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CHAPTER I 

 

INTRODUCTION 

 

1.1 Motivation 

Breast cancer is second only to lung cancer in cancer-induced mortality among 

women. The American Cancer Society estimated that in 2009, over 194,000 new cases of 

invasive breast cancer would be diagnosed, in addition to over 62,000 cases of in situ 

breast cancer, and an estimated 40,000 deaths from the disease that year. Additional 

statistics underscore the importance of early initiation of treatment, as the five-year 

relative survival rates for women diagnosed with breast cancer are only approximately 

27% for advanced distant-stage disease, but are as high as 98% for early localized disease 

(ACS 2009). In addition, tumor size has been directly correlated to prognosis of 5- to 10-

year survival, and has significant implications for long-term survival (Michaelson, 

Silverstein et al. 2002; Warwick, Tabar et al. 2004). Early detection is therefore both an 

inherently desirable goal and one which presents demands for more sensitive detection 

techniques.  

Breast cancer lesions have traditionally been detected clinically by palpation and 

imaging modalities such as X-ray mammography. Palpation allows for the qualitative 

contrast of diseased tissue from normal tissue by recognizing that cancerous lesions are 

generally firmer to the touch than normal tissue. This allows for identification of regions 

that may require biopsy for histological examination. However, palpation suffers from 

having a short depth of detection into the tissue, and is subjective in nature. 
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Mammography, while being the standard technique for breast screening, has been shown 

to have questionable reliability when used in isolation (Keith, Oleszczuk et al. 2002).  

An alternative imaging methodology that, like palpation, utilizes the mechanical 

properties of tissue is known as elastography. Elastography employs a combination of 

image processing and measurements of the physical deformation of the tissue to create a 

representation of the mechanical strength of structures inside the breast (Bilgen 1999; 

Doyley, Meaney et al. 2000). The overall principle behind elastography for use in breast 

cancer imaging is that regional changes in tissue architecture resulting from the 

manifestation of disease result in detectable changes in mechanical properties. It is 

widely recognized in the medical community that most breast cancers are much firmer to 

the touch than the surrounding soft tissue. The biological basis for this effect is due to 

changes in tissue composition, such as varied expression of collagen and greater numbers 

of fibroblasts (Burns-Cox, Avery et al. 2001; Lee, Sodek et al. 2007). The exploitation of 

a contrast mechanism based on elastic properties may have considerable potential as 

means for characterization of disease states.  

Several kinds of elastography exist, such as ultrasound elastography (USE) and 

magnetic resonance elastography (MRE) which have already shown promise in 

diagnosing solid lesions in breast tissue and other physiological locations. The first 

introduction of USE demonstrated that images from A-line ultrasound could provide 

axial strain estimates (Ophir, Cespedes et al. 1991). Elastography has also been applied 

within the MR imaging domain whereby motion-sensitized gradient sequences were used 

to visualize and quantify strain wave propagation in media (Muthupillai, Lomas et al. 

1995). A relatively new method known as modality-independent elastography (MIE) has 
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recently shown potential for supplementing other imaging modalities such as MR and CT 

for detection of solid tumors in soft tissue (Miga 2003).  

MIE has the benefit of being flexible with regard to its inputs, and unlike USE 

and MRE, it is not reliant on a particular imaging modality. MIE involves imaging a 

tissue of interest before and after compression, and then applying a finite element (FE) 

soft-tissue model within a nonlinear optimization framework in order to determine the 

elastic properties of the tissue. A requirement of the MIE method is that appropriate 

boundary conditions be designated for use in the biomechanical model. Generation of 

accurate boundary conditions is problematic because the breast is a non-rigid structure, 

which invalidates the use of standard rigid registration techniques. Techniques which 

have addressed this issue in the past have required a significant amount of user 

interaction. The goal of this work is to develop and validate a method of generating 

boundary conditions automatically by registering breast surfaces before and after 

mechanical loading. This method may have potential not only in MIE, but also in other 

applications requiring registration of breast surfaces.  

 

1.2 Previous Work 

The methods used for registering breast images generally fall into one of two 

broad categories: 1) feature-based methods or 2) intensity-based methods (Guo, 

Sivaramakrishna et al. 2006). Feature-based methods utilize geometric information from 

the images, such as from an FE mesh of the breast structure, to register two breast 

images. Intensity-based methods instead directly use the intensity values of the image 

voxels, and optionally some geometric information, to register the two images. 
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The previous gold standard in generating boundary conditions for MIE has been 

feature-based registration methods (Ou, Ong et al. 2008).  Conventionally this entails 

employing point correspondence methods facilitated by attached fiducials and assisted by 

thin-plate spline (TPS) interpolation (Goshtasby 1988) to create the boundary conditions 

that non-rigidly maps the pre-deformed breast surface to the post-deformed breast 

surface. This registration process requires the tedious task of applying and subsequently 

localizing numerous surface markers within the image space, determining point 

correspondence, creating a thin-plate spline interpolation, and finally calculating a set of 

Dirichlet boundary conditions for use in the MIE method. Initial attempts to reduce the 

complexity and level of user interaction have focused on the use of two energy 

minimization techniques (Ong, Ou et al. 2010). These techniques relied upon partial 

differential equation (PDE) solutions of Laplace’s equation,  

׏  · ሺെ׏ߪΦሻ ൌ 0, (1) 

or the diffusion equation,  

 డΦ
డ௫

ൌ ׏ · ሺ׏ߙΦሻ, (2) 

across the surface of the breast geometry in the pre- and post-deformed states.  Like-

valued isocontours from the solutions on each surface (i.e. pre-deformed, and post-

deformed) act as ‘virtual’ fiducials to assist in correspondence using a symmetric closest 

point approach (Papademetris, Sinusas et al. 2002).  Dirichlet boundary conditions are 

generated after the assigned correspondence is determined and this completes the 

required input for the MIE algorithm. The primary difference between the two 

methodologies is the boundary condition requirement and subsequently the required 

degree of user interaction. For the Laplacian method, Dirichlet boundary conditions were 
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required to be assigned to two distinct regions of the mesh surface (points along the chest 

wall, and nipple were assigned potential values of 1 and 0, respectively, with unity 

conductivity).  For the diffusion method, only one distinct region need be designated (in 

this case an initial condition of zero potential was supplied, with a unity Dirichlet 

condition assigned at the nipple).  While the results presented by Ong et al. (2010) 

indicated better performance via the Laplacian method, the diffusion method did not 

require the difficult task of assigning a boundary condition to the chest wall in both pre- 

and post-deformed mesh domains. These methods, as well as the TPS method, will be 

compared to the intensity-based approach in this paper. 

 While the above PDE-based methods represented an improvement in automation 

over the TPS method for generating boundary conditions for the MIE algorithm, the ideal 

boundary condition method would be both fully automated and require no fiducials.  This 

study presents an approach for automatically generating boundary conditions through the 

use of a popular non-rigid image registration algorithm called demons diffusion. The 

demons algorithm was used to perform image matching of pre- and post-deformation 

images and tested against a controlled in silico simulation with known boundary 

conditions. The generated boundary conditions were also used to perform an MIE 

elasticity reconstruction to evaluate its effectiveness in determining the elasticity contrast 

of a previously characterized system. The simulation study was followed by two phantom 

experiments to further stress the abilities of this new approach. 
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CHAPTER II 
 

METHODOLOGY 

 

2.1 MIE Workflow 

As described in previous work, the MIE algorithm is comprised of three major 

components: 1) a biomechanical FE model of soft-tissue deformation based on material 

properties, 2) a similarity metric with which to compare images, and 3) an optimization 

routine to update the material properties in the model (Miga, Rothney et al. 2005). 

The process of generating an elasticity reconstruction begins with the acquisition 

of an image of the breast. A mechanical load is then applied to the breast, and the breast 

is imaged again. These pre- and post-deformation images comprise the primary input to 

the MIE algorithm, and are referred to as the source and target images, respectively. The 

breast boundary is then segmented in the pre-deformed source image and its surface 

geometry is extracted using the marching cubes algorithm, which allows a finite element 

mesh to be created from the surface information. The mesh is partitioned into 'regions' to 

which elasticity properties are assigned, which defines the resolution of the elastographic 

reconstruction. It is then necessary to designate the loading/boundary conditions for the 

FE model. The ability of the biomechanical model to accurately deform the mesh of the 

breast tissue is dependent on these boundary conditions. The boundary condition step in 

the MIE workflow is highlighted in Figure 1. 
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Figure 1. Overview of the MIE protocol.  The boundary condition task is seen to be in a 
central location and has a critical impact on the final reconstruction. 
 

Once boundary conditions have been designated, the model is run and the FEM 

displacement solution for all the nodes in the mesh is obtained. The displacements are 

then used to deform the original pre-deformation image, which is then compared with the 

known post-deformation image to generate an image similarity measurement. A non-

linear optimization framework is used to update the material properties of the mesh until 

the similarity metric is within tolerance, at which point the elasticity reconstruction image 

is produced. 
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2.2 Automatic Generation of Boundary Conditions 

The demons registration algorithm utilizes a diffusion model in which the object 

boundaries in one image are characterized as semi-permeable membranes, and the other 

image is allowed to diffuse through these membranes (Thirion 1998). Following the 

formulation of Ibanez, et al.(Ibanez, Schroeder et al. 2005),  

  DሺXሻ · ሺXሻ݂׏ ൌ െ൫mሺXሻ െ fሺXሻ൯ (3) 

where f(X) is the fixed target image, m(X) is the source image being deformed for the 

registration, and D(X) is the displacement field mapping the source to the target image 

through an instantaneous optical flow. The algorithm used in this work was based on the 

Insight Toolkit (Yoo, Ackerman et al. 2002), which reformulated Equation 3 to an 

algorithmic iterative form as follows: 

  DNሺXሻ ൌ DN-1ሺXሻ െ
൭mቆXାDN-1ሺXሻቇିfሺXሻ൱׏fሺXሻ

ԡ׏fԡమା൭mቆX+DN-1ሺXሻቇିfሺXሻ൱
మ (4) 

The displacement field obtained from Equation 4 is smoothed with a Gaussian 

filter between each iteration in order to enforce elastic-like behavior. This aspect of the 

algorithm’s implementation made it appropriate for modeling the boundary conditions of 

a system being deformed within the confines of an elastic model.  

The registration produces displacements at the centroid of every voxel. The 

displacement vectors are then interpolated onto the nodal coordinates of the FE mesh 

using a cubic 3D interpolation. The displacements which are assigned to boundary nodes 

are thus designated as the Type I boundary conditions for the elastic model. 
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2.3 Simulations 

In order to evaluate the demons method of generating boundary conditions for 

MIE as described above, a controlled experiment was conducted by obtaining a CT and 

an MR image volume of human breast tissue and registering them to target images 

created by simulated mechanical loads. 

Two image sets (CT and MR) of normal tumor-free human breast tissue were 

obtained from the UC-Davis Department of Radiology and the Vanderbilt University 

Institute of Imaging Science, respectively, for use in this work. The surface of each breast 

image was segmented from the surrounding structures with ANALYZE 8.1 (Mayo 

Clinic, Rochester, MN) and the resulting segmentation was used to create a 3D FE mesh 

using a tetrahedral mesh generation algorithm (Sullivan, Charron et al. 1997). For both 

the CT set and the MR set, a 2-cm spherical tumor was synthetically implanted in the 

center of the respective mesh and assigned an elasticity value six times higher than the 

surrounding material, which is consistent with breast cancer elasticity contrasts in the 

literature (Krouskop, Wheeler et al. 1998). This contrast ratio of 6:1 was thus considered 

to be the goal for reconstruction in both cases. The location of the tumor in each mesh is 

visualized in Figure 2. 
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Figure 2. Source CT mesh (a) with cross-section showing tumor-to-normal elasticity 
contrast (b), and source MR mesh (c) with cross-section showing similar contrast (d). 
 

Each finite element mesh was then deformed by applying a depression to one side 

of the breast. The displacements predicted by the model were then used to deform the CT 

and MR source images to provide simulated target images.  Using the pre- and post-

deformed image volume sets, the demons registration could be executed and compared to 

the known displacements responsible for the simulated breast deformations.  In addition, 

the surface displacements could be used to test the accuracy and fidelity of the 3D MIE 

reconstructions conducted with demons-based boundary conditions.  

 

2.4 Phantom Experiment 1 

 After demonstrating the efficacy of the demons method in the highly controlled in 

silico simulation study, the next step was to apply the same tests to real-world data with 
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realistic amounts of noise and uncertainty. To this end, breast phantom images were 

acquired to evaluate the ability of the demons method to produce accurate boundary 

conditions when compared to the current gold standard method. 

 As described by Ong et al. (2010), the breast phantom used in this study 

(hereafter referred to as Phantom 1) was created from an 8% w/v solution of polyvinyl 

alcohol (Flinn Scientific, Batavia, IL). The gel was frozen in a breast-shaped mold at -

37°C for 16 hours and then allowed to thaw at room temperature to produce a tissue-

mimicking breast phantom. To provide intrinsic fiducial markers, thirty-four 1-mm 

stainless steel beads were distributed over the phantom directly under its surface. It 

should be noted that, except for the beads, there was little to provide intensity 

heterogeneity within this phantom. A mechanical load was applied to the phantom in a 

custom-built acrylic chamber via a neoprene sphygmomanometer air bladder (W.A. 

Baum, Copiague, NY) positioned on the side of the phantom. This compression device 

was constructed so that an adjustable wall could be positioned to hold the phantom in 

place, while on the opposite side the air bladder was located approximately at the 

midpoint of the height of the phantom.  

 The phantom was subjected to three levels of compression by inflation of the air 

bladder: no compression, inflation with 50% of the maximum bladder pressure, and full 

inflation of the bladder. At each state of compression, CT images were acquired with 

dimensions 512 x 512 x 174, and 0.54 x 0.54 x 1 mm voxel size. The images were then 

segmented and triangular meshes were created from the surface geometry of the 

phantom. The uncompressed mesh was composed of 8,127 nodes, the 50% compression 

mesh was composed of 6,777 nodes, and the 100% compression mesh was composed of 
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8,260 nodes. From the meshes, the fiducial bead centroid positions were localized and 

then used in a TPS interpolation to provide the gold standard boundary conditions for two 

scenarios: 1) deforming from the uncompressed state to the 50% compression state, and 

2) deforming from the uncompressed state to the 100% compression state. In generating 

the TPS boundary conditions, 33 of the beads were used in calculating the interpolation, 

while the last fiducial was used to evaluate the target registration error (TRE). In an effort 

to evaluate the error over the entire surface, the TPS registration was conducted 34 times, 

each time using a different fiducial for the TRE calculation. The final TRE for the TPS 

gold standard was the average of these repetitions. The demons method was then used 

independently to generate boundary conditions mapping from the pre- to the post-

deformed surface of the breast phantom for the two scenarios, and compared to the 

control TPS result, as well as previous semi-automated methods (Laplace equation and 

diffusion methods). The registration in both scenarios utilized 120,000 iterations and a 

Gaussian smoothing kernel standard deviation of 1.5.  

 

2.5 Phantom Experiment 2 

 Following the evaluation of the performance of the demons method in generating 

boundary conditions in the above phantom study, a second phantom experiment was 

designed to test the performance of demons-based boundary conditions in the context of a 

full MIE reconstruction. Two more phantoms (hereafter referred to as Phantom 2 and 

Phantom 3) were constructed of polyvinyl alcohol cryogel (PVA-C) to test the accuracy 

of the reconstruction when validated with material testing data. 
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 As described by Ou, the two new phantoms were created with a 7% w/v 

suspension of hydrolyzed polyvinyl alcohol powder heated to 80°C, which was then 

incorporated with 10% glycerol (Fisher Scientific, Pittsburgh, PA) by volume (Ou 2008). 

Due to the nature of the polymerization of the gel, sequential freeze-thaw cycles (FTCs) 

achieve varying levels of stiffening elasticity. A FTC in this study was defined as 

bringing the gel down to -37°C over the course of 12 hours and then allowing it to return 

to room temperature over the next 12 hours. 

 The two phantoms were constructed by first mixing the components described 

above. To test the ability of the MIE algorithm, there needed to be a detectable difference 

in the elasticity between the phantom tumor and the rest of the phantom breast. In order 

to make the tumor stiffer than the normal tissue, the bulk of the phantom was subjected to 

one FTC, while the tumor underwent two FTCs. The tumor was made in a 25-mm 

diameter spherical mold for its first FTC, and was then suspended with very thin plastic 

wires approximately in the center of the mold used to simulate the shape of a pendant 

breast. While the FTCs produce elasticity contrast between the tumor gel and normal gel, 

it does not produce an appreciable CT image contrast between the two materials to enable 

the MIE similarity metric to detect differences in the deformed images. In order to 

introduce more contrast into the images, a small amount of radiopaque contrast was 

initially added to the tumor mixture in the form of a 6% v/v quantity of barium sulfate 

suspension (Lafayette Pharmaceuticals, Lafayette, IN). Prior to the second FTC, a 3% v/v 

barium sulfate mixture was injected into the bulk breast gel in a few random streams to 

improve the overall image texture. The second FTC then proceeded and the wires 

suspending the tumor were removed to produce the final anthropomorphic breast 
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phantom containing a stiff tumor. Similar to the first phantom study, 

polytetrafluoroethylene spherical beads (McMaster-Carr, Atlanta, GA) with a 1.6-mm 

diameter were distributed just under the surface of the phantoms in order to facilitate a 

TPS interpolation to act as the gold standard boundary conditions. Phantom 2 received 35 

beads, while Phantom 3 received 32 beads. The TRE for the TPS registration was 

calculated using a ‘leave-one-out’ strategy similar to the approach described in the first 

phantom experiment. 

 In order to evaluate the performance of MIE when using the demons-based 

boundary conditions, validation was needed for the material property contrast between 

the tumor and normal gel. To achieve this, independent mechanical tests were performed 

on samples of the two gel elasticity constituents of the phantom. A sample from each gel 

(tumor and normal) was set aside for this testing during fabrication. Each was poured into 

standard 24-well polystyrene cell culture plates (Corning Inc. Corning, NY) and 

subjected to its respective number of FTCs. This process resulted in cylindrical gel 

samples with diameter and height both about 15 mm, which could then be subjected to 

compression testing using an ElectroForce 3100 material tester (Bose, Eden Prairie, MN). 

The instrument was programmed to provide fixed displacements to the cryogels when the 

samples were mounted on a platform over a 22.5 N load cell. Each sample was subjected 

to five cycles of a load rate of 0.15 mm/s and then held for 300 s for strains of 2, 5, 10, 

and 15% in compliance with small deformation theory. Average elastic modulus values 

for the two gels were obtained from the slope of the stress-strain curves of the steady-

state loading phases. 
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 The two phantoms were constructed with tumors located at varying distances 

from the surface being compressed. The maximum diameter at the base of both phantoms 

was approximately 105 mm. The Phantom 2 tumor was approximately 12 mm below the 

surface, while the Phantom 3 tumor was approximately 26 mm below the surface. The 

phantoms were imaged in the previously described air bladder chamber using a CT 

scanner (Philips Medical, Bothell, WA). The Phantom 2 CT images (pre- and post-

deformation) were reconstructed with dimensions of 512x512x143 and voxel spacing of 

0.27 x 0.27 x 0.8 mm, while the Phantom 3 CT images were reconstructed with 

dimensions of 512x512x139 and voxel spacing of 0.26 x 0.26 x 0.8 mm.  

 The pre-deformed source image volumes were segmented from the compression 

chamber and their surface information was used to create tetrahedral meshes. The 

Phantom 2 mesh was constructed of 30,900 nodes and 166,509 elements, while the 

Phantom 3 mesh was constructed of 33,930 nodes and 183,609 elements. The TPS 

boundary conditions were generated using the implanted beads as control points for a 

thin-plate spline interpolation between the pre- and post-deformation surfaces for each 

phantom set. The PDE-based and demons methods were then utilized to independently 

generate boundary conditions for the two phantoms. The demons registration was set to 

run for 30,000 iterations for these sets, with a Gaussian smoothing kernel standard 

deviation of 1.5. 

The accuracy of the demons-based boundary conditions could then be evaluated 

by comparing the gold standard TRE of the TPS method, the TRE of the PDE-based 

methods, and the TRE of the points when used in the demons method. The 

appropriateness of demons-based boundary conditions was then tested by employing 
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them in a MIE reconstruction comparing elastic modulus values to independent 

measurements. To constrain the problem, only two regions of material properties were 

designated in the mesh: the tumor and the bulk normal gel. A priori knowledge of the 

location of the tumor was also used by segmenting the tumor margins from the normal 

gel beforehand in order to assign the material types to their corresponding elements in the 

FE model. The results of the MIE reconstruction using demons-based boundary 

conditions were also compared to the results of the reconstruction when using TPS 

boundary conditions, and those derived from the PDE methods. The Poisson’s ratio used 

in the model for both experiments was 0.485 to approximate an incompressible tissue-

mimicking material.  
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CHAPTER III 

 

RESULTS 

 

3.1 Simulations 

The CT and MR image source images were acquired and then deformed with the 

set of known boundary conditions as shown below in Figure 3.  

 

 
Figure 3. Representative slices from the two data sets used for the simulations. Slice (a) 
shows the CT image in its pre-deformed state, and (b) shows the CT image in its post-
deformed state. Slice (c) shows the MR image in its pre-deformed state, and (d) is the 
MR image in its post-deformed state. 
 

Figures 3a and 3b show an axial slice from the pre-deformed (left) and post-deformed 

(right) CT image volume, respectively. Figures 3c and 3d show a pre-deformed (left) and 

post-deformed (right) slice from the MR image volume, respectively. 
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The deformations applied in both cases were approximately Gaussian in 

distribution across the depressions as shown in Figure 4 below. The maximum 

displacement experienced by the CT set was approximately 13 mm and was applied to 

the side of the source CT mesh (Figure 4a) to result in the target post-deformed mesh 

(Figure 4b) which was used to create the simulated target image for this experiment. The 

MR mesh was similarly deformed by applying an approximately 12 mm depression to the 

top of the source MR mesh (Figure 4c) to result in the simulated MR mesh (Figure 4d).  

 

 
Figure 4. Source CT mesh (a) and simulated target CT mesh (b), where the colorbar 
refers to the magnitude of the displacement applied by the known boundary conditions to 
result in the target. Source MR mesh (c) and simulated target MR mesh (d) similarly 
shown. 
  

The demons method was then used to register the source images to their 

respective target images and automatically generate boundary conditions for the source 

meshes. The TRE calculated from the boundary nodes was then calculated, and is 

visualized in Figure 5.  
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Figure 5. TRE distribution (in mm) across the surfaces of the CT mesh (a) and the MR 
mesh (b) for the demons-based boundary conditions compared to the known conditions. 
 

The red surfaces of the mesh correspond to areas that experienced greater error when 

compared to the known boundary conditions. Averaging over all the nodes on the 

boundary, the CT set experienced a mean error of 0.6 mm ±0.3 mm with a maximum 

error of 1.5 mm, which represents an average difference of about 17% between the 

magnitude of the TRE vectors and the magnitudes of the known displacement vectors. 

The MR set experienced a mean error of 0.5 mm ± 0.3 mm with a maximum error of 1.9 

mm, which represents a mean difference of about 23%. The demons-based boundary 

conditions were then utilized in an MIE reconstruction as described in Chapter II. The 

tumor-to-normal elasticity contrast calculated by the MIE algorithm was 3.63:1 for the 

CT set, and was 5.46:1 for the MR set. The results of the boundary condition accuracy 

and the resulting contrast ratios are shown in Table 1, as well as a comparison with the 

results of the three other boundary condition methods.  
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Table 1. Comparison of boundary condition mapping error and MIE reconstruction 
results between the four methods. The boundary error was calculated against known 
boundary conditions, and the MIE reconstructions were compared against the known 
contrast ratio of 6:1. 
  Boundary Condition Mapping Error MIE Reconstruction Results 
  CT MR CT MR 

  Mean TRE (max) mm Mean TRE (max) mm Elasticity 
Contrast Ratio 

Elasticity 
Contrast Ratio 

TPS (40 pts.)* 0.30 (2.6) * 0.033 (0.6)* 5.66** 6.26** 
Laplace* 0.53 (2.6)* 0.48 (2.5)* 5.02** 673** 
Diffusion* 1.5 (8)* 0.61 (2.9)* 17.5** 348** 
Demons 0.60 (1.5) 0.50 (1.9) 3.63 5.46 

* (Ong, Ou et al. 2010) 
**(Ou, Ong et al. 2008) 
 

Figure 6 below illustrates the relationship between elasticity contrast ratios (tumor-to-

normal) and the associated objective function values in the MIE optimization routine. 

The minima in the objective function space correspond to elasticity contrast values which 

resulted in an optimally deformed image. Shown in the figure are the objective function 

values of the deformations using the known boundary conditions (as the control) and the 

demons boundary conditions.  
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Figure 6. Objective function maps for the CT simulation (a) and the MR simulation (b). 
The objective function value calculated by the optimization framework is plotted on the 
ordinate axis against selected elasticity contrast ratios (tumor-to-normal) as affected by 
the boundary conditions. Shown are the objective maps of the demons case (solid lines) 
and the known boundary conditions as the control (dashed lines). The ordinate is scaled 
in both cases.   
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3.2 Phantom Experiment 1 

 CT images of Phantom 1 were acquired at no compression, 50% compression, and 

100% compression and segmented from the compression chamber. Representative slices 

of the phantom at each deformation state are shown below in Figure 7. 

 

 
Figure 7. Surface renderings and representative slices from Phantom 1 at each state of 
deformation. This phantom exhibits little contrast and contains no tumor, and so was used 
only for testing boundary condition accuracy instead of a full MIE reconstruction. The 
figures in (a) and (b) display the phantom with no compression, (c) and (d) display the 
phantom under 50% compression, and (e) and (f) display the phantom under 100% 
compression. 
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The demons method was then used to generate Type I boundary conditions to map from 

the uncompressed state to the 50% state, and another set of boundary conditions to map 

from the uncompressed state to the 100% state. The implanted beads on the surface of the 

phantom were used to calculate the TRE of this surface registration in both cases. The 

average TRE for 50% compression when using the demons boundary conditions was 

approximately 3.3 mm ±1.32 mm, with a maximum TRE of about 6.1 mm. The average 

TRE for 100% compression was approximately 6.8 mm ±3.2 mm, which a maximum of 

about 14.2 mm. The Phantom 1 results are directly compared in Table 2 (see Section 3.3) 

to the gold standard TPS result and the results of the previous semi-automated methods, 

as well as to analogous results from Phantom 2 and Phantom 3. 

 

3.3 Phantom Experiment 2 

 CT images of Phantom 2 and Phantom 3 were acquired and segmented from the 

compression chamber. The surfaces of the pre-deformed and post-deformed phantoms are 

displayed in Figures 8 and 9, as well as representative slices of their respective image 

volumes showing displacement of the tumor when subjected to the air bladder 

compression. 
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Figure 8. Surface renderings and representative slice of Phantom 2 while pre-deformed 
(a,b), and while under 100% bladder compression (c,d).  
 

Figure 8 shows the embedded tumor in Phantom 2 as it was enhanced by barium sulfate 

to provide contrast from the bulk gel. As seen in the figure, the tumor was relatively close 

to the site of applied deformation, at about 12 mm from the surface. Qualitatively, the 

streams of barium sulfate which were distributed throughout the gel provided an increase 

in the image texture of these phantom images compared to the previous images of 

Phantom 1, which lacked this texture enhancement.  
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Figure 9. Surface renderings and representative slice of Phantom 3 while pre-deformed 
(a,b), and while under 100% bladder compression (c,d). 
 

Figure 9 shows that the images and applied deformation for Phantom 3 were similar to 

those of Phantom 2. However, the tumor in this case was located further from the site of 

depression than in Phantom 2, at about 26 mm from the surface. 

 The demons method was applied to each phantom data set to acquire Type I 

boundary conditions for each mesh. The TRE of the demons-based conditions was then 

evaluated by comparing to the known point correspondence of the implanted surface 

beads. The average demons-based TRE for Phantom 2 was calculated to be 

approximately 1.6 mm ±1.0 mm, with a maximum experienced TRE of 4.9 mm. For 

Phantom 3, the average TRE was 1.9 mm ±1.2 mm, with a maximum experienced TRE 

of 4.3 mm. These values are directly compared in Table 2 to the performance of the gold 

standard TPS interpolation method and two previous semi-automated methods, as well as 
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the Phantom 1 results. As the results show that the PDE-based methods were not notably 

more accurate for Phantoms 2 and 3 than the TPS or demons methods, only the demons 

method and TPS method were used in MIE reconstructions for comparison. 

 

Table 2. Comparison of boundary condition mapping error for Phantom 1, Phantom 2, 
and Phantom 3. The error was calculated against the localized positions of fiducial beads 
in the source and target images. 
  Boundary Condition Mapping Error 

  Phantom 1 Phantom 2 Phantom 3 

  

50% Compression 100% Compression Single Compression Single Compression 

  Mean TRE (max) 
mm 

Mean TRE (max) 
mm 

Mean TRE (max) 
mm 

Mean TRE (max) 
mm 

TPS 1.1 (3.4)* 1.7 (5.1)* 1.4 (7.08)** 1.24 (4.9)** 
Laplace 3.4 (8.6)* 6.3 (15.3)*  4.22 (7.26) 2.24 (4.74)  
Diffusion 2.7 (6.9)* 5.7 (13.6)* 4.11 ( 6.57) 2.35 (6.36)  
Demons 3.3 (6.1)  6.8 (14.2)  1.55 (4.92)  1.85 (4.34)  

*(Ong, Ou et al. 2010) 
**Based on work in (Ou 2008) 

 

 The material testing data resulted in an average contrast ratio of 4.10:1 for the 

gels. The demons-based boundary conditions were then used in an MIE reconstruction 

for each phantom. The tumor-to-normal elasticity contrast for Phantom 2 was calculated 

by the MIE algorithm to be 4.70:1. The elasticity contrast for Phantom 3 was calculated 

to be 2.46:1. In Table 3 below, these values are compared to the contrast ratios that were 

calculated by MIE using the gold standard TPS boundary conditions, and to the material 

testing data as validation for the accuracy of the MIE method. 
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Table 3. Comparison of the MIE-reconstructed elasticity contrast ratios for Phantom 2 
and Phantom 3 when using TPS and demons boundary conditions, as well as the mean 
contrast observed via material testing of the gels. 
 Phantom 2 

Reconstructed 
Contrast Ratio 

Phantom 3  
Reconstructed 
Contrast Ratio 

Material Tester 
Contrast Ratio* 

TPS* 3.81 3.06 
4.10 

Demons 4.70 2.46 

*(Ou, Ong et al. 2008) 

 

Figure 10 below illustrates the relationship between elasticity contrast ratios (tumor-to-

normal) and the associated objective function values in the MIE optimization routine. 

Shown in the figure are the objective function values of the deformations using the TPS 

boundary conditions (as the control) and the demons boundary conditions. 
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Figure 10. Objective function maps for Phantom 2 (a) and the Phantom 3 (b). The 
objective function value calculated by the optimization framework is plotted on the 
ordinate axis against selected elasticity contrast ratios (tumor-to-normal) as affected by 
the boundary conditions. Shown are the objective maps of the demons case (solid lines) 
and the TPS boundary conditions as the control (dashed lines). The ordinate is scaled in 
both cases. 
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CHAPTER IV 
 

DISCUSSION 

 

4.1 Simulations 

 The demons-based boundary conditions resulted in deformed meshes which were 

qualitatively very close in appearance to the known target meshes for both the CT and 

MR data sets. Quantitatively, the average difference between the demons conditions and 

the known conditions was about 20% for both sets, which was an encouraging indication 

of the ability of the demons methods to automatically provide boundary conditions which 

would have adequate accuracy for use in MIE.   In Figure 5, it can be seen that the largest 

errors were spread across the regions of high curvature around the tip of the breast and in 

the dip of the artificial depression for the CT set, while in the MR set the errors were 

mostly localized to the depression area. 

 The accuracy of the demons-based boundary conditions for the CT simulation 

was compared to the results of past methods in Table 1 (see Section 3.1). Unsurprisingly, 

the TPS method remained the most accurate of the four methods when considering the 

average boundary condition error. The demons method performed about as well as the 

Laplace method, and clearly outperformed the diffusion method in terms of the average 

error. However, the demons method performed favorably compared to all of the other 

methods in terms of maximum TRE, as its maximum error was well below those of the 

other methods.  

A similar comparison of these boundary condition methods applied to the MR 

simulation was also shown in Table 1. The TPS interpolation again resulted in the most 
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accurately generated boundary conditions of the four methods. In terms of average 

surface TRE, the demons method was also again comparable to the Laplace method, as 

well as the diffusion method in this case. However, with the exception of the TPS 

method, the demons boundary conditions once again compared favorably against the 

other methods in terms of the maximum error experienced on the boundary. 

 The results of the boundary condition accuracy experiment were encouraging and 

indicated that demons-based boundary conditions were a feasible solution to the MIE 

boundary condition problem. The results of the MIE reconstruction for the CT and MR 

sets were shown in Table 1 and compared to the results of reconstructions which utilized 

boundary conditions generated from the other three methods. Unsurprisingly, the table 

shows that the TPS boundary conditions, which were the most accurate of the four, 

resulted in elasticity contrast ratios for both sets that were closer to the known ratio of 6:1 

than any of the other boundary conditions. For the application of the demons registration-

based boundary conditions to the CT data set, the elasticity reconstruction with spatial a 

priori knowledge of the tumor successfully converged to a contrast ratio of 3.63:1. 

Similarly, the MR data resulted in a contrast ratio of 5.46:1.  Compared to the known 

designated material contrast of 6:1, there is clearly a discrepancy in these reconstruction 

behaviors that needs to be investigated. The difference, particularly between the different 

modalities of input data, is likely due to a combination of factors including mesh 

geometry and image quality. In addition, the distance of the tumor from the area of 

greatest displacement likely affects the accuracy of the reconstruction since the 

displacements of nodes are expected to decrease the further they are located away from 

the depression. These simulations did not investigate the effect of tumor distance on the 
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reconstruction. Interestingly, the diffusion method resulted in a much higher contrast 

ratio for the CT set than the demons method, while the Laplace method resulted in a 

contrast ratio that was closer to 6:1 but was an underestimation rather than an 

overestimation of the true value. The ability of the demons-based conditions to provide a 

contrast that was more accurate than the diffusion method for the CT simulation was 

encouraging. Even more suggestive was the behavior of the MR reconstruction. The 

Laplace and diffusion boundary conditions introduced instabilities into the MIE 

algorithm, which resulted in contrast estimates that were unreasonably higher than the 

true value. The demons-based conditions allowed the algorithm to provide a contrast 

estimate which was closer to the known value. 

 It is also interesting to note the effect of the demons boundary conditions on the 

optimization, as shown in Figure 6. Introducing the inexact demons boundary conditions 

to the model had a noticeable effect by shifting the minimum objective function value to 

a different optimal elastic contrast ratio for both the CT and the MR simulation. The shift 

was much more pronounced for the CT simulation, for which the new optimal objective 

function value corresponded to a contrast ratio of about 3.80:1 instead of 6:1 as predicted 

by the known boundary conditions. Additionally, the convexity of the function was 

altered significantly, with very little variation in the objective function for contrast ratios 

in the immediate vicinity of the global minimum. The MR simulation also experienced a 

shift in the optimal objective function when demons boundary conditions were used 

instead of the known conditions, with a new optimal contrast of about 5.50:1. This 

represented only a slight decrease from the desired 6:1 prediction. The objective function 

values arise from the image similarity metric, which again suggests that the difference in 
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objective maps between the two simulations is influenced by the image texture 

characteristics.  It is also clear that the addition of inaccuracies within the boundary 

conditions due to the registration process alters the nature of the objective function by 

injecting local minima and undesirable variations.  It is evident that some sort of iterative 

filtering approach may be necessary to ensure that global minima are found. 

 

4.2 Phantom Experiment 1 

 While the efficacy of the automated demons method was shown by the 

simulations to be comparable to the semi-automated Laplace method and somewhat 

better than the diffusion method, the simulations were in several ways performed under 

optimal conditions. The image volumes qualitatively had a great deal of heterogeneity 

and texture on which the demons registration could act, and with which the MIE 

optimization routine could use to help accurately update material property assignments. 

There was also an absolute truth with which to compare, in the form of known boundary 

conditions. The first phantom experiment sought to provide additional challenge to the 

demons method in its ability to generate reasonably accurate boundary conditions. 

 The results of the demons registration were compared to the results of the three 

other methods in Table 2 (see Section 3.3) for the two compression states applied to 

Phantom 1. Interestingly, the table shows that the demons algorithm performed about as 

well in relation to the other PDE methods as it did in the simulation experiment.  What is 

interesting about this is that Phantom 1 had very little image heterogeneity and would 

indicate that with a lack of image intensity contrast that the demons-based registration is 

at least no worse than that achieved by the PDE methods. The gold standard TPS method 
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gave the lowest error. As seen in Table 2, the errors given by all of the methods increased 

when a larger deformation was applied to Phantom 1. The demons boundary conditions 

became slightly worse in relation to the other methods at the increased level of 

compression, which suggests that the number of iterations used by the demons algorithm 

may need to be increased to accommodate larger differences between pre- and post-

deformation images, or that the algorithm may be somewhat more sensitive to the lack of 

image intensity heterogeneity.  

It is also interesting to note that in moving from simulation data to “real-world” 

phantom data, the errors experienced by all four of the methods increased significantly. 

The Phantom 1 image data was different from the simulation data in several key respects. 

For example, the target image volume of Phantom 1 represents a completely new 

acquisition, whereas in the simulation work post-deformed image sets were generated 

from the pre-deformed set. This discrepancy in target image acquisition introduces some 

uncertainty to the determination of source-to-target correspondence. Another major 

change from the simulation experiment was the markedly smaller presence of texture in 

the images due to the homogeneity of the gel.  More specifically, it is interesting to note 

the change in TRE performance among the Phantom 1, Phantoms 2&3, and simulation 

results which are listed respectively in terms of increasing image texture.  Qualitatively 

observing the results across Tables 1 and 2, the trend of decreasing TRE with increasing 

texture for the demons-based approach can be observed.  
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4.3 Phantom Experiment 2 

 It was shown in the first phantom experiment that the demons method could 

produce reasonably accurate boundary conditions compared to the semi-automated 

Laplace and diffusion methods. The second phantom experiment introduced another set 

of real-world data, but the images from this experiment had more texture in the form of 

barium sulfate as a contrast agent, which was intended to allow the demons registration to 

provide more accurate boundary conditions as needed by the MIE algorithm. In addition, 

the presence of the stiff tumor allowed for a test of the MIE algorithm’s ability to 

distinguish elasticity contrast in a phantom while using demons-based boundary 

conditions. This experiment was thus the first in which demons-based boundary 

conditions were used in an MIE reconstruction for which the true boundary conditions 

were not absolutely known.  

The surface errors calculated from the fiducial point correspondence for the TPS, 

Laplace, diffusion and demons methods were compared in Table 2 (see Section 3.3) for 

Phantom 2 and Phantom 3. Unsurprisingly, the TPS method performed better with 

respect to mean accuracy. Notably, the maximum error experienced by the demons 

method was less than that of the TPS method, which was similar to the result of the CT 

simulation study. The two PDE-based methods presented error which was similar in 

scope to their Phantom 1 results. Overall, the demons method performed considerably 

better on these two phantom sets than it did on Phantom 1, and notably outperformed the 

Laplacian and diffusion methods. This is most likely due to the increase in image texture 

which can be qualitatively observed from visual inspection of the images. Given that 
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clinical images tend to have even more image texture and geometric heterogeneity than 

found in these phantom images, further investigation into the efficacy of the demons 

method seems merited. 

 The utilization of the demons boundary conditions in MIE reconstructions 

successfully resulted in realistic tumor-to-normal modulus contrast ratios for both 

phantoms. Due to the observation that the demons method resulted in boundary 

conditions with comparable (and sometimes superior) accuracy to the Laplace and 

diffusion methods, only the TPS and demons boundary conditions were utilized in these 

reconstructions. The results for the TPS- and demons-based MIE reconstructions were 

compared to each other in Table 3 (see Section 3.3) as well as to the material tester 

results. As the table shows, the elasticity contrast ratios for each phantom when using 

TPS boundary conditions were reconstructed to values that were within 14-40% of the 

material testing data average. The reconstructions using demons boundary conditions 

resulted in contrast ratios which were very similar to those of the TPS-based 

reconstructions, with only a slight drop in contrast. This suggests that the demons 

boundary conditions were sufficiently accurate for the MIE algorithm to provide a 

reasonable estimate of the actual gel contrast. 

It is also interesting to note the effect of the demons boundary conditions on the 

optimization, as shown in Figure 10. Compared to the control TPS boundary conditions, 

the demons conditions had a noticeable effect by shifting the minimum objective function 

value to a different optimal elastic contrast ratio for both phantoms. Additionally, the 

convexity of the function was altered slightly for each. Interestingly, the global minimum 

of the Phantom 2 objective function was located at an approximate contrast ratio of 
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4.20:1, which was more similar to the material testing average of 4.10:1 than the case in 

which TPS boundary conditions were used. The actual contrast ratio to which the MIE 

reconstruction converged was 4.70:1, which was located on the slope of a local 

minimum. This behavior was most likely a result of the regularization parameters used in 

the Levenberg-Marquardt optimization. In the case of Phantom 3, the global minimum 

was about 2.50:1, which was the approximate value to which the algorithm converged. In 

this case, the global minimum decreased slightly when using demons instead of TPS 

conditions. 

 Observations of Figures 6 and 10 indicate the change in algorithm performance 

with respect to simulation and physical data.  While the nature of a simulation-to-real 

transition may be responsible for the increased error in reconstruction, there are several 

other likely factors involved.  Over-constraint of the problem is a possible candidate with 

the incorporation of the spatial prior.  The MIE method works by sampling similarity 

regionally, i.e. the method breaks up evaluation into many similarity zones (usually over 

100) distributed spatially over the domain.  The method tries to improve the similarity 

among all the zones with the use of only two parameters in this case (the elasticity of the 

background and tumor).  This level of constraint within this type of problem can lead to 

this type of oscillatory behavior.  Another possible reason is the inaccuracy in boundary 

condition determination due to the dramatic difference in image heterogeneity between 

simulation and real data. This is supported by the change in TRE.  Related to this, it is 

interesting to note the difference between CT and MR reconstruction for the simulation 

work associated with Figure 6 and in light of Table 1.  The first observation can be made 

by comparing the control objective function map across CT and MR simulation sets in 
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Figure 6.  Both simulation sets had a contrast ratio of 6:1, with the only difference being 

the level of intensity heterogeneity, and potential different breast/tumor 

geometries/locations.  It can be observed that the CT control had a shallower minimum 

which may affect the reconstruction.  When adding to this observation the objective 

function maps associated with the demon-based boundary condition it would seem at first 

glance that the CT reconstruction may perform better due to its convexity; but when 

observing how the minimum has been shifted, and in light of the shape of the control that 

has no error in boundary conditions, it can be seen that in fact the MR demons-based 

objective function maps more closely to its control which is reflected in the elasticity 

contrast ratio. 
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CHAPTER V 

 

CONCLUSION 

 

 The simulations and both phantom experiments conducted in this work indicate 

that while TPS interpolation remains the most accurate method used thus far in MIE for 

generating boundary conditions, the demons method shows promise in situations where 

fiducial point correspondence data may not be available. In addition, when transitioning 

from simulation to real data, the discrepancy in performance between TPS and the 

demons-based boundary condition mapping becomes less (at least in cases where image 

intensity contrast within the domain is available).  Furthermore, while the higher 

accuracy of the TPS method is desirable, the much higher level of manual user 

interaction and numerous fiducials needed for the method make clear the desire for 

alternative methods of boundary condition generation. The previously studied PDE-based 

methods represented steps toward automation of the boundary condition step, but still 

required a moderate level of user interaction in manually designating boundary 

conditions to various portions of the mesh. The demons method proposed represents a 

fully automated approach. 

 While the results are encouraging, the challenge of predicting (prior to workflow 

initiation) how well a pre-post deformation image set will fare prior to execution of the 

demons registration and MIE optimization routine still remains. Since the demons 

registration algorithm possesses diffusive behavior based upon intensity contours as 

described by Thirion (1998), it is obvious that the images require a certain level of texture 
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and intensity heterogeneity in order to provide these membranes a meaningful 

registration. This is one of the likely causes of the varying performance of the demons 

method in generating accurate boundary conditions among the experiments presented in 

this work. The MIE algorithm has similar requirements in order to correctly optimize 

image similarity at each update with respect to realistic material properties in the model. 

Development of a feasibility metric which can predict the success of applying the MIE 

algorithm to a given image set is a needed next step for the project. 

 In addition to a threshold criterion to evaluate the potential for a successful 

reconstruction, the need to generate more realistic phantoms with controllable stiffness 

properties is also necessary.  The breast has a complex image signature even within CT 

and the reproduction of those patterns coupled with controllable elasticity properties is 

very challenging.  While obstacles remain, the results presented here demonstrate the 

potential of treating elastographic reconstructions using non-rigid image registration 

approaches and that the possibility of full automation is also within reach. 
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