SENSORY INTEGRATION WITH ARTICULATED MOTION ON A HUMANOID ROBOT

By

Juan Luis Rojas

Thesis
Submitted to the Faculty of the
Graduate School of Vanderbilt University
in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE
in

Electrical Engineering

May, 2004

Nashville, Tennessee

Approved:
Professor Alan R. Peters i

Professor Mitch Wilkes



Parami padre y madre que sacrificaron tanto por ver mis suefios cumplidos.
Paramis hermanos por su gpoyo y amor.

Por mi Dios que todo |e debo.



ACKNOWLEDGEMENTS

| would like to thank Dr. Peters, Dr. Wilkes, and Dr. Kawamurafor al their
support and encouragement. Special thanks are due to Dr. Petersfor believing in me and
advisng me throughout this period of much learning. Thanks dso to Flo Fottrell, for dl
her help throughout the years; she has been invauable during my time at Vanderhilt
Universty.

Thanksto dl the CISteam, for dl your help, instruction, and advice. | was very
happy to work with al of you. Especidly to Li Sun, whose direction proved invauable to
my work.

| thank the Electrical Engineering Department and NASA-JSC for thelr financid
support.

Findly, | want to thank my family for al their support. In particular, | want to
thank my parents, who worked so hard and sacrificed so much for me to be here today. It
would not have been possible if they had not believed in me and supported me to come

here. | am eterndly grateful for al you represent to me.



TABLE OF CONTENTS

Page

DEDICATION. ...ttt ettt e e et e s ettt s s eaeesseseessebaessseesaasessasseesabeessabenesbesssaresssnres i

ACKNOWLEDGEMENTS . ...ttt sttt st st s s eba e s ba e s sabae s sabee s iii

[ S IO o AN = I TR vi

LIST OF FIGURES ...ttt sttt ettt s e e e st e e s be e s sabe e s sabee s sabeessnteas Vil
Chapter

[. INTRODUGCTION ..ottt ittt eetee e etee et e s s ee s st e s seaaeessseessereessbesssabesssbesssbesssasessanns 1

Problem SEAEEMENT .......ooeiieiie e e e e e s s s e e e s eebbaeeeeaans 1

0070 B0 1Y, R 2

(€707 [ 2

Organization Of thE PAPEN .......eoiieeie e 3

[I. RESEARCH TEST BED .......oeiiitiie ettt ettt s st sevee e svae e sbae s sabeeesnreeeans 4

ThEISAC RODOL ... ..o s e s e e s e ba e e e s e neees 4

THE TMA ATCRITECIUIE ...ttt et e s s e s s sar e e e e e s abae e e s snrees 6

Robot-ENvironment MOE! ............oooiiii i 8

AGENES e 9

REELONSNIPS. ...t 10

AQeENt-ObJECt MOAE ........ocveeeeeceee e 11

Code Development FrameworK ...........coccveieiiieiie e 13

PErSONGI REVIEW ...ttt e e e s et e e e s s e ba e e e s snbaeeeeaans 16

TS o N O s T 18

R £ o o 1 18

(00210 01C 7= S OO 18

(00! o gl Y/ [o o /= £ 19

COlOr SEJMENTALTION .......eeueeeeeeie sttt 25

Probability EIlipse MOE .........ccoieeieeeeeceee e 26

(0o U Sy o) AN 1 (= 1 (o [P 28

(Y Ko (Lol g B 1= (< £ (o ] g 1RO 29

U o [0 OO 30

IMHICTOPINONES ...ttt et et e bt e e e s reenneeneeeneenns 30

o g (ol 017z [ = (0] o N 30



B . e e sree s 32

PartTHE UNIT ...t 33

=720 O] 011 o | = RS 33

S 010 0 - 34

SMOOLN PUFSUIT ... s e 36

SYSLEM INEEGIALION.......cvieeeeieeiteeie ettt 40

0= 010 o g T 41

[©0] 1o ISR 43

Hardware DEAIIS ..........ooeeiiiieee e e 43

(000 411 {0 I I Te] « NN USSP PP PR PR 44

(000110 1= OSSP 45

FN g o L= Lo g 1 0o o IS 49

[ = 0 RSP 50

V. RESEARCH: SENSORY-MOTOR CONTROL .....cccceitiiirieriinenieseseseesee e 53

LY O € N I TS 55

1011 00 X 0 o | SRR 55

CaMEIAAGENT ... r e r e n e e r e 57

(=20 AN < | S 58

=0 10 = | SRS 59

RIGNE AT AGENL .. 59

TrAECIONY AGENL ...ttt sttt b e bttt ne e b et sne b e 64

VII. DEMONSTRATIONS......cctiieieiteriesieste sttt se e see e stestesbesressessesseeeensestessessessessens 67

(€707 LSRR 67

IMPLEMENLALION........ceoiiecie e e b e sr e s neenneas 67

0T e ] 0] SRR 71

VI, CONCLUSION. ...ttt sttt ae s ae st st sbesreese e e e e nbesbenbeseesne e 72

FULUIE WOTK ...ttt e et eneesne e e e e neenneeneenneenns 73
Appendix

A, STATE MAGCHINE'S... ..ottt bbbttt be e sns 75

I DT o1 g I 1T 0= o o ST S 86

C. Conversion of asingular PaN angIe ...........cooeeiririeiienene e 89

D. COM 8N DCOM ...ttt sttt bbbttt e st et b nae e 91

2 1S I @€ N = 2 92



LIST OF TABLES

Table Page
1. RGB t0 XY Z COIOr SPACE CONVEISIONS......ceivitirierieriereeeeseessessessessessesseeeessessesseseesseses 21
2. SONIC PartitiONING .....c.ceiuieiieeiieiesie ettt s sae e sneesbeeneenne e 31
3. Sound LoCaliZation ANQGIES......c.oceeiiieiecieesieete st re et nne e sreeseenee s 56
4. SouNd AQent COMPONENTS ........eouerieeieieieesie ettt se s be b b e e e nesnesre e ens 57
5. Camera Agent COMPONENTS........uuiiiiiiiiire e sieeesree s sres e e sre s s ssre e s nsae e s sseesssaeesseeas 58
6. Head Agent COMPONENTS.......coiiiiirieriesie et se e e b e sae e 60
7. Hand Agent COMPONENTS........ccuoiirieiierieeie ettt sbe e s saeeeesseesbeseesseees 61
8. Right Arm Agent COMPONENTS .......ccieieieeieeie e et e e e re e esreeae e 62
9. Trajectory Agent COMPONENES........cceiirrerierreriereee e st e e sse e se s sne s sne e 66
10. Description of demMONSIIatiONS ..........ccveiiiiiieiieie e 68



LIST OF FIGURES

Figure Page
1. The humanoid RODOt ISAC ..o s 5
2. IMA DeVvElOPMENT PrOCESS......ccoieiirieitistesieete ettt se bt se et sb e e sne e 8
3. IMA Agent INternal SITUCIUIE...........ccoviiiieciie e 14
I e 1o = [OOSR 22
5. L2 NOMM MOOE! «...oovvoveocveeesees et seess e sess s sn s ss s en s sssnssesssnssanssnnsnsens 23
6. Histograms under fluorescent lighting: (left) Normalized rg color space, (right)

[ Yol [0 g o= o TS URRRRR 26
7. Geometry of the probability €llipSe.......coveiveeeiice e 27
8. MXL MICIOPNONE ...ttt sttt s e e b e b e 30
S = I A o USSP 33
10. Feedforward Neural Network for Saccade Training .........ccocevevevereeieeneenesese e 35
11. Saccade Map TraINING .......cociieeeee ettt be e e sre e b e neesneeneas 35
12. Implementationof Saccade CONLIOl ..........cooveviiiiceece e 36
13. Positional vector and velocity vector used for smooth pursuit control ....................... 37
14. Definition of Foveaand Dead Zone Areain ImagePlane..........cccccceeveveveeveciecneenen, 38
15. Low pass filter for SMOOth PUISUIT..........cceiiiiriiireeeee e 40
16. System Integration for Visual SySIeM........cccoeiiriiienee e 41
17. Shadow’ S RUDDEIUBLONS........c.eiueeeeiriiieeesie st 42
18. Soft Arm Agent COoNtrol LOOP .......cueveierierierieriesieee et 45
19. Open loop control architecture for controlling the reaching movement’s of ISACs

Vi



20. Motor Control HIEIrarChy ........ccuvoiieiieecie sttt s 48
21. Block Diagram of Tonic-plus-Phasic Plus Feedback Controller ..........cccccevvevinneee. 49
22. SOft Arm ArDITration LOOP .....coveieieiiiriisiisieeieeie e 50
23, ISACSHANA ...t e e ae e 51
24. PNeUMatiC CYIINAEN ....c..oieeeieiieeeee e 51
25. PNOtOEIECIIC SENSOIS.....c.eeiieeieeeceestes ettt 52
PO TS o 11 00 AN = 0| S 56
27, CAMETAAGENT ...t r e 57
28. HEAO AGENL ...t eeeeeeeeseeeseese s ee s seseseseseeeseees st eesaeesseee s es e s nesesesesese 59
29. RIGNE HANA AGENL ...ttt sae e 61
30. RIGNE AFM AGENL ...t b e e s b e e saeesbe e sseesreesnneens 62
G I I = =t (0] Y7 AN 1= o | S 65
32. CameEraHEAH SITUCKUIE..........eiueieeeeeeeee et 86
33. Cartesian Coordinate MOGE ...........ccoiiieiiiiieceee s 88
34. Singular Pan ANGIE CONVEISION.......c.uueiuiiiiieiiee et eiee et e sttt e steesae e aeesneeenee e 89

viii



CHAPTERI

INTRODUCTION

From birth, humans make full use of their sensesto learn about their environment.
Visud, auditory, olfactory, gustatory, and haptic sensations are invauable entry points
for babies to learn about the world. Infants focus in an object or abeing and andyze it;
they study its shape, color, pattern, and texture; they use touch to sense temperature and
texture; smell to know the aroma; and taste to flavor [Lamb 2002]. Furthermore, humans
integrate multiple sensory fesatures at atime to dynamicaly and fully learn about their
environment [Pfeifer 1997].

An observe-grasp-reach behavior istypicaly demongrated by human babies that
are beginning to acquaint themsdveswith their surroundings. Smilarly, when a baby
hears a sound, it immediately looks at the corresponding area (perhaps to identify the
source) [Irie 1995]. Thisis exemplary of aset of behaviors that empowers newborns to
familiarize themselves with the outsde world and to learn the effects of their own

actions.

Problem Statement
Onegod of researchin humanoid roboticsis to produce systems that can interact
autonomoudy with people to perform useful tasks. That god ingpired the work reported
herein. The objective of this work was to implement fundamental sensory-coupled

actions on the Vanderbilt Humanoid, ISAC (ISAC is an anthropomorphic robot foundin



the Cognitive Robotics Laboratory at Vanderbilt University. A more detailed description
is presented in chapter two) [Kawamura 1995], to construct tasks from sequences of these
actions, and to evduate the results. Ultimately, the god of thiswork isto enable ISAC to

acquire new behaviors and to perform new tasks

Sensory Motor Coordination

Robots, like humans are capable to learn and interact with the outside world by
making use of sensory information. Evidently, the extent and quality of data presentin a
robot will vary depending on the qudlity of its hardware and software resources.
Nonetheless, sensory motor coordination is essential for the robot to learn basic behaviors
to interact with people and its environment.

Thisthesswill specidize in two specific sensory inputs: vison and audio.
Making use of these two inputs a series of basic behaviors were implemented involving

camera-head motions and reachand-grasp motions.

Gods
The god of the project isto produce a specific set of coordinated reactionsto a
specific set of datainput from the outside world. Once these basic behaviors are well
established further progress can be accomplished. Firdly, a set of more complex
sequences of reactions can be coupled to produce basic behaviors. Secondly, once
coordinated motion occurs, the robot will be empowered to further learn about its
surroundings. For instance, visualy the robot would be able to examine the shape, color,

and pattern of atarget and associate these characteristics to that object. Smilarly, with



sound, if an object emits a gpecific sound, the robot could associate the latter with the

object.

Organization of This Paper

The remainder of this paper will examine the hardware and software systems
used, sensory motor coordination integration, and future work. Chapter 2, RESEARCH
TESTBED, will describe the software architecture and the humanoid robot composition
used for thiswork. Chapter 3, SENSORS, will provide an explanation of the different
sensors used to gather data from the surroundings. Chapter 4, MOTION, will discuss the
different components of ISAC that perform articulated motion. Chapter 5, RESEARCH
INTERESTS, will convey the gods of the thesis. Chapter 6, AGENTS, will present agent
functiondity and goals. Chapter 7, DEMONSTRATIONS, will detal the different
behaviors achieved by the robot. Chapter 8, CONCLUSIONS AND FUTURE WORK
will present find thoughts and potentia future work corresponding to sensory motor

coordination behaviorsin the |SAC humanoid robot.



CHAPTER I

RESEARCH TEST BED

The hardware and software resources used for this research are described in this
chapter. It isimportant to understand the underpinnings of both hardware and software to
have an appropriate sense of the potentia, cgpabilities, and limitations of the systems. In

doing so0, more effective work can be accomplished.

The ISAC Robot

The humanoid robot ISAC stands for Intelligent Soft Arm Control. The robot was
originaly created to assst handicapped people. The god was for the arm to be compliant
to ensure the security of the users around the robot [Kawamura 1995].

The safe behavior of the arm is atributed to its compliant nature. Thearm is
created by joining pairs of agonist/antagonist artificial muscles [Northrup 2001, pp. 73].
These are created from rubbertuators, which are very much like rubber balloons and
operate through gas pressure. At itsinception, ISAC congsted of one soft-arm, one
camera, and a voice system that included speech and speech recognition.

Later, ISAC was given asecond arm and dong with it a more anthropomorphic
shape. Today, ISAC includes acolor stereovision system, two independent pan-tilt units

two microphones, an infrared sensor, two soft arms, two pneumatic hands, and speech

recognition and text to speech capabilities



Currently, the arm employs a non-linear controller [Northrup 2001] inspired on a
biologica system. The hands are composed of amotored thumb and forefinger, and
pneumdtic digtd fingers. This alows for a better grip in the hand. Additiondly, the
camera control works through a neural network that provides the fixation point for both

cameras [Srikaew 2000, pp. 82-85].

Figure 1. The humanoid robot ISAC.



The IMA Architecture

The intelligent machine architecture encompasses a high and low leve of
abgtraction. At the former leve, the architecture consists of a multi-agent system and a
multi-agent network. The multi-agent system seeks to modd the robot, the tasks it
performs, and the environment. The multi-agent network has two functions firg, it
controls the robot, and secondly, it is serves asamode for the robot system itself. At the
lower level of abstraction, the agent implementation is based on component-object
software. Hence, arelationship exists between the distributed agent level and the
component-object network. The description borrows heavily from Pack [Pack 1997,
2002].

The higher-levd modd is named the Robot- Environment modd. The agent-based
decomposition of this level empowers the architecture to ease the complexity of system
integration, particularly by emphasizing encapaulation, reusability, and explicit
connections between the agents. The lower level modd represents the higher level of
abstraction and its relationships by a network of software modules denominated
component objects that have an established protocol of communication. Consequently,
the IMA isasystem of parald executing software agents formed from smpler and
reusable component objects. This architecture is characterized by reusability,
extenshility, handling of complexity, pardldism, scaahility, reactivity, and robustness.
The agent-based system can then serve as amodel and a controller for the robot through
the representation of lower level explicit software modules that manage the devel opment
of software reuse. The Robot-Environment model describes the robot in different sets of

resources:



Physica Resources: ams, head, hand, etc.

SKill Resources: visud tracking, grasping, etc.

Behavior Resources. collison avoidance, homing, etc.
Task Resources: finding objects, moving heed, etc.
Environmenta agents: representations of the outside world.

All of these sets are dynamically connected by relaionships. Inputs are modified
through the computational processes created by these relationships to produce the
outputs. In the Agent-Object model, the creetion of agentsis achieved by combining
reusable subcomponents and their parameters. It is then through these rel ationships and
reusable subcomponents that the architecture minimizesits dependence on the internd
representations of the system. Figure 2 demonstrates the above description.

The robustness of operation to an evolving system is strong. The network of
agents remains undtered by the changes undertaken in the software modules. The agent
level controlsthe overal architecture yet it remains unaffected by dterationsin the
mechaniams that manipulate the inputs and outputs. The high level modd provides ashell
around the implementation levd. It isolates the system from changes within an agent.
Thereis grest flexibility and operability in that the isolation alows the user to use
different mechanisms without changing the overdl structure of the system. Additiondly,
many component mechanisms can be defined a both run-time and design-time dlowing
for adynamic configuration. The user is able to refine the performance of the system by

executing and correcting faults a run-time.
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Robot- Environment Modd

Agents can be said to play the role of actors and servers. The former uses other
agents as resources and has athread of execution, and the latter provides resourcesto
other agents as well. It isin the robotics domain that agents provide information to other
agentsto trigger events. The mode of action and communication leads to a different view

of design and amore loosdaly coupled system.



IMA agents are defined by the following set of properties:
Autonomous
0 Agents control their own subcomponents.
0 Agentsare strongly encapsulated. Hence, thelr inner mechanisms
do not affect other agent functiondity.
0 Agents support interaction with other agents through relationships.
Proactive
0 Agentsact localy based on their inner modules, resources, and
received data from other agents.
0 Each agent is designed to make a decision or selection based on a
state machine or some other process.
Reective
0 Agentsrespond to changes in the environment.
0 Agentsrun continuoudy checking inputs, updating their state, and
Creating outputs.
Connected
0 Each agent models one concept. So to achieve complex behaviors
interaction with many agents is necessary.
0 Connections can transfer smple data like numerical vaues, or data
represented in forms that are more complex.

Resource Limitation



0 All red systems suffer some degree of limitation.
0 The system must be able to identify these and adjust accordingly.
0 Rdationships between agents contain severa aspects that alow for
this detection and adjustment mechaniams.
Onefind aspect of IMA isthat it is asynchronous. By having asynchronous
agents, it iseaser to smplify the sysem a a higher level of abstraction— here
synchronization issues become negligible. Each loca agent makesits own action

decisions based on current data

Relaionships

Relationships capture interactions amongst agents in two specific ways.

Software interactions. function sgnatures, sequences, and method calls.
Structurd Interactions: spread activations, motion schemas, €tc.

In addition, the communication between agents includes an arbitration mechanism
that gives priority to certain agents. IMA relationships represent a variety of arbitrations
relationships such as. actuator arbitration, sensory arbitration, goa arbitration, and
context arbitration.

Therefore, by the encapsulation of agents the user can evolve individua agents or
components in their respective levels of abstraction and further system capability through

new relationships without negatively affective system performance.

10



Agent-Object Model

Agents are concurrently executing modulesto achieve adesired god. They are
linked to each other and have at least one thread of execution, some of them having
access to hardware. They are dso independent decision making modules made out of
components that make up the internd representation of the former. Similarly, the agent’s
overd| gateisaresult of the sate of the inner modules and their relaionships. An
agent’ s decison could be a command to a hardware resource, a computation, or a
communication event.

A modd of an IMA agent will now be introduced. This mode will provide
information on how to implement agents from reusable components. It will alow for
explicit representations of software configuration and on-line modification of agent
systems. The mode conssts of four basic factors in providing robot control:

Agents. provide concurrency, scooping, and decisionmaking; they are decison

objects.

Relationships. provide interaction protocols and connection ports, they are

protocol objects.

Representations. provide communication, complex information, encapsulation;

they are State objects.

Activities and Actions. provide agorithms, computations, decision process'; they

are functiona objects.

The mode reliesin the concept of reusable components to ensure evolutionary
growth of the system. The components can be used with different configurations and for

different purposes. By smply editing some decision rules, the components can serve

11



different uses. No new modules need to be built. Integration occurs & afine leve of
granularity.

Agents are implemented through a set of components that follow typical design
patters in object-oriented systems. They are now presented here and visudized in figure
3.

Agent Managers

They provide the platform on which the agents are buiilt.

The main feature highlights a st of on-line interactive tools thet alow agent

implementation and devel opment.
Agent Engines and Activaions

They conduct the action selection process for individua agents and the invocation

of other agents.

Agent execution occursin apardle or sequentid ways.

The Engineis based on a Finite State Machine concept.

Engines and activities are replaceable and upgradeable.

The current state machineis set in ahierarchicd arrangement.

Agent Representations
0 They serve asinvocation mechanisms that perform computations, tasks,
and state updates.
Agent Resources

Resources available to agents include: data repositories, dgorithms, and links to

the states of other components.

They can be evaluated, invoked, and updated within an agent.

12



Components can be smple and complex.
Agent Component Managers
They are wrappers for component-objects.
They handle object persistence and provide avisud representation of the interna
gtate of a component alowing the agents performance to be updated.
Rdationship Components
They encapsulate the connections between agents.
Connections range from smple data-flow to multi-way data arbitration
mechanisms.
These components are encapsulated relationships that isolate the agents from

changes in the rdationships amongst themsdlves.

Code Devel opment Framework
In this section of the IMA description, abstract concepts are presernted asa
conceptual guide to develop IMA agents. The purpose is to encourage the developer to
think in terms of large scale, more reusable components, rather than asmple agorithm or
monoalithic program. The abstractions of representations, mechanisms, and policies
reduce the amount of any “hidden” interactions between components and force them to

be explicit.

13
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Figure 3. IMA Agent Interna Structure [Pack 2003, pp. 66].

For an architecture to be useful, it needs to make the work of the devel oper easier,
fagter, and more productive. With thisin mind, a set of base classes written in C++ was
created to reduce the effort needed to follow the congtraints of the architecture. The code
framework created provides a starting point to the agent-object model from amore
traditiona programming language. These base classes provide most of the common
functionality required to create these agents. They typica functiondity is now listed:

IMA Component

14



It isthe generic class for an agent component. It requires minima naming,
persstence, and linking.

Mechanism
It adds the invocation mechanism feature to the base class. It dso provides a
standardized way to invoke the mechanism.

Representation
It adds proxy and source functionality and interfaces that support communication
between a sender source and proxy representations.
Representati ons encapsulate communi cation across sources and proxy’s.
Mechanisms can be aggregated because thislevel of communication is
encapsul ated.

Policy
This class has a scheduled thread of execution based in the operating system.
The class dlows sequencing and decison-making processes’ to occur.
They invoke mechanismsin the agent Sate or externd agentsin which they are
found.

Agent Manager
It provides a platform for agent timing services, perd stence management, and
event dispatching.
The manager aso takes care of the agent locator and the agent shell. Thisdlows

components to bridge the gap with the outside world.

15



Persona Review

Through my persona experience with IMA | have discovered this architecture to
be of greet utility in working with robotic systems that demand a multi-agent system that
is strongly encapsulated, scaable, modular, and reusable.

The key to usethefull of potentia of the IMA the developer must be strongly
familiarized with the inner workings of the architecture, its user interfece, its date
machine structure, and its communication protocol. Those that have used the IMA
architecture to develop have criticized the architecture and labeled it as complex and
dow. In my opinion, complexity and speed issues can be solved with a good
understanding of the system. Evidently, there are down sdesto the architecture and | will
provide my view of these later on.

If the developer has a clear conceptual modd of the process to be implemented,
IMAs strong encapsulation and scaability provide ample flexibility to design aprecise
system. The robustness and efficiency of the system will then be areflection of the
qudlity of the programmed agorithms. Poor programming skillswill be evident &t the
Robot- Environment level. Smilarly, for the system to be quick to react and respond,
proper parameters need to be established. Speed can be influenced by severa factors,
such as: the length and complexity of a caculation, the specified period of agiven ate
in agtate machine, and the number of event cdlswithin asate. After much
experimentation, many of the challenges described above were overcome. This most
demanding chdlenge of the systemis learning and becoming familiarized with it.

Acquainting mysdf with IMA took many hours of hard work.

16



A lig of recommendations for improvement would include: a more user-friendly
GUI; more reliable communication amongst agents - at times agents do not recognize
certain cals, findly, the state machine is designed to operate in a sequentia manner —
and limits the functiondity of the system. A digtributed-pardlel organization for the Sate
meachine would alow agents to run smultaneoudy and thus have multiple processes
running in the humanoid. An improved verson of IMA could be very useful in our

continued efforts to research humanoid robotics.

17



CHAPTER I

SENSORS

For the purposes of this research, two main sensory inputs were sought — vison
and audio. Two stereoscopic color cameras and two high fidelity microphones act as
entry points from the environment to the robots data structures. Audio signas serveto
direct the robots attention to an area of activity. Visud information goes further and

indicates the specific location (given by pan and tilt angles) of a given target.

Vison

The primary sensory modality of humansisvison. Smilarly, for humanoid
robots, vision represents the most important sensory moddity aswell. Vision recognition
of the environment is necessary for the robot to andyze its environment and perform
intelligent motion behaviors. Robatic vison has been avery chdlenging fidd to
stientists. The god of thisthessisto direct the atention of the camera-head towards the
object of interest through pan and tilt commands. A description of the hardware and
software tools will follow. The latter will include an explanation of smple yet useful

tools used to perform color segmentation and motion detection.

Cameras

Two Sony XC999 cigar cameras were used for the camera-head of to achieve

gereoscopic vison. The camerais an ultra-compact and lightweight, one piece, cigar

18



camerawith 0.5 inches of acolored CCD array. A CCD array is described as a charge-
coupled device array. The latter contains light sengitive diodes that sweep across an
image and generate a series of digitd sgnalsthat are converted to pixel values. CCD
cameras are characterized for low noise to signd ratios. The camera aso features
hyperHAD technology, which outputs pictures of high digital quaity with a power
requirement of 12VDC. Additiondly, RGB sgnas and illumination levels can be

adjusted externaly [Sony XCC 2004].

Color Models

Before delving into the theoreticad underpinnings of color vison, it isimportant to
clarify the god of the work done in image processing. A smple but efficient image tools
was designed by Barile [1997] for the humanoid robot ISAC. It was desirable to direct
the focus of attention of the robot to specific objectsin the environment. To do this,
objects were detected quickly and robustly by using color segmentation. Incoming
images from the cameras are compared againgt predetermined color models to determine
if there is a match. Post- processing on the segmented blobs leads to the detection of
contiguous regions of smilar chromaticity. The center of massisthen caculated and
chosen asthe focus of attention. Once a point has been chosen, camera movement
agorithms can be chosen to direct the camera head to the appropriate location in space.
Color images are dependent on different chromaticity and brightness variables. Thus,
color segmentation techniques must account for two factors to achieve gppropriate

results.

19



Colors can be described in avariety of different spaces. Each color space model
exploits different properties of the visud field, and thus their uses vary according to the
needs of the user. A brief exposition of the color space models will be presented next:
RGB Color Space

Thismodd expresses color as alinear additive relationship between the three

primary colors known as red, green, and blue, and white light.

The three primary colors are based on a Cartesian coordinate system.

Each color can be determined with a vector representation of these colors.

There are afew disadvantages to the mode!:

0 The spectrd power digtribution of the RGB model varies depending on
the type of hardware used. The spectra power distribution can be
described as the characterization of light by assgning a measure of power
a every wavelength in the visible spectrum [Spectra Power Didtribution
2004].

0 TheRGB gpace provides a angle measurement that contains information
for both chromaticity and illumination; thislack of distinction makesthis
mode inadequate for image processing.

Inview of this problem, the CIE (Commission Internationde de L’ Eclairage)
established anew color modd with anew set of standard primaries known asthe CIE
1931.

CIEXYZ
This model separates both luminance and chrométicity into two components:

0 Luminance component =Y.
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0 Two chromaticity components= X and Z.
Thisis astandardized modd, which rendersit independent from hardware-based
materias.
The spectra power distributions of the primaries X, Y, and Z, were established at
5nm intervals between the wave engths of 360nm and 830nm.

RGB to XY Z conversons are possible:

Table 1. RGB to XY Z color space conversions [Barile 1997, pp. 9.

eXi .412453 0357580 180423 ( &R,

A

0_é a a
& (1= §0.212671 0715160 0.072169)* Goar

& §.019334 0119193 0.950227§ &B,,H

The luminance value of the CIE space isintended to reflect the luminous
efficiency of the human eye.
CIE reveals perceptua non-uniformity. In other words, changesin the waveength

of the colors do not result in an equa change in the color perceived.

Next, a description of normalized color spacesis presented. Normalized color spaces

help to reduce color representations from three to two dimensions and hel ps to recover

the true chromaticity in RGB or XY Z modds regardiess of the intengity of the illuminant.

Normalized Color Spaces

In generd, there are two methods of normalization:
o TheL! normdization process alows scded RGB vauesto lie on aplane

where their maximum vaue is equa to one.
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R

r=———
R+G+B
g=— G
R+G+B
b= B
R+G+B
r+g+b=1
b=1-(r+q)

o Thisimpliesthat only two of the three vaues are needed to know the
complete modd. Commonly, red and green values are used, since the
human eye is not sgnificantly influenced by the biue color.

0 The Eudlidean distance between two normalized points depends on two
angles. One found in between two adjacent lines - g, and the other one

found between the firgt line and the x-axis, q1. Seefigure 4.

0
8,

Figure 4. L* norm model [Barile 1997, pp. 10]
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The L? normalization differs from the first onein that the values here are scaled
onto a spherica line rather than linear moddl.

0 The Eudlidean disgtance is afunction of the angle between thelines. As
opposed to the firgt technique, the Euclidean distanceis afunction of the
angle made by the two lines that meet the pointsin space. This makes the
L2 norm model useful for color segmentation methods that depend on

color differences. Seefigure 5.

Figure 5. L% norm model [Barile 1997, pp. 10]

CIEL UV
TheL™ u v color space was designed to overcome problems of perceptual non-
uniformity present in the other color spaces.
In this modd, differences in wavelength size are equaly perceivable by changes

in color.
Light isrepresented in terms of luminogity — L, and chromaticity —u and v.

Thetopology of theL” u” v' color spaceisillustrated in the figure 6.
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L*u*v* values can be cdculated from non-linear transformations from the CIE

XYZ space. It dso depends on awhite point (Xn, Ya, Zn):

116(a)"? - 16

L ={ If a>0.01
903.3a
Otherwise,
u =13L(u*- u')
Where,
Y
a=—
Y

U'= 4X V' = oY
X+15Y +3Z X +15Y +3Z

_ 4X . oy
X, +15Y, +3Z, X, +15Y, +3Z,

n n

Similarly, a separate related to color must be described. It istermed color
constancy, and it describes the adaptive behavior seen in humans, whereby the colors
perceived in environments that are illuminated by difference sources ill look the same
way. Actudly, the wavelengths of the reflected colors from objects under different
illuminants do change, but the brain uses an adaptation process that alows the human to
perceive the same chromaticity. This behavior is of much vaue to robotic systems. It
provides robustness to changes in the source of the illuminant, especidly for those
systems that do image processing through color techniques.

The outsde world to the robot is dynamic and ever changing. Different visud

effects are aways present and the visua system of the robot needs to overcome the
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ungtructured nature of the environment. The dgorithm that was implemented to produce
color models for given image data was designed with an unstructured environment in
mind. A smple reduction technique is used; it minimizes the effects of changesin

brightness. It does s0 by converting RGB imagesto the XY Z color modd.

Color Segmentation

Color segmentation is a technique used in image processing to reduce the amount
of information to analyze from the environment. In using this technique, one must make
sure that the segmented regions represent a specific feature in the environment based on a
standard criterion. Segmenting by color can involve different techniques such as.
histogram modding techniques, clustering, and neighborhood agorithms (region growing
and split-and- merge techniques). The color segmenting software implemented for ISAC
utilized histogrammodeling techniques.

Commonly, hisogram modeling is performed on a priori data models from which
datistical models can be obtained. For ISAC the mode is based on probability elipses,
which perform gatistica anadyses on single colored objects.

The dgorithm requires a predetermined segmented color to perform the statistical
modd on the data. Hence, the color segmentation is done beforehand. A choice of color
space can be made by the developer. RGB, RG-normadized, and L*u*v* modds are
available. Findly, the dgorithm creates agtatistica model on the data and storesitina
knowledge base for later use.

When an image is dassfied, every pixd vaueisandyzed in theimageto

determineif it fitsthe modd. If true, then that pixd location is segmented. Image
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preprocessing (downsampling and blurring) is available to the user to reduce the amount
of information and noise. Post processing is aso donein the form of amorphologica
opening — that is an erosion followed by a dilation with a3x3 pixe cross. The operation
adsin overcoming effects from spurious pixels from the background, highly textured

urfaces and cameranoise.

Probability Ellipse Model

The color histogram of a green disc under fluorescent light in the normalized rg

and L*u*v* color spacesisilludrated in figure 6.

40} 40
> | Soe |
60 &0}
i ¢ ./ ‘
got g0t {
100——= 100 |
20 40 &0 BO 100 20 40 &0 B0 100

r u"

Figure 6. Histograms under fluorescent lighting: (Ieft) Normalized rg color space, (right) L* u*v*
color space [Barile 1997, pp. 23].

It isevident that for each color space, the presence of the pixel valuesis clustered
around a specific region in space. This property can be used by modeling the dataas a
two-dimensiond joint normal distribution, or probability dlipse. Given N samplesfrom

two random variables X and Y, the expected vaues are given by:

E(X)=m :%é X (3.10)

i=1
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E(Y)=m, :%é y (3.11)

The expected vaues correspond to the mean vaue of the data set. The moment

marix, L , for the varidbles X and Y is given by:

L&
L =20 b (3.12)
8'—21 Lzﬂ
Where,
|, =s2=E{(X - m)? (3.13)
|, =s2=E{(Y- m)?} (3.14)
| , =1, =Cov(X,Y) = E{(x - m)(Y - my)} (3.15)
Where, s and s yzarethevarianc& of X and Y. Thereisadso acorrdation coefficient, r ,
isameasure of how closdy related the two varigbles are and is defined by:
I
r=—2=2 3.16
> (3.16)

Where, s, and s, are the standard deviations of X and Y respectively.

¥

b X

Figure 7. Geometry of the probability elipse [Barile 1997, pp. 25].
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The parameters m,,m,,s ,,s ,,and r , are used to find the probability elipse with

uniform digtribution inside and zero didtribution outsde. The equation for the dlipseis:

1 _S-my 5 C-miy-m) (y-m)y'd_ (317)
a-r9g s; 5.8, sy |

Infigure 7, the center of the elipseisfound at (m,,m,) . The parameter ?isthe
number of standard deviations captured by the dlipse. The long Sde of the dlipseis

equivdent tol s ,, whilethe short Sdeisequd tol s . Theangle of rotation of the

ellipse about the center, aisdefined by:

_ -1? 1 4. 2 2 2 2 2 zul\il
a =tan mgsy-sxi\/(zsxsy) +(Sy-S5) &g (3.18)
Hence, we can modd the color of interest through this satistical procedurein a
two dimensiona color space.
Pixel dassficaion checks to seeif the pixd vaue falswithin the dlipse's
boundary. The user would choose a value for the sandard deviation, ?, and then do a
pixelwise computation to find the pixe vaue:
é(x- m)2 X - - -m)*u
a=— 1 : é(x ran) -2 (x- m)ly m/)+(y T/) U (3.19)
I “(@-r )@ S S,S, SO

If, a £1,the pixd is part of the dlipse and it is ssgmented.

Focus of Attention

Once dl the segmentation and post processing has been done, the dgorithm finds

the center of mass of the st of al foreground pixels. Thisisasmple procedure and is
defined as.
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Fo={x[B(x.y)=1

F ={yIB(x,y)=1
148
c-18 ¢
X N|a:1 Xi
148
y=—aF
NS

Where, N isthe tota number of foreground pixels. Thisisasmple and quick
method to find the center of mass. Although, it makes the assumption that only one object
is being analyzed. If more than one object is segmented, the FOA will be somewhere

between the objects.

Motion Detection

The motion detection agorithm is asmple frame-differencing agorithm.
Consecutive image frames are used to subtract the luminance vaues for each image. By
using a predetermined vaue, the differences in luminance values are compared to the
threshold. If the result is greater than the threshold, it represents apixel that did not
change in vaue, and thusis part of the moving object. All such pixels are ssgmented and
later used to determine the center of mass of the blob. Preprocessing techniques like
blurring and down sampling are used to reduce the amount of noisein theimage. It is
important to note that thisis asmple and not very robust technique when coupled with
the pan-tilt units. As soon as the head unit moves, noise is introduced in the image.
However, the threshold vaue dong with the specific type of motion dlow for afar

tracking behavior of the camera head.
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Audio
In this section, an introduction to auditory hardware and software modules will be
purported. The bulk of thiswork specidized in finding an auditory cue as sensory input

for the robot to detect the presence of activity in the environment.

Microphones
The MXL microphone is characterized by its pre-amp circuitry and a balanced

trangstor output for maximum freguency response. It has high sensitivity and low
digtortion recording capabilities. The frequency range captured by the microphoneis
between 20 kHz and 30 kHz. The microphone needs 48V of phantom power and it is

known for its performance and rdiability. The microphone is shown in the image below.

Figure 8. MXL Microphone [MXL 2004]

Sonic Locdization

Sonic locdization in humans is possble through a binaural mechanism. The dud
sound receptors provides audio cues in the horizontal plane and in the vertica plane[Irie

1995, pp. 15]. For ISAC, asmple but efficient sonic localization agorithm was sought.
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Using two microphones, the direction of sound can be easily computed in the horizonta
plane.

The dgorithm was based on the premise of comparing the sound energy retio
between the right and the | eft audio channels for selected space locations. A sound
intensity envelope was collected and filtered for both channels. The sum of the squares
for each sgnal was computed and used as a measure of energy. The ratio between both

channdls was compared at eleven different locations:

Table 2. Sonic Partitioning.

-90 -60 -45 -30 -15 0 15 30 45 60 90

The vaues of the ratios give clues asto the direction of the Sgnd. Thevadues are
used as areference for future measurements and used to determine the location of
incoming sgnas. The standard ratio values can be cdibrated at any time, thus providing
an easy wasto adjust the system to different noise conditions.

Once anincoming signd is received, the retio of both channelsis computed and
by means of linear interpolation, asingle angle interva is salected as the direction of the
sound cue. The latter is presented as a pan angle that can be utilized by other agentsin the

system.
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CHAPTER IV

MOTION

Once the robot possesses knowledge about its environment, behaviora responses
can take place. Thisisamilar to psycho-physologicd tests where behaviora responses
to low-leve inputs are examined. Hence, when the gppropriate image processing
techniques have taken place, a spatia location is retrieved and passed to the pan-tilt unit
to produce the appropriate motion. Furthermore, when the pan-tilt unit fixates on the
desired object a Cartesan location in space can be caculated from the angles of the
cameras. This pogition is used to command the arm to articulate its motion towards the

gazed target and perform a reach-and-grasp behavior.

Eyes
The visud system of the robot isimplemented through both the hardware and the
software. The hardware cameras dlow the robot catch images of the outsde world. This
single sensory input is the most significant of al sensory input and thus provides the most
information. The images then needed to be andyzed as was described in the sensors
section. Y et, for the information to be of true value to the robot, it needsto be

corresponded with meaningful movement on the robots part.
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Pan-Tilt Unit

The partilt unit is a high- speed and accurate positioning camera, reaching speeds
of up to 300 degrees/second. Two separate and independent pan-tilt units are connected

to a 1400MHz computer viatwo RS-232 connections.

Figure 9. Pan-Tilt Unit [Direct Perception 2004]

Head Controller

The camera head controller is the agent component that dedls with the pan-tilt unit
motion. The controller should dlow the following properties to take place:

The pan and tilt motions for each individual camera should be precise and

avalablefor dl agentsin the system.

Each pan and tilt motion should be independently controlled.

Velocity and acceleration should be controllable.

The panttilt units used on ISAC react quickly and precisely to inputs from the
head controller. The left pan and tilt motions are controlled by the first RS-232 port,

while the right pan and tilt motions are controlled by the second port. In both units, the
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velocity and acceleration are controlled. The information contained within this section

was largely produced by Atit Srikaew [Srikaew 2000].

Saccades

Saccades are typica eye movements that help focus the object of attention unto
the fovea. Similarly, the purpose of a saccadic motion in avisud sysem isto move the
gaze of the controller to a point ingde the fovea. The saccade function in the system was
created by making use of two modules. the saccade map trainer and the saccade
command generator. The advantage for usng aneurd net as amapping trainer isthat no
camera cdlibration is needed and it can be done in afast and accurate way. It isimportant
to recognize the fact that the origind neurd network was implemented for adifferent
head configuration. At the time of the hardware modification, it was deemed acceptable
to keep the output of the network for the new configuration due to the smilarities
between the old and the new structure. Training with the new head will be part of future
work. Nonetheless, the description of the current mode is presented below.

The map trainer provides an adequate transformation for the saccade command
generator to issue accurate commands to the panttilt unit. The training is done off-line by
using a back- propagation learning agorithm. Each pan-tilt unit istrained individudly.
The inputs to the neurd net are the 2x and ?y position of the gazed target, whilst the
output nodes are those corresponding to the pan and tilt motions respectively. A hidden
middle layer that contains 25 hidden neurodes is used and is governed by a bipolar
hyperbolic tangent sgmoid function See figure 10 below for a diagrammatic

representation of the neural net.



Figure 10. Feedforward Neura Network for Saccade Training [Srikaew 2000, pp. X; this figure
has been modified to reflect updates in the system].

By usng sample input-target pairs shown in figure 11a and a sum-square error of

0.02, the resulting map shown in figure 11b was obtained:
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Figure 11a and 11b. Saccade Map Training [Srikaew 2000, pp. 102].
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The saccade command generator uses the map to produce motor commands
corresponding to target- position inputs. A standard feed-forward network is used to
cdculate the output vaues, which are sent to the Eye Motion Center to control the

camera head. Seefigure 12.

: T {quﬁPuu'ﬁamJ
o -
_{Mﬁcrpmiﬁam J (x,]?m (x,I)num
{Torge Postions] | OfElin

il o Saccad:s Saccades

Map Trainer

Camera Head Controller

Figure 12. Implementation of Saccade Control [Srikaew 2000, pp. X; this figure has been
modified to reflect updates in the system].

Post saccade processing was performed to correct the neura weightsin the

network to minimize the error of the tranformeation.

Smooth Pursuit

Smooth pursuits are designed to keep atarget in the fovea. The eye movement
utilizes two parameters to perform its motion: target position and target velocity. The
latter is used to predict the future position of the camera and dlow for a smoother

trgjectory in the camera head. See figure 13.
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Figure 13: Pogtional vector and velocity vector used for smooth pursuit control [Srikaew 2000,
pp. 88].

Two concentric regions of different radii are defined as: the fovea with aradius of
F pixds, and the dead zone with aradius of D pixels, where, F > D. Seefigure 14.
Smooth pursuit’s dso known as proportiond tracking motions occurs whenthe target is
located outside the dead zone but inside the fovea. If a any time the target exits the

fovea, asaccade is used to reach the target.
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Figure 14. Definition of Fovea and Dead Zone Areain Image Plane [Srikaew 2000, pp. 86]

The positiond vector isthe distance of the target from the center of the foveaand

isdefined as.

p=(p..p,)= (X.Dy)

[P|= D +Dy?

The veocity is described equaly:

®
vV =(v,

Where, the units are in pixds per time unit.
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It follows that the motor commands my,, , My, My, , My, Can be calculated by
making use of the distance of the target and constant gains k , ,K pr.K 1, K 1, fOr the left

pan, right pan, left tilt, and right tilt motors.

m,, =k *Dx (4.5)
Meor =K s * DXg (4.6)
my, =Ky * Dy, 4.7)
My, =K * Dy (4.8)

Where, the L and R subscripts describe the |eft and right images respectively.

To predict target postion, let ?t be the timeinterva between consecutive image

frames, let v bethe velocity of the target at time't, so the position of the target at the next

framet + ?t be:
DXy = X% +V, DX (4.9
DY.q = Y +V, * Dt (4.10)

This produces a smooth motion in the camera head when it tracks a given target.

The camera head controller is an open loop controller and receives no feedback.
Object trgectories vary dynamicaly with the environment making it hard to estimate the
exact trgectory. Overshoots in the camera head may occur; to lessen this effect alow-

pass filter is used to reduce the overshoots. See figure 15.

39



=T

( Smooth
Pursuit

Control

oy

1 Head
\CDI‘ItFﬂ"li[

m |
iy

m |

1o I-'l—| z"| |

j Low-Pass Filter

Figure 15. Low pass filter for smooth pursuit [Srikaew 2000, pp. 105].

Thefilter is gpplied to each motor command before it is sent to the panttilt unit.

Let m, be the current motor command, and m,_, be the previous motor command. The
low-passfilter sgnd, m, is determined by:
m=a’ m+(1l-a) " m, (4.11)
Where, a isafilter congantandO£a £1.1f a =1, m=m,.Hence, thefilter's

effect isnegligible. The value of awas determined empiricaly to obtain the best

performance in the camera head.

System Integration

The visud system combines dl the modules contained vison senang, and eye
motion. The images provided by the cameras are captured by a device that encapsulates
al frame grabber functiondities. Then, objects can be extracted from the environment by
means of color segmentation of motion detection. The center of mass of the ssgmented
blobsis caculated and used to provide target motion information and target position

information. The former yidds aveocity sgnd later used by the smooth pursuit module,
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while the latter yields a target pogition used by the saccade module. Both eye movements,
experience adight delay that accounts for the movement of the camera. Y &t, data streams
are passed as quickly as possible to keep the camera head on target. Saccades and smooth
pursuit’s behave smilarly to each other. These behaviors can be executed independently

or in conjunction.
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Figure 16. System Integration for Visua system [Srikaew 2000, pp. 116; this figure has been
modified to reflect updates in the system].

Pneumatic Arms
The humanoid robot, ISAC, is actuated by pneumatic “artificia muscles’. These
werefirst developed by J. L. McKibben in the 1950's as orthotics for polio patients
[Klute, 1999]. Klute and Hannaford [1998] describe them as actuators made from an

inflatable, tubular inner bladder sheethed with a nylon double helix weave that shortens
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lengthwise when expanded radidly [1998]. Those two main components are clamped
with fittings a both ends, one of which contains an air intake. The nylon sheeth holds
congtant the volume of the gas within the rubber tube. Therefore, asthey are inflated, the
actuators contract along the axis of the tube. Smilarly, asthey deflate they expand dong
the axis. If one end isfixed, the other will move aload in an gpproximately linear fashion
[Daerden 2002]. The arms exhibit compliance as a direct result of two factors a
pneumeatic actuator operates on the basis of gas compressihility, and itsinner bladder is
eladtic. Even if the gas pressure remains unchanged, an applied force that changesthe
length produces a spring-like behavior in the rubber materia of the bladder which
enhances the compliance of the actuator beyond the compressibility of the gas. Because
of their condtituent materids, McKibben air muscles are lightweight and have a
characteridicaly high force to weight ratio. Other Sgnificant features include direct
hands-on connections, easy replacement, and safety due to their natural compliance
[Klute 1998, Daerden 2002].

At itsinception, ISAC used “ Rubbertuators’ — McKibben air muscles produced
by the Bridgestone Corporation. The Rubbertuators have since been replaced with UK’s
Shadow Robot Company air muscles. These new arms produce less hysteresis and

require less power consumption than the origind Bridgestone actuators.

Figure 17. Shadow’ s Rubbertuators [ Shadow Air Muscles 2004]
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ISACs arms have six degrees of freedom: a base that rotates about the vertica
axis, ashoulder that rotates about the horizontal axis; and an elbow and wrist thet rotate
both around the x- and y- axes.

Each joint has a pair of air muscles that act as opposing muscles. They are defined
as agonigt and antagonist muscles — they need to be coupled to produce motion in two
directions. As one actuator pushes a load, the other one will act to stop it, by balancing
the pressure in the arms the desired position can be achieved. The control 1oop and model

will be explained next.

Control

This section will include a complete description of the control mechanisms for the
soft arms of the humanoid robot ISAC. Hardware details will be discussed first, secondly
they the control loop paradigm is presented, followed by the controller model and

implementation, and findized by the arbitration loop.

Hardware Details

Theair flow necessary for the artificial arms to work runs through a compressor
and an air dryer to ensure the purity of the air - rubbertuators and vaves are susceptible
to impuritiesin the air [Alford 1999].

Physica anglesin the arm are computed by converting encoder angles by the

following equation:



(RawEncoder - Encoder Offset)

PhysicalAngle = EncoderGain (4.12)
Mog anglesin the system dedl with logica angles as opposed to physica angles.
The joint space angles and the physicd angles differ by virtue of the geometry of the
robot. The following equations are used to map between these two forms:
L1=p1 (4.13)
L2=p2 (4.14)
L3 =0.5(p3 + p4) (4.15)
L4=p3-pd (4.16)
L5 = 0.5(p5 + p6) (4.17)
L6 =p5- p6 (4.18)
The equations can be rearranged to solve for the physica angles.
p3=L3+05* L4 (4.19)
p4=L3-05* L4 (4.20)
p5=L5+05* L6 (4.21)
p6=L5-05* L6 (4.22)

Forward and inverse kinematics can be used to move the arm to desired positions.

The control loop is described next.

Control Loop
The control loop is explained in the CIS Technicd report [1999]. Figure 18 shows

these steps that are delineated below:

Position commands are introduced viathe “Desred Logica Angles’ component.



The commands are filtered with afirst order [IR low-pass digitd filter.

The filtered angles are converted by the sampler mechanism to “Desired Physica
Angles”

The desired and actual physica angles are used to compute the pressure output.
The sampler then drives the servo vaves which control the pressurein the

atificdd musdes.
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Figure 18. Soft Arm Agent Control Loop [Alford 1999, 2.2]

Controller
The most recent controller for ISAC was developed by S. Northrup in 2001.
Northrup’s mativation for creating anew controller was to design a humanoid robot

whose arm movements were smooth and safe, particularly for fast god-directed motion.



These improvements would enhance the overdl experience for humans when interacting
with ISAC [pp. 7-9].

Northrup's controller was biologicaly inspired. Before the control paradigm is
presented, a brief description of human arm EMG activation levelsis given [pp. 72].
Based on Yamazaki’ s work [Yamazaki 1995] it was shown that for quick arm motions,
thereisreciprocd activation in antagonistic muscles that is usudly followed by co-
activation of the muscles when the movement terminates. Reciproca activation isaso
known as triphasic activation and it describes the agoni st- antagonist-agonist sequence of
EMG sgndsin the muscle. It isimportant to decompose motion into horizontal and
verticd planes. EMG activation levels differ snce different forces are & work. For
instance, in the horizonta plane, once motion ceases the EMG signd disgppears; but
according to Flanders [1996] in the vertical plane, atriphasic pattern is superimposed
with tonic activation (activation levels are needed for quas-Static postura control)
patterns. Flanders aso outlined a method to decompaose the signd into its tonic and
phasic components, alowing the phasic portion of the signa to be anadlyzed. Since ISACs
am gructure is based on antagonigtic artificia muscles and the god isto articulate reach
motions in both the horizontal and the sagita plane, ISACs arms can be activated and
controlled in amanner smilar to those in humans.

Hence, ISACs arms are modeled after the tonic- plus-phasic control paradigm.
EMG sgndsin humans are milar to those of pressurein McKibben actuators. Asforce
increases in muscles, EMG activation increases, and the length of muscle decreases. In
McKibben actuators, when force increases, pressure increases likewise, whilst the length

of the rubber decreases. Hence, a mapping of the reaching motions and the pressure
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levels of the rubbertuatorsis needed. The mapping and modd was developed through
experimentation by (a) evaluating the tonic activation levels for postura control, and (b)
evauding the phasic activation level for reaching movementsin the verticd plane was
superimposed [Northrup 2001, pp. 73-76]. Thus an open loop architecture that models
the tonic and phasic Sgnds as time sequences for the arm to perform reaching motions

was implemented and is shown in figure 19.

Tonic
’ Sgnd
Xstart |
XgoaJ_ ARM
Load Size
Reaching Time 1
Phasic

’ Sgnd

Figure 19. Open loop control architecture for controlling the reaching movement's of
ISACs arms [Northrup 2001, pp. 76].

Reaching motions may employ avariety of sensory modalities for motor control —
amongst those, visua and proprioceptive feedbacks are present in ISAC. However, if the
desired motion is a fagt-directed movement toward a target, thereis not enough time for
visua or proprioceptive feedback loops to be effective [pp. 74]. Thus, afeedforward
control technique was chosen to overcome this problem. Northrup stated, “the research
conducted for (his) this dissertation is anove gpproach to the problem of reaching in a
vertical plane with anonlinear actuated robot arm” [pp.75]. To successfully implement
the feedforward tonic- plus-phasic control paradigm, proprioceptive feedback needed to

be incorporated [p. 84]. Based on the biologica motor control hierarchy presented by
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Crawford [1998] and shown below (figure 20) for amplicity it was shown that the long-

loop error feedback lasts around 100 milliseconds.

High level control:

¥

'
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Sensorimotor cortex
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\ plan selection

[

efference
¥ copy

voluntary SR
loop Middle level control:

~150-200 ms .
150-200 ms Cerebellum, basal ganglia
coordination, optimization,

=z guidance

long loop 4

~100 ms ¥

Low level control:

Brain stem, spinal cord
program implementation
and regulation,
pattern generation.
reflexes

reflex loop
~50 ms

¥ T

=t Muscle dynamies

World

Sensory systems

Figure 20. Motor Control Hierarchy [Crawford 1998, pp. 7].

Northrup referenced the error efferent signas after the feedback could occur. The

controller compared the actuad motion with the programmed one and if the difference

exceeded an empirically caculated threshold, the feedback error controller would adjust



the motion. A block diagram of the find controller is shown below infigure 21. In it
Xstart, Xgoal, @€ theinitid and fina god postions, Reaching Timeis the duration of the
movement, and Load Size is the weight of the grasped object. For agiven set of
parameters, amotor program is known and is sent to the artificial muscles asatime
sequence of the sum of the phasic and tonic activation levels. Also, after one hundred

milliseconds the feedback |oop was activated, see figure 21.

Tonic
Xstarr. +
a1 +
Load Size -;/D_.. AR
Feaching Time i k\w
w +
Fhasic: J k
i =ignal Fealized
Trajectory

h
Mernotized . Orie-titne delay Feedback
Trajectory " ': :' ¥ & Threshald ’ Controller | ——

Figure 21. Block Diagram of Tonic-plus-Phasic Plus Feedback Controller [Northrup 2001, pp.
85].

Arbitration L oop

The arm as mentioned earlier can be articulated by providing god positionsin
joint space or Cartesian space form. Cartesian commands are converted to the desired
Cartesian pogition by means of an IMA object component caled “ CartArb.” Thislocation

is converted to angles by inverse kinemétics. The vaues are sent to the “KinLink”
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component. Thisin turn is used to compute the desired logica angles, which are used by

the control loop, see figure 22.

From
. Control
{ Loo
v 1
Forward
z : Einematics :
o Angle
Arb. Rel. Arb Rel.
Inwerse ]
Einematics

F 3

Ta
C otitrnl
Loop

Figure 22. Soft Arm Arbitration Loop [Alford 1999, 2.3].

Similarly, the joint gpace angles can be converted to a Cartesian position by
means of forward kinematics. Both Cartesian and logica angles can be sent to other

agents through IMA rdationships.

Hand
ISAC's hand has undergone changes to increase its control. The hand isahybrid
design that consists of a motored power thumb and forefinger and pneumatic distal
fingers. The hand was implemented J. Christopher, and this description borrows from his

work [Christopher 1998] and is shown in figure 23.
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Figure 23. ISACs Hand.

The motored thumb and forefinger are driven by mechanica nuts. Also, the rest
of the fingers use pneumatic actuators for additiona control and increased number of
degrees of freedom. A PC controller card specifies the desired pressure on gas valves that

ether open or close the hand.

O|  Chamber | : |
Cylinder f Piston/

Figure 24. Pneumatic Cylinder [Alford 1999, 4.2].

Additionally, the hand possess proximity sensor to gain timing and position data.
These sensors dlow for more informed grasping decisions. The photoel ectric sensors are
placed in the palm of the robot. This alows the robot to sense the workspace environment
for dl grasping Stuations. Two sensors are used in the pam; one measures distances of

100mm and the other measures distances of 10mm. See figure below.
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Figure 25. Photoelectric Sensors [Alford 1999, 4.5].
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CHAPTERV

RESEARCH: SENSORY-MOTOR CONTROL

The research focus of thisthessis based on sensory motor coordination. The
theory behind sensory motor coordination, from now on referred to as SMC, is reported.

As described by Cambron and Peters [2000], at its foundation, sensory motor
coordination is the basis for behaviors for dl animds. It behaves as a feeback loop
through which an anima learns the environment producing a change in both. Motion in
animdsis produced by a contraction of the muscles, which istriggered by
electrochemicd dgnds that originate in the motor neuron circuits. Motion causes the
environment to move with respect to the anima which results in changes in its sensory
input. The sensory organs transduce energy from the environment into e ectrochemical
sgnasthat are carried by the circuitry of sensory neurons to produce a spatio-temporal
representation of the world. There is an intimate relationship between the sensory sgnas
and the motor sgnals, giving rise to the sense-act paradigm.

Smilarly, SMC is useful for robots to experience and modify their environmen.
In machines, each sensor is mode led as an independent agent or module and yields basic
motor reactionstypically called “reflex reactions.” These reactions can be sequentid or
concurrent, each behavior can be activated or inhibited on the basis of the task and the
context of the environment. Complex behaviorsin turn are produced by combining

severd meta-levd behaviors.,
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Thereis evidence to suggest that SMC serves as afoundation for higher leve
learning. The basic information obtained from the environment can be used to deliberate
based on some goa a sequence of tasksto execute. As demonstrated by Peterset d.
[2004], robots can learn from their own experience by congtructing models of the
dynamics of its own SMC data. Teleoperation isthe means to data acquistion. In 1997,
Pfeifer reported that both sensory and concurrent motor data could be represented by a
vector-time series formed by clustersin a sensory motor state-space. Where, the locus of
each clugter in the state-space would be equivaent to a meta-level behavior, giving riseto
categorization of the environment for specific SMC events. When arobot performs a task
and its SMC vector time-series is recorded, a smooth space-state trgjectory is seen,
partitioned by a series of jumps or clusters of information that demarcate different meta-
level behaviors.

Peters et a. [2004], then showed that by learning a set ot trgectories that cover
the extreme points of the workspace, the task can then be executed autonomoudy by the
robot under many conditions. Even in new Situations, the superposition of basic behaviors
isused to give rise to the new task.

It iswith this research interet, that the task of putting together afunctioning
humanoid robot was done. By using ISAC to emulate human reactions to sensory
information, two results may be achieved: to learn more about the environment and react
to it in ahumantlike fashion, and to through experience yield autonomous behaviors. A

description of the demongtrations implemented for ISAC now follows.



CHAPTER VI

AGENTS

As described earlier, the IMA architecture dlows for the implementation of
multiple agents. Each agent is composed of multiple components that provide the agents
with specific functiondity. A total of six agents were used: the Sound Agent, the Camera
Agent, the Head Agent, the Hand Agent, the Arm Agent, and the Trgectory Agent. The

function of each agent and its main components will now be presented.

Sound Agent

The Sound Agent is used to find the direction of the sonic cues provided when an
agent in the environment emits any kind of noise. There is a predetermined threshold
value, used to avoid any noise values from being detected. The agent’s main functiondity
within the scope of thiswork is to present the direction of the sound cue. The cueis
presented in the form of a pan angle, with the purpose that the camera head can respond
to this representation in a natural way. The angles are provided in intervals of 15 degrees
darting from the center. Angles in the clockwise direction are negative, while those in the
counter-clockwise direction are postive, see table 3.

The angles are presented in an array-likeform such that the pan angleisthe third

element of an array-like structure. Animage of thisis shown in figure 26.
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Table 3. Sound Locdization Angles.

Direction Angle

Clockwise -90

Clockwise

Clockwise -15
Center 0

Counter-clockwise 15

Counter-clockwise

Counter-clockwise 90

Fj' AgentBuilder - [Sound.gas]
& File Edit Managers Agent Wiew Project Window Help

n||w] 5(2) | 1[R[B[ A|D]

E- Spund.gas
- CommandCorn

Time A (275.91]
[0.000 0.000 45,000
0.000 0.000 0.000

0.000 0.000 0.000]
Time R 275 Q171
CurrentDirection

Time A (272.19)
[0.000 0.000 30.000
0.000 0.000 0.000

0.000 0.000 0.000]
Time R (275 Q181
DirectionHistory

SMRep

ID:-1 Type:-1;

SME State: 2

Figure 26. Sound Agent.

Time A [0.00)

10, Time B [275.92)

DirectionQueue

Appended in table 4, a description of each of the componentsin the agent is

provided.
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Table 4. Sound Agent Components

Component Name Component Type Purpose
CommandCom Command Communicator Sends events to other
agents.
Current Direction Vector Signa Reports ch.Jrren.t sound cue
irection
. . . Reports past sound cue
Direction History Vector Signa directions.
N Reports angle and time in
Direction Queue Text Queue text (for SES).
SME State Machine Engine Finite State Machine
SMRep State Machine Representation Interface to State Machine.
Camera Agent

The Camera Agent is used independently for both the right and the left cameras.

The firg function of the agert is to catch the images coming in from the cameras. Thisis

shown in figure 27; depending on the desired function the color segmentation or motion

detection techniques can be sdected. Currently only one of these can be utilized at any

onetime. If segmentation takes place, the center of mass of the blob is calculated and

returned as the relative position in the window.

4 Aipent Builder - [Rght.gas]
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Figure 27. Camera Agent.
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Appended in table 5, a description of each of the componentsin the agent is

provided.

Table 5. Camera Agent Components.

Component Name Component Type Purpose
. Segments according to
Color Segmenter Mechanism color modd.
Detect Mation Mechanism Segments epcordl ng o
moation.
Catches image from camera
Frame_grabber Mechanism and sendsit to awindow in
the GUI.
. Repository for processed
Output Mechanism image
. . Displayslocetion of
Centroid Vector Signd segmented object,
. Repository for caught
Image Mechanism imeges
Noise Filter Intel 1PL Filters input image.
SME State Machine Engine Finite State Machine
State Machine .
SMRep Representation Interface to State Machine.
Head Agent

The head agent serves asthe “brain” of these sensory-motor demonstrations. Firdt,

it will be described in the context of its relationship to the sound and Camera Agents, and

then in the context of its relaionship with the motor agents. The head agent receives the

focus of attention from both of the Camera Agents. Thisis done through a smple proxy

connection. The focus of attention in the camerasis then usad in an attention network that

provides a single fixation point in the form of camera coordinates. A sde noteis of

consderation. ISAC underwent a recent pan-tilt unit change. The older unit worked under

adightly different set of coordinates, that is. [Left Verge, Right Verge, Pan, and Tilt].

58




The head agent has been revamped to handle the older set or the current set for the two
independent pan-tilt units: [Left Pan, Left Tilt, Right Pan, and Right Tilt]. At any time an
incoming set of dataiin the older form appears, the datais converted to the new form.
Once thefixation point is acquired, there are several ways to move the head, either
through direct mapping, or through saccadic or smooth pursuit movements. The choice of
movement is determined by the user in advance, and is then established in the finite date
meachine of the agent. Additiondly, by using the angle information obtained from

sampling the panttilt units, the depth of the agent in the environment can be caculated in
Cartesian coordinates. The latter serves as the trangtion point to the motor segment of the
discussion. The Cartesian coordinate of the gazed target isthe god for al the motor
activities that take place. The depth estimation information is passed to the Trgectory
Agent. Essentidly, the latter uses the coordinate to create its path in space, which is

aticulated by the Right Arm Agent. An image of the Head Agent is seen below.
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Figure 28. Head Agent.
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Appended in table 6, a description of each of the componentsin the agent is

provided.

Table 6. Head Agent Components.

Component Name Component Type Purpose
3DOutput Vector Signd Digplays Cartesian location.
CommandCom Command Communicator Sends Ze;’:tssto other
Depth Estimator Mechanism Calculates depth of object.
Cdculates fixating point
EyeMotionControl Mechanism from incoming eye
maovements inputs.
For former head format.
Head Command Mechanism Tdls the pan-tilt unit to
move.
. For former head format.
Head Semple Mechanism Sample the pan-tilt unit.
| -Centroid Vector Signdl Incoming position of object
from left camera
o o Links agent to thearm
Motion Link Mation Link agent.
For current head format.
PTHeadCommand Mechanism Tdls the pan-tilt unit to
move.
. For current head format.
PTHeadSample Mechanism Sample the pan-tilt unit.
PT Saccade Mechanism Performs me
cdculations.
. . Performs Smooth Pursuit
PTSmoothPursuit Mechanism caculations.
R_Centroid Vector Sgnd Displ s positionsfrom
right camera
SME State Machine Engine Finite State Machine
State Machine :
SMRep Representation Interface to State Machine.
TargetVeVectory Dynamic Vector Caleul at;;/etdoaty of
. . Performs neurd net
VisudInputRep Mechanism caculaion.
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Hand Agent
The Hand Agent in line with its hardware properties has two different grasps
mechanisms, afast grab and adower but more precise grab. The former does not use the
motored fingers, whereas the latter does. The choice of grasp is selectable and can be
registered in the finite State machine. Additiondly, the hand contains proximity sensors
that indicate the presence of anearby object or obstacle. Thisinformation is used to
prevent false (empty) grasps. Typicaly, the hand is called to use a the completion of an

arm trgjectory. The agent interface is shown below.
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Pressure

Figure 29. Right Hand Agent.

Appended in table 7, adescription of each of the componentsin the agent is

provided.

Right Arm Agent
The Arm Agent contains components that control the arm and perform the

kinematic manipulations to articulate the gppropriate motion in the arm.
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Table 7. Hand Agent Components.

Component Name Component Type Purpose
Current Pogition Vector Signd Displays actud logica
angles.
DIO Mechanism Reportsthe digita
input/output Sgndl.
Desired Position Mechanism Displayslogicd angles.
Encoder Vector Sgnd Displays encoder vaues.
GenEngine Gengd Engine Runs the sampler
mechanism.
SME State Machine Engine Finite State Machine
State Machine .
SMRep Representation Interface to State Machine.
SamplndPressure Mechanism Controller for hand.
VecEva Mechanism Measures for proximity of
objectsin hand.

God locations can be passed to the arm in two forms. Cartesian coordinates and

joint angles. In the work presented here, dl god locations were specified in Cartesian

coordinate form. Seefigure 30.
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Figure 30. Right Arm Agent.




Appended in table 8, a description of each of the componentsin the agent is

provided.

Table 8. Right Arm Agent Components Northrup 2001, pp. 161]

Component Name Component Type Purpose
CartArb Arbitration Allow Cart command to
arm from other agents.
. . : Cart command to input,
CartLink Moation Link activation, & feedback.
Allow Logicd Angle
CmdArb Arbitration command. Toarm from
agents.
Ded_osAngles Vector Signd Transmit desired logica
angle data.
. Tranamit desired physica
DesPhysAngles Vector Signd angle data,
. Transmit desred Cartesian
DesXY ZPos Vector Signd position data,
DesXY ZPosToFile Mechanism Record desired Cartesian
position to data
. . Allows automatic
Engre d Engine mechanism activation.
Fiin Mechenism Compute forward
kinematics.
Filter Mechaniam Inflnlte impulse response
filter for deslosangles.
FilteredDeslosAngles Vector Signd Transmit filtered des|og
angle data.
. Tranamit force-torque
ForceData Vector Signd <ensor data,
Homer Mechanism Homing mechaniam.
Ikin Mechanism Computes inverse
kinematics.
. . Tranamit data as part of
KinLink Mechanism arbitration.
LogicdAngles Vector Signd Tranamit logicd angle data.
Phasic Controller Mechanism Controller for ISACsarms.
PhysAngleToFile Mechanism Record physica angle data.
PhysAngles Vector Signd Transrnltg;y;cd angle
Transmit pressure delta
Press Vector Signd (Either 6 ddta-P or 12

individud pressures.
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PressToFile Mechanism Record pressure data.
Pressure Bias Vector Sgna Transmit pressure data.
SMRep Mechanism State machine mechanism.
Soft Arm Sampler.
- Input/Output of physica
SamplndPressures Interface to State Machine. datafrom and to ISAC'S
am.
, . Record physicd angle data
State3 PhysAngleToFile Interface to State Machine. during state 3.
State3 PressToFile Interface to State Machine. Record prﬁgeBdaa during
. : Record Cartesian position
Sate3 XYZToFile Interface to State Machine. data during state 3.
XYZPos Vector Signd Transmit Cgatte:m position
XY ZPosToFile Mechanism Record Cartesian postion
data
Tragjectory Agent

The trgjectory agent is used to generate and play the exact trgectories for the arm.

The arm motions are implemented based on a sarting and ending points (intermediate

points for specific routing can be used as well); the requested duration of trgectory; and

the parameter type (either joint angles or Cartesian coordinates). For the experiments

described here, the starting point dways was the home position of the arm, and the find

point was obtained from the depth estimation component of the Head Agent. Hence a

Cartesan based trgectory was created from the home position to the location of the

desired object. The duration of the motion was established at two seconds. The number of

trgectories varied depending on the task and god. An iterative motion where the arm

repeatedly reaches to the desired object could easily be generated. The agent isshown in

figure 31.
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Appended in table 9, a description of each of the componentsin the agent is

provided.

By implementing these Six autonomous agents and meaningfully interconnecting
them awide variety of sensory-motor behaviors can be achieved. An effort to produce a

wide range of behaviors with different representations of cognition is presented in the

next chapter.

Figure 31. Trgectory Agent.
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Table 9. Tragjectory Agent Components.

Component Name Component Type Purpose
ArmLink MotionLink Links agent with arm.
Bar_Gaze Loc Mechanism Starting point for first
trgjectory.
Ba Gaze VS Vector Sgnd Point displayed.
Bar_Segway Loc Mechanism Starting point for second
trgjectory.
Bar Segway VS Vector Sgnd Point displayed.
CheckHandVec Mechanism Proximity sensor.
CmdCom Command Communicator Sends events to other
agents.
Gen Trg Mechanism Generatestrgectories given
darting- and end- points.
Home Loc Mechanism End point for last trgectory.
Home VS Vector Signa Digplays find position
Pay Trg Mechanism Moves arm wirt trgectory.
SME State Machine Engine Finite State Machine
SMRep g;?ggigi Interface to State Machine.
VSVQ Mechanism Transformation from vector
sgnal to vector queue.
ViaPoints Vector Queue Intermediate pointsin a

trgjectory.
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CHAPTER VII

DEMONSTRATIONS

Five different demongtrations were implemented with the god of conveying
cognitive behaviors in the humanoid robot at the Cognitive Robotics Lab a Vanderbilt
Univergity. The demondrations begin with alow degree of difficulty and increase with
each consecutive routine. As stated before, the objective isfor the robot to learn about its

world and to interact with it in ameaningful way.

Gods
The god of the demongtrationsisto produce basic behaviors by achieving sensory
fuson and articulating basic motion in the robot. The laiter is better defined in terms of
human reactions. Humans possess a number of natura responses to simuli in their
environment — al of which can be affected by the attention factor in the human. When a
sudden noise is heard by the ear, the human tends to look at the area of activity and tries
to find the source of the sound. Sometimes this behavior can be accompanied by adesire

to reachrand-grasp action to further analyze the source.

Implementation
With thisin mind, five different demondrations were implemented to show each
of the building blocks for these ingtinctive behaviors. These are now presented in the

following list
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Table 10. Description of demonstrations.

Demonstration Description
Audio + Head Motion Audio cues followed by camera-head mation.
: . One audio cue followed by camera-head motion

Audio + Head Moation (Color) and gazing through color s)égmentation.

Audio + Head Mation (Motion) Qagiﬁjgdtlr?&gm%? dbge(;rgf& heed motion and
An audio cue followed by camera-head motion and

Audio + Head Mation + Arm gazing through color segmentation. Thisthen
triggers a single reach motion.
An audio cue followed by camera-head motion and

Audio + Head Motion + Arm gazing through color segmentation. Thisthen
triggers a smooth reach-and-grasp motion.

Seven different IMA agents were used to produce the behaviors. Each
demondtration required a different number of agents, ranging from two for the smplest
performance, to seven for the most complex. Each agent has specific functiondity and
normally shares information with other agents.

The first demondtration displays a relationship between sonic cues and attention.
Two agents were active in this demongtration: the Head Agent and the Sound Agent. The
Sound Agent was designed to output the angle of agiven sonic cue a intervas of 15
degrees. The data was passed to the Head Agent through an array-based representation,
where the pan angle was in the third element of the array. The scenario was set so thet at
any point in time a given audio cue was received, the pant-tilt unit would pan to the
gppropriate direction. This behavior was set to occur continuoudly.

The second demonstration was based on the same principle. However, theam
was to involve vison and achieve a gazing behavior from the cameras. Four agents
participated for this second display: the Sound Agent, the Head Agent, and two Camera

Agents. Color segmentation was used as the image processing technique to retrieve
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information from the environment. Specificdly, the color segmentation component was
loaded with amodel to find skin tones; hence, the camera-head fixated on the face of the
person in front of it. An important step to note here is the trangition for the pant-tilt unit in
following commands from the Sound Agent to commands from the Camera Agents. A
ampligtic time-based event could have been used to change the mode of the pan-tilt unit
after some time, yet this principle would not have been consstent with the desire to
emulate human conduct. Humans turn and seek smultaneoudly. Hence, in an effort to
assmilate the human system closer, an agent dispatch command was used. Whenever an
audio cue was sensed successfully and the pan-tilt unit turned towards it, an event would
be triggered causing the Head Agent state machine to shift triggering two additiond
events. 1) the Camera Agents are sent a command to initiate color segmentation, and 2)
the pan-tilt unit begins tracking of the point of atention. The camera-head can fixate on
any dement of the environment that fits to the color mode assigned. As mentioned
before, this color modd is trained with specific data to empower the cameras to detect a
desired color. At this point, the camera-head will track the desired target in an
uninterrupted fashion.

The third demondtration is Smilar to the one above. The difference is found on
the gazing technique. Instead of using color segmentation to find atarget in the
environment, amotion detection technique is used. The latter will return the image
position of the center of mass of amoving blob. 1dedly, arobotic vison system would
emulate tha of the human being and smultaneoudy perform a number of image
processing techniques. However, that is one limitation in our system, and thus two

separate exhibitions were done to show these differences.

69



The fourth run includes a more atractive behavior: reaching. Thus, an extra agent
is needed for the control of the arm. The building blocks for this performance to take
place are the same as the ones in the second demondration. It is now fitting to mention
the capability of the Head Agent to calculate the Cartesian coordinates. When the panttilt
unit fixates on an object, the Depth Estimator component outputs an X, Yy, and z location.
This Cartesan coordinate dataiis directly linked to the Arm Agent; hence, the arm moves
at the same time the coordinates are calculated. The motion of the arm is characterized by
asngle rapid motion to the indicated point.

Findly, the fifth demondration was implemented. This oreis particularly
characterized by a smooth trgectory for the arm and a grasp behavior. Two additiona
agents are used for thisimplementation — that is the Trgectory Agent and the Hand
Agent. The capacity of the Trgectory Agent alows the arm to undergo acomplex motion
within its workspace. An endless number of movements can be produced through this
agent. These motions are linear and are created based on gtarting and ending points. The
points can be arbitrary or can be obtained through either the Depth Estimator component
mentioned above, or the location of the arm through the XY ZPosition component, which
fulfills the same purpose as the Depth Estimator object — a Barney doll wasused asa
god. In this demongtration, a complex motion congsting of four basic motions was
utilized. The first motion began at the home position of the arm and then moved afew
centimeters forward. The second mation continued from that current location to the
coordinates given by the Depth Estimator component. At this point, the Barney dall is
within reach of the hand. At this point, the state machine commands the hand to check

through its proximity sensors the presence of an object. If true, acommand is sent to the
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Hand Agent to tdll it to closeits grip. After completion, the third maotion resumes, taking
Barney to thefird garting point and then releasing him there. Findly, thearm is

commanded to finish its motion at its home position.

Limitetions

The inherent limitations of the demondrations lie in the fact thet they are reactive
demongtrations. Any behaviors exemplified by ISAC are fixed responses to sensory
input. Since the system lacks higher-level commands or dynamic attention points, ISAC
can only perform single sequentia tasks — turn to a given noise, fixate on a predetermined
color object, and perform a reach-and-grasp motion on the seen object.

The system at this cannot convey an adaptive behavior based on higher-level commands.
It is not able to digtinguish between desirable sounds and noisg, it cannot autonomoudy
gaze a different objects based on a change in the scenario, nor can it decide if it should
hinder a reach-and-grasp motion if it were not gppropriate.

Finaly, acomplete integration and cooperation of auditory and visua sensory
information is not in place. The humanoid cannot Smultaneoudy use information from
both inputs to paint a picture of the environment; rather, a sequentia input string takes
place, where auditory inputs trigger visud inputs, which in turn trigger articulate maotion
inthe arm.

Enhancing the system through further development and integration with higher

levels of abstraction will be discussed in the FUTURE WORK section of thisthess.
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CHPATER VIII

CONCLUSIONS

The humanoid robot successtully utilized entry deta from the environment to
aticulate motion in areflexive manner. ISAC rdiably detected the presence of agentsin
the world and displayed sensory-coupled reactions that assmilate those of a human baby.
In the presence of noise in the environment, the robot was able to pan towards them in
search of objects of interest. This reflex action sets the stage for a meaningful interaction
between the machine and the human. When humans address the robot, the latter
immediately turns toward the direction of speech empowering the robot to learn more
about the human through voice commands and later on through visua cues. Similarly, the
robot through experience can strengthen the associations between the given auditory
information and the panning motion. Additionaly, when the robot was directed to
recognize objects whether through color or motion features, the humanoid effectively
panned, fixated, and tracked its goal objects. Hence, once vison is a work with apoint of
attention potential sdient features of the object of interest become available — color,
motion, texture, shape, Size, and emotion. In doing so, the robot has been empowered to
andyze these features and gain understanding of its world. By using information from
audio and vision, associations between specific sounds and visud features can Sart to
occur. Findly, vison dlows reachgrasp behaviors to occur. In reaching and grasping,
the robot gains the ability to fetch and bring objects to afixation point for further

andyds. Thistype of interaction necessarily influences the environment, and dynamic
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and continuous associations between motor, visud, and auditory cues can be learned and
provide adeeper understanding of associationsin the environment to the robot. The
ground work has now been set to dlow ISAC to develop more complex interactions with
itsworld, whether it is by coupling with higher level agents, learning through its own

SENsory-motor vector space representations, or reacting to sensory information.

Future Work

The breadth of research for thisfidd of sudy isvast and unknown in many of its
branches. Future research takes many directions and al of them need to be explored. The
proficiency of al software systems can be vastly enhanced in an attempt to resemble
those of the human system. At the base of dl these, isthe current software architecture
used. Although scaable, encgpsulated, and flexible, it ill fals short in dlowing for
multiple fast parallel systemsto act and interact together. Regarding the sensory part, the
auditory systemn in the humanoid ought to be cgpable of detecting sound at a fine-grained
level. Along with sound detection, its natura companion would be speech recognition
and speech emisson. In emulating humans, language comprehension and communicetion
isessentid for interaction. Of course, the visua system, one of the hardest to develop,
cdls out for much improvement in attempting to be more human in nature. Thearm
boasts a capable controller yet it lacks the adaptive nature that a human has. If the
trgjectory isto be changed a mid-flight, the current controller would not be able to
change on the fly. An adaptive controller is necessary to modulate the actuator motion.
Findly, the current hand (which was made in house) is unrdigble and provideslittle

functiondity. It bresks down often and performs abrupt grasps with no measure of
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goodness of grab. A dexterous and sensitive hand is desired, UK’ s Shadow Robot
Company [Shadow 2004] possesses a very dexterous hand. Such hand would enhance the
robot’s world experience by being able to easly gragp-and-release, push-and-pull, and
have tactile sensations.

Another branch for future work concerns the robot’ s own sensory-motor
experience. Extensve research is currently being performed at Vanderbilt University’s
Center for Intelligent System. The work of Campbell [2003], Ao, [2003], and Peters et al.
[2004] represent efforts to more clearly understand the nature of the vector-space
representations of sensory-motor coupled data. By properly understanding the clustering
of datain the vector space, superposition of clusters can lead to effective execution of
complex behaviors that would interact with the world in a naturd way.

Findly, the additions of attention and higher level commands guided by decision
making systems would push the robot to a cognitive state where intelligence can be
explored and devel oped. Efforts to reproduce cognition are dso being pursued at the
Center for Inteligent Systems [Kawamura et a. 2004] and others such as Fitzpatrick
[2003], Scassdlati [2000] and this area of study promises to be a breakthrough in the
field of robotics. The study of humanoid robotics and dl of its chdlengesistruly an
interesting field to study. Technologica advancement will come in the future and

exciting breakthroughs will drive the effort to develop cognitive robots closer to redlity.

74



APPENDIX A

STATE MACHINE'S

Sound Agent State Machine

State 0: (No Comment)
Ti meout: 10000, Period: 100

Activities

Transi tions
Next State: 2, activate

Event: 2, 2
Next State: 1, activate
Event: 1, 1

State 1: Report Sound Cue in Sensory Egosphere form
Ti meout: 10000, Peri od: 400

Activities
Trigger 0: CommandCom(2,0), listen

Transitions
Next State: 2, deactivate
Event: 2, 2
Next State: 0, deactivate
Event: 1, -1

State 2: Report Sound Cue in LV RV P T form
Ti meout: 1000, Period: 100

Activities
Trigger 0: CommandCom(2,1), Retrieve angle in LRPT form

Transi tions
Next State: 0, deactivate

Event: 1, -1

Camera Agent State Machine

State 0: (Catch inmage)
Ti meout: 500, Period: 100
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Activities
Trigger 0: LFrame_graber(1,0), Catch imge

Transitions
Next State: 1, Do color segnentation
Event: -1, -1

State 1: (Do col or segnentation)
Ti meout: 1000, Period: 100

Activities
Trigger O: LFrame_graber(1,0), Catch inmage
Trigger 1: Col orSegnmenter(0,0), Do color segnentation

Head Agent

State 0: (Hom ng Position)
Ti meout: 100, Period: 100

Activities
Trigger 0: EyeMdtionControl (300,0), Send to hone position

Transitions
Next State: 1, Throw queue to start sound agent
Event: 0, 1

State 1: (Throw queue to start sound agent)
Ti meout: 200, Period: 100

Activities
Trigger 0: CommandCon(2,0), Throw queue to start sound agent

Transi tions

Next State: 2, Myve towards sound queue
Event: -1, -1

State 2: (Myve towards sound queue)
Ti meout: 2500, Period: 100

Activities
Trigger 0: PTControl (6,0), Mve towards sound queue

Transitions

Next State: 3, Throw event to start caneras and snooth pursuit
Event: 2, 3

State 3: (Throw event to start canmeras and snmooth pursuit)
Ti meout: 200, Period: 100

Activities
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positions

Trigger 6: CommandCom(2,3), Throw event 100, 100 to start arm
Trigger 5: DepthEstimator(3,1), Display x,y,z,depth

Trigger 3: EyeMtionControl (301,0), Snooth pursuit to target
Tri gger 4: EyeMtionControl (400,0), Display notor

Trigger 2: EyeModtionControl (101, 0), Sanple notor

Hand Agent

State 0: ((null))
Ti meout: 1000, Peri od: 90

Activities

Transitions

Next State: 1, (null)
Event: 1, 1

Next State: 3, (null)
Event: 1, 3

Next State: 2, (null)
Event: 1, 2

Next State: 4, (null)
Event: 1, 4

State 1: ((null))
Ti meout: 100, Peri od: 90

Activities
Trigger 1: Handlnterface(1,0), (null)

Transitions
Next State: 0, (null)
Event: 1, -1
Next State: 0, (null)
Event: -1, -1

State 2: ((null))
Ti meout: 5000, Period: 100

Activities
Trigger 0: VecEval (0,0), (null)

Transitions
Next State: 0, (null)
Event: 1, -1
Next State: 3, (null)
Event: 1, 3

State 3: ((null))
Ti meout: 200, Period: 100

Activities
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Trigger 0: Handlnterface(3,0), (null)
Transitions
Next State: 0, (null)
Event: -1, -1
State 4: ((null))
Ti meout: 10000, Period: 100
Activities
Trigger 0: PhSen(4,0), (null)
Transitions
Next State: 0, (null)
Event: 1, -1
Next State: 5, (null)
Event: 169, 5
State 5: ((null))
Ti meout: 4000, Period: 1000
Activities
Trigger 0: Handlnterface(3,0), (null)
Transitions
Next State: 6, (null)
Event: -1, -1
State 6: ((null))
Ti meout: 4000, Period: 1000
Activities
Trigger 0: Handlnterface(1,0), (null)
Transitions
Next State: 4, (null)
Event: -1, -1
Right Arm Agent
State 0: (Initialize and hone)

Ti meout: 10000, Period: 100

Activities

Trigger 3: Sanpl ndPressures(0,0),
Trigger 2: Homer(O0,0),
Trigger 1: Sanpl ndPressures(1,0),
Trigger 0: PhasicController(1,1),
Transitions
Next State: 1, Manual event
Event: 1, 1

Har dware 1/ O

Conmput e Hom ng Pressures

Di sabl e Z- Maski ng
Read Data File
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Next State: 1, Hardcoded event from Homer
Event: -2, -2

Next State: 2, Manual event
Event: 1, 2

State 1: (Go to initial angles)
Ti meout: 10000, Period: 60

Activities
Trigger 2: Sanpl ndPressures(0,0), Hardware 1/0O
Trigger 3: PhasicController(0,0), Control Law
Trigger 1: Sanpl ndPressures(5,1), Qutput "home" angles
Trigger 0: SanplndPressures(2,0), Enable Z-Msking

Transitions
Next State: 2, Hardcoded event from sanpler (when hone reached)
Event: 2, 2
Next State: 2, Tineout
Event: -1, -1

State 2: (Conpute initial cartesian position)
Ti meout: 5000, Period: 100

Activities
Trigger 0: FKin(2,0), Forward ki nematics
Trigger 2: 1Kin(3,0), Inverse kinematics
Trigger 3: CnmdArb(3,0), Informcurrent pos
Trigger 1. CartArb(3,0), Informclient agents of current cartesian pos

Transi tions

Next State: 3, Tineout
Event: -1, -1

State 3: (Non-Linear Controller, closed-Ioop)
Ti meout: 10000, Period: 75

Activities

Trigger 2: CndArb(0,1), Arbitrate Angl e Commands

Trigger 8: State3 XYZPosToFile(2,1), No Coment

Trigger 11: PhasicController(1,2), Read Current Pressures
Trigger 5: 1Kin(3,0), calc inverse kinematics

Trigger 7: DesXYZPosToFile(2,1), No Coment

Trigger 4: CartArb(0,1), CartArb

Trigger 3: FKin(2,0), calc forward ki nematics

Trigger 1: SanplndPressures(6,0), Hardware 1/Owith 12 Pressures
Trigger 10: State3_PhysAngl eToFile(2,1), No Conment

Trigger 6: Filter(0,0), IR Filter on des |og angles

Trigger 9: State3 PressToFile(2,1), No Comment

Trigger 0: PhasicController(0,1), Non-Linear Control Law (12

pressures)
Transitions

Next State: 5, Manual Transition to state 5
Event: 3, 5

79



Next State: 1, (null)

Event: 1, 1
Next State: 4, Manual Transition to state 4
Event: 3, 4

State 4: (Phasic Controller)
Ti meout: 10000, Period: 20

Activities

Trigger 4: CndArb(0,1), Arbitrate angl e comuands

Trigger 10: XYZPosToFile(2,1), No Comment

Trigger 1. PhasicController(1l,2), Read Current Pressures

Trigger 5: FKin(2,0), conpute forward ki nematics

Trigger 6: CartArb(0,1), No Comment

Trigger 3: SanplndPressures(6,0), use 12 individual pressures to
control arm

Trigger 9: PhysAngl eToFile(2,1), No Coment

Trigger 2: PhasicController(1,0), Conmpute Pressures

Trigger 7: IKin(3,0), conpute inverse kinematics

Trigger 11: PressToFile(2,1), No Conment

Trigger 8: Filter(0,0), IR on des |ogical angles

Transitions
Next State: 5, Manual Transition
Event: 4, 5

Next State: 5, hardcoded event from PhasicController, end of nmpvement

Event: -100, -100
Next State: 3, Manual Transition
Event: 4, 3

State 5: (Phasic Controller Reset)
Ti meout: 1000, Period: 100

Activities
Trigger 0: PhasicController(1,3), Reset counter, phasic nove fl ag,
di spatch (-100, -300)

Transi tions
Next State: 3, Manual Transition
Event: 5, 3
Next State: 3, Hardcoded event from PhasicController
Event: -100, -300

Tragjectory Agent

State 0: (Initialization)
Ti meout: 500, Period: 100

Activities
Trigger 0: Bar_Segway_Loc(2,0), Load "Barney's" position fromfile
Trigger 1. CnmdCom(2,1), Throw event so that the hand opens up

Transi tions
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Next State: 10, Go to Ready
Event: 100, 100

State 10: (Initialization)
Ti meout: 200, Period: 100

Activities
Trigger 1: VSVQL(1,0), Pass x,y,z location fromVS to VQ for 1st
trajectory

Transitions
Next State: 11, Cenerate the trajectory notion
Event: -1, -1

State 11: (Generate the 1st trajectory after event is thrown by the
user!)
Ti meout: 200, Period: 100

Activities

Trigger 1: ArnLink(O,3), Reset Cnd and Arb vectors

Trigger 0: Gen_Traj _1(0,0), Cenerate the trajectory file based on the
starting and final points

Transitions
Next State: 20, Throw event 100,100 to Initialize trajectory player
Event: -1, -1

State 20: (Initialize Trajectory Player)
Ti meout: 100, Period: 100

Activities
Trigger 0: Play Traj _1(1,0), Initialize the trajectory player

Transitions
Next State: 21, Play the trajectory file
Event: -1, -1

State 21: (Play the 1st trajectory)
Ti meout: 6000, Period: 100
Activities
Trigger O0: Play Traj _1(0,0), Play the trajectory file and reach
t owar ds Bar ney
Transitions

Next State: 50, Load data for 2nd trajectory
Event: -1, -1

State 30: (Wait for pal msensor to check for the presence of Barney)
Ti meout: 100, Period: 100

Activities
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Trigger 0: CheckHandVec(0,0), Check for the presence of Barney to
| ater close the hand

Transi tions
Next State: 40, Cl ose hand
Event: -1, -1

State 40: (Cl ose hand)
Ti meout: 500, Period: 100

Activities

Trigger 0: CnmdCom(2,0), Throw event to the hand agent to close the
hand

Trigger 1: CheckHandVec(0,0), Check until hand is cl osed

Trigger 2: ArnLink(0,3), Reset Cnd and Arb vectors

Transitions
Next State: 70, Load information to generate the 2nd trajectory notion
Event: -1, -1

State 50: (Load the |ocation for the gazing point)
Ti meout: 500, Period: 100

Activities
Trigger 0: Bar_Gaze_Loc(2,0), Load the x,y,z location fromthe file to
gaze at Barney

Transitions
Next State: 51, Pass the information fromthe VS to the VQ
Event: -1, -1

State 51: (Load infornmation to generate 2nd trajectory notion)
Ti meout: 200, Period: 100

Activities
Trigger 1. VSVQ2(1,0), Pass x,y,z location fromVS to VQ for 2nd
trajectory

Transitions
Next State: 60, Generate the 2nd trajectory notion
Event: -1, -1

State 60: (Generate 2nd trajectory notion)
Ti meout: 200, Period: 100

Activities
Trigger 1: ArnLink(0,3), Reset the Cnd and Arb vectors
Trigger 0: Gen_Traj_2(0,0), Generate the 2nd trajectory notion

Transitions

Next State: 61, Throw event 200,200 to nmove armup for | SAC to gaze
Event: -1, -1
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State 61: (Initialize the 2nd trajectory notion)
Ti meout: 100, Period: 100

Activities
Trigger 0: Play Traj _2(1,0), Initialize the trajectory notion to nove
next

Transitions
Next State: 62, Play the file
Event: -1, -1

State 62: (Move armup for | SAC to gaze)
Ti meout: 4000, Period: 100

Activities
Trigger 0: Play_Traj _2(0,0), Myve armup for |ISAC to gaze

Transi ti ons
Next State: 30, Pause and clear M
Event: -1, -1

State 70: (Pause and clear M. (I SAC shoul d gaze))
Ti meout: 1000, Period: 100

Activities
Trigger 0: ArnLink(O,3), Reset Cnd and Arb vectors

Transitions
Next State: 80, Load x,y,z information to rel ease Barney
Event: -1, -1

State 80: (Load x,y,z information to rel ease Barney)
Ti meout: 200, Period: 100

Activities
Trigger 0: VSVQL(1,0), Pass x,y,z data fromVS to VQ

Transitions
Next State: 81, Cenerate the release trajectory
Event: -1, -1

State 81: (CGenerate the release trajectory)
Ti meout: 200, Period: 100

Activities

Trigger 0: Gen_Traj_1(0,0), Generate the 3rd trajectory in which
Barney is rel eased

Trigger 1: ArnLink(3,0), Reset Cnd and Arb vectors

Transitions

Next State: 82, Initialize the trajectory player
Event: -1, -1
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State 82: (Initialize the trajectory player)
Ti meout: 200, Period: 100

Activities
Trigger 0: Play Traj _1(1,0), Initialize the trajectory player

Transitions
Next State: 83, Play the trajectory file to rel ease Barney
Event: -1, -1

State 83: (Play the trajectory)
Ti meout: 3100, Period: 1000

Activities
Trigger 0: Play _Traj _1(0,0), Play the trajectory

Transitions
Next State: 90, Load data to go to home position
Event: -1, -1

State 84: (Open hand)
Ti meout: 1000, Period: 100

Activities
Trigger 0: CmdCom(2,1), Throw event to Ri ghtHand agent to open the
hand

Transi tions
Next State: 90, Open hand
Event: -1, -1

State 90: (Load x,y,z information to go hone)
Ti meout: 200, Period: 100

Activities
Trigger 0: Home_Loc(2,0), Load the x,y,z |ocation where Barney is to
be rel eased

Transitions
Next State: 91, Pass data fromVS to VQ
Event: -1, -1

State 91: (Load the data fromthe VS to the VQ
Ti meout: 1000, Period: 100

Activities
Trigger 0: VSVQ@(1,0), Pass data fromVS to VQ

Transitions
Next State: 92, Cenerate the release trajectory
Event: -1, -1



State 92: (CGenerate the release notion trajectory)
Ti meout: 500, Period: 100

Activities
Trigger 0: Gen_Traj_3(0,0), Generate the release notion trajectory
Trigger 1: ArnLink(3,0), Reset the Cnd and Arb vectors

Transitions
Next State: 93, Initialize the trajectory player
Event: -1, -1

State 93: (Initialize the trajectory player)
Ti meout: 100, Period: 100

Activities
Trigger O0: Play _Traj _3(1,0), Initialize the trajectory player

Transitions
Next State: 94, Throw event 300,300 to play trajectory and rel ease
Bar ney
Event: -1, -1

State 94: (Play trajectory and rel ease Barney)
Ti meout: 6000, Period: 100

Activities
Trigger O: Play _Traj _3(0,0), Play trajectory and rel ease Barney

Transitions

Next State: 0, Open the hand and finish the denp
Event: -1, -1
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APPENDIX B

DEPTH ESTIMATION

Finding the Cartesian coordinates and the depth of a given object given
stereoscopic vison is an invauable resource to dlow other parts of the robot to interact
with the environment. In particular, a grasp-reach behavior is only possible if the
Cartesian coordinatesin space are available.

The diagram shown bel ow represents the camera head structure. The left and the
right cameraare placed on abase of length - a. The left cameraand theright camera
make angles . and gr with the horizontd respectively. The god target isshown as— P

and the depth to the target is represented by — d.

f/(:'EL II \\ IEIP \1 h

arz ] aiz

Figure 32. Camera Head Structure.

Tofind d, the Cosine Law was used:
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.2 ..
d2=2+ 30 0w (xB 0 oo g (B.1)
&25 &2

However, t is unknown and the Sine Law was used to find it;

t a
SngL  Sn(180- gL- qR)
_ a*SnglL

Sn(gL +gR)

(B.2)

Since two separate and independent Pan-Tilt units were used, asngletilt vdueis
computed by finding the average of both tilt vaues. Since there is an dement of height
involved in the modd, the depth increases proportiondly to thetilt. Pythagoras Theorem

isused to find the new depth —d_t:

d_t?=d? +h? (B.3)

Smilaly, the Cartesian coordinates of a god target (assumed to be apoint in
space) were computed based on figure 33.
The established st of coordinates has X coming out of the plane, Y, horizonta to

the plane, and Z, vertical to the plane.
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Figure 33. Cartesian Coordinate Moddl.

From the above diagram, we can obtain the following equations:

= * i
d=d _t*Cosftilt (B.4)
z=d _t* Snftilt (B.5)
Referring to the Camera Head Structure figure, X and Y are:
X =tsngR (B.6)
y =tCogyR (B.7)

In this way, the Cartesian coordinates and the depth of the target are computed by

the Depth Estimation component. The data is available to any recelving agent.

88



APPENDIX C

CONVERSION OF A SINGULAR PAN ANGLE

The ISAC humanoid' s head structure was modified recently. Previoudy, a
sngular pan motion controlled both color cameras. At the time, any agents that needed to
communicate with the Head Agent had to do so through a singular pan angle. After the
modifications took place, two independent panttilt units were operating as the head.

Thus, a converson from asingular pan angle to two pan angles had to be computed.

The model used to develop the computations is based on the following diagram:

]
/

(8

-

Figure 34. Singular Pan Angle Conversion
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Note: Clockwise rotations represent negative angles and counterclockwise rotations

represent positive angles.

Based on thismodel, you can get gr and g :

gR= arctan[aé:osqvan P+Snqv .;. (C.1)
& CoqVCog P 17}
qL:arctan[aé:osquan SnqV : (C.2)
CoqVCog P 17}
Solving for the pan angle, the following equations results.
1
ap= arctan[E(tanq L +tangR)] (C.3)

?p isgiven by the agent, but 2y has to be predetermined. The value was calculated
empirically and established at 15 degrees.

This cadculation was implemented as an IMA mechanism and is used any time an
agent reports to the head with asingular pan angle.

Findly, as a precautionary note, the hardware structure requires a switch between
?L and ?g, Sncethe left and right Sdes of the robot were given when looking towards the

robot, not away fromit.

90



APPENDIX D

COM AND DCOM

Thefollowing description is based on Olivares overview [2003]. The IMA
software platform uses the Component-Object Model (COM) and Distributed COM
(DCOM) to provide communication between agents. COM alows objects to interact even
if they are running in different computers. Objects can be linked together without the
need to compile. Hence, devel opers do not worry about communication iSsues.

COM'’ s protocol alows compiled objects to operate across process boundaries
without ng the source code. By usng COM and DCOM, a developer writes
objects that can be linked to other objects at run time — even with objects in other
computers. The communication is possible because of COM’s compilers, which place
header-like information in the resulting binary files. At runtime, COM sends function
calsto their gppropriate process by using Microsoft Remote Procedure Calls (RPC).
COM does not ggnificantly affect performance on the system.

A proficient and detailed description can be found under Microsoft’s Developers

Network webgte at: http://msdn.microsoft.com/library/default.asp.
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