and 2 weeks post-bleomycin. 
Sections were double-stained with Id1 (red) and endothelial 
marker CD34 (green) antibodies. Arrows in the figures point 
to representative Id1-expressing endothelial cells; note the 
membrane and cytoplasmic CD34 staining which wraps 
around the nuclear Id1 staining. Arrowheads point to Id1-
expressing non-endothelial cells. Magnification: low at 400x 
and high at 1000x.
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relatively much higher level of Id1 compared with the non-endothelial cell 

population. At 1 week post-bleomycin, we determined that Id1 expression level in 

the lung endothelial population was upregulated up to 11-fold compared to saline 

control based on normalized densitometric measurements (Fig. 3.6-A). We also 

determined that about 86% of total Id1 expression level was derived from the lung 

endothelial fraction (Fig.3.6-A). In contrast, bleomycin-treated non-endothelial 

cells displayed only about 3-fold upregulation. This significant contribution in Id1 

expression level by the endothelial cell population persisted at 2 weeks 

post-bleomycin, with approximately 80% of total Id1 expression level derived from 

endothelial cells (Fig. 3.6-C).  

To examine Id1 expression in the alveolar epithelium, we took advantage 

of the Sonic hedgehog (Shh)-Cre mouse line that we had generated which marks 

all lung cells of epithelial origin (Fig. 3.4-A) (Li et al., 2006). Shh is expressed early 

in the epithelium of the embryonic lung primordium (Bellusci et al., 1997; Bitgood 

and McMahon, 1995; Litingtung et al., 1998; Urase et al., 1996). Mice generated 

by crossing Shh-Cre to ROSA26R mouse, which contains a transgene harboring 

a conditional LacZ reporter that is activated in the presence of Cre recombinase, 

are indelibly marked in all lung epithelial cells by LacZ reporter expression. 

Subsequently, all lung epithelial cells are marked by LacZ as shown at embryonic 

stages E11.5, E15.5 and in the normal adult bronchial and alveolar epithelium 

(Fig. 3.4-A). By double immunolabeling, we observed that Id1-expressing cells 
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Fig 3.4 Id1 expression is not significantly upregulated in 
bleomycin-exposed epithelium. 
A. Distribution of GFP-labeled epithelial cells (green) in 
embryonic lungs at E11.5 and E15.5 and in the adult lung at 
6 weeks. Embryonic lung sections were double-stained with 
endothelial marker Pecam-1 (red). Note that GFP expression 
is strictly confined in epithelial cells throughout 
development and is excluded from the Pecam-1-positive 
endothelial domain. GFP expression was detected in the 
adult bronchial epithelium (Br) and alveolar epithelial cells. 
Vessel (V) was negative. Magnification 200x.  B.
Representative photographs showing sections from 8 week-
old wildtype ShhCre-R26R lungs at 1 week post-bleomycin. 
Sections were double-stained with Id1 (red) and epithelial 
marker Shhcre-LacZ (green). Arrows in the figures point to 
representative Id1-expressing epithelial cells. Arrowheads 
point to Id1-expressing non-epithelial cells. Magnification: 
600x.
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showed very little colocalization with LacZ+ epithelial cells both in the bronchial 

epithelium and in the alveolar bed (Fig. 3.4-B, arrow). Most Id1-expressing cells 

do not colocalize with epithelial LacZ expression (Fig. 3.4-B, arrowheads). By 

counting ten non-overlapping fields of Id1 and LacZ double-stained sections, we 

determined that only about 3% of all Id1-expressing cells were LacZ positive. 

Similar to the strategy used in Fig. 3.6-A, we utilized ShhCre-ZEG reporter mice to 

selectively identify GFP-positive epithelial cells in the lung by FACS analysis. The 

enrichment of epithelial cells was confirmed by Western blotting with an epithelial 

marker, TTF-1 (Nakamura et al., 2002). As shown in Fig. 3.6-B, bleomycin-treated 

GFP-positive epithelial cells displayed less than 2-fold upregulation of Id1 while 

the non-epithelial fraction displayed up to 9-fold increase in Id1 expression level. 

These results indicate that Id1 is not significantly upregulated in epithelial cells of 

bleomycin-treated lungs, which is consistent with the immunohistochemical data 

(Fig3.4).  

We observed a few fibroblastic-like cells expressing Id1 as has been 

reported previously in the rat lung (Chambers et al., 2003). However, Id1 

expression was not detected in the majority of lung myofibroblasts located in 

fibrotic foci at two weeks post-bleomycin (Fig. 3.5, arrowheads). We observed 

expression of Id1 in few smooth muscle actin-positive myofibroblasts (Fig. 3.5, 

arrow). Collectively, our data suggest that over 80% of total Id1 protein expression 

level in the lung, at 1 and 2 weeks after bleomycin exposure, is derived from the 
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Fig 3.5 Id1 expression is not significantly upregulated in 
bleomycin-exposed lung fibroblasts
Representative photographs showing sections from 8 week-
old wildtype lungs at 2 weeks post-bleomycin. Sections 
were double-stained with Id1 (red) and myofibroblast 
marker, Smooth muscle actin (SMA) (green). Arrows in the 
figures point to Id1-expressing myofibroblast cell. 
Arrowheads point to Id1-expressing non-myofibroblast cells. 
Magnification: 400x.
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Fig 3.6 Id1 expression is upregulated prominently in the 
injured lung endothelium. 

Eight week-old wildtype Tie1Cre-ZEG or ShhCre-ZEG 
lungs were treated with saline or 0.08U bleomycin and 
collected after 1 week or 2 weeks; lung cells were 
sorted into GFP+ and GFP- group by FACS. Protein 
extracts were immunoblotted with Id1 and α-tubulin as 
the loading control. Purity of the fractions was 
confirmed by immunoblotting with endothelial marker 
Pecam-1 or epithelial marker TTF-1. Densitometric 
measurements of Id1 bands were performed and 
normalized to the density of α-tubulin bands and 
values indicating differential levels of expression are 
shown as columns on the right. Note the dramatic 
upregulation of Id1 protein level in endothelial cells 
from bleomycin-treated lungs compared with the non-
endothelial fraction and saline controls.
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endothelial cell population and less than 20% is derived from other lung cell types, 

possibly immune cells which are involved in lung injury by bleomycin and have 

been shown to express Id1 (Leeanansaksiri et al., 2005). Our finding indicates 

that epithelial and fibroblastic cells contribute minimally to the Id1 expression level 

in bleomycin-injured lungs. In sum, these findings point to potential roles of Id1 in 

different lung cell populations, in particular, the endothelial cells, upon 

bleomycin-induced injury.  

 

Id1 is required for survival of cells of the lung endothelium exposed to 
bleomycin  

Since lung endothelial cells comprised a large fraction of Id1-expressing 

cells after bleomycin exposure, we investigated the functional role of Id1 in 

endothelial cells. To assess endothelial dysfunction in Id1-/- mutant lungs, we first 

evaluated change in vascular permeability by measuring the extravasation of 

Evans blue dye which, when injected via the retro-orbital sinus, can immediately 

complex with circulating albumin (see Methods). Accumulation of albumin-dye 

complexes within the lung parenchyma was quantified spectrophotometrically and 

used as an indicator of vascular macromolecular leakage (Londhe et al., 2005). 

We found that wildtype lungs showed significant leakage of Evans Blue at 1 week 

post-bleomycin when compared to saline-treated lungs (Fig. 3.7). However, 

vascular leakage is more pronounced in Id1-/- mutants, showing a 58% increase 
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Fig 3.7 Bleomycin-injured Id1-/- lungs display increased 
endothelial barrier dysfunction, elevated endothelial 
apoptosis.  A. Increased vascular permeability in bleomycin-
challenged Id1-/- lungs. Pulmonary vascular permeability of 
saline or bleomycin-treated 8 week-old wildtype or Id1-/-
lungs was determined by Evans blue extravasation assay (n=3 
for each group). Note 58% increase in Evans Blue dye leakage 
in injured Id1-/- lungs compared with wildtype lungs. 
Asterisks denote a significant difference (p<0.05) between 
wildtype and Id1-/- lungs at 1 week post-bleomycin.  B.
Endothelial cell death detection in wildtype and Id1-/- lungs 
by TUNEL (red) and CD34 (green) double-labeling. 
Representative sections are shown for lungs at 1 week post-
bleomycin or saline. Magnification 400x.
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in dye content when compared to bleomycin-treated wildtype lungs (N=3, Fig. 

3.7-A), indicating increased disruption of the endothelial barrier in the absence of 

Id1 function. 

Id1 has been shown to attenuate apoptotic cell death in human umbilical 

vein endothelial cells (Nishiyama et al., 2005). Therefore, it is conceivable that 

increase in endothelial permeability in Id1-/- lungs is, at least in part, contributed 

by increase in endothelial cell death. To determine the level of endothelial cell 

death in Id1-/- and wildtype lungs at 1 week after bleomycin instillation, we first 

performed TUNEL and CD34 double immunolabeling. We found that there was 

significantly higher number of apoptotic endothelial cells in Id1-/- compared with 

wildtype (Fig. 3.7-B). For quantitative analysis, we performed FACS to measure 

the percentage increase in apoptotic endothelial cells that are double positive for 

Tie1-GFP (endothelial) and annexin-5 (apoptotic) in Id1-/- lungs compared with 

wildtype. In bleomycin-treated lungs, FACS analysis indicated that wildtype and 

Id1-/- contained, respectively, an average of 11.7% and 16.1% apoptotic 

endothelial cells that were double positive for GFP and annexin-5 (Fig. 3.8).  

Therefore, there was an average increase of 37.6% in apoptotic endothelial cells 

in Id1-/- relative to the wildtype level (N=3). Saline-treated lungs showed relatively 

low level of apoptotic endothelial cells and were not significantly different in both 

genotypes (Fig. 3.8). This result clearly indicates a significant rise in apoptotic 
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Fig 3.8 Bleomycin-injured Id1-/- lungs display increased 
endothelial apoptosis.
Flow cytometric counting of apoptotic endothelial cells in 
wildtype or Id1-/- Tie1Cre;ZEG lungs at 1 week post-
bleomycin or saline. A. Representative dotspot graphs 
showing cell sorting results of 10,000 lung cells, using 
annexin-5 as the cell death marker and GFP as the endothelial 
marker. The upper right quadrant represents apoptotic 
endothelial cells. B. Statistic representation of the sorting 
results from 3 independent experiments (N=6). Note there is 
an average of 37.6% increase in endothelial cell death in 
injured Id1-/- lungs compared with wildtype lungs. Asterisks 
denote a significant difference (p<0.05) between wildtype 
and Id1-/- lungs. 
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endothelial cells in Id1-/- mutant mice after bleomycin treatment, suggesting an 

important role of Id1 in preventing endothelial cell death upon injury.  

Collectively, our findings indicate that Id1 plays a key role in the survival of 

cells of the lung endothelium after exposure to bleomycin and loss of Id1 function 

results in increased endothelial apoptotic cell death which leads to severe 

endothelial damage.  

 

Id1-/- lung microvascular endothelial cells display increased cell death in 
the presence of bleomycin in culture 

To further examine the role of Id1 in endothelial cell function and cell death 

induced by bleomycin, we carried out cell culture experiments using freshly 

isolated lung microvascular endothelial cells (LMVECs) from both wildtype and 

Id1-/- lungs. Cultured wildtype LMVECs expressed a moderate level of Id1 and 

this expression was further increased after bleomycin challenge (Fig. 3.9-A). We 

also observed that while freshly dissociated wildtype LMVECs could be passaged 

three times in culture, it was not possible to passage Id1-/- LMVECs after first 

plating which is likely due to their reduced growth potential. Wildtype and Id1-/- 

LMVEC cultures grown for 3 days were treated with 250ng/ml bleomycin for 6 

hours and analyzed by TUNEL or double-labeled with Tie1Cre-GFP (endothelial 

reporter) and annexin5-Cy3 (apoptotic marker) and sorted by FACS analysis to 

quantify the level of apoptotic endothelial cells in culture (N=3). Consistent with 

65



Fig 3.9 Id1-/- lung microvascular endothelial cells 
display reduced survival in culture   

A. Id1 is upregulated in endothelial cells by bleomycin in 
vitro. Western blotting showing Id1 level from wildtype 
primary LMVECs treated with saline or 250ng/ml 
bleomycin for the indicated time points. Values represent 
relative fold change of Id1 protein level normalized to the 
density of a-tubulin bands.   B. Cell death detection of 
wildtype and Id1-/- primary LMVECs by TUNEL (red) and 
Tie1Cre-GFP (green) double labeling. Representative 
photographs are shown for cell cultures treated with 
250ng/ml bleomycin for 6 hours followed by no bleomycin 
for 3 hours. Magnification 100x. 
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TUNEL staining which showed significantly more apoptotic cells in Id1-/- LMVECs 

(Fig. 3.9-B), Id1-/- LMVECs displayed an average of 17.3% apoptotic endothelial 

cells compared with 8.2% in wildtype (Fig. 3.10). These results indicate that Id1 

plays a crucial role in LMVEC survival in culture and are consistent with the 

functional role of Id1 in bleomycin-injured lungs in vivo. 

We reasoned that increased endothelial cell apoptosis may be linked to 

decrease in the levels of Bcl-2 family proteins, specifically Bcl-2 and Bcl-xL, which 

have been shown to be regulated by Id1 in several cancer cell lines (Ling et al., 

2003; Cheung et al., 2004; Hui et al., 2006). Since Bcl-2 proteins are well-known 

anti-apoptotic molecules, they may serve as a potential downstream effector of 

Id1 in the process of endothelial maintenance.  Hence we examined the 

expression of Bcl-2 and Bcl-xL in bleomycin-exposed wildtype and Id1-/- LMVECs 

by Western blotting. Although we did not detect significant difference in Bcl-xL 

level in Id1-/- endothelial cell population compared with wildtype, Bcl-2 expression 

was significantly higher in wildtype LMVECs after bleomycin exposure. (Fig. 3.11) 

This finding strengthens the notion that Id1 can inhibit cell apoptosis by 

modulating Bcl-2 expression. Previous studies suggest that upregulation of Bcl-2 

by Id1 may indirectly go through Ras/MEK/ERK pathway (Chang et al., 2003; 

Rivo et al., 2007). By Western blotting of phosphor-MEK and phosphor-ERK, we 

found that the activity of Ras/MEK/ERK pathway was also decreased, in 

concomitant with the reduction of Bcl-2 protein level. Taken together, our results 
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Fig 3.10 Id1-/- lung microvascular endothelial cells display 
reduced survival in culture. 

Flow cytometric counting of apoptotic endothelial cells in 
wildtype or Id1-/- Tie1Cre-ZEG LMVECs treated with saline 
or 250ng/ml bleomycin for 6 hours.  A. Representative 
dotspot graphs showing the results of cell sorting, at 10,000 
cells, each using annexin-5 as the cell death marker and GFP 
as the endothelial marker. The upper right quadrant represents 
apoptotic endothelial cells.  B. Statistic representation of the 
sorting results from 3 independent experiments (N=3). Note 
that there is nearly 2-fold increase in endothelial cell death in 
Id1-/- LMVECs compared with wildtype. Asterisks denote a 
significant difference (p<0.05) between wildtype and Id1-/-
cells.
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Fig 3.11 Id1-/- lung microvascular endothelial cells show 
reduced Bcl-2 level and MEK/ERK activity. 

Western blotting of cell lysates collected from wildtype or 
Id1-/- primary LMVECs (N=6 lungs for each genotype) 
treated with 250ng/ml bleomycin for 6 hours. Note that Bcl-2 
level is significantly decreased in LMVECs in the absence of 
Id1 function as opposed to the level of Bcl-xl, which remains 
unaltered. The MEK/ERK signaling pathway is also affected 
in Id1-/- endothelial cells, based on lower levels of 
phosphorylated MEK/ERK.
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indicate that upregulation of Id1 expression appears to inhibit lung endothelial cell 

death by activating Ras/MEK/ERK pathway and in turn inducing anti-apoptotic 

protein Bcl-2 expression. 
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Discussion 

In this study, we demonstrated that although Id1 was barely detectable in 

the normal adult lung, its protein expression was significantly upregulated 

predominantly in cells of the lung endothelium in response to bleomycin exposure. 

This new finding prompted us to investigate the contributory role of Id1 in 

bleomycin-injured lung endothelium. To this end, in addition to morphological and 

immunohistochemical approaches, we performed FACS analysis, which is a more 

rigorous and quantitative method, to specifically isolate endothelial or epithelial 

lung cell population from whole lungs by taking advantage of available transgenic 

reporter mouse lines.  

Bleomycin-induced lung injury and fibrogenesis, like many other types of 

lung injury, is almost always accompanied by increase in vascular permeability 

suggesting that vascular endothelial integrity and function are compromised. Our 

finding that bleomycin exposed Id1-/- lungs showed increased vascular 

permeability suggests that Id1 may play a critical role in maintaining endothelial 

integrity and function. Consistent with this notion, we demonstrated decreased 

endothelial cell survival in Id1-/- lungs injured by bleomycin compared with 

wildtype. In addition, cell culture experiments using freshly dissociated lung 

microvascular endothelial cells from Id1-/- lungs also showed significantly 

reduced survival potential compared with wildtype lung endothelial cells. Taken 

together, these observations revealed that one critical role of Id1 is to maintain 
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pulmonary endothelial integrity by preventing endothelial cell death upon insult. 

Since Id1 function has been linked to cell proliferation, we also examined 

the change in endothelial proliferation in wildtype and Id1-/-lungs after bleomycin 

treatment. Results from double labeling with PCNA and CD34, to detect 

proliferating endothelial cells, revealed that the lung endothelium is relatively 

quiescent and did not appear to become highly proliferative upon bleomycin 

treatment.  In addition, we did not find significant differences in endothelial 

proliferation in Id1-/- compared with wildtype at 1 week after bleomycin (N=3), 

suggesting that Id1 is unlikely to play a major role in endothelial cell proliferation 

after lung injury (data not shown).  

FACS and double immunohistochemical labeling demonstrated that 

upregulation of Id1 expression was infrequently detected in epithelial and 

fibroblast cells, in contrast with Id1 upregulation in cells of the lung endothelium 

exposed to bleomycin. We determined that less than 20% of Id1 expression in 

bleomycin-exposed lungs was derived from non-endothelial cells; the identity of 

this lung cell population and the role of Id1 in that population remain to be 

determined. Id1 was shown to be moderately expressed in a subgroup of immune 

cells such as the macrophages and granulocytes (Leeanansaksiri et al., 2005). 

Therefore, Id1 may also be involved in the inflammatory response of lungs upon 

injury, which in turn can contribute to fibrogenesis. Therefore, it remains possible 

that loss of Id1 function in different lung cell populations and circulating cells may 
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also contribute to increased lung fibrogenesis induced by bleomycin in Id1-/- 

mutant lungs. 

Bmp signaling has been strongly implicated in Id gene induction in a 

number of cell types including endothelial cells (Hollnagel et al., 1999; Itoh et al., 

2004; Valdimarsdottir et al., 2002) and vascular endothelial growth factor (VEGF) 

has also been shown to induce Id1 and Id3 in bone marrow-derived endothelial 

precursor and hematopoietic cells (Lyden et al., 2001). Both signaling pathways 

are promising candidates for activating Id1 expression in the lung endothelium 

upon bleomycin injury, although the actual in vivo signals remain to be identified. 

Signalings mediated by TGF-β1 and TNF-α are known to play key roles in many 

types of lung diseases including bleomycin-induced pneumopathy in animal 

models (Bartram and Speer, 2004; Cutroneo and Phan, 2003; Nakao et al., 1999; 

Pittet et al., 2001; Santana et al., 1995; Wang et al., 2002; Zhao et al., 2002). 

Interestingly, TGF-β1 can exert long-term repression of Id1 expression in a 

number of cell types (Chambers et al., 2003; Kang et al., 2003; Kowanetz et al., 

2004) , suggesting that TGF-β could potentially antagonize Id1 expression in the 

course of lung pathogenesis. TNF-α has also been implicated in the regulation of 

Id expression in astrocytes during inflammatory injury of the central nervous 

system (Goumans et al., 2002; Kang et al., 2003; Tzeng et al., 1999). Thus, there 

may be a balance between Id1-inducing and Id1-repressing mechanisms in the 

bleomycin-injured lung. Therefore, future identification of signals that modulate 
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Id1 expression in bleomycin-induced lung injury will improve our understanding of 

the regulatory mechanisms underlying Id1 function in lung injury and fibrosis.  

 

 

 

 

 

 

 

 

 

 

 

 

74



CHAPTER IV 
 
 
 

THE INDUCTION AND FUNCTION OF ID1 IN OTHER ACUTE LUNG INJURY 
MODELS 

 
 
 

Introduction 
 

Our finding that Id1 plays a critical role in endothelial survival in the mouse 

endotracheal bleomycin injection model also implicates a key role of Id1 and the 

lung endothelium in the pathogenesis of acute lung injury (ALI).  In order to 

obtain a better understanding of the general involvement of Id1 in ALI, we 

extended the study of Id1 function in endothelial damage using other ALI models. 

Cecal ligation & puncture (CLP) and intravenous injection of bleomycin are both 

broadly used methods to induce acute lung injury. By generating inflammation or 

cell death in blood vessels, these methods of introducing insults directly target the 

endothelium (Azuma et al., 2000; Ebong et al., 1999; Guo et al., 2002; Laudes et 

al., 2004). These alternative approaches could circumvent the possible side 

effects of injured lung epithelium on endothelial injury as is the case with the 

endotracheal bleomycin model. Intratracheal injection of lipopolysaccharide (LPS) 

is another commonly used method to investigate the effect of a localized insult in 

the generation of ALI (Thorn, 2001). By examining Id1 expression and analyzing 

its function in several ALI models, we were able to complement our previous 
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observations and thus provide strong support that Id1 is upregulated upon insult 

to the lung endothelium and may serve to promote lung endothelial survival in ALI.  

 

Experimental Procedures 
 

Mouse models and treatment  

Wildtype mice used in this study were bred in the C57BL/6J background. 

For tail-vein injection of bleomycin, the 6 week-old mouse was placed in a 50 ml 

conical tube with its tail exposed through an opening in the cap. The dorsal tail 

vein was visualized by brief warming at 42oC using a heating lamp.  Saline or 

bleomycin (2.5U per animal) was then administrated by intravenous injection into 

the tail vein using a total volume of 300ul solution (Lawson et al., 2005b). For 

intratracheal injection of LPS, mice were treated with either saline or LPS (50ug 

per animal) injected into the surgically-exposed trachea using a total volume of 

50ul saline (Lawson et al., 2005b).  Cecal ligation and puncture was performed 

as described previously (Baker et al., 1983).  Briefly, mice were anesthetized 

and a midline incision was made to expose the cecum and adjoining intestine. 

The cecum was then tightly ligated at the base and punctured twice with a 

19-gauge needle. The incision was closed afterwards and mice were left for the 

indicated number of hours before sample collection. The experimental protocol 

was reviewed and approved by the Institutional Animal Care and Utilization 

Committee at Vanderbilt University. 

76



Immunohistochemistry 

Lungs were perfused with phosphate-buffered saline (PBS) and fixed in 

4% PFA solution at 4°C for 5 hours. Subsequently, lungs were dehydrated and 

embedded in paraffin blocks and 5 um sections were collected and processed for 

immunolabeling. Slides were incubated at 4oC overnight with primary antibody Id1 

(1:1500) or MPO (1:300). Detection was performed using polymer-HRP 

secondary antibodies (Zymed) diluted at 1:2 and HRP detection kit (Labvision) 

were used for signal visualization. Slides were counterstained with Hematoxylin 

(Sigma) to highlight nuclei. Regular images were taken using the Olympus 

BX60F5 microscope. 

 

Pulmonary vascular permeability assay  

Vascular permeability was examined using the Evans blue extravasation 

method as previously described (Londhe et al., 2005). Briefly, Evans blue dye at 

20mg/kg body weight was injected into each animal via the retro-orbital sinus. 

Three hours after injection, lungs were perfused and homogenized in saline. 

Evans blue was extracted and quantified by dual wavelength at 620nm and 

740nm using Bio-Rad Smartspec3000. Corrected pulmonary Evans blue 

absorbance at 620nm was calculated as A620nm–(1.426xA740nm + 0.03). 

Permeability index was generated by dividing the corrected pulmonary Evans 

blue absorbance by the plasma Evans blue absorbance at 620nm.  
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Neutrophil Counting 

Slides of MPO-stained lung tissue were randomized and evaluated on ten 

sequential, non-overlapping fields (magnification, 400X) of lung parenchyma for 

each specimen. Counting of MPO-positive cells was performed blinded to the 

genotype and treatment groups. Results were presented as the average number 

of MPO-positive cells (neutrophils) per 400x field. 
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Results 
 

Id1 expression is significantly upregulated in the lung in different lung 
injury models 

To investigate whether Id1 expression is upregulated upon pulmonary 

insult caused by different insults, we treated adult wildtype mice using three 

different methods (Cecal ligation-puncture, Tail-vein injection of bleomycin and 

intratracheal injection of lipopolysaccharide) that are known to induce acute lung 

injury. Interestingly, we found significant induction of nuclear Id1 expression in the 

treated lungs compared with control groups in all three treatment methods (Fig. 

4.1). The expression pattern of Id1 appears to be in endothelial-like cells, 

consistent with what we observed in the intratracheal injection of bleomycin model. 

This interesting finding suggests that Id1 is generally involved in acute lung injury 

regardless of the pathological cause.  

 

Loss of Id1 function is associated with increased lung vascular permeability 
in CLP-induced lung injury 

Since we obtained similar expression patterns of Id1 in CLP-treated lungs 

compared to intratracheal-bleomycin treated lungs, we hypothesized that the 

upregulated Id1 in the lung in CLP models may also have a cytoprotective role in 

endothelial cells. To examine the extent of endothelial damage in Id1-/- mutant 

lungs, we evaluated the change in vascular permeability by measuring the 

extravasation of Evans blue dye, the same method utilized in the intratracheal 
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Fig 4.1 Id1 expression is significantly upregulated in the 
adult lung upon injury of different causes.
Representative photographs showing Id1 
immunohistochemistry of lung sections from wildtype lungs 
with different treatment. Sections were counterstained with 
hematoxylin to highlight nuclei. Note the nuclear Id1 
expression in treated wildtype lungs but not in saline controls.
Magnification 400x.
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bleomycin model. We found that Id1-/- lungs showed significantly more leakage of 

Evans Blue at 8-hour post-CLP treatment when compared to wildtype lungs (Fig 

4.2, N=3), This result indicates that increased disruption of the endothelial barrier 

may be the consequence of ablated Id function, supporting the notion that Id1 has 

a cytoprotective role in endothelial cells. 

 

Loss of Id1 function in CLP-treated lungs results in increased neutrophil 
accumulation 

Since the inflammatory response in CLP-challenged mice contributes 

significantly to increased lung injury, we further analyzed the population of 

inflammatory cells in Id1-/- lung alveolar space and interstitium compared with 

wildtype at 4 and 8 hours after CLP treatment. We performed immunostaining of 

myeloperoxidase (MPO) to identify infiltrated neutrophils in the alveolar space. As 

shown in Fig 4.3-A, we detected significant difference in the inflammatory 

response between wildtype and Id1-/- lungs at 8 hours post-CLP treatment, 

indicated by increased MPO-positive cells in Id1-/- lungs. For semi-quantitative 

analysis, cell counts were performed on multiple fields and the degree of 

inflammation was determined as the number of MPO-positive cells per field. As 

illustrated in Fig 4.3-B, although no difference was observed at the 4-hour time 

point with the highest level of neutrophil attachment, Id1-/- lungs showed 

significant increase in MPO-positive cells at 8-hour post-CLP treatment compared 
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Vascular Permeability Assay (CLP-19G-8h)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

1

E
v
a
n

s
B

lu
e
(
u

g
/
m

g
 l
u

WT
Id1-/-

Ev
an

s 
Bl

ue
 (u

g/
m

g 
lu

ng
) * 

Fig 4.2 Id1-/- lungs from CLP-treated mice display 
increased endothelial barrier dysfunction,.  
Evans blue extravasation assay showing increased vascular 
permeability in injured Id1-/- lungs. Pulmonary vascular 
permeability of 8 hour CLP-treated wildtype or Id1-/- lungs 
was determined by Evans blue extravasation assay (n=3 for 
each group). Note nearly two-fold increase in Evans Blue dye 
leakage in injured Id1-/- lungs compared with wildtype lungs. 
Asterisks denote a significant difference (p<0.05) between 
wildtype and Id1-/- lungs.
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to wildtype lungs. This observation indicates that absence of Id1 function in lung 

endothelial cells can lead to increased immune cell recruitment.  

 

Discussion 
 

     Structural and functional alterations of the pulmonary endothelium are 

among the characteristic features of ALI pathogenesis (Groeneveld, 2002). The 

finding that Id1 is upregulated in pulmonary endothelial cells in different lung injury 

models suggests that Id1 may function as an important component in maintaining 

adult lung endothelial homeostasis. It appears that when endothelial cells are 

injured, by DNA-damaging chemicals or cytokines produced during systemic 

inflammation, Id1 expression is activated. The upstream signals that trigger Id1 

upregulation in these different lung injury models, however, remain to be 

investigated. One might speculate that a common stress-response signal may be 

activated to induce Id1 when the endothelial barrier is compromised. It also 

remains possible that different upstream signals may be involved in Id1 

upregulation in different types of ALI. 

Our finding that CLP-treated Id1-/- lungs showed increased vascular 

permeability compared to wildtype controls suggests that Id1 may play a critical 

role in maintaining endothelial integrity and function. In addition, immunostaining 

of neutrophil marker MPO revealed that the degree of inflammation, as 

demonstrated by increased neutrophil infiltration, is also elevated in CLP-injured 

83



Fig 4.3 Loss of Id1 function in CLP-treated lungs results in 
increased neutrophil accumulation/inflammation. 
A. Representative photographs showing MMP2 
immunohistochemistry of lung sections from wildtype and Id1-
/- lungs with 19G CLP treatment for 8 hours. Sections were 
counterstained with hematoxylin to highlight nuclei. 
Magnification 400x. B. Neutrophil counting of wildtype and Id1-
/- sections from lungs with 19G CLP treatment for indicated 
hours. Results are obtained from 10 non-overlapping 400x 
fields of each group and shown as the number of MPO-
positive cells per field. Asterisk denote a significant difference 
(p<0.05) between wildtype and Id1-/- lungs.
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Id1-/- lungs. However, it remains to be seen whether the influence of Id1 protein 

function in pulmonary inflammation is direct or indirect. Redox (cellular reduction 

and oxidation state) balance is recognized as a key component in maintaining 

proper lung microvascular permeability and junctional integrity (Zhao et al., 2001). 

Following initial exposure to an inflammatory stimulus, injured endothelial cells 

produce reactive oxygen and nitrogen species (ROS and RNS, respectively) due 

to increased oxidant burden (Orfanos et al., 2004). Oxidative stress and ROS 

production mainly contribute to endothelial cell injury and death. Increase in the 

number of damaged endothelial cells due to oxidant-induced injury in turn can 

lead to the expression of damage-responsive proteins such as E-selectin and 

ICAM, which further facilitate recruitment of immune cells like neutrophils (Albelda 

et al., 1994). We speculate that the role of Id1 in protecting endothelial cells 

against excessive apoptosis and endothelial damage could alleviate the signaling 

cascade that ultimately leads to an increased inflammatory response. It would be 

interesting to examine the requirement of Id1 in injury-response gene expression 

to elucidate the link between Id1 function and lung inflammation processes. 
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CHAPTER V 
 
 
 

THE FUNCTION OF ID1 DURING CHRONIC PHASE OF LUNG INJURY 
 
 
 

Introduction 
 

Idiopathic pulmonary fibrosis (IPF) is a progressive chronic lung disease of 

unknown etiology and characterized by an initial accumulation of inflammatory 

cells, epithelial and endothelial injury and apoptosis, fibroblast proliferation, 

myofibroblast accumulation and increased deposition of extracellular matrix 

proteins resulting in irreversible distortion of lung architecture (Kuhn et al., 1989; 

Phan, 2002; Phan, 2003; Selman et al., 2001; Tomasek et al., 2002; Zhang et al., 

1994). Fibrotic lung diseases can be caused by a multitude of factors resulting in 

complex heterogeneous pathological conditions, and they contribute to the 

chronic events after acute lung injury (Matthay and Zimmerman, 2005). Our 

findings that Id1 expression is induced in adult mouse lung endothelial cells upon 

bleomycin exposure and that abrogating Id1 function results in increased vascular 

permeability and endothelial cell death in lung microvessels implicate a 

cytoprotective role of Id1 in the pulmonary endothelium.  In this chapter, we will 

emphasize the critical role of the lung endothelium, which has been implicated but 

not rigorously studied, in lung fibrogenesis. In addition, our proposed studies 

implicate a critical function of Id1 protein in the lung during the fibrotic process.  
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Experimental Procedures 

Mice and bleomycin treatment  

Id1 null mice (Id1-/-) (gift of Dr. Robert Benezra) and Tie1-Cre mice 

(Gustafsson et al., 2001) were bred in the C57BL/6J background and 

ShhCre-ZEG mice (Li et al., 2006) were bred in the C57BL/6J;129 background. 

For the Id1 time-course study, C57BL/6J mice (8-10 week old) were purchased 

from the Jackson Laboratory. Mice were treated with either saline or bleomycin 

(0.08U) by intratracheal injection in a total volume of 50ul saline (Lawson et al., 

2005b). The experimental protocol was reviewed and approved by the 

Institutional Animal Care and Utilization Committee at Vanderbilt University. 

 

Immunohistochemistry 

Lungs were perfused, inflated, excised, and fixed in 4% paraformaldehyde at 4oC 

overnight. Subsequently, lungs were embedded in paraffin blocks and 5 um 

sections were collected and processed for immunolabeling. Antibody against 

Smooth muscle alpha-actin (SMA, Sigma Chemical) was used for immunostaining. 

For regular immunolabeling, slides were antigen-retrieved using citrate buffer 

(pH6.0) and incubated at 4oC overnight with primary antibody. Regular 

Alexa-conjugated secondary antibodies or HRP-conjugated secondary antibodies 

(Jackson ImmunoResearch) and HRP detection kit (Labvision) were used for 

signal visualization.  
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Western blotting  

Left lungs of bleomycin-treated wildtype and Id1-/- mice were harvested 

and homogenized in RIPA lysis buffer at pH7.4. Protein lysates of 100ug each 

were resolved on SDS-polyacrylamide gels (Bio-Rad). Primary antibody against 

Smooth muscle alpha-actin (SMA, Sigma Chemical) was used for detection. 

Equal loading of protein samples was monitored by and normalized to the level of 

α-tubulin (Calbiochem-EMD Biosciences). Blots were analyzed using 

QuantityOne software (Bio-Rad). 

 

Histology and pathology scoring 

Lungs were perfused, inflated, excised, and fixed in 4% paraformaldehyde 

at 4oC overnight. Subsequently, lungs were embedded in paraffin blocks and 5 

um sections were collected and processed for H&E staining. Slides of lung tissue 

were randomized and evaluated on ten sequential, non-overlapping fields 

(magnification, 30X) of lung parenchyma for each specimen. Evaluation of 

parenchymal distortion on H&E-stained lung sections was done by Dr. Vasiliy 

Polosukhin, a pathologist in the Department of Allergy, Pulmonary and Critical 

Care Medicine at Vanderbilt University, blinded to the genotype and treatment 

group, using a 0 to 4 point scale, with a score of 0, normal architecture; 1, 

increased thickness of up to 50% of interalveolar septa; 2, thickening of >50% of 

interalveolar septa without formation of fibrotic foci; 3, thickening of the 
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interalveolar septa with formation of isolated fibrotic foci; and 4, formation of 

multiple fibrotic foci with total or subtotal distortion of parenchymal architecture 

(Lawson et al., 2005a).  

 

Hydroxyproline assay and Trichrome staining  

The left lungs of wildtype and Id1-/- mice, harvested at 2 weeks after 

bleomycin, were analyzed for hydroxyproline content as previously described 

(Reddy and Enwemeka, 1996). Briefly, the left lung lobes were weighed and 

homogenized in distilled water. The samples were mixed well and digested with 2N 

sodium hydroxide in a total volume of 100ul at 120oC for 20min. After digestion, 

900ul of chloramine T (1.27g chloramine T, 20 ml of 50% n-propanol and 

citrate-acetate buffer in 100ml) was added to each sample, mixed, and left at room 

temperature for 25 min. Then 1 ml of Ehrlich’s solution (15g of 

4-dimethylaminobenzaldehyde in 100ml n-propanol and 70% perchloric acid at a 

volume ratio of 2:1) was added to each sample, mixed and incubated for 20 min at 

65°C. Samples were cooled for 10 min and then read at 550 nm on a 

spectrophotometer. Concentrations were calculated against a hydroxyproline 

standard curve. Trichrome staining of lung sections for collagen content was 

performed by the Vanderbilt Immunohistochemistry Core Laboratory.  

Statistics 

To assess differences among groups, statistical analyses were performed 
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using a one-way analysis of variance (ANOVA) with Microsoft Excel (Microsoft 

Corporation) and significance accepted at p<0.05. Results are presented as mean 

+/- SEM. 
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Results 

Id1-/- mice display increased lung fibrogenesis during chronic phase of 
bleomycin-induced lung injury 

Since endothelial injury and the resulting increase in vascular permeability 

are often considered a pathological trigger of pulmonary fibrosis (Brown et al., 

1989; Magro et al., 2006; Renzoni et al., 2003; Takabatake et al., 2005), we 

examined the susceptibility of Id1-/- lungs to bleomycin-induced fibrogenesis. First, 

we performed morphological analysis of Id1-/- and wildtype lungs by histological 

staining with hematoxylin and eosin (H&E) of lung sections harvested at two 

weeks after bleomycin instillation to assess the alveolar architecture. As indicated 

in Figure 5.1-A, Id1-/- lungs showed more parenchymal distortion and fibrotic foci 

compared to bleomycin-treated wildtype lungs. For semi-quantitative analysis of 

lung fibrosis, H&E-stained sections were evaluated by a pathologist (see Methods) 

blinded to the genotypes and treatment groups. As shown in Figure 5.1B, Id1-/- 

lungs displayed a higher parenchymal distortion, approximately 35% increase, 

compared with wildtype (N=5).  

 

Id1-/- lungs display more collagen accumulation in bleomycin-induced 

fibrogenesis 

One of the hallmarks of lung fibrosis is the accumulation of collagen that is 

secreted by the large fibroblast population within foci. By Trichrome staining, 

which specifically highlights extracellular collagen, we observed significantly more 
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Fig 5.1 Id1-/- lungs are more susceptible to bleomycin-induced 
fibrogenesis.  

A. Hematoxylin and eosin staining of lung sections to show 
architectural changes. Representative photographs showing foci 
formation in wildtype and Id1-/- lungs at 2 weeks post-bleomycin. 
Magnification 40x.  B. Increase in the index of architectural 
distortion in Id1-/- lungs compared to wildtype lungs after bleomycin 
challenge. Double asterisks denote a significant difference (p<0.01) 
between wildtype and Id1-/- lungs at 2 weeks post-bleomycin (n=5 
for each group). 
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collagen accumulation in the fibrotic foci of Id1-/- lungs at 2 weeks post-bleomycin 

compared with wildtype (Fig. 5.2-A, collagen as bright blue). In agreement with 

the Trichrome staining result, we detected about 90% increase in collagen 

deposition in Id1-/- lungs compared with wildtype, two weeks post-bleomycin as 

measured by hydroxyproline content assay (N=4, Fig. 5.2-B).  

 

Id1-/- lungs display more myofibroblast differentiation in bleomycin-induced 

fibrogenesis 

Consistent with elevated collagen secretion, Id1-/- lungs also showed 

significant increase in the population of myofibroblasts within developing foci as 

revealed by Smooth muscle α-actin (SMA) immunolabeling (Fig. 5.3-A) of lungs 

two weeks post-bleomycin treatment. Accordingly, Western blotting of Id1-/- lung 

homogenates revealed increased levels of SMA compared with wildtype. (Fig. 

5.3-B). Taken together, we demonstrate that Id1-/- mutant lungs are more 

susceptible to bleomycin-induced fibrogenesis as evidenced by increased lung 

parenchymal distortion, elevated collagen and hydroxyproline content and larger 

myofibroblast cell population. These findings implicate a critical role of the 

pulmonary endothelium in mediating the fibrotic response upon lung injury and 

underscore Id1 as a key molecular participant.  
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Fig 5.2 Id1-/- lungs display more ECM accumulation in 
bleomycin-induced fibrogenesis. 

A. Trichrome staining showing increased collagen deposition in 
lungs of Id1-/- mice after bleomycin challenge. Representative 
photographs reveal increased collagen accumulation (blue) in Id1-
/- lungs compared to wildtype at 2 weeks post-bleomycin. 
Magnification 40x. B. Quantification of collagen deposition in 
lungs of wildtype and Id1-/- mice after bleomycin challenge by 
hydroxyproline assay. Asterisks denote a significant difference 
(p<0.05) between wildtype and Id1-/- lungs at 2 weeks post-
bleomycin (n=4 for each group).
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Fig 5.3 Id1-/- lungs display more myofibroblast 
differentiation in bleomycin-induced fibrogenesis.

A. Immunostaining of wildtype and Id1-/- lungs with antibodies 
specific for a-smooth muscle actin (SMA). Representative 
sections are shown for lungs at 2 weeks post-bleomycin or saline. 
Sections were counterstained with hematoxylin to highlight all 
nuclei. Note elevated expression of SMA in fibrotic foci of Id1-/-
lungs compared with wildtype. Magnification 40x. B. Western 
blotting showing expression level of SMA in wildtype and Id1-/-
lungs at 2 weeks post-bleomycin or saline. Values represent the 
relative fold change of SMA protein level normalized to the 
density of α-tubulin bands.
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Discussion 

Numerous reports using animal models indicate that antioxidants, drugs, 

biological factors or specific genetic alterations can provide protection against 

lung injury suggesting that the pathogenesis of ALI involves complex cellular and 

molecular mechanisms (Aoki et al., 2005; Brewer et al., 2003; El-Medany et al., 

2005; Hamaguchi et al., 2002; Manoury et al., 2005; Murakami et al., 2004; 

Otsuka et al., 2004; Ozyurt et al., 2004; Serrano-Mollar et al., 2003; Sogut et al., 

2004; Zhao et al., 2002; Zuo et al., 2002). In this study, we have uncovered a 

critical function of Id1 in the lung endothelium upon bleomycin-induced lung injury 

that results in fibrosis. We show significant upregulation of Id1 protein expression 

during the first week after exposure to bleomycin and expression is maintained for 

several weeks. Compared with wildtype, lungs lacking Id1 function displayed 

increased bleomycin-induced vascular permeability and endothelial cell death and 

more pronounced lung architectural distortion and fibrosis that are associated with 

significant increase in fibroblast and myofibroblast populations and collagen 

deposition.  

Together with the results obtained in Chapter 3, our findings support a 

critical role of Id1 as a protective molecule induced in the lung endothelium upon 

injury and underscore a key role of the lung endothelium during fibrogenesis. 

Injury caused by bleomycin results in extensive apoptosis in the endothelium and 

other lung cell types (Hamada et al., 2005). Pulmonary endothelial cells respond to 
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tissue damage by upregulating Id1 expression through unknown stress response 

signals. I found that upregulation of Id1 in endothelial cells activates the MEK/ERK 

pathway and elevates expression of anti-apoptotic protein Bcl-2 (Fig 3.11). It is 

reasonable to suggest that increased Bcl-2 protein level can reduce the extent of 

endothelial apoptosis. Acute lung injury often results in pulmonary fibrosis in the 

chronic phase, which appears to be attenuated indirectly by Id1 function due to 

decreased endothelial cell death (Fig5.4). The lung microvasculature is intimately 

associated with the alveolar epithelium for efficient blood-gas exchange and it has 

been suggested that functional defects of microvessels may play a role in the 

pathogenesis of lung fibrosis. Pulmonary microvascular lesions and increased 

vascular permeability have been linked to the pathogenesis of pulmonary fibrosis 

therefore limiting endothelial cell injury and cell death may alleviate fibrogenesis 

(Brown et al., 1989; Kaplan et al., 1992; Magro et al., 2003; Magro et al., 2006; 

Peterson et al., 1992; Renzoni et al., 2003; Slosman et al., 1989; Takabatake et 

al., 2005; Wang et al., 1992). Several other studies have also implicated a role of 

the microvasculature in lung fibrosis (Azuma et al., 2000; Burdick et al., 2005; 

Drab et al., 2001; Fichtner et al., 2004; Kasper et al., 1996; Kawanami et al., 1995; 

Piguet and Vesin, 1994; Ward et al., 1989). Conceivably, increased microvascular 

damage in Id1-/- lungs may lead to increased extravasation of plasma that could 

promote fibroblast proliferation. In addition, stimulated/injured endothelial cells 

can also secrete fibrogenic molecules that may affect fibroblast migration and 

97



proliferation (Calabrese et al., 2005). Our findings indicate that Id1 plays a critical 

role in promoting endothelial survival after bleomycin-induced injury and further 

suggest a role of the lung endothelium in lung fibrogenesis.  

Although upregulation of Id1 protein is predominantly found in lung 

endothelial cells, the potential roles of Id1 in other cells types contributing to the 

pathogenesis of lung injury and fibrogenesis need to be further investigated 

(Fig5.4). For example, a previous report by Chambers et. al., (Chambers et al., 

2003) and our study showing Id1 and SMA double-immunolabeling indicate that 

some Id1-expressing cells display fibroblastic features. With new discoveries of 

fibroblast-specific molecular markers that label all the fibroblast population within 

the lung, it will be possible to investigate the role of Id1 in fibroblast proliferation 

and differentiation during fibrogenesis.  In addition, Id1 has been shown to have 

moderate expression in a sub-group of immune cells such as macrophages and 

granulocytes (Leeanansaksiri et al., 2005). Therefore, Id1 may also be involved in 

the inflammatory response of lungs upon injury that results in fibrogenesis. 
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Fig 5.4 Schematic representation of Id1 function in the lung 
endothelium in acute lung injury.

Injury caused by bleomycin results in extensive endothelial 
apoptosis. The lung responds to tissue damage by upregulating Id1 
expression in endothelial cells (and other cell types). Upregulation 
of Id1 in endothelial cells activates the MEK/ERK pathway and 
elevate expression of anti-apoptotic protein Bcl-2. Increased Bcl-2 
protein level reduces the extent of endothelial cell apoptosis thus 
alleviating endothelial damage. Acute lung injury often results in 
pulmonary fibrosis in the chronic phase, which may be attenuated
by Id1 function.
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CHAPTER VI 
 
 
 

GENERAL DISCUSSION AND FUTURE DIRECTIONS 
 
 
 

Since the first Id protein was discovered more than a decade ago, the Id 

family of transcription inhibitors has attracted the attention of investigators from 

diverse research fields. Numerous studies focused on Id family proteins revealed 

that their functions encompass an extremely wide range of biological processes 

including myogenesis (Katagiri et al., 2002), angiogenesis (Benezra et al., 2001), 

neurogenesis (Lyden et al., 1999), hematopoietic lineage commitment (Benezra 

et al., 2001; Leeanansaksiri et al., 2005; Norton, 2000), spermatogenesis 

(Chaudhary and Skinner, 1999; Sablitzky et al., 1998), proliferation (Lasorella et 

al., 2001; Yokota and Mori, 2002; Zebedee and Hara, 2001) and apoptosis (Wong 

et al., 2004).  

In this project, we investigated the roles of Id genes in modulating 

pulmonary endothelial cell function during lung development and in adult acute 

lung injury. We uncover the importance of Id1 gene function in attenuating 

endothelial cell apoptosis and dysfunction in the adult lung upon insult by 

intratracheal instillation of bleomycin. We also provide data to support the 

potential roles of Id1 and Id3 in endothelial morphogenesis during embryonic lung 

development. We utilized the Id1 and Id3 single or double knockout mice as they 
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are ideal genetic tools for studying the functions of theses genes.  

The finding that Id1 expression is significantly upregulated in adult mouse 

lung endothelial cells upon bleomycin-induced injury and abrogating Id1 function 

results in increased vascular permeability and endothelial apoptosis, hence 

contributing to increased lung injury, underscores the importance of Id1 function in 

maintaining endothelial survival and homeostasis in response to stress. This 

study also emphasizes the critical role of the lung endothelium in both acute and 

chronic phases of lung injury. However, Id1 also functions in other cell types such 

as endothelial progenitor cells and immune cells under conditions of cellular 

stress  (Benezra et al., 2001; Leeanansaksiri et al., 2005; Lyden et al., 2001; 

Norton, 2000). In this chapter, I will contemplate the other possible functions of 

Id1 in the pathogenesis of acute lung injury and fibrosis. I will also discuss 

potential upstream and downstream signaling pathways regulating Id protein 

expression in the context of development and disease.   

 

The role of Id proteins in lung angiogenesis and endothelial survival 

I have carried out several studies to investigate the contribution of Id 

protein functions in endothelial cell growth, differentiation and injury response. 

These studies are in agreement with published reports that Id proteins are key 

regulators of endothelial function. In my study using Id1-/-Id3-/- double knockout 
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embryonic lungs, I showed that Id1 and Id3 may promote angiogenesis and they 

may be required for maintaining MMP-2 expression in endothelial cells.  

Recent studies suggest that Notch signaling may play an essential role in 

dictating cell fate determination in the lung, particularly during vascular 

development (Iso et al., 2003a). Notch-1 and its ligand Jagged-1 are specifically 

expressed in endothelial cells of pulmonary vessels, a pattern not seen in other 

organs (Taichman et al., 2002). Humans with Alagille syndrome (AGS), which is 

caused by mutation of Jagged-1, display major abnormalities in pulmonary 

arteries (Oda et al., 1997). Herp3, a primary effector of Notch signaling, also 

shows strong expression level in pulmonary endothelial cells (Chin et al., 2000). 

These findings support the notion that Notch signaling is involved in pulmonary 

vascular development. Interestingly, the Herp proteins belong to the bHLH family 

of transcription factors. Thus, I speculate that Id1 and/or Id3 may physically 

interaction with Herp in regulating Notch signaling activity. Ets transcription 

factors also comprise a group of interaction partners for Id proteins (Yates et al., 

1999). The Ets-domain transcription factor Net is highly expressed in the lung 

mesenchyme during embryogenesis (Ayadi et al., 2001a). Interestingly, mice 

deficient in Net function exhibit severe vascular defects in the embryonic lung 

(Ayadi et al., 2001b), suggesting a potential role of Net during lung angiogenesis. 

Therefore, Net may serve as another potential candidate Id target in the 

embryonic lung endothelial cells.  
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Although the relationship between Id proteins and apoptosis in cancer cells 

has been expansively studied (Wong et al., 2004), little information is available 

regarding the relationship between Id1 and apoptosis of endothelial cell. In our 

study, we demonstrated that Id1-/- lung endothelial cells, when challenged with 

bleomycin, display increased apoptosis in vivo and in vitro. Our results also 

suggest that Id1 may exert its protective function by maintaining Bcl-2 expression, 

possibly through activation of Ras/MEK pathway. However, our preliminary 

observation suggests that other mechanisms might also contribute to the 

protection against endothelial cell death by Id1. We have found that the transcript 

and protein levels of p21, a cyclin-dependent kinase (CDK) inhibitor, were higher 

in bleomycin-exposed Id1-/- lung endothelium compared with wildtype. This 

finding correlates with increased p21 protein level observed in Id1-/- LMVECs 

challenged with bleomycin (Fig. 6.1). This result is consistent with several 

previous studies implicating the upregulation of p21 in induction of endothelial 

apoptosis (Kurosawa et al., 2002; Lin et al., 2002; Pendergraft et al., 2004; Yang 

et al., 1996). Our finding supports a role of p21 as another downstream effector of 

Id1, which can modulate the transcriptional repression of the p21 gene promoter 

containing E-box binding sequences (Prabhu et al., 1997). Although some reports 

suggest that p21 favors inhibition of apoptosis under certain conditions (Gartel 

and Tyner, 2002), our findings indicate that repression of p21 by Id1 may be one 

mechanism by which Id1 suppresses apoptosis. Another possible target of Id1 is 
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Fig 6.1 Bleomycin-injured Id1-/- lungs display increased
endothelial barrier dysfunction, elevated endothelial apoptosis
and p21CIP/WAF-1 level
A. Western blotting of FACS-sorted endothelial (GFP+) and non-
endothelial cells (GFP-) from wildtype or Id1-/- lungs collected at 1
week post-bleomycin or saline. Values showing relative fold change of
p21 protein level normalized to the density of α-tubulin bands. Note
that p21 expression was further increased in the endothelial population
in the absence of Id1 function (lane 8 versus lane 4, arrows). B. Real
Time PCR analysis using total RNA extracted from FACS-sorted
endothelial (GFP+) and non-endothelial cells (GFP-) of wildtype or Id1-
/- lungs collected at 1 week post-bleomycin or saline (N=2). Results
show the average fold change of p21 mRNA level from two
independent experiments. C. Western blotting of triplicate cell lysates
from wildtype or Id1-/- primary LMVECs treated with saline or 250ng/ml
bleomycin for 6 hours. Values showing relative fold change in p21
protein level normalized to the density of a-tubulin bands. Note that p21
level is significantly increased in  LMVECs in the absence of Id1
function (lanes 4, 5, 6 versus lanes 1, 2, 3).
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E2F-1, a basic HLH domain-containing transcription factor that is essential to 

mediate DNA damage-induced apoptosis (Norbury and Zhivotovsky, 2004). Since 

a prominent feature of Id1 function is to inhibit the transcriptional activities of basic 

HLH proteins, Id1 might prevent cell death by binding to E2F-1 or its dimerization 

partners thus disrupting E2F-1 function.  

 

The functions of Id1 in other lung cell types 

Besides the processes of vascular development presented in Chapter 2, Id 

proteins are also involved in the development of the nervous system and the 

immune system, as revealed by analysis of Id1 and Id3 knockout mice (Lyden et 

al., 1999). Therefore, in order to expand our knowledge on Id proteins in lung 

development, efforts should be geared toward investigating the requirement of Id 

proteins in the generation and/or maintenance of other lung cell types during 

development. Neural network development in the embryonic lung progresses in 

parallel with endothelial morphogenesis (Tollet et al., 2001). I found elevated Id1 

and Id3 expression in the lung mesenchyme where neurogenesis occurs, 

suggesting that Id functions may be required for the development of the nervous 

system in the lung, similar to the embryonic brain (Fig 2.1). Examination of neural 

cell distributions in Id1-/-Id3-/- double knockout lungs using different neuronal 

markers may reveal the importance of Id proteins in neurogenesis during lung 

development. 
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The lung endothelium, when subjected to acute injury, undergoes 

extensive cell apoptosis, as revealed by our studies in Chapter 3. However, little 

or no proliferative activity was detected in resident lung endothelial cells of the 

injured lung. Therefore, I reason that in order for the lung tissue to survive the 

acute damage, which can potentially lead to respiratory failure, the lung 

endothelium must possess a mechanism to replenish depleted endothelial cells 

from sources outside of the lung. Recent studies have shown that repair of lung 

endothelium can be achieved by recruitment of blood-borne endothelial progenitor 

cells (EPCs) which are unique types of cells with angiogenic properties that home 

to sites of endothelial injury (Asahara et al., 1999; Burnham et al., 2005; Chinoy et 

al., 2005; Khakoo and Finkel, 2005; Takahashi et al., 1999; Yamada et al., 2005). 

The potential role of circulating EPCs in acute lung injury and pulmonary fibrosis 

has opened up a new paradigm for investigative research in acute lung injury and 

fibrotic lung diseases. However, the mechanism of EPC cell recruitment remains 

poorly understood. I contemplate the possibility that increased endothelial injury in 

Id1-/- lung may require enhanced recruitment of circulating EPCs for vascular 

repair, however, lack of Id1 function in EPCs may also affect the repair 

mechanism (Lyden et al., 2001). Recently, by using a GFP-marked EPC 

engraftment procedure in mice followed by treatment with bleomycin, it was 

demonstrated that EPCs derived from outside of the lung do contribute to 

pulmonary endothelial repair (Asahara et al., 1999). Using a similar approach to 
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introduce GFP-marked wildtype or Id1-/- EPCs into injured lungs, we may reveal 

novel functions of Id1 protein in endothelial progenitor cell recruitment during 

acute lung injury. 

Delineating the origins of effector fibroblast populations in the lung will 

provide important insights into the pathogenesis of lung fibrosis. Currently, two 

sources for lung fibroblasts have been shown to significantly contribute to lung 

fibrosis: circulating fibrocytes (Garantziotis et al., 2004) and proliferating resident 

fibroblasts. Although the lung alveolar epithelial cell can transdifferentiate into 

fibroblast, its relative contribution to lung fibrosis remains to be determined (Kasai 

et al., 2005; Willis et al., 2005). As shown in previous studies, endothelial cells 

have the capacity to differentiate into smooth muscle cells (Arciniegas et al., 1992; 

Frid et al., 2004; Frid et al., 2002; Ishisaki et al., 2003), suggesting that endothelial 

cells may be another potential source of lung fibroblast contributing to 

fibrogenesis. In light of the role of Id1 as an inhibitor of myofibroblast 

differentiation, I contemplate the possibility that endothelial expression of Id1 

upon injury may also help prevent endothelial-to-fibroblast transdifferentiation. 

Using lung microvascular endothelial cells (LMVEC) isolated from wildtype or 

Id1-/- mice, we can examine the potential of Id1-/- endothelial cells to differentiate 

into α-SMA-positive cells upon TGF-β stimulation. Furthermore, using 

Tie1Cre-GFP transgenic mouse line that faithfully marks cells of endothelial origin 

(Gustafsson et al., 2001), we can assess the extent of endothelial-to-fibroblast 
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transdifferention in intact wildtype and Id1-/- lungs under pathological conditions 

and the contribution of Id1 in this process. 

Id1 has been shown to be moderately expressed in a subgroup of immune 

cells such as the macrophages and granulocytes (Leeanansaksiri et al., 2005). An 

association between loss of Id function and deregulated inflammatory cell 

differentiation has also been reported (Benezra et al., 2001; Leeanansaksiri et al., 

2005; Norton, 2000) Therefore, although our current studies focus on the role of 

Id1 protein in endothelial cell integrity and survival, the possibility remains that 

altered inflammatory response in challenged Id1-/- mice, can contribute, at least in 

part, to increased lung injury and fibrosis. In order to address this question, it is 

possible to analyze the population of inflammatory cells in Id1-/- lung alveolar 

space and interstitium compared with wildtype at 3, 7,14 and 21 days after 

bleomycin instillation. Differential cell counts in the fraction of eosinophils, 

neutrophils and macrophage/monocytes will reveal possible contribution of Id1 

function in immune response processes during bleomycin-induced injury. 

 

Potential upstream signaling pathways regulating expression of Id proteins  

The upstream signaling pathways that regulate Id gene expression during 

lung development and, in particular, in disease progression remain largely 

unknown. However, considerable work has been focused on the signals 

controlling expression of the Id genes in diverse cell types in vitro. Although the 
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expression of Id genes are likely stimulated by various factors, Bone 

morphogenetic proteins (Bmps) play a major role in regulating Id expression 

(Miyazono and Miyazawa, 2002). Bmps can induce the expression of Id1, Id2 and 

Id3 in a Smad-dependent manner in several established cell lines (Hollnagel et al., 

1999; Miyazono and Miyazawa, 2002; Ogata et al., 1993). Analysis of the Id1 

promoter revealed that it contains two Bmp-responsive sites, one of which 

contains CGCC sequence elements flanked by CAGC motifs and the other one 

harbors two Smad-binding elements (SBEs). Activation of the Id1 promoter upon 

treatment with Bmps demonstrated that Id1 is a direct target of Bmp signaling 

(Korchynskyi and ten Dijke, 2002).  During embryonic lung development, Bmp4, 

a member of the Bmp protein family that is most extensively studied in lung 

morphogenesis, is expressed in the distal epithelium at high level and subjacent 

mesenchyme at lower level (Bellusci et al., 1996). These Bmp4 signaling domains 

overlap extensively with Id1 and Id3 expression in the mesenchyme and Id2 

expression in the epithelium. In addition, our Bmp4-bead implantation experiment 

also revealed that addition of Bmp4 protein in embryonic lung mesenchyme 

significantly upregulates Id1 and Id3 expression (Fig. 6.2). Taken together, these 

lines of evidence indicate that the Id proteins are likely under direct regulation by 

Bmp proteins in the embryonic lung to transduce Bmp-regulated biological effects. 

Although direct correlation between Bmp signaling and lung injury and 

fibrogenesis has not been established, related studies suggest that Bmps may be 
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Fig 6.2 Ectopic Bmp4 signaling in distal lung mesenchyme induces
Id1 and Id3 gene expression.
Human recombinant BMP4 protein soaked bead (arrows) or BSA soaked
bead (arrowheads) were implanted into mesenchymal layers at similar
locations of E11.5 WT lungs. Lungs were collected 24 hours after culture
and analyzed for Id1 (A) and Id3 (B) expression by whole-mount in situ
hybridization.

A B
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actively engaged in the pathogenesis of fibrosing diseases. Bmp7 signaling has 

been implicated in the attenuation of kidney fibrosis by restoring and maintaining 

renal epithelial phenotype via down-modulation of epithelial-to-mesenchymal 

transition induced by TGF-β1 (Morrissey et al., 2002; Zeisberg et al., 2003). 

Therefore Bmp-mediated signaling may be a critical component pathway involved 

in lung injury and fibrosis. Vascular endothelial growth factor (VEGF) has also 

been shown to induce Id1 and Id3 in human umbilical vascular endothelial cells 

(HUVECs) (Sakurai et al., 2004) and hematopoietic cells (Lyden et al., 2001). 

Since VEGF is renowned for its role in endothelial survival and its involvement in 

endothelial injury (Fehrenbach et al., 1999; Gupta et al., 1999; Hamada et al., 

2005; Koyama et al., 2002; Meyer et al., 2000), VEGF may be another potential 

Id1 inducer. Another example is fluvastatin, a 3-hydroxy-3-methylglutaryl 

coenzyme A (HMG-CoA) reductase inhibitor with pleiotropic effects on cellular 

metabolism. Several reports indicate that fluvastatin can act as antioxidant and an 

effective inhibitor against lipid peroxidation (Suzumura et al., 2001; Suzumura et 

al., 1999; Yamamoto et al., 1998; Yamamoto et al., 2001). Interestingly, Id1 has 

been shown to be upregulated by fluvastatin in human dermal microvascular 

endothelial cells (Pammer et al., 2004). However, it remains to be determined if 

fluvastatin can upregulate Id1 in the lung endothelium and since this drug is known 

for its pleitropic effects, its cell-specific mechanism of action should be carefully 

examined.  
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Wildtype mice display endothelial damage and fibrosis, albeit less severe than 

Id1-/- mice, suggesting that increase in Id1 level above baseline in 

bleomycin-challenged wildtype lungs is not sufficient to provide full protection. 

This point raises an important issue as to whether there exists a competition or 

balance in vivo between Id1-inducing and Id1-repressing mechanisms upon lung 

injury. It is possible that the level of Id1 upregulation we observed upon challenge 

does not reflect maximally induced Id1 levels due to coexisting Id1-repressing 

signals. While the Id1-inducing and protective mechanism promotes the 

maintenance of endothelial cell function, antagonistically, the persistence of 

pro-inflammatory cytokines may downregulate Id1 expression, thus promoting 

endothelial dysfunction, vascular leakage and fibrosis. Signaling mediated by 

TGF-β1 and TNF-α are known to play key roles in many types of lung diseases 

including bleomycin-induced pneumopathy in animal models (Bartram and Speer, 

2004; Cutroneo and Phan, 2003; Nakao et al., 1999; Pittet et al., 2001; Santana et 

al., 1995; Wang et al., 2002; Zhao et al., 2002). TGF-β activated Smad2/3 and 

stress-induced signalings are believed to mediate lung fibrogenesis in 

bleomycin-treated animals (Phan and Kunkel, 1992; Wang et al., 2002; Zhao et 

al., 2002). Interestingly, TGF-β1 can exert long-term repression of Id1 expression 

in a number of cell types including endothelial cells, suggesting that TGF-β can 

potentially contribute to the downregulation of Id1 expression during lung fibrosis.  

TNF-α signaling has also been implicated in the regulation of Id expression 
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in astrocytes during inflammatory injury of the central nervous system (Goumans 

et al., 2002; Kang et al., 2003; Tzeng et al., 1999). One of the key downstream 

components of TNF-α is mediated by p38 MAPK, which has been shown to 

directly downregulate Id1 expression in epithelial cells (Kang et al., 2003). 

Activation of p38 MAPK has been demonstrated in various disease models 

involving vascular injury and pulmonary fibrosis and p38 MAPK inhibitors can 

reduce the severity of the disease condition (Ju et al., 2002; Mackay and 

Mochly-Rosen, 1999; Matsuoka et al., 2002). p38 MAPK activation in endothelial 

cells of IPF patients was found to occur at an intermediate stage of fibrosis 

(Yoshida et al., 2002). Activation of p38 MAPK has been reported in human 

pulmonary microvascular endothelial cells (HMVEC) upon exposure to bleomycin 

indicating a key role of stress-induced p38 MAPK in lung microvascular 

endothelium (Fichtner et al., 2004). p38 MAPK can mediate TNF-α-induced 

microtubule rearrangements and increase in lung vascular permeability and 

endothelial barrier dysfunction and SB203580, a p38 MAPK inhibitor, can rescue 

TNF-α-induced cellular changes (Goldblum et al., 1993; Goldblum et al., 1994; 

Petrache et al., 2003). p38 MAPK has also been implicated in lung endothelial 

barrier dysfunction by modulating microtubule disassembly (Birukova et al., 2005). 

These observations indicate a key role of p38 MAPK in lung endothelium in 

response to stress. Speculatively, one consequence of TNFα signaling and p38 

MAPK activation in the course of lung injury is the downregulation of Id1, which 
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must be counteracted and counterbalanced by inducers of Id1 expression. My 

preliminary studies indicating that TNF-α mediated signaling can downregulate 

Id1 expression in cultured LMVECs in a p38 MAPK-dependent manner (Fig. 6.3) 

set the stage for investigating the role of p38 MAPK signaling in regulating Id1 

expression in vivo. Future studies using a combination of biochemical, molecular 

and genetic approaches will advance our understanding of the regulatory 

mechanisms underlying Id1 expression and function in the pathogenesis of acute 

lung injury and fibrosis. 
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