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CHAPTER I 

 

INTRODUCTION 

 

Objective 

The overarching goal of this research is to improve the care of critically ill 

patients via novel physiologic data capture and decision support tools.  Dense physiologic 

data capture, or the automated, reliable, second-by-second archiving of patient vital 

signs, provides amounts of data that greatly exceed that of traditional recording methods.  

Studying this data may yield new algorithms, or “vital signs”, that predict patient 

outcome, clinical trajectory (improvement, stability, or deterioration) and stratify patients 

based on acuity, cost, or suitability for particular interventions.  The corresponding 

research hypothesis is that these new vital signs, available through techniques of dense 

physiologic data capture and automated analysis, will inform medical decision-making in 

clinically significant, cost-effective ways. 

Thus, this work seeks to bridge discovery of new algorithms based on dense 

physiologic data with their clinical application as new vital signs.  The first prototype 

new vital sign presented is heart rate variability (HRV), and the domain of intracranial 

pressures (ICP) management is used to illustrate decision-support technology based on 

dense physiologic data.  The following specific aims demonstrate how HRV and 

potentially other new measures can be discovered and implemented in a working 

intensive care unit (ICU).   
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Specific Aims 

Specific Aim 1.  Design and implement an architecture for automated dense physiologic 

data capture, display, and decision support in a working ICU: Commercial patient 

monitoring systems do not provide the long-term dense (i.e. second-by-second) data 

storage or custom signal processing capabilities required by this work.  Assessing new 

algorithms requires data from clinical populations large enough to provide sufficient 

statistical power, and therefore requires information storage beyond the typical 48 to 72 

hours provided by commercial systems.  Providing effective decision support to 

clinicians based on new algorithms entails computations beyond the threshold and simple 

trend detection capabilities currently available on the market.  Finally, data capture, 

storage, and processing must be automated, as a significant contribution of this work is to 

demonstrate feasibility in a working ICU.  The first aim of this research is to develop and 

implement infrastructure for automated dense physiologic data capture, processing, and 

display.   

Specific Aim 2.  Illustrate medical decision support based on dense physiologic data 

capture, and assess impact on patient care: Information technology improves patient care 

to the extent it improves medical decision-making.  Today’s commercial systems provide 

limited clinical decision-support in terms of physiologic information display, event 

detection, or alerting.  Because customizing these systems is expensive or impossible, 

novel tools will be needed to bring this information to the clinician once new algorithms 

based on patient physiology have been clinically validated.  The second aim of this work 

is to demonstrate detailed, summary-level displays based on dense physiologic data, and 

to assess clinical alerts in the domain of ICP management. 
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Specific Aim 3.  Demonstrate new measurements derived from dense physiologic data 

that stratify patients by outcome, acuity, or adverse events: Decades of research suggest 

that densely-sampled physiologic data will yield clinically significant information 

unavailable via conventional monitoring techniques.  Such analysis will provide new vital 

signs that stratify patients into populations of clinical interest, predicting mortality or 

adverse events in time for introduction of new therapy.  However, a number of barriers 

exist to validating research findings in large clinical populations.  The final aim of this 

research is to illustrate the “proof of concept” that one new vital sign, HRV, can be 

applied to stratify patients by outcome and acuity in clinically significant, cost-effective 

ways. 

 

Significance 

 Fundamental clinical approaches for assessing vital signs have changed little since 

1903, when Cushing asserted the importance of periodically measuring a patient’s heart 

rate and blood pressure1.  While technology has improved sampling methods and added 

parameters to the milieu, interpreting patient physiology remains largely a manual, 

intermittent process.  Ephemeral measurements of flows, pressures, and electrical activity 

within the body are dutifully recorded by nursing staff, but only in the most urgent 

circumstances is data recorded, or even reviewed, more than once per hour. 

More frequent sampling and automated processing of physiologic data yields 

significant new information, as evidenced by a growing body of research.  When coupled 

with electronic decision support tools, such information potentially improves quality and 

efficiency of medical care.  In the intensive care unit, where acuity and costs are the 
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highest in the health care system, even modest improvements can yield significant 

savings.  

 Initiating these improvements requires overcoming technical, scientific, and 

cultural barriers.  In the short-term, this work is significant in that it provides a road map 

to overcome these barriers, and consequently, contributes to the fields of medical 

informatics, physiology, and surgical critical care.  A low-cost system for automated, 

continuous, dense physiologic data capture and decision support in a working ICU is 

described.  The system has been in use continuously since 2000 on more than 3500 

patients, and has been successfully deployed at a second clinical site.  Additionally, a 

measurement of HRV has been developed, refined, and validated in a population of over 

1000 patients.  The result is not only a new predictor of mortality but also represents 

proof of concept that a working intensive care unit can serve as a rich, “automatic” source 

of data to discover new predictive patterns in patient physiology. 

Ultimately, study of HRV and other “new vital signs” may correlate failure of the 

autonomic nervous system or other neural and hormonal communication pathways with 

specific injuries, diseases, or patient characteristics.  These studies could, in turn, 

illuminate regulatory mechanisms uniting systems, organs, cells, proteins, and genes.  

Such knowledge provides a basis for additional basic science research, and informs 

design of the next generation of ICU decision support tools to improve quality and 

efficiency of heath care. 



 5

Background 

 

ICU Decision Support Based on Physiologic Data 

Many systems have been conceived to collect and process bedside medical device 

data with the ultimate goal of improving medical decision-making.  Customized 

computer systems have been used to collect and manage physiologic data from critically 

ill patients as early as the mid-1960’s2, and continue to be reported in the literature3-9. 

Generic decision-support models and monitoring frameworks have been defined 

specifically with dense physiologic data in mind10-14.  However, few systems employing 

complex, generic decision support models have reached routine clinical use.  More 

successful implementations are restricted to specific problem domains such as 

ventilator15-19 and drug infusion20-21 management, even to the point of fully automatic 

“closed loop” control of these devices22-23.   

Other systems, without extensive decision support models, have successfully 

delivered clinical alerts beyond those available from commercial monitors24-26, or 

captured dense physiologic data to support specific clinical research, i.e.27-29, and 

documentation30 needs.  Physiologic data capture systems have been deployed to improve 

operational efficiency by making medical monitor data available remotely31-32.  Gardner 

and colleagues demonstrated many of these advancements as early as the 1970’s with the 

University of Utah’s HELP system33, and commercial solutions now offer significant 

capabilities. 

However, most research or commercial systems that provide ICU decision 

support based on physiologic data do not archive data at high frequencies.  Data is either 
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down-sampled prior to storage, or episodically archived at high density when resources 

and specific research needs align.  Medical documentation requirements, as well as some 

decision support and clinical research needs, have been well-served by these systems.  

Other needs related to discovering and validating new physiologic measurements in large 

clinical populations remain largely unmet. 

 

New Vital Signs 

New vital signs are measurements based on densely-captured physiologic data that 

provide additional clinically significant, cost effective information for medical decision 

making.  A large body of research suggests that these measurements exist and correlate 

with specific pathophysiology.  For example: heart rate variability has been associated 

with onset of sepsis26-27, 34-36, multiple organ dysfunction syndrome37-38, myocardial 

infarction39-41, and elevated intracranial pressure29; relationships between arterial and 

intracranial pressure may predict loss of cerebral autoregulation42-43; pulmonary emboli 

might be detected early based on characteristics of the pulmonary artery pressure 

waveform44; pulsus paradoxus, a phenomena observed by measuring the variation in 

blood pressure with respect to respiratory waveforms, is associated with a number of 

diseases45; and finally, other measurements relating blood pressure variability to 

respiration might be useful in assessing a patient’s intravascular volume status46-47.   

However, these results are usually obtained in relatively small clinical populations 

using expensive, customized equipment and complex analytic tools.  Proving that these 

measurements are indeed new vital signs, e.g. that they provide additional clinically 

significant, cost-effective information has been challenging.  Measurements must be 
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scientifically validated in representative patient populations and incorporated into clinical 

workflows, but most commercial monitoring systems do not provide such measures, or 

even easy access to the underlying physiologic data needed to compute them.  The need 

to build custom systems to collect and process data is a significant barrier to research and 

deployment, and has motivated development of shared repositories of data and processing 

tools48.  While such repositories facilitate research, findings remain difficult to validate 

prospectively in clinical settings. 

As such, even traditional vital signs and the relatively simple trend and threshold-

based alerting algorithms available from modern ICU monitors remain largely unstudied 

in a rigorous scientific fashion.  It is not surprising that more than half of alarms 

generated by commercial ICU systems are of dubious value49-50, and that controversy 

occasionally arises over use of certain physiologic monitoring modalities such as 

pulmonary artery catheterization51 and continuous fetal monitoring52. 

 

Physiologic Regulation in the Critically Ill 

 Potentially, new vital signs provide additional clinical information by reflecting 

the state of underlying physiologic regulatory mechanisms.  Aberrations in 

communication pathways uniting systems, organs, cells, proteins, and genes may be 

signaled by new vital signs long before traditional measures show derangement.  Critical 

illness may cause these effects directly, or expose pre-existing deficiencies in certain 

individuals as a result of additional physiologic stress. 
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For example, changes in heart rate variability (HRV) appear to be common in the 

critically ill53-54, and are likely due to compromised neuroendocrine regulatory 

mechanisms, including the autonomic nervous system.  Possible causes include the 

primary injury (i.e. head trauma29,55) as well as a number of secondary effects and 

complications listed above.  Failure of regulatory mechanisms, either in the controlling 

“center”, intermediate communication pathways, or affected organ, is a likely explanation 

for these effects.  As organs become uncoupled in the critically ill, physiology changes. 

Only recently has this uncoupling hypothesis been widely articulated and 

considered by intensivists as a unifying mechanism for understanding pathophysiology of 

the critically ill56-57.  Clinical deterioration or improvement has been thought of as a 

continuous progression, and may appear as such when traditional vital signs are 

considered.  However, it is becoming more and more likely that the body actually 

progresses through multiple physiologic states (“quanta”) as individual, then multiple, 

organs become uncoupled or re-coupled.  A potential role for new vital signs is to 

identify, characterize, and predict these “quantum” physiologic states in clinically 

significant, cost-effective ways.   
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Abstract 

SIMON (Signal Interpretation and MONitoring) continuously collects, 

permanently stores, and processes bedside medical device data.  Since 1998 SIMON has 

monitored over 3500 trauma intensive care unit (TICU) patients, representing 

approximately 250,000 hours of continuous monitoring and two billion data points, and 

is currently operational on all 14 TICU beds at Vanderbilt University Medical Center.  

This repository of dense physiologic data (heart rate, arterial, pulmonary, central venous, 

intracranial, and cerebral perfusion pressures, arterial and venous oxygen saturations, and 

other parameters sampled second-by-second) supports research to identify “new vital 

signs” - features of patient physiology only observable through dense data capture and 

analysis - more predictive of patient status than current measures.  SIMON’s alerting and 

reporting capabilities, including web-based display, sentinel event notification via 

alphanumeric pagers, and daily summary reports of vital sign statistics, allow these 

discoveries to be rapidly tested and implemented in a working clinical environment.  This 
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manuscript details SIMON’s technology and corresponding design requirements to 

realize the value of dense physiologic data in critical care. 

 

Introduction 

Fundamental clinical approaches for assessing vital signs have changed little since 

1903, when Cushing asserted the importance of periodically measuring a patient’s heart 

rate and blood pressure1.  While physiologic parameters have been added to the milieu, 

assessment remains largely a manual, periodic process.   

A growing body of research suggests value in automated analysis of continuously 

sampled data.  For example: Heart rate variability has been associated with onset of 

sepsis2-6, multiple organ dysfunction syndrome7-8, myocardial infarction9-11, and elevated 

intracranial pressure12; Relationships between arterial and intracranial pressure may 

predict loss of cerebral autoregulation13-14; Pulmonary emboli might be detected early 

based on characteristics of the pulmonary artery pressure waveform15.  Despite 

convincing research results from animal experiments and small clinical studies, these and 

similar observations remains largely unrealized in patient care.   

Clinical adoption requires not only compelling scientific evidence from relevant 

patient populations, but also affordable solutions that can be practically implemented at 

the bedside.  To date, technical, economic, and social barriers have made such advances 

difficult.  Commercial monitoring systems do not adequately analyze physiologic signals, 

or store data for extended periods of time for off-line analysis without extensive 

customization.  As such, even relatively simple trends in vital signs clearly requiring 

clinical attention may go unnoticed due to human inability to process information in busy 
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clinical settings16, especially in the ICU where many automated alerts based on 

physiologic trends or thresholds are of dubious value17. 

A number of custom-built systems collect and process bedside medical device 

data with the ultimate goal of improving medical decision-making.  Also, generic 

decision-support models and monitoring frameworks have been defined specifically with 

dense physiologic data in mind18-22.  However, few systems employing complex, generic 

decision support models have reached routine clinical use.  Other systems, without 

extensive decision support models, have successfully delivered clinical alerts beyond 

those available via bedside physiologic monitors23-25, sampled and archived dense 

physiologic data to support clinical research26-29, or made medical monitor data available 

remotely30-31.  Gardner and colleagues demonstrated many of these advancements as 

early as 1972 with the University of Utah’s HELP system32, and commercial solutions are 

beginning to offer many of these capabilities.   

Unfortunately, commercial solutions are not widely realized until years after 

technology becomes available for purchase, often decades after research first suggests 

clinical value.  Regulatory requirements and market forces limit vendors’ ability or 

willingness to rapidly provide new features.  Fiscal as well as human-factors constraints 

prevent customers from adopting new monitoring technology as it becomes available.  

This delay, as Goldstein and colleagues note, means “a wealth of potentially valuable 

information that may affect clinical care remains largely an untapped resource”26.  

Clinicians and researchers wishing to leverage this resource are faced with building 

custom systems.  Such systems have been technically described in the literature as noted 



 17

above, but few of these reports detail functional requirements needed to support clinical 

and/or research use of dense physiologic data.   

Given ongoing changes in technology, these functional, as opposed to technical, 

details may be more relevant to those building or buying similar systems.  This 

manuscript describes functional requirements encountered over the past ten years in our 

work on the SIMON project, solutions, and examples of how SIMON captures, stores, 

processes, and delivers data to meet those needs.  These requirements provide a starting 

point for others to define needs based on specific goals and resources. 

 

Design Considerations 

A variety of clinical and research needs inform SIMON’s design.  The following 

functional requirements are correspondingly wide in scope but incomplete; SIMON 

continues to evolve as requirements expand and as new technology becomes available.   

 

Data Capture 

Acquiring physiologic data from bedside medical devices is the fundamental 

requirement of SIMON or similar systems.  Ideally, data capture is accurate, reliable, 

and complete.   Accuracy requires not only sampling correct values of physiologic 

parameters or waveforms, but also recording the time of each sample.  In the case of 

multiple waveform data capture requiring calibration or high-frequency sampling (i.e. 

EKG waveform at 500 samples/second), these tasks can be non-trivial.  Technically, high 

reliability requires robust data acquisition programming as well as system monitoring 

routines to detect unforeseen errors and alert technical staff.  Finally, capturing all 
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parameters and waveforms simultaneously remains unrealistic for most applications.  The 

scope, frequency, and duration of physiologic sampling are largely determined by 

specific needs.   

 

Data Storage 

Stored physiologic data must be accessible and identifiable by patient.  The main 

design trade-offs in data storage involve size, speed of access, portability, and cost.  For 

example, ASCII text files are simple to create, highly portable, and easy to access, but 

generally make inefficient use of disk space.  Conversely, binary files or databases might 

make more efficient use of space, but require specialized, potentially expensive tools or 

knowledge to access.   

Regardless of storage technology, data must be linked to individual patients.  

While the time and bed number of any data point can be determined automatically, 

identifying the bed occupant requires manual input.  This can cause substantial difficulty; 

the patient’s identity may not be entered promptly or accurately, or might not be changed 

as patients move in and out of beds, causing one patient’s data to be recorded as 

another’s. 

 

Clinical Reports 

Continuous data capture stores up to several hundred thousand data points from a 

single patient each day; effective summaries of this data are essential if continuous 

physiologic data is to be useful in patient care.  Generally, a report should be relevant and 

efficient, presenting only information required to support decision-making in a way that is 
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easily accessed and interpreted.  Dense physiologic data presents unique challenges since 

the optimal parameters, computed measurements, and most efficient display methods 

remain largely undefined.  We are only beginning to rigorously study the value of 

measuring central tendency, statistical variation, and waveform characteristics of single 

vital signs in terms of their ability to predict outcome or adverse events in large clinical 

populations, not to mention more complex measures or interactions between multiple 

vital signs or the significance of changes in these measures over time.  As such, while 

reports based on dense physiologic data must be relevant and efficient, they should also 

be adaptable to evolving research and clinical needs. 

 

Clinical Alerts 

Effectively detecting critical physiologic values and trends remains difficult.  

Most bedside monitors alert to short-term critical values via threshold settings, but 

longer-term trends, or abnormality characterized by trends in multiple variables or more 

complex measures, remain undetected by current technology.  In addition, noise in 

certain signals may require substantial filtering.  Systems like SIMON can provide 

advanced alerting capability to combat desensitization that may occur in observing long-

term adverse trends, or due to the high false positive rate of bedside device alarms.  

Obviously such alerts should be sensitive and specific, but they must also be 

customizable and efficient.  Customization by patient is required since it is unlikely that a 

physiologic alert based on universal characteristics of a single parameter will be 

sufficiently sensitive or specific over all patients, in all situations.  A simple example of 

the need for customization is a patient who has end of life directives in place, and for 
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whom alerts are no longer clinically relevant.  Efficiency is required since, unlike a report 

that is sought out by the care provider at his/her convenience, an alert requires immediate 

attention at the cost of interrupting existing workflow.  Alerts can be made more efficient 

by grouping simultaneous alerts together for notification, or by alerting higher-level 

decision makers only after attempts to notify primary staff.  Finally, as noted above alerts 

must be flexible since effective alerting algorithms based on dense physiologic data 

remain largely undefined. 

 

Research Support 

Data storage requirements, described above, provide much of the capability for 

research based on dense physiologic data.  Additional requirements for research purposes 

include that the data be linkable by episode of care to other data sources, and easily de-

identified.  Research efforts typically link other sources of data to study effects of 

physiology on patient outcomes, for example, and patient confidentiality requires that 

identifiers be removed prior to analysis.  In addition, on-line tools to analyze physiologic 

data are useful in discovering areas for further analysis, and for developing clinical alert 

definitions, i.e. determining how many alerts would be generated for a particular 

candidate event, and how the frequency of alerts changes as event parameters vary. 

 

System Monitoring 

Automated physiologic data collection systems must be regularly monitored to 

ensure reliable performance; both the technology and supporting human processes like 

patient identification and mobile device connection should be assessed.  These 
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monitoring requirements are often overlooked, and are critical to fully realize the value of 

SIMON and similar automated, continuous physiologic data systems. 

 

System Description 

 SIMON’s current implementation represents one of many possible solutions to the 

needs described above, and has been implemented in a working trauma ICU since 1998.  

This section describes SIMON’s current implementation and our use of the system to 

date. 

 

System Architecture 

Since the earliest UNIX-based versions of the system33-34, modular design has 

been the hallmark of SIMON’s architecture.  Individual software components perform 

data capture, storage, analysis, and management functions.  Modularity, combined with 

use of standard underlying communication protocols between components, enables: 1) 

Efficient distribution of system components over various computing platforms as the 

system grows; 2) Modification or addition of new components with minimal impact on 

existing functions; and 3) Robust operation, since failure of an individual component has 

minimal impact on other parts of the system.  SIMON’s current components, and their 

deployment over various computing systems, are shown in Figure 2.1.  Detailed 

descriptions of architecture components follow. 
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Figure 2.1: Current SIMON Components and Architecture.  Grey arrows show 
communication paths between components.  Bedside devices (left) interface to data 
collection modules via RS-232 over TCP/IP (Digi International, Minnetonka, MN).  All 
data is routed from data collection components to the Data Concentrator via the SIMON 
Packet Format, a UDP-based protocol specifying time, bed number, parameter name, and 
value.   The Data Concentrator stores all data to the SIMON Database via an Open 
Database Connectivity (ODBC) interface.  Numerous other system components then 
access this data via ODBC to perform analysis and system management functions.  
Notifications are sent to alphanumeric pagers and email via Simple Network Paging 
Protocol (SNPP) and Simple Mail Transport Protocol (SMTP), respectively.  Interfaces to 
the institution’s admission-discharge-transfer (ADT) tracking system and electronic 
medical record (EMR) are implemented via secure file transport protocol (sFTP). 
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Data Capture 

SIMON achieves accurate, reliable data capture through independent software 

modules running on a remote central server.  Data capture is complete and fully 

automatic with respect to numeric parameters; waveform capture is possible, but requires 

manual intervention to select waveform channels and start and stop the acquisition 

process.  Bedside equipment connections are made via the institution’s local area 

network, using devices at each bed to translate medical device (RS-232) formats to 

network (Ethernet) formats.  Every physiologic monitor on our trauma unit is 

permanently connected to SIMON.  Nurses connect mobile devices using color-coded, 

connector-specific cables.   

Data sampled through these connections is time-stamped by individual data 

collection modules, and then relayed to a central concentrator for relational database 

storage (see Figure 2.1).  Individual data collection modules are continuously monitored 

by a “watchdog” program (“System Manager” in Figure 2.1); if a problem is detected the 

individual module is restarted without affecting data collection from other beds or 

devices.  In this way, SIMON automatically and continuously captures all numeric 

parameters from bedside physiologic monitors and any portable cardiac monitors over 14 

TICU beds.  Table 2.1 lists all physiologic parameters routinely captured by SIMON. 
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Table 2.1: Parameters Captured by SIMON Second-by-Second. 

Bedside Physiologic Monitor (Hewlett-Packard/Philips) Parameters & Units 

Heart Rate beats/min. 

Respiration Rate breaths/min. 

Arterial Pressure: Systolic, Diastolic, Mean mmHg 

Pulmonary Arterial Pressure: Systolic, Diastolic, Mean mmHg 

Non-Invasive (cuff) Blood Pressure: Systolic, Diastolic, Mean mmHg 

Central Venous Pressure mmHg 

Intracranial Pressure mmHg 

Cerebral Perfusion Pressure mmHg 

Arterial Oxygen Saturation % 
 

Cardiac Monitor (Baxter Vigilance) Parameters & Units 

Continuous Cardiac Output (and Index) l/min. (l/min./m2) 

End Diastolic Volume (and Index) ml (ml/m2) 

End Systolic Volume (and Index) ml (ml/m2) 

Venous Oxygen Saturation  % 

Blood Temperature degrees C 

Heart Rate beats/min. 
 
 
 
Data Storage 

Since December 2000 SIMON has stored all parametric data in a relational 

database (SQL Server, Microsoft), in tables corresponding to individual parameters.  As 

shown in Figure 2.1, a single component, the Data Concentrator, receives data from 

multiple individual data collection modules, then formats and stores it in the database.  

The Data Concentrator adapts sampling rate in response to database load, so not every 



 25

sample is stored if the database system becomes busy with other tasks.  Sampling period 

varies from one to four seconds, depending on bed occupancy and number of monitored 

parameters, with an average period of less than two seconds.  Within the database, data is 

divided into two groups of tables to allow for rapid access to very recent data while 

maintaining space efficiency for long-term storage.  Recent data is stored in tables with a 

single record corresponding to each sample, allowing easier access for tasks including 

event detection and graphical displays.  Periodically, the Database Manager automatically 

groups data from these tables into five-minute intervals.  All data from the interval is 

encoded and stored in a single record along with basic statistics over that interval, 

providing more efficient long-term storage.  The two record formats are shown in Figure 

2.2. 
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Figure 2.2: Format of Single-Valued SIMON Physiologic Database Records.  
Periodically, data in “recent” format tables (one record per data point) is analyzed and 
grouped into “long-term” tables (one record per 5 minutes of data).  Separate tables are 
maintained for each parameter.  All original data is maintained.  Multi-valued parameters 
(i.e. pressures with systolic, diastolic, and mean components) are stored in similar tables 
with additional fields. 
 
 
 

Additional database tables associate individual patients with particular beds.  

SIMON accurately determines bed occupancy by monitoring census information from the 

hospital’s admission-discharge-transfer (ADT) system, with manual verification by unit 

staff whenever data resumes from a particular bed following an interruption in data 

(indicating a possible change in bed occupancy).  A dedicated laptop displays bed 

occupancy at the nursing station (Figure 2.3), and prompts for confirmation when needed.  

Once identity is validated all data since the interruption is associated with that patient. 

 

LONG-TERM RECORD 
FORMAT 

Field Type 

utcIntervalStart datetime 

bed varchar 

value integer or numeric 

min integer or numeric 

max integer or numeric 

median integer or numeric 

mean float 

stDev float 

numPoints integer 

rawData varchar 

RECENT RECORD FORMAT 

Field Type 

utcTimeValid datetime 

Bed varchar 

Value integer or numeric
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Figure 2.3: Portion of SIMON Patient Identification Interface (4/14 Beds Shown).  In this 
example the patient in bed 10002 needs to be identified, which is accomplished by 
clicking on the red square and entering the patient’s medical record number.   
 
 
 
Clinical Reports 

SIMON reports physiologic data in both graphical and text formats.  Graphs of 

select parameters are accessible via a secure web site, and can be viewed from remote 

locations.  Graphs are refreshed minute by minute to reflect the most recent data from 

each patient, and can be viewed at several resolutions ranging from a full day to a one-

hour period.  Figure 2.4 shows data graphs for a single patient over a 24-hour period.   
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Figure 2.4: SIMON Data Graphs Over 24 Hours.  Parameters shown on upper graph: 
heart rate (red), systolic arterial pressure (blue, with mean in dark blue), pulmonary 
arterial pressure (green), end diastolic volume index (magenta), cardiac index (scaled 
x10, purple).  Parameters shown on lower graph: arterial O2 saturation (dark green), 
venous O2 saturation (light green), intracranial pressure (blue), cerebral perfusion 
pressure (orange). 
 
 
 

In addition to the on-demand graphs of patient physiologic data, text reports are 

automatically generated at predefined intervals based on flexible templates stored in the 

database.  These text reports contain a variety of summary statistics for one or more 

patients, formatted appropriately, as shown in Figures 2.5 and 2.6.  Templates reference 

database stored procedures, small programs contained within SIMON’s database, to 

generate individual numbers within the reports, such as mean heart rate for a patient 

during the reporting period.  Certain text reports are regularly sent to the institutional 

electronic patient record, which can also be viewed remotely via secure web interfaces.  
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The content or format of SIMON text reports can be changed by modifying the template 

or corresponding stored procedures, and new reports can be created by adding templates 

and new stored procedures if needed.  All text reports are generated based on events, 

which might be specified as the same time each day, i.e. for reports used in morning 

rounds, or a specific change in patient physiology, and are stored in the SIMON database. 

 

 

Figure 2.5: Portion of SIMON Daily Unit Summary Report (8/14 beds shown).  Bold 
indicates critical value, parentheses denote statistics computed based on data covering 
less than half of total monitored hours (“Mon. hrs.”) shown. 
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Figure 2.6: Portion of Individual Patient Daily SIMON Report in Institutional Electronic 
Medical Record (EMR) System.  Details of EMR interface not shown.  Range denotes the 
interval in which 98% of data is contained. 
 
 
 
Clinical Alerts 

SIMON uses a combination of event, alert, and notification templates stored in 

the database to realize flexible, efficient alerting.  Event templates specify a combination 

of one or more algorithms, implemented as database stored procedures, that define a 

potential alert condition, i.e. “Intracranial pressure above 25 AND cerebral perfusion 

pressure below 60”.  For each event, one or more alert templates define the duration that 

the event must occur before sending an alert, and the text of the alert message, i.e. “ICP > 

25 and CPP < 60 for MRN 123123 at bed 10001”.  Finally, for each alert, one or more 
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notification templates define the recipients of the alerts by alphanumeric pager number or 

other communication channels.  Figure 2.7 shows one such notification on an 

alphanumeric pager.   

 

 

Figure 2.7: SIMON Alphanumeric Pager Notification. 

 

Individual alerts can be specifically disabled or enabled for one or more patients, 

and each communication channel can be disabled for any period of time.  Finally, each 

communication channel can be set to group all alerts in a certain time period into a single 

notification, i.e. send an alphanumeric page for all alerts in a five minute period.  

Individual alerts can be configured to override this “batch” delivery, to ensure timely 

notification of short-term and/or potentially highly critical alerts.  All instances of events, 

alerts, and notifications are stored in the database.  Figure 2.8 illustrates how a single 

event might trigger multiple alerts, which, in turn, may result in multiple notifications. 
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Figure 2.8: Sample Event, Alert, and Notification Configuration. 

 

Research Analysis 

SIMON identifies individual patients by medical record number, and episode of 

care by the time data was collected as well as institutional case number.  These identifiers 

are stored in tables separate from physiologic data (linked by time and bed number) 

facilitating de-identification for research purposes.  Furthermore, every SIMON alert or 

report can be generated with all patient identifiers removed, for delivery to authorized 

research personnel not directly involved in patient care.  SIMON does not have on-line 

tools for extensive retrospective filtering or other research analyses; intensive queries can 

substantially reduce system performance, so data is extracted from the database to 

separate systems for analysis.  Efforts have begun to build a separate, de-identified 

database to facilitate on-line analysis without impacting performance of the clinical 

system. 
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System Monitoring 

SIMON provides a number of automated alerts and reports to ensure reliable 

operation.  Network, database, institutional data links, and server status are constantly 

monitored, with redundant paging systems to alert technical staff to problems.  Human 

processes, such as patient identification and mobile device connections are similarly 

monitored (lack of a connected bedside cardiac monitor can be automatically detected 

since a pulmonary pressure signal is present from the physiologic monitor, and in our 

institution all such patients receive additional cardiac monitoring) with corresponding 

alerts sent directly to unit staff.  Each week a number of reports are generated for review, 

including statistics of system and network uptime, total number of patients monitored, 

and bed occupancy and data collection rates.  Staff performance is also reported for 

patient identification and mobile device connections, including any related alerts and the 

time until corrective action was taken.  Table 2.2 lists representative values for many of 

the parameters monitored and reported to technical and administrative staff on a weekly 

basis. 
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Table 2.2: Select System Parameters Automatically Monitored on a Weekly Basis. 

Parameter Representative 
Value 

Percent network uptime 99.88 % 

Percent system uptime 99.95 % 

Number of patients monitored 36 

Total continuous monitored time (all 14 beds) 1856.4 hours 

Average monitored time per bed, per day 18.9 hours 

Total number of heart rate data points collected 5.25 million 

Average sampling period of heart rate data 1.27 seconds 

Bed occupancy percentage, according to monitor data 79.6 % 

Bed occupancy percentage, according to validated patient identity 78.9 % 

Percent of data reliably identified (via manual confirmation) 99.14 % 

Number of manual identification entries (confirmations) by shift 
and individual user 

1-11 entries 
(per shift) 

Number of reports generated and successfully delivered to 
individuals and institutional electronic medical record 108/108 

Number of clinical administrative alerts (device connections, 
patient transfers) generated and successfully delivered 26/26 

Number (and list) of individual recipients of all alerts and reports 18 

 
 
 

Current Status 

SIMON is currently implemented on all 14 trauma ICU beds at Vanderbilt 

University Medical Center.  This section describes the current status of the SIMON 

database, use of decision support tools, and ongoing research initiatives.  Costs in terms 

of equipment and system maintenance are also detailed. 



 35

The SIMON Database 

As of May 2005, SIMON’s database contains data from more than 3500 trauma 

ICU patients, representing approximately three billion physiologic data points and 

281,000 patient-hours of continuous monitoring.  The database occupies 23 GB of disk 

space.  Waveform data is not currently stored in the database, but streamed directly to 

files as needed for particular studies.  Roughly 70 patients are added to SIMON’s 

database each month, representing 50 million data points, 5500 patient-hours of 

monitoring, and 0.5 GB of database storage.  Data accrues automatically, with manual 

interaction required only to confirm patient identify and to connect portable bedside 

devices to the system.  Table 2.3 show statistics for select parameters in SIMON’s 

database, aggregated over all trauma patients in a recent 8 month period. 
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Table 2.3: Statistics for Select SIMON Physiologic Parameters, 7/1/04 – 2/28/05.  PAP = 
Pulmonary artery pressure, NIBP = Non-invasive blood pressure, AP = Arterial pressure.  
Patient-hours represents the total duration of data for that parameter, over all patients. 
 

Parameter Mean ± SD Patient-hours 

Systolic PAP 36.1 ± 15.0 mmHg 9429 

Mean PAP 26.3 ± 12.6 mmHg 9429 

Diastolic PAP 20.0 ± 11.9 mmHg 9429 

Systolic NIBP 124.5 ± 19.8 mmHg 35309 

Mean NIBP 80.5 ± 14.7 mmHg 35309 

Diastolic NIBP 59.1 ± 14.8 mmHg 35309 

Systolic AP 130.3 ± 25.7 mmHg 45004 

Mean AP 88.9 ± 18.0 mmHg 45004 

Diastolic AP 69.2 ± 16.4 mmHg 45004 

Heart Rate 99.8 ± 20.7 bpm 64620 

Pulse Oximetry 97.2 ± 3.6 % 64692 

Cardiac Output 9.1 ± 2.7 l/min. 7334 

 
 
 
Decision Support 

SIMON’s daily vital sign summaries are the most frequently used decision 

support tools.  The attending physicians, ICU medical director, and nurse managers use 

the unit summary report (Figure 2.5) regularly to provide a picture of overall patient 

acuity.  In most cases, these numbers confirm observations made in the course of daily 

care.  Occasionally, unexpected derangements in individual patient physiology are noted 

prompting closer review of the patient, sometimes resulting in additional therapy or 

diagnostic procedures.  The daily reports act as a “safety net” to bring attention to the 

individual patient, in the event that unexpected deterioration over 24 hours is missed.  In 

addition, care providers on other services sometimes use the single patient summary 
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reports (Figure 2.6) to evaluate a patient’s physiology prior to transfer or operative 

procedures. 

Providing effective “safety net” functionality on a time scale shorter than the daily 

reports has proved challenging.  Currently, SIMON’s ability to send alerts to 

alphanumeric pagers (Figure 2.7) is no longer used on a regular basis.  Given our current 

ICU work processes, lack of pagers for individual bedside nurses, skilled providers, and 

existing monitoring systems, the benefit of alerting based solely on existing measures of 

patient physiology has been marginal.  Reasons for this are discussed more fully below in 

“Lessons Learned”. 

SIMON’s data graphs (Figure 2.4) are occasionally used to support clinical 

decision making, but have proven more useful in their support of clinical research.  Many 

studies have physiologic criteria for patient enrollment, and our research staff views these 

graphs remotely to ascertain patient eligibility for particular studies.  This has reduced the 

need for research staff to communicate with care providers or travel to the ICU to 

evaluate patients.   

SIMON also enhances administrative decision-making.  For example, SIMON 

provides the most accurate measures of bed occupancy available in our institution, as a 

patient effectively always has EKG and pulse oximetry monitoring while in a bed.  From 

the data in table 2.3, we can determine that our ICU beds were occupied 79.2% of the 

time.  Infrequently, serious adverse patient events are reviewed retrospectively using 

SIMON’s data graphs. 
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Research Applications 

New measurements of patient physiology available from densely captured data 

will define future monitoring strategies, decision support algorithms, and clinical 

processes.  We have only begun to explore how these “new vital signs” might efficiently 

stratify groups of patients by acuity, outcome, and need for particular therapy, or identify 

clinical deterioration or improvement in the individual patient.  Our work has described 

the relationship to patient outcome of heart rate and blood pressure mean, ranges, and 

variability over the ICU stay35.  We have begun to investigate short-term heart rate 

variability (HRV), derived from integer heart rate.  Within the first 24 hours, HRV 

predicts trauma patient death occurring a median of 5 days after admission, with a 

sensitivity of 70% and specificity of 80%36.  Patient triage, in both civilian and military 

environments, is one application of this and other new measurements based on dense 

physiologic data37.   

Heart rate represents one of many parameters available for study, simple statistics 

are but one method of analysis, and effective triage represents a single application in a 

multitude of clinical decision support needs.  Our current analyses are early steps to 

bringing new vital signs, based on a continuum of patient physiology, to the bedside.  

Developing new decisions support tools based on dense physiologic data will require: 1) 

New methods of representing data, information, and knowledge; 2) Provider training and 

new clinical workflows to optimize utility; and 3) Rigorous evaluation of costs and 

benefits of clinical deployment.  To date, we only informally explored these medical 

informatics research opportunities38. 
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Cost 

 SIMON’s equipment and maintenance costs are relatively low.  A single bed can 

be instrumented for roughly $3000, as shown in table 2.4.   

 

Table 2.4: Single-Bed SIMON Equipment Costs. 

Item Approx. Cost 

RS-232 monitor interface option $1500  
($600 in new models)

Ethernet network port installation $600 

Ethernet to RS-232 translator (terminal server) $800 

Cables, UPS, etc. $100 

TOTAL $3000 

 

 

One or more servers are required to capture and store data, and to provide 

decision support functionality.  As of May 2005, a single standard Intel server sufficient 

to fully implement SIMON on 14 beds costs approximately $7000.  This cost includes 

database server and operating system licenses, at academic discount prices.  Overall, 

SIMON adds approximately 10% to the cost of the standard ICU monitoring 

infrastructure, or an additional cost of approximately $1.20 per day per bed over an eight 

year life cycle.  Particular skills required to install SIMON include: 1) Familiarity with 

the Windows operating system and an ODBC-compliant database package; and 2) Ability 

to manufacture RS-232 cable from inexpensive, commonly available components 

(although custom pre-manufactured cables can be purchased from a variety of sources).  

An important component of installation is training nursing staff to connect mobile 
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devices, and clerical assistants to maintain the bed occupancy information (Figure 2.3).  

While these tasks take negligible time, a well-trained staff that can complete these duties 

reliably is an important component of a successful installation. 

Routine technical maintenance can be done by someone familiar with Windows 

server operation.  It requires making backup copies of data, installing operating system 

patches, and other general procedures to ensure system security and reliability.  SIMON 

requires some special maintenance to maintain high reliability of data capture from 

mobile devices (Baxter Vigilance Monitors).  Cables need to be repaired or replaced 

every few years on average, due to both breakage (connector left on floor and stepped on, 

or handled roughly) and corrosion from occasional fluid spills (connector left on floor 

and affected by subsequent spill).  We have also found that, from time to time, cables are 

connected to the wrong port on devices or the terminal servers.  In addition, Baxter 

Vigilance monitors need to be checked semi-regularly to ensure proper data output 

configuration.  Firmware upgrades to these devices, or turnover between devices on our 

unit and other areas of the hospital, seem to be the main cause of mis-configuration.  

Finally, several times per year one of the terminal servers (RS-232 to Ethernet 

translators) somehow loses its network connection, and must be power-cycled.  SIMON 

employs a number of automated mechanisms to notify technical staff of potential 

problems, and overall maintenance requirements for our 14-bed installation average 

about 5 hours per month.  
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Lessons Learned  

Our experience designing, building, and maintaining SIMON over the past decade 

carries a number of valuable lessons.  The following have been selected for their 

significance in constructing and using a reliable, automated, physiologic data capture and 

analysis system. 

 

Build Modular Systems 

G. Octo Barnett and his colleagues detailed the benefits of modular design in 

clinical information systems nearly four decades ago39.  We have realized a number of 

these advantages in SIMON’s component-based architecture.  Flexibility in modifying, 

fixing, or augmenting functionality has been paramount, as some of the components 

shown in Figure 2.1 have undergone more than 30 revisions since their initial 

implementation.  SIMON’s modular design allows individual components to be 

developed, debugged, and tested on separate systems, then deployed with minimal 

interruption to other functionality.  This relative ease of modification allowed SIMON to 

grow from a simple data collection tool storing physiologic parameters in text files, to a 

physiologic data management solution supporting diverse clinical and research 

applications. 

Reliability is also enhanced by SIMON’s modular architecture.  Individual 

component failures are rapidly detected and, in most cases, automatically fixed by 

restarting the failing module.  Automatic component restart allows SIMON to promptly 

resume operation following network or power failures.  The most notable of these rare 

incidents was failure of our institution’s network for 12 hours as a result of the “SQL 
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Slammer” worm in January, 2003.  Individual SIMON components resumed operation as 

network connectivity was restored, without manual intervention.  SIMON’s modular 

design also enhances reliability in that components can be rapidly moved between 

systems in the event of failure.  During the most severe internal failure in SIMON’s 

history, where an operating system patch temporarily disabled the Data Collection and 

Management Server (Figure 2.1), essential components were migrated to a spare system 

and core functionality was restored within two hours.   

Finally, SIMON’s scalability results, in large part, from modular design.  The 

system has grown from two beds in September, 1998, running on a single 300Mhz 

Pentium-II system, to 14 beds running on two dual-processor servers without significant 

change in architecture.  New components are easily added to capture data from additional 

beds, or to implement new functionality.  However, scalability and reliability do not arise 

from modular design alone.  The following section describes our strategy for building 

individual components to fully realize these and other benefits of modular design. 

 

Use Simple, Observable, Portable Components 

Modularity affords little advantage if the system’s individual components are 

complex “black boxes” tied to specific computing hardware.  Components should be as 

simple as possible in terms of functionality, configuration, internal design, and operation.  

We found state flow diagrams to be a useful way to assess complexity of system 

components.  A component’s functionality is diagramed to a level of detail sufficient to 

represent individual subroutines.  If the state flow diagram cannot be easily represented 
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without crossing lines on a single page, the component is considered for redesign, 

perhaps by dividing into sub-components.  

 Component operation should also be observable, to allow monitoring and 

troubleshooting as the system runs.  Each component should, at a minimum, periodically 

report that it is operating normally.  Ideally, internal state, history of operation and error 

conditions can be queried as well.  All SIMON components periodically write a “lifetick” 

file, in addition to logging events and errors to text files.  Select components store 

additional state information, updated in real-time, in a database.  An automated watchdog 

process periodically monitors all operating components (currently 39 instances), 

restarting components if needed.  

 Finally, components should be portable, allowing for distribution across physical 

systems, perhaps even running different operating systems.  SIMON achieves a degree of 

portability by using a single database for storing all persistent system information, and by 

using common protocols for communication between components.  These protocols 

(ODBC, TCP/IP) are widely supported across operating systems and programming 

languages, allowing a great deal of flexibility in choosing development and 

implementation technology. 

   

Develop Work Processes Alongside Technology  

SIMON’s successful operation, even though highly automated, requires human 

involvement.  On a day-to-day basis, people must monitor the system to ensure proper 

operation.  Patient identity must be confirmed, and portable bedside devices must be 

connected promptly to avoid loss of data.  Occasional maintenance must be completed, as 
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described above.  Initially, we underestimated the difficulty in getting staff to perform 

these tasks reliably as part of their existing duties, and to maintain a high level of 

reliability over time.  These issues were addressed by defining administrative processes 

by which: 1. Staff feedback is sought during periods of change (even relatively small 

change); 2. Performance is regularly evaluated, sometimes with the aid of automated 

reports; and 3. Positive and negative incentives are used if performance wanes.  Most of 

these processes were defined and implemented not by technical staff, but by the trauma 

unit assistant nurse manager. 

 Continued success requires a greater degree of strategic planning.  The 

cost/benefit of SIMON and similar endeavors should be regularly evaluated.  In the long-

term either external research funding must be secured, or the work must be funded as part 

of operational costs.  We have only begun to formalize work processes to assess 

SIMON’s cost and benefit on a regular basis, and to organize our efforts to seek 

collaborators, secure external funding, and otherwise leverage SIMON’s value over the 

long-term. 

 

Project Champions Are Crucial 

 SIMON and similar efforts span disciplines, potentially involving many 

individuals with diverse skills, interests, and commitments.  Project champions are 

important to bridge cultural barriers, secure resources, establish vision and long-term 

goals, and to keep team members or support staff motivated, especially thorough short-

term setbacks.  Ideally, project champions are well-respected both within and outside 
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their disciplines of expertise, have substantial time and energy to devote to the project, 

and have access to resources needed to “seed” new research or development efforts. 

 

Future Plans 

SIMON’s expansion can be considered along four dimensions: implementation 

environments, parameters captured, research analyses, and applications.  The next twelve 

months should see our work advance along each of these axes.  In terms of 

implementation environment, SIMON will be expanded to Vanderbilt’s air medical 

transport helicopters, to capture data closer to time of injury.  SIMON may also expand to 

capture data from trauma step down beds as well as other surgical intensive care units, to 

acquire data across a more diverse population.   

SIMON will also grow in terms of the number and type of physiologic parameters 

captured.  We hope to begin continuous, routine capture of EKG and other physiologic 

waveforms to augment and validate some of our integer-based measurements.  

Institutional efforts to acquire data from other bedside devices, including ventilators, 

should provide SIMON with data feeds to those parameters as well. 

A number of additional research analyses are possible, using data from new 

sources as well as existing ones.  We have only begun to examine physiologic parameters 

other than heart rate.  Our existing analytic methods are small steps compared to the 

variety of data mining, signal processing, and other algorithms that might be applied to 

this vast physiologic data store.  Linking patient physiology to other clinical information, 

including laboratory, pharmacy, physician order, and beside chart data provides still more 

opportunities for analysis.  We anticipate the need for more robust artifact rejection as we 
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examine signals containing more noise than heart rate, such as blood pressure and/or 

pulse oximetry.   

Finally, we envision a number of new applications supporting both research and 

clinical use of dense physiologic data.  A formal data repository for research purposes 

will be constructed to routinely merge and de-identify data from SIMON and other 

clinical information systems.  Such a repository facilitates making data available to other 

researchers both within and outside our institution.  As we discover new algorithms to 

stratify patients based on acuity, mortality, and/or type of injury, we expect to deliver this 

information using our existing reporting and alerting mechanisms, as appropriate.  In the 

long-term, controlled clinical trials will be needed to assess the value of new physiologic 

measurements and the decision-support tools used to bring them to the clinical bedside.  

Results from those trials, and the foundational work we and our colleagues are now 

undertaking, will define future patient monitoring strategies and establish the value of 

dense physiologic data capture, analysis, and decision support in caring for the critically 

ill.  
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Abstract 
 

 Automated physiologic event detection and alerting is a challenging task in the 

ICU.  Ideally care providers should be alerted only when events are clinically significant 

and there is an opportunity for corrective action.  However, the concepts of clinical 

significance and opportunity are difficult to define in automated systems, and 

effectiveness of alerting algorithms is difficult to measure.  This paper describes recent 

efforts on the Simon project to capture information from ICU care providers about patient 

state and therapy as alerts occurred, in order to assess the value of event definitions and 

progressively refine alerting algorithms.  Event definitions for intracranial pressure and 

cerebral perfusion pressure were studied by implementing a reliable system to 

automatically deliver alerts to clinical users’ alphanumeric pagers, and to capture 

associated documentation about patient state and therapy when the alerts occurred.  

During a 6-month test period in the trauma ICU at Vanderbilt University Medical Center, 

530 alerts were detected in 2280 hours of data spanning 14 patients.  Clinical users 

electronically documented 81% of these alerts as they occurred.  Retrospectively 
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classifying documentation based on therapeutic actions taken, or reasons why actions 

were not taken, provided useful information about ways to potentially improve event 

definitions and enhance system utility. 

 

Introduction 

 Effective medical care processes typically embody a feedback loop, in which care 

providers continually assess patient condition and take action to improve it.  Physiologic 

data from bedside monitors is one indicator of patient condition, and is a factor in 13-

22% of clinical decisions made during ICU rounds1.  Computerized decision support 

systems have been developed to monitor physiologic data and alert care providers when 

events of possible clinical significance occur.  However, these systems generally reflect 

only the information delivery portion of the “loop”, in that alerts are delivered but there is 

no facility for capturing information about related actions or relevance of the alert.  

Information about patient state and related therapeutic actions at the time of alerts is 

invaluable if event definitions and are to be progressively improved in a scientific way. 

 Without such refinement, current systems for physiologic event detection and 

clinical alerting remain inadequate.  One study in 1997 found that only about 23% of 

physiologic alerts based on heart rate threshold alarms from physiologic monitors were 

clinically relevant2.  While ICU monitoring technology is relatively advanced in terms of 

technical architecture, information display, variety of sensors, and interfaces to other 

bedside devices, alert definitions remain primarily restricted to specifying high or low 

limits of individual monitor parameters, independent of time.  Given the substantial 

variability in patients and clinical environments, providers are faced with a difficult 
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tradeoff in setting these limits: either set the acceptable range of values wide to minimize 

false alarms, potentially at the expense of timely notification, or set the range narrow to 

receive earlier notification, at the expense of considerable false-positive alerts.  While a 

variety of event-detection solutions have been proposed including multi-state filters3, 

template recognition4, and fuzzy logic process models5, these and other advancements are 

typically not assessed in terms of the relevance of individual alerts generated during 

actual patient care.  Notable exceptions include work by Tate et. al. to examine 

effectiveness of alphanumeric pager alerts based on critical lab values6, and by Shabot 

and colleagues to study alerts delivered to wireless devices based on physiologic and 

laboratory data7.  This paper describes recent work on the Simon (Signal Interpretation 

and Monitoring) project to provide physiologic event detection, alert notification, and 

documentation capabilities in a working ICU information system, and to study how data 

entered by clinical users in response to alerts can be used to assess and improve system 

performance.   

 

Methods 

 Since the main purpose was to deliver alerts to care providers over the course of 

patient care and to capture feedback as alerts occurred, the first step was to implement an 

architecture that could support progressive development of event detection and alerting 

mechanisms, while maintaining a level of reliability sufficient for routine clinical use.  

Existing architectural components8,9 were deployed, and several new components were 

added.  A schematic of this architecture is shown below in Figure 3.1.   
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Figure 3.1: Simon Architecture. 

 

 For performance reasons, the architecture separates high bandwidth data streams 

generated by bedside devices from other data channels such as user notes and hospital 

information system (HIS) data.  The central point of access for all bedside device data is 

a data router, which relies on a publish-subscribe mechanism implemented over TCP/IP 

sockets to rapidly relay data from bedside medical device interfaces (“publishers”) to 

processing modules and other “subscribers” requiring immediate, continuous access to 

bedside device data, sampled every few seconds.  All other data access is accomplished 

through open database connectivity (ODBC) connections to a relational database on a 

separate machine, implemented using Microsoft SQL Server.  Components developed as 

part of this work included: 

  

1. A database archive module to store all physiologic data to the database in “batches”; 
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2. Processing/logic modules to compress these data for long term storage, associate data 

with patients based on hospital census information, monitor and manage system 

components, notify the researcher if system problems occurred, and deliver alerts to 

care providers via email and/or alphanumeric pager; 

3. A java-based note application for entering free text notes in response to alerts, 

modified from existing code developed at VUMC; 

4. Clients for WWW display of current data, alphanumeric pager alerting, and recently 

generated alerts. 

 

 During the test period, the implementation of this architecture supported data 

collection and processing from up to six different medical devices on each of four trauma 

ICU beds, and a variety of other sources and clients.  Since then, six additional beds have 

been added, as of July, 2001. 

 After implementing the basic architecture, an attending trauma surgeon with over 

20 years of critical care experience was asked to define a set of physiologic events for 

testing that he thought might have clinical significance.  He choose to generally express 

events in the form of threshold conditions over time, for example intracranial pressure > 

25 mmHg for 15 minutes.  Some events did not have a duration requirement, such as 

cardiac index < 2.5 l/min/m2.  An event detector was developed by another member of 

the project team9, and tested off-line on actual data.  Several factors became apparent 

during initial testing, that influenced the event detection algorithms as well as the choice 

of events to study: 1) Some parameters were not always available, due to device 

configuration requirements that unit staff were trained to do; 2) Noise and artifacts would 
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IC
CPP

require more advanced processing than simply monitoring current values in the data 

streams; and 3) False positive alerts would likely be present even with better processing, 

due to external variables that could not be sensed by the system, including lab data and 

patient status (organ donor, DNR). 

 

 

 

 

 

 

 

 

Figure 3.2: Portion of Simon WWW GUI. 

 

 As a result, initial efforts focused on detecting events in intracranial pressure 

(ICP) and cerebral perfusion pressure (CPP), two parameters the system could reliably 

acquire at all times.  The corresponding event definitions were: 

 

ICP > 25 mmHg for 15 minutes 

CPP < 60 mmHg for 15 minutes 

 

Typical ICP and CPP signals are noted above in Figure 3.2, which shows a full day of 

data for a single patient.  Each arrow points to the respective threshold value.  In addition, 
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a multi-state detection algorithm was defined to improve performance in the presence of 

noise, short data dropouts, and other artifacts. 

 While the event detector was being tested, a note-entry application was 

implemented that allowed users to enter free-text notes in response to alerts.  It was 

important to be able to link this application with existing information sources, and to be 

able to easily deploy it on three bedside laptops dedicated to the project.  An existing 

template-based note entry application, written in java at VUMC, was adapted to run via a 

web browser, and to directly interface with the Simon database via Java Database 

Connectivity (JDBC).  Four nurses initially tested this application over a period of six 

weeks, and performance issues were addressed by adding additional memory to the three 

bedside laptops dedicated to the project.  

 Finally, mechanisms were needed to notify care providers of alerts and to tie 

event, alert, and note data together.  Database tables were defined to store events, alerts, 

and notes, as well as configuration data such as who should receive alerts for a particular 

bed.  When an event is detected and added to the database, a notification engine looks up 

any number of email or alphanumeric pager recipients for the particular bed, delivers 

alerts appropriately, and logs the delivery in the database.  A pager display of an actual 

clinical alert is shown in Figure 3.3.   

 

 

 

 

Figure 3.3: Clinical Alert on Alphanumeric Pager 
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 A WWW page (Figure 3.4) lists all alerts generated over the past 12 hours, and if 

notes have been entered for each alert.  Clicking on the alert hyperlink brings up the note 

entry application with patient demographics, timestamps, and alert information 

automatically entered.  

 

 

 

 

 

 

 

 

Figure 3.4: Alert Status GUI. 

 

 After all components were developed and tested, a group of clinical users was 

identified who would enter documentation in response to each alert.  The VUMC 

Division of Trauma staffs a clinical nurse supervisor (CNS) position with a licensed 

nurse practitioner at all times, and this was an ideal test group for several reasons.  First, 

they are generally aware of the state of the most critically ill patients in the trauma unit.  

Second, their duties permit them to review alerts for any patient, assess the situation, and 

enter documentation in a timely manner.  Most important, they generally have significant 

clinical experience and interest in the project, and were willing to act as “filters” between 

the system and the other members of the care team.   
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 In July 2000, users attended a brief presentation and demonstration of the system, 

and the CNS on duty began receiving alerts via alphanumeric pager.  After only a few 

days, they suggested an important refinement to the alert definitions.  While users wanted 

to receive ICP alerts at all times, they only felt CPP alerts were significant in the presence 

of increased intracranial pressure, so the system was modified accordingly.  Data from 

August 8, 2000 through Jan. 18, 2001 were reviewed, and data corresponding to patients 

that arrived in a Simon bed before the start of this interval, or left after the end, were not 

considered.  For each patient with ICP or CPP alerts, the total monitored time was 

computed as the duration of ICP monitoring less data gaps greater than five minutes.  

Since an important aspect of the work was in assessing the feedback side of the process, 

documentation for each alert was subjectively classified into one of five areas according 

to the type of clinical action, or reason why no action was taken, in relation to the alert. 

 

Results 

 Over the study period, 530 ICP and/or CPP alerts were detected in 14 different 

patients, corresponding to about 2280 total hours of ICP data.  Four additional patients 

had ICP/CPP monitoring for a significant time (> 30 minutes), but no alerts were 

detected.  Figure 3.5 shows the incidence of ICP and CPP alerts by patients who had at 

least one alert. 
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Figure 3.5: Frequency of ICP and CPP Alerts in Four Trauma ICU Beds.  8/00-1/01. 

 

 Figure 3.6 shows the breakdown of documentation types entered in response to 

alerts during the study period.   

 

 

 

 

 

 

 

 

Figure 3.6: Types of Documentation Entered in Response to 530 Alerts. 
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 While users were not given specific instructions about what type of information to 

include in notes, almost all documentation referenced new or continuing therapy related 

to the alert condition, or gave reasons why therapeutic actions were not taken.  Such 

reasons included: 1) Medical therapy maxed – no additional medical treatment options 

were available due to patient lab values, or 2) No therapeutic action was needed because 

the condition spontaneously resolved, or a determination was made to discontinue 

treatment for ICP/CPP, as in the case of patients with do not resuscitate (DNR) orders.  

Six percent of notes could not be classified into these groups, and included a wide variety 

of information such as the patient being under care of another service, to technical 

feedback and suggestions.  A few in this category were reports of disbelief by the bedside 

nurse that the alert condition occurred, when asked by the CNS who received the 

alphanumeric page.  No notes were recorded for 19% of alerts, although almost all of 

these were for a single patient over a four-day period, indicating a short-lived technical or 

user issue that went undetected. 

 Technically, the system generally performed well during the test period.  There 

was one known period of extended outage, of 5 days duration starting on 11/23/00.  

Outages were otherwise limited to a few hours per month on average, usually due to 

network and/or power glitches.  Subjective user feedback was fairly positive, although 

users expressed dismay in a few cases where alerts continued after DNR orders were in 

place, as the system had no way of sensing this situation.  Finally, successive notes 

included substantial repetition, discussed in more detail below. 
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Discussion 

 Overall, the system was effective at providing clinical alerts to users, as well as 

capturing data about how alerts were related to clinical therapy or lack thereof.  Users 

were remarkably good at ensuring a note was entered for each alert.  If the one period 

mentioned above is omitted (where notes for one patient were not entered over a 4-day 

period) more than 95% of all alerts were documented.  Factors that contributed to this 

high response rate likely included a simple, easy-to-use interface for documentation, as 

well as substantial enthusiasm for the project from the trauma division director.  From a 

technical standpoint, alerts were reliably detected for ICP and CPP because of fully 

automatic operation with no special connection or configuration requirements.  Reliably 

detecting events in other signals, such as those from portable bedside devices that must 

be physically connected to the system each time or specifically programmed to send data, 

might be more difficult and require substantial user training. 

 Also, success in detecting alerts and eliciting documentation from users does not 

necessarily imply clinical usefulness.  Subjective review of note content indicated that 

users probably considered many of the alerts redundant, due to substantial numbers of 

notes reading “ditto”, “see previous entry”, or similar.  This effect is in part due to the 

close coupling of ICP and CPP.  CPP is the difference between mean arterial pressure and 

ICP, so an increase in ICP is usually accompanied by a decrease in CPP.  In many cases 

this would trigger two alerts within a few minutes of each other, with similar user 

documentation.   While it is difficult to assess utility given the fact that supervisors 

entered all data and were not specifically asked to rate usefulness in any controlled way, 
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the presence of duplicate notes and the short time interval between the corresponding 

alerts implies some unnecessary redundancy in alert delivery.   

 However, note type and content may be used to prioritize system improvements to 

reduce this redundancy, making the system more suitable for routine use by bedside 

nurses.  Note content was very important during initial testing, in terms of deciding to 

only deliver CPP events in the presence of an increased ICP event.  During the study 

period, the types of alerts entered suggest additional enhancements.  Since 16% of notes 

indicated that therapy was maximized based on clinical lab values, only notifying care 

providers when therapy could be resumed based on lab data, or by not sending alerts in 

cases where no therapy could be provided, might improve usefulness.  In addition, a 

facility to tell the system not to send alerts for patients with DNR orders would be 

helpful.  Notes referencing corresponding therapy were most prevalent, suggesting that a 

mechanism to incorporate information about drug administration and other therapies 

might be most beneficial.  In this case, the system would not generate alerts if appropriate 

therapy was being administered.  Defining “appropriate therapy” in terms of 

computational algorithms may be challenging, requiring higher-level knowledge than the 

fairly simple event definitions described here.  However, by “closing the loop” and 

evaluating not only alerts generated to care providers but also related therapeutic actions, 

such modifications can be progressively implemented and evaluated to improve 

performance. 
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Abstract 

Background:  SIMON (Signal Interpretation and Monitoring) monitors and archives 

continuous physiologic data in the ICU (HR, BP, CPP, ICP, CI, EDVI, SVO2, SPO2, 

SVRI, PAP, and CVP).  We hypothesized: heart rate (HR) volatility predicts outcome 

better than measures of central tendency (mean and median).  Methods:  Over 600 

million physiologic data points were archived from 923 patients over two years in a level 

one trauma center.  Data were collected every 1 to 4 seconds, stored in a MS-SQL 7.0 

relational database, linked to TRACS, and de-identified. Age, gender, race, Injury 

Severity Score (ISS), and HR statistics were analyzed with respect to outcome (death and 

ventilator days) using logistic and Poisson regression.  Results:  We analyzed 85 million 

HR data points, which represent over 71,000 hours of continuous data capture.  Mean HR 

varied by age, gender and ISS, but did not correlate with death or ventilator days.  
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Measures of volatility (standard deviation, % HR > 120) correlated with death and 

prolonged ventilation.  Conclusions:  1) Volatility predicts death better than measures of 

central tendency.  2) Volatility is a new vital sign that we will apply to other physiologic 

parameters, and that can only be fully explored using techniques of dense data capture 

like SIMON.  3) Densely sampled aggregated physiologic data may identify sub-groups 

of patients requiring new treatment strategies. 

 

Introduction 

 Fundamental approaches to assessing vital signs in the critically ill have changed 

little since the early 1900’s when Cushing asserted the importance of periodic recording 

of blood pressure and other vital signs.1  While technical advancements and clinical 

research have expanded the number of physiologic parameters, treatment options, and 

management protocols available to the intensive care unit (ICU) physician,2 interpreting 

physiologic data remains largely a manual process utilizing only a small fraction of data 

potentially available.3  A growing body of evidence suggests that automated analysis of 

densely-sampled physiologic data can provide information about ICU patient outcome4-8  

or adverse events.7, 9-11  The SIMON (Signal Interpretation and MONitoring) project 

began in 1998 with the aim of continuously capturing physiologic data from trauma ICU 

patients.12  Clinical impressions led us to believe that patients with wide swings in heart 

rate had poor outcomes.  We hypothesized that heart rate volatility predicts inpatient 

hospital mortality better than the patients’ mean or median heart rate (measures of central 

tendency). 
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Methods 

 

Setting 

 Vanderbilt University Medical Center (VUMC) is the only level one trauma 

center serving a 65,000 square-mile area.  There are approximately 3200 annual trauma 

admissions and over 1800 of these patients are admitted to a 31-bed dedicated trauma 

unit.  Fourteen of the 31 beds are ICU beds, serving 600-700 admissions per year.  Ten 

ICU beds are equipped with the SIMON data capture system.     

 

Data Sources 

SIMON: The SIMON (Signal Interpretation and MONitoring) project is an 

ongoing collaborative effort between the Vanderbilt Division of Trauma and School of 

Engineering.  Since December 2000, physiologic data from bedside medical devices have 

been continuously captured and stored from 4 trauma ICU beds13.  SIMON was expanded 

to 10 beds in June 2001.  Physiologic parameters include heart rate (HR), invasive and 

non-invasive blood pressures, intracranial and cerebral perfusion pressures, arterial and 

venous oxygen saturations, blood temperature, pulmonary and central venous pressures, 

cardiac index, and end diastolic volume index.  As of November 2003, data had been 

collected for approximately 2150 patients for their entire length of ICU stay in a SIMON 

monitored bed, representing more than 150,000 total hours of continuous monitoring and 

over 1.5 billion data points.  Data are automatically sampled every 1-4 seconds 

depending on system load and stored in an SQL Server (Microsoft Corp., Redmond, WA) 

relational database.  SIMON does not average or filter the data; the monitor applies short-



 68

term smoothing and other artifact rejection before sending data to SIMON.  In the case of 

heart rate, the monitor reports heart rate in beats per minute rounded to the nearest 

integer, and averaged over approximately the past three seconds.   For clinical use, 

patient specific data are displayed on a secure website (Figure 4.1) and daily aggregated 

summary reports are generated and placed in each patient’s electronic medical record.  In 

addition, daily unit summaries for all patients on SIMON are sent to the ICU medical 

director and nurse manager prior to rounds (Figure 4.2). 

 

Figure 4.1: SIMON Physiologic Parameter Web Display. 
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Figure 4.2: Daily SIMON Summary Report of ICU (Only the first five beds are shown). 

 

 TRACS: The VUMC Division of Trauma has participated in the Trauma Registry 

of the American College of Surgeons (TRACS) since 1986.  All patients admitted to 

Vanderbilt University Medical Center with trauma or burns are entered into this database.  

Data are maintained locally and shared quarterly with the national repository after de-

identification.  Currently more than 300 parameters are captured via retrospective chart 

review, including patient demographics, injuries, diseases, operative procedures, hospital 

disposition, complications, length of stay at various levels of care, costs, and resource 

utilization.  For this study, data from SIMON and TRACS were linked via medical record 

number and de-identified for analysis after IRB approval. 
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Inclusion Criteria 

The sample included 923 patients that 1) were admitted to Vanderbilt University 

Medical Center’s Trauma ICU between December 15, 2000 and December 31, 2002, as 

identified by TRACS and 2) had 12 to 240 hours of stored SIMON heart rate data (Figure 

4.3).  Patients with less than 12 hours or > 240 hours of SIMON data were excluded 

patients who had early death or transfer and prolonged SIMON recorded ICU stay. These 

two excluded groups represent a separate future analysis. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
  
 
 
 

Figure 4.3: Patient Inclusion Criteria. 
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Measurements 

Over 85 million heart rate data points representing 71,334 hours of data capture 

were stored in the 923 patient sample.  Demographics were obtained from TRACS and 

included age, gender, race, Injury Severity Score (ISS) and discharge status (home, rehab, 

skilled nursing facility, and death).   Heart rate statistics (independent variables) were 

computed for each patient over all available data from that patient’s stay, and included 

mean, median, standard deviation, skewness and kurtosis (measures of how well data fit a 

normal distribution), percent of data points above 120bpm, and percent of data points 

below 60bpm.  Measures of central tendency were defined as the mean and median for 

each patient’s set of heart rate data.  Statistical variability was given the term “volatility” 

and included standard deviation, percent of data points above 120, and percent of data 

points below 60.  Our outcomes of interest (dependent variables) included death and 

ventilator days.   

 

Statistical Analysis 

 Statistical analysis was performed using STATA v. 7 (College Station, TX).  T-

test and ANOVA were used to detect mean heart rate differences based on age, gender, 

race, ISS, and survival status.  Logistic regression was used to measure the predictive 

value of heart rate statistics for death.  Poisson regression was used to assess the 

relationship of these measures with ventilator days.  Multivariate analysis was performed 

controlling for age, gender and ISS.  For the logistic and Poisson regressions, ISS was 

treated as a continuous variable.  Age was divided into five binary categorical variables 
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representing 20-year intervals to control for the curvilinear relation of age and death, with 

age <20 years serving as the reference category. 

 

Results 

 

Demographics and Heart Rate Statistics 

 The patient characteristics (n=923) are listed in Table 4.1.  The mean age was 

38.5 +/- 18.7 years and mean ISS was 28.1 +/- 12.3.  There were 99 deaths (10.7%), the 

median length of stay was seven days, and the majority of the group was male (69.6%).  

The mean heart rate for the patient sample was 98.6bpm +/- 16.4 and the distribution is 

shown in Figure 4.4.  This graph represents 71,334 hours of stored heart rate data and the 

distribution of heart rate in a large segment of the ICU population over a two-year period 

(67% of ICU admissions).  Table 4.2 compares the heart rate statistics by age.  ANOVA 

analysis revealed a statistical difference in these groups with the mean heart rate 

decreasing with age.  There was a statistical difference in mean heart rate comparing 

males to females, but this had doubtful clinical relevance (Table 4.3).  No difference 

existed when comparing the mean heart rate by ethnic group.  Patients with an ISS > 25 

had a higher mean heart rate (99.9) when compared to those with an ISS<25 (96.6).  This 

small difference is probably is not clinically relevant.  No statistical difference existed 

when comparing the mean heart rate by survival status. 
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Table 4.1: Patient Characteristics (n=923).  ISS =Injury Severity Score.  LOS=Length of 
Stay.  Vent=Ventilator. 

 

 Mean Median Standard 
Deviation Min Max 

Age (years) 38.5 35.6 18.7 12 98 

ISS 28.1 27.0 12.3 1 75 

LOS (days) 10.8 7.0 11.2 1 172 

ICU Days 5.4 3.0 6.5 1 67 

Vent Days 5.2 3.0 8.6 0 172 
 
 
 
Table 4.2: Mean Heart Rate Statistics by Age.  P value determined for mean heart rate 
across age groups using ANOVA.  Heart rate in beats per minute (bpm).  P < 0.001. 
 

 N Mean Median Min Max Standard 
Deviation 

All Patients 923 98.6 99.0 56.4 148.2 16.4 

Age Group       

<20 165 102.5 103.2 56.3 143.7 18.4 

20-39 380 100.1 100.4 56.7 148.2 16.9 

40-59 241 97.9 99.7 57.4 133.9 14.5 

60-79 107 92.3 94.6 61.9 117.6 13.2 

80-100 30 86.9 88.2 61.3 108.2 12.1 
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Figure 4.4: Distribution of Patients’ Average Heart Rate (n=923). 
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Table 4.3: Heart Rate Statistics Over Entire SIMON Bed Stay.  P value determined for 
mean heart rate in gender and groups using t-test.  ANOVA used for ethnic comparison.  
Heart rate is in beats per minute (bpm). 
 

 N Mean Median Min Max Standard 
Deviation 

P value 
(mean) 

Gender        

Male 642 97.5 98.2 56.3 148.2 16.3  

Female 281 101.2 101.1 60.0 143.7 16.5 0.001 

Race        

White 757 98.4 98.7 56.3 148.2 16.3  

Black 103 100.1 100.0 62.4 137.8 17.5  

Hispanic 58 100.1 103.6 64.4 126.2 16.5  

Other 5 93.0 90.4 81.9 113.0 12 0.56 

ISS        

<25 347 96.6 96.7 56.3 140.1 15.9  

>=25 576 99.9 100.7 56.7 147.2 16.6 0.003 
Hospital 
Disposition        

Alive 824 98.6 98.5 56.3 143.7 16.1  

Dead 99 98.9 99.4 65.8 148.2 18.8 0.85 
 

 

Regression Analysis:  Results of the regression analysis after controlling for age, 

gender, and ISS are shown in Table 4.4.  Measures of central tendency (mean and 

median) did not predict a poor outcome.  Measures of volatility (standard deviation, % of 

data points > 120bpm, % of data points <60bpm) were predictive of death and prolonged 

ventilation.  Measures of normal distribution (skewness and kurtosis) were not 

statistically significant predictors of outcome (not shown). 
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Table 4.4: Regression Analysis for Heart Rate Statistics. OR and IRR signify the 
relationship between the independent heart rate variables and outcome (death and vent 
days).  Multivariate logistic and Poisson regression analysis used, controlling for age, 
gender, and ISS.  Confidence intervals are reported as 95%.  OR = Odds Ratio.  IRR = 
Incidence Rate Ratio. 
 

Death Ventilator Days Heart Rate 
Measure OR P value Confidence 

Interval IRR P value Confidence 
Interval 

Mean 1.01 0.47 (0.99-1.02) 1.00 0.32 (0.999-1.00) 

Median 1.00 0.54 (0.99-1.02) 1.00 0.22 (0.999-1.00) 

Std Dev 1.12 <0.001 (1.07-1.17) 1.03 <0.001 (1.02-1.03) 

% Data > 120 4.13 0.005 (1.54-11.0) 1.48 <0.001 (1.30-1.69) 

% Data < 60 8.28 0.045 (1.05-65.4) 3.38 <0.001 (2.60-4.39) 
 

 
Discussion 

This study explores the clinical value of dense physiologic data capture in the 

ICU.  We hypothesized that dense data capture of multiple physiologic variables, over 

time, will identify a sub-group of patients at risk for adverse events and, from that, 

decision support tools can be developed for early intervention.  In this manuscript, we 

take a first step in investigating that hypothesis using a single physiologic parameter:  

heart rate.  We have defined the distribution of heart rate across multiple demographic 

groups.  We have shown, in the case of heart rate, measures of volatility, rather than 

measures of central tendency (mean and median), are predictive of hospital mortality and 

number of ventilator days.  Most importantly, we demonstrated that dense data capture 

can be utilized in a working ICU.  While others have demonstrated similar technology14-

16 or analysis of periodically sampled dense data in a similar population4, 7, 17, our work 

overcomes implementation barriers associated with identification, reliability, storage, and 
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analysis.  Further, we demonstrated that dense data capture in a large trauma population 

can be linked with outcomes to identify new risk factors for death and prolonged 

ventilation. 

 

Summary of Important Findings 

We analyzed 85 million HR data points, which represent over 71,334 hours of 

continuous data capture.  Measures of volatility (standard deviation, % HR >120bpm, and 

%HR<60bpm) were predictive of death and prolonged ventilation.  Measures of central 

tendency (mean, median) were not predictive (Table 4.4).  The odds ratio for standard 

deviation was 1.12 (1.07-1.17) and incidence rate ratio was 1.03 (1.02-1.03) for death and 

ventilator days, respectively.  Analysis of the percent of data points > 120bpm gave an 

odds ratio of 4.13 (1.54-11.0) and incidence rate ratio of 1.48 (1.30-1.69) for death and 

ventilator days, respectively.  This was also true when controlling for the mean heart rate 

in the regression model.  Similar results were found for % HR <60bpm.  The mean heart 

rate decreased with age as expected and there was no difference in gender.  Statistically 

significant differences in the mean HR existed when grouped by gender and ISS score (< 

25).  While these differences are probably not clinically relevant, we chose to control for 

these covariates in the multivariate regression. 

 

Strengths and Limitations 

 The strengths of this study include the use of population of patients from a large 

demographic area over a 2-year period, the large data set, and 67% capture of all ICU 

admissions.  Continuous, automatic data capture across 10 ICU beds provided reliable 
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data for nearly 1000 patients.  This large data set allows us to search for patterns of 

physiologic response across a wide range of injuries and make new observations.  

Finally, we are defining a path whereby in the ICU, patient specific physiologic data are 

collected and stored in an electronic repository, distilled to only provide relevant 

information, and distributed in real-time to clinicians both at the bedside and in remote13, 

17-19 locations.  In addition to providing a useful clinical tool, the data are readily 

accessible for research. 

We expect that dense physiologic data capture will be an important tool in the 

ICU. However, for that to occur, limitations present in this study must be addressed.  In 

the first year of the study period, when SIMON only existed for 2-4 beds, sample bias 

may have occurred by placing the sickest patients in the SIMON beds.  In the second year 

of the study, all admission beds in the ICU had the SIMON data capture system.  We plan 

to expand SIMON to all trauma beds allowing data capture for the entire hospital stay.  

This will allow us to detect potentially unique physiologic patterns at different time 

points in the patient’s hospital course.  Additionally, our statistical analysis on aggregate 

data represents a preliminary step in exploring the clinical significance of continuous 

physiologic data in the ICU.  Future refinements will involve time series analysis and 

segmentation into shorter critical periods of observation as predictors of outcomes.  

These analyses are ongoing.     

Our methods and underlying data used to describe “volatility” are distinct from 

those traditionally used to characterize HR variability.  Most work in HR variability relies 

on waveform-derived measures of heart beat timing that are more precise than integer HR 

data.  This precision enables analyses that are difficult or impossible to apply to integer 
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data, but requires orders of magnitude more computational storage and/or processing 

capacity than our methods.  As we shorten our interval of analysis below the entire ICU 

stay, we will begin to compare traditional methods of waveform analysis with our 

concept of volatility.  Finally, we will need to investigate the time-course of volatility.  

We do not yet know whether volatility is a more important predictor early in the injury 

process, suggesting inadequate resuscitation, or late in the disease process, suggesting 

initiation of a hyper-inflammatory/septic state.   

 

Implications and Future Directions 

This manuscript establishes a framework for our analysis henceforth.  First, we 

will look at individual physiologic parameters and determine whether variation of central 

tendency or volatility appear most predictive of outcome.  Once defined, we will examine 

interactions between multiple physiologic parameters to determine if that enhances 

predictability.  

We have begun to utilize these tools clinically with continuous web-based display 

of physiologic parameters, individual patient summary reports placed in the electronic 

medical record, and daily SIMON unit summaries.  From this study, we know the heart 

rate statistics for the unit and therefore when a patient falls outside of the normal 

distribution.  These patients require justification for their deviation.  It is exciting to 

contemplate new tools for decision support such as automated physiologic alerts13, 22, 23 

and reports, but this work is in its infancy.  We will need to refine and validate these 

measures as predictors of adverse events.  In addition, we must create an environment 

that supports process change as well as integration of technical and educational principles 
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to optimize the opportunity presented by analysis of dense data.    The expense of data 

processing, management, and storage mandates that we define the optimal rate of capture 

for each physiologic parameter and determine the sensitivity and specificity of deviation 

from the expected values.  

We must understand for each physiologic parameter the influence of patient 

demographics such as age, gender, and race.  Decision support tools can then be created 

that will allow us to analyze data in real-time, display it graphically at the bedside, and 

define patient specific alert criteria when these parameters exceed certain predetermined 

thresholds.  In addition, we will need to learn the specific predictive physiologic patterns 

associated with different types of death.  Finally, we must adequately describe these 

dense data capture technologies and analysis techniques, prove their clinical value, and 

determine their cost-effectiveness.   

 In summary, volatility in HR over the entire ICU course identifies a sub-group of 

patients at increased risk of dying.  The SIMON system captures these data in real-time 

and will serve as both a research and decision support tool for enhancing patient care. 

 

Conclusions 

1. In the Trauma ICU, volatility in heart rate predicts death better than measures of 

central tendency, when looking at the statistics over the entire SIMON monitored 

ICU stay. 

2. Volatility is a new vital sign that can only be fully explored using techniques of dense 

data capture. 
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3. Novel computer analysis of dense physiologic data capture may be able to detect 

early predictors of death.  
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Mini Abstract 
 

New techniques to capture dense physiologic data in the ICU have identified 

reduced heart rate volatility as a new vital sign.  Aberrations of this vital sign in the first 

24 hours following injury predict patient death with 70% sensitivity and 80% specificity 

after incorporating age and injury severity score. 

 

Abstract 

OBJECTIVE:  To determine if using dense data capture to measure heart rate 

volatility (standard deviation) measured in five-minute intervals predicts death.  

BACKGROUND:  Fundamental approaches to assessing vital signs in the critically ill 

have changed little since the early 1900’s.  Our prior work in this area has demonstrated 

the utility of densely sampled data, and in particular, heart rate volatility over the entire 

patient stay, for predicting death and prolonged ventilation.  METHODS: ~120 million 
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HR data points were prospectively collected and archived from 1316 trauma ICU patients 

over 30 months. Data were sampled every 1-4 seconds, stored in a relational database, 

linked to outcome data, and de-identified. HR standard deviation was continuously 

computed over 5-minute intervals (CRVD-Cardiac Related Volatility Dysfunction). 

Logistic regression models incorporating age and injury severity score were developed on 

a test set of patients (N=923), and prospectively analyzed in a distinct validation set 

(N=393) for the first 24 hours of ICU data.  RESULTS: Distribution of CRVD varied by 

survival in the test set.  Prospective evaluation of the model in the validation set gave an 

area in the ROC curve of 0.81 with a sensitivity and specificity of 70.1 and 80.0, 

respectively.  CRVD predict death as early as 24 hours in the validation set.  

CONCLUSIONS:  1. CRVD identifies a subgroup of patients with a high probability of 

dying.  2. Death is predicted within first 24 hours of stay.  3. We hypothesize Cardiac 

Related Volatility Dysfunction (CRVD) is a surrogate for autonomic nervous system 

dysfunction. 

 

Introduction 

 Fundamental approaches to assessing vital signs in the critically ill have changed 

little since the early 1900’s when Cushing asserted the importance of periodically 

recording blood pressure and other vital signs.1 While technical advancements and 

clinical research have expanded the number of physiologic parameters, treatment options, 

and management protocols available to the intensive care unit (ICU) physician,2 

interpreting physiologic data remains largely a manual process that utilizes only a small 

fraction of potentially available data.3 A growing body of evidence suggests that real-
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time automated analysis of densely-sampled physiologic data can provide information 

about ICU patient outcome4-8  or adverse events7, 9-11 that is far superior to that generated 

via conventional processes. The SIMON (Signal Interpretation and MONitoring) project 

began at Vanderbilt in 1998 with the aim of continuously capturing physiologic data from 

Trauma ICU patients.12  

 Our prior work in this area has demonstrated the utility of densely sampled data, 

and in particular, heart rate volatility over the entire patient stay, for predicting morbidity 

and mortality.13 This study extends the practical value of our previous work for real-time 

patient management by hypothesizing that heart rate (HR) volatility (standard deviation) 

over a 5-minute interval in patients admitted to the trauma intensive care unit predicts 

death.  Our approach is conceptually distinct from, yet complementary to, studies that 

have used spectral analysis of EKG waveforms to determine heart rate variability and 

then demonstrate that loss of autonomic function suggests a poor prognosis in many 

disease processes.14-17 

 

Methods 

 

Setting 

 Vanderbilt University Medical Center (VUMC) is the only level one trauma 

center serving a 65,000 square-mile area.  Of the facility’s approximately 3,200 annual 

trauma admissions, over 1800 are admitted to a 31-bed dedicated trauma unit.  The 

fourteen trauma unit beds classified as ICU beds accommodate 600-700 admissions per 

year.  At present, ten of the ICU beds are equipped with the SIMON data capture system.   
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Data Sources 

SIMON: The SIMON (Signal Interpretation and MONitoring) project is an 

ongoing collaborative effort between VUMC’s Division of Trauma and the University’s 

School of Engineering.  Physiologic data from bedside medical devices have been 

continuously captured and stored from 4 trauma ICU beds18 since December 2000, with 

an expansion  to 10 beds occurring in June 2001.  The physiologic parameters monitored 

include heart rate (HR), invasive and non-invasive blood pressures, intracranial and 

cerebral perfusion pressures, arterial and venous oxygen saturations, blood temperature, 

pulmonary and central venous pressures, cardiac index, and end diastolic volume index.   

As of February 2004, data had been collected for over 2200 patients for their 

entire length of ICU stay in a SIMON monitored bed, representing more than 170,000 

total hours of continuous monitoring and over 1.5 billion data points.  Data are 

automatically sampled every 1-4 seconds (depending on system load) and stored in an 

SQL Server relational database (Microsoft Corp., Redmond, WA).  For clinical use, 

patient-specific data are displayed on a secure website (Figure 5.1) with daily aggregate 

summary reports generated and placed in each patient’s electronic medical record.  In 

addition, daily physiologic data summaries for all patients on SIMON are sent to the ICU 

medical director, chief residents, and nurse manager prior to rounds (Figure 5.2). 
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Figure 5.1: SIMON Physiologic Parameter Web Display (24 hours). 

 

 

Figure 5.2: Daily SIMON ICU Unit Summary Report (5/14 beds shown) sent to ICU 
Director, Nurse Manager, and Chief Resident. 
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 TRACS: The VUMC Division of Trauma has participated in the Trauma Registry 

of the American College of Surgeons (TRACS) since 1986.  Demographic, clinical, and 

injury-related data on all patients admitted to VUMC for trauma or burns are entered into 

the database, which is maintained locally and shared quarterly with the National Trauma 

Data Bank (NTDB) after de-identification.  Among the more than 300 parameters 

currently captured via retrospective chart review are patient demographics, injuries, 

diseases, operative procedures, hospital disposition, complications, length of stay at 

various levels of care, costs, and resource utilization.  For this IRB-approved study, data 

from SIMON and TRACS were linked via medical record number and de-identified prior 

to analysis. 

 

Inclusion Criteria 

The test set included data from 923 patients who 1) were admitted to Vanderbilt 

University Medical Center’s Trauma ICU between December 15, 2000 and December 15, 

2002, as identified by TRACS and 2) had 12 to 240 hours of stored SIMON heart rate 

data.  Patients who had fewer than 12 or more than 240 hours of SIMON data were 

excluded.  These patients had early death, were transferred, or experienced a prolonged 

SIMON recorded ICU stay.  Data from patients in the exclusion groups were retained for 

use in a separate future analysis.  The validation set consisted of data from 393 patients 

admitted from December 16, 2002 until July 31, 2003 with the same criteria as the test set 

(Figure 5.3). 
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Figure 5.3: Patient Inclusion Criteria for Test and Validation Sets. 

 

Measurements 

Over 120 million heart rate data points, representing approximately 100,000 

patient-hours of data capture, were stored in the combined 1316 patient sample.  

Demographic data obtained from TRACS included age, gender, race, discharge status 

(home, rehabilitation facility, skilled nursing facility, and death), and Injury Severity 

Score (ISS), an index of anatomic injury severity that correlates with survival in blunt 

trauma patients.19, 20  

Our parameter of interest, short-term heart rate volatility, is computed for a given 

patient once every five minutes by calculating the standard deviation of all heart rate 

samples collected during that time interval.  Duration (five minutes) and intensity 

6501 Trauma Admissions
12/15/00 – 12/15/02

3693 Admissions 
to Trauma Service

1437 Admissions 
to Trauma ICU

923 Patient Set 

- 396 patients with 
no SIMON data 
- 92 patients < 12 
hours HR data 
- 26 patients > 240 
hours HR data 393 Patient Set 

2113 Trauma Admissions 
12/16/02 – 7/31/03 

1020 Admissions 
to Trauma Service

481 Admissions to 
Trauma ICU - 8 patients with no 

SIMON data 
- 63 patients < 12 
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(standard deviation) of volatility are reflected in this measure.  The five-minute time 

interval follows established practices for collecting data for heart rate variability 

analysis.21 However, our data differ from that used in traditional heart rate variability 

analysis in that precise instantaneous heart rate is not acquired at every beat.  The 

SIMON system samples heart rate from a standard monitor (Phillips Viridia) at an 

average rate of once every two-three seconds.  Thus, a typical five-minute interval will 

contain between 100 and 150 heart rate data samples for a single patient.  The standard 

deviation of these points is our basic parameter of short-term volatility. 

We further characterize short-term volatility according to an observation window 

and a distribution range, and from these derive a measure of cardiac volatility related 

dysfunction (CVRD).  The observation window defines the length of time over which 

short-term volatility is observed, in this case, arbitrarily, the first 24 hours of ICU stay.  

Therefore the maximum number of volatility measurements in the first 24 hours is 288 

(i.e., one measurement every five minutes, 12 five-minute intervals per hour x 24 hours).  

Figure 5.4 demonstrates patient mortality by distribution of short-term volatility. 

The distribution range is that portion of the distribution where the measure 

optimally predicts the dependent variable, death.  We chose a distribution range of 0 – 

0.5, noting the substantial difference in mortality associated with this range (Figure 5.4), 

as well as substantial prior research by others suggesting reduced variability is associated 

with poor outcome. 

Finally, we define cardiac volatility related dysfunction (CVRD) as the percent of 

time during the observation window (in this case, the first 24 hours in the ICU) that a 

patient’s short-term heart rate volatility fell within the distribution range (i.e., 0-0.5).  
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Thus, a patient whose short-term volatility readings were evenly distributed between zero 

and two during the first 24 hours would be assigned a CVRD value of 25%. 

Our primary outcome of interest (dependent variable) was death as documented in 

TRACS, and defined as any inpatient death from any cause during the index hospital 

admission. 

 

 

Figure 5.4: Distribution of Short-term Heart RateVolatility Over ICU Stay by Mortality 
in the 923 Patient Test Set.  Percent < 0.5 was used to define Cardiac Volatility Related 
Dysfunction (CVRD) measurement.  Bin size = 0.01. 
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Statistical Analysis 

 Statistical analyses were performed using STATA v. 7 (College Station, TX) and 

SPSS v. 12.0 (Chicago, IL).  To assess the equivalency of the test and validation sets, we 

used T-tests and Mann-Whitney U tests to compare continuous variables pertaining to 

patients (age) and clinical episodes (LOS, ISS, ventilator days).  Contingency tables and 

the chi-square statistic were used to compare categorical variables (gender, race, and 

mechanism of injury).  

 We performed logistic regression to measure cardiac volatility related 

dysfunction’s (CVRD) value for predicting death.  Univariate analyses were performed to 

identify variables that should be included in the multivariable analyses.  Multivariable 

model development and verification was performed on the test set.  We used logistic 

regression to construct multivariate models incorporating age and ISS.  To control for the 

curvilinear relation of age and death, we divided age into five binary categorical variables 

representing 20-year intervals, with age <20 years serving as the reference category.  

Using the regression equation developed on the test set, we evaluated the performance of 

the model on the validation set.  Finally, we computed receiver operator curves (ROC) to 

compare the resulting models. 

 

Results 

The demographics of the test and validation sets were sufficiently comparable 

(Table 5.1) to enable combining both groups for additional characterization and analysis.  

Stratifying Cardiac Volatility Related Dysfunction (CVRD) by gender and race across the 

combined data sets (Table 5.2) revealed no differences over the first 24 hours of SIMON 
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data, although significant differences were observed when stratifying by outcome and 

mechanism of injury.  The difference in mechanism of injury was likely due to a higher 

ISS in the blunt trauma patients.  CVRD increased as age and ISS increased (Figure 5.5).  

Morbidity, defined as number of ventilator days and units of blood transfused, also 

increased with CVRD (Figure 5.5).  

 

Table 5.1: Comparison of Test Set and Validation Set Demographics. 

  Test Set Validation Set P value 

Number 923 393  

Age 38.7 ± 19.5 39.6 ± 18.1 0.17 

    

Gender   0.10 

Male 642 (69.6%) 291 (74.0%)  

Female 281 (30.4%) 102 (26.0%)  

    

Race   0.06 

White 752 (81.5%) 295 (75.1%)  

Black 103 (11.2%) 68 (17.3%)  

Hispanic 58 (6.3%) 24 (6.1%)  

Other 10 (1.1%) 6 (1.5%)  

    

Death 98 (10.6%) 37 (10.4%) 0.51 

    

ISS 28.1 ± 12.4 25.7 ± 11.9 0.001 

CVRD (% < 0.5) 3.6 ± 9.0 3.3 ± 8.3 0.73 
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Table 5.2: Characteristics of Cardiac Volatility Related Dysfunction (CVRD). 

N Mean P value 

Discharge Status   <0.001 

Alive 1181 2.45  

Dead 135 10.9  

Gender   0.69 

Female 383 3.16  

Male 933 3.39  

Race   0.19 

White 1047 3.6  

Black 171 2.29  

Hispanic 82 2.16  

Other 16 5.41  

Mechanism    0.02 

Blunt 1116 3.56  

Penetrating 194 1.92  
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Figure 5.5: Mean CVRD In First 24 Hours of ICU Stay vs. Age, Injury Severity Score, 
Ventilator Days, and Units of Blood Transfused.  Combined dataset (N=1316).  P-values 
using ANOVA. 
 
 
 
 Without incorporating age or ISS, we also stratified patient deaths in the 

combined data set by CVRD and found a 3.8% mortality rate in patients without CVRD.  

Conversely, patients with any abnormality in CVRD had a 21% mortality rate.  The 

mortality rate increased as CVRD increased (Figure 5.6). 

Having identified the key covariates (age and ISS) that contribute with CVRD to 

death, we developed a regression model incorporating both elements.  The covariates that 

were significant in both the test and validation set were age > 80 and ISS (Table 5.3).  
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The formula using the regression equation generated a score ranging from 0-1.  The 

cutoff value, which maximized sensitivity and specificity in the test set, was found to be 

0.1.  This same model was then prospectively evaluated for predictive accuracy in the 

validation set.  The receiver-operator curves (ROC) for both the test and validation sets 

(Figure 5.7) show no statistical difference.  The ROC area for the validation set was 

0.816 and the sensitivity and specificity were 70.1% and 80.0% respectively (Table 5.4).  

To further evaluate the effectiveness of the model, we compared the true positives and 

false negatives to the days to death (Figure 5.8).  This demonstrated that the regression 

equation above remains effective for predicting death beyond the first several days.  

 

 

Figure 5.6: Percent Mortality vs. Cardiac Volatility Related Dysfunction (CVRD) in the 
First 24 Hours of ICU Stay.  Age and ISS not incorporated.  Data for test and validation 
set (N=1316). 
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Figure 5.7: Logistic Regression Model ROC Curves for Test and Validation Sets.  
P-value shown is comparing test and validation set curves.  P-value for both curves 
<0.0001. 
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Figure 5.8: True Positive (patients predicted to die who die) and False Negative (patients 
predicted to live who die) Rates vs. Days to Death.  Combined test and validation sets 
(N=1316). 
 
 
 
Table 5.3: Logistic Regression Model Parameters.  (Developed on Test Set, N=923). 
 

Parameter Coefficient 95% Confidence Interval 

[constant] -4.114 N/A 

ISS 0.053 1.035-1.074 

If age > 80 1.254 1.273-9.645 

CVRD 0.050 1.033-1.071 
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Table 5.4: Receiver Operator Curve Statistics.  The model described in table 5.3 was 
applied to the validation sample (N=393). 
 

Time 
interval Sensitivity Specificity ROC P value 

1st 24 
hours 70.1% 80.0% 0.816 <0.0001 

 

 

Discussion 

This study explores the clinical value of dense physiologic data, captured in the 

ICU and automatically stored in a relational database.  It is our global hypothesis that the 

SIMON project’s automated dense data capture and systematic analysis of multiple 

physiologic variables, will, over time, facilitate both the identification of patients at risk 

for adverse events and development of decision support tools useful for early 

intervention.  Our previous work demonstrated that measures of long term heart rate 

volatility (standard deviation, percent of time in extremes during the entire hospital 

course) were better predictors of survival in a population of trauma patients than were 

measures of central tendency (mean, median).13  

This study extends that effort by investigating whether patterns of short-term 

volatility in five-minute intervals (CVRD) aggregated over the initial 24-hours of ICU 

stay have predictive value during a patient’s entire hospital course.  We chose the five-

minute interval to maximize comparability with previously described heart rate 

variability analyses, which also measures heart rate changes over five-minute intervals. 
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In this manuscript we use raw data to demonstrate that cardiac volatility related 

dysfunction in the first 24 hours of ICU stay is an independent predictor of death.  This 

measure also predicts morbidity (ventilator days and transfusion).  

CVRD varies with age, injury severity score, and mechanism of injury.  We use 

regression data incorporating age and ISS in an independent validation set to demonstrate 

the sensitivity and specificity of this measure in predicting death.  Using the ROC, we 

show that 82% of variation is accounted for by our model.  However, we do not advocate 

that CVRD be used in isolation to predict individual patient mortality.     

The practical and operational evidence that dense data capture can occur in a 

working ICU enhances the clinical significance of our findings.  While others have 

demonstrated similar technology22-24 or analysis of periodically sampled dense data in a 

similar population,4, 7, 25 our work demonstrates the value of overcoming barriers 

associated with  patient identification, reliability, storage, and analysis of dense 

physiologic data.  Further, we demonstrate that linking dense data captured in a large 

trauma population to clinical outcomes facilitates identification of new risk factors for 

death and morbidity. 

 

Strengths and Limitations 

Strengths:  The strengths of this study include use of: 1.) a diverse population of 

patients with a wide range of injuries spanning a 3 year period, 2.)  a large, prospectively-

collected test data set (N = 923), 3.)  an independent, prospectively-collected validation 

set (N = 393).   
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Clinicians were blinded to these data during the course of care, therefore the 

results are independent of clinician intervention; this de facto, blinding also serves to 

establish our institution’s baseline practice pattern against which future interventions 

designed to highlight CVRD can be benchmarked. 

Finally, this study defines a methodology for ICUs to collect, store, distill, and 

distribute electronically patient-specific physiologic data in real-time to clinicians both at 

the bedside and in remote locations.18, 25-27 In addition to their clinical value, the data are 

readily accessible for research and operational applications. 

Limitations:  We expect that dense physiologic data capture will become an 

increasingly important tool in the ICU, but for that to occur limitations of our study must 

be addressed.  In the first year of the study period, when SIMON only existed for 2-4 

beds, sample bias may have occurred if clinicians tended to allocate the SIMON beds, a 

scarce resource, to the sickest patients.  If this occurred, the problem would have resolved 

by the second year of the study, when all admission beds in the ICU were equipped with 

the SIMON data capture system.  Further expansion of SIMON to all 31 beds on the 

trauma unit will allow dense data capture to continue throughout a patient’s entire 

hospitalization, facilitating detection of potentially unique physiologic patterns occurring 

at different time points in the patient’s hospital course.  In addition, the absence of 

pharmacology data rendered us unable to determine whether beta-blockade or 

administration of other drugs explains the increasing loss of volatility associated with 

age, injury severity, or mortality.   

With regard to the regression model, loss of 30-day mortality data on cases discharged to 

long-term care facilities may have had the effect of understating true positives, and 
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failure to include mechanism of injury despite its positive association with mortality may 

have diminished the model’s predictive power.  Finally, construction of chronologically 

distinct (serial) test and validation sets renders the analysis vulnerable to variations 

occurring over time.  The fact that our model performed better in the validation set could 

be due to such variations.  We will address these issues in future analyses by means of 

bootstrapping, time series analysis, segmentation into shorter critical periods of 

observation as predictors of outcomes, and other appropriate techniques.  These analyses 

are ongoing.     

 

Future Work  

This work represents a series of compromises between the rigor of the laboratory 

and the realities of delivering bedside care.  Previous work in heart rate variability has 

been largely based on waveform analyses15, 21 that assess autonomic function via precise 

R-R interval computation from EKG waveforms. The increase in precision obtained via 

this methodology comes at a cost—waveform analysis requires several orders of 

magnitude more storage and processing capacity than the methods presented here.  We 

have begun to compare the methods of waveform analysis with CVRD to determine if the 

loss of short-term volatility represented by CVRD is a measure of autonomic 

dysfunction.  While we hypothesize CVRD is an indicator of autonomic dysfunction, it is 

possible that we are measuring intrinsic cardiac dysfunction, failure of resuscitation, 

physiologic exhaustion, patient’s genetic ability to respond to injury, global 

hypoperfusion, or a parameter specific for neurologic dysfunction.   
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Continued refinement of our measure will help to identify the time interval of 

standard deviation, the standard deviation distribution range, and the observation window 

that optimizes the ROC curve.  Since our data are prospectively collected and stored 

indefinitely, we can use test / validation and bootstrapping methodologies to find the 

most powerful measurement tool and model to predict outcome in our ICU.   

We must also continue to investigate the time-course of this measure.  While the 

model predicts reliably death occurring within 5-10 days based on the first 24 hours of 

data, accuracy decreases as the patient’s stay lengthens.  If CVRD predicts death equally 

well later in a patient’s disease process, it may herald the onset of the hyper-

inflammatory/septic state.  Aggregation of data into 24-hour blocks reported here is a 

preliminary step in a wider exploration of the clinical significance of continuous 

physiologic data in the ICU.  Analysis of short-term volatility in finer observation 

windows such as one, six, and 12-hour blocks is also necessary for CVRD to evolve into 

a powerful real-time bedside tool. 

Each physiologic parameter (blood pressure, oxygen saturation, intracranial 

pressure, pulmonary artery pressure, cardiac index, pulmonary capillary wedge pressures, 

SVO2 and others) stored by SIMON must also be explored and described in the context of 

at least three types of measures:  1) volatility, 2) central tendency and 3) waveform 

analysis.  We must define each parameter and determine if it is best characterized by 

measures of central tendency or statistical variation, and begin waveform analysis to 

analyze the potential of each to predict outcome.  Once these individual physiologic 

parameters are defined, we will analyze the interactive effects of the parameters and 

determine the best overall and organ system specific indicators of patient status.  Only by 
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employing rigorous scientific process, can we create data-driven alarm systems for 

individual patients to predict deterioration or poor outcome.  Finally, we must replicate 

the system in other clinical contexts to determine if patterns of physiologic response 

observed thus far are applicable to other populations of hospitalized patients. 

 

Conclusions 

In conclusion, cardiac volatility related dysfunction (CVRD) is potentially the 

first new vital sign born from the concept of dense physiologic data capture in the 

Intensive Care Unit.  CVRD predicts death in the first 24 hours of ICU stay with 70% 

sensitivity and 80% specificity when incorporating age and injury severity score.  We 

hypothesize CVRD is a measure of autonomic dysfunction and have demonstrated that 

patients who lose short-term volatility are at higher risk for death.  Further studies are 

underway to more robustly define CVRD and assess its clinical utility.  Dense 

physiologic data capture may be a powerful new tool for defining subgroups of patients 

with poor outcome. 
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Abstract 
 

 Background: Our previous work demonstrated dense physiologic data 

capture in the intensive care unit (ICU), defined a new vital sign Cardiac Volatility 

Related Dysfunction (CVRD) reflecting reduced heart rate variability, and demonstrated 

CVRD predicts death during the hospital stay adjusting for age and injury severity score 

(ISS).  We hypothesized a more precise definition of variability in integer heart rate 

improves predictive power earlier in ICU stay, without adjusting for covariates. 

Methods: ~120 million integer heart rate (HR) data points were prospectively collected 

and archived from 1316 trauma ICU patients, linked to outcome data, and de-identified.  

HR standard deviation was computed in each 5-minute interval (HRSD5).  HRSD5 logistic 

regression identified ranges predictive of death.  The study group was randomly divided.  

Integer heart rate variability (% time HRSD5 in predictive distribution ranges) models 

were developed on the first set (N=658) at 1, 2, 4, 6, 8, 12, and 24 hours following ICU 

admission, and validated on the second set (N=658).   
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Results: HRSD5  is bimodal, predicts death at low (0.1 - 0.9 bpm) and survival at high (1.8-

2.6 bpm) ranges.  HRV predicts death as early as 12 hours (ROC = 0.67).  HRV in a 

moving 1-hour window is a simple graphic display technique. 

Conclusions:  Dense physiologic data capture allows calculation of HRV, which: 1) 

Independently predicts hospital death in trauma patients at 12 hours; 2) Shows early 

differences by mortality in groups of patients when viewed in a moving window; and 3) 

May have implications for military and civilian triage. 

 

Introduction 

The response to and outcome of injury in trauma patients has long been a topic of 

interest for study, but an efficient method of dense data collection and interpretation has 

been unavailable.  SIMON (Signal Interpretation and Monitoring) is an information 

management tool that captures, stores, analyzes, and displays physiologic and other 

patient information from the patient’s bedside1,2.  The goal of this multi-year project is to 

determine the utility of densely captured data in a manner that informs and supports 

clinical decision-making.  Using SIMON, dense data capture and the sampling and 

storage of multiple patient parameters on a second by second basis is now incorporated 

into our standard ICU workflow.  Our goal is to link this large physiologic data set with 

other clinical data sets (such as host factors, demographics, outcome, pharmacy and 

laboratory) and ultimately research data sets (i.e. proteomics and genomics) to better 

characterize the response and outcome to injury.   

We expect the first products of this effort to be the development of “new vital 

signs” defined by the data gathered by SIMON.  Integer heart rate variability (HRV) is 
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the first of these potential new vital signs3.  Previously, we have shown that integer HRV 

in the first 24 hours of ICU stay is associated with increasing probability of morbidity 

and mortality4.  Additionally, our work suggests that integer HRV is similar to spectral 

(waveform) measures of HRV5.  We postulate that HRV is a reflection of failure of 

autonomic control of not only the heart, but of multiple organ systems as well.   

In this manuscript, we refine the definition of distribution ranges for integer HRV 

and articulate its basic characteristics.  Specifically, we demonstrate:  

1) The bimodal significance of integer HRV distribution for predicting death and 

the critical distribution ranges for both increased mortality and an as yet undefined 

“protective effect”.   

2) As the observation window of integer HRV increases over 24 hours the 

association with death increases, but the bimodal pattern and critical distribution ranges 

remain consistent. 

3) The concept of the rolling percentage of integer HRV to display this new vital 

sign in real time at the bedside.     

 

Methods 

 

Setting 

 Vanderbilt University Medical Center (VUMC) is the only level one trauma 

center serving a 65,000 square-mile area.  Of the facility’s approximately 3200 annual 

trauma admissions, over 1800 are admitted to a 31-bed dedicated trauma unit.  The 

fourteen trauma unit beds classified as ICU beds accommodate 700-800 admissions per 
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year, all of which are currently equipped with the SIMON data capture system.  During 

the study period, SIMON was expanded from four to fourteen ICU beds.   

 

Data Sources 

SIMON: The SIMON (Signal Interpretation and MONitoring) project is an 

ongoing collaborative effort between VUMC’s Division of Trauma and the University’s 

School of Engineering.  Physiologic data from bedside medical devices have been 

continuously captured and stored from four trauma ICU beds since December 2000, with 

an expansion to 10 beds occurring in June 2001.  The physiologic parameters monitored 

include heart rate (HR), invasive and non-invasive blood pressures, intracranial and 

cerebral perfusion pressures, arterial and venous oxygen saturations, blood temperature, 

pulmonary and central venous pressures, cardiac index, and end diastolic volume index.   

As of December 2004, data has been collected for over 3000 patients for their 

entire length of ICU stay in a SIMON monitored bed, representing more than 240,000 

total hours of continuous monitoring and over two billion data points.  Data are 

automatically sampled once every 3-4 seconds (depending on system load) and stored in 

an SQL Server relational database (Microsoft Corp., Redmond, WA).  For clinical use, 

patient-specific data are displayed on a secure website with daily aggregate summary 

reports generated and placed in each patient’s electronic medical record.  In addition, 

daily physiologic data summaries for all patients on SIMON are sent to the ICU medical 

director, chief residents, and nurse manager prior to rounds. 

 TRACS: The VUMC Division of Trauma has participated in the Trauma Registry 

of the American College of Surgeons (TRACS) since 1986.  Demographic, clinical, and 
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injury-related data on all patients admitted to VUMC for trauma or burns are entered into 

the database, which is maintained locally and shared quarterly with the National Trauma 

Data Bank (NTDB) after de-identification.  Among the more than 300 parameters 

currently captured via retrospective chart review are patient demographics, injuries, 

diseases, operative procedures, hospital disposition, complications, and length of stay at 

various levels of care, costs, and resource utilization.  For this IRB-approved study, data 

from SIMON and TRACS were linked via medical record number and de-identified prior 

to analysis. 

 

Study Population 

The study population included data from 1316 patients who 1) were admitted to 

Vanderbilt University Medical Center’s Trauma ICU between December 15, 2000 and 

July 31, 2003, as identified by TRACS and 2) had 12 to 240 hours of stored SIMON 

heart rate data.  Patients with fewer than 12 or more than 240 hours of SIMON data were 

excluded.  These patients had early death, were transferred, or experienced a prolonged 

SIMON recorded ICU stay.  Data from patients in the exclusion groups were retained for 

use in a separate future analysis.  The population was randomly divided into two equally 

sized test and validation sets (Figure 6.1). 
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Figure 6.1: Study Population.  Patients in the study group were randomly divided into 
two equally sized test and validation groups. 
 
 
 
Measurements 

Over 120 million heart rate data points, representing approximately 100,000 

patient-hours of data capture, were stored in the combined 1316 patient sample.  

Demographic data obtained from TRACS included age, gender, race, discharge status 

(home, rehabilitation facility, skilled nursing facility, and death), and Injury Severity 

Score (ISS), an index of anatomic injury severity that correlates with survival in blunt 

trauma patients.  

Our parameter of interest, short-term heart rate variability (HRSD5), is computed 

for a given patient once every five minutes by calculating the standard deviation of all 

heart rate samples collected during that time interval.  Duration (five minutes) and 

intensity (standard deviation) of variability are reflected in this measure.  The five-minute 

time interval follows established practices for collecting data for HRV analysis, and our 
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analysis of heart rate standard deviation in collections of these intervals resembles time-

series techniques for assessing HRV (i.e. SDANN)6.  However, our data differ from that 

used in traditional HRV analysis in that precise instantaneous heart rate is not acquired at 

every beat.  The SIMON system samples heart rate from a standard monitor (Phillips 

Viridia) at an average rate of once every one to four seconds.  Thus, a typical five-minute 

interval will contain between 75 and 300 heart rate data samples for a single patient.  The 

standard deviation of these points is our basic parameter of short-term HRV, and the units 

of this measure are beats per minute (bpm). 

We further characterize short-term variability according to percentage, as defined 

by an observation window and a distribution range.  The observation window defines the 

length of time over which short-term variability is studied, and the distribution range 

defines the range of values of interest.  Our principle measure of heart rate variability is 

the percent of time short-term HRV measurements fall within a particular distribution 

range during a given observation window.  For example, if the observation window is the 

first 24 hours of ICU stay, and a patient’s short-term HRV measurements were evenly 

distributed between 0 and 4 bpm during this time, their HRV was 100% for the 

distribution range 0-5 bpm, 25% for the distribution range 1-2 (and 0-1, 2-3, 3-4 bpm), 

50% for the distribution range 2-4 bpm, etc. 

In this study we considered eight observation windows, corresponding to the first 

1, 2, 4, 8, 6, 12, 18, and 24 hours of a patient’s ICU stay.  100 different HRV distribution 

ranges were formed by dividing the range 0-10 bpm into tenths.  Variability percentages 
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were computed for each subject over every observation window and distribution range, 

for a total of 800 measurements on each subject1.  

  Our outcome of interest (dependent variable) was death as documented in 

TRACS, and defined as inpatient death from any cause during the index hospital 

admission. 

 

Statistical Analysis 

 Statistical analyses were performed using STATA v. 7 (Stata Corp., College 

Station, TX) and MATLAB v. 6.5 (Mathworks Inc., Natick, MA).  To assess the 

equivalency of the test and validation sets, we used T-tests to compare continuous 

variables pertaining to patients (age) and clinical episodes (injury severity score, short-

term HRV in first 24 hours).  Contingency tables and the chi-square statistic were used to 

compare categorical variables (gender, ethnicity, and death).  

Univariate logistic regression was used to assess each variability distribution 

range’s association with death, in each of the eight observation windows, in the entire 

population (800 models).  Within each observation window, logistic regression models 

for predicting death based on multiple distribution ranges were constructed and evaluated 

as follows: Multivariate models were developed on the test set, by adding variability 

distribution ranges (in order of significance from univariate results) to the model until 

performance did not improve.  Each of the resulting eight multivariate model equations 

                                                 
1 Within a particular observation window, patients with data captured less than 50% of the time were 

discarded for that window only.  Any observation window contained a minimum of 1018 patients. 
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was then applied to the validation set, and evaluated in terms of resulting area under the 

receiver operator curve. 

To examine evolving patterns of reduced HRV during the first 24 hours, and how 

these patterns might differ by patient outcome, “rolling percentages” were compared 

between survivors (N=1181) and non-survivors (N=135) in the entire population.  At 

each time relative to ICU admission in the first 24 hours, the mean and standard deviation 

of percent low HRV over the past hour were computed within the two outcome groups.  

Percent low HRV was defined as the percent of time integer HRV fell between 0.3 and 

0.6 bpm.  The Mann-Whitney test was used to assess whether the two groups were 

statistically different at each time point, at a significance level of 0.05. 

 

Results 

1,316 patients admitted to our trauma ICU form the study group and were 

assessed for integer HRV in the first 24 hours following admission.  135 patients (10.3%) 

died and 1,181 patients (89.7%) survived to discharge from the hospital.   

Figure 6.2 shows statistical significance of each of 100 univariate logistic 

regression models for determining outcome, based on the percent time short-term HRV 

fell within the respective distribution tenth over the first 24 hours of ICU stay.  The curve 

demonstrates the bimodal significance of the distribution ranges, with both low (0.1 – 0.9 

bpm) and high (1.8 –2.6 bpm) distributions associated with outcome.    This analysis was 

repeated using discrete observation windows corresponding 1, 2, 4, 6, 8, 12, and 18 hours 

following ICU admission.  The summary results are shown in Figure 6.3.  It demonstrates 
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the emerging bimodal pattern of significance as observation window time increases, and 

the relative constancy of critical distribution ranges. 

 

 

 

Figure 6.2: Relationship of HRV Distribution Ranges in First 24 Hours to Outcome.  
Each bar represents a one-tenth range of short-term integer heart rate variability (HRSD5), 
i.e. 0.3-0.4 bpm.  The height of each bar corresponds to the percent of time all patients’ 
HRSD5 fell within that range within the first 24 hours of ICU stay.  The color of each bar 
represents statistical significance of a logistic regression model using the percent time 
within that range as the only input variable and death as the outcome. 
 
 
 

This analysis was repeated using discrete observation windows corresponding 1, 

2, 4, 6, 8, 12, and 18 hours following ICU admission.  The summary results are shown in 
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Figure 6.3.  It demonstrates the emerging bimodal pattern of significance as observation 

window time increases, and the relative constancy of critical distribution ranges. 

 

 

Figure 6.3: Relationship of HRV Distribution Ranges in Various Observation Windows 
to Outcome.  See Figure 6.2 description.  Not shown: Distribution ranges above 5 bpm 
were not statistically significant (P < 0.05) except in the 24 hour observation window (see 
Figure 6.2), and from 5.8 – 5.9 bpm in 6, 8, 12, and 18 hour windows. 
 
 
 

The 1,316 patients were then divided randomly into test and validation sets of 658 

patients each.  There were no statistical differences in age, gender, ethnicity, injury 
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severity score, short-term HRV within the first 24 hours, or mortality between the two 

groups (Table 6.1). 

 

Table 6.1: Comparison of Test and Validation Sets.  ISS = Injury Severity Score.  HRSD5 
= Short term integer heart rate variability. 
 

 Test Set Validation Set P value 

Number 658 658  

Age 38.9 ± 19.7 39.1 ± 18.7 0.87 

Gender    

Male 453 (68.8%) 480 (72.9%) 0.10 

Female 205 (31.2%) 178 (27.1%) 0.10 

Race    

White 525 (79.8%) 522 (79.3%) 0.83 

Black 80 (12.2%) 91 (13.8%) 0.36 

Hispanic 46 (7.0%) 36 (5.5%) 0.25 

Other 7 (1.1%) 9 (1.4%) 0.61 

Death 63 (9.6%) 72 (10.9%) 0.41 

ISS 27.3 ± 12.2 26.9 ± 12.9 0.50 

HRSD5, 1st 24 hours 2.60 ± 1.43 2.64 ± 1.41 0.55 
 

 

  Eight multivariate models, one for each observation window, were constructed 

using the test set and evaluated in the validation set.  The results are summarized in 

Figure 6.4, which shows the area under the receiver operator curve for the validation set 

at various observation windows.  This demonstrates that the predictive power of the 

model increases over the first 24 hours of ICU admission. 
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Figure 6.4: Accuracy of Heart Rate Variability in Predicting Death Versus Observation 
Window.  Eight multivariate logistic regression models were constructed to predict death 
based only on integer HRV data within the first 1, 2, 4, 6, 8, 12, 18, and 24 hours of ICU 
stay, using a test set of 658 patients.  Inputs were the percent of time patients’ short-term 
HRV fell within critical distribution ranges.  Each point represents the area under the 
receiver operator curve when the model was applied to a distinct validation set of 658 
patients. 
 
 

Figure 6.5 demonstrates the rolling percentage of integer HRV over the first 24 

hours for two groups:  135 patients who died and 1,181 survivors.  While the two 

populations appear discrete throughout the entire observation window and are statistically 

different at each time point, there is in fact great variation in the data as shown by the 

frustratingly large standard deviations (Figure 6.6).     
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Figure 6.5: Rolling Heart Rate Variability Percentage Over First 24 Hours.  Points on the 
curves represent the average percent of time within the previous hour that integer HRV 
was between 0.3 and 0.6 bpm, over all patients in the respective outcome group. 
 
 
 

 

Figure 6.6: Rolling Heart Rate Variability Percentage with Standard Deviation.  Bold 
lines show same data as Figure 6.5, thin lines show ± standard deviation. 
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Discussion 
 

From a pool of over 8,500 trauma admissions, 1,316 patients were studied to 

refine the “new vital sign” integer heart rate variability (HRV).  We have previously 

shown that reduced integer HRV correlates with morbidity and mortality in a trauma 

population3,4.  Others have traditionally measured HRV via spectral analysis of the EKG 

waveform6, and noted similar correlations7,8.  Additionally, integer HRV and spectral 

HRV appear to be similar measures of failure of the autonomic nervous system5,9.  

This is important for two reasons.  First, spectral HRV has been demonstrated in 

the laboratory setting to be associated with multiple physiologic derangements including:  

sepsis or systemic inflammatory response syndrome in adults10-13, children14, and 

neonates15-17; multiple organ failure18-20; insulin resistance21-24; and central nervous 

system injury in adults7,25-28 and children29. 

Second, integer HRV is far easier to incorporate into the ICU workflow than 

spectral analysis.  Integer heart rate is less expensive to collect and store because it 

requires orders of magnitude (10-2) less disk space than high-fidelity EKG waveform 

data7.  Most importantly, integer HRV can be displayed in real time at the bedside 

because it can be acquired and calculated automatically without the manual filtering and 

manipulation demanded by spectral HRV.   

In this manuscript we have proposed a conceptual framework for displaying 

integer HRV data for both individual patients and populations of patients:  the rolling % 

HRV.  We postulate that rolling % HRV is a tool which will allow us to monitor patient’s 

progress or deterioration in real time at the bedside.  Trends in integer HRV over time 

should be as predictive of impending sepsis and other milestones as spectral HRV.   
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Additionally, in this manuscript we refine the definition of integer HRV and 

suggest its significance in predicting outcome is bimodal.  While our work to date has 

focused on poor outcomes (morbidity and mortality) in patients experiencing reduced 

HRV, there appears to be a group in which high frequency HRV (1.8 to 2.6 bpm) is also 

associated with outcome.  We hypothesize that, just as patients with reduced HRV have 

relatively poor outcomes, patients with increased HRV have improved outcomes.  Future 

characterization of this group should provide insight into this potential “protective effect” 

of increased HRV. 

Finally, we have defined the predictive ability of integer HRV over the initial 24 

hours of ICU stay.  While predictive power appears to increase over time, the bimodal 

significance and the critical predictive ranges are discriminators early in the patient’s 

hospital course.  In fact, looking at figure 6.5, the survivors and non-survivors appear to 

be two discrete groups at one hour and continue to diverge over the following 24 hours.   

It appears to be the high degree of variation that prevents discrimination early in 

the ICU course.  This is to be expected given the high intensity of the early hours of 

resuscitation.  If the sources of this extraneous variability can be determined and filtered, 

it is possible that integer HRV can become a powerful triage tool.  Potentially, integer 

HRV and other new vital signs may provide a battlefield commander a simple 

discriminator between the ubiquitous tachycardia of combat and the unique aberrations in 

variability associated with traumatic injury.  These new vital signs could then be used to 

triage patients, prioritize helicopter evacuations, and define the moribund.   
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Strengths and Limitations 

The strengths of this work include the large prospective data set collected 

automatically in a working ICU.  Bedside physicians and nurses were blinded to the HRV 

data to preclude study bias.  The data was collected and stored in real time without 

manual manipulation.   

We are, however, limited by the nascent nature of this work. Integer HRV has not 

been studied as extensively as spectral HRV and the association with autonomic 

dysfunction is still embryonic.  We have additional work to do to clarify the effect of host 

factors (age, gender, and ethnicity), injury patterns, and physiologic reserve, on integer 

HRV and outcome.   

Our future work will focus on characterizing the sources of variability in our data 

and developing automatic filters and algorithms to “purify” the data.  Our goal is to 

transform raw data into information, and information into decision support tools.  These 

tools must be available and displayed in real time and incorporated into critical care 

workflow.  Finally, these tools must assist in stratifying patients by:  therapy, resource 

utilization, and the probability of survival. 

 

Conclusions 

Integer HRV:   

1) Independently predicts death as early as 12 hours. 

2) Can be displayed using a moving window. 

3) Has a bimodal pattern of significance for predicting death.  

4) Has implications for military and civilian triage.   
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CHAPTER VII 

 

CONCLUSION 

 

Summary of Chapters 

This work represents early steps towards identifying and validating new vital 

signs in critical care.  Chapter 1 outlines the significance and specific aims of this work, 

and provides a brief overview of other efforts in ICU decision support based on dense 

physiologic data, discovering new measurements providing better assessment of patient 

status, and defining underlying physiologic regulatory mechanisms. 

Chapter 2 describes the SIMON architecture and implementation for capturing 

and providing decision support based on dense physiologic data.  SIMON has been 

proven portable by implementing it at another major university medical center. 

Chapter 3 illustrates how SIMON can be used to provide real-time decision 

support in the form of alphanumeric pager alerts based on changes in patient physiology, 

and how feedback from those alerts can inform decision-support strategies and modify 

work process for members of the critical care team. 

Chapter 4 details integer heart rate statistics over ICU stay in 923 patients, and 

describes correlations between various statistics and mortality and morbidity.  

Measurements of heart rate variability over ICU stay correlated with death and increased 

ventilator days.  Measures of central tendency were not associated with mortality or 

morbidity. 
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Chapter 5 describes a measurement of short-term heart rate variability in integer 

heart rate data, and shows how this measurement predicts outcome.  In 1316 patients, 

heart rate variability measured within the first 24 hours, and in conjunction with 

covariates, predicts hospital death occurring a mean of 7 days after admission. 

 Chapter 6 discusses how the measurement of heart rate variability can be refined, 

shows the predictive value of the refined measurement within the first 12 hours of ICU 

stay, and describes a technique of displaying reduced HRV continuously in real-time. 

 

Future Directions 

This work describes a general tool and prototype new vital sign based on a single 

physiologic parameter (heart rate), studied in a single environment (trauma ICU), for a 

single application (predicting death).  As of February, 2005, SIMON contained 13 other 

physiologic parameters from more than 3200 patients.  One extension of this work is to 

study heart rate and these other parameters, alone or in concert, by testing various 

algorithms aimed at improving the timeliness and accuracy of prediction. 

 Also exciting is the potential to use new vital signs in a variety of other clinical 

and basic science research applications.  Clinically, stratifying populations by outcome is 

a first step toward detecting and predicting adverse events (i.e. sepsis, organ failure, 

hemorrhage) in individual patients.  Such predictions will identify opportunities for early 

therapeutic intervention in some patients, and futility of therapy in other patients. 

Opportunities for clinical and basic science collaborations to emerge from this 

work are abundant.  Physiologic patterns in response to injury provide a rich definition of 

the human phenotype.  Emerging techniques for correlating genetic factors across large 
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numbers of variables, in large datasets, can link physiologic response to the genome.  

Such correlations, over time, should reveal the genetic basis of physiologic regulation, 

and inform design of clinical genetic assays for identifying populations of at-risk patients. 

Finally, the trauma ICU of an academic medical center represents only one of 

many possible venues for introducing new vital signs.  Outside the ICU, the concept of 

patient trajectory becomes paramount. How do we identify, early in the health care 

process, clinical deterioration in the one patient out of hundreds or thousands?  New vital 

signs could give advance warning of deterioration, automatically notify appropriate 

responders, and potentially even initiate the first line of therapy.  

 Prior to reaching a medical facility, new vital signs might be measured at the 

scene or during transport to inform triage decisions.  In disaster or battlefield scenarios 

where casualties potentially overwhelm medical resources, triage decisions informed by 

better information will stratify patients, optimize deployment of resources, identify 

futility and potentially reduce mortality. 
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CHAPTER VIII 

 

PROTECTION OF RESEARCH SUBJECTS AND SOCIETAL IMPLICATIONS 

 

Protection of Research Subjects 

These studies utilize physiologic data from trauma ICU patients, collected in the 

course of routine medical care (“on the shelf” data).  An individual subject’s participation 

was determined solely by their presence in an operational SIMON bed, and by the 

suitability of physiologic signals available for analysis.  Study populations reflect the age, 

gender, and ethnic distribution of the general trauma ICU population.  No medical 

interventions, or other changes to routine care processes, were implemented as part of 

any study.  All data were de-identified (all 18 HIPPA identifiers removed) prior to 

analysis and publication.  The Vanderbilt University Institutional Review Board reviewed 

and granted exemption for all studies. 

 

Societal Implications 

New measurements of human physiology, and the tools to monitor and deliver 

these measurements to clinicians, will improve quality and efficiency of medical care.  

Even modest improvements result in significant savings in costs and lives, if they can be 

replicated across health care systems.  This work describes tools, methods, and a 

prototype new vital sign suggesting that dense physiologic data capture and analysis will 

lead to such improvements, and eventually change the delivery of medical care. 



 131

Risk and cost inevitably accompany significant change, especially change 

associated with health care delivery.  Realizing the potential of new vital signs will 

require far more than tools and studies showing efficacy, even if the tools are inexpensive 

and the efficacy doubtless.  Organizations and individuals will need to make initial 

investments of time and money to bring new vital signs to the bedside, and to manage 

risks associated with change.  Industry will need to build and market the tools, care 

providers will need to be educated to properly interpret new measurements, and clinical 

workflows will dramatically change as a result of new, higher quality information about 

patient status.  In the long term, success depends not only on the validity and feasibility 

of the concept, but also on individuals’ and society’s ability to manage the costs and risks 

associated with change. 
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APPENDIX 

 

A. Dissertation Manuscript Publication 

Chapters three through six have been published in peer-reviewed journals or conference 

proceedings: 

Chapter 3: Norris PR, Dawant BM.  Closing the loop in ICU decision support: 
physiologic event detection, alerts, and documentation.  Proc AMIA Symp 
2001:498-502, 2001. 

 

Chapter 4: Grogan EL, Norris PR, Speroff T, Ozdas A, France DJ, Harris PA, Jenkins 
JM, Stiles R, Dittus RS, Morris JA Jr.  Volatility: A new vital sign identified 
using a novel bedside monitoring strategy.  J Trauma 58(1):7-12, 2005. 

 

Chapter 5: Grogan EL, Morris JA Jr, Norris PR, France DJ, Ozdas A, Stiles RA, Harris 
PA, Dawant BM, Speroff T.  Reduced heart rate volatility: an early predictor 
of death in trauma patients.  Ann Surg 240(3):547-54, 2004. 

 

Chapter 6: Norris PR, Morris JA Jr, Ozdas A, Grogan EL, Williams AE.  Heart rate 
variability predicts trauma patient outcome as early as 12 h: implications for 
military and civilian triage.  J Surg Res 129(1):122-8, 2005. 
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B. Other Published Manuscripts 

The following related manuscripts, not included herein, were authored or co-authored by 

the student during the dissertation period: 

1. Dawant BM, Norris PR. Knowledge-based systems for intelligent patient monitoring 
and management in critical care environments. In: Bronzino JD, editor, The 
Biomedical Engineering Handbook:2746-2756. CRC press, 1999. 

 

2. Morris JA Jr, Norris PR.  Role of reduced heart rate volatility in predicting death in 
trauma patients. Adv Surg 39:77-96, 2005. 

 

3. Norris PR, Dawant BM, Geissbuhler A.  Web-based data integration and annotation 
in the intensive care unit.  Proc AMIA Symp 1997:794-8, 1997. 

 

4. Norris PR, Ozdas A, Cao H, Williams AE, Harrell FE Jr., Jenkins JM, Morris JA Jr. 
Cardiac Uncoupling and Heart Rate Variability Stratify ICU Patients by Mortality: A 
Study of 2088 Trauma Patients. To appear: Ann Surg, 2006. 

 

5. Morris JA Jr., Norris PR, Ozdas A, Waitman LR, Harrell FE Jr., Williams AE, Cao 
H, Jenkins JM.  Reduced Heart Rate Variability: An Indicator of Cardiac Uncoupling 
and Diminished Physiologic Reserve in 1425 Trauma Patients.  To appear: J Trauma, 
2006. 
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C. Contribution of the Student to the Dissertation 

 

Overall Contributions 

The student’s work to build technical infrastructure, secure funding, and analyze data was 

essential to the completion of each manuscript and the continuing success of the project 

as a whole.   

Technical Infrastructure: The student designed, implemented, and maintained 

the current version of SIMON, a dense physiologic data capture and management system, 

during the course of the dissertation work.  While implementation details differ, 

SIMON’s current version builds on a number of valuable concepts and experiences of 

prior implementations1-3.  SIMON was used to collect all data and generate all alerts 

referenced in this manuscript.  The student designed and implemented low-level 

physiologic data collection components of the system with the assistance of Dr. Dawant 

and two other graduate students on the project, Eric J. Manders and Karlkim 

Suwanmongkol.  The student exclusively designed and implemented all database 

components, the current event detector (based on past work by Suwanmongkol4), and a 

number of other components to generate alerts and reports, interface with external 

systems, and perform automated system management and troubleshooting.  The student 

maintained the system from initial deployment on two trauma ICU beds, through several 

expansion efforts to include all 14 Trauma ICU beds.  Trauma staff assisted with cable 

manufacture and connections to mobile bedside devices, and with implementing reliable 

patient identification mechanisms. 



 135

Funding: During the dissertation period the student applied for and received 

funding to support the work.  During the early phases of the dissertation period, funding 

was provided by a National Library of Medicine Individual Training Grant (LM00053-

01A1).  The student wrote and submitted this application under the direction of Drs. 

Benoit Dawant and Randolph Miller, prior to beginning work described in this 

manuscript.  The student exclusively wrote and submitted a dissertation enhancement 

award to the Vanderbilt University Graduate School, which funded SIMON expansion to 

two additional beds.  The student assisted in obtaining funds from a major pharmaceutical 

manufacturer to expand SIMON to 6 additional beds.   

Analysis: In addition to work described below (“Specific Contributions to Each 

Chapter”), the student performed a number of preliminary analyses aimed at assessing 

data validity and discovering new, clinically relevant, measurements of patient 

physiology.  The most notable of these resulted in the observation that heart rate 

variability, measured by the standard deviation of integer heart rate data over 5 minute 

epochs, was associated with patient outcome.  This observation formed the basis for 

Chapters 4, 5, and 6. 

Collaboration: The student initiated or played a critical role in establishing and 

maintaining professional relationships essential to this effort.  The student worked with: 

1) Clinical, technical, and administrative hospital staff to ensure SIMON’s reliable, 

consistent operation; 2) Physicians, medical informaticians, and health services 

researchers at VUMC to design and undertake various analyses; and 3) Physicians and 

technical staff at Wake Forest University to implement SIMON on four of their trauma 

ICU beds. 
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Specific Contributions to Each Chapter 

Chapter 1: The Introduction was written entirely by the student. 

Chapter 2: This manuscript was written entirely by the student.  The student prepared all 

data and performed the analyses described. 

Chapter 3: This manuscript was written entirely by the student.  The student designed the 

study, prepared all data, and performed the analyses described.   

Chapter 4: This manuscript was written by several authors, including the student.  The 

student prepared all data, designed the majority of the study, and verified all analyses.   

Chapter 5: This manuscript was written by several authors, including the student.  The 

student prepared all data, assisted in study design, and verified all analyses.  Final results 

came largely from the student’s revised analyses. 

Chapter 6: This manuscript was written by the student and the second author (Morris).  

The student designed the study, prepared all data, and performed all analyses. 

Chapter 7: The Conclusion was written entirely by the student. 
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