THE ROLE OF FOXM1 IN GROWTH FACTOR-MEDIATED PANCREATIC BETA-CELL PROLIFERATION

By

Jia Zhang

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University
in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Cell and Developmental Biology

May, 2010

Nashville, TN

Approved:

Professor David M. Miller

Professor Maureen A. Gannon

Professor Stacey S. Huppert

Professor Patricia A. Labosky

Professor Anna. L Means

DEDICATION

This dissertation is dedicated to my wonderful parents, who made all this possible:

- the memory of my father, Shaoming Zhang, who has been my role model for hard work, persistence, responsibility, and personal sacrifice and who loved and supported me unconditionally in my entire life.
- my mother, Ying Ren, who emphasized the importance of education, who instilled in me the inspiration to set high goals and the confidence to achieve them.

ACKNOWLEDGEMENTS

A great many people have contributed to this dissertation. I owe my gratitude to all those people who have made this dissertation possible and because of whom my graduate school experience has been one that I will cherish forever.

First, no words can describe my deep gratitude to my mentor, Dr. Maureen Gannon, who has been an incredible advisor, colleague and friend that everyone wished they had, who believed in me when I was so close to quitting graduate school and convinced me that I should give it another try. Now, almost three years later, I am about to graduate and have set my career path in science. She taught me to think critically and rigorously as a scientist, more importantly, to live honorably and confidently as a human being. She showed me that scientific questions can be discussed and addressed in such a solid, efficient yet enjoyable matter. Being able to work with her is my great motivation to show up in the lab in the morning, especially during my down time. She is always an inspiration to me and many other women in science. I hope that I will be able to pass on her spirits to the people I know in the future.

I truly appreciate my dissertation committee members, my chair, Dr. David Miller and Dr. Patricia Labosky, Dr. Stacey Huppert, and Dr. Anna Means, for serving on all my committee meetings, for their guidance and suggestions to my dissertation work and my career choice, for going out of their way to encourage me and help me whenever I have needed them.

I am grateful to be part of the amazing scientific community here at Vanderbilt University. Thank you to the Department of Cell and Developmental Biology, the Program in Developmental Biology, and the Diabetes Research and Training Center,

and the Beta cell Interest Group for providing cutting-edge training environments and for broadening my scientific horizons.

I owe great appreciation to both the past and present members in the Gannon lab. Thank you all for making the lab not only a wonderful place to work but also my family here in the United States. Hongjie Zhang, Amanda Ackermann-Misfeldt and Renuka Menon, thank you so much for your suggestions and expertise with regard to my dissertation research and for being supportive colleagues and friends. Young Ah Oh and Nikul Patel, thank you for helping me so patiently with countless experiments. Thank you to Shidrokh Ardestani, Obi Umunakwe and Paige Cooper. I am always impressed by the energy and fresh mind you guys brought to my life.

Michelle Guney, Christine Pope Petersen, Kathryn Henley, Maria Golson and Uma Gunasekaran, I will definitely miss the laughter and tears we have shared over the years. Of course, thank you all for being so warm and kind to help me conquer language and cultural barriers on a daily basis. Michelle, thank you for being such a sweet colleague and friend, who supports me both intellectually and emotionally. My hearty appreciation also goes out to Christine, who holds the "Queen" title of so many techniques in the lab. I can not thank you enough for your hard work! Kathryn, I benefit so much from your upbeat personality. Maria, thank you for challenging and refining my scientific thoughts. Uma, I am so glad that I have gotten to know you, thank you for your practical advice on living a healthy and balanced life.

I could never have reached the heights or explored the depths without the help and efforts of a lot of people, including: Dr. Roland Stein and his lab members, Dr. Al Powers and his lab members, Dr. Guoqiang Gu and Dr. Sui Wang, Dr. Richard O'Brien and his lab members, Dr. Mark Magnuson, Dr. Yanyun Gu, Jennifer Plank, Dr. Masa Shiota, Dr. Rob Carnahan, Tracy Triplett, Dr. Garcia-Ocaña and Dr. Rupi Vasavada. I would also like to acknowledge the staff in the Islet Procurement and Analysis Core,

especially Anastasia Golovin, who is absolutely incredible. Many thanks to the staff in the Monoclonal Antibody Core, the Microarray Shared Resource, the Molecular Biology Shared Resource and the Hormone Assay and Analytical Service Core.

I also extend my gratitude to my friends that I feel so fortunate to have. Very special thanks to Pan Fong Chen, Jesse Ward, Yan Hang, Qing Cai, Juan Xing, Joseph Roland, Ziyi Sun, Xiaoming Zhou, Xi Huang, Guanglei Zhuang and Zhibo An for always being by my side to multiply my joy and divide my grief throughout my graduate school years. Good luck with all your future adventures!

TABLE OF CONTENTS

	Page
DEDICATION	ii
ACKNOWLEDGEMENTS	iii
LIST OF TABLES	ix
LIST OF FIGURES	x
Chapter	
I. GENERAL INTRODUCTION	1
Diabetes Mellitus	
Gestational Diabetes Mellitus Definition	
Maternal and Fetal Complications	
Diagnosis and Treatment	
Pathophysiology	
Genetics	6
Animal Models of GDM	
Regulation of Postnatal Pancreatic β-cell Mass	
Neonatal β-cell Mass Expansion	
Adult β-cell Mass Expansion	
Maternal β-cell Mass Expansion During Pregnancy	
Mammalian Cell Cycle Progression	
Regulation of β-cell Proliferation by Growth Factors	
Foxhead Box m1	
Forkhead Transcription Factor Family	
Foxm1 Transcription Factor: Gene and Protein	
Transcriptional Regulation of Foxm1	
Post-translational Regulation of Foxm1	
Models	40
The Role of Foxm1 in the Pancreas	
Foxm1 Target Genes	
Overview and Aims of Dissertation	44
II. MATERIALS AND METHODS	52
Mico	5 0
Mice DNA Extraction and Genotyping	
Intraperitoneal Glucose Tolerance Test (IPGTT)	
Plasma and Pancreatic Insulin Content	

Islet Isolation	
RNA Isolation and Quantitative Real-Time RT-PCR (qRT-PCR)	
Tissue Preparation and Histology	
β-cell Mass Analysis	
β-cell Proliferation Analysis	
β-cell Apoptosis Assay	
Islet Size, β-cell Size Analysis	
In vitro Islet Culture	
Western Blotting	
Chromatin Immunopercipitation (ChIP) Assays	
Statistical Analysis	
III. FOXM1 STIMULATES β-CELL REPLICATION DOWNSTREAM OF PL SIGN	
IN ADULTS	73
Introduction	73
Results	
Impaired β-cell Proliferation in Pregnant <i>Foxm1^{∆panc}</i> Mice	
Defective β-cell Mass Expansion in Pregnant <i>Foxm1</i> ^{Δpanc} Mice	
Foxm1 Islet mRNA Increaseed During Pregnancy	79
Post-partum Islet Changes in Foxm1 ^{Δpanc} Females	82
Increased Expression of Cell Cycle Inhibitors in Pregnant Foxm1 ^{△panc}	0.
Islets	
Overexpression of PL did not Induce <i>Foxm1</i> or Its Target Gene	80
Expression	ar
Discussion	
5.00000.0	
IV. ANALYSIS OF FOXM1 FUNCTION IN HGF AND IGF-1 STIMULATED & PROLIFERATION IN ADULTS	
Introduction	100
Results	
RIP-HGF Transgene Remained Actively Expressed After Genetic	10-
	104
Overexpression of HGF in the β-cell did not Induce the Expression of	
Foxm1 or its Target Genes	105
RIP-IGF-1 Transgene was Actively Expressed After Backcro	105
Overexpression of IGF-1 in the β-cell did not Induce the Expression of	
Foxm1 or its Target Genes	107
Discussion	107
V. GENERATING A MOUSE FOXM1 ANTIBODY	110
Introduction	110
Results	112
Mouse A/J-L was Chosen for Fusion in the Generation of Monoclonal. Antibody	112
Screening of Hybridoma Clones	
Generating Foxm1 Polyclonal Antibodies	116

	Discussion	119
VI. S	SUMMARY AND FUTURE DIRECTIONS	.121
REFE	ERENCES	127

LIST OF TABLES

Table	Page
1. Diagnosis of GDM	5
2. Changes in Measures of Metabolism in Normal Pregnancy	5
3. Genes associated with GDM	7
4. Expression of cell cycle regulators in the β-cell	25
5. Direct Foxm1 target genes and Foxm1-regulated genes	48
6. Genotyping primers and parameters of PCR programs	63
7. Primers for qRT-PCR	63
8. Primers for ChIP assays	68

LIST OF FIGURES

Figure
1. Glucose Stimulated Insulin Secretion (GSIS)10
2. β-cell mass dynamics17
3. β-cell mass dynamics during pregnancy in mice19
4. Maternal β-cell proliferation during gestation in B6D2 mice20
5. The simplified schematic representation of the mammalian cell cycle23
6. Growth factor-stimulated β-cell proliferation33
7. Splicing variants of human FoxM1 gene and structure of protein isoforms38
8. Post-translational modification of human FOXM138
9. Foxm1 is highly expressed within the endocrine pancreas and is required for
normal postnatal β-cell growth and proliferation46
10. β -cell proliferation was unaffected in FoxM1 $^{\Delta panc}$ embryos versus control
littermates47
11. Foxm1 directly regulates many genes (yellow ovals) involved in multiple
stages of cell cycle regulation51
12. Schematic of $Foxm1^{fl}$ gene targeting and generation of $Foxm1^{\Delta panc}$ 53
13. <i>Pdx1</i> ^{5.5kb} - <i>Cre</i> transgene54
14. Immunohistochemical localization of PL in the RIP-PL transgenic and normal
pancreas56
15. RNase protection analysis of total RNA isolated from pancreas from RIP-
HGF transgenic mice (Tg) and normal littermates(NI)57

16. Immunohistochemical detection of HGF in the pancreas59
17. Dispersed islet cell clusters immunolabeled with BrdU (red) and insulin
(green)68
18. The absence of FoxM1 caused glucose intolerance at GD12.5 and GDM at
GD15.577
19. $Foxm1^{\Delta panc}$ females exhibited impaired β-cell proliferation78
20. Decreased β-cell mass in virgin and pregnant $Foxm1^{\Delta panc}$ mice80
21. Elevated <i>Foxm1</i> expression in pregnancy81
22. Lasting post-partum changes in $Foxm1^{\Delta panc}$ female pancreata81
23. Post-partum β -cell mass is restored in $\textit{Foxm1}^{\Delta panc}$ female mice due to
increased islet neogenesis and β-cell hypertrophy83
24. <i>Foxm1</i> ^{∆panc} female mice are euglycemic after pregnancy85
25. Increased p27 and Menin in $Foxm1^{\Delta panc}$ female during pregnancy87
26. Foxm1 acts downstream of PL to mediate increases in β -cell proliferation and
β-cell mass89
27. Potential Stat5 binding sites in the mouse <i>Foxm1</i> 5' promoter region91
28. Stat5 binds to Foxm1 promoter in PL treated INS-1 cells91
29. Model of PL and Foxm1 regulation of β -cell proliferation during pregnancy92
30. PL overexpression did not increase expression of <i>Foxm1</i> or its target genes
93
31. Overexpression of HGF in the β -cell results in increased β -cell proliferation
and β-cell mass103
32. Active RIP-HGF transgene in backcrossed RIP-HGF mice

33. Overexpression of HGF is not able to induce Foxm1 or its target genes106
34. Robust IGF-1 expression in backcrossed RIP-IGF-I mice at 9 wks of age109
35. Overexpression of IGF-1 did not induce Foxm1 or its target gene
expression109
36. Available anti-Foxm1 antibodies are not specific113
37. Fragments of mouse Foxm1 for immunization113
38. Generation of a monoclonal antibody114
39. Endogenous mouse Foxm1 was detected by sera from two antigen-injected
mice
40. Endogenous Foxm1 protein was detected by the 6 th bleed antiserum from
mouse A/J-L117
41. Representative western blotting of hybridoma producing Foxm1 antibody
117
42. Westerning blotting examination of first bleed anti-sera for the generation of
polyclonal Foxm1 antibody in mice and rats118
43. The central role of Foxm1 in facultative β-cell proliferation