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ABSTRACT 

 

 Muscarinic acetylcholine receptors (mAChRs), specifically M1 and M4 subtypes, 

provide viable targets for the treatment of multiple central nervous system disorders. 

However, highly selective activators of either M1 or M4 have not been available, making 

it difficult to determine the in vivo effects of selective activation of these receptors.  We 

have used cheminformatics and medicinal chemistry to develop new, highly selective M1 

and M4 positive allosteric modulators (PAMs). VU10010 potentiated the functional M4 

response to acetylcholine while having no activity at other mAChR subtypes.  Whole-cell 

patch clamp recordings revealed that VU10010 increased carbachol-induced depression 

of transmission at excitatory but not inhibitory synapses at the Schaffer collateral-CA1 

(SC-CA1) synapse in the hippocampus.  Chemical optimization of VU10010 afforded 

two centrally penetrant analogs, VU0152099 and VU0152100, which are also potent, 

selective M4 PAMs. Interestingly, these compounds reversed amphetamine-induced 

hyperlocomotion in rats, a model that is predictive of clinical antipsychotic efficacy in 

humans.   

 A growing body of literature also supports M1 receptors as a viable target for 

treatment of disorders involving impaired cognitive function.  Data in this thesis reports 

the molecular characterization of a novel compound, BQCA, which is a potent, highly 

selective PAM of the rat M1 receptor.  BQCA induced a robust inward current and 

increased spontaneous EPSCs in mPFC layer V pyramidal cells, effects which were 

absent in acute slices from M1 receptor knockout mice.  Furthermore, multiple single-unit 

recordings were obtained from the mPFC of rats which showed that BQCA increased 
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firing of pyramidal cells in vivo.  BQCA also restored discrimination reversal learning in 

a transgenic mouse model of AD and regulated non-amyloidogenic APP processing in 

vitro. 

 Together, these studies provide compelling evidence while M4 inhibits excitatory 

transmission at the SC-CA1 synapse, M1 receptor activation induces a dramatic excitation 

of PFC neurons.  Newly developed highly selective ligands that activate or potentiate M1 

and M4 provide exciting tools that will be useful in further delineating the individual roles 

of these receptors in the efficacy of drugs like acetyl cholinesterase inhibitors and 

xanomeline. 
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CHAPTER I 

 

INTRODUCTION 

 

Cholinergic biosynthesis and neuroanatomy 

 A detailed understanding of cholinergic synthesis and neurotransmission is now 

available as a result of diverse research techniques, including biochemical analysis, 

molecular genetics, and microscopy (Fig. 1) (Krnjevic, 1969; Csillik, 1975).  In the 

presynaptic terminal, acetylcholine (ACh) is synthesized from its precursors acetyl 

coenzyme A (acetyl CoA) and choline by the enzyme choline acetyltransferase (ChAT). 

ACh is packaged into synaptic vesicles by the vesicular acetylcholine transporter 

(VAChT) and subsequently released into the synaptic cleft.  Synaptic vesicles containing 

the neurotransmitter can bind and activate pre- and post-synaptic acetylcholine receptors 

only for a brief time until it is degraded by acetylcholinesterase (AChE).  Following 

degradation, the precursor choline is taken up into the presynaptic axon terminal by a 

high affinity choline transporter (CHT). This reuptake process is the rate limiting step in 

acetylcholine biosynthesis. 

Cholinergic nuclei in the basal forebrain, a group of structures in the medial and 

ventral telencephalon, contain large numbers of neurons that project to the hippocampus, 

amygdala, and cerebral cortex and provide the majority of cholinergic innervation to 

these areas (Mufson et al., 2000).  The basal forebrain is divided into several distinct 

regions that send bundles of axons to their respective targets.  Projection cholinergic 

neurons in the medial septum and the diagonal band of Broca project to the hippocampus, 
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while neurons in the nucleus basalis of Meynert project broadly to the neocortex as well 

as to the amygdala.  These cholinergic projections provide one of the most crucial 

neuromodulatory inputs to the forebrain in humans and other mammals. Cholinergic 

interneurons in the striatum also release ACh within local circuits where muscarinic 

receptors modulate the activity of medium spiny neurons.  Cholinergic neurons are 

distinguished among other features by the presence of ChAT, the enzyme that is 

responsible for ACh biosynthesis these neurons. 
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ACh AChE Choline
+

Acetate

mAChR
nAChR

Acetyl CoA
+

Choline

ChATACh

CHT

VAChT

 

 
Figure 1.  Schematic model of cholinergic biosynthesis and neurotransmission in the 
central nervous system.  Acetylcholine (ACh) is synthesized in presynaptic nerve 
terminals by the enzyme choline acetyltransferase (ChAT), packaged into synaptic 
vesicles by the vesicular acetylcholine transporter (VAChT), and released into the 
synaptic cleft. Intact ACh can bind and activate nicotinic and muscarinic acetylcholine 
receptors on both pre- and post-synaptic membranes until it is degraded by the enzyme 
acetylcholinesterase (AChE). The biosynthetic precursor choline is then taken up into the 
presynaptic terminal by the high affinity choline transporter (CHT) with choline reuptake 
being the rate-limiting step in ACh synthesis. 
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Acetylcholine Receptors 

 ACh, the first neurotransmitter to be identified, activates two families of receptors 

that mediate its action in target tissues: nicotinic receptors, which function as ligand-

gated cation channels that participate in rapid postsynaptic neurotransmission, and 

muscarinic receptors (mAChR), which are members of family A G-protein coupled 

receptors (GPCRs) and play a role in modulating the activity of many circuits within the 

CNS.  These two classes of receptor families were originally named for their specific 

activation by nicotine and muscarine, respectively, but have been extensively 

characterized since that time on a molecular basis.  This thesis will focus on muscarinic 

acetylcholine receptor subtypes.  The diversity and complexity of muscarinic cholinergic 

signaling is facilitated in part by five distinct receptor subtypes, M1-M5, the genes for 

which were cloned in the mid to late 1980s (Bonner et al., 1987; Peralta et al., 1987; 

Bonner et al., 1988).  These intronless genes encode muscarinic receptor proteins that 

have the typical structural features of the seven transmembrane helix GPCR superfamily, 

the largest family of cell-surface receptors and key regulators of a wide variety of 

physiological processes (Lefkowitz, 2007).  In general, when the receptor is activated 

GDP is converted to GTP on the G protein resulting in its dissociation from the receptor.  

Subsequently, the G protein dissociated into α and βγ subunits, which both activate 

downstream signaling cascades. 

 

Muscarinic acetylcholine receptor subtypes, signaling, and function  

 The five receptor subtypes are highly homologous in the ACh binding domain; 

their signaling properties are quite different, however.  M1, M3, and M5 preferentially 
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couple to Gαq proteins to activate phospholipase C (PLC) and cause a subsequent release 

of calcium from intracellular stores as well as an increase in phosphatidylinositol 

turnover and activation of protein kinase C (PKC) (Wess, 1996).  The major mechanism 

of calcium release from endoplasmic reticulum stores in CA1 pyramidal neurons is via 

production of inositol 1,4,5-triphosphate (IP3) induced by mAChR activation.  In addition 

M1, M3 and M5 receptors have also been shown to activate phospholipase A2 (PLA2), 

phospholipase D (PLD) and tyrosine kinases (Wess, 1996).  M2 and M4 receptors couple 

predominantly to Gαi/o proteins to inhibit adenylate cyclase and cause a decrease in cyclic 

AMP levels.  Activation of Giβγ subunits by M2 and M4 subtypes also modulate a variety 

of ionic channels including voltage-gated calcium channels as well as inwardly rectifying 

potassium channels.  All subtypes of muscarinic receptors have been shown to activate 

extracellular signal related kinase (ERK), a signaling protein involved in cell growth, 

differentiation and survival (Hulme (a) et al., 2003). 

In situ hybridization experiments following the cloning of mAChR subtype genes 

revealed that individual subtypes were expressed in partially overlapping tissues, with 

some regions, including the hippocampus, expressing all five mAChR subtypes (Buckley 

et al., 1988; Weiner et al., 1990).  A series of studies using subtype-selective antibodies 

has illustrated the distinct neuroanatomical localization of the mAChR subtypes in brain 

and have provided important clues as to their function in neural circuits (Levey et al., 

1991; Mrzljak et al., 1993; Levey et al., 1994; Hersch and Levey, 1995; Levey et al., 

1995b; Rouse and Levey, 1996; Rouse et al., 1998; Rouse et al., 2000b). 

 The M1 receptor is expressed at very high levels in multiple brain regions 

including cortex, hippocampus, and striatum (Wess, 2003).  In the cortex, M1 is localized 
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to pyramidal cells and is prominent in the neuropil of layers II/III and VI (Levey et al., 

1991).  M1 is expressed broadly throughout the hippocampus, including in pyramidal 

neuron cell bodies and dendritic processes in the stratum radiatum and stratum oriens, 

and in the molecular layer and granule cells of the dentate gyrus (Levey et al., 1995b).  In 

the striatum, M1 is found in the majority of dopamine-2 receptor (D2)-expressing medium 

spiny neurons as well as in the neuropil.  At the electron microscopy level, M1 can be 

visualized at the postsynaptic density of asymmetrical synapses, suggesting a role in 

modulating excitatory neurotransmission (Hersch et al., 1994).  Studies using knockout 

mice have suggested a role for M1 in learning and memory, and it has been demonstrated 

that M1 potentiates NMDA receptor currents (Marino et al., 1998) and is the sole mAChR 

responsible for muscarinic activation of extracellular signal-regulated kinase (ERK 1/2) 

in the hippocampus, a protein involved in synaptic plasticity (Berkeley et al., 2001; 

Hamilton and Nathanson, 2001).  M1 knockout mice are less susceptible to pilocarpine-

induced seizures and have a phenotype that is similar to that seen in animal models of 

psychosis, including hyperactivity, increased dopamine release, and a heightened 

response to amphetamine (Gerber et al., 2001; Miyakawa et al., 2001).  Interestingly, M1 

knockout mice perform as well as their wild-type littermates in the Morris water maze, a 

paradigm commonly used to assess hippocampal-dependent spatial memory; however, 

performance was impaired under certain experimental conditions in the eight-arm radial 

maze and in fear conditioning studies (Miyakawa et al., 2001).  These animals only 

exhibited a mild reduction in hippocampal long-term potentiation (LTP), an 

electrophysiological phenomenon associated with learning and memory (Anagnostaras et 

al., 2003).  The profound hyperactivity phenotype of these animals (Gerber et al., 2001; 
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Miyakawa et al., 2001) makes it unclear whether some of the behavioral impairments are 

actually due to cognitive impairments.  This caveat aside, M1
-/- mice display significant 

impairments in non-matching-to-sample working memory and consolidation 

(Anagnostaras et al., 2003), implicating these receptors in cortical memory function and 

tasks requiring prefrontal cortical signaling (Hamilton and Nathanson, 2001).  Based on 

these studies using genetically altered mice as well as a growing body of clinical and pre-

clinical data, the M1 receptor subtype is viewed as one of the most exciting therapeutic 

targets for the treatment of neurological disorders such as Alzheimer’s disease (AD) and 

schizophrenia (Fisher, 2008b; Conn et al., 2009b). 

 M2 is the most widespread mAChR subtype in brain; it is expressed 

predominantly on presynaptic terminals and has been shown to function as an 

autoreceptor controlling ACh release in the hippocampus and cerebral cortex but not in 

striatum (Zhang et al., 2002a).  M2 has a distinct laminar distribution in the cortical 

neuropil of layer IV and the junction between layers V/VI, and is also present on 

interneuron cell bodies (Levey et al., 1991).  Close inspection revealed that M2 is 

expressed both pre-and post-synaptically (Mrzljak et al., 1993).  In the hippocampus, M2 

localizes to discrete bands of cell bodies and processes along the oriens/alveus border, 

and is also found in processes along the pyramidal cell layer, most prominently in the 

CA3 region (Levey et al., 1995b).  There is a high expression level of M2 in the basal 

forebrain, in both cholinergic and noncholinergic cells, as well as in the neuropil (Levey 

et al., 1995a).  M2 also mediates parasympathetic decreases in the force of contraction 

and in the rate of cardiac contraction by inhibiting voltage-gated calcium channels and 

activating inwardly rectifying potassium channels (Caulfield and Birdsall, 1998).  Studies 
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in M2 knockout mice have demonstrated a physiological role for this protein in 

locomotion, regulation of body temperature, and response to pain (Gomeza et al., 2001).  

These mice have deficits in behavioral flexibility and working memory as well as in 

passive avoidance (Seeger et al., 2004; Tzavara et al., 2004). 

 The M3 receptor is expressed at relatively low levels in brain, accounting for only 

5-10% of total mAChRs in various brain regions (Levey et al., 1994).  By 

immunohistochemistry, M3 can be seen to localize to multiple brain regions, including 

cortex, hippocampus, olfactory bulb, amygdala, striatum, thalamus, and pons.  

Subcellularly, M3 appears in cell bodies and proximal dendrites, suggesting a 

postsynaptic localization, and also as a diffuse, punctate reaction product in the neuropil 

that may reflect presynaptic terminals or dendritic processes.  In the CNS, M3 helps 

regulate the release of several neurotransmitters, including dopamine in the striatum, 

GABA and glycine in the dorsal horns of the spinal cord, and endocannabinoids (Zhang 

et al., 2002a; Ohno-Shosaku et al., 2003; Zhang et al., 2006; Zhang et al., 2007).  Studies 

in M3 knockout mice have also implicated this subtype in multiple peripheral and 

autonomic functions, including arterial vasodilation, insulin release, glandular secretion 

(including salivation), weight gain, and smooth muscle contraction in the stomach, 

trachea, and urinary bladder (Matsui et al., 2000; Yamada et al., 2001b; Duttaroy et al., 

2004; Khurana et al., 2004).  It is believed that activation of peripheral M3 receptors leads 

to severe side effects such as excess salivation and GI distress induced by cholinergic 

agonists and AChE inhibitors used to treat AD. 

 The M4 receptor is expressed at somewhat lower levels than other mAChR 

subtypes in cortical laminae, and is localized to discrete layers in the hippocampus, 
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including the stratum radiatum and stratum oriens in CA1 and the inner molecular layer 

of the dentate gyrus.  In the striatum where M4 is most highly expressed, dense patches of 

receptor expression are observed that correspond to postsynaptic sites on medium spiny 

neurons.  Analogous to the autoinhibitory role that M2 plays in the hippocampus and 

cortex, M4 is the major autoreceptor in the striatum responsible for feedback regulation of 

ACh release from the presynaptic terminal (Zhang et al., 2002b).  M4 has been shown to 

participate in regulating dopaminergic signaling and release, and M4 knockout mice show 

increased basal and dopamine-regulated locomotor responses (Gomeza et al., 1999; 

Zhang et al., 2002a).  These animals are hypersensitive to agents that disrupt prepulse 

inhibition of the acoustic startle response, a measure of sensorimotor gating which is also 

disrupted in schizophrenic patients (Felder et al., 2001).    In vivo microdialysis studies 

revealed that M4 knockout mice also have elevated basal dopamine levels in the nucleus 

accumbens and that these mice show heightened dopamine efflux in response to 

psychostimulants like D-amphetamine and phencylidine (Tzavara et al., 2004).     

            Levels of the M5 receptor approach the lower limits of specific detection in brain 

as determined by quantitative immunoprecipitation and immunohistochemistry, although 

M5 mRNA is detectable in multiple brain tissues.  M5 knockout mice have revealed roles 

for M5 in dilation of cerebral blood vessels and in reward and reinforcement behaviors, 

specifically in response to drugs of abuse such as morphine and cocaine (Yamada et al., 

2001a; Basile et al., 2002; Thomsen et al., 2005).  Further support for the role of M5 in 

drug addiction came with the finding that these animals exhibit less severe withdrawal 

symptoms after chronic morphine exposure as well as decreased cocaine conditioned 
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place preference and reduced acute cocaine self-administration (Fink-Jensen et al., 2003; 

Thomsen et al., 2005).  

 

Muscarinic regulation of hippocampal physiology and function 

The hippocampus is a key cortical structure that plays an important role in a 

number of normal physiological processes, including processing of complex spatial and 

temporal patterns and formation of short- and long-term memory.  In addition, the 

hippocampus is a primary site of pathology in certain neurological disorders, such as AD 

and temporal lobe epilepsy.  Because of this, much effort has been directed at developing 

a detailed understanding of the synaptic organization of the hippocampus as well as the 

cellular mechanisms involved in regulation of synaptic transmission in this structure (see 

(Brown and Zador, 1990) for review).  Glutamate is the primary neurotransmitter at each 

of the three major excitatory synapses in the hippocampal formation.  In addition, 

neuromodulators from extrinsic afferents (ie. acetylcholine, serotonin, norepinephrine) 

regulate transmission through the hippocampus by activating GTP-binding protein-linked 

receptors.  Regulation of hippocampal function by these neuromodulators dramatically 

influences net transmission through the hippocampus and participates in a variety of 

different physiological and pathological conditions. 

The hippocampus is commonly viewed as a relatively simple circuit consisting of 

three major excitatory synapses.  The primary input to the hippocampus is from the 

entorhinal cortex which sends excitatory afferents to the dentate gyrus (DG) via the 

perforant path; the entorhinal cortex collects polymodal information from other cortical 

areas and relays this information to dentate granule cells.  Mossy fibers from the dentate 
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granule cells project to area CA3 of the hippocampus which in turn sends afferents via 

the Schaffer collateral to hippocampal area CA1.  Afferents from CA1 pyramidal cells 

then provide the major output of the hippocampus. Each subregion of the hippocampus 

also has intrinsic circuits and connections within (associational) and between 

(commissural) hippocampi.  Glutamate is the excitatory neurotransmitter at each of the 

three major excitatory synapses in the hippocampal formation.  In addition, 

neuromodulators from extrinsic afferents (ie. acetylcholine, serotonin, norepinephrine) 

regulate transmission through the hippocampus by activating GTP-binding protein-linked 

receptors.  Regulation of hippocampal function by these neuromodulators dramatically 

influences net transmission through the hippocampus and participates in a variety of 

different physiological and pathological conditions. 

 One of the major neuromodulatory inputs to the hippocampus is a large bundle of 

cholinergic projections from the medial septum and the diagonal band of Broca (Brown 

and Zador, 1990), and these cholinergic projections make synaptic contact with 

widespread but highly specific targets in the hippocampus.  A large number of animal 

and human studies suggest that cholinergic projections to the hippocampus play a critical 

role in memory and attention mechanisms.  For instance, blockade of muscarinic 

receptors or lesions of the septo-hippocampal projections produce memory and 

attentional deficits (Drachman and Leavitt, 1974; Bartus et al., 1982; Dekker et al., 1991; 

Fibiger et al., 1991; Nilsson et al., 1992; Callahan et al., 1993).  Also, the theta rhythm, 

an electroencephalographic measure of the arousal response in the hippocampus which 

may be involved in attention and filtering of sensory information, is regulated by 

cholinergic septal input and can be induced by muscarinic agonists and abolished by 
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muscarinic antagonists (Colom et al., 1991; Vinogradova et al., 1993).  Furthermore, 

abundant evidence suggests that the clinical syndrome associated with AD results, at least 

in part, from failed neurotransmission at cholinergic synapses in the hippocampus and 

neocortex.  The basal forebrain neurons that provide the majority of cholinergic 

innervation of the neocortex and hippocampus degenerate with AD (Whitehouse et al., 

1982; Arendt et al., 1983) and this is accompanied by a depletion of presynaptic 

cholinergic markers in these brain regions (Bowen et al., 1976; Davies and Maloney, 

1976; Perry et al., 1978; Whitehouse et al., 1982).  Furthermore, lesions of basal 

forebrain neurons or pharmacological blockade of muscarinic receptors, experimentally 

in animals (Dunnett, 1985; Dekker et al., 1991; Fibiger, 1991; Voytko et al., 1994) or 

naturally in humans (Drachman and Leavitt, 1974; Drachman, 1977; Bartus et al., 1982; 

Damasio et al., 1985), impairs learning, memory, and attention.  Evidence suggests that 

cholinergic transmission in the hippocampus is mediated primarily by mAChRs and 

thatthese receptors are likely to mediate the cholinergic involvement in learning and 

memory (Coyle et al., 1983; Brown and Zador, 1990; Fibiger, 1991). 

 

Electrophysiological effects of mAChR activation in the hippocampus 

 Multiple mAChR subtypes are expressed in the hippocampus (Hulme et al., 1990; 

Caulfield, 1993; Levey et al., 1995b) where they are involved in regulating various 

aspects of hippocampal physiology.  Early studies showed that mAChR activation 

induces a number of direct excitatory effects on hippocampal pyramidal cells and reduces 

both excitatory (Hounsgaard, 1978; Segal, 1982; Dutar and Nicoll, 1988; Sheridan and 

Sutor, 1990; Williams and Johnston, 1990; Burgard et al., 1993) and inhibitory (Krnjevic 
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et al., 1981; Bilkey and Goddard, 1985) synaptic transmission in the hippocampus.  

Another well characterized electrophysiological effect of muscarinic receptor activation 

in hippocampal pyramidal cells using the intracellular recording technique is a slow post-

synaptic potential (Cole and Nicoll, 1984a); repetitive electrical stimulation of 

cholinergic fibers terminating in stratum oriens evokes a series of membrane potential 

changes.  First is a series of fast excitatory postsynaptic potentials (EPSPs) followed by 

an inhibitory postsynaptic potential (IPSP); these are followed by a slow EPSP that lasts 

on the order of 20-30 seconds.  The slow EPSP could be induced by ionophoretic 

application of ACh and was blocked by atropine and was dependent on action potential 

firing and calcium (Cole and Nicoll, 1984a).   

 Muscarinic receptors modulate a large number of ionic conductances in pyramidal 

neurons through both direct and indirect biochemical interactions; the conductances 

known to be modulated by mAChRs in hippocampal pyramidal cells include several 

potassium currents (IM, the muscarine sensitive K+ current; IAHP, the Ca2+-activated K+ 

current underlying spike frequency adaptation; Ileak, the background leak current) 

(Halliwell, 1990).  Exogenously applied muscarinic agonists induce a pronounced 

membrane potential depolarization and increased membrane resistance (Cole and Nicoll, 

1984b), and direct electrical stimulation of cholinergic afferents in the hippocampus 

causes a similar mAChR-dependent membrane potential depolarization (Segal, 1982; 

Cole and Nicoll, 1984b; Madison et al., 1987; Pitler and Alger, 1990; Morton and Davies, 

1997).  This response often results in a sustained action potential discharge, in part 

arising from a pronounced reduction in spike frequency adaptation (Cole and Nicoll, 

1984b).  Activation of mAChRs increases cell firing and depresses the IAHP that is due to 
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a calcium-activated potassium conductance, as mentioned above.  It is thought that this 

conductance, at least in part, is responsible for a dampening of action potential discharge 

during depolarizing current injections.  These excitatory effects of ACh are mediated by 

mAChRs because they are completely blocked by atropine, a non-selective muscarinic 

antagonist, but not by nicotinic antagonists.  mAChR activation also potentiates two 

mixed cation currents (Ih, the hyperpolarization-activated cation current; Icat, the Ca2+-

dependent non-specific cation current) (Halliwell, 1990; Colino and Halliwell, 1993) and 

modulates the activity of both voltage-dependent Ca2+ currents and several ligand-gated 

receptors including N-methyl-D-aspartate (NMDA) receptors (Markram and Segal, 

1990b, a, 1992; Harvey et al., 1993; Marino et al., 1998; Sur et al., 2003).  In addition, 

mAChR agonists increase pyramidal cell excitability indirectly by reducing GABA-

mediated synaptic inhibition (Krnjevic et al., 1981; Bilkey and Goddard, 1985).  

Presynaptically, activation of mAChRs inhibits excitatory afferents, reducing the release 

of glutamate through inhibition of voltage-gated calcium channels (Qian and Saggau, 

1997; Fernandez de Sevilla et al., 2002; Fernandez de Sevilla and Buno, 2003).  More 

recently, muscarinic agonists have also been shown to inhibit L-type calcium currents in 

superior cervical ganglion (SCG) neurons (Liu et al., 2006) and enhance R-type, but not 

T-type, Ca2+ currents in hippocampal CA1 pyramidal neurons, an effect that required 

PKC activation (Tai et al., 2006). 

 Subsequent studies examining specific mAChR subtypes involved in some of 

these electrophysiological effects have shown that depolarization of hippocampal 

pyramidal neurons is likely mediated, at least in part, by the M1 receptor subtype as 

inward currents recorded in voltage clamp mode from CA3 pyramidal cells were 
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markedly reduced in M1 knockout mice as compared to wild-types (Fisahn et al., 2002).  

The muscarinic potentiation of ICAT contributes to the depolarization of pyramidal 

neurons.  Muscarine caused an increase in magnitude of Ih in wild-type but not M1 

knockout mice, indicated that the M1 subtype is responsible for this effect in CA3 cells; 

conversely, there was no effect of muscarinic agonists on IM in the M1 knockout 

supporting data by Rouse et al. (Rouse et al., 2000a) indicating a lack of M1 modulation 

of this current in CA1 pyramidal cells. 

 

Muscarinic modulation of GABAergic transmission in the hippocampus  

 Extrahippocampal γ-aminobutyric acid  (GABA)ergic afferents originating from 

the medial septum and diagonal band of Broca innervate the hippocampus and target 

solely hippocampal interneurons and cholinergic afferents which in turn target both 

pyramidal cells and interneurons (Frotscher and Leranth, 1985).  Acetylcholine is a 

powerful presynaptic modulator of synaptic transmission at both excitatory glutamatergic 

and inhibitory GABAergic synapses with modulation being both cell type and pathway 

specific. Furthermore, GABAergic interneurons can inhibit cholinergic release 

presynaptically through GABAB receptors (Morton et al., 2001).  The role of mAChRs in 

modulating activity of GABAergic inhibitory neurons is complex; studies have shown 

that mAChR activation of individual interneurons in the hippocampus yields differential 

effects on resting membrane potential (McQuiston and Madison, 1999a, b).  Among 

several subpopulations of GABAergic interneurons, muscarinic receptor activation 

produces a pure hyperpolarizing response, a biphasic response in which an initial 

hyerpolarization is followed by a secondary depolarizing phase, a slow membrane 
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potential oscillatory response, or no response.  Immunocytochemical findings suggested 

cell type-specific localization of mAChRs in different subtypes of interneurons (Levey et 

al., 1995b) which likely explains the variable muscarinic effects observed in these cells.  

This diversity of interneuron responses also likely reflects a highly heterogeneous 

population of GABAergic interneurons with respect to their connectivity and 

neurochemistry.  A more recent study investigated mAChR function in a morphologically 

identifiable class of stratum oriens interneurons, the stratum oriens-lacunosum moleulare 

(O-LM) interneurons; they exhibit a muscarinic-induced afterdepolarization that is 

associated with the inhibition of several potassium conductances and the activation of 

ICAT (Lawrence et al., 2006).  In these interneurons, muscarine abolished the 

afterhyperpolarization (AHP) current and induced a switch in firing frequency from 

accommodating to accelerating during the depolarizing current injection.  The AHP was 

replaced by a prominent afterdepolarization in the presence of muscarine.  In another set 

of cells that exhibited strong spike frequency accommodation and broad rebound spikes, 

mAChR activation was accompanied by a reduction in input resistance and shunting of 

firing.  Finally, muscarinic receptor activation increases the frequency and amplitude of 

spontaneous IPSCs but depresses monosynaptically evoked IPSCs and the frequency of 

miniature IPSCs (Behrends and ten Bruggencate, 1993). 
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NMDAR modulation by mAChRs 

 As previously stated, one of the most prominent effects of mAChR activation in 

the hippocampus and other forebrain regions is potentiation of currents through the 

NMDA subtype of ionotropic glutamate receptor (Markram and Segal, 1990b; Harvey et 

al., 1993; Calabresi et al., 1998; Marino et al., 1998; Lu et al., 1999; Marino and Conn, 

2002).  The M1 receptor likely enhances currents through NMDARs through a PKC-

dependent activation of the non-receptor tyrosine kinase (Src) signaling cascade 

(Calabresi et al., 1998; Lu et al., 1999).  The NMDA receptor plays a critical role in 

regulating hippocampal and cortical function and is thought to be important for the 

cognition-enhancing and attention-promoting effects of mAChR activation.  In addition, 

the NMDA receptor may play an important role in regulation of circuits that are disrupted 

in schizophrenia and other psychotic disorders (Coyle et al., 2002; Marino and Conn, 

2002; Tsai and Coyle, 2002).  Competitive and non-competitive antagonists of the 

NMDA receptor can induce a psychotic state that closely resembles that seen in 

schizophrenic patients.  Furthermore, co-agonists at the NMDA receptor, such as glycine 

and D-cycloserine produce improvements in the symptoms of schizophrenic patients.  

Thus, a large number of clinical and animal studies have led to the hypothesis that 

potentiation of NMDA receptor currents in these regions could have an antipsychotic 

action.  Based on this, it is possible that mAChR-induced potentiation of NMDA receptor 

function plays important roles in the therapeutic efficacy of mAChR activation in 

psychotic disorders. 
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Presynaptic M2 and M4 receptors may regulate excitatory and inhibitory synaptic 
transmission 
   
 Many studies have indicated that mAChR-induced reduction of transmission at 

excitatory synapses in the hippocampus is mediated presynaptically.  Based on early 

immunocytochemical studies, the most likely mAChRs involved in the presynaptic 

actions of mAChR agonists are M2 and M4 since both of these receptors are 

predominantly localized presynaptically in each major subsector of the hippocampus.  

Consistent with this, a large body of research suggests that presynaptic receptors involved 

in regulating neurotransmitter release are often coupled to inhibition of adenylyl cyclase, 

and M2 and M4 both couple to this effector system.  While both M2 and M4 are localized 

presynaptically, M2 immunoreactivity is not present in granule cells and pyramidal cells, 

but is highly localized in inhibitory interneurons (Levey et al., 1995b).  Since dentate 

granule cells and CA3 pyramidal cells provide the majority of excitatory input to areas 

CA3 and CA1 respectively, this makes M4 a more likely candidate for the mAChR 

involved in regulating glutamate release. In contrast, if M2 is localized on presynaptic 

terminals of inhibitory interneurons, M2 would be in an ideal position for regulating 

GABA release and thereby reducing GABA-mediated synaptic inhibition. 

 One mechanism of presynaptic inhibition of neurotransmitter release involves the 

modulation of presynaptic calcium channels that are involved in vesicle fusion and 

release.  Early indirect (Valentino and Dingledine, 1981) and more recent studies have 

shown that muscarinic inhibition of synaptic transmission in the hippocampus is 

presynaptic and relies at least in part on muscarinic blockade of N-type and P/Q-type 

voltage dependent calcium channels at the SC-CA1 synapse (Qian and Saggau, 1997) and 

in the associational-commissural fiber system of CA3 (Vogt and Regehr, 2001).  
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Activation of mAChRs with carbachol (CCh), a muscarinic agonist, increases the paired-

pulse facilitation index of evoked EPSCs at CA1 synapses and also decreased the 

coefficient of variation ratio, indicating that CCh inhibits synaptic transmission via 

activation of presynaptic mAChRs which causes a reduction in the reliability of 

glutamate release (Fernandez de Sevilla et al., 2002).  Electrical stimulation of 

cholinergic terminals in stratum oriens/alveus also causes a decrease in evoked CA1 

EPSCs by presynaptically inhibiting glutamate release via activation of mAChRs as 

indicated by parallel changes in PPF index and EPSC variance (Fernandez de Sevilla and 

Buno, 2003).  Although ACh has been shown to suppress excitatory transmission at 

mossy fiber synapses in CA3 through modulation of GABAB receptor activity (K. E. 

Vogt and W. G. Regehr, 2001), presynaptic inhibition at CA1 seems to be independent of 

GABAergic transmission (Kremin et al., 2006).  Although experiments to confirm a 

presynaptic mechanism of action were not carried out, we have found that selective 

potentiation of M4 receptors with the PAM VU10010 enhances muscarinic depression of 

evoked excitatory but not inhibitory postsynaptic currents in CA1 neurons (Chapter 

IIIa).  

 

Role of muscarinic cholinergic signaling in hippocampal LTP  

 Of particular relevance to issues of synaptic plasticity, mAChR activation 

enhances agonist-evoked currents through the NMDA subtype of glutamate receptor 

(Markram and Segal, 1990b; Harvey et al., 1993; Marino et al., 1998).  The NMDA 

receptor is known to play a critical role in several forms of hippocampal long-lasting 

synaptic plasticity which are thought to underlie learning and memory.  Consistent with 
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this, mAChR activation can also induce or enhance long term potentiation (LTP) of 

excitatory synaptic responses in the hippocampus (Blitzer et al., 1990; Burgard and 

Sarvey, 1990; Markram and Segal, 1990b; Abe et al., 1994; Auerbach and Segal, 1996; 

Shinoe et al., 2005).  Because long-term alterations in efficacy of glutamate transmission 

contribute to memory mechanisms (Bliss and Collingridge, 1993; Malenka and Bear, 

2004), induction of long-term synaptic changes by cholinergic receptors may underlies 

the cholinergic dependence of normal memory processing.  Furthermore, because of the 

postulated role of NMDA receptors and LTP in learning and memory, it has been 

suggested that the mAChR subtype that mediates these responses may be an excellent 

target for therapeutic agents useful in the treatment of AD.  

 Early studies using sharp microelectrodes revealed that ionophoretic application 

of ACh caused an initial reduction in EPSP amplitude followed by a gradual and long-

lasting facilitation of EPSP amplitude in CA1 pyramidal cells that was not associated 

with a change in input resistance (Markram and Segal, 1990b).  Atropine blocked both 

the suppressing and facilitating effects of ACh.  These studies also indicated that ACh 

enhanced the slow NMDA-mediated component of the EPSP and that responses to 

NMDA application in current clamp mode were also potently facilitated by both ACh and 

oxotremorine-M, a muscarinic agonist.  Muscarinic facilitation of both EPSP amplitude 

and NMDA responses were independent of changes in voltage or K+ conductances as the 

facilitation was not affected by clamping cells at resting membrane potentials or by the 

inclusion of cesium in recording electrodes. 

 Burgard and Sarvey (1990) showed a concentration-dependent ability of 

muscarine in the dentate gyrus to facilitate LTP induction by subthreshold titanic 
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stimulation (Burgard and Sarvey, 1990); Blitzer et al. (1990) demonstrated a significant 

depression of the CA1 field EPSP with high doses of CCh which, when controlled for, 

enhanced tetanus-induced LTP (Blitzer et al., 1990).  Subsequent reports indicated that 

bath application of 750 nM carbachol also induced a long-lasting (>45 min post drug 

washout) facilitation of intracellularly recorded EPSPs; muscarinic potentiation of field 

EPSPs was also seen and was dependent on CCh concentration and time of drug 

application (Auerbach and Segal, 1994).  Only with 20-minute CCh application was 

sustained LTP produced.  This phenomenon was termed LTPm and was completely 

blocked by atropine; when antagonist was added to the bath after the establishment of 

LTP, no effect was seen indicating that induction but not maintenance of LTPm was 

mediated by mAChRs.  These studies also indicated that LTPm requires involvement of 

intracellular calcium stores and protein kinases but is activity independent.  Interestingly, 

CCh still induced LTPm in the presence of the 10 µM NMDAR antagonist (2R)-amino-5-

phosphonopentanoate (APV), a concentration that did block tetanus-induced LTP, 

suggesting that the two mechanisms were somewhat divergent.   It was also demonstrated 

that 0.1 µM CCh (a concentration that did not induce LTP alone) facilitated LTP caused 

by a subthreshold titanic stimulus and that LTPm and tetanus-induced LTP were mutually 

occlusive phenomena.  Therefore, the mechanisms of LTPm and tetanus-induced LTP 

seemed to converge at a point downstream of NMDA receptor activation (Auerbach and 

Segal, 1994).  LTPm was later shown to not be accompanied by a change in the size of the 

afferent fiber volley or by a change in paired-pulse potentiation, consistent with a 

postsynaptic locus of CCh action (Auerbach and Segal, 1996).  Intracellular recordings 

from CA1 pyramidal cells in voltage clamp mode revealed that 0.5 µM CCh transiently 
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potentiated NMDA responses but that responses to AMPA increased gradually and 

remained potentiated after drug washout.   

 The M1 receptor is a likely candidate for the mAChR subtype involved in the 

facilitation of LTP induction.  For instance, evidence suggests that mAChR-induced 

facilitation of LTP is mediated by a postsynaptic mechanism, and depends on the release 

of calcium from intracellular stores (Auerbach and Segal, 1994).  The M1 receptor is the 

most abundant postsynaptically localized mAChR subtype in CA1 pyramidal cells.  

Furthermore, M1 is coupled to phosphoinositide hydrolysis and activation of this receptor 

leads to release of intracellular calcium.  Thus, it seemed plausible that the mAChR-

induced facilitation of LTP induction is mediated by the M1 receptor.  Recent studies 

have indicated that M1 is indeed the subtype most likely mediating cholinergic 

modulation of synaptic plasticity in the mouse hippocampus.  Experiments focusing on 

enhancement of electrically induced LTP by low concentrations of CCh or by repetitive 

stimulation in the stratum oriens, which presumably trigger release of endogenous ACh 

from cholinergic terminals, revealed that the enhancing effect was abolished in M1 

knockout but not in M3 knockout mice (Shinoe et al., 2005).  While concentrations of 500 

nM to 5 µM CCh induced a transient depression of field excitatory postsynaptic 

potentials (fEPSPs) at the SC-CA1 synapse, 50 nM had no effect alone on fEPSPs.  This 

is in contrast to what had been reported in rat where low doses of CCh induced LTP.  

This could be a result of differences in mAChR expression and receptor density between 

species; as shown in Chapters IIIa and IV, we have also seen a difference in potency of 

CCh on various electrophysiological responses between rat and mouse.  Regardless, 

Shinoe et al. reported that 50 nM CCh significantly increased LTP elicited by high 
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frequency stimulation (HFS, 100 Hz for 1 sec) of SC afferent fibers.  Stimulation of 

stratum oriens thirty seconds prior to the HFS to cause endogenous ACh release also 

potentiated the degree of LTP.  While HFS-LTP remained intact in both M1 and M3 

knockout animals, CCh-induced enhancement of LTP was absent in only the M1 

knockout supporting a role for M1 in mediating this effect.  The same was shown to be 

true after stratum oriens stimulation (Shinoe et al., 2005). 

 One recent set of studies by Fernández de Sevilla et al. (2008) revealed that a 

brief puff of ACh applied at the apical dendritic shaft of a CA1 pyramidal cell induces a 

postsynaptic calcium elevation and LTP of excitatory postsynaptic currents (EPSCs) 

evoked by stimulation of SC-CA1 afferents.  Because changes in postsynaptic responses 

can be mediated by a change in α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate 

receptor (AMPAR) density at the postsynaptic membrane, the content of recombinant 

tagged GluR1 and GluR2, subtunits of AMPARs, was analyzed before and after ACh 

treatment using two-photon microscopy.  Indeed, ACh induced an increase in GluR1 and 

GluR2 containing AMPARs at the spine surface without a change in spine volume.  

Results also suggested that LTP induced by ACh was mediated through a postsynaptic 

mechanism as shown by a lack of effect of ACh on the paired-pulse ratio or the fiber 

volley of fEPSPs evoked by Schafer Collateral (SC) stimulation, and LTP in this case 

was NMDA independent.  Because levels of ACh released from the medial septum rise 

during tasks that require attention, it could be postulated that this form of plasticity could 

be induced in vivo.  Tetanic stimulation of the medial septum using chronically implanted 

stimulating electrodes did in fact induce a long-lasting synaptic enhancement of fEPSPs 

at CA1 synapses in vivo (Fernandez de Sevilla et al., 2008).  A key difference between 
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the ACh-induced LTP reported by Fernández de Sevilla et al. and the synaptic 

enhancement induced by CCh in earlier studies (Auerbach and Segal, 1994, 1996) is a 

dependence on NMDAR activity.   

 

Muscarinic modulation and induction of LTD in the hippocampus  

 Interestingly, M1 activation also seems to induce a novel form of long-term 

depression (LTD) often termed mLTD (Scheiderer et al., 2006).  At hippocampal CA3-

CA1 synapses, bath application of a high concentration of CCh (50 µM) elicits a robust 

transient depression of the dendritic fEPSP which is followed by LTD after agonist 

washout.  This mLTD was prevented by atropine, by the M1 toxin MTx-7 (Potter, 2001), 

and by pirenzepine but not by the nAChR antagonist methyllycaconitine.  The expression 

of mLTD was independent of GABAA receptor activity and appeared to be via a 

postsynaptic mechanism.  It was also postulated that the acute presynaptic depression and 

mLTD involve separate mechanisms and that the presynaptic depression is not required 

for mLTD induction.  Lastly, similar to LTPm described by Auerbach and Segal (1994), 

mLTD was blocked in the presence of the NMDAR antagonist D,L-APV (Auerbach and 

Segal, 1994).  In contrast to LTPm however, mLTD is activity dependent; mLTD requires 

presynaptic activity because cessation of stimulation of presynaptic afferents during CCh 

application prevented induction of plasticity when CA3 cell bodies were removed from 

the slice.  Thus mLTD is both activity- and NMDAR-dependent.  Interestingly, this 

Hebbian form of LTD is lost after medial septal lesioning but is rescued by sympathetic 

sprouting of noradrenergic fibers from the superior cervical ganglia into hippocampus.  

This sprouting of sympathetic fibers appears to stimulate cholinergic reinnervation as 
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indicated by new VAChT-positive fibers in the hippocampus, and the appearance of these 

new fibers correlates with the rescue of mLTD. 

 In a subsequent publication, McCutchen et al. (2006) found that mLTD did not 

affect subsequent electrical induction of LTP; mLTD was also able to depotentiate LTP.  

That is, application of CCh could cause a population of CA1 pyramidal cells exhibiting 

LTP after high frequency stimulation to undergo an acute depression and then return to 

the baseline fEPSP slope level (McCutchen et al., 2006).   

 Electrical induction of LTD using low frequency stimulation (LFS-LTD) is both 

activity- and NMDA receptor dependent; since both LFS-LTD and mLTD share those 

characteristics, occlusion studies were performed to confirm a shared mechanism 

between the two types of LTD.  Not surprisingly, prior saturation of LFS-LTD occluded 

induction of mLTD by CCh application.  Unexpectedly, however, when the converse 

experiment was performed, saturating levels of mLTD did not occlude further depression 

induced by subsequent LFS.  In other words, even after multiple CCh applications to 

insure saturated mLTD, application of LFS induced roughly 25% more depression of the 

fEPSP.  Further studies revealed that CCh treatment prior to LFS caused LFS-LTD to 

become independent of NMDARs at hippocampal CA1 synapses but not in layer IV-layer 

II/III synapses in visual cortex where LFS-LTD is also normally NMDA-dependent.  The 

fact that the switch in LFS-LTD does not occur in visual cortex suggests that this may be 

a cholinergic mechanisms specific to hippocampal synapses and that there is perhaps 

more flexibility in the induction mechanisms available to mediate hippocampal LTD 

(McCoy and McMahon, 2007).  Finally, induction of mLTD seems to require ERK 

activation; application of U0126, a MEK inhibitor, before and during CCh treatment 



26 
 

completely blocks mLTD.  Induction of this form of synaptic plasticity also required 

activity of Src kinase but not PLC (Scheiderer et al., 2008). 

  

Muscarinic modulation of hippocampal physiology: conclusions 

 It is likely that these cellular actions of mAChR activation are directly related to 

the behavioral effects of activation of hippocampal mAChRs.  For instance, the combined 

reduction of excitatory synaptic transmission with an increase in excitability of pyramidal 

cells could increase the signal to noise ratio of signaling through the hippocampus.  Such 

modulation of signal to noise ratio occurs with some other neurotransmitters and has been 

proposed to play an important role in regulation of attentiveness to sensory stimuli 

(Madison and Nicoll, 1986).  In addition, selective potentiation of NMDA receptor 

responses could critically modulate synaptic plasticity that is involved in learning and 

memory.  Consistent with this, mAChR activation modulates LTP and LTD of excitatory 

synaptic responses in the hippocampus. A complete understanding of the roles of 

mAChRs in both normal and pathological hippocampal function will require a detailed 

understanding of the cellular mechanisms involved in these responses as well as the 

specific mAChR subtypes that mediate each of these responses.  While preliminary 

studies using mice lacking each of the individual mAChR subtypes have provided 

important clues about the function of these subtypes in mediating many of the 

electrophysiological effects described above, we now have selective activators of M1 and 

M4 that will be described further in subsequent chapters.  It will be important to confirm 

initial findings in knockout mice as well as to further delineate the roles of these two 

receptor subtypes in modulating hippocampal physiology.  Studies using the M4 positive 
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allosteric modulator VU10010 (see Chapter IIIa) revealed that this mAChR subtype is 

involved in modulation of excitatory but not inhibitory transmission at the SC-CA1 

synapse in rats and mice.  

 

Prefrontal cortical physiology and function 

An important projection from the hippocampus is to the prefrontal cortex (PFC), a 

cortical region that integrates information from multiple other brain regions; PFC 

function is the target of many neuromodulators including acetylcholine.  The PFC 

receives glutamatergic inputs from the thalamus and primary sensory cortices, from the 

brainstem, and from the hippocampus (Groenewegen and Uylings, 2000; Dalley et al., 

2004; Vertes, 2006), and this merging of information in the PFC is implicated in higher 

executive functioning.  Cholinergic input to the PFC regulates attention (Muir et al., 

1992; Hasselmo, 1995), memory (DeSousa et al., 1994), and anxiety induction processes 

(Berntson et al., 1998).  Dysfunction of mAChRs and muscarinic-mediated signaling 

pathways has been linked to Fragile X mental retardation (Volk et al., 2007), AD (Fisher, 

2008b), and aging (Joseph et al., 1993).  Lesions of the medial PFC (mPFC) result in 

cognitive deficits that resemble symptoms of schizophrenia and Alzheimer’s disease 

(Kolb, 1984, 1990; Heckers et al., 1998).  

 Among a number of glutamatergic afferents projecting to the PFC, the afferents 

originating in the hippocampus are especially crucial in supporting memory and cognitive 

function.  Previous work has shown that the CA1 and subiculum of ventral hippocampus 

send ipsilateral, unidirectional projections that terminate on neurons in the mPFC (Jay 

and Witter, 1991; Jay et al., 1992).  This hipocampal-mPFC pathway has been described 



28 
 

as projecting anteriorly through the fornix, and it ultimately ascends dorsally to terminate 

on neurons within the nucleus accumbens and a region of the mPFC that includes the 

infralimbic and prelimbic cortices.  The functional integrity of the hippocampal-mPFC 

network and the flow of information between these two brain regions are critical to the 

proper functioning of the mPFC in memory formation (O'Donnell and Grace, 1995; 

O'Donnell et al., 2002; Goto and O'Donnell, 2003).     

 

Role of mAChRs in the mPFC 

 Cholinergic afferents to the prelimbic and infralimbic cortices, the major 

components of the medial prefrontal cortex (mPFC), originate primarily in the basal 

forebrain nucleus basalis magnocellularis, the diagonal band of Broca, and the 

mesopontine laterodorsal nucleus (Lehmann et al., 1980; Satoh and Fibiger, 1986; 

Gaykema et al., 1990).  Cholinergic input to the cortex plays a vital role in supporting 

processes requiring arousal, attention, memory, and learning (Phillis, 2005); in addition 

to being released from inputs from the basal forebrain nuclei, ACh is also released from 

local circuit neurons in the mPFC, and ACh release increases during performance of 

attentional tasks (Passetti et al., 2000).  In contrast, lesions of cholinergic nuclei that 

project to the mPFC impair cue detection and attentional performance whereas 

augmentation of cholinergic transmission enhances behavioral arousal and locomotor 

activity (Day et al., 1991; McGaughy et al., 2002; Parikh et al., 2007).  Of the five 

mAChR subtypes, M1 and M2 are the predominant subtypes expressed in the mPFC with 

M1 mainly localizing postsynaptically at asymmetrical (glutamatergic) synapses and M2 

localizing both pre- and postsynaptically (Volpicelli and Levey, 2004).  Activation of 
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mAChRs results in an array of effects on the excitability and firing properties of cortical 

neurons, and these effects involve different cellular mechanisms.  In addition, mAChRs 

play a role in modulating long-term strengthening and weakening of synaptic 

transmission in this brain region which appears to be input-specific.  Modulation of 

electrophysiological behavior and plasticity of cortical circuits, particularly in the PFC, 

by ACh is thought to play a critical role in attention and memory (Gill et al., 2000; 

Passetti et al., 2000; Anagnostaras et al., 2003; Sarter et al., 2005). 

 

Postsynaptic effects of mAChRs in cortical neurons 

 Similar to the effects seen in hippocampal pyramidal cells, ACh causes a marked 

depolarization and increase in membrane excitability and repetitive spiking in cortical 

pyramidal cells (Benardo and Prince, 1982; Andrade, 1991; Krnjevic, 2004; Carr and 

Surmeier, 2007).  Many ionic currents have been implicated in mediating this 

depolarization; one of these is a voltage-dependent nonselective cation current (Haj-

Dahmane and Andrade, 1996; Klink and Alonso, 1997; Fisahn et al., 2002).  Studies in 

hippocampal and sensorimotor cortices have indicated this increase in excitability can be 

attributed to the inhibition of three main potassium currents: the calcium-activated 

potassium current underlying the afterhyperpolarization (IAHP), a voltage-dependent leak 

potassium current (Ileak), and the voltage-dependent M-current (IM).  The involvement of 

a potassium current-mediated mechanism was supported by the increase in input 

resistance and a dependence on membrane potential; barium and tetraethylammonium 

(TEA), potassium channel blockers, also reduced CCh-induced inward currents (Haj-

Dahmane and Andrade, 1996).  However, the CCh-induced current did not reverse at the 
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reveral potential of potassium (EK) but persisted as an inward current at membrane 

potentials 10-20 mV negative to the predicted EK for potassium.  Intracellular cesium, 

which blocks a wide range of potassium channels, also did not inhibit the CCh-induced 

inward current.  These results indicated that another ion conductance was likely involved 

in this muscarinic effect.  Subsequent studies implicated the involvement of a non-

selective cation current in muscarinic depolarization of mPFC layer V neurons (Haj-

Dahmane and Andrade, 1996).  Similar findings in entorhinal cortex did not support a 

role for potassium conductances in this effect but rather a calcium-dependent cationic 

conductance largely permeable to sodium (Klink and Alonso, 1997).  Conflicting data 

support the involvement of an inwardly rectifying potassium current through a channel 

containing Kir2 subunits; these channels are open at the resting membrane potential and 

help set the resting membrane potential in PFC pyramidal neurons and also play a role in 

integration of excitatory synaptic inputs (Day et al., 2005).  Carr and Surmeier (2007) 

found the CCh-induced inward current to be sensitive to barium and cesium that block 

Kir2 channels, and showed that mAChR activation reduces Kir2 channel currents by 

depleting membrane phosphatidylinositol 4,5-bisphosphate (PIP2) as this modulation was 

blocked by PLC but not PKC inhibitors (Carr and Surmeier, 2007). 

 The calcium-dependent non-selective cation current mentioned above has also 

been shown to contribute to the fast afterdepolarization (fADP) that follows an action 

potential triggered by depolarizing current injection (Haj-Dahmane and Andrade, 1997).  

This fADP is prominently displayed by pyramidal neurons of layer V in rat PFC.  

Interestingly, these cells also exhibit a muscarinic-induced slow afterdepolarization 

(sADP) (Haj-Dahmane and Andrade, 1998).  Buffering of intracellular calcium prevented 
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the mAChR-induced sADP, and ion substitution experiments implicated the flow of 

sodium ions into the cell but not the flux of potassium or chloride.  The muscarinic sADP 

therefore is likely mediated by a calcium- and voltage-sensitive nonselective cation 

current and could represent a mechanism by which mAChRs modulate neuronal 

excitability in the PFC.  Due to the calcium-dependence of the sADP, the involvement of 

calcium channel modulation by mAChRs has been investigated.  A recent study has 

implicated TRPC (transient receptor potential) ion channels in the muscarinic sADP (Yan 

et al., 2009); these channels allow calcium flux into cells in response to a variety of 

stimuli usually linked to phosphatidylinositol signal transduction pathways.  Data 

indicates that the current underlying the sADP induced by mAChR activation is carried 

through TRPC channels containing TRPC5 or TRPC6 subunits and occurs through a 

mechanism involving Gαq and PLCβ1 signaling. 

 Pyramidal cells normally respond to a sustained current injection with a high 

initial firing rate followed by a slowing of this rate.  The voltage-sensitive potassium 

current (IM) and voltage-dependent calcium influx which activates a calcium-sensitive 

potassium current (IAHP) are both thought to underlie this accommodation or adaptation in 

cell firing rate by pyramidal cells in response to sustained depolarization.  Activation of 

mAChRs decreases both of these potassium currents which, in turn, allows neurons to 

fire in a more sustained manner in response to sustained afferent input.  Cholinergic 

agonists also cause a strong increase in the firing rate of cortical neurons, and this 

increase in firing rate was demonstrated to result from a slow depolarization of cortical 

pyramidal cells due at least in part to blockade of potassium currents (Krnjevic et al., 

1971; Hasselmo and McGaughy, 2004).  The muscarinic inhibition of the calcium-
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dependent potassium currents underlying afterhyperpolarization also supports a role of 

mAChRs in modulating voltage-dependent calcium channels.  Indeed, mAChR 

modulation of L-, N-, P/Q- and R-type calcium channels pre- and postsynaptically in both 

hippocampal and cortical neurons occurs through G-protein dependent mechanisms 

(Perez-Burgos et al., 2008). 

 In accordance with the excitatory effects of selective M1 receptor activation in rat 

and mouse layer V mPFC pyramidal cells described in this thesis, a recent study using M1 

knockout mice shows that activation of this receptor subtype mediates cholinergic 

modulation of excitability in these neurons (Gulledge et al., 2009).  Interestingly, short 

focal application of ACh near the soma of the recorded neuron produced a 

hyperpolarization and pronounced inhibition of spiking followed by spike acceleration 

when ACh was delivered during periods of action potential generation by depolarizing 

current injection in layer V but not as robustly in layer II/III neurons.  This effect was 

abolished in slices from M1 knockout but not M3 or M5 knockout mice.  Tonic 

cholinergic excitation using bath-applied CCh depolarized layer V neurons and also 

suppressed the afterhyperpolarization in addition to generating a slow afterdepolarization, 

effects that were also absent in M1 knockout slices (Gulledge et al., 2009). 

 

Cholinergic modulation of cortical neurotransmission 

 Despite a consistent reporting of increases in cortical neuronal excitability in 

response to cholinergic agonists, many discrepancies exist in studies examining the 

effects of cholinomimetic drugs on glutamatergic transmission; data suggests that the 

effect of ACh on synaptic transmission is region- and input specific (Hasselmo and 



33 
 

Bower, 1992; Gil et al., 1997; Gulledge et al., 2007; Eggermann and Feldmeyer, 2009; 

Gulledge et al., 2009).  In addition, varying concentrations of ACh induce either 

depression or facilitation of glutamatergic transmission; this principle holds true when 

examining the effects of CCh on long-term changes in synaptic transmission as discussed 

below.  By employing stimulation of either layer Ia or Ib in rat piriform cortex slices, 

Hasselmo and Bower found that CCh, muscarine, and ACh strongly reduced responses 

stimulated from intrinsic fibers in layer Ib but not from afferent fibers from layer Ia; this 

suggested that mAChR activation decreases excitatory transmission within intracortical 

circuits but not from afferent inputs (Hasselmo and Bower, 1992).  In slices containing 

somatosensory cortex and ventrobasal thalamus, muscarine depressed EPSPs at both 

thalamocoritcal (TC) and intracortical (IC) synapses onto layer III pyramidal cells 

whereas nicotine selectively enhanced responses from TC synapses and had no effect on 

IC synapses.  Muscarine increased the paired-pulse ratio at both TC and IC synapses, 

suggesting a presynaptic mechanism of action (Gil et al., 1997).  In addition, GABA 

released by an intracortical stimulus selectively suppresses transmitter release from IC 

synapses but not TC synapses by activating presynaptic GABAB receptors.  Taken 

together, these results indicate that cholinergic receptors selectively modulation of 

intrinsic versus afferent synapses.     

 Acetylcholine also modulates activity and GABA release from cortical 

GABAergic interneurons differentially depending on cell subtype (Kawaguchi, 1997).  

Despite the relatively low abundance of inhibitory neocortical interneurons, these cells 

have profuse axonal arborizations such that a single GABAergic interneuron can control 

hundreds of excitatory pyramidal cells (Kruglikov and Rudy, 2008).  Recordings from 
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these interneurons revealed that ACh induces inhibitory postsynaptic potentials in 

neocortical cells indirectly through cortical GABAergic cells; CCh also induces an 

increase in spontaneous IPSC in frontal cortical pyramidal cells, an effect that was 

dependent on action potential firing as it was suppressed by the fast sodium channel 

blocker tetrodotoxin (TTX).  While fast-spiking and late-spiking GABAergic cells were 

not depolarized by CCh, this muscarinic agonist did appear to depolarize somatostatin-

immunoreactive and vasoactive intestinal peptide (VIP)-positive GABAergic cells 

(Kawaguchi, 1997) indicating that muscarinic modulation of inhibitory interneurons is 

cell-type specific.  Paradoxically, muscarine and oxotremorine decrease the amplitude of 

electrically evoked inhibitory postsynaptic currents in layer II/II neurons in rat auditory 

cortex (Salgado et al., 2007) and in the mouse layer V somatosensory cortex (Kruglikov 

and Rudy, 2008) via a presynaptic mechanism.  Furthermore, mAChR activation 

potentiates GABAA currents in acutely dissociated PFC neurons, an effect that required 

pretreatment with insulin.  This effect was blocked by inhibitors of PKC, broad-spectrum 

protein tyrosine kinase, and Src inhibitors (Ma et al., 2003).  This array of muscarinic 

effects on GABAergic release and transmission likely results from the cortical expression 

of multiple mAChR subtypes both pre- and postsynaptically where they have both 

excitatory and inhibitory effects on different populations of inhibitory neurons. 

 Of particular relevance to muscarinic modulation of prefrontal cortical signaling 

in AD, a relationship between beta amyloid (Aβ), ACh, and GABAergic signaling has 

been established.  Exposure of cortical slices to fibril Aβ peptides activated PKC and 

CamKII in addition to inducing action potential firing and enhancing spontaneous EPSCs 

in mPFC layer V neurons; these effects were blocked by oxotremorine.  In addition, 
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mAChR activation caused a PKC-dependent increase in spontaneous IPSC amplitude and 

frequency (Gu et al., 2003).  Interestingly, this muscarinic modulation of sIPSCs was 

impaired in an APP mutant mouse model of AD (Zhong et al., 2003).  These authors also 

showed that persistent spiking of layer V neurons induced by CCh was independent of 

PKC activation and was intact in APP transgenic mice, suggesting that muscarinic 

modulation of inhibitory transmission is selectively impaired in these animals. 

 

mAChRs modulation of long-term changes in cortical synaptic strength 

 Cholinergic receptors have been shown to play a role in cortical synaptic 

plasticity in a number of cortical regions.  Similar to the cholinergic activity-dependent 

long-term depression of EPSPs observed in hippocampus (Scheiderer et al., 2006), 

carbachol induces LTD of synaptic responses when paired-pulse stimulation is delivered 

to layer IV and field EPSPs were recorded from layer III of rat visual cortex (Kirkwood 

et al., 1999).  A key difference is that in hippocampus, agonist treatment alone without 

any low-frequency stimulation induced LTD; a paired pulse stimulation protocol was 

required to reveal muscarinic LTD in visual cortex.  Therefore CCh, in conjunction with 

paired-pulse stimulation, induces an activity-dependent and homosynaptic form of LTD.  

CCh also facilitated LTD induction using a low-frequency stimulation protocol in visual 

cortex.  Muscarinic-induced LTD required NMDAR activity as it was blocked in the 

presence of AP5. 

 Subsequent studies have shown that mLTD in visual cortex has a postsynaptic 

locus of expression as indicated by the fact that there was no change in the paired pulse 

ratio during expression of the long-lasting depression induced by CCh (McCoy and 
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McMahon, 2007).  A change in PPR is usually indicative of a presynaptic locus of 

expression, whereas no change indicates a postsynaptic locus.  In contrast to results 

reported by Kirkwood et al. (1999), these authors found no effect of the NMDA 

antagonist APV in mLTD induction or maintenance.  They did however show that the L-

type Ca2+ blocker nifedipine inhibited mLTD whereas picrotoxin had no effect which 

indicates that mLTD induction is not due to an increase in inhibitory transmission but 

requires activity of L-type Ca+2 channels.  McCoy and McMahon also found that mLTD 

in visual cortex was independent of PKC but was partially dependent on PLC activation.  

A prominent signaling cascade downstream of M1 receptor activation is the Src tyrosine 

kinase which leads to the phosphorylation and activation of MEK which subsequently 

phosphorylates and activates ERK1/2 (Chan et al., 2005).  The Src inhibitor PP2 

completely blocked mLTD as did the ERK1/2 inhibitor U0126, indicating that activation 

of the MEK/ERK1/2 cascade is required for this form of plasticity to occur.  In the 

hippocampus, Src activation has also been implicated in muscarinic modulation of 

NMDA currents (Lu et al., 1999); since mLTD in visual cortex may or may not require 

NMDAR activity, it is unclear whether there is a link between these two phenomena.  

Lastly, the maintenance of mLTD in visual cortex which can last on the order of 2.5 

hours can be blocked by protein synthesis inhibitors (McCoy and McMahon, 2007).  

Translation of new proteins is not required for the induction of mLTD but for 

maintenance of the depression long-term.  Inhibiting transcription of mRNAs had no 

effect on either the induction, expression, or the long-term maintenance of mLTD. 

Reduction of cortical cholinergic innervations produces a shift from LTP to LTD 

that can be prevented by exogenous application of ACh (Kuczewski et al., 2005); this 
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suggests a regulatory action of ACh on the direction of synaptic plasticity (LTP vs. LTD).  

In a recent study by Origlia et al. (2006), an approach using mAChR knockout mice 

indicated that M2/M4 receptors were necessary for TBS-induced LTP whereas M1/M3 

receptors were necessary for LFS-LTP in visual cortex.  Interestingly, this group showed 

that in the absence of any muscarinic agonist, atropine was able to fully block TBS-

induced LTP and LFS-LTD in layer II/III of visual cortex after stimulation of layer IV.  

This data indicates that mAChR activity, unlike in hippocampus, is required for induction 

of LTP and LTD using standard electrical stimulus protocols.  Furthermore, theta-burst 

stimulation failed to induce LTP in M2/M4 double knock-outs, and LFS failed to induce 

LTD in but instead induced LTP in M1/M3 double knock-outs.  In single knockout 

studies, M2 and M4 knockouts exhibited normal LTP after TBS whereas the M3 knockout 

showed no LTD after LFS and the M1 knockout actually exhibited LTP after a low 

frequency stimulation protocol that induces LTD in wild-type animals.  Application of 

the PLC inhibitor U73122 had a similar effect on the response to LFS as when M1 

receptors were absent; in other words, blocking PLC caused LTP to be induced by the 

LFS protocol.  Similarly, treatment of slices with pertussis toxin blocked the ability of 

TBS to induce LTP supporting the idea that activation of M2/M4 receptors and the 

downstream activation of Gi/o proteins underlie LTP induction.  These studies indicate 

that the direction of synaptic plasticity in visual cortex depends on the combined activity 

of different mAChR subtypes (Origlia et al., 2006).  It could be postulated that if there 

was a loss or decrease in particular mAChR subtype expression or function, this would 

tip the balance of muscarinic modulation of LTP and LTD and induce a bias in one 

direction or another. 



38 
 

More directly relevant to the studies described in this thesis is the finding that 

mAChR activation also induces very robust LTD in layer V pyramidal cells of the mPFC 

(Huang and Hsu, 2009).  Whole cell patch clamp studies in voltage clamp mode revealed 

that CCh induces a dose-dependent acute depression of EPSCs evoked by stimulation of 

layer V apical dendrites, and that the acute depression is followed by a long-lasting 

depression of excitatory transmission.  Very high concentrations of CCh were used (10, 

50, and 100 µM), but the short- and long-term effects of 50 µM CCh were completely 

blocked by 1 µM atropine and 100 nM pirenzepine, indicating that the depression is 

indeed mediated by mAChRs.  CCh also transiently depressed monosynaptic IPSCs in 

the presence of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and APV, but IPSCs 

returned to baseline levels upon agonist washout indicating that mLTD is selective for 

excitatory synaptic transmission.  This depression of excitatory synaptic transmission still 

occurred in the presence of NMDA antagonist D-APV indicating that mLTD is NMDAR 

independent, a finding similar to what was observed in the visual cortex by McCoy and 

McMahon (2007).  In contrast to mLTD at CA1 and visual cortical synapses, however, 

this form of plasticity in layer V mPFC is activity independent; if electrical stimulation 

ceased during CCh addition, mLTD was still induced when stimulation resumed.  

Activation of ionotropic and metabotropic glutamate receptors was also not required for 

induction of mLTD.  GDPβS which disrupts G protein-coupled signaling blocked the 

long-term but not the acute depression induced by CCh, suggesting that the acute 

depression is likely presynaptic whereas the LTD requires postsynaptic G protein 

activation.  mLTD also required activation of PLC, PKC, and IP3 receptors.  Intriguingly, 

as opposed to mLTD in visual cortex (McCoy and McMahon, 2007) and hippocampus 
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(Scheiderer et al., 2008), long-term depression induced by CCh in layer V mPFC 

pyramidal cells was not blocked by Src kinase and MEK inhibitors PP2 and U0126, 

respectively (Huang and Hsu, 2009).  Another discrepancy was seen with the use of the 

L-type Ca2+ blocker nimodipine which inhibited mLTD in visual cortex but not in mPFC.  

mLTD in the mPFC appeared to have a presynaptic locus of expression that did not 

require postsynaptic clathrin-mediated endocytosis of AMPARs.  Data indicated that 

activation of postsynaptic mAChR signaling suppresses glutamatergic synaptic 

transmission through a presynaptic effect on neurotransmitter release; it was therefore 

hypothesized that a retrograde messenger was involved in the expression of mLTD.  The 

nitric oxide synthase (NOS) inhibitor L-NAME blocked mLTD induction; inhibitor 

studies also showed that mLTD was dependent on activation of presynaptic sGC/PKG 

signaling pathway initiated by postsynaptic nitric oxide (NO) production.  Finally, to 

ascertain whether endogenous ACh release, as opposed to exogenously applied CCh, can 

modulate LTD, a paired-pulse LFS (PP-LFS) protocol was used to induce a stable form 

of LTD measured using field EPSPs.  The magnitude of PP-LFS-LTD was significantly 

reduced by atropine and pirenzepine and enhanced by the cholinesterase inhibitor eserine.  

These results indicate that endogenous ACh does in fact play and critical role in LTD in 

these neurons.  Occlusion experiments also showed that PP-LFS-LTD and mLTD share a 

common mechanism (Huang and Hsu, 2009). 

Also of particular interest in relation to our findings in mPFC layer V neurons is 

the finding that mAChRs modulate excitatory afferents from the hippocampus which 

project to the mPFC (Wang and Yuan, 2009).  Parent et al. (2009) identified a bundle of 

afferent fibers that project to the mPFC from the ventral hippocampus in acute slice 
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preparations; in vivo track tracing and optic studies revealed that the afferent bundle did 

not include contributions from the mediodorsal nucleus of the thalamus, amygdala, or 

lateral hypothalamus/medial forebrain bundle (Parent et al., 2009).  Although there have 

been numerous studies examining the result of hippocampal monosynaptic projections to 

the mPFC in vivo (Laroche et al., 1990; Degenetais et al., 2003; Romcy-Pereira and 

Pavlides, 2004), the majority of electrophysiological studies examining 

neurotransmission in vitro in acute slices of the mPFC have employed placement of a 

stimulating electrode in different layers of the mPFC. This is possible due to the fact that 

pyramidal neurons in this brain region have elaborate dendrites that extend into both deep 

and superficial layers of the cortex.  The mPFC, like other cortical regions, not only 

contains local circuits but receives innervations of afferents that are not spatially 

resolved.  Therefore synaptic responses resulting from general laminar stimulation are a 

product of stimulating mixed populations of axonal fibers, and this type of stimulation 

often results in polysynaptic responses.  Studies by Parent et al. (2009) indicate that 

hippocampal afferent fibers can be identified and stimulated in modified coronal mouse 

brain slices containing the mPFC, and that stimulation of these fibers produces 

monosynaptic responses that undergo bidirectional plasticity in response to patterned 

stimulation.  This finding provides an exciting opportunity to further explore 

neurotransmission and informational flow from the hippocampus to the mPFC and the 

ways in which mAChRs may contribute to and modulate this flow. 

Employing this modified coronal slice preparation, Wang and Yuan (2009) 

recorded monosynaptic EPSPs in current clamp mode from mPFC layer II/III and layer V 

pyramidal cells during stimulation of afferents from the ventral hippocampus.  They 
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found that bath application of 20 µM CCh for 10 min depressed EPSP slope and that this 

depression lasted >45 min after agonist washout; this muscarinic effect was evident in 

recordings from both layer II/II and layer V.  In other words, muscarinic LTD occurs not 

only in hippocampus and visual cortex but also in mPFC neurons, and this mLTD can be 

induced by CCh application after stimulation of deep or superficial cortical layers or after 

stimulation of newly proposed hippocampal afferents to the mPFC.  It was also shown 

that mLTD at hippocampal-mPFC glutamatergic synapses was not affected by GABAA 

and GABAB antagonists (Wang and Yuan, 2009).  It is important to note that when layer 

I was stimulated and whole cell EPSPs recorded in layer II/III, CCh induced an acute 

depression but not a long-lasting one; Huang and Hsu (as described above, 2009) saw 

confounding results when stimulating and recording from layer V or when stimulating 

layer II/III and recording in layer V.  In both scenarios, mLTD could be induced.  One 

critical difference is that Wang and Yuan used slices from mice whereas studies from 

Huang and Hsu employed rat slices.  This may go to show, however, that the stimulation 

and recording location within the mPFC have quite an impact on plasticity phenomena 

and that a more consistent, direct examination of the hippocampal-mPFC pathway may 

yield more reliable data. 

Paired pulse facilitation studies indicated that mLTD upon stimulation of 

hippocampal afferents was induced via a presynaptic mechanism, and interruption of 

electrical stimulation during CCh application prevented mLTD which indicated activity 

dependence (Wang and Yuan, 2009).  Acute and long-term depression of EPSPs by CCh 

were both intact in the presence of NMDAR antagonist APV but not with the addition of 

the L-type Ca2+ blocker nifedipine indicating that mLTD at hippocampal-mPFC synapses 
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is NMDA independent but relies on Ca2+ influx through voltage gated L-type calcium 

channels.  Upon the observations that mAChR antagonists AF-DX 116 and pirenzepine 

induced differential modulation of mLTD and that the mechanism of depression seemed 

presynaptic, the authors concluded that presynaptic M2 receptors mediated mLTD.  These 

antagonists are not selective, however, and evidence presented by Huang and Hsu (2009) 

supporting a role for the retrograde signaling molecule nitric oxide seems much more 

conclusive (Huang and Hsu, 2009).  This scenario would explain the involvement of a 

post-synaptic Gq-coupled mAChR as well as presynaptic inhibition of glutamate release 

seen by both sets of researchers. 

 

mAChR modulation of cortical physiology: conclusions 

 Acetylcholine release in cortical areas of the brain results in a multi-faceted array 

of electrophysiological responses in both pyramidal neurons and GABAergic 

interneurons by activating both mAChRs and nAChRs.  ACh is a powerful modulator of 

numerous ion channels that contribute to the excitability and firing patterns of cortical 

neurons both at rest and in response to intracortical and afferent inputs from multiple 

brain regions including the thalamus and hippocampus.  The diversity of cholinergic 

receptor subtypes and layer-specific expression contributes to the complex cell type- and 

input-dependent consequences of mAChR activation.  In this thesis, we show that the 

selective activation of the M1 receptor induces an inward current and an increase in 

spontaneous EPSCs in layer V pyramidal neurons in rat and mouse mPFC, a cortical 

region implicated in attentional processes and cognition.  These effects are decreased in 

M1 knockout mice.  Potentiation of M1 also increases the firing rate of rat mPFC neurons 
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in vivo.  Finally, the selective M1 PAM BQCA reverses impairments in a form of 

learning that requires normal functioning of the PFC in a mouse model of AD.  These 

studies lend further support for a critical role of M1 in supporting normal function of the 

PFC. 

 

Pharmacology of muscarinic receptors 

  Our lack of understanding of the physiological roles of specific mAChRs is largely 

due to the historical lack of pharmacological agents that are highly selective for individual 

subtypes.  Previous efforts have failed to develop highly selective traditional (orthosteric) 

agonists of the individual muscarinic receptors.  This is likely due to the high conservation 

of the orthosteric (primary) ACh binding region across muscarinic receptor subtypes 

(Eglen, 2005), making it difficult to develop subtype selective ligands that bind to this site 

(Felder et al., 2000).  However, in recent years, we and others have been highly successful 

in developing allosteric modulators and agonists of GPCRs.  These compounds provide 

unprecedented selectivity for the intended receptor and can have behavioral effects in vivo 

that are very similar to those of direct acting agonists. 

 

Models of receptor activation 

  The binding of an agonist to the receptor can be theoretically modeled.  One type 

of model, the two-state model also referred to as the ternary model of binding posits that 

the receptor exists in two conformations; an inactive conformation and an active 

conformation (Gether, 2000).  In this model, the agonists are able to bind to receptors in the 

active conformation and thus shift the equilibrium toward that of activated receptors.  
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Antagonists bind to both the inactive and active conformations, resulting in no change in 

equilibrium.  In contrast, inverse agonists bind to the inactive form of the receptor resulting 

in a shift in equilibrium towards inactive receptors (Gether, 2000).  This is quantified by 

the cooperativity factor α, which is based on the affinity of the ligand for the active state of 

the receptor compared to the affinity for the inactive state (Christopoulos and Kenakin, 

2002; Hulme (a) et al., 2003).  This model is expanded further in the extended ternary 

complex model to incorporate binding of G proteins to the receptor (Hulme (a) et al., 

2003).  In this case, the receptor again exists in inactive and active conformations.  

However, the receptor in the active state (either bound or unbound by ligand) now binds to 

the G protein (Hulme (a) et al., 2003).  It should be noted that the G protein could also bind 

to the inactive form of the receptor (Christopoulos and Kenakin, 2002).  In this model it is 

also possible that multiple G proteins have the ability to bind to the active receptor 

conformation, which would allow for potential specificity in receptor signaling (Kenakin, 

2003). 

  Molecules bind to the receptor in a specific manner to activate (agonists), block 

(antagonists) or decrease (inverse agonists) receptor activation.  Agonists have both affinity 

and intrinsic efficacy for the receptor, whereas antagonists possess only affinity; an inverse 

agonist has negative efficacy (Christopoulos and El-Fakahany, 1999).  The action of an 

agonist is dependent on the system that it is being studied, thus it can only be defined as a 

partial or full agonist for the system in which the response is measured.  When a system has 

spare receptors this means that only a fraction of the receptors need to be activated to get a 

maximal response. Additionally, it is important to note that a receptor saturating 

concentration of a drug in one system may not be saturating in a different system. 
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  There are different classes of allosteric modulators; positive allosteric modulators 

or potentiators are thought to result in a conformation change at the orthosteric site that 

results in higher affinity for the orthosteric ligand.  Allosteric agonists result in increased G 

protein coupling irrespective of the action on the orthosteric site; and allosteric antagonists 

result in a decrease in receptor affinity and/or make the G protein less likely to couple to 

the receptor (Christopoulos and Kenakin, 2002; Wess, 2005). 

  Furthermore, ligands that bind in an allosteric manner can induce conformational 

changes in the receptor which can result in the modulation of receptor activity 

(Christopoulos, 2002).  In allosteric interactions the binding of one ligand affects the ability 

of another ligand to bind.  This occurs in a reciprocal manner between the two ligands 

(Birdsall et al., 1996).  Changes in receptor conformation can result in change in receptor 

affinity. While positive cooperativity results in an increase in affinity, negative 

cooperativity results in a decrease in affinity and neutral cooperativity results in no change 

in affinity (Christopoulos, 2002).  The action of a particular allosteric modulator may also 

be ligand specific.  Thus, it may be possible to get some degree of subtype selectivity based 

in cooperativity rather than affinity (Lanzafame et al., 2006). 

 

Allosteric ligands of mAChRs 

  Despite tremendous efforts by multiple industry and academic scientists, previous 

efforts have failed to produce highly selective traditional (orthosteric) agonists of the M1 

muscarinic receptor.  This is likely due to the fact that the ACh binding site is highly 

conserved, making it difficult to develop agonists at M1 that are devoid of activity at the 

other mAChR subtypes.  In addition to the difficulty in developing M1 agonists that are 
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highly selective, there are a number of problems associated with the use of direct acting 

agonists as drugs.  These include adverse effects associated with excessive activation of the 

receptor, greater receptor desensitization than may occur with more indirect approaches, 

and loss of activity dependence of receptor activation.  Another approach to achieving 

receptor activation that has been highly successful for ligand-gated ion channels is 

development of allosteric modulators of receptor function.  Allosteric ligands do not bind 

to the orthosteric neurotransmitter binding site and do not directly activate the receptor but 

bind to another site on the receptor and potentiate the effects of a orthosteric agonist.  A 

classical example of this approach is the use of benzodiazepines to potentiate GABAA 

receptor function (Mohler et al., 2002).  Because allosteric potentiators require the 

endogenous agonist for activity, they maintain activity-dependence of receptor activation.  

This is thought to reduce adverse effects that can be associated with direct-acting agonists 

and may also reduce the level of desensitization.  In recent years, we (Marino et al., 2003; 

O'Brien et al., 2003; Lindsley et al., 2004; O'Brien et al., 2004; Galici et al., 2005; Kinney 

et al., 2005; Brady et al., 2008; Shirey et al., 2008; Bridges et al., 2009; Marlo et al., 2009) 

and others (Christopoulos, 2002; Gasparini et al., 2002; Rees et al., 2002; Soudijn et al., 

2002; Waelbroeck, 2003) have been highly successful in developing allosteric potentiators 

of GPCRs.  In many cases, these compounds provide unprecedented selectivity for the 

intended receptor and can have behavioral effects in vivo that are very similar to those of 

direct acting agonists.  In the case of mAChRs, a major goal has been to develop allosteric 

ligands that selectively increase the activity of M1 or M4 receptors.  Allosteric activators 

can also include allosteric agonists, which act at a site removed from the orthosteric site to 

directly activate the receptor in the absence of ACh, in contrast to positive allosteric 
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modulators (PAMs), which do not activate the receptor directly but potentiate activation of 

the receptor by the orthosteric agonists. Lastly, it is possible for a single molecule to have 

both allosteric potentiator and allosteric agonist activity (May et al., 2007; Conn et al., 

2009a). 

  As stated earlier, previous attempts to develop orthosteric agonists that are highly 

selective for individual mAChR subtypes have failed because of the high degree of 

conservation of the orthosteric ACh-binding site.  Although there have been reports of 

subtype-selective M1 agonists in the patent and primary literature, subsequent studies 

across multiple systems have revealed that previous orthosteric agonists are not highly 

selective when evaluated across multiple systems.  A reason for this is that the claims of 

selectivity of these agents were based on functional efficacy rather than selective binding to 

individual mAChR subtypes.  Because of this, a weak partial agonist at multiple mAChR 

subtypes might seem to be selective in cell lines in which there is little or no receptor 

reserve but might have robust agonist activity at these same mAChR subtypes in native 

systems that have high receptor reserve.  Because high receptor reserve is common for 

mAChRs in native tissues, these agents often activate multiple mAChR subtypes in animal 

models and humans (Felder et al., 2000; Wess et al., 2007; Langmead et al., 2008b).  A 

recent example, AF267, was suggested to have selective agonist activity at M1 but displays 

a similar selectivity profile to previous orthosteric agonists and activates multiple mAChR 

subtypes (i.e. M1, M3 and M5) (Jones et al., 2008). As discussed further elsewhere in this 

introduction, the muscarinic agonist developed by Eli Lilly, xanomeline, suffers from this 

same lack of selectivity across multiple mAChR subtypes (Langmead et al., 2008b).  These 

studies do not rule out the possibility that highly selective agonists of individual mAChR 
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subtypes will eventually be developed but do raise a need for also considering other 

strategies for identifying agents that selectively activate individual subtypes of this receptor 

family. 

 

Development of early allosteric ligands of mAChRs 

  Work by several laboratories (Jakubik et al., 1997; Lazareno et al., 1998; Fawzi et 

al., 2001; Lazareno, 2004) identified a diverse array of chemotypes that possess PAM 

activity at the M1 and M4 mAChR subtypes.  The first mAChR PAM reported was brucine 

(Jakubik et al., 1997; Lazareno et al., 1998), which acts as an allosteric potentiator at M1.  

Brucine is a weak M1 PAM requiring high micromolar concentrations for activity and 

induces only a two-fold increase in ACh affinity at the M1 receptor.  However, brucine is 

relatively selective for M1 and this provided an important proof of concept that it would be 

possible to develop selective PAMs for this important mAChR subtype.  Equilibrium and 

non-equilibrium radioligand-binding studies with brucine, the mAChR antagonist 

radioligand [3H]-N-methyl-scopolamine ([3H]NMS) and unlabeled ACh were consistent 

with a ternary allosteric model in which both the orthosteric and allosteric ligands bind to 

the receptor simultaneously and modify the affinities of each other. 

  Discovery of brucine was followed by the discovery of thiochrome as an M4 PAM 

(Lazareno et al., 2004) and SCH-202676 as a PAM of multiple GPCR subtypes including 

M1 (Fawzi et al., 2001; Lanzafame and Christopoulos, 2004).  Thiochrome was especially 

interesting in that it provided M4 subtype selectivity.  This compound increases the affinity 

of ACh three- to fivefold at M4 and increased ACh potency in activating M4 in functional 

assays but has no effect on ACh affinity at M1, M2 or M5 (Lazareno et al., 2004).  
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Interestingly, thiochrome has no effect on the equilibrium binding of [3H]-NMS to the five 

human mAChRs (M1–M5) but inhibits the [3H]NMS dissociation from M1–M4.  This 

indicates that the selectivity of thiochrome for M4 is due to selective cooperativity rather 

than selective interactions with this single mAChR subtype. 

 Another major breakthrough in mAChR pharmacology came when Spalding et al. 

(2002) identified AC42 as the first in a novel class of compounds that bind to a secondary 

ectopic site on the M1 receptor (Spalding et al., 2002).  AC42 acts at a site that is clearly 

distinct from the orthosteric ACh site and involves transmembrane domains one and seven 

(but not three, five, and six, which contribute to the orthosteric site).  AC42 is an allosteric 

agonist rather than an allosteric potentiator in that it activates the receptor directly rather 

than potentiating the response to ACh.  This compound fully activates the M1 receptor and 

is highly selective for M1 relative to other mAChR subtypes.  As with allosteric 

potentiators, this selectivity is likely to be achieved by targeting a site distinct from the 

orthosteric ACh binding site.  Mutations that render the receptor insensitive to ACh 

agonists do not alter activity of AC42.  Also, activity of AC42 can be eliminated by 

mutations that do not alter activation of the receptor by ACh (Spalding et al., 2002).  

      Unfortunately, brucine, AC-42 and other early mAChR allosteric agonists and 

PAMs lacked the pharmacological profiles and physicochemical properties required to be 

useful tools to probe the effect of allosteric activation of mAChRs in more complex native 

systems.  For instance, these compounds have off-target activities at other receptors and 

have relatively low potencies at M1 or M4.  This, combined with poor solubility in 

physiological buffer systems, prevented their use for studies in tissue or animal model 

systems.  However, discovery of these early compounds provided an important advance in 
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establishing the potential of developing more selective activators of M1 and other mAChR 

subtypes by targeting allosteric sites. 

 

New ligands are highly selective for the M4 mAChR subtype 

  Another major breakthrough came with the discovery of a novel highly selective 

allosteric potentiator of M4, LY2033298, by Felder and coworkers at Eli Lilly (Chan et al., 

2008).  This compound does not activate M4 directly but induces a robust potentiation of 

the M4-mediated response to ACh.  This compound is highly selective at M4 and has no 

discernable activity at the other mAChR subtypes.  Site-directed mutagenesis studies 

revealed that residue D432 in the third extracellular loop (o3) of the receptor is involved in 

the potentiating effects of LY2033298.  When co-administered with a low dose (0.1 – 0.3 

mg/kg) of oxotremorine, LY2033298 attenuated conditioned avoidance responding (CAR) 

and reversed apomorphine-induced disruption of the prepulse inhibition (PPI) of the 

acoustic startle response.  Potentiation of M4 also augmented oxotremorine-stimulated 

dopamine (DA) release in dialysate from prefrontal cortex but not nucleus accumbens 

supporting a role for M4 in modulating mesocortical but not mesolimbic DA levels.  

Authors reported a diminished potency of this compound at the rat M4 (rM4) receptor 

compared to the human receptor (hM4), and this statement was based on the ability of 

LY2033298 to enhance binding of [3H]-oxotremorine-M to CHO hM4 cell membranes and 

rat striatal membranes in a dose-dependent manner.  The lack of effect of the PAM when 

administered alone on CAR, PPI, and DA release was therefore postulated to be due to this 

species difference (Chan et al., 2008).  Functional data using recombinant cell lines 

expressing rM4 or hM4 wild-type and mutant receptors indicated that the response to ACh 
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was similar between species, but no data examining potentiation by LY2033298 in this 

assay was shown.    

  Employing a cheminformatics approach based on LY2033298, coupled with 

medicinal chemistry, we identified a new series of ligands that interact with an allosteric 

site on the M4 receptor (no displacement of [3H]-NMS in binding assays) which not only 

potentiate the receptor, but also confer complete subtype selectivity versus M1, M2, M3 and 

M5 (Shirey et al., 2008).  The lead compound in this series, VU100010, possesses an EC50 

for potentiation of ~400 nM and shifts the functional ACh response curve 47-fold to the 

left.  As described further in this thesis in Chapter IIIa, binding studies indicate that 

VU100010 exerts its allosteric potentiation of M4 by increasing the affinity of the receptor 

for ACh and downstream coupling to G proteins.  Electrophysiological studies indicate that 

VU100010 modulates hippocampal synaptic transmission at excitatory but inhibitory CA1 

synapses in acute slices (Shirey et al., 2008). 

  Despite this notable advance in mAChR pharmacology, VU10010 suffered from 

poor physiochemical properties (logP~4.5) and in vivo studies proved infeasible because 

we were unable to formulate VU10010 into a homogeneous solution in any acceptable 

vehicle, regardless of salt form or particle size.  Several nonhomogenous suspensions were 

prepared and dosed i.p., but VU10010 was not found to be centrally active.  In order to 

evaluate the role of selective M4 activation in vivo, VU10010 required further chemical 

optimization.  The subsequent development and characterization of two novel analogs of 

VU10010 that are CNS penetrant following systemic administration are described in 

Chapter IIIb of this thesis (Brady et al., 2008).  VU0152099 and VU0152100 were 

identified as M4 PAMS with EC50 values for potentiation of the response to ACh of 
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approximately 400 nM.  These novel modulators maintained the high degree of mAChR 

subtype selectivity shown by VU10010 and also showed functional selectivity in a screen 

of 15 other GPCRs that are highly expressed in the CNS.  Similar to the binding profile of 

VU10010, VU0152099 and VU0152100 did not compete for orthosteric [3H]NMS binding 

but increased M4 receptor affinity for ACh.  The most exciting finding in this series of 

studies was that VU0152099 and VU0152100 exhibited improved physiochemical and 

pharmacokinetic properties as compared to VU10010; in contrast, to the high logP of 

VU10010 (4.5), both VU0152099 and VU0152100 possessed logPs of 3.65 and 3.6, 

respectively, a full order of magnitude less lipophilic than VU10010.  As a consequence, 

both VU0152099 and VU0152100 displayed improved physiochemical properties and 

afforded homogeneous dosing solutions in multiple vehicles acceptable for in vivo studies.  

Furthermore, both compounds exhibited substantial systemic absorption and brain 

penetration after systemic dosing with the PK profile of VU0152100 being superior as 

shown by a higher AUC (0-∞) value, a measurement of bioavailability.  Subsequent studies 

in an animal model used to predict antipsychotic efficacy showed that both novel M4 

PAMS substantially reduced amphetamine-induced hyperlocomotion (Brady et al., 2008).  

It will be of critical importance to further evaluate these compounds and their efficacy in 

other animal models of psychosis and cognition to yield a deeper understanding of the role 

of this receptor subtype in human diseases like schizophrenia and AD. 

 

Advances in the development of novel selective activators of M1 

  Over the past few years, several novel selective M1 agonists and allosteric 

potentiators have been identified.  These compounds are providing important new tools to 
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evaluate the potential utility of selective activators of M1 for treatment of AD and other 

CNS disorders.  For instance, TBPB (Jones et al., 2008) and 77-LH-28-1 (Langmead et al., 

2008b; Thomas et al., 2008) have been reported as agonists of M1.  Since the discovery of 

AC42, Acadia has developed a number of related compounds that have unprecedented 

selectivity for M1 relative to other mAChR subtypes, are orally bioavailable, and readily 

cross the blood brain barrier.  These compounds provide an exciting new approach for 

developing therapeutic agents to selectively activate M1.  In addition, they provide new 

tools that can be used to determine the physiological roles of M1 in the central nervous 

system and test the hypothesis that activation of M1 has effects that would predict 

antipsychotic efficacy in humans.  Both of these compounds are systemically active and are 

proving to be useful for in vivo studies of M1 activation. 

  TBPB selectively activates M1 in cell lines and has no agonist activity at any other 

mAChR subtypes.  Mutations that reduce the activity of orthosteric agonists have no effect 

on the response to TBPB, and Schild analysis of the blockade of TBPB effects with the 

orthosteric antagonist atropine reveals that TBPB does not interact with the orthosteric site 

in a competitive manner.  These data are consistent with the predictions of an allosteric 

ternary complex model for the actions of two molecules that interact with distinct sites 

(May et al., 2007; Conn et al., 2009a) and are consistent with the hypothesis that TBPB 

acts as an allosteric M1 agonist.  However, recent studies have shown that TBPB acts as an 

antagonist at M2-M5 receptors (Lebois et al., 2009) and also has off-target activity at D2 

receptors (Jones et al., 2008).  Despite the fact that TBPB does not significantly occupy D2 

sites at doses that produced efficacy in vivo, these findings do complicate data 

interpretation from studies using this compound. 
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  Interestingly, TBPB induces M1-dependent potentiation of NMDA currents in 

hippocampal pyramidal cells, an action that is thought to be important for the cognition-

enhancing effects of mAChR activation.  By contrast, TBPB does not reduce inhibitory or 

excitatory synaptic transmission in these neurons, effects thought to be mediated by M2 and 

M4 mAChRs, respectively (Jones et al., 2008).  Of particular relevance to AD pathology, 

early studies in cell lines indicate that TBPB induces an increase in processing of the 

amyloid precursor protein (APP) towards the non-amyloidogenic pathway and decreased 

Aβ production in vitro (Jones et al., 2008).  This is consistent with previous extensive 

studies indicating that mAChR activation has favorable effects on amyloid precursor 

protein processing in animal models and in humans (Nitsch et al., 2000; Fisher, 2008a; 

Caccamo et al., 2009) and provides further support to the hypothesis that selective 

activation of M1 might have disease-modifying effects in the treatment of AD in addition to 

its potential efficacy in acutely enhancing cognition in patients suffering from this disorder.  

TBPB is systemically active and crosses the blood–brain barrier, making this a useful tool 

for studies of cognition-enhancing effects of M1-selective agonists.  These encouraging 

results provide strong support for the utility of M1 allosteric agonists in activating this 

crucial mAChR subtype in the CNS without inducing the adverse effects associated with 

less selective mAChR agonists. 

  A second systemically active M1 agonist, 77-LH-28-1 was discovered as a 

structural analog of AC-42 (Langmead et al., 2008b; Thomas et al., 2008). 77-LH-28-1 is 

somewhat selective for M1 relative to other mAChR subtypes but does have weak agonist 

activity at M3 at higher concentrations.  Interestingly, in contrast to the effects of atropine 

on the response to TBPB, the orthosteric antagonist scopolamine induces parallel rightward 
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shifts in the 77-LH-28-1 concentration–response relationship (Langmead et al., 2008b). 

Consistent with this, recent radioligand-binding studies reveal that 77-LH-28-1 binds to the 

orthosteric site in a competitive manner (Thomas et al., 2008).  However, extensive 

mutagenesis studies combined with functional studies and analysis of the effects of 77-LH-

28-1 on binding of an orthosteric antagonist are consistent with an allosteric mode of 

agonist action of this compound.  These studies raise the possibility that 77-LH-28-1 might 

be what has been referred to as a ‘bi-topic’ ligand that binds to a site that overlaps with the 

orthosteric site but also includes an allosteric site that modulates orthosteric-site affinity 

(Lebon et al., 2009).  Electrophysiological studies indicated that 77-LH-28-1 increased 

activity of hippocampal CA1 pyramidal cells in vitro and in vivo and also induced 

synchronous network activity in the gamma and/or theta frequency bands in the 

hippocampus (Langmead et al., 2008b).  Interestingly, 77-LH-28-1 selectively activates the 

coupling of M1 to Gαq and Gαs signaling without activating the coupling of M1 to Gαi in 

Chinese hamster ovary cells (Thomas et al., 2008); this indicates that this compound might 

preferentially activate different responses to M1 activation.  Such differential effects of 

allosteric agonists on various responses to M1 activation could prove to be crucially 

important in determining the in vivo and ultimately therapeutic potential of allosteric M1 

agonists. 

  None of the novel M1 allosteric agonists described above are entirely selective for 

the M1 subtype and have properties that limit their use in determining the roles of M1 in 

native systems; an exciting development in the field of muscarinic pharmacology has been 

the recent discovery of M1 allosteric agonists VU0184670 and VU0357017 (Lebois et al., 

2009). These compounds are chemically optimized analogs of M1 allosteric agonists 
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identified in a primary high-throughput screen in the Vanderbilt Screening Center for 

GPCRs, Ion Channels and Transporters, initiated and supported by the NIH Molecular 

Libraries Roadmap.  A diversity-oriented synthesis/iterative screening approach was used 

to rapidly explore structure-activity relationships (SAR) of novel compounds with the goal 

being to improve potency while maintaining subtype selectivity.  Neither initial hits from 

the primary screen (VU0207811, VU0177548) nor the two chemically optimized analogs 

(VU0184670, VU0357017) displayed any agonist or antagonist activity at M2-M5, and the 

optimized leads also possessed an exceptionally clean ancillary pharmacology profile when 

assessed in a Panlab lead profiling screen of sixty-eight GPCRs, ion channels, and 

transporter targets (Lebois et al., 2009).  Thus, these newer generation M1 allosteric 

agonists represent a major breakthrough and are much more highly selective and have 

improved physiochemical properties compared to previous allosteric or orthosteric M1 

agonists.  Mutagenesis studies revealed that residues located in the extracellular loop three 

(o3) and the first helical turn of transmembrane seven (TM7) of the M1 receptor were 

critical for activity of VU0184670.  This same region of M4 was also implicated in the 

actions of M4 PAM LY2033298 (Chan et al., 2008).  Both M1 allosteric agonist lead 

compounds were found to possess a high degree of solubility in aqueous solutions and were 

centrally penetrant after systemic administration with VU0184670 possessing a superior 

pharmacokinetic profile. Similar to what was found with TBPB, VU0184670 also 

potentiates NMDAR currents evoked by NMDA application in hippocampal CA1 

pyramidal cells.  An exciting finding was that acute i.p. administration of VU0357017 

reversed cognitive deficits induced by the orthosteric mAChR antagonist scopolamine in a 
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contextual fear conditioning paradigm, a measure of hippocampal dependent learning 

(Lebois et al., 2009). 

  In addition to the discovery of novel M1-selective allosteric agonists, exciting 

progress has been made in the discovery of novel M1 PAMs that serve as allosteric 

potentiators of this receptor. For instance, multiple M1 allosteric potentiators have recently 

been identified in a high-throughput functional-screening campaign (Marlo et al., 2009).  

These molecules belong to several structurally distinct chemical scaffolds and include 

compounds that are selective for M1 relative to other mAChR subtypes.  None of the 

compounds identified had agonist activity but each behaved as a pure PAM and induced 

parallel leftward shifts in the ACh concentration–response relationships.  None of the novel 

M1 PAMs competes for binding at the orthosteric ACh-binding site.  The two most 

selective compounds, VU0090157 and VU0029767, were studied in detail and induced 

progressive shifts in ACh affinity at M1 that are consistent with their effects in a functional 

assay; this indicates that they mechanistically enhance M1 activity by increasing ACh 

affinity.  However, these compounds were strikingly different in their ability to potentiate 

responses at a mutant M1 receptor that exhibits decreased affinity for ACh and in their 

ability to affect responses of the allosteric M1 agonist TBPB.  Furthermore, VU0090157 

induced similar potentiation in M1 activation of PLC and PLD activity, whereas 

VU0029767 potentiated activation of PLC but not PLD signaling.  This provides another 

example of an ability of novel M1 PAMs to differentially regulate coupling of the receptor 

to different signaling pathways.  Based on this, it is possible that different M1 PAMs will 

have different actions on different responses to M1 activation in native systems. 
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  In a recent publication, researchers reported an encouraging advance in the 

discovery of benzyl quinolone carboxylic acid (BQCA) as a highly selective and 

efficacious allosteric potentiator for M1 (Ma et al., 2009).  As with VU0090157 and 

VU0029767, BQCA has no direct agonist activity but induces a robust leftward shift of the 

concentration–response relationship of ACh at activating M1.  BQCA has no activity at M2, 

M3, M4, or M5.  This compound markedly increased two markers of neuronal activation, c-

fos and arc, in multiple brain regions including cortex in wild-type but not M1 knockout 

mice as detected by in situ hybridization.  Similar to data from studies in our lab, BQCA 

did not compete for orthosteric [3H]NMS binding but increased affinity of M1 for ACh (see 

Chapter IV).  Residues Y179 and W400 which lie in the second (o2) and third (o3) 

extracellular loop of the receptor were shown to be required for the potentiation of M1 by 

BQCA as mutations of these residues completely illuminated potentiation.  Interestingly, 

BQCA is systemically active and fully reversed the cognitive impairment induced by 

scopolamine in a contextual fear-conditioning model of episodic-like memory (Ma et al., 

2009).  In addition, BQCA induces changes in electroencephalography oscillations in a 

manner that is consistent with a potential cognition-enhancing effect.  These findings 

provide exciting new data in support of the hypothesis that it will be possible to develop 

highly selective M1 PAMs that have potential for cognition-enhancing effects in animal 

models. 

  In agreement with findings by Ma et al. (2009), our lab has also characterized the 

M1 PAM, BQCA; our results are discussed in detail in Chapter IV of this thesis.  We also 

found BQCA to be highly selective for M1 relative to other mAChRs as well as to a panel 

of other GPCRs (Shirey et al., 2009).  Because studies in M1 knockout mice supported a 
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role for this receptor in supporting cognitive behaviors requiring normal functioning of the 

prefrontal cortex (PFC) (Anagnostaras et al, 2003), we sought to examine the effect of 

selective M1 activation in mPFC pyramidal cells.  Nonselective mAChR activation with 

CCh induced a robust inward current, and BQCA increased the inward current induced by 

a low concentration of CCh.  We also found that CCh dose-dependently increased 

excitatory drive to these cells as seen by an increase in spontaneous EPSCs, and that 

BQCA potentiates this effect as well.  Furthermore, systemic administration of BQCA 

drastically increases the firing rate of mPFC pyramidal cells in vivo in multichannel single 

unit recordings and is able to reverse impairments in PFC-dependent learning in a mouse 

model of AD (Shirey et al., 2009).  Together, studies by our group (Lebois et al., 2009; 

Shirey et al., 2009) and Ma et al. (2009) support a pivotal role for the M1 receptor in 

modulating both hippocamapal- and PFC-dependent learning and suggest that this mAChR 

subtype represents an exciting potential therapeutic target for the treatment of CNS 

disorders characterized by memory and cognitive impairment. 

  Lastly, it is important to note that, at present, the mechanisms underlying the 

selectivities of muscarinic allosteric agonists and PAMs are not fully established. The 

initial rationale driving this approach is that allosteric ligands bind to evolutionarily less-

conserved allosteric sites on the M1 or M4 receptor, as opposed to the highly conserved 

orthosteric (ACh) binding site and might, therefore, bind selectively to allosteric sites on 

individual mAChR subtypes.  This hypothesis has been clearly established for 

metabotropic glutamate receptors where selective binding of allosteric ligands to individual 

subtypes has been established as the basis for the selectivity of some ligands (Conn et al., 

2009a).  However, this does not rule out the possibility that these compounds bind to 
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allosteric sites on multiple mAChR subtypes with similar affinities but that selectivity is 

conferred by selective cooperativity with orthosteric-site agonists (May et al., 2007; Conn 

et al., 2009a), as has been suggested for the functionally selective PAM activity of 

thiochrome on M4 (Lazareno et al., 2004).  If this is the case, it is possible that selectivity 

of these compounds will vary depending on the system in which their effects are measured.  

Thus, it will be crucial to develop a clear understanding of the molecular basis for the 

observed selectivity in future studies.  Optimally, this should be addressed with 

radioligands that act at the allosteric but not the orthosteric sites.  However, studies 

involving detailed analysis of effects of allosteric compounds on binding of orthosteric-site 

ligands in addition to mutagenesis studies will also shed light on this important issue.  

Finally, it will be critical to understand whether selectivity of PAMs holds constant in the 

presence of multiple different classes of orthosteric agonists; examples of probe 

dependence of allosteric modulators are now surfacing (Kenakin, 2008).  Preliminary 

findings by our group and others with the M4 PAM LY2033298 and related analogs 

suggest that selectivity of these compounds across mAChR subtypes exists in the presence 

of ACh but not another orthosteric agonist, oxotremorine.  Considering that co-

administration of low doses of systemically active muscarinic agonists may be required to 

see efficacy of PAMs in different behavioral models, it will be critical to explore selectivity 

profiles of allosteric modulators not only in careful radioligand binding experiments but 

also in multiple functional assays in vitro with different classes of orthosteric agonists. 
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mAChR pharmacology and novel allosteric ligands: conclusions 

  Exciting new data from animal and clinical studies indicate that ligands at mAChR 

subtypes might provide a novel approach to the treatment of multiple CNS disorders. This 

includes compelling evidence that selective increases in the activity of M1 and M4 could 

provide a novel approach to the treatment of AD and schizophrenia and perhaps have 

efficacy in treating psychosis and cognitive impairment in other neurodegenerative 

diseases. Major advances have been made in establishing selective allosteric agonists and 

PAMs of both M1 and M4 as an alternative approach to orthosteric agonists for the 

development of selective receptor activators. These molecules have now been optimized 

for use in animal models, and early studies indicate that they have effects in animal models 

that predict efficacy in the treatment of these disorders. In addition to potential clinical 

utility of selective mAChR activators, abundant clinical and animal studies indicate that 

highly selective antagonists of specific mAChR subtypes might have utility in the treatment 

of other CNS disorders including dystonia, Parkinson's disease, epilepsy and others 

(Bymaster et al., 2002; Bymaster et al., 2003c; Bymaster et al., 2003b; Katzenschlager et 

al., 2003; Wess et al., 2007; Fisher, 2008b; Langmead et al., 2008a; Conn et al., 2009b).  In 

each case, subtype selectivity will be a key to achieving clinical efficacy in the absence of 

adverse effects.  For other GPCRs, it has been possible to discover allosteric modulators 

that serve as allosteric activators or inhibitors (i.e. NAMs) of receptor function (Gasparini 

et al., 1999; Mannaioni et al., 2001; Campbell et al., 2004).  Thus, it might be possible to 

discover selective allosteric antagonists of mAChR subtypes.  Indeed, a recent high-

throughput screening campaign that focused on M1 PAMs was also successful in 

identifying NAMs of mAChR subtypes that are still under development (Marlo et al., 
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2009).  These exciting advances are providing a fundamental advance in our approaches to 

regulating mAChRs as drug targets and may provide a novel approach to treatment of AD 

and schizophrenia in addition to other CNS-related disorders. 

 

Muscarinic receptors as therapeutic targets 

          A prominent characteristic of AD is a degeneration of a group of cholinergic 

projection neurons in the basal forebrain that project from the medial septum and nucleus 

basalis of Meynert to the hippocampus and other forebrain areas involved in cognition, 

learning and memory (Francis et al., 1999).  There is a subsequent decrease in the 

synaptic levels of ACh that seem to correlate with cognitive impairment, and in AD, there 

is can be up to a ninety percent loss of cholinergic neurons in the basal forebrain.  A large 

number of animal and human studies suggest that these cholinergic projections play a 

critical role in memory and attention mechanisms and that the clinical syndrome 

associated with AD results, at least in part, from failed neurotransmission at cholinergic 

synapses (Bartus et al., 1982; Whitehouse et al., 1982; Arendt et al., 1983; Damasio et al., 

1985; Reinikainen et al., 1990; Fibiger, 1991; Voytko et al., 1994; Auld et al., 2002).  

Evidence suggests that cholinergic transmission in the forebrain is mediated primarily by 

mAChRs and these receptors are likely to mediate the cholinergic involvement in 

learning and memory (Coyle et al., 1983; Brown and Zador, 1990; Fibiger et al., 1991).  

Despite a loss in presynaptic cholinergic markers such as the vesicular ACh transporter 

and the choline transporter as well as presynaptic M2 receptor expression, it appears that 

postsynaptic M1 and M3 receptors remain intact whereas presynaptic M4 levels have been 

shown to increase in AD (Flynn et al., 1995b; Flynn et al., 1995a). 
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These studies suggest that agents that enhance cholinergic transmission could be 

clinically useful for ameliorating the loss of cognitive function in patients with AD and 

other memory disorders.  Some of the earliest therapies developed for the treatment of AD 

employed the strategy of inhibiting the enzyme responsible for degrading ACh, 

acetylcholinesterase (AChE).  The cholinergic hypothesis of AD has been partially 

substantiated by clinical trials with AChE inhibitors such as tacrine, rivastigmine, 

donepezil, and galantamine, establishing dose-related improvements in measures of 

cognitive performance and quality of life (Davis et al., 1992; Farlow et al., 1992; Knapp et 

al., 1994; Rogers et al., 1998; Raskind et al., 1999; Wilkinson and Murray, 2001; Munoz-

Torrero, 2008).  Several factors have limited this therapeutic approach, the first being that 

AChE inhibitors increase levels of ACh not only in the CNS but in the periphery.  This 

leads to a host of adverse side effects mediated primarily by peripheral mAChRs.  The 

most prominent adverse effects of AChE inhibitors are mediated by activation of peripheral 

M2 and M3 mAChRs and include bradycardia, GI distress, excessive salivation, and 

sweating (Krejci and Tucek, 2002; Bymaster et al., 2003c; Bymaster et al., 2003a; Unno et 

al., 2005).   

An alternative therapeutic strategy involves the used and development of 

cholinergic agonists that activate mAChRs directly and would replace the deficiency in 

endogenous acetylcholine signaling.  This approach would circumvent one of the 

limitations of AChE inhibitors in that those drugs rely on intact ACh release; as discussed 

above, one of the prominent pathologies underlying AD and the cholinergic hypothesis is 

the degeneration of cholinergic inputs.  Direct acting agonists therefore would not rely on 

presynaptic cholinergic projections to be intact and functional. 
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The M1 receptor subtype has been viewed as the most likely candidate for 

mediating the beneficial effects of cholinergic therapies on cognition, attention 

mechanisms, and sensory processing.  Because of this, considerable effort has been focused 

on developing selective M1 agonists for treatment of AD (Fisher, 1997; Korczyn, 2000; 

Messer et al., 2000; Greenlee et al., 2001; Fisher et al., 2002; Messer, 2002a).  The 

development and use of compounds such as AF102B and AF267B, talsaclidine and 

xanomeline (Pittel et al., 1996; Bodick et al., 1997b; Nitsch et al., 2000; Fisher et al., 2002; 

Messer, 2002a; Shekhar et al., 2008) have provided important proof of concept evidence 

that this is a viable approach.  Treatment with these compounds caused a modest 

improvement in cognitive impairments measured by the AD assessment scale; however, 

these efforts were limited because cholinergic side effects similar to those seen with AChE 

inhibitors were seen.  These findings indicate that despite claims of M1 selectivity in vitro, 

these compounds are not selective for M1 in vivo.  Differences in receptor expression levels 

in recombinant systems and the use of varying functional readouts of receptor activation 

does lead to discrepancies in selectivity profiles of many compounds when characterized 

by different research groups.  Our lab and others have found that AF267B (Fisher et al., 

2002; Caccamo et al., 2009), also activates M3 and M5 receptor subtypes (Jones et al., 

2008; Langmead et al., 2008b).  Furthermore, we and others have found that xanomeline 

not only activates M1 and M4 but M2, M3, and M5 in recombinant cell lines (Langmead et 

al., 2008b).    
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Xanomeline 

  Of the mAChR agonists to date, xanomeline has progressed furthest in clinical 

development.  In an early large multicenter trial, it had a modest effect on cognitive 

function in AD patients that barely reached significance (Bodick et al., 1997b; Bodick et 

al., 1997a).  Although the cognition-enhancing effects of this compound in Phase III trials 

were somewhat disappointing, the most exciting and surprising finding in the xanomeline 

trial was that this agonist had robust therapeutic effects on psychotic symptoms and 

behavioral disturbances such as vocal outbursts, suspiciousness, delusions, agitation, and 

hallucinations that are associated with AD (Bodick et al., 1997a).  These data indicate that 

activation of mAChRs could be a therapeutic strategy for treatment of psychosis and 

behavioral disturbances in patients suffering from a broad range of disorders including 

schizophrenia, AD and other neurodegenerative disorders (Felder et al., 2000; Bymaster et 

al., 2002; Mirza et al., 2003; Langmead et al., 2008a; Conn et al., 2009b).  Indeed, initial 

clinical findings from a small-scale double-blind, placebo-controlled study testing the 

efficacy of xanomeline in treating the various positive, negative, and cognitive symptoms 

in twenty subjects with schizophrenia, significant improvements in positive and negative 

symptoms occurred with treatment compared to placebo.  Subjects in the xanomeline group 

also showed improvements in cognitive measures of verbal learning and short-term 

memory function.  Together, these studies provide strong clinical validation of mAChR 

agonists as novel therapeutic agents used for the treatment of psychosis and behavioral 

disturbances in patients suffering from a broad range of disorders including schizophrenia, 

AD and other neurodegenerative disorders.  Unfortunately, because xanomeline lacks true 

M1/M4 specificity and has significant affinity and efficacy at M2, M3, and M5 (Jakubik et 
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al., 2006; Langmead et al., 2008b; Noetzel et al., 2009) and is also poorly brain penetrable 

so that high plasma concentrations are required to achieve sufficient brain levels for M1 

activation, it suffers from the same peripheral side effects as those of AChE inhibitors.  

This dose-limiting toxicity prevented determination of whether higher doses would have 

induced a more robust effect on cognition (Bodick et al., 1997b; Bodick et al., 1997a; 

Shekhar et al., 2008). 

 

mAChR subtypes involved in the therapeutic efficacy of xanomeline 

  Although the exact mAChR subtype responsible for the effects of xanomeline in 

schizophrenia patients agents is not certain, xanomeline is an M1/M4-preferring agonist and 

multiple animal studies indicate that one or both of these mAChR subtypes is likely to be 

responsible for the clinical efficacy of this compound (Felder et al., 2001; Gerber et al., 

2001; Miyakawa et al., 2001; Bymaster et al., 2002; Marino and Conn, 2002; Anagnostaras 

et al., 2003; Tzavara et al., 2004; Langmead et al., 2008a). Thus, it will be important to 

rigorously evaluate the potential roles of both of these receptor subtypes in animal models 

that predict efficacy in the different symptom clusters associated with schizophrenia (i.e. 

positive, negative and cognitive symptoms). Interestingly, the M1-selective allosteric 

agonist TBPB has activity in multiple animal models used to predict the efficacy in 

treatment of positive symptoms of schizophrenia.  These include the reversal of 

amphetamine-induced hyperlocomotor activity and disruption of prepulse inhibition, in 

addition to changes in c-fos expression that are almost identical to changes induced by 

atypical antipsychotic agents (Jones et al., 2008).  Furthermore, the M1-selective allosteric 

agonist 77-LH-28-1 increases hippocampal pyramidal cell firing and initiates gamma 
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frequency network oscillations in slices and increased pyramidal cell firing in rat 

hippocampus in vivo (Langmead et al., 2008b).  Our studies show that the selective M1 

PAM BQCA increases spontaneous EPSCs and firing rate of mPFC neurons in slices and 

in vivo and acute administration of this compound also reverses impairments in reversal 

learning in an animal model of AD (Shirey et al., 2009).  BQCA also increases c-fos 

expression and ERK phosphorylation in rodent cortex and hippocampus in addition to 

dose-dependently reversing scopolamine-induced memory deficits in contextual fear 

conditioning, a measure of hippocampal-dependent memory (Ma et al., 2009).  Despite 

data from M1 knockout mice showing a lack of major impairments in hippocampal-

dependent learning in behavioral paradigms (Anagnostaras et al., 2003) current data 

employing selective pharmacological activation of M1 strongly support the hypothesis that 

is a promising therapeutic target for psychosis and cognitive impairment. 

 

The dopamine hypothesis of schizophrenia 

  Another neurotransmitter system involved in the etiology of schizophrenia is the 

dopminergic system.  Clinically relevant antipsychotic drugs block dopamine D2 receptors, 

and drugs such as amphetamine and cocaine that cause increases in DA levels are 

psychotomimetics that can mimic positive symptoms of schizophrenia in healthy 

individuals (Bymaster and Felder, 2002; Raedler et al., 2007).  The dopamine hypothesis of 

schizophrenia (Kapur et al., 2005) also suggests that hyperactivity of the mesolimbic 

dopaminergic pathway underlies the positive symptoms and that hypoactivity of the 

mesocortical dopaminergic pathways causes the negative and cognitive symptoms of the 

disease.  Typical and atypical antipsychotics do not possess efficacy in treatment of many 
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of the negative and cognitive symptoms, however, implying that dopaminergic dysfunction 

cannot fully account for the array of symptoms seen in this patient population (Gold, 2004).  

In addition, these therapies also are often poorly tolerated because of numerous side effects 

including sedation, weight gain, sexual dysfunction, diabetes, and Parkinson's disease-like 

symptoms related to DAR blockade. Furthermore, greater than 25% of schizophrenia 

patients do not respond to these dopamine-based therapies (Hirsch and Barnes, 1995). 

Thus, although it is evident that dopamine does play a prominent role in the pathogenesis 

and treatment of schizophrenia, the dopamine hyperfunction hypothesis of schizophrenia 

fails to account for all aspects of this disorder, and it is increasingly evident that other 

neurotransmitter systems are probably involved.  Interestingly, M1 and M4 knockout mice 

both display significantly elevated dopamine neurotransmission in basal ganglia structures, 

increased basal locomotor activity, and increased responsiveness to the stimulatory effects 

of amphetamine (Gerber et al., 2001; Tzavara et al., 2004).  M4 knockout animals also 

showed elevated basal levels and stimulated dopamine efflux and metabolites in the 

nucleus accumbens compared to wild-types; basal levels of ACh in the midbrain were also 

significantly increased (Tzavara et al., 2004).  These data indicate that M4 controls ACh 

release from cholinergic projections to the midbrain and also controls mAChR-regulated 

dopamine release.  It has been speculated that selective activation of M4 may alleviate mid-

brain dopamine hyperactivity that is attributed to the psychosis observed in schizophrenia 

(Langmead et al., 2008a).  Growing data supporting this hypothesis includes the finding 

that the selective M4 PAM LY2033298 potentiates oxotremorine-stimulated dopamine 

release in the PFC but not in nucleus accumbens; when the compound was administered 

subcutaneously, it attenuated conditioned avoidance responding and apomorphine-induced 
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disruption of prepulse inhibition of the acoustic startle reflex when co-administered with a 

subthreshold dose of oxotremorine, two preclinical animal models predictive of 

antipsychotic efficacy (Chan et al., 2008).  Additionally, as described in this thesis, we 

found that the related M4 PAMs VU0152100 and VU0152099 reversed amphetamine-

induced hyperlocomotion without affecting baseline levels of motor performance as 

assessed by the rotorod test (Brady et al., 2008). 

 

Therapeutic promise of mAChR ligands: conclusions 

  In summary, abundant and burgeoning preclinical and clinical data bolster the 

theory that selective activation of either or both M1 and M4 receptors represents an exciting 

and promising approach to the treatment of numerous CNS disorders including AD and 

schizophrenia, bringing together the potential for both cognitive improvements via M1 and 

dopaminergic imbalances via M4.  New tools described in this thesis including BQCA and 

VU0152100 provide an exciting opportunity to activate M1 and M4 receptors in vivo with 

exquisite selectivity.  It remains to be seen if selective activation of either receptor alone 

will be enough to replicate and improve upon the antipsychotic efficacy and cognitive-

improving effects of xanomeline without inducing undesirable, dose-limiting cholinergic 

side effects.      
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CHAPTER II 

 

METHODS 

 

Compounds and Materials 

 Commercially available test compounds from the M4 PAM analog structure 

similarity database mining search were purchased from ChemBridge Research 

Laboratories (San Diego, CA).  Probenecid, dimethyl sulfoxide (DMSO), acetylcholine 

chloride (ACh), adenosine-5´triphosphate (ATP), guanosine 5´-[γ-thio]triphosphate 

(GTPγS), guanosine 5'-diphosphate (GDP) and atropine were purchased from Sigma-

Aldrich (St. Louis, MO), and glutamate was purchased from Tocris Cookson (Ellisville, 

MO).  All tissue culture reagents as well as fluo-4 AM were purchased from Invitrogen 

(Carlsbad, CA).  BioCoat poly-D-lysine 384-well culture plates were obtained from 

Becton Dickinson Biosciences Discovery Labware (Bedford, MA); Greiner optical 

bottom TC-treated 384-well culture plates and Axygen polypropylene 96-well deep well 

plates were obtained from VWR Scientific Products (Sewanee, GA).  l-[N-methyl-

3H]scopolamine was purchased from GE Healthcare (Little Chalfont, Buckinghamshire, 

UK); [35S]GTPγS, Unifilter-96 GF/B plates and MicroScint-20 were obtained from 

PerkinElmer Life and Analytical Sciences (Boston, MA). 

 

Chemical Database Mining for M4 PAM LY2033298 Analogs: Chapter IIIa 

        Substructures searches were performed using ChemFinder (CambridgeSoft Corp., 

Cambridge, MA) to search the commercially available database of ChemBridge Corp. 
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(San Diego, CA).  The thienopyridine-2-carboxamide core of LY2033298 (Chan et al., 

2008) was used to search the library yielding approximately 500 substructure hits.  The 

set of compounds was then limited by properties such as molecular weight, polar surface 

area, rotatable bonds and number of hydrogen bond donor/acceptors to provide a library 

of 232 compounds. 

 

General procedure for the synthesis of compounds VU10001-VU10010:         
Chapter IIIa 
 
2-bromo-N-(4-chlorobenzyl)acetamide:  To a solution of 4-chlorobenzylamine (12.0 g, 

85.1 mmol) in CH2Cl2 (300 mL) at 0 ºC was added Et3N (14.32 g, 141.8 mmol, 1.7 

equiv) and bromoacetyl bromide (21.49 g, 106.4 mmol, 1.25 equiv). The reaction was 

stirred for 2 h. The reaction was quenched with the addition of water (400 mL) and 

mixture was extracted with CH2Cl2 (3 x 300 mL). The combined organic layers were 

dried (MgSO4), filtered, and concentrated under reduced pressure to afford the 

bromoamide. (22.3g, quant.) as a light brown solid. 1H-NMR (400 MHz, CDCl3) δ 7.35 

(d, J = 8.5 Hz, 2H), 7.25 (d, J = 8.5 Hz, 2H), 6.80 (s, 1H), 4.47 (d, J = 6 Hz, 2H), 3.96 (s, 

2H). MS (m/z): calcd for (C9H9BrClNO+H)+, 262; found, 262.   

3-amino-N-(4-chlorobenzyl)-4,6-dimethylthieno[2,3-b]pyridine-2-carboxamide     

(M4 PAM VU10010) synthesis:  To a solution of mercaptopyridine (5.0 g, 30.48 mmol) 

in DMF (100 mL) was added bromo amide (11.95 g, 45.73 mmol, 1.5 equiv) followed by 

KOH (6.82 g, 121.9 mmol, 5 equiv) and water (4 mL). The reaction was stirred at room 

temperature for 15 h and then heated to 50 ºC for 24 h. The reaction mixture was diluted 

with water (500 mL) and extracted with EtOAc (2 x 400 mL). The combined organic 

layers were washed with brine (300 mL), dried (MgSO4), filtered, and concentrated 
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under reduced pressure to afford the free amine title compound (6.75 g, 64%) as a light 

brown solid.  The free amine was suspended in acetonitrile (30 mL) and water (5 mL) 

and TFA was added (2 mL). The mixture was filtered and the filtrate was concentrated to 

give the title compound as the mono TFA salt. 

VU10001: 1H-NMR (400 MHz, DMSO-d6): δ 7.68 (t, J = 6.0 Hz, 1H), 7.01 (s, 1H), 3.01 

(t, J = 6 Hz, 2H), 2.70 (s, 3H), 2.50 (s, 3H), 1.89-1.77 (m, 1H), 0.85 (d, J = 6 Hz, 6H). 

13C-NMR (100 MHz, DMSO-d6): δ 165.6, 158.7, 158.6, 147.8, 145.0, 122.2, 98.2, 46.7, 

28.5, 24.1, 20.6, 20.1. HRMS (m/z): calcd for (C14H19ClN3OS+H)+, 278.1327; found, 

278.1324. 

VU10002: 1H-NMR (400 MHz, DMSO-d6): δ 7.66 (t, J = 6.0 Hz, 1H), 7.00 (s, 1H), 3.19-

3.10 (m, 2H), 2.70 (s, 3H), 2.50 (s, 3H), 1.56-1.41 (m, 2H), 0.85 (t, J = 7 Hz, 3H). 13C-

NMR (100 MHz, DMSO-d6): δ 165.2, 158.5, 158.3, 147.4, 144.4, 123.2, 121.7, 97.7, 

40.6, 23.7, 22.6, 19.7, 11.4. HRMS (m/z): calcd for (C13H17N3OS+H)+, 264.1171; found, 

264.1173. 

VU10003: 1H-NMR (400 MHz, DMSO-d6): δ 7.02 (s, 1H), 2.71 (s, 3H), 2.50 (s, 3H), 

1.37 (s, 9H). 13C-NMR (100 MHz, DMSO-d6): δ 165.8, 158.5, 158.3, 147.6, 145.1, 

123.8, 122.2, 99.1, 51.6, 29.1, 24.0, 20.2. HRMS (m/z): calcd for (C14H19N3OS+H)+, 

278.1327; found, 278.1330. 

VU10004: 1H-NMR (400 MHz, DMSO-d6): δ 7.72-7.66 (m, 1H), 7.99 (s, 1H), 2.80-2.72 

(m, 1H), 2.69 (s, 3H), 2.47 (s, 3H), 0.67-0.52 (m, 4H). 13C-NMR (100 MHz, DMSO-d6): 

δ 167.0, 158.9, 158.7, 148.0, 144.9, 123.5, 122.1, 97.7, 24.1, 23.3, 20.1, 6.2. HRMS 

(m/z): calcd for (C13H15N3OS+H)+, 262.1014; found, 262.1015. 
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VU10005: 1H-NMR (400 MHz, DMSO-d6): δ 8.28 (t, J = 6.0 Hz, 1H), 7.37-7.30 (m, 

2H), 7.17-7.09 (m, 2H), 7.03 (s, 1H), 4.37 (d, J = 6 Hz, 2H), 2.70 (s, 3H), 2.50 (s, 3H). 

13C-NMR (100 MHz, DMSO-d6): δ 165.6, 158.7, 158.5, 148.3, 145.1, 136.6, 129.6, 

123.6, 122.2, 115.4, 115.2, 97.6, 42.0, 24.1, 20.1. HRMS (m/z): calcd for 

(C17H16FN3OS+H)+, 330.1076; found, 330.1078. 

VU10006: 1H-NMR (400 MHz, DMSO-d6): δ 8.01 (d, J = 6.0 Hz, 1H), 7.42-7.16 (m, 

5H), 7.01 (s, 1H), 5.19-5.10 (m, 1H), 2.70 (s, 3H), 2.50 (s, 3H), 1.46 (d, J = 8 Hz, 3H). 

13C-NMR (100 MHz, DMSO-d6): δ 165.0, 158.9, 158.7, 148.3, 145.4, 145.0, 128.5, 

126.9, 126.5, 123.6, 122.2, 97.8, 48.6, 24.1, 22.2, 20.2. HRMS (m/z): calcd for 

(C18H19N3OS+H)+, 326.1327, found, 326.1330. 

VU10007: 1H-NMR (400 MHz, DMSO-d6): δ 8.01 (d, J = 6.0 Hz, 1H), 7.42-7.16 (m, 

5H), 7.01 (s, 1H), 5.19-5.10 (m, 1H), 2.70 (s, 3H), 2.50 (s, 3H), 1.46 (d, J = 8 Hz, 3H). 

13C-NMR (100 MHz, DMSO-d6): δ 165.0, 158.9, 158.7, 148.3, 145.4, 145.0, 128.5, 

126.9, 126.5, 123.6, 122.2, 97.8, 48.6, 24.1, 22.2, 20.2. HRMS (m/z): calcd for 

(C18H19N3OS+H)+, 326.1327; found, 326.1329. 

VU10008: 1H-NMR (400 MHz, DMSO-d6): δ 8.36 (t, J = 6.0 Hz, 1H), 7.68 (d, J = 8 Hz, 

2H), 7.51, (d, J = 8 Hz, 2H), 7.03 (s, 1H), 4.46 (d, J = 6 Hz, 2H), 2.70 (s, 3H), 2.50 (s, 

3H). 13C-NMR (100 MHz, DMSO-d6): δ 165.8, 158.9, 158.8, 148.4, 145.3, 145.2, 128.2, 

125.6, 125.5, 123.6, 122.3, 97.3, 42.4, 24.1, 20.1. HRMS (m/z): calcd for 

(C18H16F3N3OS+H)+, 380.1044; found, 380.1051. 

VU10009: 1H-NMR (400 MHz, DMSO-d6): δ 7.73-7.64 (t, J = 6.0 Hz, 1H), 7.01 (s, 1H), 

3.28-3.16 (m, 2H), 2.70 (s, 3H), 2.50 (s, 3H), 1.08 (t, J = 8 Hz, 3H). 13C-NMR (100 MHz, 
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DMSO-d6): δ 165.4, 158.6, 158.5, 147.8, 145.0, 123.7, 122.2, 98.2, 34.1, 24.1, 20.1, 

15.4. HRMS (m/z): calcd for (C12H15N3OS+H)+, 250.1014; found, 250.1019. 

VU10010: 1H-NMR (300 MHz, DMSO-d6): δ 8.30 (t, J = 6.0 Hz, 1H), 7.39 (d, J = 8.5 

Hz, 2H), 7.33 (d, J = 8.5 Hz, 2H), 7.05 (s, 1H), 4.38 (d, J = 6 Hz, 2H), 2.72 (s, 3H), 2.50 

(s, 3H). 13C-NMR (100 MHz, DMSO-d6): δ 166.1, 159.3, 159.2, 148.8, 145.6, 140.0, 

132.0, 130.0, 129.0, 124.1, 122.7, 98.0, 42.6, 24.5, 20.6. MS (m/z): calcd for 

(C17H16ClN3OS+H)+, 346; found, 346. Analysis (calcd, found for C19H17ClF3N3O3S): C 

(49.62, 49.96), H (3.73, 3.72), N (9.14, 8.94). 

 

General Medicinal Chemistry Methods: Chapter IIIb 

 All NMR spectra were recorded on a 400-MHz Bruker NMR. 1H chemical shifts 

were reported in values in parts per million down-field from tetramethylsilane as the 

internal standard in DMSO. Data are reported as follows: chemical shift, multiplicity (s = 

singlet, d = doublet, t = triplet, q = quartet, br = broad, and m = multiplet), integration, 

and coupling constant (in Hertz). 13C chemical shifts are reported in values in parts per 

million with the DMSO carbon peak set to 39.5 ppm. Low resolution mass spectra were 

obtained on an Agilent 1200 LC/MS with electrospray ionization (Agilent Technologies, 

Santa Clara, CA). High-resolution mass spectra were recorded on a Quadrupole Time of 

Flight (Q-ToF)-API-US plus Acquity system (Waters, Milford, MA). Analytical thin-

layer chromatography was performed on 250-µm Silica Gel 60 F254
 plates. Analytical 

HPLC was performed on an Agilent 1200 analytical LC/MS with UV detection at 214 

and 254 nm along with ELSD detection. Preparative purification was performed on a 

custom Agilent 1200 preparative LC/MS with collection triggered by mass detection. 



75 
 

Solvents for extraction, washing, and chromatography were of HPLC grade. All reagents 

were purchased from Aldrich Chemical Co. (Milwaukee, WI), Maybridge Chemicals 

(Trevillet, UK), ChemBridge Corporation (San Diego, CA), and SPECS Technologies 

Corporation (Sarasota, FL) and were used without purification. All polymer-supported 

reagents were purchased from Biotage AB (Uppsala, Sweden). 

General Procedure for M4 PAM Library Synthesis of Analogs 7:  Each of the 31 glass 

vials containing 3 ml of CH2Cl2 was loaded with N,N-diisopropylethylamine (0.3 ml, 1.70 

mmol), AM-807/25050004 (50 mg, 0.225 mmol; SPECS Technologies Corporation), 1-

hydroxybenzotriazole hydrate (30.4 mg, 0.225 mmol, 1.0 equivalents), polystyrene-bound 

N-cyclohexylcarbodiimide (317 mg, 0.450 mmol, 1.42 mmol/g, 2.0 equivalents), and one 

of 31 amines (0.225 mmol, 1.0 equivalents). The reactions were stirred for 48 h at room 

temperature. Macroporous triethylammonium methylpolystyrene carbonate (145 mg, 

0.225 mmol, 3.11 mmol/g, 2.0 equivalents) was added, and the reactions were stirred for 

an additional 3 h at room temperature. Then, the reactions were filtered and concentrated 

on a heat-air block to afford 84 to 99% pure products. Those <99% pure were purified by 

mass-directed HPLC.  

M4 PAM VU0152099 Synthesis:  The following components were added to a stirred 

solution of 3-amino-4,6-dimethylthioenol[2,3-b]-pyridine-2-carboxylic acid (3.0 g, 13.51 

mmol; ChemBridge Corporation) in CH2Cl2 (90 ml) at 25°C under room atmosphere: 

N,N-diisopropylethylamine (10 ml, 56.66 mmol); 1-hydroxybenzotriazole hydrate (1.83 

g, 13.51 mmol, 1.0 equivalents); 4-methoxybenzylamine (2.04 g, 14.86 mmol, 1.1 

equivalents); and N-(3-dimethylaminopropyl)-N'-ethyl-carbodiimide hydrochloride (5.18 

g, 27.02 mmol, 2.0 equivalents). After 48 h, macroporous triethylammonium 
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methylpolystyrene carbonate (4.4 g, 13.51 mmol, 3.077 mmol/g, 1.0 equivalents) was 

added to the solution, which was then stirred for 3 h at 25°C under room atmosphere. The 

solution was vacuum-filtered next, and the filtrate was separated with citric acid (1.0 M in 

water) and CH2Cl2. The organics were dried over MgSO4 and concentrated in vacuo to 

produce a dark yellow solid. The solid was purified by column chromatography (silica 

gel, fixed 1:2 EtOAc/hexanes) to afford 2.5 g (7.33 mmol, 54%) of the title compound as 

a bright yellow solid. Analytical LC/MS (J-Sphere80-S4, 3.0 x 50 mm, 4.0-min gradient, 

5%[CH3CN]: 95%[0.1% trifluoroacetic acid/H2O] to 100%[CH3CN]): 2.773 min, >99% 

(214 nm and ELSD), M + 1 peak m/e 342.12; 1H NMR (400 MHz, DMSO-d6) 7.27 (d, J 

= 8.8 Hz, 2H), 6.89 (s, 1H), 6.86 (d, J = 8.8 Hz, 2H), 6.34 (br s, 2H), 5.80 (s, 1H), 4.53 

(d, J = 6.0 Hz, 2H), 3.79 (s, 3H), 2.73 (s, 3H), 2.57 (s, 3H); 13C NMR (100 MHz, DMSO-

d6) 165.9, 159.3, 159.2, 147.7, 143.9, 130.7, 129.3, 123.7, 122.4, 114.4, 98.5, 55.5, 43.3, 

24.5, 20.4; high-resolution mass spectroscopy (Q-ToF): m/z calc for C18H19N3O2S[M + 

H]: 342.1198; found, 342.1276.  

M4 PAM VU0152100 Synthesis:  The following components were added to a stirred 

solution of 3-amino-4,6-dimethylthioenol[2,3-b]-pyridine-2-carboxylic acid (2.50 g, 

11.26 mmol; ChemBridge Corporation) in CH2Cl2 (90 ml) at 25°C under room 

atmosphere: N,N-diisopropylethylamine (10 ml, 56.66 mmol); 1-hydroxybenzotriazole 

hydrate (1.52 g, 11.26 mmol, 1.0 equivalents); piperonylamine (1.87 g, 12.38 mmol, 1.1 

equivalents); and N-(3-dimethylaminopropyl)-N'-ethyl-carbodiimide hydrochloride (4.32 

g, 22.52 mmol, 2 equivalents). After 48 h, macroporous triethylammonium 

methylpolystyrene carbonate (3.66 g, 11.26 mmol, 3.077 mmol/g, 1.0 equivalents) was 

added to the solution, which was then stirred for 3 h at 25°C under room atmosphere. The 
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solution was vacuum-filtered next, and the filtrate was separated with citric acid (1.0 M in 

water) and CH2Cl2. The organics were dried over MgSO4 and concentrated in vacuo to 

produce a dark yellow solid. The solid was purified by column chromatography (silica 

gel, fixed 1:2 EtOAc/hexanes) to afford 2.0 g (5.63 mmol, 50%) of the title compound as 

a yellow solid. Analytical LC/MS (J-Sphere80-S4, 3.0 x 50 mm, 4.0 min gradient, 

5%[CH3CN]: 95%[0.1% trifluoroacetic acid/H2O] to 100%[CH3CN]): 2.740 min, >99% 

(214 nm and ELSD), M + 1 peak m/e 356.10; 1H NMR (400 MHz, DMSO-d6) 8.38 (s, 

1H), 7.18 (s, 1H), 6.88 (s, 1H), 6.84 (d, J = 8.0 Hz, 1H), 6.78 (d, J = 8.0 Hz, 1H), 5.98 (br 

s, 2H), 5.97 (s, 2H), 4.30 (d, J = 5.2 Hz, 2H), 2.77 (s, 3H), 2.57 (s, 3H); 13CNMR (100 

MHz, DMSO-d6) 179.9, 164.8, 161.7, 158.0, 153.4, 147.4, 133.8, 122.4, 121.9, 120.5, 

108.0, 107.9, 100.8, 92.8, 42.1, 22.4, 20.0; high-resolution mass spectroscopy (Q-ToF): 

m/z calc for C18H17N3O3S[M + H]: 356.0991; found, 356.1069. 

 

General Medicinal Chemistry Methods: Chapter IV 

 All NMR spectra were recorded on a 400 MHz Bruker NMR.  1H chemical shifts 

are reported in δ values in ppm downfield from TMS as the internal standard in DMSO.  

Data are reported as follows:  chemical shift, multiplicity (s = singlet, d = doublet, t = 

triplet, q = quartet, br = broad, m = multiplet), integration, coupling constant (Hz).  13C 

chemical shifts are reported in δ values in ppm with the DMSO carbon peak set to 39.5 

ppm.  Low resolution mass spectra were obtained on an Agilent 1200 LCMS with 

electrospray ionization.  High resolution mass spectra were recorded on a Waters QToF-

API-US Plus Acquity system.  Analytical thin layer chromatography was performed on 

250 mM silica gel 60 F254 plates.  Analytical HPLC was performed on an Agilent 1200 
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analytical LCMS with UV detection at 214 nm and 254 nm along with ELSD detection.  

Preparative purification was performed on a custom Agilent 1200 preparative LCMS 

with collection triggered by mass detection.  Solvents for extraction, washing and 

chromatography were HPLC grade.  All reagents were purchased from Aldrich Chemical 

Co., Ryan Scientific, Maybridge, and BioBlocks, and were used without purification.  All 

polymer-supported reagents were purchased from Biotage, Inc. 

General Procedure for M1 PAM Library I Synthesis:  Each of seven glass vials 

containing 2 mL of DMF were loaded with ethyl 8-fluoro-4-oxo-1,4-dihydroquinoline-3-

carboxylate (25 mg, 0.106 mmol, Maybridge BTB02003EA), K2CO3 (30 mg, 0.212 

mmol, 2.0 equivalents), KI (2 mg, 0.011 mmol, 0.1 equivalents), and one of seven benzyl 

bromides (0.319 mmol, 3.0 equivalents).  The reactions were stirred for 24 hours at room 

temperature before receiving polystyrene-bound thiophenol (0.159 mmol, 1.5 

equivalents) each, and then stirred for an additional 3 hours.  The reactions were then 

judged complete by LCMS, filtered, and separated into CH2Cl2 and H2O.  The organics 

were washed with brine, dried over MgSO4, filtered, and concentrated in vacuo yielding 

seven benzyl-substituted ethyl 8-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylates 

confirmed by analytical LCMS.  Next, crude products (0.1 mmol) and LiOH (8 mg, 0.3 

mmol, 3.0 equivalents) were dissolved in 3 mL of THF:H2O (9:1) in glass vials.  The 

reactions were microwave irradiated at 120°C for 10 minutes and then separated into 

EtOAc and H2O, which was acidified to pH 4 drop-wise using 1N HCl.  Organics were 

dried over MgSO4, filtered, and concentrated in vacuo yielding seven benzyl-substituted 

8-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acids confirmed by LCMS.  
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Purification using mass-directed HPLC afforded the seven compounds (25-85% total 

yield) as TFA salts with >98% purity. 

General Procedure for M1 PAM Library II Synthesis:  Each of seven glass vials 

containing 2 mL of DMF were loaded with ethyl 4-oxo-1,4-dihydroquinoline-3-

carboxylate (25 mg, 0.115 mmol, Ryan Scientific 6J-050), K2CO3 (32 mg, 0.230 mmol, 

2.0 equivalents), KI (2 mg, 0.012 mmol, 0.1 equivalents), and one of seven benzyl 

bromides (0.345 mmol, 3.0 equivalents).  The reactions were stirred for 24 hours at room 

temperature before receiving polystyrene-bound thiophenol (0.173 mmol, 1.5 

equivalents) each, and then stirred for an additional 3 hours.  The reactions were then 

judged complete by LCMS, filtered, and separated into CH2Cl2 and H2O.  The organics 

were washed with brine, dried over MgSO4, filtered, and concentrated in vacuo yielding 

seven benzyl-substituted ethyl 4-oxo-1,4-dihydroquinoline-3-carboxylates confirmed by 

analytical LCMS.  Next, crude products (0.1 mmol) and LiOH (8 mg, 0.3 mmol, 3.0 

equivalents) were dissolved in 3 mL of THF:H2O (9:1) in glass vials.  The reactions were 

microwave irradiated at 120°C for 10 minutes and then separated into EtOAc and H2O, 

which was acidified to pH 4 drop-wise using 1N HCl.  Organics were dried over MgSO4, 

filtered, and concentrated in vacuo yielding seven benzyl-substituted 4-oxo-1,4-

dihydroquinoline-3-carboxylic acids confirmed by LCMS.  Purification using mass-

directed HPLC afforded the seven compounds (25-85% total yield) as TFA salts with 

>98% purity. 

General Procedure for M1 PAM Library III Synthesis:  Each of seven glass vials 

containing 2 mL of DMF were loaded with ethyl 5,8-difluoro-4-oxo-1,4-

dihydroquinoline-3-carboxylate (25 mg, 0.099 mmol, Ryan Scientific 6J-020), K2CO3 
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(27 mg, 0.198 mmol, 2.0 equivalents), KI (2 mg, 0.099 mmol, 0.1 equivalents), and one 

of seven benzyl bromides (0.297 mmol, 3.0 equivalents).  The reactions were stirred for 

24 hours at room temperature and atmosphere before receiving polystyrene-bound 

thiophenol (0.149 mmol, 1.5 equivalents) each, and then stirred for an additional 3 hours.  

The reactions were then judged complete by LCMS, filtered, and separated into CH2Cl2 

and H2O.  The organics were washed with brine, dried over MgSO4, and concentrated in 

vacuo yielding seven benzyl-substituted ethyl 5,8-difluoro-4-oxo-1,4-dihydroquinoline-3-

carboxylates confirmed by analytical LCMS.  Next, crude products (0.1 mmol) and LiOH 

(8 mg, 0.3 mmol, 3.0 equivalents) were dissolved in 3 mL of THF:H2O (9:1) in glass 

vials.  The reactions were microwave irradiated at 120°C for 10 minutes and then 

separated into EtOAc and H2O, which was acidified to pH 4 drop-wise using 1N HCl.  

Organics were dried over MgSO4 and concentrated in vacuo yielding seven benzyl-

substituted 5,8-difluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acids confirmed by 

LCMS.  Purification using mass-directed HPLC afforded the seven compounds (25-85% 

total yield) as TFA salts with >98% purity. 

Sodium 1-(4-methoxybenzyl)-4-oxo-1,4-dihydroquinoline-3-carboxylate (BQCA) 

synthesis:  To stirred solution of 200 mL DMF in a glass flask was added ethyl 4-oxo-

1,4-dihydroquinoline-3-carboxylate (3.40 g, 15.66 mmol, Ryan Scientific 6J-050), K2CO3 

(4.33 g, 31.32 mmol, 2.0 equivalents), KI (260 mg, 1.57 mmol, 0.1 equivalents), and 4-

methoxybenzyl bromide (4.70 g, 23.49 mmol, 1.5 equivalents).  After 48 hours of stirring 

at room temperature and atmosphere, the reaction was monitored by LCMS and judged 

complete.  The reaction was then partitioned into CH2Cl2 and H2O, and the organics were 

washed with brine, dried over MgSO4, and concentrated in vacuo.  Purification by diethyl 
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ether washing (6 x 50 mL) afforded the intermediate product ethyl 1-(4-methoxybenzyl)-

4-oxo-1,4-dihydroquinoline-3-carboxylate (4.99 g, 14.83 mmol, 95%) as an off-white 

solid at >98% purity by LCMS.  To a glass vial containing ethyl 1-(4-methoxybenzyl)-4-

oxo-1,4-dihydroquinoline-3-carboxylate (4.99 g, 14.83 mmol) in 90 mL THF:H2O (5:1) 

was added LiOH (1.07 g, 44.49 mmol, 3.0 equivalents).  The reaction was microwave 

irradiated at 120°C for 10 minutes and then partitioned into CH2Cl2 and H2O.  The 

solution was re-acidified to pH 5 drop-wise using 2N HCl.  The organics were dried over 

MgSO4, filtered, concentrated in vacuo, and analyzed by LCMS.  The crude product was 

purified by diethyl ether washing (6 x 50 mL) and additional H2O wash (1 x 100 mL) to 

afford the intermediate product 1-(4-methoxybenzyl)-4-oxo-1,4-dihydroquinoline-3-

carboxylic acid (3.20 g, 10.35 mmol, 70%) as an off-white crystalline solid at >98% 

purity by LCMS.  To a stirred solution of 1-(4-methoxybenzyl)-4-oxo-1,4-

dihydroquinoline-3-carboxylic acid (1.89 g, 6.11 mmol) in 25 mL DMF in a glass flask at 

0°C was added NaH (143 mg, 5.99 mmol, 0.98 equivalents).  The reaction was allowed 

to warm to room temperature and stirred for 1 hour before concentration in vacuo.  The 

crude product was washed with diethyl ether (3 x 30 mL) to afford the title compound 

(1.80 g, 5.44 mmol, 89%) as a white solid at >98% purity by LCMS.  1H NMR (400 

MHz, D2O): δ = 9.07 (s, 1H), 8.25 (d, J = 8.0 Hz, 1H), 7.53 (t, J = 8.4 Hz, 1H), 7.45 (d, J 

= 8.4 Hz, 1H), 7.39 (t, J = 8.0 Hz, 1H), 7.11 (d, J = 8.8 Hz, 2H), 6.79 (d, J = 8.8 Hz, 2H), 

5.35 (s, 2H), 3.67 (s, 3H).  13C NMR (100 MHz, D2O, externally referenced to DMSO-

d6): δ = 176.3, 172.2, 158.0, 147.4, 138.5, 132.3, 127.5, 127.2, 126.9, 125.5, 124.5, 117.5, 

116.9, 113.8, 55.8, 54.7.  HRMS calcd for C18H14NO4Na2 [M + 2Na] 354.0718, found 

354.0716. 
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JetMilling 

 M4 PAMS VU0152099 and VU0152100 as well as M1 PAM BQCA were Jet-

milled, to afford uniform nanoparticles, before vehicle formulation and in vivo studies 

employing a Model 00 Jet-O-Mizer with a High-Yield® Collection Module from Fluid 

Energy Processing & Equipment Company. 

 

Stable Recombinant Cell Line Establishment and Cell Culture 

 Chinese hamster ovary (CHO) cells stably expressing rat M1 were purchased from 

the American Type Culture Collection (ATCC) and cultured following their 

recommendations.  CHO cells stably expressing human M2 (hM2), human M3 (hM3), and 

human M5 (hM5) were generously provided by A. Levey (Emory Medical School, 

Atlanta, GA); rat M4 (rM4) cDNA provided by T.I. Bonner (National Institutes of Health, 

Bethesda, MD) was used to stably transfect CHO-K1 cells purchased from the ATCC 

using Lipofectamine 2000 reagent according to manufacturer protocol.  To make stable 

hM2 and rM4 cell lines for use in calcium mobilization assays, these cells were also stably 

co-transfected with a chimeric G protein, Gqi5 (Coward et al., 1999), obtained from Bruce 

Conklin at the University of California using Lipofectamine 2000.  Gqi5 is a Gqα protein 

containing the five c-terminal amino acid residues corresponding to those of Giα 

(EYNLV  DCGLF) and was expressed in a pcDNA3.1 vector containing a hygromycin 

resistance cassette.  Large quantities of Gqi5 DNA were made by transforming DH5α E. 

coli cells with the construct, plating bacteria for individual colonies and expanding a 

single colony in liquid growth medium (LB containing hygromycin and tetracycline).  A 

Qiagen MaxiPrep kit was used to isolate DNA from the bacterial culture.  rM1, hM3, and 
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hM5 cells were grown in Ham’s F-12 medium containing 10% heat-inactivated fetal 

bovine serum (FBS), 2 mM GlutaMax I, 20 mM HEPES, and 50 μg ml–1 G418 sulfate.  

hM2-Gqi5 cells were grown in the same medium also containing 500 μg ml–1 Hygromycin 

B.  Stable rM4 cells lacking the Gqi5 construct were grown in Dulbecco’s modified 

Eagle’s medium (DMEM) containing 10% heat-inactivated FBS, 2 mM GlutaMax I, 1 

mM sodium pyruvate, 0.1 mM nonessential amino acids, 20 mM HEPES, and 400 μg ml–

1 G418 sulfate; rM4-Gqi5 cells were grown in the same medium also containing 500 μg 

ml–1 Hygromycin B.  Parental untransfected CHO-K1 cells were cultured in Dulbecco’s 

modified Eagle’s medium (DMEM) containing 10% heat-inactivated FBS, 2 mM 

GlutaMax I, 1 mM sodium pyruvate, 0.1 mM nonessential amino acids, and 20 mM 

HEPES.  Human embryonic kidney (HEK) 293A cells stably expressing rat mGluR5a 

were grown in DMEM containing 10% heat-inactivated FBS, 2 mM GlutaMax I, 0.1 mM 

nonessential amino acids, 20 mM HEPES, and 500 μg ml–1 G418 sulfate. 

 

Calcium Mobilization Assays 

 For experiments in Chapter III, recombinant muscarinic cell lines were plated at 

a seeding density of 3 to 5 x 105 cells per well in Greiner clear-bottomed, TC-treated 384-

well plates (VWR Scientific, Suwanee, GA) in antibiotic-free growth medium and 

incubated overnight at 37°C in 5% CO2.  Rat mGluR5a HEK cells were plated in an 

identical manner in clear-bottomed, poly-D-lysine-coated 96-well plates in glutamate-

glutamine-free medium for growth overnight.  For experiments in Chapter IV, all 

recombinant Chinese Hamster Ovary (CHO-K1) cell lines stably expressing rM1, hM3, or 

hM5 receptors were plated at a seeding density of 50,000 cells/100µl/well in Greiner 
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clear-bottomed, TC-treated 384-well plates.  CHO-K1 cells stably co-expressing hM2-

Gqi5 and rM4-Gqi5 were plated at a seeding density of 60,000 cells/100µl per well.  Cells 

were incubated in antibiotic-free medium overnight at 37°C/5% CO2 and assayed the 

following day.  The following day, medium was replaced with 2 μM calcium indicator 

dye, fluo-4 AM, for 1 h at 37°C.  Dye was removed and replaced with 20 µl per well 

assay buffer containing 1x Hanks balanced salt solution (Invitrogen, Carlsbad, CA), 20 

mM HEPES, and 2.5 mM probenecid, pH 7.4.   

 For experiments in Chapter IIIa/b, cell plates were then loaded into the 

Functional Drug Screening System 2000 (FDSS 6000, Hamamatsu, Japan), and cells 

were preincubated with either vehicle or test compound for 5 min before a 1 min 

incubation with agonists (i.e., ACh, glutamate, or ATP).  All test compounds were 

dissolved and diluted in 100% DMSO and then serially diluted into assay buffer for a 

2.5x stock in 0.25% DMSO; stock compounds were then added to the assay for a final 

DMSO concentration of 0.1%.  ACh, ATP, and Glu were prepared as 5x stock solutions 

in assay buffer before addition to the assay plate.  Calcium mobilization was measured 

using the FDSS 6000 and data recorded as fold over basal fluorescence; raw data was 

then normalized to the maximal response to agonist in the presence of vehicle for each 

receptor type.   

 For experiments in Chapter IV, all compounds were serially diluted in assay 

buffer for a final 2X stock in 0.6% DMSO. This stock was then added to the assay plate 

for a final DMSO concentration of 0.3%.  ACh (EC20 concentration or full dose-response 

curve) was prepared at a 10X stock solution in assay buffer prior to addition to assay 

plates.  Calcium mobilization was measured at 25°C using a FLEXstation II (Molecular 
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Devices, Sunnyvale, CA).  Cells were preincubated with test compound (or vehicle) for 

1.5 min prior to the addition of the agonist, ACh.  Cells were then stimulated for 50 sec 

with a submaximal concentration (EC20) or a full dose-response curve of ACh.  The 

signal amplitude was first normalized to baseline and then as a percentage of the maximal 

response to ACh. 

 

GIRK-Mediated Thallium Flux Assay 

 Because the M4 receptor couples to Gi/o G proteins, we were able to use a novel 

functional assay recently developed in our lab that takes advantage of the ability of 

endogenous Gi/oβγ subunits of Gi/o-coupled GPCRs to alter the kinetics of G-protein 

regulated inwardly rectifying K+ (GIRK) channels to conduct the ion, thallium 

(Niswender et al., 2008). For these studies, HEK293 cells stably co-expressing 

heteromeric GIRK1/2 channels and the hM4 muscarinic receptor were pre-incubated with 

test compound and then stimulated with agonist (ACh) in the presence of thallium ion.  

Cells were incubated with 80 µl/well of 1.7 µM benzothiazole coumarin-acetoxymethyl 

ester indicator dye [prepared as a stock in DMSO and mixed in a 1:1 ratio with 10% 

Pluronic acid F-127 in assay buffer (1x Hanks' balanced salt solution supplemented with 

20 mM HEPES)] for 1 h at room temperature in the dark.  The dye was then replaced 

with 40 µl of assay buffer.  Test compounds were prepared as described above.  

Acetylcholine (EC20 concentration or full dose-response curve) was prepared as a 5x 

stock solution in thallium buffer (pH 7.3, 12 mM thallium sulfate, 1 mM MgSO4, 1.8 mM 

CaSO4, 5 mM glucose, and 10 mM HEPES) to which 125 mM NaHCO3 was added 

immediately before use.  Thallium flux was measured at 25°C using the FLEXstation II, 
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as described above for calcium mobilization assays. The slope of the fluorescence 

increase was obtained over a 10-s window beginning at 5 s after agonist/thallium 

addition.  The signal amplitude was first normalized to baseline and then as a percentage 

of the maximal response to acetylcholine. 

 

Ancillary Pharmacology Assays 

 Before conducting in vivo experiments, M4 PAMs VU0152099 and VU0152100 

were submitted to MDS Pharma Services (King of Prussia, PA) and evaluated in the 

LeadProfiling Screen, a radioligand binding assay panel employing 68 GPCRs, ion 

channels, transporters, and enzymes, to ensure a clean ancillary pharmacology profile. 

VU0152099 was also submitted to GPCR Profiler Service (Millipore Corporation, 

Billerica, MA) where it was evaluated for agonist, antagonist, and allosteric potentiator 

activity against a panel of 16 GPCRs in a functional screening paradigm.  M1 PAM 

BQCA was also submitted to Millipore’s GPCR Profiler™. 

 

Equilibrium Radioligand Binding Assays 

 To prepare membranes from CHO-K1 cells stably expressing rM1, hM2, hM3, 

rM4, or hM5, cells were washed once with ice-cold phosphate-buffered saline, pH 7.4.  

Cells were then harvested with a cell scraper, resuspended in ice-cold buffer (20 mM 

HEPES, 100 mM NaCl, 10 mM MgCl2, pH 7.4), and homogenized using a glass 

homogenizer (Dounce).  The homogenate was centrifuged at 20,000xg for 20 min at 4°C.  

This final step was repeated twice more with homogenization between centrifugations, 

and the final pellets were resuspended and homogenized in ice-cold buffer in aliquots at a 
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final protein concentration of 1-3 mg ml–1 and stored at -80°C until use.  Protein 

concentrations were measured using the Bio-Rad Protein Assay Kit (Bio-Rad, Hercules, 

CA) with serum albumin (Pierce Chemical, Rockford, IL) as the standard.  For each 

binding experiment, membranes were resuspended and homogenized in ice-cold buffer.  

Non-specific binding, calculated in the presence of 1 µM atropine, was never greater than 

10% of total binding; in both saturation and competition binding experiments, bound 

radioligand did not exceed 10%.   

 For competition binding experiments in Chapter IIIa/b and IV, VU10010, 

BQCA and atropine were dissolved in 100% DMSO, diluted in assay buffer to make a 3x 

stock, and then added to the assay plate for a final maximum DMSO concentration of 

0.3% for VU10010 and 0.01% for atropine.  Vehicle for each condition was DMSO-

matched control made in binding buffer.  For ACh competition experiments, VU10010 

was diluted in binding buffer to make a 5x stock and then added to the assay plate for a 

maximum final DMSO concentration of 0.1%.  Binding reactions were incubated at room 

temperature for 2 h on a Titer Plate Shaker (Lab-Line Instruments, Melrose, IL), and 

equilibrium binding was terminated by rapid filtration through Unifilter-96 GF/B filter 

plates presoaked for at least 2 h with 0.1% polyethylenimine (PEI, Sigma).  Filter plates 

were washed three times with ice-cold harvesting buffer (50 mM Tris-HCl, 150 mM 

NaCl, pH 7.4) using a 96-well Brandel harvester (Brandel Inc., Gaithersburg, MD).  

Plates were then dried overnight and 35 μl MicroScint-20 was added to each well the 

following day.  Radioactivity was counted using a TopCount NXT microplate 

scintillation and luminescence counter (PerkinElmer Life and Analytical Sciences, 

Downers Grove, IL).  All binding reactions were carried out in 1 ml volumes containing 
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12-25 μg membrane protein, and non-specific binding was determined in the presence of 

1 µM atropine.  [3H]NMS saturation binding was performed to calculate the Bmax and 

NMS Kd for each mAChR-expressing cell line using GraphPad Prizm software.  

Competition binding reactions contained membrane protein, appropriate concentrations 

of test compounds or vehicle, and 0.1 nM [3H]NMS in 96-well deep well plates.  Counts 

were normalized to maximal specific binding in the presence of vehicle. 

 

[35S]GTPγS Binding Assays 

 Membranes were prepared from rM4-CHO cells that were not transfected with the 

Gqi5 construct as described above for [3H]NMS binding.  After thawing, membranes were 

diluted and homogenized in ice-cold assay buffer containing 20 mM HEPES, 150 mM 

NaCl, 10 mM MgCl2, and 1 mM EDTA, pH 7.4, and 5 μM GDP.  Assay reactions 

contained 25 μg membrane protein, 10 μM VU10010 or vehicle, ACh, and 0.1 nM 

[35S]GTPγS in a total volume of 100 μl; samples were incubated in a 96-well deep well 

plate for 1 h at room temperature.  Nonspecific binding in each experiment was 

determined in the presence of 10 μM unlabeled GTPγS.  Equilibrium binding was 

terminated and radioactivity counted as described above.  Counts were normalized to 

maximal specific binding in the presence of vehicle and 100 μM ACh. 

 

Animals: Slice Electrophysiology in Chapter IIIa/b and IV, behavior in Chapter III 

 All experiments were conducted in accordance with the National Institutes of 

Health regulations of animal care covered in Principles of Laboratory Animal Care 

(National Institutes of Health publication 85-23, revised 1985) and were approved by the 
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Institutional Animal Care and Use Committee.  Subjects were housed in groups of four to 

five per cage in a large colony room under a 12-h light/dark cycle (lights on at 6:00 a.m.) 

with food and water provided ad libitum.  Animals were housed in an Association for 

Assessment and Accreditation of Laboratory Animal Care (AALAC) approved, and all 

efforts were made to minimize animal suffering and to reduce the number of animals 

used. 

 

Brain Slice Electrophysiology: Chapter IIIa 

 All whole-cell recordings were carried out using hippocampal slices prepared 

from 16- to 23-day old Sprague Dawley rats (Charles River Laboratories, MA, USA) or 

15- to 23-day WT and M4 knockout (KO).  Animals were anesthetized with isoflurane 

and decapitated. The brain was rapidly removed from the skull and submerged in ice-cold 

modified artificial cerebrospinal fluid (ACSF), which was oxygenated with 95% O2 and 

5% CO2 and was composed of (in mM) 230 sucrose, 2.5 KCl, 0.5 CaCl2, 10 MgSO4, 1.25 

NaH2PO4, 26 NaHCO3, and 10 D-glucose. The brain was then blocked in the horizontal 

plane, glued to the stage of a vibratome (Vibratome, St. Louis, MO, USA) that was filled 

with ice-cold modified ACSF, and cut at a thickness of 300 μm for rat hippocampal slices 

and 275-280 μm for mice.  Slices were then incubated in oxygenated normal ACSF (in 

mM, 126 NaCl, 2.5 KCl, 2 CaCl2, 2 MgSO4, 1.25 NaH2PO4, 26 NaHCO3, and 10 D-

glucose) at 31-32°C for 1 h and maintained at room temperature afterward until 

transferred individually to a recording chamber, which was continuously perfused with 

oxygenated ACSF at 31-32°C.  Whole-cell recordings were made from visually identified 

hippocampal CA1 pyramidal neuron soma under an Olympus BX50WI upright 
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microscope (Olympus, Lake Success, NY, USA).  A low-power objective (4x) was used 

to identify CA1 region of the hippocampus, and a 40x water immersion objective coupled 

with Hoffman optics and infrared video was used to visualize individual pyramidal cells.  

A MultiClamp amplifier (Molecular devices, Union City, CA) was used for current- and 

voltage-clamp recordings. Patch pipettes (2-3 MΩ) were prepared from borosilicate glass 

(World Precision Instrument, Sarasota, FL, USA) using a Narashige vertical patch pipette 

puller (Narashige, Japan). Excitatory or inhibitory postsynaptic currents (EPSCs or 

IPSCs) were evoked in CA1 pyramidal cells by electrical stimulation of Schaffer 

collaterals using a concentric bipolar stimulating electrode (FHC, Bowdoinham, ME, 

USA) in the presence of the GABAA receptor antagonist bicuculine (20 μM) or 

ionotropic glutamate receptor antagonists CNQX (10 μM) and AP-5 (50 μM), 

respectively. For recordings of EPSCs, the recording pipette solution contained (in mM) 

123 K-gluconate, 7 KCl, 1 MgCl2, 0.025 CaCl2, 10 HEPES, and 0.1 EGTA, 2 Mg-ATP, 

and 0.2 Na-GTP. For recordings of IPSCs, the recording pipette solution contained (in 

mM) 65 K-gluconate, 65 CsCl, 3.5 NaCl, 1 MgCl2, 0.025 CaCl2, 10 HEPES, 0.1 EGTA, 

2 Mg-ATP, and 0.2 Na-GTP.   The pH of the pipette solutions were adjusted to 7.3 with 1 

M KOH, and osmolarity was adjusted to ~295 mOsm.  All drugs were bath applied.  

Cells were typically voltage-clamped at -60 mV. IPSCs were inward currents in such 

recording conditions because the calculated Cl- equilibrium potential was approximately -

20 mV.  The access resistance was continuously monitored, and only recordings that had 

access resistance less than 20 MΩ with < 15% change were used for further analysis. 

Data analysis was performed using a PC computer equipped with pClamp data 

acquisition and analysis system (Molecular Devices, Union City, CA). 
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Statistical analysis:  Electrophysiology data was analyzed using the nonparametric 

Wilcoxon matched-pairs signed-ranks test or Mann-Whitney U test, and p-values less 

than 0.05 (P < 0.05) were considered to be statistically significant.  All cell-based, 

binding, and electrophysiological data are presented as mean ± S.E.M. 

 

Brain Slice Electrophysiology: Chapter IV 

 Brain slices were prepared from Sprague-Dawley rats (Charles River, 

Wilmington, MA), wild-type C57Bl/6Hsd (Harlan, Indianapolis, IN) or M1 receptor KO 

mice (Taconic, Cambridge City, IN with permission from J. Wess); all animals were 

postnatal day 16-26.  Animals were anesthetized with isoflorane.  Brains were rapidly 

removed and submerged in ice-cold modified oxygenated artificial cerebrospinal fluid 

(ACSF) composed of 126 mM choline chloride, 2.5 mM KCl, 8 mM MgSO4, 1.3 mM 

MgCl, 1.2 mM NaH2PO4, 26 mM NaHCO3, 10 mM D-glucose, 5 µM glutathione, and 0.5 

mM sodium pyruvate.  Coronal brain slices (295-300 µm) containing the mPFC were 

made using a Leica VT1000S or 3000 vibratome (St. Louis, MO).  Slices were incubated 

in oxygenated ACSF at 32°C for 30-60 min and then maintained at 20-22°C (room 

temperature) for 1-6 hr until they were transferred to a recording chamber.  The recording 

chamber was continuously perfused at 30 ± 0.2°C with oxygenated ACSF containing 126 

mM NaCl, 2.5 mM KCl, 3.0 mM CaCl2, 2.0 mM MgSO4, 1.25 mM NaH2PO4, 26 mM 

NaHCO3, and 10 mM D-glucose.  Spontaneous and miniature EPSCs were recorded from 

layer V pyramidal cells in whole-cell voltage-clamp mode using either an Axon 

Multiclamp 700B amplifier (Molecular Devices, Sunnyvale, CA) or a Warner 501A 

amplifier (Warner Instruments, Hamden, CT) and visualized with an Olympus BX50WI 
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upright microscope (Olympus, Lake Success, NY) coupled with a 40x water immersion 

objective and Hoffman optics.  Borosilicate glass (World Precision Instruments, Sarasota, 

FL) patch pipettes were prepared using a Flaming-Brown micropipette puller (Model P-

97; Sutter Instruments, Novato, CA) and filled with 123 mM potassium gluconate, 7 mM 

KCl, 1 mM MgCl2, 0.025 mM CaCl2, 10 mM HEPES, 0.1 mM EGTA, 2 mM ATP, and 

0.2 mM GTP at a pH of 7.3 and osmolarity of 285-295 mOsM.  Filled patch pipettes had 

resistances of 2 to 4 MΩ. EPSCs were recorded at a holding potential of -70 mV; GABAA 

receptor-mediated inhibitory currents were undetectable under these conditions.  The 

voltage-clamp signal was low-pass-filtered at 5 kHz, digitized at 10 kHz, and acquired 

using a Clampex9.2/DigiData1332 system (Molecular Devices, Sunnyvale, CA). All 

drugs were bath-applied.  Compounds were made in a 100X or 1000X stock in either 

purified water or 100% DMSO and diluted in oxygenated ACSF immediately before use.  

After a stable baseline was recorded for 5 – 10 min, the effect of each compound on 

baseline sEPSC or mEPSC amplitude and frequency was examined.  Miniature EPSCs 

and inward currents were recorded in the presence of 1 µM tetrodotoxin, a concentration 

which completely blocked action potential firing upon depolarizing current injections in 

current clamp mode. 

Statistical analysis:  EPSCs were analyzed using the Mini Analysis Program 

(Synaptosoft, Decatur, GA). The peak amplitude and inter-event interval of sEPSCs and 

mEPSCs from 2-min episodes during control and drug application were used to generate 

cumulative probability plots.  The mean values of EPSC amplitude and inter-event 

interval from the 2-min episode were grouped (mean ± S.E.M.) and compared using a 

paired t-test.  Inward current data analysis was performed using Clampfit software (v9.2, 
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Molecular Devices, Sunnyvale, CA).  All electrophysiology data was quantified and 

graphed using GraphPad Prism (GraphPad Software Inc, San Diego, CA) and Excel 

(Microsoft Corp., Redmond, WA).  Cumulative probability plots were made using Origin 

(v6, Microcal Origin, Northampton, MA).  Statistical analysis was performed using the 

student's paired or unpaired t-test, and statistical significance was set at P < 0.05.  

Averaged data are presented as mean ± standard error of the mean (S.E.M.). 

   

In vivo mPFC Unit Activity Recordings 

 Multichannel single unit recordings were obtained from extracellular electrode 

arrays (NeuroLinc, Corp., New York, NY) chronically implanted in the medial prefrontal 

cortex (mPFC) of 300-400g Sprague-Dawley rats performing an auditory detection task 

for food reward.  For recording sessions, animals were fitted with a HST/16V-G20 

miniature headstage 20x pre-amplifier (Plexon Corp., Dallas, TX) and spike event data 

(1.1 ms data window) was captured by a Cheetah 32-channel acquisition system 

(Neuralynx, Bozeman, MT) for offline processing.  Individual data sessions consisted of 

a 30-minute pre-injection baseline followed by three 30-minute post-injection (vehicle or 

BQCA, 20mg/kg) epochs.  Single neurons were isolated offline using a manual spike 

sorter (Mclust; A.D. Redish).  A sorted file was only considered to emanate from the 

activity of a single neuron if bins within +/-1.1 ms (considered absolute refractory period) 

of the autocorrelogram contained counts <1% of the overall mean of the autocorrelogram.  

In addition, cells with properties characteristic of fast-spiking interneurons (spike width 

<250 ms and firing rate > 6 Hz) were eliminated from analysis.  Following offline 

clustering, the mean firing rate for each neuron within an epoch was calculated by 
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averaging rates across all 10-s pre-tone intervals within an epoch (approximately 50 tone 

presentations / 30 minute epoch).  The average firing rate in an epoch was expressed as a 

percent of the pre-injection baseline rate and data were compared across treatment 

conditions with respect to changes in mean rate across the three 30-minute post-injection 

epochs. 

 

Brain and Plasma Exposure Pharmacokinetic Profiling of M4 PAMs 

 Male Sprague-Dawley rats (Harlan Sprague-Dawley, Inc., Indianapolis, IN) 

weighing 225 to 250 grams were fasted overnight before dosing.  Compounds were 

dissolved at a concentration of 56.6 mg/ml in 10% Tween 80 and double deionized water, 

with the pH adjusted to approximately 7.0 using 1 N NaOH, and sonicated until a uniform 

homogenous solution was obtained.  The dose was administered i.p. at 56.6 mg/kg per 

compound.  Three animals were used for each time point.  The rat blood and brain were 

collected at 0.5, 1, 2, and 4 h.  Animals were euthanized and decapitated, and the brains 

were removed and frozen on dry ice.  Trunk blood was collected in EDTA vacutainer 

tubes, and plasma was separated by centrifugation and stored at -80°C until analysis.  For 

the brain sample preparation, frozen whole-rat brains were weighed (1.5–1.8 g) and 

placed in 3 ml of ice-cold solution of acetonitrile and methanol (1:1, volume) with a 

synthetic internal standard (50 ng/ml) and homogenized using a Sonic Dismembrator 

model 100 (Thermo Fisher Scientific, Waltham, MA) at maximal speed for 2 min.  A 1-

ml aliquot of each homogenate was placed next into 1.5-ml centrifuge tubes and 

centrifuged at 16,000 rpm for 5 min.  Finally, 100 µl of supernatant was injected into LC-

MS-MS.  
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 Plasma samples (100 µl) were combined with 200 µl of ice-cold solution of the 

internal standard (100 ng/ml) in acetonitrile with 0.1% formic acid.  After vortexing for 1 

min, the mixture was centrifuged at 16,000 rpm for 5 min in a bench-top Spectrafuge 

16M Microcentrifuge (Labnet, Woodbridge, NJ).  The supernatant (100 µl) was injected 

again into LC-MS-MS.  

 For the LC-MS-MS analysis, the LC separation was carried out on a Luna ODS 

column (5 µm, 2.1 mm x 5 cm; Phenomenex, Torrance, CA) at a flow rate of 0.3 ml/min.  

The gradient started with 80% solvent A (0.1% formic acid in water) and 20% solvent B 

(0.1% formic acid in CH3CN), held for 1 min, increased to 100% B in 4 min, and held for 

1 min.  Mass spectrometry was carried out using a ThermoFinnigan TSQ Quantum Ultra 

(Thermo Fisher Scientific, Waltham, MA) mass spectrometer in positive ion mode.  The 

software Xcalibur version 2.0 was used to control the instrument and collect data.  The 

electrospray ionization source was fitted with a stainless steel capillary (100 µm i.d.).  

Nitrogen was used as both the sheath gas and the auxiliary gas.  The ion transfer tube 

temperature was 300°C.  The spray voltage, tube lens voltage, and pressure of sheath gas 

and auxiliary gas were optimized to achieve maximal response using the test compounds 

mixing with the mobile phase A (50%) and B (50%) at a flow rate of 0.3 ml/min.  

Collision-induced dissociation was performed on the test compounds and internal 

standards under 1.0 mTorr of argon.  Selected reaction monitoring was carried out using 

the transitions from m/z 356 to 205 at 30 eV for VU0152099, m/z 342 to 205 at 27 eV for 

VU0152100, and m/z 310 to 223 at 25 eV for our internal standard.  The calibration 

curves were constructed by spiking known amounts of test compounds in blank brain 

homogenates and plasma. The samples went through the same extraction steps as 
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described above.  A linear response was achieved from 50 ng/ml to 100 µg/ml in both 

matrices. Compound exposure following administration was determined by calculating 

AUC0-∞ using the trapezoidal method. 

 

Pharmacokinetics and Brain /Plasma Exposure Profiling of M1 PAM, BQCA 

 Male Sprague-Dawley rats (Harlan, Indianapolis, USA) weighing 225-250 g, 

were injected i.p. with the micro-suspension (containing 10% tween 80) of BQCA at the 

dose of 10 mg/kg.  The blood and whole brain tissue samples were collected at 0.5, 1, 2, 

4 and 8 hours post-injection.  Blood samples were collected through cardiac puncture in 

EDTA vacutainer tubes.  The plasma was separated by centrifugation and stored at -80°C 

until analysis.  The animals were decapitated and the whole brain tissue were removed 

and immediately frozen on dry ice.  

 Brain tissue was weighed and homogenized in 5 ml of ice-cold phosphate 

buffered saline using a Sonic Dismembrator Model 100 (Fisher Scientific) at maximal 

speed for 2 min.  Five hundred µL of the homogenate samples were treated with 2.0 mL 

of an ice-cold solution of acetonitrile containing 0.1% formic acid and VU178 (internal 

standard), 100 ng/mL, and vortexed for 1 min.  Plasma samples (100 µl) were combined 

with 500 µl of ice-cold solution of the internal standard (100 ng/ml) in acetonitrile with 

0.1% formic acid and vortexed.  The samples were centrifuged at 14,000 rpm for 5 min 

using a Spectrafuge 16M Microcentrifuge (Labnet, Woodbridge, NJ).  The supernatants 

were evaporated and the residues were reconstituted in 100 µl of 80:20 acetonitrile/water, 

filtered through 0.2 µm nylon filter and injected onto LC-MS-MS.  
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 LC separation was carried out on Waters Acquity UPLC® BEH C18 (1.7 µm 1.0 x 

50 mm) column at a flow rate of 0.6 ml/min flow rate.  The gradient started with 80% 

solvent A (0.1% formic acid in water) and 20% solvent B (0.1% formic acid in 

acetonitrile), and held for 1 min.  The mobile phase composition was increased to 100% 

B by 2 min. and held for 1 min., before it was returned to the initial conditions.  The 

samples were analyzed in a run time of 6 min. Mass spectrometry was carried out using a 

ThermoFinnigan TSQ Quantum Ultra (Thermo Scientific, Waltham, MA) mass 

spectrometer in positive ion mode.  Xcalibur (version 2.0) software was used for 

instrument control and data collection.  The ESI source was fitted with a stainless steel 

capillary (100 μm i.d.).  Nitrogen was used as both the sheath gas and the auxiliary gas. 

The ion- transfer capillary tube temperature was 300ºC.  The spray voltage, tube lens 

voltage, pressure of sheath gas and auxiliary gas were optimized to achieve maximal 

response using the test compounds infused with the mobile phase A (50%) and B (50%) 

at a flow rate of 0.6 ml/min. Collision-induced dissociation (CID) was performed on the 

test compounds and internal standards under 1.0 mTorr of argon.  Selected reaction 

monitoring (SRM) was carried out using the transitions from m/z 310 to 121 @ 17 eV for 

BQCA and m/z 310 to 223 @ 25 eV for the internal standard.  The unknown 

concentrations were determined against calibration curves constructed by spiking known 

amounts of test compounds into the blank brain homogenate and plasma samples. A 

linear response was achieved from 10 ng/ml to 2 µg/ml in plasma and 10 ng/ml to 1 

µg/ml in brain homogenates.  PK parameters were calculated by non-compartmental 

analysis of individual concentration-time data using WinNonLin, version 5.2.1 (Pharsight 

Corporation, Mountain View, CA). 
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Amphetamine-Induced Hyperlocomotion: Chapter IIIb 

 All behavioral studies were conducted using male Sprague-Dawley rats (Harlan 

Sprague-Dawley, Inc., Indianapolis, IN) weighing 270 to 300 g.  Subjects were housed in 

pairs in a large colony room under a 12-h light/12-h dark cycle (lights on at 6:00 AM) 

with food and water provided ad libitum. Test sessions were performed between 6:00 AM 

and 6:00 PM.  Dose groups consisted of 8 to 16 rats per dose group.  All doses of M4 

PAMs VU0152099 and VU0152100 refer to the salt form and were injected in a 1.0 

ml/kg volume.  Each compound was dissolved in 10% Tween 80 and double deionized 

water with the pH adjusted to approximately 7.0 using 1 N NaOH.  

Apparatus:  Amphetamine-induced hyperlocomotor activity studies were conducted 

using a SmartFrame Open Field System (Kinder Scientific., San Diego, CA) equipped 

with 32 horizontal (x- and y-axes) infrared photobeams located 1 cm above the floor of 

the chamber.  Changes in ambulation or locomotor activity were measured as the number 

of total photobeam breaks, expressed in 5-min intervals, and were recorded with a 

Pentium I computer equipped with the Motor Monitor System software (Kinder 

Scientific).  

Procedure:  Rats were placed in the open-field chambers for a 30-min habituation 

interval (data not shown), followed by a pretreatment with vehicle or a 56.6 mg/kg i.p. 

dose of either M4 PAM VU0152099 or M4 PAM VU0152100 for an additional 30 min.  

Next, all rats received an injection of 1 mg/kg s.c. amphetamine, and locomotor activity 

was measured for an additional 60 min.  Data were analyzed by a one-way ANOVA with 

comparison with the vehicle + amphetamine control group using Dunnett's test.  
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Calculations were performed using JMP version 5.1.2 (SAS Institute Inc., Cary, NC) 

statistical software.  

Rotorod Test:  The effects of M4 PAM VU0152100 on motor performance were 

evaluated using a rotorod (Columbus Instruments, Columbus, OH).  All rats were given 

an initial training trial of 120 s, followed by two additional training trials of 85 s, 

approximately 10 min apart, using a rotorod (7.5 cm in diameter) rotating at a constant 

speed of 20 revolutions per min.  After initial training trials, a baseline trial of 85 s was 

conducted, and any rats that did not reach the 85-s criteria were excluded from the study.  

Rats were then pretreated for 30 min i.p. with vehicle or dose of M4 PAM VU0152100, 

specifically 30, 56.6, or 100 mg/kg, and then the time each animal remained on the 

rotorod was recorded; animals not falling off of the rotorod were given a maximal score 

of 85 s.  Data were analyzed by a one-way ANOVA, with comparison to the vehicle 

control group using Dunnett's test.  Calculations were performed using JMP version 5.1.2 

(SAS Institute Inc.) statistical software. 

 

Reversal Learning: Chapter IV 

 Forty Tg2576 mice on the 129S6 background were obtained when they were 10 to 

12 weeks of age from Taconic (Hudson, NY, USA).  Tg2576 APPsw mice over-

expressed a 695 amino acid splice form (Swedish mutation K670N M671L) of the human 

amyloid precursor protein (APP695) that results in an five-fold increase in Aβ 1–40 and a 

14-fold increase in Aβ 1–42 with increasing age (Hsiao et al., 1996).  In this study, 10 

hemizygous males and 12 of their wild type male littermates and  9 hemizygous females 

and 9 of their wild type female litter mates were individually housed, maintained on a 12 
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hour light:dark cycle (lights on at 8:00 a.m), with ad libitum food and water.  At 

approximately 12 months of age evaluation of reversal learning began.  The mice were 

divided into groups and counter-balanced for genotype and treatment type, either BQCA 

or vehicle.  Experiments were performed during the light cycle.  Before the start of 

testing, subjects were placed on a restricted food diet of approximately 1 to 2 grams of 

food per day, contingent on their performance on the food motivated tasks.  A weight 

basis of 85% of their pre-food deprivation weight was used as a guideline to avoid 

excessive weight loss.  Water was available ad libitum during all phases of testing.  All 

experimental procedures were approved by the Wake Forest University School of 

Medicine Animal Care and Use Committee and were conducted in compliance with 

guidelines set forth in the NIH Guide for Care and Use of Laboratory Animals. 

Apparatus:  The reversal-learning test was adapted from a rat set-shifting paradigm.  

Subjects were trained to dig in identical terra cotta pots to retrieve a food reward.  A 

1/20th piece of a Reese’s Peanut Butter Chip (The Hershey Company) was the food 

reward.  Pots were 1 ¾” in diameter and 1 ½” deep.  A square of vinyl window screen 

was glued inside the pot to form a cavity underneath the pot in which to place a food 

reward that was unobtainable by the subject to serve as a control for odor.  Essential Oils 

(New Directions Aromatics, San Ramon, CA) were applied to the rim of the pot to 

produce a long-lasting odor and media placed inside the pots to a depth that produced 

vigorous digging for the subject to reach the food reward.  Each odor had unique pots 

assigned to it and the pots were filled with the corresponding media and placed in a 

plastic sealable container where they were returned after each use.     
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 Testing was carried out in the subject’s home cage placed inside an ordinary 24” 

(length) x 16” (width) x 16” (depth) cardboard box to shield the subject from seeing 

movement within the room.  A plexiglass holder was fabricated to insert and remove two 

pots at a time from the testing cage. The two pots were separated by a plexiglass 

partition.  A 1000 ml plastic beaker was painted black and placed over the subject at the 

end of the cage closest to the experimenter to create a holding area.  When the holder 

with the two pots was placed at the opposite end of the cage, the subject was then 

released from the black beaker.  Upon completion of the dig, the subject was recovered to 

the holding area with the black beaker.  Between all discriminations, the inter-

discrimination delay was approximately three minutes. 

Habituation and Shaping:  After three days of food deprivation, subjects in their home 

cages were habituated to the test apparatus (holding beaker and pot holder) and then 

shaped to dig a reward after release from the holding beaker. Two pots were filled with 

Alpha-Dri (Shepherd Specialty Papers) and a reward was randomly placed at the very 

bottom of either pot to encourage the subject to dig vigorously to find it.  The subjects 

were released from the holding area and allowed to dig in the pots.  When the reward was 

found, the subject was recovered to the holding area using the black beaker.  A pot was 

re-baited randomly and the trial re-run until a total of ten digs was recorded.  If the 

subject did not reach ten digs, this habituation procedure was repeated the following day.  

No subject required more than two days of habituation. 

Testing Paradigm:  The reversal learning digging task was used previously in Tg2576 

mice (Zhuo et al., 2007; Zhuo et al., 2008).  The reversal learning testing was performed 

with olfactory discriminations as this has proven, in our hands, to be the more difficult of 
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discriminations compared to using media as the stimulus.  One hour before testing, 

BQCA or vehicle was administered s.c. to the subjects at 30 mg/kg.  The first four trials 

of the discriminations (exploratory trials) allowed the subject to explore both pots to find 

the reward.  If the reward was found, a correct response was recorded and the subject 

recovered to the beaker.  If digging first occurred in the non-reward pot, an error was 

recorded and the subject was allowed to search the other pot for the reward.  If the subject 

remained motionless for one minute, a “no dig” was recorded, the trial discontinued and 

the next trial started.  In the subsequent trials after the initial four, a correct dig was 

recorded when the subject retrieved the reward and an incorrect dig “error” was recorded 

if the subject dug vigorously in the incorrect pot.  Vigorous digging was defined as the 

subject having its head and shoulders within the pot and using its paws to vigorously 

move the media.    The subject was limited to 40 trials to reach criteria.  No subjects were 

eliminated due to the 40 trial limit. Analysis was based on the total number of trials the 

subject took to reach the criteria of six correct trials in a row including the first four 

exploratory trials but not counting correct trials within the exploratory trials as part of the 

six correct trials.   

 Media and odor for the compound discriminations were established in pairs to 

reduce the degrees of freedom (see Table 1).  For example, in a simple discrimination 

(SD) using odor as the relevant dimension, aniseed odor would always be on one pot 

while benzoin odor would always be on the other pot.  Alpha-Dri medium was always 

used as the irrelevant dimension in both pots in the simple discriminations.  In the 

compound discrimination (CD), two separate pairs of pots were used and presented to the 

subjects in pairs in a random order.  For example, the first pair of pots would have the 
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exemplar, jamaroosa root, paired with soft sorbent in one pot and myrrh paired with soft 

snow in the other.  The second pair of pots would have the exemplar, jamaroosa root, 

paired with soft snow in one pot and myrrh paired with soft sorbents in the other. 

 Two shaping SD’s were run the first day of testing.  Each subject was allowed one 

discrimination with medium as the relevant dimension and one discrimination with odor 

as the relevant dimension.  Once a pair of dimensions had been used during the shaping 

SD’s, they were not presented to the subjects again in the testing paradigm (for an 

example of experimental design, see Table 2).   

 On the second day of testing, simple odor discrimination was performed first.  

Upon reaching criteria for the SD, a simple discrimination reversal (SDR) was performed 

so that the pot with the odor that was not rewarded now became the rewarded pot.  

Following that, a compound discrimination was performed.  An irrelevant dimension 

(different media) was added at this point that had no predictive power on the location of 

the reward.  Upon reaching criteria on the compound discrimination, a compound 

discrimination reversal (CDR) was performed so that the pot with the odor that was not 

rewarded now became the pot with the odor with the reward.   

Statistical analysis:  Data for each phase of the digging test (e.g., simple discrimination, 

compound discrimination) were analyzed using a chi-square analysis and subsequent 

odds ratio calculation to identify the relative likelihood of choice errors on the 

discrimination tests in the presence of BQCA within the two groups.  Each task phase 

was analyzed independently.  Since most subjects had excellent performance with no 

errors, only those subjects making 1 or more errors were selected for analysis. 
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Table 1.  Media and Odor Pairings for reversal learning with exemplars in bold. 
 
 

Media Pairs Odor Pairs 

M1A = CUT FOAM M1B = CUT MOSS O1A = ANISEED O1B = BENZOIN 

  02A = VANILLA O2B = ORANGE 

M3A= SOFT 
SORBENT 

M3B = SOFT 
SNOW 

O3A = 
JAMAROOSA 

ROOT
O3B = MYRRH 

 
 
 
 
 
Table 2.  Example of Experimental Design for reversal learning with exemplars in bold. 
 
 
Discriminations Dimensions Exemplar Combinations 

 Relevant Irrelevant + - 
Day 1 Shaping     

SD1 Odor  O1A O1B 
SD2 Media  M1A M1B 

Day 2 Testing     

SD3 Odor Medium O2A O2B 
SDR Odor Medium O2B O2A 
CD Odor Medium O3A/M3A O3B/M3B 

CDR Odor Medium O3B/M3B O3A/M3A 
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Amyloid precursor protein (APP) processing 

 PC12 N21 cells (a gift from Dr. Richard Burry, Ohio State University, Columbus, 

OH) were maintained in DMEM containing 10% horse serum, 5% fetal clone, 100 U/ml 

penicillin, and 100 µg/ml streptomycin at 37°C and 5% CO2.  A humanized amyloid 

precursor protein sequence bearing the Swedish mutation (KM670/671/NL) was cloned 

in place of green fluorescent protein (GFP) in the FUGW backbone.  High titer virus (~1 

x 109 infectious particles/ml) was used to transduce PC12 N21 cells.  The amyloid 

precursor protein (APP)-infected cells were subsequently infected with a lentivirus in 

which GFP was replaced by the human M1 muscarinic receptor sequence.  For amyloid 

processing experiments, cells were plated at 50,000 in 12-well trays 3-4 days before the 

experiment.  On the day of the experiment, the culture medium was replaced with 450 μL 

of Dulbecco’s Modified Eagle’s Medium (DMEM) containing the indicated 

concentration of BQCA or DMSO.  Following a 10 min pre-treatment, CCh was added in 

50 μL DMEM to the indicated final concentrations, and the medium was conditioned for 

4 hr at 37°C.  Conditioned medium was collected and centrifuged at 17,000 x g for 5 min 

to remove any cellular debris. Cells were placed on ice, rinsed with cold PBS, and 

harvested in PBS containing protease inhibitor cocktail (Roche Diagnostics).  Primary 

antibodies included 6E10 (APP Aβ domain; Signet) and C8 (APP C terminus; a gift from 

Dr. Dennis Selkoe, Center for Neurologic Diseases, Harvard Medical School, Boston, 

MA).  Amyloid-β40 (Aβ40) levels were measured using the hAmyloid β40 ELISA (HS) kit 

(The Genetics Company) according to the instructions of the manufacturer.  Plates were 

read at 450 nm on a Spectra Max Plus plate reader (Molecular Devices).  For Western 

blots, a total of 50 µg of protein from cell extracts or 15 µl of conditioned medium was 
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prepared in Laemmli's sample buffer, separated by SDS-PAGE, and transferred to 

Immobilon-P membranes (Millipore, Bedford, MA).  Membranes were blocked at room 

temperature for 30 min and incubated with primary antibodies overnight at 4°C.  Blots 

were rinsed and incubated with fluorophore-conjugated secondary antibodies (Invitrogen 

and Rockland) for 1 h at room temperature.  Blots were imaged, and band intensities were 

quantified using an Odyssey Image Station (LI-COR).  Statistical analysis was performed 

using Graphpad Prism 4.0 software. 
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CHAPTER IIIA 

 

AN ALLOSTERIC POTENTIATOR OF M4 mAChR MODULATES 
HIPPOCAMPAL SYNAPTIC TRANSMISSION 

 

Introduction 

One of the most important neuromodulatory systems responsible for regulation of 

multiple aspects of central nervous system (CNS) function is a widespread network of 

neurons that employ ACh as the primary neurotransmitter.  Cholinergic projections from 

the basal forebrain provide major modulatory inputs to the cortex and hippocampus 

(Brown and Zador, 1990) and play a critical role in memory and attention mechanisms 

(Drachman and Leavitt, 1974; Bartus et al., 1982; Fibiger, 1991).  Furthermore, abundant 

evidence suggests that the clinical syndrome associated with Alzheimer’s disease (AD) 

results, at least in part, from failed neurotransmission at cholinergic synapses in the 

hippocampus and neocortex.  There are also a number of other critical cholinergic 

systems in the central nervous system, including cholinergic interneurons in the striatum 

and other midbrain regions, as well as cholinergic projection neurons in various brain 

stem regions (Brown and Zador, 1990; Cooper and Sofroniew, 1996).  Together, these 

cholinergic pathways have been implicated in a wide variety of CNS functions including 

nociception, regulation of sleep/wake cycles, motor control, and arousal.  Agents that 

regulate cholinergic transmission have been proposed to have potential efficacy in a wide 

variety of CNS and neurodegenerative disorders including chronic and neuropathic pain, 

sleep disorders, epilepsy, schizophrenia, Alzheimer’s disease, and Parkinson’s disease 
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(Hartvig et al., 1989; Eglen et al., 1999; Bymaster et al., 2003a; Katzenschlager et al., 

2003).  

Based on this broad influence of cholinergic systems in the CNS, it is surprising 

that there have not been greater advances in development of therapeutic agents that target 

cholinergic signaling.  Efforts to develop agents that enhance cholinergic transmission for 

ameliorating the loss of cognitive function in patients with AD and other memory 

disorders have been partially successful, and clinical trials with tacrine and other acetyl 

cholinesterase (AChE) inhibitors have established dose-related improvements in 

measures of cognitive performance and quality of life (Davis et al., 1992; Rogers et al., 

1998; Raskind et al., 1999; Wilkinson and Murray, 2001).  More recently, cholinergic 

agents have been shown to reduce behavioral disturbances and psychotic symptoms in 

patients suffering from AD as well as a variety of other neurodegenerative disorders 

including Lewy body dementia, Parkinson’s disease dementia, vascular dementia, and 

schizophrenia (Kaufer et al., 1998; Bullock and Cameron, 2002; Feldman, 2002; Rosler, 

2002; Mirza et al., 2003).  However, while this clinical validation of the efficacy of 

cholinergic agents is exciting, all cholinergic agents developed thus far have dose 

limiting adverse effects that prevent widespread use in the clinic.  These adverse effects 

are primarily due to activation of muscarinic acetylcholine receptors (mAChRs) in the 

periphery. To take advantage of the therapeutic potential of manipulating cholinergic 

systems, it will be critical to develop new approaches for selectively regulating 

cholinergic signaling in central circuits involved in CNS disorders while avoiding the 

peripheral adverse effects associated with currently available treatments.   
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Evidence suggests that cholinergic transmission in many of the most critical CNS 

circuits is mediated primarily by mAChRs (Brown and Zador, 1990).  Of the five 

mAChR subtypes that have been identified (termed M1 – M5), M1 and M4 are most 

heavily expressed in the CNS and are the most likely candidates for mediating the effects 

on cognition, attention mechanisms, and sensory processing (Marino et al., 1998; Rouse 

et al., 1999; Rouse et al., 2000b).  In contrast, the most prominent adverse effects of 

cholinergic agents (bradycardia, GI distress, salivation, and sweating) are mediated by 

activation of peripheral M2 and M3 mAChRs (Okamoto et al., 2002; Bymaster et al., 

2003b; Bymaster et al., 2003a).  To attempt to avoid these peripheral side effects, 

considerable effort has been focused on developing subtype-selective agonists for 

treatment of AD and other CNS disorders (Messer, 2002a).  Unfortunately, these efforts 

have been largely unsuccessful because of an inability to develop compounds that are 

highly selective for a single mAChR relative to other mAChR subtypes (Caulfield and 

Birdsall, 1998; Felder et al., 2000).   

The difficulty in developing mAChR subtype-selective compounds is likely due 

to the high level of conservation of the ACh binding site (Wess, 1996).  In recent years, 

we have been very successful in developing highly selective allosteric potentiators of 

metabotropic glutamate receptors (mGluRs) (Marino et al., 2003; O'Brien et al., 2003; 

Kinney et al., 2005; Galici et al., 2006), which are members of the family III/C GPCRs.   

These compounds do not activate the receptor directly but interact with an allosteric site 

to potentiate responses to activation of the receptor by traditional agonists.  These 

compounds provide unprecedented selectivity for the intended receptor and can have 

behavioral effects in vivo that are very similar to those of direct acting agonists.   
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Interestingly, the strychnine analog, brucine, is a weak allosteric potentiator of M1 

(Lazareno et al., 1998), and thiochrome has been reported as an M4 allosteric potentiator 

(Lazareno et al., 2004).  These findings suggest that this approach can also be applied to 

mAChRs.   More recently, a report showed that a novel compound, LY2033298 (Fig. 2), 

is a robust allosteric potentiator highly selective for the human M4 mAChR subtype 

(Chan et al., 2008).  We used this structure to initiate cheminformatics and medicinal 

chemistry studies in which we have now identified a series of highly selective, robust 

allosteric potentiators of rat M4 (rM4).  Using these compounds along with M4 KO mice, 

we now report that M4 is one of the primary mAChR subtypes responsible for regulating 

excitatory but not inhibitory synaptic transmission at a key synapse in the hippocampal 

formation that is thought to be important for cholinergic regulation of certain aspects of 

cognitive function. 
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Figure 2.  Database mining yields a series of compounds from the ChemBridge library 
with allosteric potentiator activity at the rat M4 receptor.  A.  Chemical structures of 
LY2033298 and test compounds 7904200, 7911703, and 7912361.  B.  Effect of a 
representative allosteric potentiator hit on the rat M4 calcium mobilization response to an 
EC20 concentration of ACh (15 nM).  The responses to an EC20 concentration of ACh in 
the presence of vehicle (●) and test compound 7912361 (10 μM, ---) are shown.   Also 
shown is the response to a maximally effective concentration of ACh (10 μM, ).  Traces 
are from one representative experiment.  C.  The activity of the most robust allosteric 
potentiators from the ChemBridge series is shown (black bars); responses were 
normalized as percentage of the maximum response to 10 μM ACh after preincubation 
with vehicle (white bar) and compared to the EC20 response in the presence of vehicle 
(grey bar); bars represent the mean ± S.E.M. from four independent experiments, each 
performed in singlicate.  Database mining performed by A. Rodriguez. 
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Results 

 

Database mining of the ChemBridge chemical library yields a focused library of 232 
compounds with possible M4 PAM activity 
   
 The structure of the novel M4 mAChR allosteric potentiator, LY2033298 (Chan et 

al., 2008), is shown in Fig. 2.  We performed a search of compounds contained within the 

chemical database of ChemBridge Corp. (San Diego, CA) for compounds containing a 

core structure similar to this compound.  This search yielded a set of 232 compounds 

whose chemical ID numbers are listed in Table 3.  These compounds were purchased and 

tested for activity as allosteric potentiators of M4 in Chinese hamster ovary (CHO) cells 

stably expressing rM4 and the chimeric G-protein, Gqi5 (Coward et al., 1999).  Activation 

of rM4 was assessed using a functional fluorescence-based calcium assay.  To identify 

compounds that potentiated agonist activation of rM4, we determined the response to an 

EC20 concentration of acetylcholine (ACh, 15 nM) in the absence and presence of test 

compound.  Representative calcium fluorescence traces illustrating the effects of EC20 

(15 nM, ●) and EC100 (10 μM, ─) concentrations of ACh after pre-incubation with 

vehicle are shown in Fig. 2.  In addition, the effect of a representative test compound that 

potentiated the effect of 15 nM ACh is shown (−−).  Compounds that increased the 

response to 15 nM ACh at least 2 standard deviations above the vehicle control in at least 

three of four independent experiments were defined as putative allosteric potentiators of 

the receptor.  Compounds that met this criterion are highlighted in bold within Table 3.  

Secondary assays were performed to confirm initial hits, and compounds 7904200, 

7911703, and 7912361 were found to be the most robust potentiators in this collection; 

the activity of these compounds is shown in Fig. 3, and the structures of these three lead 
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compounds are shown in Fig. 2.  These compounds had no effect on M4 alone but 

increased the functional response to a sub-maximal concentration of ACh when 

compared to vehicle control. 
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Table 3.  Identification numbers of compounds and hits from the ChemBridge library. 

 

Compounds that potentiated the rM4 response to ACh at least 2 standard deviations above the 
mean EC20 response compared to vehicle in at least three of four independent experiments are 
shown in bold. 

5169108 6387497 7870176 7412870 6659786 7904152 
5212048 7490526 7870578 7414550 6660698 7904200 
5231589 7494270 7854487 7424915 6662916 7904411 
5240462 7498365 7857288 6388075 6663230 7904463 
5240467 7499445 7859283 6389172 7870944 7911696 
5251219 7506534 7863792 6392658 7871282 7911698 
5255524 7512235 7866797 6394090 7872987 7911699 
5271808 7514919 7867196 6394713 7874317 7911700 
5275133 7530053 7870176 6395313 7874468 7911703 
5276901 7535026 7870578 6397197 7875849 7911705 
5277323 7535375 6684242 6399377 7878578 7911706 
5277481 7538140 6686650 6399865 7879850 7912361 
5278619 7542163 6688345 6403645 7880651 7932590 
5280655 7543470 6688888 6406928 7880971 7936360 
5280786 7549000 6691423 6410109 7881499 7938195 
5282186 7562976 6792256 6417144 7903663 7940724 
5282257 7566498 6801885 6418448 7903681 7940923 
5282377 7613501 6816325 6419303 7903683 7950152 
5285006 7659652 6819140 6419575 7903694 7951001 
5377101 7673326 6830908 6420481 7903706 7953070 
5468907 7674625 6837167 6422275 7903729 7954474 
5474303 7674750 6851361 6422766 7903731 7957062 
5716785 7745085 6867990 6426854 7903735 7958103 
5728212 7746407 6933087 6626765 7903737 7959199 
5788658 7753203 6946842 6631832 7903799 7964860 
5835275 7832304 6955524 6632612 7903810 7980513 
5835470 7845204 6975540 6638434 7903841 7981803 
5835633 7845460 6976958 6640339 7903867 7993127 
5919559 7847172 6983578 6640650 7903947 7993539 
6034849 7847589 7084505 6642571 7903960 7993727 
6043941 7850005 7139207 6643255 7903986 7995223 
6045083 7852383 7139699 6645298 7904013 7997155 
6047710 7852850 7149817 6646017 7904046 9000975 
6048642 7854487 7191812 6646204 7904047 9003285 
6157275 7857288 7210223 6646749 7904048 9003877 
6244219 7859283 7354970 6648211 7904049 9004590 
6342131 7863792 7358962 6652559 7904064 5809177 
6350328 7866797 7403247 6653720 7904095  
6362515 7867196 7410242 6656495 7904104  
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Figure 3.  Lead compounds robustly potentiate M4-mediated calcium mobilization and 
are selective for M4 relative to other mAChR subtypes.  A.  CRCs of each compound 
were performed in the presence of an EC20 concentration (15 nM) of ACh.  Data were 
normalized to the maximum M4 response to 10 μM ACh.  Points represent the mean of 
three independent experiments performed in triplicate, and error bars represent S.E.M.  B.  
The CRC of ACh in the presence of 10 μM compound 7904200 (□), 7911703 (Δ), or 
7912361 (○) is shifted leftward when compared to vehicle control, and the leftward shift 
is accompanied by an increase in the maximal M4 response.  Points represent the mean of 
five experiments performed in triplicate, and error bars represent S.E.M.  C.  There was 
no significant change in the ACh EC50 in cells expressing rM1, hM2 and Gqi5, hM3, or 
hM5 after pre-incubation with either vehicle or 10 μM test compound as shown by 
overlapping ACh CRCs.  Data were normalized as percent maximum response to 10 μM 
ACh; points represent mean ± S.E.M (n = 3). 
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Primary screening hits are robust, subtype selective allosteric potentiators of rat M4  

 The potency of each compound was determined by pre-incubating cells with 

vehicle or increasing concentrations of test compound followed by the addition of an 

EC20 concentration (15 nM) of ACh to yield concentration-response curves (CRCs) as 

shown in Fig. 3.  The responses to these compounds did not reach a clear plateau in the 

concentration range used, and solubility limits prevented further increases in 

concentrations.  However, in the concentration ranges tested, compound 7912361 was the 

most potent with an EC50 of 395 ± 28 nM, while compounds 7904200 and 7911703 had 

EC50 values of 6 ± 0.28 μM and 1.3 ± 0.28 μM, respectively.   

We next determined the effects of maximal concentrations of each compound on 

the CRC of ACh.  Cells were pre-incubated with a fixed concentration (10 μM) of test 

compound and subsequently stimulated with increasing concentrations of ACh.  Each 

compound induced a leftward shift of the ACh CRC and increased the maximal response 

to ACh (Fig 3).  The EC50 value for ACh in the presence of vehicle was 87 ± 12 nM, 

whereas the EC50 values were 34, 12, and 4 nM in the presence of compounds 7904200, 

7911703, and 7912361, respectively.   Thus, compound 7912361 proved to be the most 

robust potentiator causing a 21-fold leftward shift in the ACh CRC (Fig. 3).  

Experiments were then performed to assess the functional selectivity of our three 

lead compounds at potentiating M4 responses relative to other mAChRs.  Cells 

expressing rM1, rM2-Gqi5, rM3, or rM5 were incubated first with 10 μM test compound or 

vehicle, then with increasing concentrations of ACh to test whether these potentiators 

would have any effect on functional mAChR responses in these cell lines.  As shown in 

Fig. 3, among the five muscarinic receptor subtypes, these three novel compounds 
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possess perfect functional subtype selectivity for M4 as shown by their lack of effect on 

any other mAChR in the absence or presence of ACh.  Because the experimental protocol 

measures real-time calcium mobilization during a pre-incubation with each test 

compound, any agonist or antagonist as well as allosteric modulator activity is detected.  

The ACh CRCs for rM1, rM2, rM3, and rM5 in the presence of vehicle or 10 μM test 

compound are virtually overlapping with no effect on the functional ACh EC50. 

 

Chemical optimization of primary M4 allosteric potentiator hits 

 The results from the 232 compound screen were analyzed to understand the 

structure activity relationship of the compounds. The top three lead compounds had a 

dimethyl substitution on the pyridine ring, and most compounds that had larger 

substitutions lost all activity. Substitution of the primary amine was mostly tolerated but 

resulted in loss of some activity. We chose to keep the primary amine and substitute the 

amide functionality with side chains related to compounds 7904200 and 7912361.  A 

collection of 10 amines were acylated with bromoacetyl bromide to give the 

corresponding bromo amides (Fig. 4). Subsequent ‘one-pot’ alkylation and cyclization of 

mercaptopyridine with the bromo amides using KOH provided compounds VU10001-

VU10010 (Fig. 4) as yellow solids after conversion to their TFA salts. 
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Figure 4.  Synthesis of compounds in the VU10000 series.  A collection of 10 amines 
were acylated with bromoacetyl bromide to give the corresponding bromo amides.  
Subsequent alkylation and cyclization of mercaptopyridine with the bromo amides using 
KOH provided compounds VU10001-VU10010.  Syntheses performed by D. Orton and 
R. Williams. 
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Characterization of novel compounds in the VU10000 series   

 To test this small library of ten compounds for rM4 allosteric potentiator activity, 

functional experiments identical to the ones described above were performed.  Fig. 5 

shows the response of cells expressing rM4 and Gqi5 to an EC20 concentration of ACh in 

the presence of either vehicle (EC20 grey bar) or test compound (black bars) as compared 

to the maximum response to 10 μM ACh after pre-incubation with vehicle (white bar).  

All compounds except VU10007 showed allosteric potentiator activity; VU10005, 

VU10008, and VU10010 caused the largest potentiation of the EC20 response and these 

compounds were selected for further testing.  CRCs of these potentiators showed that all 

three compounds have submicromolar potencies; compounds VU10005, VU10008, and 

VU10010 have EC50 values of 300 ± 75 nM, 715 ± 160 nM, and 400 ± 100 nM, 

respectively (Fig. 5b).  When comparing the rM4 ACh CRC in the presence of either 

vehicle or 10 μM test compound, we found VU10010 to be the most robust allosteric 

potentiator as is shown by the 47-fold shift in the ACh EC50 (Fig. 5c).  The EC50 value of 

ACh was 33 ± 9 nM in the absence of VU10010 and 0.7 ± 0.2 nM in the presence of this 

compound.  All three lead compounds in the VU10000 series produced greater leftward 

shifts in the functional rM4 response to ACh than the best lead compound from the 

ChemBridge library, compound 7912361, which induced a 21-fold increase in ACh 

potency (Fig. 3 and 5).  Compounds VU10005 and VU10008 produced 30- and 37-fold 

leftward shifts in the curve, respectively.  From these data, we concluded that VU10010 

had the best combination of potency and efficacy of all compounds tested, and we chose 

this allosteric potentiator for use in all subsequent experiments.  The next critical step 
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was to confirm that VU10010 maintained the high degree of subtype selectivity that was 

shown for compounds in the ChemBridge series. 
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Figure 5.  Chemical optimization generates compounds that potentiate M4-mediated calcium 
mobilization with greater efficacy than lead compound 7912361.  A.  Nine of the ten compounds 
synthesized and tested showed allosteric potentiator activity (black bars) compared to the ACh 
EC20 control (grey bar).  Data were normalized to the maximal response to 10 μM ACh (white 
bar).  Bars represent the mean ± S.E.M. of five independent experiments, each performed in 
triplicate.  B.  The three compounds that showed the highest degree of potentiation in panel (A.) 
were further characterized to determine their potencies.  As shown by their CRCs, all three 
compounds have potencies in the submicromolar range.  C.  When compared to compound 
7912361, all three lead compounds in this series induced a more robust leftward shift in the rM4 
ACh CRC as well as a larger increase in the maximal response.  Points represent mean ± S.E.M. 
(n = 3). 
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 Figure 6 shows that the response to ACh in cell lines expressing each of the other 

mAChR subtypes is unaffected in the presence of a maximal (10 μM) concentration of 

VU10010 when compared to vehicle control.  To further investigate the functional 

selectivity of this allosteric potentiator, we performed parallel experiments with cells 

expressing two unrelated receptors.  The family I/A GPCR P2Y1 is a Gαq-coupled 

receptor endogenously expressed in rM4-CHO cells that, when activated by ATP, 

stimulates intracellular calcium mobilization.  The family III/C GPCR mGluR5 also 

activates PLCβ via Gαq to cause calcium release from intracellular stores upon 

stimulation by glutamate.  VU10010 (10 μM) had no agonist, antagonist, or allosteric 

potentiator activity at P2Y1R or mGluR5 (Fig. 7). 
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Figure 6.  VU10010 is selective for the rM4 receptor relative to the other mAChRs.  
VU10010 showed no activity at rM1, hM2, hM3, or hM5 compared to the robust 
potentiation of rM4 where preincubation with 10 μM VU10010 (○) causes a 47-fold 
decrease in the ACh EC50.  Points represent mean ± S.E.M. (n = 3). 
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Figure 7.  VU10010 showed no agonist, antagonist, or potentiator activity at two GPCRs 
unrelated to rM4 mAChR.  Agonist CRCs from cells expressing the ATP receptor, P2Y1  
(A.), or the metabotropic glutamate receptor, mGluR5 (B.), were overlapping in the 
presence of 10 μM VU10010 (○) compared to vehicle control.  Data points represent 
mean ± S.E.M. (n = 3). 
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VU10010 binds allosterically and increases M4 receptor affinity for ACh  

 In order to determine the effects of VU10010 on orthosteric binding and to further 

confirm an allosteric mechanism of binding, we performed equilibrium radioligand 

binding studies.  Membranes prepared from cells expressing rM4 were incubated with a 

non-saturating concentration of the orthosteric site antagonist [3H]NMS (0.1 nM) in the 

absence or presence of increasing concentrations of either atropine or VU10010.  

Consistent with atropine’s high affinity at the orthosteric site, this compound displaced 

[3H]NMS binding with an Ki value of 0.52 ± 0.23 nM.  In contrast, VU10010 did not 

displace [3H]NMS binding at concentrations up to 30 μM, which is 75 times the EC50 

value of this compound at potentiating responses to ACh (Fig. 8).  While this finding 

does not exclude the possibility that VU10010 could alter [3H]NMS binding under some 

conditions, it provides strong support for the functional data and further suggests that 

VU10010 acts at a site on the M4 receptor that is distinct from the 

orthostericantagonist/agonist binding site.  To further confirm that VU10010 is selective 

for M4 relative to other mAChRs, we performed parallel binding experiments using 

membranes from cell lines expressing rM1, rM2, rM3, and rM5.  As shown in Fig. 9, this 

compound does not displace [3H]NMS binding at any mAChR subtype. The [3H]NMS 

Kd, Bmax, and atropine Ki values for each mAChR from saturation and competition 

binding experiments are listed in Table 4. 
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Table 4.  Radioligand binding parameters for mAChR-expressing cell lines.     

 [3H]NMS Kd (nM) Bmax (fmol/mg) Atropine Ki (nM) 
rM1 0.131 ± 0.004 509 ± 12 0.79 ± 0.14 
hM2 0.296 ± 0.018 892 ± 60 1.45 ± 0.18 
hM3 0.109 ± 0.004 2313 ± 57 0.80 ± 0.07 
rM4 0.046 ± 0.004 247 ± 15 0.52 ± 0.23 
hM5 0.264 ± 0.006 968 ± 32 0.86 ± 0.07 

 

[3H]NMS Kd and Bmax for each receptor subtype were determined from saturation binding 
experiments.  Ki values for atropine were determined based on competition with 0.1 nM 
[3H]NMS at each mAChR.  Values are mean ± S.E.M (n = 3). 
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Figure 8.  Compound VU10010 binds to an allosteric site on M4 mAChR and causes an 
increase in affinity for ACh and M4-mediated [35S]GTPγS binding.  A.  Binding of 0.1 
nM [3H]NMS was displaced by atropine (■, Ki = 0.52 ± 0.23 nM) but not by VU10010 
(▲).  Data are from three independent experiments performed in triplicate.  Error bars are 
S.E.M.  B.  In a dose-dependent manner, VU10010 shifted the ACh competition curve 
leftward causing a 14-fold decrease in the Ki at maximal concentration of 10 μM (Δ).  
Data are mean ± S.E.M. (n = 3).  C.  VU10010 potentiates the response to ACh in 
membranes from cells expressing rM4.  VU10010 (○, 10 μM) induced a 10-fold decrease 
in the ACh EC50 when compared to vehicle control (■).  The leftward shift in the CRC 
was also accompanied by a 43 ± 12% increase in the maximal response.  Data represent 
mean ± S.E.M. (n = 3). 
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  One possible mechanism by which a compound could enhance receptor activation 

by an agonist is by increasing the receptor’s affinity for that agonist (Christopoulos and 

Kenakin, 2002).  As shown in Fig. 8, compound VU10010 does in fact induce a 

concentration-dependent shift in the potency of ACh at displacing rM4 [3H]NMS binding.  

At 10 μM, a concentration that causes maximal potentiation, VU10010 increased the 

apparent affinity of ACh 14-fold.  Thus, the Ki value for ACh at the orthosteric site 

decreased from 540 ± 72 nM in the absence of VU10010 to 39 ± 7 nM in the presence of 

10 μM VU10010.  These data suggest that this compound binds to an allosteric site on 

M4 mAChR and shifts the receptor into a conformation that has higher affinity for ACh. 

 

VU10010 enhances M4 coupling to downstream effector proteins 

The finding that VU10010 increases affinity of ACh for the orthosteric site 

suggests that this contributes to the ability of this compound to potentiate responses to 

ACh.  However, the magnitude of this shift (14-fold) is not sufficient to account for the 

magnitude of the shift in the ACh potency at increasing calcium mobilization (47-fold).  

Also, the shift in agonist potency was also accompanied by an increase in agonist 

maximal response which cannot be explained by an increase in affinity alone.  Thus, we 

examined the effect of VU10010 on the ability of M4 to increase activation of G proteins 

by measuring effects of this compound on ACh-induced increases in guanosine 5′-O-(3-

[35S]thiotriphosphate ([35S]GTPγS) binding.  To assess this, the effect of increasing 

concentrations of ACh on [35S]GTPγS binding to membranes from rM4-CHO cells was 

measured in the absence and presence 10 μM compound VU10010.  Compound 

VU10010 shifted the CRC of ACh at increasing [35S]GTPγS binding to the left and also 
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increased maximal [35S]GTPγS binding by roughly 50% (Fig. 8).  Thus, the EC50 value 

for ACh was 514 ± 82 nM in the absence of VU10010 and 51 ± 11 nM in the presence of 

this compound.  These data are consistent with the hypothesis that the allosteric 

potentiator not only increases affinity of the receptor for agonist but also increases 

coupling efficiency and efficacy. 
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Figure 9.  VU10010 does not compete for binding at rat M1, M2, M3, or M5.  Binding of 
0.1 nM [3H]NMS was displaced by atropine (■) but not by VU10010 (▲).  Data are from 
three independent experiments performed in triplicate, and error bars are S.E.M. 
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VU10010 enhances muscarinic depression of excitatory post synaptic currents in 
hippocampal CA1 pyramidal cells 
 
 Discovery of novel highly selective and potent allosteric potentiators of M4 

provides an unprecedented opportunity to begin functional studies aimed at determining 

the physiological roles of this receptor subtype in native preparations.  One of the most 

prominent effects of mAChR activation that is seen in a variety of forebrain and cortical 

regions is depression of transmission at excitatory glutamatergic synapses; in addition, 

muscarinic agonists can reduce transmission at inhibitory GABAergic synapses in these 

same circuits (Valentino and Dingledine, 1981; Bilkey and Goddard, 1985; Sheridan and 

Sutor, 1990; Pitler and Alger, 1994; Qian and Saggau, 1997; Fernandez de Sevilla and 

Buno, 2003).  However, the lack of subtype-selective ligands for specific mAChR 

subtypes has made it impossible to definitively determine which mAChR subtypes 

mediate each of these effects. Thus, we determined the effect of VU10010 on the ability 

of the non-selective mAChR agonist, carbachol (CCh), to reduce excitatory and 

inhibitory transmission at the Schaffer collateral-CA1 synapse in the rat hippocampus.  

Consistent with previous findings, CCh reversibly inhibited evoked EPSCs at Shaffer-

collateral-CA1 synapses in a concentration-dependent manner (Fig. 10).  CCh at 100 μM 

caused a marked reduction of EPSCs (16.1 ± 4.0 % of control value, n = 5, Fig. 10), 

whereas at a sub-maximal concentration of 1 μM, CCh induced a relatively small 

reduction of EPSCs (60.5 ± 4.1% of control value, n = 15; Fig. 10). In contrast, VU10010 

(5 μM) had no effect on excitatory transmission at this synapse when added alone (EPSC 

amplitude 107.9 ± 5.2% of the control, P = 0.16, n = 7; Fig. 10).  However, when 

VU10010 (5 μM) was co-applied with a sub-maximal concentration of CCh (1 μM), this 

compound increased the CCh-induced reduction of EPSCs (36.9 ± 5.7% of control, n = 7, 
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Fig. 10) when compared to the effect of 1 μM CCh alone (60.5 ± 4.1% of control value, n 

= 15; P = 0.0038, Fig. 10).  Thus, VU10010 potentiates CCh-induced inhibition of 

excitatory synaptic transmission at this critical synapse in the hippocampus.  As a 

negative control, we used VU10007, a closely related analog of VU10010 that is 

completely inactive as an allosteric potentiator of M4 in cell-based assays (see Fig. 5).  

VU10007 (5 μM) had no effect on the CCh-induced reduction of EPSCs (61.6 ± 5.0% of 

control value, n = 7, Fig. 10; compared to 60.5 ± 4.1% of control value by CCh alone, n = 

15; P = 1).  These results suggest that M4 is one of the mAChRs involved in the 

regulation of excitatory synaptic transmission at Schaffer collateral-CA1 synapses. 
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Figure 10.  VU10010 potentiates CCh-induced reduction of EPSCs but not IPSCs at rat 
hippocampal Shaffer collateral-CA1 synapses.  A.  Averaged EPSCs obtained from 
experiments in which the effects of the following reagents on EPSC amplitude were 
examined: 100 μM CCh (A1), 1 μM CCh (A2), 1 μM CCh with 5 μM VU10010 (A3), 1 
μM CCh with 5 μM VU10007 (an inactive analog of VU10010, A4).  B.  Bar graph 
summarizing the potentiation effect of VU10010 on CCh-induced reduction of EPSCs.  
Data represent mean ± S.E.M.  C.  Averaged IPSCs obtained from experiments in which 
the effects of the following reagents on IPSC amplitude were examined: 100 μM CCh 
(C1), 0.5 μM CCh (C2) and 0.5 μM CCh with 5 μM VU10010 (C3).  D.  Bar graph 
summarizing the effect of VU10010 on CCh-induced reduction of IPSCs in CA1 
pyramidal cells. Data are shown as mean ± S.E.M.  Experiments performed by Z. Xiang. 
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Muscarinic depression of inhibitory post synaptic currents is not affected by M4 
potentiation 
 
 Muscarinic receptors also play a role in regulating inhibitory synaptic 

transmission in hippocampal CA1 pyramidal cells (Valentino and Dingledine, 1981; 

Pitler and Alger, 1994).  Consistent with previous studies, we found that application of 

100 μM CCh greatly reduced monosynaptic IPSC amplitude to 10.9 ± 0.9% of control 

value (n = 3, Fig. 10), and a sub-maximal concentration of CCh (0.5 μM) caused a 

smaller reduction of IPSC amplitude (62.2 ± 3.5% of control, n = 6, Fig. 10). Application 

of the M4 potentiator VU10010 (5 μM) alone had no effect on IPSC amplitude (98.5 ± 

1.7 of control, n = 4, P = 0.875).  Furthermore, VU10010 (5 μM) had no effect on the 

depression of IPSCs induced by 0.5 μM CCh (61.7 ± 3.9% with CCh and VU10010, n = 

6, versus 62.2 ± 3.5% with CCh alone, n = 6, P = 0.82; Fig. 10). These results indicate 

that M4 mAChRs are probably not involved in muscarinic modulation of inhibitory 

synaptic transmission in CA1 pyramidal cells. To further test this hypothesis, we 

compared the effect of sub-maximal concentration of CCh on IPSCs in hippocampal CA1 

pyramidal cells in M4 knockout and WT mice.  At 2 μM, CCh caused a reduction of 

IPSCs with a comparable magnitude in both WT and M4 KO mice (56.0 ± 4.6% and 60.2 

± 2.7% of control values, n = 6 and n = 6, respectively; P = 0.48, Fig. 11).  While these 

data do not completely rule out a role for M4 in regulating IPSCs in WT animals, the data 

are consistent the hypothesis that M4 mAChRs are not involved in modulation of 

inhibitory synaptic transmission in CA1 pyramidal cells. 
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Figure 11.  VU10010 potentiates CCh-induced reduction of EPSCs in wild-type (WT) 
but not in M4 KO mice.  A.  Averaged EPSCs obtained from experiments in which the 
effects of the following reagents on EPSC amplitude in WT mice were examined: 100 
μM CCh (A1), 2 μM CCh (A2), and 2 μM CCh with 5 μM VU10010 (A3).  B.  Averaged 
EPSCs obtained from experiments in which the effects of the same reagents on EPSC 
amplitude in M4 KO mice were examined: 100 μM CCh (B1), 2 μM CCh (B2), and 2 μM 
CCh with 5 μM VU10010 (B3).  (C) Bar graph summarizing the effect of VU10010 on 
CCh-induced reduction of EPSCs in WT mice (white bars) and M4 KO mice (black bars). 
Data represent mean ± S.E.M.  Experiments performed by Z. Xiang and J.E. Ayala. 
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VU10010 potentiates CCh-induced reduction of EPSCs in wild-type (WT) but not in 
M4 knockout (KO) mice 
 
 To confirm that the potentiation effect of VU10010 on CCh-induced reduction of 

EPSCs was due to its action on M4 receptors, we examined the effect of VU10010 in M4 

KO mice (Gomeza et al., 1999).  As a control, we first assessed the effect of VU10010 in 

WT mice of the same mixed genetic background as the M4 KO mice. Similar to the result 

obtained from rats, CCh at 100 μM caused a sizable reduction of EPSCs at Schaffer 

collateral-CA1 synapses in WT mice (18.0 ± 0.9 % of control value, n = 6, Fig. 11), 

whereas at a sub-maximal concentration of 2 μM, CCh induced a smaller inhibition of 

EPSCs (53.7 ± 1.4% of control, n = 6; Fig. 11). Compound VU10010 (5 μM) had no 

effect on excitatory transmission at this synapse when added alone (EPSC amplitude 

102.5 ± 3.8% of the control, P = 0.31, n = 5; Fig. 11).  However, when co-applied with 2 

μM CCh, VU10010 (5 μM) significantly enhanced the CCh-induced reduction of EPSCs 

(39.8 ± 2.7% of the control, n = 5, Fig. 11) when compared to the effect of 2 μM CCh 

alone (54.7 ± 1.1% of control, n = 5; P = 0.0079, Fig. 11). 

In M4 KO mice, application of 100 μM CCh decreased the EPSC amplitude to 

21.1 ± 3.8 % of control value (n = 6, Fig. 11), whereas at the sub-maximal concentration 

of 2 μM, CCh induced a relatively small suppression of EPSCs (70.8 ± 3.6% of control 

value, n = 9; Fig. 11), which was significantly different than the reduction of EPSCs 

caused by 2 μM CCh in WT mice (53.7 ± 1.4% of control, n = 6; P = 0.0076, Fig. 11). 

Furthermore, when compound VU10010 was co-applied with 2 μM CCh, it failed to 

potentiate the CCh-induced reduction of EPSCs in M4 KO mice (77.5 ± 4.6% of control 

value, n = 7, Fig. 11) when compared to the effect of 2 μM CCh alone (70.8 ± 3.6% of 

control value, n = 9; P = 0.14, Fig. 11). These data support the conclusion that the 
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potentiation of CCh-induced reduction of EPSCs by VU10010 is solely due to its action 

on M4 receptors and that M4 participates in the muscarinic modulation of these synaptic 

responses. 

 

Discussion 

Over the past two decades, major attention has been focused on developing highly 

selective agonists of specific mAChR subtypes to use as research tools in order to achieve 

a better understanding of the roles of each subtype in specific organ systems and also to 

develop therapeutic agents that lack the adverse effects of AChE inhibitors and 

nonselective muscarinic agents.  However, the muscarinic receptor agonists developed to 

date lack true specificity for individual muscarinic receptor subtypes.   This thesis chapter 

reports the discovery of a novel series of compounds that act as robust positive allosteric 

modulators (allosteric potentiators) of the M4 mAChR subtype.  These compounds are 

highly selective for M4 and have no detectable activity at any other mAChR subtype.  As 

with previously discovered allosteric potentiators of metabotropic glutamate receptors 

(mGluRs), the novel positive allosteric modulators of M4 reported here have no 

detectable affinity for the orthosteric site on M4.  The action of these compounds at a site 

that is distinct from the highly conserved orthosteric ACh binding site is likely to be 

critical for achieving this high degree of subtype selectivity. 

Interestingly, the M4 allosteric potentiator reported here increases affinity of ACh 

for the orthosteric site.  This is similar to previous reports of allosteric modulators of 

GPCRs acting by altering affinity of ligands at the orthosteric site; the magnitude of 

binding cooperativity or the shift in orthosteric agonist affinity is referred to as the alpha 
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factor (Christopoulos and Kenakin, 2002).  However, while VU10010 apparently acts in 

part by increasing ACh affinity, the magnitude of this effect was only a 14-fold increase 

in ACh affinity whereas VU10010 induced an almost 50-fold shift in the ACh 

concentration response curve for activating calcium mobilization.  Thus, effects on 

agonist binding cannot fully account for the allosteric potentiator activity measured in the 

functional assay; potentiation by this compound must also increase efficacy and coupling 

to downstream effectors.  The present data suggest that VU10010 acts by both increasing 

ACh affinity and also through a positively cooperative interaction with ACh for 

activation of G proteins and downstream signaling pathways.  Studies of the effects of 

VU10010 on [35S]GTPγS binding revealed a 10-fold shift in ACh potency; this value is 

close to the calculated shift in ACh affinity at the orthosteric site, suggesting that the 

increase in ACh affinity could account for the shift in ACh potency at increasing G 

protein activation.  However, VU10010 also increased the maximal ACh-induced 

[35S]GTPγS binding response, suggesting that this potentiator increases the efficiency of 

M4 coupling to G proteins.  These two factors together likely contribute to the robust shift 

in ACh potency for inducing calcium mobilization relative to more modest shift observed 

in ACh affinity. 

Discovery of a highly selective allosteric modulator of M4 provides an 

unprecedented opportunity to selectively increase activity of this receptor and develop a 

more detailed understanding of the functional roles of M4 in brain circuits that are heavily 

modulated by cholinergic innervation.  One of the most important roles of cholinergic 

systems in the CNS is modulation of transmission through the hippocampal formation, a 

limbic cortical structure that plays a critical role in learning and memory and is thought to 
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be important for cholinergic regulation of cognitive function.  Activation of mAChRs in 

the hippocampus induces a marked reduction of transmission at both excitatory 

glutamatergic and inhibitory GABAergic synapses by presynaptic reduction of 

neurotransmitter release (Valentino and Dingledine, 1981; Bilkey and Goddard, 1985; 

Fernandez de Sevilla and Buno, 2003).   Multiple mAChR subtypes are expressed in the 

hippocampus, and evidence suggests that both M2 and M4 are localized in presynaptic 

terminals where they could regulate excitatory and inhibitory synaptic transmission 

(Levey et al., 1995; Rouse et al., 1999; Rouse et al., 2000a).  In addition, evidence 

suggests that activation of postsynaptic mAChRs on hippocampal pyramidal cells where 

M1 and M4 are expressed could reduce synaptic transmission in the hippocampus by 

inducing release of endocannabinoids that activate presynaptic CB1 cannabinoid 

receptors (Ohno-Shosaku et al., 2003).  Thus, the specific mAChR subtypes involved in 

regulating transmission at these important synapses has not been clear.  The present 

finding that VU10010 potentiates effects of mAChR agonists on excitatory but not 

inhibitory synaptic transmission provides strong evidence that M4 is one of the mAChR 

subtypes responsible for regulating transmission at glutamatergic synapses in the 

hippocampus but is not likely to be involved in regulation of transmission at inhibitory 

synapses in this brain region.  This selective regulation of excitatory synaptic 

transmission is a first critical step in developing a detailed understanding of the roles of 

M4 in modulating hippocampal function.   In future studies, it will be important to take 

advantage of this novel class of allosteric potentiators to further investigate the roles of 

M4 in hippocampus as well as other cortical and basal ganglia structures where this 

receptor has been postulated to play a critical neuromodulatory role.  Also, it will be 
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important to further optimize these compounds for use as tools that will provide a path 

for developing an understanding of the impact of selectively increasing M4 activation in 

vivo. 
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CHAPTER IIIB 

 

CENTRALLY ACTIVE ALLOSTERIC POTENTIATORS OF THE M4 
MUSCARINIC ACETYLCHOLINE RECEPTOR REVERSE AMPHETAMINE-

INDUCED HYPERLOCOMOTOR ACTIVITY IN RATS 
 

 
Introduction 

To date, five muscarinic acetylcholine receptor (mAChR) subtypes have been 

identified (M1-M5) and play important roles in mediating the actions of ACh in the 

peripheral and central nervous systems (Wess, 1996).  Of these, M1 and M4 are the most 

heavily expressed in the CNS and represent attractive therapeutic targets for cognition, 

Alzheimer’s disease (AD) and schizophrenia (Bymaster et al., 2002; Messer, 2002; 

Raedler et al., 2007).  In contrast, the adverse effects of cholinergic agents are thought to 

be primarily due to activation of peripheral M2 and M3 mAChRs (Bymaster et al., 2003b; 

Bymaster et al., 2003a).  Due to the high sequence homology and conservation of the 

orthosteric ACh binding site among the mAChR subtypes, development of chemical 

agents that are selective for a single subtype has been largely unsuccessful, and in the 

absence of highly selective activators of M4, it has been impossible to test the role of 

selective M4 activation.  Clinical trials with xanomeline (Fig. 12), an M1/M4 preferring 

orthosteric agonist, demonstrated efficacy as both a cognition enhancing agent, and as an 

antipsychotic agent (Bodick et al., 1997b; Shekhar et al., 2001; Shekhar et al., 2008).  In 

follow-up studies in rats, xanomeline displayed an antipsychotic-like profile comparable 

to clozapine (Stanhope et al., 2001).  However, a long standing question concerned 

whether or not the antipsychotic efficacy or antipsychotic-like activity in animal models 
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is mediated by activation of M1, M4, or a combination of both receptors.  Data from 

mAChR knock-out mice led to the suggestion that a selective M1 agonist would be 

beneficial for cognition, whereas an M4 agonist would provide antipsychotic activity for 

the treatment of schizophrenia (Felder et al., 2001; Bymaster et al., 2003b; Bymaster et 

al., 2003a).  This proposal is further supported by recent studies demonstrating that M4 

receptors modulate the dynamics of cholinergic and dopaminergic neurotransmission and 

that loss of M4 function results in a state of dopamine hyperfunction (Tzavara et al., 

2004).  These data, coupled with findings that schizophrenic patients have altered 

hippocampal M4, but not M1, receptor expression (Scarr et al., 2007) suggest that 

selective activators of M4 may provide a novel treatment strategy for schizophrenia 

patients.  However, multiple studies suggest that M1 may also play an important role in 

the antipsychotic effects of mAChR agonists and the relative contributions of M1 and M4 

to the antipsychotic efficacy of xanomeline or antipsychotic-like effects of this compound 

in animal models are not known.  Unfortunately, the lack of highly selective, systemically 

active activators of M1 and M4 has made it difficult to fully evaluate the effects of 

activation of these mAChR subtypes in animal models. 

 Recently, we reported discovery of a number of positive allosteric modulators for 

class C GPCRs that bind to allosteric sites, provide high levels of subtype selectivity and 

display behavioral effects in vivo comparable to direct acting agonists (O'Brien et al., 

2003; Lindsley et al., 2004; O'Brien et al., 2004; Kinney et al., 2005; Galici et al., 2006; 

Hemstapat et al., 2006; Marino and Conn, 2006; Zhao et al., 2007).  In addition, we 

identified a highly selective positive allosteric modulator of M4 termed VU10010 (Fig. 

12) (Shirey et al., 2008).  This compound induces a 47-fold potentiation of the M4 ACh 
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concentration response curve (CRC), possesses an EC50 in the 400 nM range and causes 

no activation of the other mAChR subtypes.  Additional in vitro pharmacological 

characterization studies suggested that VU10010 binds to an allosteric site on the M4 

receptor to increase affinity for ACh and coupling to G proteins (Shirey et al., 2008).  

Subsequent studies with VU10010 revealed that selective potentiation of M4 increased 

carbachol (CCh)-induced depression at excitatory, but not inhibitory, synapses and that 

the effect on excitatory currents was not mimicked by an inactive analog of VU10010 or 

in M4 knock-out mice (Shirey et al., 2008). 

   

 

 
Figure 12.  Chemical structures of Xanomeline [3-[3-hexyloxy-1,2,5-thiadiazo-4-yl]-
1,2,5,6-tetrahydro-1-methylpyridine] and VU10010 [3-amino-N-(4-chlorobenzyl)-4,6-
dimethylthieno[2,3-b]pyridine-2-carboxamide]. 
 
  

 Despite this notable advance, VU10010 suffered from poor physiochemical 

properties (logP~4.5) and in vivo studies proved infeasible because we were unable to 

formulate VU10010 into a homogeneous solution in any acceptable vehicle, regardless of 

salt form or particle size.  Several suspensions were prepared and dosed i.p., but 

VU10010 was not found to be centrally active.  In order to evaluate the role of selective 
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M4 activation in vivo, VU10010 would require further chemical optimization.  Here we 

report the development and characterization of two novel analogs of VU10010 that are 

CNS penetrant following systemic administration. 

 

Results 

 

Chemical Lead Optimization 

 For the chemical optimization of VU10010, undertook a diversity-oriented 

synthesis (DOS) approach to explode Structure-Activity-Relationships (SAR) with a 

variety of hypothesis-driven, structural changes to the lead compound.  The rationale for 

this approach for the optimization of VU10010 is that SAR for allosteric ligands is often 

‘flat’ or ‘shallow’, with subtle structural modifications leading to a complete loss of 

activity, and often only one portion of an allosteric ligand is amenable to change.  

Therefore, a multi-dimensional, DOS library approach provides the best opportunity to 

quickly identify productive SAR as opposed to a lead optimization strategy based on 

classical, single compound synthesis (Lindsley et al., 2004; Zhao et al., 2007). One 

explanation for the lack of central activity observed with VU10010 could be the result of 

the poor physiochemical properties alone, or in combination with P-glycoprotein (P-gp) 

efflux.  P-gp is an efflux transporter with broad substrate specificity present on the 

luminal membrane of epithelial cells comprising the blood-brain barrier, which is known 

to impair the brain penetrability of a number of drugs.  The β-aminoamide motif 3 present 

in VU10010 represents a potential P-gp liability, which could be removed by cyclization 

to analogs such as 2 (Fig. 13A).  Alternatively, P-gp susceptibility could also be 
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diminished by electronically attenuating the basicity of the amine moieties by the 

incorporation of distal fluorine atoms.  Utilizing solution phase parallel synthesis (Fig. 

13B), we synthesized small, 12- to 24-member focused libraries around each of the 10 

scaffolds 4, 5-13 (Fig. 13C) which were then purified by mass-directed preparative 

HPLC to analytical purity (>98%).  This collection of VU10010 analogs incorporated 

CF3 moieties (scaffolds 7 and 8) to electronically attenuate potential P-gp susceptibility, 

deletion of the β-amino moiety (scaffold 12), or replacement of the β-amino moiety with 

an isosteric methyl group (scaffold 11).  Other scaffolds explored the deletion of 

substituents on the pyridine nucleus (9), incorporation of an additional nitrogen atom  to 

afford a pyrimidine nucleus (10) or removal of the pyridine nitrogen atom in VU10010 

(13).  Finally, library 5 focused on maintaining the core structure of VU10010, but 

explored alternative amides, selected to improve physiochemical properties and lower the 

logP value. 
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Figure 13.  Chemical optimization of VU10010 using a diversity-oriented approach to 
achieve soluble, centrally penetrant M4 positive allosteric modulators.  A.  β-aminoamide 
as a potential P-gp liability in series 1 and cyclization strategy to diminish this liability in 
series 2.  B.  Solution phase parallel synthesis of libraries of VU10010 analogs.  
Commercial heterocyclic carboxylic acids 3 (X, Y = C or N) were coupled to 12 different 
amines (HNR1R2, 4) to afford focused VU10010 analog libraries 5-13 in yields ranging 
from 15% to 99%.  C.  Generic structures of analogs of VU10010 evaluated in the 
chemical lead optimization program in an effort to develop soluble, centrally penetrant 
M4 positive allosteric modulators.  Syntheses performed by T.M. Bridges and J.P. 
Kennedy. 
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Screening Paradigm for Analog Libraries  

 As observed with positive allosteric modulators of Class C GPCRs, SAR around 

VU10010 was relatively flat, possibly due to a shallow binding pocket (Lindsley et al., 

2004; Zhao et al., 2007).  An EC20 triage screen, employing a functional, fluorescence-

based Ca2+ assay in CHO-K1 cells stably co-expressing the rat M4 mACh receptor and 

the chimeric G protein, Gqi5, (Fig. 14) quickly eliminated all VU10010 analogs except 

those in library 5.  Within library 5, all aliphatic and non-benzyl amides were inactive, 

and only benzyl and heteroaryl methyl congeners of VU10010, 5a-5p, retained M4 PAM 

activity (Table 5).  Analogs were synthesized as described in the methods section 

(Chapter II).  To identify compounds that potentiated agonist activation of M4, we 

determined the response to an EC20 concentration of ACh in the absence and presence of 

test compound.  The potency of each compound was determined by pre-incubating cells 

with vehicle or increasing concentrations of test compound followed by the addition of an 

EC20 concentration of ACh to yield concentration-response curves (CRCs).  Subtle 

substitution changes on the arene ring lost activity 5-10-fold in terms of M4 EC50 and/or 

fold-shift of the ACh CRC (Table 5).  For instance, 5d, in which the 4-Cl moiety of 

VU100010 is moved to the 3-position results in a loss in potency of over 9-fold (EC50 = 

3.7 µM).  Similarly, the unsubstituted phenyl congener 5a retains M4 PAM activity (EC50 

= 630 nM), but the fold-shift diminishes to 8.6-fold, versus the 47-fold shift observed for 

VU10010 (Shirey et al., 2008).  In general, functionalized benzyl amides and pyridyl 

methyl congeners (5f and 5g) were well tolerated, providing selective M4 PAMs with 

EC50 values ranging from 380 nM to 3.7 µM and with fold-shifts of the ACh dose-

response curve from 8.6- to 70-fold (Table 5).   
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Figure 14.  Screening paradigm for analog libraries 5-13 allowing for the rapid triage of 
inactive analogs.  A representative library of 61 analogs from library 5 (Fig. 13C) were 
tested at a single concentration (10 µM) for their ability to potentiate an EC20 
concentration of ACh in CHO-K1 cells stably co-expressing the rM4 mAChR and the 
chimeric G protein, Gqi5.  Calcium mobilization was measured using a Flexstation II, as 
described in Methods (Chapter II).  Of those tested, 16 compounds (denoted by an 
asterisk) were selected for further evaluation.  The response to an EC20 concentration of 
ACh alone is shown in the bar on the far left and this level of activity is indicated by the 
solid line spanning the panel.  Thus, test compounds increasing the % max ACh response 
above this level were considered potentiators of the rM4 mAChR.  VU10010 was 
included as a positive control.  Bars represent the mean ± S.E.M. of 3 or more 
determinations, each performed in duplicate.  Experiments performed by A.E. Brady. 
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Table 5.  Structures, activities, and ACh CRC fold-shifts of M4 PAM library 5 analogs. 

N S

NH2
O

HN
R

Library 5

5a 0.63

5b 0.83

5c 1.83

5d 3.70

5e 2.63

5e 2.04

5f 2.88

5g 1.44

5h 1.80

5i 2.96

5j 3.04

5k 0.88

5l 1.12

5m 0.72

5n 0.40

5o 0.38

F

F
F

OMe

O
O

CF3

Br

Cl

N

N

F

Cl

OCF3

F

F
F

8.6

11.8

ND

ND

ND

ND

ND

ND

ND

ND

70.1

29.7

13.7

ND

ND

ND

Compound           R             rat M4 EC50      rat M4 ACh
                                                   (µM)                fold-shift

EC50s and fold-shifts are an average of at least 3
determinations; ND, not determined.  

Subtle substitution changes on the arene ring lost 5-10-fold in terms of M4 EC50 and/or 
fold-shift of the ACh CRC.  For instance, 5d, in which the 4-Cl moiety of VU100010 is 
moved to the 3-position results in a loss in potency of over 9-fold (EC50 = 3.7 µM).  
Similarly, the unsubstituted phenyl congener 5a retains M4 PAM activity (EC50 = 630 
nM), but the fold-shift diminishes to 8.6-fold, versus the 47-fold shift observed for 
VU10010 (Shirey et al., 2008).  Compounds 5o (VU0152099) and 5p (VU0152100) 
retained M4 PAM activity comparable to VU10010 (EC50 values of 403 ± 117 nM and 
380 ± 93 nM, respectively). 
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VU0152099 and VU0152100 are Potent Positive Allosteric Modulators of M4 in two 
independent in vitro assays 
 
 Two compounds were selected for further evaluation of their ability to potentiate 

the M4-mediated calcium response.  VU0152099 (5o, Fig. 15A) and VU0152100 (5p, 

Fig. 15D) retained M4 PAM activity (EC50 values of  403 ± 117 nM and 380 ± 93 nM, 

respectively) comparable to VU10010, and in the absence of an ACh EC20, neither 

VU0152099 nor VU0152100 elicited a response (Fig. 15B, E).  We next determined the 

effects of maximal concentrations of each compound on the CRC of ACh.  Cells were 

pre-incubated with a fixed concentration (0.1 - 30 µM) of test compound and 

subsequently stimulated with increasing concentrations of ACh.  Both VU0152099 and 

VU0152100 induced a dose-dependent leftward shift of the ACh CRC with maximal 

shifts of 30-fold observed with 30 µM VU0152099 (Fig. 15C) and 70-fold observed with 

10 µM VU0152100 (Fig. 15F). 
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Figure 15.  VU0152099 and VU0152100 are potent positive allosteric modulators of rM4 
in vitro.  Chemical structures of VU0152099 (A.) and VU0152100 (D.).  B.,E.  Potency 
of VU0152099 (403 ± 117 nM, B.) and  VU0152100 (380 ± 93 nM, E.) was evaluated at 
the rM4 receptor by measuring calcium mobilization in Chinese hamster ovary (CHO) 
cells stably expressing rM4 and the chimeric G-protein, Gqi5.  A range of concentrations 
of test compound was added to cells, followed 1.5 minutes later by addition of an EC20 
concentration of ACh.  In the absence of an EC20 concentration of ACh, neither test 
compound elicited a response. Data were normalized as a percent of the maximal 
response to 10 µM ACh and represent the mean ± S.E.M. of three independent 
experiments.  C.,F.  VU0152099 (C.) and VU0152100 (F.) potentiate the response of 
rM4 to ACh, as manifest by a dose-dependent leftward shift in the ACh CRC.  At the 
highest concentrations tested, VU0152099 (30 µM) induced a 30-fold shift and 
VU0152100 (10 µM) induced a 70-fold shift in the ACh CRC.  Data were normalized as 
a percent of the maximal response to 10 µM ACh and represent the mean ± S.E.M. of 3-5 
independent experiments.  Experiments performed by A.E. Brady. 
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 Using calcium mobilization to assess the functional activity of VU0152099 and 

VU0152100 at the M4 receptor requires co-expression of the chimeric G protein, Gqi5, in 

order to link the Gi/o-coupled M4 receptor to the PLCβ/Ca2+ pathway.  As an alternative 

approach to measure M4 PAM activity, we chose to take advantage of a novel functional 

assay recently developed in our lab that takes advantage of the ability of endogenous Gβγ 

subunits of Gi/o-coupled GPCRs to alter the kinetics of G-protein regulated inwardly 

rectifying K+ (GIRK) channels to conduct the ion, thallium (Niswender et al., 2008).  For 

these studies, HEK293 cells stably co-expressing heteromeric GIRK1/2 channels and the 

human M4 muscarinic receptor were pre-incubated with test compound and then 

stimulated with agonist (ACh) in the presence of thallium ion.  Both VU0152099 and 

VU0152100 dose-dependently potentiated the response to an EC20 concentration of ACh 

with EC50 values of 1.2 ± 0.3 µM and 1.9 ± 0.2 µM, respectively, and increased the 

maximal response to ACh to approximately 130 % (Fig 16A).  As observed in the 

calcium mobilization assays described above, both VU0152099 and VU0152100 (10 µM) 

also enhanced the potency of ACh to induce GIRK-mediated thallium flux, as manifest 

by a robust (~30-fold) leftward shift in the ACh CRC from 77 ± 1.2 nM to 2.09 ± 0.3 nM 

and 2.35 ± 0.5 nM, respectively (Fig 16B).  Taken together, these in vitro studies suggest 

that VU0152099 and VU0152100 are potent positive allosteric modulators that enhance 

the response of the M4 receptor to the endogenous agonist, ACh. 
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Figure 16.  VU0152099 and VU0152100 potentiate GIRK-mediated thallium flux in 
response to ACh in HEK cells expressing the human M4 receptor.  A.  Both VU0152099 
(■) and VU0152100 (▲) potentiate hM4 -induced GIRK-mediated thallium flux in 
response to an EC20 concentration of ACh with potencies of 1.2 ± 0.3 μM and 1.9 ± 0.2 
μM, respectively.  B.  In the presence of 10 μM VU0152099 (▲) and VU0152100 (▼), 
the ACh CRC for induction of GIRK-mediated thallium flux was leftward shifted (≈30-
fold) from 77 ± 1.2 nM (■ Veh) to 2.09 ± 0.3 nM (▲, VU0152099) and 2.35 ± 0.5 nM 
(▲, VU0152099).  Data were normalized as a percent of the maximal response to 10 μM 
ACh and represent the mean ± S.E.M. of 3-4 independent experiments performed in 
quadruplicate.  Experiments performed by A.E. Brady. 
 
 
 
 

 

 

 

 

 

 

 

 



154 
 

VU0152099 and VU0152100 are selective for M4 relative to other mAChR subtypes 

 We next evaluated VU0152099 and VU0152100 in calcium mobilization assays 

for effects at all mAChR subtypes to determine whether these compounds are selective 

for M4.  Both VU0152099 and VU0152100 were selective for M4 relative to M1, M2, M3 

and M5.  Thus, neither VU0152099 (Fig. 17A) nor VU152100 (Fig. 17B) had any effect 

on the ACh dose-response curves at these other mAChR subtypes at concentrations up to 

30 µM.  To further assess selectivity of these compounds for M4 relative to other 

potential targets, the activity of VU0152099 and VU0152100 also were evaluated in 

radioligand binding assays against a large panel of 68 discrete GPCRs, ion channels, 

transporters and enzymes (Table 6).   These compounds were largely inactive at each of 

the targets in this panel screen.  At concentrations of 10 µM, both compounds were 

completely inactive at most targets and induced less than 50% displacement of binding 

for all targets tested, with the single exception of  GABAA receptors (assessed by 

flunitrazepam binding), where VU0152099 displayed 51% displacement.  This suggests 

that VU0152099 may interact with the flunitrazepam site with an IC50 value of 

approximately 10 µM, which still provides high selectivity for M4 relative to GABAA 

receptors. 
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Figure 17.  VU0152099 (A.) and VU0152100 (B.) are functionally selective for the M4 mAChR 
subtype relative to other mAChRs.  No shift in the ACh CRC was observed in the presence of 30 
μM test compound at CHO-K1 cells stably expressing rM1, hM2-Gqi5, hM3, or hM5.  Calcium 
mobilization was measured in response to increasing concentrations of ACh following 
preincubation with either vehicle or test compound (30 μM), as described in Methods.   Assays of 
rM1, hM3, and hM5, took advantage of endogenous coupling to Gq proteins, and for hM2, cells co-
expressing the chimeric G protein, Gqi5, to allow coupling of this receptor to calcium 
mobilization.  Points represent the mean ± S.E.M. of three independent experiments.  
Experiments performed by A.E. Brady. 
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Table 6. Selectivity of VU0152099 and VU0152100 determination in radioligand 
binding assays in the LeadProfilingScreen® by MDS Pharma. 
 

Target Species VU0152099 VU0152100 Target Species VU0152099 VU0152100
Adenosine A1 human 28 -1 Histamine H3 human 10 9
Adenosine A2 human 46 43 Imidazoline I2, Central rat 7 8
Adenosine A3 human 28 40 Interleukin IL-1 mouse -19 -4
Adrenergic α1A rat 10 9 Leukotriene, Cysteinyl CysLT1 human -4 -6
Adrenergic α1B rat -7 -7 Melatonin MT1 human 15 20
Adrenergic α1D human 1 1 Muscarinic M1 human -3 0
Adrenergic α2A human 7 17 Muscarinic M2 human -1 -4
Adrenergic β1 human 17 17 Muscarinic M3 human -1 -2
Adrenergic β2 human 30 35 Neuropeptide Y Y1 human 2 9
Androgen (testosterone)AR rat 6 6 Neuropeptide Y Y2 human -2 2
Bradykinin B1 human 13 1 Nicotinic Acetylcholine human 6 -6
Bradykinin B2 human -5 -9 Nicotinic Acetylcholine α1, Bungarotoxin human -10 -4
Calcium channel L-type, benzothiazepine rat 13 7 Opiate δ (OP1, DOP) human 2 -13
Calcium channel L-type, dihydropyridine rat 21 17 Opiate κ (OP2, KOP) human 5 2
Calcium channel N-type rat -8 -4 Opiate μ (OP3, MOP) human 2 -2
Dopamine D1 human 6 7 Phorbol Ester mouse 2 4
Dopamine D2S human 2 0 Platelet Activating Factor (PAF) human 13 22
Dopamine D3 human -1 5 Potassium Channel [KATP] hamster 3 6
Dopamine D4.2 human -13 -11 Potassium Channel hERG human 5 5
Endothelin ETA human -8 -8 Prostanoid EP4 human 15 7
Endothelin ETB human 2 -4 Purinergic P2X rabbit 6 -4
Epidermal Growth Factor (EGF) human 9 -5 Purinergic P2Y rat 15 14
Estrogen ERα human -1 -1 Rolipram rat 36 29
G protein-coupled receptor GPR103 human -3 -4 Serotonin (5-Hydroxytryptamine) 5-HT1A human 2 2
GABAA Flunitrazepam, central rat 51 43 Serotonin (5-Hydroxytryptamine) 5-HT3 human -2 14
GABAA Muscimol, central rat 6 9 Sigma σ1 human 2 6
GABAB1A human -7 12 Sigma σ2 rat -8 -3
Glucocorticoid human -3 8 Sodium Channel, Site 2 rat 11 20
Glutamate, Kainate rat 3 -15 Tachykinin NK1 human -15 -18
Glutamate, NMDA, Agonism rat 17 22 Thyroid Hormone rat -1 0
Glutamate, NMDA, Glycine rat 3 2 Transporter, Dopamine (DAT) human 27 46
Glutamate, NMDA, Phencyclidine rat 2 3 Transporter, GABA rat 26 13
Histamine H1 human 14 7 Transporter, Norepinephrine (NET) human 34 22
Histamine H2 human 7 10 Transporter, Serotonin (5-Hydroxytryptamine) (SERT) human 0 4

% Inhibition% Inhibition

 
 

 
 
VU0152099 and VU0152100 were tested at 10 µM for orthosteric radioligand 
displacement against a large panel of 68 GPCRs, ion channels, transporters and enzymes 
to ensure a clean ancillary pharmacology profile. 
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 Since VU0152099 and VU0152100 are allosteric modulators of M4, it is possible 

that they have activity at similar allosteric sites on other GPCRs.  If so, this would not be 

apparent in the radioligand binding assays discussed above.  The finding that these 

compounds are completely inactive at other mAChR subtypes makes this less likely since 

M4 is more closely related to the other mAChR subtypes than to other GPCRs.  However, 

to further evaluate the selectivity of VU0152099 for M4 relative to other family A 

GPCRs, we contracted with Millipore Corp. (St. Charles, MO) to determine the effects of 

these compounds on functional responses of a panel of 15 other GPCRs to activation by 

their respective agonists.  For these studies, we chose family A GPCR subtypes that are 

among the closest relatives of mAChRs.  We first determined the effects of VU0152099 

alone on each receptor and found that these compounds had no agonist activity at any 

receptor studied.  We then determined the effects of VU0152099 on full concentration 

response curves of agonists of each of these receptors.  This allows unambiguous 

evaluation of whether the compounds possess antagonist activity (either allosteric or 

orthosteric) or allosteric potentiator activity at these other GPCRs.  Consistent with our 

internal studies, VU0152099 induced a robust potentiation of ACh-induced activation of 

M4, but had no potentiator activity at M1 (Figure 18).  In addition, VU0152099 had no 

allosteric potentiator activity at any of the other GPCR subtypes tested (Figure 18).  The 

only significant activity detected for VU0152099 in this functional panel screen was 

weak antagonist activity at the serotonin 5HT2B receptor (Figure 18).  Together, these 

data suggest that VU0152099 and VU0152100 possess clean ancillary pharmacology 

profiles, which would allow us to pursue the behavioral effects of selective M4 activation 

in vivo. 
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Fig 18.  Millipore GPCR Profiler™ Functional Screen.  Because of the potential liability 
for off-target activity at other class A GPCRs, VU0152099 was evaluated in Millipore’s 
GPCR Profiler™ screen for activity at 16 GPCR targets using a Fluorimetric Imaging 
Plate Reader (FLIPRTetra, Molecular Device Corp).  This cell-based assay relies on 
endogenous expression of the promiscuous G protein, Gα15/16, to couple recombinant 
receptors to calcium mobilization, and uses a two addition protocol to assess agonist, 
antagonist, and allosteric modulator activity.  VU0152099 exhibited no agonist activity at 
any of the targets tested and was found to possess antagonist activity only at the 5HT2B 
receptor (as indicated by an ≈16 fold rightward shift in the agonist CRC in the presence 
of VU0152099).  Potentiator activity was assessed by performing agonist CRCs in the 
absence (vehicle, ▲) or presence (VU0152099, ■) of 10 μM VU0152099. A.  At the 
human M4 mAChR, 10 μM VU0152099 elicits a robust ≈80-fold leftward shift in the 
carbachol CRC (EC50 values: CCh alone ≈800nM, CCh + 10 μM VU0152099 ≈ 10 nM). 
B-P.  Similar CRC curves were generated for additional GPCRs: Muscarinic M1 (B.), 
Adenosine A2B (C.), α1A-, 2A-, 2B-Adrenergic (D-F.), Dopamine D1 ,D2L, D5 (G-I.), 
Histamine H1, H2, H3 (J-L), and Serotonin 5HT1A, 2A, 2B, 2C (M-P.), with no substantial 
shift observed at any other target tested.  All data represent the mean of duplicate 
determinations.  Experiments performed at Millipore. 
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VU0152099 and VU0152100 bind allosterically and increase ACh affinity  

 To further confirm an allosteric mechanism of action by the novel M4 PAMs, we 

evaluated the effect of VU0152099 and VU0152100 on equilibrium radioligand binding 

studies using membranes prepared from cells expressing the rM4 receptor.  We first 

assessed the ability of increasing concentrations of the two M4 PAMs to displace the 

orthosteric radioligand, [3H]NMS (0.1 nM).  Unlike the orthosteric antagonist, atropine, 

which potently inhibited [3H]NMS binding (Ki = 0.54 ± 0.1 nM), neither M4 PAM 

displaced [3H]NMS at concentrations up to 30 µM (Fig. 19A), strongly suggesting that 

VU0152099 and VU0152100 act at a site on the M4 receptor that is distinct from the 

orthosteric binding site.   

 In addition, we evaluated the effect of VU0152099 and VU0152100 on the 

affinity of ACh for the M4 receptor by assessing the ability of an increasing concentration 

of ACh to displace [3H]NMS (0.1 nM) binding in the absence or presence of the M4 

potentiators.  VU0152099 and VU0152100 were found to induce a 20-25 fold leftward 

shift in the potency of ACh to displace [3H]-NMS binding to M4 as manifest by a 

reduction in the ACh Ki from 252 ± 17.9 nM (veh) to 10.4 ± 0.91 nM (VU0152099) and 

12.2 ± 0.49 nM (VU0152100) (Fig. 19B). These data present a possible mechanism 

whereby these compounds could enhance receptor activation by increasing the affinity of 

M4 for acetylcholine, and are in agreement with data previously determined for 

VU10010, where a 14-fold decrease in the ACh Ki was reported (Shirey et al., 2008). 

 

 

 



160 
 

-12 -11 -10 -9 -8 -7 -6 -5 -4

0

20

40

60

80

100

120

140

VU0152099

VU0152100

Atropine

Log [Compound] (M)

%
M

ax
[3 H

]N
M

S
 B

in
di

ng

0

0

20

40

60

80

100

120 Vehicle

VU0152100

VU0152099

VU10010

-9 -8 -7 -6 -5 -4 -3
Log [ACh] (M)

A. B.

%
M

ax
[3 H

]N
M

S
 B

in
di

ng

 

 
 
Figure 19.  VU0152099 and VU0152100 bind allosterically and increase ACh affinity at 
rM4.  A.  In competition binding studies, neither VU0152099 (■) nor VU0152100 (▲) 
displaced the orthosteric radioligand, [3H]NMS (0.1 nM), at concentrations up to 30 μM.  
However, the orthosteric antagonist, atropine (▲), potently inhibited [3H]NMS binding 
with a Ki of 0.54 ± 0.1 nM.  B.  In the presence of vehicle alone, an increasing 
concentration of ACh displaces [3H]NMS (0.1 nM) binding with a Ki of 252 ± 17.9 nM 
(■).  In the presence of a fixed concentration (10 μM) of VU0152099 or VU0152100, the 
potency of ACh to displace [3H]NMS binding is shifted leftward, yielding Ki values of 
10.4 ± 0.91 nM (▼, VU0152099) and 12.2 ± 0.49 nM (▲,VU0152100), which represent 
a 25-fold and 21-fold shift in ACh potency, respectively.  Data represent the mean ± 
S.E.M. of 3 independent experiments, performed in duplicate.  Experiments performed by 
A.E. Brady. 
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VU0152099 and VU0152100 Exhibit Improved Physiochemical and 
Pharmacokinetic Properties 
 
 Prior to conducting in vivo studies with VU0152099 and VU0152100, 

pharmacokinetic studies were undertaken to assess brain/plasma ratios following 

systemic dosing of these compounds.  In contrast, to the high logP of VU10010 (4.5), 

both VU0152099 and VU0152100 possessed logPs of 3.65 and 3.6, respectively, a full 

order of magnitude less lipophilic than VU10010 (Shirey et al., 2008).  As a 

consequence, both VU0152099 and VU0152100 displayed improved physiochemical 

properties and afforded homogeneous dosing solutions in multiple vehicles acceptable for 

in vivo studies.  Further, we conducted in vivo exposure (brain and plasma) studies in rats 

at the dose of 56.6 mg/kg, i.p.  Both compounds exhibited substantial systemic absorption 

and brain penetration (Fig. 20).  After 56.6 mg/kg ip administration, peak brain 

concentrations for both the compounds were in the range of 3-5 µg/ml.  VU0152100 

(Fig. 20B) was far superior to VU0152099 (Fig. 20A) in terms of brain penetration, as 

evident from AUC (0-∞) values (Table 7).  The AUC brain/AUC plasma ratio, which is 

an estimate of CNS bioavailability, for VU0152099 was calculated to be 0.39 ± 0.01, 

while the ratio for VU0152100 was determined to be 0.86 ± 0.08 (Table 7).  The half-life 

of the compounds in the brain was 1.25 ± 0.02 h (VU0152099) and 1.12 ± 0.01 h 

(VU0152100) (Table 7). Therefore, our earlier concern of P-glycoprotein (P-gp) 

transport susceptibility within this series was likely unwarranted, and the lack of central 

activity for VU10010 was most likely due solely to physiochemical properties.   
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Figure 20.  Pharmacokinetic profiling of VU0152099 and VU0152100 in rats.  
Concentration-time profile of VU152099 (A.) and VU152100 (B.) in brain (■) and 
plasma (▲) of male Sprague Dawley rats following a 56.6 mg/kg ip administration of 
each compound.  Blood and brain tissue were collected at 0.5, 1, 2 and 4h after injection.  
Samples were extracted as described in Methods and analyzed by LC-MS-MS.  Each 
time point represents the mean determination ± S.E.M. of three rats.  Experiments 
performed by S.B. Jadhav and H. Yin. 
 
 
 
Table 7.  Pharmacokinetic analysis of VU0152099 and VU0152100. 
 

PK Parameter  VU0152099  VU0152100  

Mean AUC (0-∞) brain (ng.h/g)  4751.80 ± 666.17  5726.35 ± 694.68  

Mean AUC(0-∞) plasma (ng.h/ml)  11928.00 ± 1472.36  6570.35 ± 235.87  

AUC brain / AUC plasma  0.39 ± 0.01  0.86 ± 0.08  

t1/2 plasma (h)  1.66 ± 0.39  1.62 ± 0.69  

t1/2 brain (h)  1.25 ± 0.023  1.12 ± 0.01  

 
 
AUC(0-∞) and t1/2 values of  VU0152099 and VU0152100 in exposure studies in male 
rats after 56.6 mg/kg intraperitoneal administration are shown.  Values represent mean ± 
SEM (n = 3 rats). 
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VU0152099 and VU0152100 exhibit in vivo activity in rat 

 Previous studies using the M1/M4-preferring muscarinic agonist xanomeline 

produced robust effects in several preclinical models predictive of antipsychotic-like 

activity, including reversal of amphetamine-induced hyperlocomotion in rats (Stanhope et 

al., 2001).  Based on our initial pharmacokinetic studies suggesting that systemic 

administration of VU0152099 and VU0152100 provides robust brain levels of these 

compounds, the effects of VU0152099 and VU0152100 were evaluated in reversing 

amphetamine-induced hyperlocomotion using a dose of 56.6 mg/kg i.p. for each 

compound with a 30 min pretreatment interval.  As shown in Fig. 21A, both VU0152099 

and VU0152100 produced robust decreases in amphetamine-induced hyperlocomotion 

over the time course tested.  In addition, to provide further confirmation that the M4 

PAMs have no effect on baseline levels of motor performance which could complicate 

the interpretation of the amphetamine-induced hyperlocomotion data, we evaluated the 

effects of one of the M4 PAMs, specifically VU0152100, after administration alone on 

performance in the rotorod test (Fig. 21B). As shown, VU0152100 had no effect on 

performance in the rotorod test, even when tested at a dose of 100mg/kg, which was 

higher than that required to observe reversal of amphetamine-induced hyperlocomotion. 
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Figure 21.  VU0152099 and VU0152100 inhibit amphetamine-induced hyperlocomotor activity 
in rats without causing sedation.  (A.) Rats were pretreated for 30 min with vehicle or a 56.6 
mg/kg dose of either VU0152099 or VU0152100 i.p.  Next, all rats received an injection of 1 
mg/kg s.c. of amphetamine and locomotor activity was measured for an additional 60 min.  Each 
point represents the mean of eight-sixteen rats.  The error bars represent ± S.E.M. and are absent 
when less than the size of the point.  Abscissa, time in minutes; ordinate, ambulations or total 
beam breaks per 5 min intervals; *, P < 0.05 versus veh+amphetamine control group, Dunnett's 
test. (B.) Lack of effect of VU0152100 on motor performance on the rotorod. After initial training 
trials, rats were pretreated for 30 minutes i.p. with vehicle or a dose of VU0152100, specifically 
30, 56.6 or 100 mg/kg, and then the time each animal remained on the rotorod was recorded; 
animals not falling off the rotorod were given a maximum score of 85 s. Abscissa, dose of 
VU0152100 in milligrams per kilogram; ordinate, time spent on the rotorod in sec. Each bar 
graph represents the mean of eight-ten rats.  The error bars represent ± S.E.M.  Experiments 
performed by C.K. Jones, A.D. Thompson, and J.U. Heiman. 

 



165 
 

Discussion 

 In recent years, the mAChRs have emerged as potential novel targets for the 

treatment of schizophrenia.  This is based on clinical studies demonstrating efficacy of 

mAChR agonists in treatment of positive symptoms in schizophrenia patients, as well as 

multiple animal studies suggesting that mAChR agonists could be useful in treatment of 

cognitive dysfunction in schizophrenia patients (Bymaster et al., 2002).  Furthermore, a 

growing body of evidence from clinical and animal studies involving pharmacological 

manipulations, post mortem tissue analysis, and brain imaging is consistent with this 

hypothesis (Raedler et al., 2007).  While recent advances suggesting potential utility of 

mAChR activators in treatment of schizophrenia have been exciting, there have been few 

selective pharmacological tools available to fully explore this emerging muscarinic 

hypothesis of schizophrenia.  Unfortunately, previous attempts to develop traditional 

orthosteric agonists that are highly selective for individual mAChR subtypes have been 

unsuccessful.   

 The current discovery and optimization of VU0152099 and VU0152100 as highly 

selective positive allosteric modulators of M4 provides a major advance in establishing a 

new approach for developing highly selective activators of these receptors.  The data 

presented provide further support for the ability to achieve high subtype selectivity by 

targeting allosteric sites and provide exciting new data demonstrating that highly 

selective M4 PAMs have robust activity in at least one animal model that is similar to 

effects previously described for the non-selective orthosteric mAChR agonist, 

xanomeline (Stanhope et al., 2001).  The finding that VU0152099 and VU0152100 

mimic effects of xanomeline in an animal model that has been used to predict 



166 
 

antipsychotic activity of new compounds is especially exciting in light of clinical studies 

demonstrating the clinical efficacy of xanomeline in schizophrenia patients.  This raises 

the exciting possibility that selective activation of M4 may provide a novel approach for 

the treatment of some symptoms associated with schizophrenia. Furthermore, the 

discovery of systemically active M4 PAMs suggests that this will be a viable approach for 

developing selective activators of M1 and other mAChR subtypes.  

 While the in vitro data for VU0152099 and VU0152100 indicate high 

pharmacologic selectivity for M4 relative to any other mAChR subtypes or closely related 

GPCRs, the possibility exists that the observed behavioral effects may be due to an off-

target activity not yet identified. In future studies, it will be critical to further validate that 

the effects of VU0152099 and VU0152100 observed in vivo are mediated by activation 

of M4 using other tools, including structurally distinct M4 PAMs or selective M4 

antagonists, as they become available, and/or M4 knockout mice. Unfortunately, studies 

in M4 knockout mice will be complex since these mice display fundamentally different 

responses to psychomotor stimulants and compounds will need to be optimized for 

appropriate pharmacokinetic properties in mice.  Also, several behavioral parameters are 

substantially altered in the M4 knockout mice, including increases in baseline locomotor 

activity, altered responses to amphetamine, and altered dopamine release in the 

mesolimbic dopamine circuitry (Gomeza et al., 1999; Gomeza et al., 2001; Tzavara et al., 

2004).  These factors will complicate interpretation of studies with M4 knockout mice.  

However, while it is not possible to definitively establish an exclusive role for M4 in 

mediating the behavioral effects observed here, previous studies have established similar 

effects of structurally distinct mAChR agonists (Stanhope et al., 2001).  This, coupled 
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with the high selectivities of VU0152099 and VU0152100 for M4 relative to any other 

mAChR subtype, suggests that M4 is a likely candidate for mediating these effects.  Also, 

extensive profiling of VU0152099 and VU0152100 showed no functional effects on 

responses to other closely related family A GPCRs and no significant off-target activity 

at any of 68 other GPCRs, ion channels, or enzymes.  Thus, while it is impossible to 

entirely rule out unknown off-target activity, these compounds appear to be much more 

highly selective for the targeted receptor than is typical for most orthosteric GPCR 

ligands.  As new tools become available for targeting M4 and other mAChR subtypes, 

they will provide the means to develop a more complete understanding of the roles of 

each of the individual mAChR subtypes in regulating CNS function.   

  In addition to suggesting the potential roles of M4 in vivo, these data have 

important implications related to the molecular pharmacology of allosteric modulators of 

GPCRs.  One of the most promising properties of allosteric modulators of GPCRs has 

been that it is often possible to achieve high selectivity for a targeted GPCR subtype 

relative to closely related family members (Marino et al., 2003; O'Brien et al., 2003; 

Kinney et al., 2005; Galici et al., 2006).  However, discovery of these compounds also 

raises the question of whether allosteric modulators may have broad activity across other 

GPCRs by interacting at potentially promiscuous allosteric sites.  The present finding that 

VU0152099 and VU0152100 had no major activities across multiple targets in a large 

panel radioligand binding screen was encouraging in suggesting the high selectivity of 

these compounds, but does not address this critical question.  However, the finding that 

these compounds had no allosteric modulator activity across a panel of 15 other family A 

GPCR subtypes is exciting and suggests that they are not likely to have activity at a site 
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that is shared across multiple GPCRs.  While it is impossible to rule out activity at other 

unidentified targets that were not tested, these data suggest that it may be possible to 

achieve higher subtype selectivity across a range of receptors than has been possible with 

many orthosteric ligands. 
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CHAPTER IV 

 

A SELECTIVE ALLOSTERIC POTENTIATOR OF THE M1 MUSCARINIC 
ACETYLCHOLINE RECEPTOR INCREASES ACTIVITY OF MEDIAL 

PREFRONTAL CORTICAL NEURONS AND RESTORES IMPAIRMENTS IN 
REVERSAL LEARNING 

 
 

Introduction 

 The muscarinic acetylcholine (ACh) receptors (mAChRs) play important roles in 

regulating higher cognitive function.  Non-selective mAChR antagonists induce profound 

attention and memory deficits (Aigner et al., 1991; Fibiger, 1991; Miller and Desimone, 

1993)  and degeneration of forebrain cholinergic neurons is one of the earliest 

pathological changes observed in AD (Bartus et al., 1982; Bartus, 2000).  Furthermore, 

acetylcholinesterase inhibitors (AChEIs) have established efficacy in the treatment of AD 

symptoms (Birks, 2006; Munoz-Torrero, 2008). 

 Of the five mAChR subtypes, the M1 receptor is viewed as the most important 

subtype for memory and attention mechanisms (Levey et al., 1991; Felder et al., 2000).  

Based on this, selective activators of M1 have been proposed as having potential utility in 

treatment of AD (Bodick et al., 1997b; Bodick et al., 1997a; Gu et al., 2003; Caccamo et 

al., 2006; Jones et al., 2008; Caccamo et al., 2009).  However, recent studies revealed that 

genetic deletion of M1 does not alter mAChR excitatory effects on hippocampal 

pyramidal cells (Rouse et al., 2000a), impair hippocampal-dependent learning, or alter 

cognition-impairing effects of mAChR antagonists (Miyakawa et al., 2001; Anagnostaras 

et al., 2003).  Interestingly, while hippocampal-dependent learning was intact, M1 

receptor knockout mice had specific deficits in forms of learning and memory that 
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require activation of the prefrontal cortex (PFC) (Anagnostaras et al., 2003).  Thus, M1 

may play a role in regulating PFC function, and M1 receptor-selective activators could 

improve deficits in PFC-dependent learning in patients suffering from AD. 

 Unfortunately, lack of highly selective activators and antagonists of the M1 

receptor has prevented detailed studies of the functional consequences of selective M1 

receptor activation.  The difficulty in developing highly selective M1 agonists is due to 

the high sequence homology among the orthosteric binding sites of mAChR subtypes.  

However, an alternative strategy for achieving high subtype selectivity is targeting 

allosteric binding sites that are distinct from the ACh binding site (Conn et al., 2009a; 

Conn et al., 2009b).  We recently reported discovery of multiple positive allosteric 

modulators (PAMs) of M1 (Marlo et al., 2009).  Furthermore, Ma and colleagues (Ma et 

al., 2009) report evidence that BQCA is a potent and highly selective PAM at the human 

M1 receptor.  Based on these preliminary findings, we synthesized a series of molecules 

related to BQCA and report that BQCA and related compounds are highly selective rat 

M1 PAMs.  These compounds do not interact with the ACh site, but dramatically increase 

the affinity of the M1 receptor for ACh and potentiate the response to orthosteric agonist.  

In addition, activation of the M1 receptor induces an inward current and increases 

excitatory synaptic currents in mPFC layer V pyramidal cells.  Consistent with this, 

BQCA increases firing of mPFC neurons in vivo.  Finally, BQCA reverses deficits in a 

PFC-dependent form of learning and memory in a transgenic mouse model of AD and 

promotes non-amyloidogenic APP processing in vitro.  Together, these data suggest that 

the M1 receptor plays an important role in regulating excitatory drive to the PFC and that 
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selective potentiation of activity at this receptor can reverse deficits in PFC-dependent 

cognitive function. 

 

Results 

 

A panel of 21 compounds related to BQCA has a range of activities as allosteric 
potentiators at the rat M1 mAChR 
   
 Ma et al., (2008) recently reported BQCA as a selective positive allosteric 

modulator (PAM) of the human M1 muscarinic receptor (hM1).  However, GPCR PAMs 

can display species specificity, and the effects of BQCA were not extensively evaluated 

on the rat M1 receptor (rM1).  Thus, in order to determine whether BQCA and related 

compounds have properties needed for use in rodent studies, we synthesized BQCA and a 

panel of 20 structurally related analogs to identify compounds that can act as selective 

PAMs for the rM1 receptor.  Effects of BQCA and related compounds were evaluated by 

measuring effects on calcium mobilization elicited by a submaximal concentration (EC20) 

of ACh (Fig. 22).  Libraries I, II, and III each consisted of seven compounds possessing 

the same N-benzyl substitutions based on either an 8-fluorinated quinolone carboxylic 

acid (Ia-Ig), a quinolone carboxylic acid (IIa-IIg, including BQCA), or a 5,8-

difluorinated quinolone carboxylic acid (IIIa-IIIg) template, respectively (Fig. 22A). The 

activity of test compounds was initially assessed by incubating CHO-K1 cells stably 

expressing the rM1 receptor with fixed concentrations of each compound at 10, 1, or 0.3 

µM (Fig. 22B-D) for 1.5 min prior to the addition of an EC20 concentration of ACh.  

From the panel, four compounds that exhibited robust potentiator activity at 0.3 µM were 

selected for further evaluation based on their structural diversity.  As can be seen in the 
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representative trace, 1 µM BQCA has no effect when added alone, but greatly enhances 

the response to an EC20 concentration of ACh when compared to vehicle.  A maximal 

response to ACh is also shown for comparison (Fig. 22E).  To determine the potency of 

each of these compounds, full concentration response curves (CRCs) were generated by 

pre-incubating rM1 CHO-K1 cells with increasing concentrations of test compound, 

followed 1.5 min later by the addition of an EC20 concentration of ACh (Fig. 23A).  All 

four compounds had similar potencies at rM1 with EC50 values in the 200-400 nM range.  

As a second measure of their ability to potentiate the rM1 receptor-mediated calcium 

response to ACh, rM1 receptor expressing CHO-K1 cells were pre-incubated with a fixed 

concentration (3 µM) of the test compound (or vehicle) and then stimulated with 

increasing concentrations of ACh to generate a series of ACh CRCs.  Each of the four 

test compounds elicited a robust potentiation of the ACh response, as manifest by a 

leftward shift in the ACh CRC (9.5- to 18.6-fold shift, Fig. 23B). 
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Figure 22.  Twenty-one putative M1 receptor PAMs were synthesized and evaluated at 
the rM1 mAChR for their ability to potentiate an EC20 concentration of ACh.  A.  
Synthesis: a. K2CO3, KI, R-Br, DMF, 24 hr. at  r.t., b. LiOH, 9:1 THF:H2O 10 min 120°C 
μwave.  Calcium mobilization was measured using a Flexstation II, as described in 
Methods.  Test compounds were evaluated at fixed concentrations of 10 μM (B.), 1 μM 
(C.), or 0.3 μM (D.) in the presence of an EC20 concentration of ACh.  Four compounds, 
denoted by an asterisk (*) in panel D, were selected for further evaluation based on their 
structural diversity and ability to potentiate an EC20 concentration of ACh at 0.3 μM.  
Data were normalized as a percent of the maximal response to 10 μM ACh and represent 
the mean ± S.E.M. of 3 independent experiments.  D.   A representative calcium trace 
from one experiment shows the effect of 1 µM BQCA on the rM1 receptor response to an 
EC20 concentration of ACh; the response to an EC20

 and ECmax concentration of ACh in 
the presence of vehicle are also shown for comparison.  Experiments performed by A.E. 
Brady. 
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Figure 23.  Four of the compounds initially identified as robust M1 potentiators of the 
calcium response were further characterized in vitro at the rM1 mAChR.  A.  Potency of 
each test compound was determined based on its ability to potentiate an EC20 
concentration of ACh, yielding EC50 values of 404 ± 59 nM, VU0238393 (■), 187 ± 39 
nM, VU0238389 (▲), 316 ± 102 nM, VU0238386 (BQCA,▼) and 284 ± 32nM 
VU0238387 (♦).  B.  Test compounds were then evaluated at a fixed concentration of 3 
µM for their ability to shift the potency of an ACh concentration response curve.  ACh 
alone stimulated calcium mobilization with an EC50 value of 2.09 ± 0.43 nM (●).  In the 
presence of each of the four test compounds, a robust leftward shift in the ACh CRC was 
induced resulting in the following EC50 values and fold shift in the ACh curve (in 
parentheses): 0.280 ± 0.164 nM (9.5X), VU0238393 (■), 0.039 ± 0.017 nM (23.2X), 
VU0238389 (▲), 0.142 ± 0.007 nM (16.4X), VU0238386 (BQCA,▼) and 0.107 ± 0.003 
nM (18.6X), VU0238387 (♦).  Data were normalized as a percent of the maximal 
response to 10 µM ACh and represent the mean ± S.E.M. of 3 independent experiments.  
Experiments performed by Ashley Brady. 
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BQCA is a potent and selective positive allosteric modulator of the rat M1 receptor 
in vitro 
   
 Of the molecules tested in this panel screen, BQCA was among the most potent 

and efficacious at potentiating rM1 receptor-mediated responses.  This is consistent with 

its activity at the human receptor (Ma et al., 2009).  Based on this and its favorable 

physiochemical properties, we chose to pursue studies focusing exclusively on BQCA.  

First, we evaluated the potency of BQCA as a positive allosteric modulator of the rM1 

receptor by measuring calcium mobilization in CHO-K1 cells stably expressing this 

receptor.  Cells were incubated with increasing concentrations of BQCA for 1.5 min prior 

to the addition of an EC20 concentration of ACh, yielding a concentration response curve 

for BQCA with an EC50 value of 267 ± 31 nM (Fig. 24A.).  We next determined the 

effect of increasing fixed concentrations of BQCA on the ACh CRC.  Rat M1 CHO-K1 

cells were pre-incubated with a fixed concentration (0.3, 1, and 3 µM) of BQCA and 

subsequently stimulated with increasing concentrations of ACh.  BQCA induced a dose-

dependent leftward shift in the ACh CRC with a maximal shift of 21-fold observed with 

3 µM BQCA (Fig. 24B). 
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Figure 24.  BQCA is a potent positive allosteric modulator of the rM1 receptor in vitro.  
A.  The potency of BQCA was evaluated at the rM1 receptor by measuring calcium 
mobilization in Chinese Hamster Ovary (CHO-K1) cells stably expressing the rM1 
receptor.  Increasing concentrations of test compound was added to cells, followed 1.5 
minutes later by addition of an EC20 concentration of ACh.  BQCA robustly potentiated 
the response to ACh with an EC50 value of 267 ± 31 nM.  B.  The ability of BQCA to 
potentiate the response of the rM1 receptor to ACh is also manifest by a dose-dependent 
leftward shift in the ACh CRC.  ACh alone stimulated calcium mobilization with an EC50 
value of 2.42 ± 0.337 nM (■).  In the presence of increasing fixed concentrations of 
BQCA (0.3 - 3 μM), a robust leftward shift in the ACh CRC was induced, resulting in the 
following EC50 values (fold shift in the ACh curve is shown in parentheses); 0.3 μM (♦) 
= 0.762 ± 0.56 nM (3.3-fold), 1.0 μM (▼) = 0.221 ± 0.079 nM (12-fold), 3 μM (▲) = 
0.123 ± 0.026 nM (21-fold).  Data were normalized as a percent of the maximal response 
to 10 μM ACh and represent the mean ± S.E.M. of 3-4 independent experiments.  
Experiments performed by A.E. Brady. 
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BQCA is functionally selective for the M1 mAChR subtype   

 One of the primary difficulties in developing novel selective ligands for 

muscarinic receptors has been the failure to identify compounds that can distinguish 

between the highly conserved orthosteric binding site shared by the five members of this 

GPCR subfamily.  Development of ligands that bind to allosteric sites, both potentiators 

and direct acting agonists, has proven to be a practical way to circumvent this issue 

(Conn et al., 2009a; Conn et al., 2009b).  Thus, it was important to determine whether 

BQCA is selective for the M1 mAChR relative to other mAChR subtypes.  We evaluated 

the effect of BQCA on the ACh CRC in calcium mobilization assays at each of the other 

mAChR subtypes.  As shown in Fig. 24B, pre-incubation of rM1 receptor-expressing 

CHO-K1 cells with 3 µM BQCA results in a robust leftward shift in the CRC for ACh.  

However, at this same concentration, BQCA had no effect on the ACh concentration 

response curves generated in CHO-K1 cells stably expressing the hM2, hM3, rM4, or hM5 

receptors (Fig. 25A-D).  To further assess selectivity of BQCA for the M1 receptor 

relative to other class A GPCR targets that may also harbor similar allosteric sites, we 

took advantage of the GPCR Profiler™ service offered by Millipore Corp. (St. Charles, 

MO) to determine the effect of this compound on the functional response of 15 other 

closely related GPCRs (Fig. 26).  A two-addition protocol afforded the ability to detect 

potential agonist, potentiator, and antagonist activity of BQCA at these other GPCR 

subtypes.  Consistent with our internal studies, BQCA induced robust potentiation at the 

hM1 receptor, but had no activity in this assay at the hM4 receptor.  Moreover, BQCA had 

no effect at any of the other GPCRs tested (Fig. 26A-P).  This included a lack of PAM 

activity or antagonist activity (either allosteric or orthosteric) at any of these other 
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GPCRs, which would have resulted in a rightward shift in the concentration response 

curve.  Together, these data suggest that BQCA is highly selective for the M1 mAChR 

subtype and has no detectable activity at closely related family A GPCRs that were 

tested. 
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Figure 25.  The presence of BQCA has no effect on the ACh concentration-response 
curve at any other mAChR subtype.  No shift in the ACh CRC was observed in the 
presence of 3 μM BQCA in CHO-K1 cells stably expressing M2-Gqi5 (A.), M3 (B.), M4-
Gqi5 (C.), or M5 receptors (D.).  Calcium mobilization was measured in response to 
increasing concentrations of ACh following preincubation of cells with either vehicle (■) 
or 3 μM BQCA (▲), as described in Methods. Data represent the mean ± S.E.M. of three 
independent experiments.  Experiments performed by A.E. Brady. 
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Figure 26.  Millipore GPCR Profiler BQCA selectivity data.  To confirm that BQCA retains 
selectivity at M1 when assayed at non-mAChR GPCRs, it was evaluated in Millipore’s GPCR 
Profiler™ screen for activity at 15 additional Class A GPCR targets.  A Fluorimetric Imaging 
Plate Reader (FLIPRTetra), (Molecular Device Corp), was used to measure calcium mobilization in 
response to agonist stimulation in a proprietary cell line that relies on endogenous expression of 
the promiscuous G protein, Gα15/16, to couple recombinant receptors to the PLCβ/Ca2+ pathway.  
This assay takes advantage of a two addition protocol such that it was possible to detect any 
agonist, antagonist, or allosteric potentiator activity.  BQCA exhibited no agonist or antagonist 
activity at any of the targets tested.  Allosteric potentiator activity was assessed by performing 
agonist concentration response curves in the absence (vehicle, ▲) or presence of 10 µM test 
compound (BQCA, ■).  A.  At the human M1 mAChR, 10 µM BQCA elicits a robust leftward 
shift in the carbachol concentration-response curve.  B-P.  Similar CRC curves were generated 
for additional GPCRs: Muscarinic M4 (B.), Adenosine A2B (C.), α1A-, 2A-, 2B-Adrenergic (D-F.), 
Dopamine D1 ,D2L, D5 (G-I), Histamine H1, H2, H3 (J-L), and Serotonin 5HT1A, 2A, 2B, 2C (M-P), 
with no detectable leftward shift in the agonist concentration-response-curve observed at any 
other target tested.  All data represent the mean of duplicate determinations. 
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BQCA does not compete for orthosteric antagonist binding and it induces a robust 
leftward shift in ACh affinity at the rM1 receptor 
 
 We previously reported that novel selective PAMs of the rM4 receptor, 

exemplified by VU10010 and VU152100, have no detectable affinity at the orthosteric 

ACh binding site of the rM4 receptor but allosterically increase affinity of ACh for the 

rM4 receptor (Brady et al., 2008; Shirey et al., 2008).  To determine whether BQCA 

shares this property with the rM4 PAMs, we assessed the ability of this compound to 

compete for binding with the orthosteric radioligand, [3H]-NMS (0.1 nM) to the 

orthosteric site using membranes prepared from cells expressing the rM1 receptor.  BQCA 

had little effect on [3H]-NMS binding, with no displacement of radioligand observed at 

concentrations up to 10 µM (Fig. 27A).  In contrast, the orthosteric antagonist, atropine, 

potently inhibited [3H]-NMS binding with a Ki value of 1.35 ± 0.022 nM (Fig. 27A).  

The effect of BQCA on the affinity of ACh for the rM1 receptor was also evaluated by 

assessing the ability of increasing concentrations of ACh to displace [3H]-NMS (0.1 nM) 

binding in the absence or presence of fixed concentrations of the M1 receptor potentiator 

(0.3, 1.0, and 3.0 µM).  BQCA induced a robust concentration-dependent leftward shift in 

the concentration response curve of ACh-induced displacement of [3H]-NMS binding to 

the rM1 receptor, with a 30-fold shift observed at the highest concentration tested (3.0 

µM). This shift reveals that BQCA induces a reduction in the ACh Ki from 1700 ± 96.4 

nM (vehicle) to 348 ± 43.4 nM (0.3 µM), 163 ± 22.9 nM (1.0 µM), and 56.1 ± 4.99 nM 

(3.0 µM), respectively (Fig. 27B). Taken together, these data strongly suggest that BQCA 

acts at a site on the rM1 receptor that is distinct from the orthosteric binding site and that 

it may enhance M1 receptor activation by increasing the affinity for ACh.  
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Fig 27.  BQCA does not compete for orthosteric antagonist binding and it induces a 
robust leftward shift in ACh affinity at the rM1 receptor.  A.  At concentrations up to 10 
μM, BQCA (■) did not displace the orthosteric radioligand, [3H]-NMS (0.1 nM) in 
competition binding studies.  However, the orthosteric antagonist, atropine (▲), potently 
inhibited [3H]-NMS binding with a Ki of 1.35 ± 0.022 nM.  B.  In the presence of vehicle 
alone, an increasing concentration of ACh displaces [3H]-NMS (0.1 nM) binding with a 
Ki of 1700 ± 96.4 nM (■).  In the presence of increasing fixed concentrations (0.3 - 3.0 
μM) of BQCA, the potency of ACh to displace [3H]-NMS binding is shifted leftward, 
yielding Ki values of 348 ± 43.4 nM (0.3 μM, ▲), 163 ± 22.9 nM (1.0 μM, ▼), and 56.1 
± 4.99 nM (3.0 μM, ●), which represent 5-fold, 10.6-fold and 30.6-fold shifts in ACh 
potency, respectively.  Data represent the mean ± S.E.M. of 3 independent experiments 
performed in duplicate.  Experiments performed by A.E. Brady. 
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Activation of the M1 receptor induces an inward current in rat mPFC layer V 
pyramidal cells and this effect is potentiated by BQCA 
 
 Prefrontal cortical function is required for higher executive function, memory 

storage and retrieval, and cognition (Miller and Cohen, 2001).  Recent studies suggest 

that M1 receptor signaling may play an important role in activation of the prefrontal 

cortex by lower brain regions (Anagnostaras et al., 2003).  Based on this, it was 

postulated that activation of the M1 receptor could increase excitability of mPFC 

pyramidal cells or increase excitatory synaptic drive to these neurons.  In order to 

examine the effects of M1 receptor activation on mPFC pyramidal cells, layer V 

pyramidal neurons were visually identified and membrane currents measured using patch 

clamp recordings in acute coronal slices.  Cell type was confirmed by examining firing 

properties upon depolarizing current injection.  Typical resting membrane potentials of 

these pyramidal neurons were -55 to -65 mV under the conditions used.  Holding current 

was measured in cells voltage clamped at -70 mV during baseline recording, drug 

application, and wash.  Bath application of CCh induced a robust, concentration-

dependent inward current as shown in Fig. 28 (10 µM CCh, 16.55 ± 1.93 pA, n = 4; 100 

µM CCh, 53.14 ± 5.92 pA, n = 4).  Although this CCh–induced inward current is in 

agreement with previously reported studies, it is not known whether this response is 

mediated by the M1 receptor or another mAChR subtype (Krnjevic, 2004; Carr and 

Surmeier, 2007).  However, previous studies suggest that the M1 receptor may not be 

responsible for induction of inward currents in hippocampal CA1 pyramidal cells (Rouse 

et al., 2000a).  Before evaluating the effect of BQCA on this current, we determined the 

effect of VU0255035, the first highly selective M1 receptor antagonist that was recently 

reported (Sheffler et al., 2009), on the CCh-induced inward current.  The M1 receptor 
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antagonist, VU0255035 (10 µM), had no effect on holding current alone but significantly 

blocked the current induced by 100 µM CCh (P = 0.0202, unpaired t-test).  These results 

suggest that the CCh-induced inward current in rat mPFC layer V pyramidal cells is 

largely mediated by activation of the M1 receptor.  If this is the case, we would predict 

that the M1 receptor PAM BQCA should potentiate the CCh-induced inward current.  

Interestingly, BQCA induced a small change in holding current when applied alone 

(21.54 ± 2.42 pA, n = 5, Fig. 28).  In addition, BQCA significantly increased the inward 

current induced by 10 µM CCh (55.07 ± 6.28 pA upon co-application, n = 5, compared to 

10 µM CCh alone, P = 0.0210).  These data are consistent with the hypothesis that 

activation of the M1 receptor induces an inward current in mPFC layer V pyramidal cells 

and that M1 receptor PAMs can induce a marked potentiation of this response. 
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Figure 28.  CCh-induced inward current in mPFC layer V pyramidal cells is reduced by 
M1 receptor antagonist VU0255035 and potentiated by BQCA.  A.  Sample traces from 
single experiments showing the change in holding currents upon drug treatments.  B.  
Activation of mAChRs by CCh causes a dose-dependent inward current as measured in 
voltage clamp mode as a change in holding current (16.55 ± 1.93 pA in the presence of 
10 µM CCh, n = 4; 53.14 ± 5.92 pA with 100 µM CCh, n = 4).  M1 receptor PAM BQCA 
also caused an inward current when applied alone, and significantly increased the effect 
of 10 µM CCh (21.54 ± 2.42 pA change with 10 µM BQCA, n = 5; 55.07 ± 6.28 pA 
when BQCA was co-applied with 10 µM CCh, n = 5, as compared to 10 µM CCh alone, 
P = 0.0210).  The effect of 100 µM CCh was also significantly inhibited by 10 µM M1 
receptor antagonist VU0255035 (11.78 ± 1.90 pA in the presence of antagonist, n = 3, 
compared to 100 µM CCh alone, P = 0.0202).  Sample traces represent experiments from 
single cells, and bars show duration of drug exposure.  All changes in holding current 
were compared to baseline control and are represented as mean ± S.E.M.  Asterisks 
indicate significant differences from control (*, P < 0.05; unpaired t-test). 
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BQCA does not potentiate CCh-mediated inward currents in M1 knockout mice  

 Application of CCh caused a dose-dependent inward current in mPFC layer V 

pyramidcal cells in slices from wild-type (3 µM CCh, 24.0 ± 3.9 pA; 30 µM CCh, 34.4 ± 

5.8 pA; Fig. 29A) and M1 knockout mice (3 µM CCh, 2.1 ± 1.2 pA; 30 µM CCh, 6.1 ± 

2.0 pA; 100 µM CCh, 42.0 ± 10.5 pA Fig. 29B) but had much lower potency in slices 

from knockout animals.  While BQCA alone (10 µM) induced a slight inward current in 

wildtype cells (17.9 ± 6.0 pA), it induced a much smaller change in holding current in M1 

knockout cells (9.1 ± 1.9 pA);  co-application of BQCA with 3 µM CCh increased the 

inward current induced by this low concentration of CCh (35.2 ± 9.9 pA).  In contrast, 

BQCA did not potentiate the response to 30 µM CCh in M1 knockout slices (3.5 ± 1.2 

pA).  Because of the limited availability of knockout animals during this time, 

experiments testing the ability of atropine or the M1 antagonist, VU0255035, to block the 

inward current caused by 100 µM CCh were not performed.  While this critical control is 

necessary for conclusive interpretation of these data, trends in the dose response to CCh 

between wildtype and M1 knockout animals imply that the M1 subtype mediates, at least 

in part, the CCh-induced inward current.  While the slight response to BQCA (Fig. 29B) 

in knockout animals is somewhat worrisome, holding current stability throughout the 

duration of these experiments is highly variable and futher controls to test the 

significance of this response will be required. 
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Figure 29.  BQCA does not potentiate CCh-mediated inward currents in M1 knockout 
mice.  Application of CCh caused a dose-dependent inward current in mPFC layer V 
pyramidcal cells in slices from wild-type (3 µM CCh, 24.0 ± 3.9 pA; 30 µM CCh, 34.4 ± 
5.8 pA) and M1 knockout mice (3 µM CCh, 2.1 ± 1.2 pA; 30 µM CCh, 6.1 ± 2.0 pA; 100 
µM CCh, 42.0 ± 10.5 pA) but had much lower potency in slices from knockout animals.  
While BQCA alone (10 µM) induced a slight inward current in wildtype cells (17.9 ± 6.0 
pA), it induced a much smaller change in holding current in M1 knockout cells (9.1 ± 1.9 
pA);  co-application of BQCA with 3 µM CCh increased the inward current induced by 
this low concentration of CCh (35.2 ± 9.9 pA).  In contrast, BQCA did not potentiate the 
response to 30 µM CCh in M1 knockout slices (3.5 ± 1.2 pA). 
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mAChR activation increases mPFC spontaneous EPSC amplitude and frequency   

 It is also possible that activation of the M1 receptor could increase activity of 

excitatory synaptic inputs to the mPFC and that this could contribute to the postulated 

role of this receptor in increasing PFC activity from in vivo studies in M1 receptor 

knockout mice (Anagnostaras et al., 2003).  Thus, we determined the effect of mAChR 

activation on spontaneous excitatory postsynaptic currents (sEPSCs) in mPFC pyramidal 

cells.  Application of CCh caused a dramatic, concentration-dependent increase in the 

frequency of spontaneous EPSCs; the effect of a maximal concentration of 100 µM CCh 

on one representative cell is shown in Fig. 30A.  Cumulative probability plots of 

amplitude and inter-event interval from the same cell demonstrate significant shifts in the 

presence of 100 µM CCh that are reversible upon wash (Fig. 30B).  The concentration-

response relationships for CCh effects on sEPSC amplitude and frequency are shown in 

Fig. 30C.  A concentration of 10 µM CCh was without effect (97.5 ± 4.4% control for 

amplitude, 90.1 ± 12.4% control for frequency, n = 6); however, 30 and 100 µM CCh 

increased both amplitude and frequency (30 µM amplitude, 108.3 ± 3.9%, frequency, 

455.0 ± 101.9% control, n = 7; 100 µM amplitude, 154.3 ± 46.2%, 887.6 ± 268.5% 

control for frequency, n = 5).  The effects of 30 µM CCh on both amplitude and 

frequency were completely blocked by the non-selective muscarinic antagonist, atropine 

(5 µM, 102.9 ± 7.8% and 104.4 ± 19.6% control, respectively, n = 3) indicating that the 

effect of CCh was due to activation of mAChRs. 
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Figure 30.  Muscarinic receptor activation increases mPFC spontaneous EPSC amplitude and 
frequency.  A.  Representative traces from one cell showing the effect of a maximal concentration 
of 100 µM CCh.  B.  Change in cumulative probability plots of sEPSC amplitude (top panel) and 
inter-event interval (bottom panel) upon addition and wash of 100 µM CCh from one 
representative cell.  C.  Averaged amplitude and frequency show that CCh treatment induces a 
dose-dependent increase in both sEPSC amplitude and frequency which is reversible upon 
washout and is inhibited by 5 µM atropine  (amplitudes, 10 µM CCh, 97.5 ± 4.4%, n = 6, P = 
0.2727; 30 µM CCh, 108.3 ± 3.9%, n = 7, P = 0.0498; 100 µM CCh, 154.3 ± 46.2%, n = 5, P = 
0.2393; 5 µM atropine/30 µM CCh, 102.9 ± 7.8% of control, n = 3, P = 0.5365.  30 µM CCh vs. 
5 µM atropine/30 µM CCh, P = 0.4478; frequencies, 10 µM CCh, 90.1 ± 12.4%, P = 0.9364; 30 
µM CCh, 455.0 ± 101.9%, P = 0.0139; 100 µM CCh, 887.6 ± 268.5%, P = 0.0314; 5 µM 
atropine/30 µM CCh, 104.4 ± 19.6% of control, P = 0.6260.  30 µM CCh vs. 5 µM atropine/30 
µM CCh, P = 0.0458).  All changes in amplitude and frequency were compared to baseline 
control and are represented as mean ± S.E.M.  Asterisks indicate significant differences from 
control or between conditions (*,P < 0.05; paired or unpaired t-test). 
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The effect of CCh on sEPSC amplitude and frequency is inhibited by VU0255035   

 To further evaluate the role of the M1 receptor in the effect of CCh on sEPSCs, 

slices were treated with the selective M1 receptor antagonist VU0255035 (5 µM) for 2 

min. prior to addition of 30 µM CCh (Fig. 31A, B).  VU0255035 alone decreased sEPSC 

amplitude (92.9 ± 3.4% control, n = 11), and amplitude was further decreased by co-

application with 30 µM CCh (87.1 ± 3.5% control, Fig. 31C).  Antagonist alone had no 

effect of sEPSC frequency (114.1 ± 25.8% control) but caused a significant decrease in 

frequency in the presence of CCh (62.5 ± 10.1% control, Fig. 31C).  These data suggest 

that the CCh-induced increase in sEPSC amplitude and frequency is mediated by 

activation of the M1 receptor.  The reversal of the CCh effect on sEPSC frequency in the 

presence of the M1 receptor antagonist suggests that blocking the M1 receptor unmasks an 

inhibitory action of CCh that may be mediated by another mAChR subtype, possibly M2 

or M4 receptors. 
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Figure 31.  The effect of CCh on sEPSC amplitude and frequency is inhibited by VU0255035.  
A.  Sample traces from one cell showing lack of effect of 30 µM CCh in the presence of the M1 
receptor antagonist VU0255035.  B.  Cumulative probability plots of sEPSC amplitude and 
frequency from the same cell.  C.  Averaged (n = 11) amplitude and frequency.  The increase in 
sEPSC amplitude and frequency induced by 30 µM CCh was reversed by 5 µM VU0255035 
(amplitudes, 5 µM VU0255035, 92.9 ± 3.4%, P = 0.0338; 5 µM VU0255035 + 30 µM CCh, 87.1 
± 3.5%, P = 0.0026; antagonist alone vs. with CCh, P = 0.0350; frequencies, 5 µM VU0255035, 
114.1 ± 25.8%, P = 0.4543; 5 µM VU0255035 + 30 µM CCh 62.5 ± 10.1% of control, P = 
0.0357; antagonist alone vs. with 30 µM CCh, P = 0.0161).  All changes in amplitude and 
frequency were compared to baseline control and are represented as mean ± S.E.M.  Asterisks 
indicate significant differences from control or between drug conditions (*, P < 0.05; **, P < 
0.01; ***, P < 0.0001; paired or unpaired t-test). 
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BQCA increases sEPSCs and potentiates the effect of a sub-threshold concentration 
of CCh on sEPSC frequency 
   
 Our results thus far suggest that the M1 receptor is responsible for the CCh-

induced increase in sEPSC frequency; therefore, this response should be potentiated by 

BQCA.  To test this hypothesis, slices were treated with BQCA alone for 2 min. (10 µM) 

prior to addition of 10 µM CCh.  Sample traces and cumulative probability plots are 

shown in Fig. 32A and 32B.  Treatment with BQCA alone did not significantly affect 

sEPSC amplitude, but increased the frequency of events (108.3 ± 6.6% control, 277.0 ± 

97.7% control, respectively, n = 11, Fig. 32C).  Co-application of BQCA and 10 µM 

CCh induced a further increase in sEPSC frequency (994.5 ± 301.5% control), which 

differed significantly from the effect of 10 µM CCh (P = 0.0045, unpaired t-test) (see 

Fig. 30C) or BQCA alone (P = 0.0116, paired t-test).  
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Figure 32.  BQCA increases sEPSCs and potentiates a sub-threshold concentration of CCh to 
increase sEPSC frequency.  A.  Representative traces from one cell showing the effect of 10 µM 
BQCA alone and in the presence of 10 µM CCh.  This concentration of CCh had no significant 
effect on sEPSC amplitude or frequency when applied alone.  B.  Change in cumulative 
probability plots from one representative cell of sEPSC amplitude (top panel) and inter-event 
interval (bottom panel) upon addition of 10 µM BQCA with and without 10 µM CCh.  C.  
Averaged (n = 11) amplitude and frequency.  Neither drug condition elicited a significant effect 
on sEPSC amplitude (10 µM BQCA, 108.3 ± 6.6%, P = 0.5013; 10 µM BQCA/10 µM CCh, 
136.0 ± 15.3% control, P = 0.0524) but significantly increased frequency (10 µM BQCA, 277.0 ± 
97.7%, P = 0.0229; 10 µM BQCA/10 µM CCh, 994.5 ± 301.5% control, P = 0.0045; the effect of 
combined drug treatment vs. 10 µM BQCA alone was significantly different, P = 0.0116).  The 
effect of 10 µM CCh on frequency in the absence and presence of BQCA was also significantly 
different (P = 0.0177).  All changes in amplitude and frequency were compared to baseline 
control and are represented as mean ± S.E.M.  Asterisks indicate significant differences from 
control or between drug conditions (*, P < 0.05; **, P < 0.01; paired or unpaired t-test). 
 



194 
 

CCh and BQCA have no effect on miniature EPSC amplitude and frequency in rat 
mPFC layer V pyramidal cells 
  
 To determine whether the actions of CCh and BQCA require action potential-

dependent EPSCs, we determined the effects of these compounds on miniature EPSCs 

(mEPSCs).  mEPSCs were recorded in voltage clamp mode at a holding potential of -70 

mV and in the presence of 1 µM tetrodotoxin (TTX) to block voltage-gated sodium 

channels.  At this concentration, TTX completely eliminates action potential firing and 

action potential-mediated synaptic activity (Morisset and Urban, 2001).  Under these 

conditions, neither CCh nor BQCA elicited any effect on mEPSC amplitude or 

frequency.  Sample traces from one cell in a slice to which 100 µM CCh was applied in 

the presence of TTX show a clear lack of effect (Fig. 33A).  Cumulative probability plots 

of amplitude and frequency during control, CCh treatment, and wash from the same cell 

overlap (Fig. 33B).  Pooled amplitude and frequency for all drug treatments are 

quantified in Fig. 33C (10 µM CCh, n = 5; 100 µM CCh, n = 4; 10 µM BQCA with and 

without 10 µM CCh, n = 4).  The only significant effect was that of 10 µM CCh, which 

slightly decreased mEPSC amplitude (88.6 ± 3.8% control).  The effects of M1 receptor 

activation on spontaneous EPSCs thus require action potential firing. 
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Figure 33.  CCh and BQCA have no effect on miniature EPSC amplitude and frequency in rat 
mPFC layer V pyramidal cells.  A.  Sample traces from one cell showing the lack of 100 µM CCh 
on mEPSCs in the presence of 1 µM TTX.  B.  Cumulative probability plots for amplitude and 
frequency of miniature excitatory events from the representative cell shown in A.  C.  Averaged 
amplitude and frequency (10 µM CCh, n = 5; 100 µM CCh, n = 4; 10 µM BQCA alone and with 
10 µM CCh, n = 4) of mEPSCs recorded in rat slices.  No increase in either amplitude or 
frequency of events occurred in the presence of low or high CCh, BQCA, or BQCA co-applied 
with CCh (amplitudes, 10 µM CCh, 88.6 ± 3.8%, P = 0.0475; 100 µM CCh, 90.8 ± 9.4%, P = 
0.2592; 10 µM BQCA, 99.1 ± 2.8%, P = 0.9562; 10 µM BQCA/10 µM CCh, 97.6 ± 5.8%, P = 
0.7334; frequencies: 10 µM CCh, 104.6 ± 14.9%, P = 0.8883; 100 µM CCh, 120.4 ± 27.1%, P = 
0.8174; 10 µM BQCA, 95.3 ± 4.3%, P = 0.2105; 10 µM BQCA/10 µM CCh, 111.5 ± 21.6%, P = 
0.6445).  All changes in amplitude and frequency were compared to baseline control and are 
represented as mean ± S.E.M.  Asterisks indicate significant differences from control or between 
drug conditions (*, P  < 0.05; **, P < 0.01; ***, P < 0.0001; paired t-test). 
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BQCA has no effect on sEPSCs in slices from M1 receptor KO mice  

 In order to confirm that the actions of BQCA were mediated by M1 receptor 

activation, recordings of sEPSCs in mPFC layer V neurons were made using slices from 

mice lacking the M1 receptor and compared to wild-type (WT) controls.  Consistent with 

our studies in rat slices, CCh caused a concentration-dependent increase in sEPSC 

amplitude and frequency in WT mice (Fig. 34A left panel, 34D black bars).  While 3 

µM CCh had no effect on amplitude or frequency, 30 µM CCh significantly increased 

both parameters (amplitudes, 3 µM CCh, 102.6 ± 11.7% of control, n = 3; 30 µM CCh, 

143.1 ± 22.0%, n = 5; frequencies: 3 µM CCh, 83.2 ± 47.1%, 30 µM CCh, 398.3 ± 

56.2%).  In contrast to effects in rat slices, BQCA had no effect alone in WT slices (10 

µM BQCA, 97.3 ± 11.3% control amplitude, 99.8 ± 11.3% control frequency, n = 5), but 

induced robust increases in both amplitude and frequency when co-applied with 3 µM 

CCh (137.2 ± 16.7% control amplitude, 500.5 ± 212.3% control frequency).  In slices 

from M1 receptor KO mice, the response to CCh was markedly reduced.  In M1 KO mice, 

CCh decreased sEPSC amplitude at both concentrations tested and induced a more 

modest increase in sEPSC frequency that did not achieve statistical significance 

(amplitudes, 3 µM CCh, 79.4 ± 14.9%, n = 4; 30 µM CCh, 80.7 ± 5.2%, n = 4; 

frequencies, 3 µM CCh, 186.3 ± 187.4%, 30 µM CCh, 271.7 ± 310.4%).  Importantly, the 

response to BQCA was completely absent in slices from M1 receptor KO mice.  Thus, 

BQCA had no effect when applied alone or when co-applied with 3 µM CCh 

(amplitudes, 10 µM BQCA, 96.9 ± 10.6%; BQCA/CCh, 84.5 ± 25.3%, n = 5; 

frequencies, 10 µM BQCA, 101.3 ± 26.1%; BQCA/CCh, 86.6 ± 17.3%).  Responses to 

co-application of BQCA and CCh differed significantly between WT and M1 receptor 
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KO for both sEPSC amplitude and frequency (P = 0.0046 for amplitude; P = 0.0025 for 

frequency, unpaired t-test).  These results confirmed that the actions of BQCA in WT 

mice and rats are due to its action at M1 receptors. 
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Figure 34.  BQCA has no effect and does not potentiate the CCh effect on sEPSCs in M1 
receptor KO mice.  A.  Sample traces from individual cells in slices made from wild-type 
(left panels) and M1 receptor KO mice (right panels)  showing the robust effects of 30 
µM CCh on both sEPSC amplitude in frequency compared to the milder effect in the M1 
receptor KO slice (top panels).  B.  Bottom panels illustrate the lack of effect of 10 µM 
BQCA in both the WT and M1 receptor KO and contrast the increase in amplitude and 
frequency with the addition of BQCA and 10 µM CCh to the lack of effect in the M1 
receptor KO.  C.  Cumulative probability plots of the inter-event intervals from the two 
cells shown in bottom panels above.  D.  Averaged amplitude and frequency of sEPSCs 
measured in wild-type (black bars: 3 µM CCh, n = 3; 30 µM CCh, n = 5; 10 µM BQCA 
and 10 µM BQCA + 3 µM CCh, n = 5) and M1 receptor KO slices (white bars: 3 µM 
CCh, n = 4; 30 µM CCh, n = 4; 10 µM BQCA and 10 µM BQCA + 3 µM CCh, n = 5).  
In wild-type slices, 3 µM CCh had no significant effect on amplitude or frequency (102.6 
± 11.7%, P = 0.6381 and 83.2 ± 47.1% of control, P = 0.4423, respectively) whereas 30 
µM CCh increased both (143.1 ± 22.0%, P = 0.0306 for amplitude, 398.3 ± 56.2%, P = 
0.0342 for frequency).  BQCA had no effect on amplitude or frequency but potentiated 
the response to 3 µM CCh (amplitudes, 10 µM BQCA, 97.3 ± 11.3%, P = 0.7642 
compared to control; 10 µM BQCA/3 µM CCh, 137.2 ± 16.7%, P = 0.0052 compared to 
control; frequencies, 10 µM BQCA, 99.8 ± 11.3%, P = 0.7261 compared to control; 10 
µM BQCA/3 µM CCh, 500.5 ± 212.3%, P = 0.0209 compared to control).  In M1 
receptor KO slices, 3 µM CCh decreased amplitude but had no significant effect on 
frequency (79.4 ± 14.9%, P = 0.0490 and 186.3 ± 187.4% of control, P = 0.7656, 
respectively).  30 µM CCh also significantly decreased amplitude and increased 
frequency although the effect on frequency was less dramatic than that seen in WT 
controls (80.7 ± 5.2%, P = 0.0092 for amplitude, 271.7 ± 310.4%, P = 0.6010 for 
frequency).  While the difference between the 30 µM CCh effect on amplitude was 
significant between genotypes (P = 0.0229), the effect on frequency was not (P = 
0.4756).  BQCA had no effect alone in KO slices (amplitude, 96.9 ± 10.6%, P = 0.4925; 
frequency, 101.3 ± 26.1%, P = 0.7286) and there was no difference in this lack of effect 
between genotypes (amplitude, P = 0.9596; frequency, P = 0.9133).  When applied with 
3 µM CCh, BQCA had no significant effect on amplitude or frequency (amplitude, 84.5 ± 
25.3%, P = 0.3383; frequency, 86.6 ± 17.3 %, P = 0.1388 compared to KO control), and 
both effects were significantly different those in WT slices (P = 0.0046 for amplitude, P 
= 0.0025 for frequency).   All changes in amplitude and frequency were compared to 
baseline control and are represented as mean ± S.E.M.  Asterisks indicate significant 
differences from control or between drug conditions (*, P < 0.05; **, P < 0.01; ***, P < 
0.0001; paired or unpaired t-test). 
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BQCA achieves brain penetration after systemic admistration  

 The studies outlined above suggest that BQCA could be an excellent tool for 

probing M1 receptor function.  Furthermore, based on these and previous studies, it is 

possible that BQCA could enhance mPFC activity and enhance PFC-dependent cognitive 

function.  However, before using BQCA for in vivo studies, it was critical to determine 

whether this compound had a pharmacokinetic (PK) profile suitable from systemic 

dosing and whether it crossed the blood brain barrier.  Thus, we performed a PK analysis 

of BQCA after systemic dosing.  BQCA was measured at multiple time points in both 

plasma and brain after i.p. injection in rats (Fig. 35 and Table 8).  BQCA is slowly but 

very significantly absorbed into systemic circulation with maximum concentration (~10 

µg/ml) being achieved 2 h after i.p. administration.  The compound is rapidly taken up 

into the brain and achieves a maximal brain concentration between 30 min and 1 hr after 

dosing.  Furthermore the brain concentration is maintained at a stable level for 

approximately 4 hr.  While the brain concentrations are significantly lower when 

compared to plasma concentrations (Fig. 35 and Table 8), BQCA possesss an acceptable 

PK profile and brain penetration to allow use for in vivo studies of effects this compound 

on CNS function. 
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Figure 35.  Pharmacokinetic profiling of BQCA in rats.  Concentration-time profile of 
BQCA in brain and plasma of male Sprague Dawley rats following 10 mg/kg ip 
administration.  Blood and brain tissue were collected at 0.5, 1, 2, 4 and 8 h after dosing.  
Samples were extracted as described in Methods and analyzed by LC-MS-MS (Chapter 
II).  BQCA is characterized by significant absorption into and slow elimination from 
systemic circulation after intraperitoneal administration.  Although the compound is 
rapidly and significantly taken up into the brain, the brain concentrations are rapidly 
eliminated when compared to plasma concentrations.  Each time point represents the 
mean determination ± S.D. of three rats.  Experiments performed by S.B. Jadhav and U. 
Menon. 
 
 
Table 8.  Pharmacokinetic Analysis of BQCA 
 

PK Parameter Plasma Brain 
        

Cmax (ng/mL) 10017.31 ± 1562.77 1181.65 ± 224.43 

Tmax (h)  2   1  

Elimination T1/2 (h)  3.33   2.04  

AUC (0-8) (ng.h/mL) 52344.03± 2382.63  4797.28 ± 388.81  

V/F (L/kg)  0.72   n.d.  

Vss/F (L/Kg)   0.83   n.d.  

Cl/F (L/h/kg)  0.149   n.d.  
 
 
The pharmacokinetic parameters of BQCA in exposure studies in male rats after 10.0 
mg/kg intraperitoneal administration are shown.  AUC (0-8) Brain/AUC (0-8) Plasma = 
0.091.  Values represent mean ± S.E.M.  (n = 3 rats).  (n.d., not determined). 
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BQCA increases the firing rate of mPFC neurons in vivo in rats   

 Having established the PK profile and CNS penetration of BQCA, we performed 

in vivo electrophysiology studies to test the hypothesis that the electrophysiological 

effects observed on mPFC neurons in vitro can lead to increases in activity of mPFC 

neurons in behaving animals.  To accomplish this, multiple single-unit recordings were 

obtained from the mPFC of rats trained to perform an auditory detection task for food 

reward.  A total of 57 cells (vehicle, n = 20; BQCA, n = 37) with waveform and firing 

rate characteristics consistent with those of putative pyramidal cells were obtained from 6 

rats in the presence of either vehicle or drug (20 mg/kg).  Figure 36 shows the average 

percentage change, relative to a thirty-minute pre-injection epoch, in the spontaneous 

firing rate of mPFC cells following drug or vehicle administration.  Consistent with the 

acute cortical slice data, BQCA caused an elevation in spontaneous firing rate 

significantly different from vehicle (2-way anova: drug vs. vehicle, P < 0.005). 

Significant elevations in firing rate were observed within the first thirty-minute epoch 

following injection and were maintained across the entire hour and a half recording 

period.    
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Figure 36.  BQCA increases the firing rate of mPFC neurons in vivo in rats.  Multiple 
single-unit recordings were obtained from the medial prefrontal cortex of conscious, 
freely moving rats.  A total of 57 cells (vehicle, n = 20, BQCA, n = 37) with waveform 
and firing rate characteristics consistent with those of putative pyramidal cells were 
obtained from 6 rats in the presence of either vehicle or drug (20 mg/kg).  The mean 
firing rate for each neuron within an epoch was calculated as a percent of the pre-
injection baseline rate.  Treatment with BQCA (■) resulted in an elevation in spontaneous 
firing rate that was significantly different from vehicle (▲) (2-way anova; BQCA vs. 
vehicle; P < 0.005) within the first 30 min epoch and was maintained across the entire 
trial period.  Experiments performed by E.P. Christian, J.J. Doherty, M.C. Quirk, and 
D.H. Snyder at AstraZeneca Pharmaceuticals. 

 

 

 

 

 

 

 

 



204 
 

 

Acute administration of BQCA restores impairment in reversal learning in Tg2576 
mice 
    
 Recent studies have revealed that mice over-expressing a familial AD mutant 

form of the amyloid precursor protein (Tg2576 mice) are impaired on compound 

discrimination reversal learning compared to littermate controls (Zhuo et al., 2007; Zhuo 

et al., 2008).  Interestingly, reversal learning is a PFC-dependent form of learning, 

suggesting that this mouse model of AD leads to disruption of at least one form of PFC-

dependent cognition.  Based on the finding that M1 receptor KO mice have deficits in 

PFC function (Anagnostaras et al., 2003) and that BQCA increases PFC activity, it is 

possible that this M1 receptor-selective PAM could reverse deficits in compound 

discrimination reversal learning observed in Tg2576 mice.  In agreement with previously 

published reports, we found that Tg2576 mice exhibit impaired performance in a 

compound discrimination reversal learning task (Fig. 37).  Acute administration of 

BQCA improved the performance of the Tg2576 mice on the compound discrimination 

and the compound discrimination reversal task by reducing  the odds that errors would be 

committed, x2 = 23.19 and x2 = 13.03, 1, respectively (P < 0.001, Table 9, Fig. 37C-

D). On the compound discrimination, the odds that vehicle-treated Tg2576 mice made 

errors were 6.89 times greater than the BQCA-treated Tg2576 mice.  Similarly, on the 

compound discrimination reversal, the odds of the vehicle-treated Tg2576 mice to make 

errors were 3.22 times greater than the BQCA-treated Tg2576 mice. There prevalence of 

errors on the simple discrimination or the simple discrimination reversal tasks did not 

significantly differ across groups or treatments.  Overall, the results indicate that BQCA 

improves compound reversal learning which is consistent with hypothesis that M1 
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activation may enhance PFC-dependent cognitive function.  Additionally, BQCA may 

also have more widespread effects on cognition, indicated by the reduction of errors on 

the compound discrimination in BQCA-treated Tg2576 mice, and may be of even 

broader utility in enhancing other domains of cognitive function. 

 

Table 9.  BQCA reverses impairments in discrimination learning in Tg2576 mice 

 
Group 

Simple 
Discrimination

 

Simple 
Discrimination 

Reversal 
Compound 

Discrimination* 
Compound 

Discrimination 
Reversal** 

Wild-type + 
Vehicle 2/9 (22%) 5/9 (55%) 4/9 (44%) 3/9 (33%) 

Wild-type + 
BQCA 3/12 (25%) 6/12 (50%) 5/12 (42%) 4/12 (33%) 

Tg2576 + 
Vehicle 1/8 (12%) 4/8 (50%) 5/8 (62%) 7/8 (87%) 

Tg2576 + 
BQCA 2/11 (18%) 5/11 (45%) 1/11 (9%) 3/11 (27%) 

 
 

    

*χ2 = 23.19, P<0.0001 
** χ2 = 13.03, P<0.001 
 
The frequency of errors on discrimination learning between wild-type and Tg2576 mice 
in the presence of vehicle or BQCA (number of subjects with errors ≥1/total number of 
subjects in group expressed as a percentage). 
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Figure 37.  Effects of acute administration of BQCA on discrimination learning in 
Tg2576 mice.  Errors to reach criterion on a discrimination task were assessed in wild-
type and Tg2576 mice at 12 months of age.  Mice were injected s.c. one hour before 
testing with either saline vehicle or 30 mg/kg BQCA.  Shown are the frequency of errors 
on discrimination learning between wild-type and Tg2576 mice in the presence or 
absence of BQCA. Data are expressed as the number of subjects with errors > 0/total 
number of subjects in the group and expressed as a percentage.  BQCA significantly 
reduced the odds of Tg2576 mice making errors on the compound discrimination and the 
compound discrimination reversal. Chi-square, P < .001 for both compound 
discrimination and compound discrimination reversal.  Experiments performed by 
Michelle Nicolle and Mona Watson, Wake Forest University. 
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BQCA regulates non-amyloidogenic APP processing   

 The data presented above suggest that BQCA has efficacy in improving at least 

one form of cognitive function in an animal model of AD.  In addition to providing 

symptomatic relief, it has been postulated that increasing M1 receptor activity could also 

have disease modifying effects in AD patients (Fisher, 2008; Caccamo et al., 2009).  The 

amyloid precursor protein (APP) undergoes proteolytic cleavage in two competing 

pathways (Thinakaran and Koo, 2008).  In the amyloidogenic pathway, sequential 

cleavage by β-secretase and γ-secretase releases the Aβ peptide which forms the core of 

amyloid plaques found in AD and is implicated in numerous models of neurotoxicity.  

Alternatively, in the non-amyloidogenic pathway, APP is cleaved by α-secretase within 

the Aβ sequence, preventing Aβ generation.  Interestingly, previous studies suggest that 

activation of M1 promotes APP processing through the non-amyloidogenic pathway 

(Caccamo et al., 2006; Jones et al., 2008).  If BQCA can promote non-amyloidogenic 

processing of APP, this could provide a mechanism for slowing accumulation of Aβ and 

potentially slow progression of AD.   

 In order to determine whether BQCA can potentiate the APP processing effect of 

a low concentration of the mAChR agonist CCh, we treated PC12 cells overexpressing 

human APP and the M1 receptor with an approximate EC20 concentration (50 nM) of 

CCh in the presence of increasing concentrations of BQCA and measured the levels of 

APP metabolites in the conditioned media and cell extracts.  BQCA caused a dose-

dependent increase in the shedding of APPsα, the amino-terminal ectodomain of APP 

released by α-secretase cleavage (Fig. 38A-B).  The highest concentration of BQCA 
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tested (30 μM) increased APPsα levels to 244% of vehicle-treated cells (P < 0.05).  

BQCA treatment also resulted in the accumulation of CTFα (C83), the corresponding 

carboxy-terminal fragment generated by α-secretase (Fig. 38A, C; increased to 245% of 

vehicle, P < 0.05).  Finally, consistent with the observed increases in non-amyloidogenic 

APP fragments, 30 μM BQCA treatment resulted in a 30% decrease (P < 0.01) in the 

secretion of the β-secretase derived Aβ40 peptide (Fig. 38D).  Taken together, these 

results indicate that BQCA can effectively regulate non-amyloidogenic APP processing, 

suggesting that M1 receptor PAMs have the potential to provide both symptomatic and 

disease modifying effects in AD patients. 
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Figure 38.  BQCA regulates non-amyloidogenic APP processing.  A.  Western blot 
analysis of APP metabolites from conditioned media and cell lysates demonstrates 
increased generation of APPsα and CTFα with increasing concentrations of BQCA as 
compared to the submaximal concentration of 50 nM CCh.  10 μM CCh is shown as a 
maximum concentration.  β-actin is shown as a loading control.  B.  Quantitation of 
APPsα band intensity from conditioned media demonstrates a dose-dependent effect of 
BQCA on the shedding of APPsα (repeated measures ANOVA, P = 0.0271), and 
pairwise comparisons revealed significant differences at all concentrations of BQCA 
compared to 50 nM CCh alone (P-values for paired t-tests are shown).  C.  Quantitation 
of CTFα band intensity from cell lysates shows a dose-dependent effect of BQCA on the 
production of CTFα (repeated measures ANOVA, P = 0.0017) and a significant 
difference (paired t-test) between 30 μM BQCA plus 50 nM CCh as compared to 50 nM 
CCh alone.  D.  ELISA measurements from conditioned media demonstrate that BQCA 
decreases the secretion of Aβ40 peptide in a dose-dependent manner (repeated measures 
ANOVA, P = 0.0019), with significant differences between 50 nM CCh alone and the 
two highest concentrations of BQCA (paired t-tests).  Mean values are shown from three 
or four independent experiments performed in duplicate.  All values are normalized to 
vehicle-treated cells.  Experiments performed by Albert Davis, Emory University. 
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Discussion 

 The M1 receptor has long been viewed as an exciting potential target for 

increasing cognitive function in patients suffering from AD and other CNS disorders 

(Wess et al., 2007; Fisher, 2008; Langmead et al., 2008a; Caccamo et al., 2009).  Despite 

major efforts to develop highly selective M1 agonists over the past two decades, this 

receptor has proven intractable using traditional approaches, thus preventing M1 agonists 

from advancing to clinical use for treatment of AD and other disorders.  Also, lack of 

agents that selectively activate this receptor has made it impossible to develop a full 

understanding of the functional effects of selectively increasing M1 receptor activity in 

the CNS.  Discovery and characterization of BQCA and its structural analogs provide a 

major advance in establishing the utility of M1 receptor PAMs as an alternative approach 

to increasing activity of this receptor in a highly subtype-selective manner. 

 Studies with BQCA, along with the new M1 receptor- selective antagonist 

VU0255035, provide important support for the hypothesis that the M1 receptor may 

increase activation of the PFC and may enhance PFC-dependent cognitive function 

(Anagnostaras et al., 2003).  Non-selective mAChR agonists, such as CCh, induce an 

inward current in PFC pyramidal cells, and the present data provide strong evidence that 

this response is mediated by activation of the M1 receptor.  In addition, activation of the 

M1 receptor increases the frequency of spontaneous excitatory synaptic events in mPFC 

layer V pyramidal cells.  While the source of glutamatergic afferents giving rise to these 

sEPSCs has not been established, this is consistent with the hypothesis that the M1 

receptor plays an important role in increasing excitability and excitatory drive to mPFC 

pyramidal cells.    
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 One of the most important implications of these studies is that they raise the 

possibility that highly selective M1 receptor PAMs may provide a novel approach for 

treatment of AD and other CNS disorders that may involve impaired cholinergic 

signaling.  Clinical studies using both direct and indirect-acting muscarinic agonists have 

reported improvements in both cognitive function and behavioral disturbances (i.e. 

hallucinations, delusions, outbursts, and paranoia) observed in AD patients (Bodick et al., 

1997b; Cummings et al., 2001).  If M1 receptor activation is responsible for, or plays an 

important role in, these effects of nonselective cholinergic agents, M1 receptor PAMs 

could provide a viable approach to symptomatic treatment of AD.   Furthermore, in 

addition to potential efficacy in reducing symptoms in AD patients, recent studies suggest 

that mAChR activation could reduce accumulation of toxic Aβ protein, thereby also 

providing disease modifying effects.  For instance, the muscarinic agonist AF102B was 

shown to decrease production of the amyloidogenic peptide Aβ42 in the cerebral spinal 

fluid of AD patients (Nitsch et al., 2000).  Furthermore, preclinical studies with a related 

mAChR agonist, AF267B suggest that mAChR activation increases non-amyloidogenic 

processing and prevents Aβ formation (Caccamo et al., 2006).  While these earlier 

mAChR agonists are not selective for the M1 receptor relative to other mAChR subtypes, 

more recent studies revealed that the M1 receptor-selective agonist, TBPB, has similar 

effects in PC12 cells (Jones et al., 2008).   

 Lastly, it is important to note that recent clinical and animal studies raise the 

possibility that mAChR agonists may also provide a novel approach for treatment of 

schizophrenia (Felder et al., 2001; Langmead et al., 2008a; Conn et al., 2009b).  For 

instance, Shekhar and colleagues (Shekhar et al., 2008) recently reported that the M1/M4 
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receptor–preferring agonist xanomeline induced a robust improvement in positive and 

negative symptoms, as well as some measures of cognitive function, in schizophrenic 

patients.  Based on animal studies, it is likely that both M1 and M4 receptors may be 

important for clinical efficacy in this patient population (Felder et al., 2001; Brady et al., 

2008; Chan et al., 2008; Jones et al., 2008; Langmead et al., 2008b; Langmead et al., 

2008a; Conn et al., 2009b).  Availability of BQCA, along with the new systemically 

active M4 receptor- selective PAM, VU0152100 (Brady et al., 2008) should make it 

possible to evaluate the effects of selective activation of each of these mAChR subtypes 

as well as co-administration of both BQCA and VU0152100 in a range of animal models 

that may be relevant to the antipsychotic effects of xanomeline. 
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CHAPTER V 

 

DISCUSSION AND FUTURE DIRECTIONS 

 

Over the past two decades, major attention has been focused on developing highly 

selective agonists of specific mAChR subtypes to use as research tools in order to achieve 

a better understanding of the roles of each subtype in specific organ systems and also to 

develop therapeutic agents that lack the adverse effects of AChE inhibitors and 

nonselective muscarinic agents.  We now report the discovery of a novel series of 

compounds that act as robust positive allosteric modulators (allosteric potentiators) of the 

M4 and M1 mAChR subtypes.  Unlike traditional agonists, these small molecules do not 

bind to the orthosteric ACh binding site, but instead act at a distinct site to potentiate 

activation of the receptor by its natural ligand, ACh.  This is directly analogous to the use 

of benzodiazepines as selective GABA receptor PAMs, which provide an effective and 

safe approach to the treatment of anxiety and sleep disorders without inducing the 

potentially lethal effects of direct-acting GABAA receptor agonists (Mohler et al., 2002).  

While allosteric modulators of ion channels are well established as research tools and 

therapeutic agents, they have not been a traditional focus of drug discovery efforts for 

GPCRs.  The discovery of VU10010 and related M4 PAMS as well as M1 PAM BQCA 

adds to recent major advances in developing highly selective allosteric modulators of 

mAChRs (Chan et al., 2008; Ma et al., 2009; Marlo et al., 2009) and other GPCRs (May 

et al., 2007; Conn et al., 2009a).  These compounds are highly selective for each targeted 

receptor subtype with no detectable functional activity at other mAChRs.  As with 
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previously discovered allosteric potentiators of metabotropic glutamate receptors 

(mGluRs), the novel PAMs of M1 and M4 receptors reported here have no detectable 

affinity for the orthosteric site when examined in competition radioligand studies at 

equilibrium (Brady et al., 2008; Shirey et al., 2008; Shirey et al., 2009).  The action of 

these compounds at a site that is distinct from the highly conserved orthosteric ACh 

binding site is likely to be critical for achieving this high degree of subtype selectivity. 

In addition to providing advantages in terms of achieving high selectivity for an 

individual mAChR subtype, it is possible that the mechanism of action of these 

compounds could provide other properties that are ultimately advantageous for 

developing therapeutic agents.  Positive allosteric modulators of M1 and M4 mAChRs 

described here do not activate the receptor directly but induce a dramatic potentiation of 

the response to activation by ACh.  This could provide an advantage to traditional 

agonists by amplifying endogenous cholinergic signaling for a specific mAChR subtype 

and thereby maintaining a level of activity dependence of receptor activation.  

Interestingly, the majority of clinically useful drugs that activate other neuromodulatory 

systems exert more subtle actions rather than serving as direct-acting receptor agonists.  

For instance, serotonin reuptake inhibitors have been highly successful in treatment of 

depression, whereas highly effective serotonin receptor agonists have not been 

successfully developed.  For anxiety disorders, it is likely that direct acting GABAA 

receptor agonists would have a narrow therapeutic window and would be lethal.  In 

contrast, benzodiazepines are selective allosteric potentiators of GABAA receptor 

chloride channels and are safe and highly effective in the clinic.  Dopamine receptor 

agonists are used but exert more profound acute adverse effects than indirect acting 
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agents such as L-DOPA, amphetamine, and methylphenidate (Ritalin).  Interestingly, 

highly selective allosteric potentiators of different mGluR subtypes have robust effects in 

animal models used to predict efficacy in treatment of multiple CNS disorders, including 

schizophrenia, anxiety disorders and Parkinson’s disease (Marino et al., 2003; Kinney et 

al., 2005; Galici et al., 2006).  Furthermore, a highly selective allosteric potentiator of the 

calcium-sensing receptor (a family III/C GPCR), termed Sensipar, has now received FDA 

approval for use in treatment of hyperparathyroidism (Dong, 2005).  As with the current 

M1 and M4-selective allosteric potentiators, the key to achieving high selectivity for these 

receptors has been the targeting of sites that are distinct from the highly conserved 

orthosteric neurotransmitter binding site.  These advances with allosteric potentiators of 

family III/C GPCRs along with the present findings raise the possibility that discovery of 

highly selective and robust allosteric modulators of specific mAChR subtypes and other 

family I/A GPCRs will provide an exciting new approach for the discovery and 

development of novel research tools and therapeutic agents that target this important class 

of signaling proteins.  However, discovery of these compounds also raises the question of 

whether allosteric modulators may have broad activity across other GPCRs by interacting 

at potentially promiscuous allosteric sites.  The present finding that novel mAChR PAMs 

have no major activities across multiple targets in a large panel radioligand binding 

screen was encouraging, but does not address this critical question.  The finding that 

these compounds had no allosteric modulator activity across a panel of other family A 

GPCR subtypes is exciting and suggests that they are not likely to have activity at a site 

that is shared across multiple GPCRs.  While it is impossible to rule out activity at other 

unidentified targets, these data suggest that it may be possible to achieve higher subtype 
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selectivity across a range of receptors than has been possible with many orthosteric 

ligands. 

Interestingly, the M1 and M4 PAMs reported here increase affinity of ACh for the 

orthosteric site.  This is similar to previous reports of allosteric modulators of GPCRs 

acting by altering affinity of ligands at the orthosteric site; the magnitude of binding 

cooperativity or the shift in orthosteric agonist affinity is referred to as the alpha factor 

(Christopoulos and Kenakin, 2002).  However, while M4 PAM VU10010 apparently acts 

in part by increasing ACh affinity, the magnitude of this effect was only a 14-fold 

increase in ACh affinity whereas VU10010 induced an almost 50-fold shift in the ACh 

concentration response curve for activating calcium mobilization, Chapter IIIA (Shirey 

et al., 2008).  Thus, effects on agonist binding cannot fully account for the allosteric 

potentiator activity measured in the functional assay; potentiation by this compound must 

also increase efficacy and coupling to downstream effectors.  The present data suggest 

that VU10010 acts by both increasing ACh affinity and activation of G proteins and 

downstream signaling pathways.  Studies of the effects of VU10010 on [35S]GTPγS 

binding in cells expressing rat M4 revealed a 10-fold shift in ACh potency; this value is 

close to the calculated shift in ACh affinity at the orthosteric site, suggesting that the 

increase in ACh affinity could account for the shift in ACh potency by increasing G 

protein activation.  However, VU10010 also increased the maximal ACh-induced 

[35S]GTPγS binding response, suggesting that this potentiator increases the efficiency of 

M4 coupling to G proteins.  These two factors together likely contribute to the robust shift 

in ACh potency for inducing calcium mobilization relative to more modest shift observed 

in ACh affinity.  In contrast, radioligand binding studies examining the effect of BQCA 
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on M1 receptor affinity for ACh revealed that the fold-shift decrease in ACh Ki induced 

by BQCA was around 30-fold, whereas the shift in the functional calcium response was 

21-fold (Shirey et al., 2009).  The increase in affinity for agonist could therefore fully 

account for the potentiation of calcium mobilization by M1.  This demonstrates the 

possibility that different allosteric modulators may induce varying degrees of receptor 

affinity for orthosteric agonists and downstream effector signaling. 

A notion that complicates interpretation of selectivity data as discussed above is 

the possibility of binding of an allosteric modulator to an off-target GPCR without a 

detectable functional consequence.  Because radioligands that bind to allosteric sites of 

mAChRs and other GPCRs have not yet been developed (with the exception of mGluR5), 

it is difficult to assess binding at these sites using traditional equilibrium experiments.  It 

is possible, however to determine if allosteric ligands affect the affinity of orthosteric site 

ligands.  For example, VU10010 and BQCA did not compete for orthosteric [3H]-NMS 

binding but induced a leftward shift in the ACh competition curve (Chapters IIIA and 

IV, (Shirey et al., 2008)).  While VU10010 did not compete for [3H]-NMS binding in 

membranes from cells expressing any mAChR subtype, its effects on ACh affinity at off-

target receptor subtypes were not determined.  This will be one critical experiment that 

should be performed with novel allosteric modulators to assess their binding to off-target 

receptors.  Another related experimental approach that may useful in screening for 

compounds that only bind to a targeted mAChR or other GPCR involves examining 

neutral allosteric binding to off-target receptors or receptor subtypes.  With the newly 

available panel of allosteric modulators (and in the case of M1, allosteric agonists such as 

TBPB) of mAChRs, it is now possible to detect neutral allosteric binding to these 
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receptors.  This is an important area of exploration as no neutral allosteric modulators 

have been reported for mAChRs to date. 

 Discovery of selective allosteric modulators of mAChRs provides an 

unprecedented opportunity to develop a more detailed understanding of the functional 

roles of these receptors in neural circuits that are heavily modulated by cholinergic 

innervation.  One of the most important roles of cholinergic systems in the CNS is 

modulation of transmission through the hippocampal formation, a limbic structure that 

plays a critical role in learning and memory that is thought to be important for cholinergic 

regulation of cognitive function.  Activation of mAChRs in the hippocampus induces a 

marked reduction of transmission at both excitatory glutamatergic and inhibitory 

GABAergic synapses by presynaptic reduction of neurotransmitter release (Valentino and 

Dingledine, 1981; Bilkey and Goddard, 1985; Fernandez de Sevilla and Buno, 2003).   

Multiple mAChR subtypes are expressed in the hippocampus, and evidence suggests that 

both M2 and M4 are localized in presynaptic terminals where they could regulate 

excitatory and inhibitory synaptic transmission (Levey et al., 1995; Rouse et al., 1999; 

Rouse et al., 2000a).  In addition, evidence suggests that activation of postsynaptic 

mAChRs on hippocampal pyramidal cells that express M1 and M4 could reduce synaptic 

transmission in the hippocampus by inducing release of endocannabinoids that activate 

presynaptic CB1 cannabinoid receptors (Ohno-Shosaku et al., 2003).  Thus, the specific 

mAChR subtypes involved in regulating transmission at these important synapses is not 

clear.  The finding that VU10010 potentiates effects of mAChR agonists on excitatory 

but not inhibitory synaptic transmission provides strong evidence that M4 is one of the 

mAChR subtypes responsible for regulating transmission at glutamatergic synapses in the 
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hippocampus but is not likely to be involved in regulation of transmission at inhibitory 

synapses in this brain region (Chapter IIIA, (Shirey et al., 2008)).  This selective 

regulation of excitatory synaptic transmission is a first critical step in developing a 

detailed understanding of the roles of M4 in modulating hippocampal function.   Although 

a growing body of literature implicates M1 receptors in many of the excitatory 

postsynaptic effects of mAChR activation and in long-term plasticity (both LTP and 

LTD) in the hippocampus and cortex, many of these studies have relied on compounds 

that are not subtype selective or on studies employing knockout mice where 

compensatory mechanisms can complicate data interpretation.  In future studies, it will be 

critical to take advantage of these novel selective allosteric potentiators to further 

investigate the roles of M1 and M4 in hippocampus as well as other cortical and basal 

ganglia structures where mAChRs have been postulated to play a critical 

neuromodulatory role.  For instance, if the M1 receptor subtype does mediate the 

excitatory postsynaptic effects of muscarinic agonists (depolarization, blockade of spike 

frequency adaptation and afterhyperpolarization currents, etc.), these effects of CCh 

should be blocked by the selective M1 antagonist VU0255035 and should be mimicked 

by M1 agonists. Likewise, M1 agonists and PAMs should induce or modulate 

hippocampal LTP and LTD if this receptor subtype is responsible for the effects of CCh 

and ACh on these forms of long-term plasticity. 

 The M1 receptor has long been viewed as an exciting potential target for 

increasing cognitive function in patients suffering from AD and other CNS disorders 

(Wess et al., 2007; Fisher, 2008; Langmead et al., 2008a; Caccamo et al., 2009).  Despite 

major efforts to develop highly selective M1 orthosteric agonists over the past two 
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decades, this receptor has proven intractable using traditional approaches, thus preventing 

M1 agonists from advancing to clinical use for treatment of AD and other disorders.  

Also, lack of agents that selectively activate this receptor has made it impossible to 

develop a full understanding of the functional effects of selectively increasing M1 

receptor activity in the CNS.  Studies with BQCA, along with the new M1-selective 

antagonist VU0255035 (Sheffler et al., 2009), provide important support for the 

hypothesis that the M1 receptor may increase activation of the PFC and may enhance 

PFC-dependent cognitive function (Anagnostaras et al., 2003).  Non-selective mAChR 

agonists, such as CCh, induce an inward current in PFC pyramidal cells, and the present 

data (Chapter IV) provide strong evidence that this response is mediated by activation of 

the M1 receptor.  In addition, activation of the M1 receptor increases the frequency of 

spontaneous excitatory synaptic events in mPFC layer V pyramidal cells.  While the 

source of glutamatergic afferents giving rise to these sEPSCs has not been established, 

this is consistent with the hypothesis that the M1 receptor plays an important role in 

increasing excitability and excitatory drive to mPFC pyramidal cells.  It is also unclear 

thus far whether depolarization of glutamatergic pyramidal cells in cortical circuits 

underlies the increase in sEPSCs induced by CCh, or if these are two separate and 

unrelated phenomena.      

 Interestingly, mAChR activation induces direct excitatory effects in hippocampal 

CA1 pyramidal cells that are similar to those observed in mPFC pyramidal cells.  

However, while CA1 pyramidal cells express high levels of the M1 receptor (Levey et al., 

1991), previous studies suggest that the M1 receptor is not the mAChR subtype 

responsible for some of the excitatory effects on these cells (Rouse et al., 2000a).  Thus, 
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the precise physiological roles of the M1 receptor are likely to vary in different brain 

regions and neuronal populations.  The finding that M1 receptor activation has excitatory 

effects and increases excitatory synaptic activity in mPFC pyramidal cells is interesting in 

the context of the recent finding that M1 receptor knockout mice display clear deficits in 

PFC-dependent learning (Anagnostaras et al., 2003), whereas hippocampal-dependent 

learning is largely unaffected in M1 receptor knockout mice (Anagnostaras et al., 2003) 

and in animals treated with the M1 receptor- selective antagonist VU0255035 (Sheffler et 

al., 2009).  

 One of the most important implications of these studies is that they raise the 

possibility that highly selective M1 receptor PAMs may provide a novel approach for 

treatment of AD and other CNS disorders that involve impaired cholinergic signaling.  

Clinical studies using both direct and indirect-acting muscarinic agonists have reported 

improvements in both cognitive function and behavioral disturbances (i.e. hallucinations, 

delusions, outbursts, and paranoia) observed in AD patients (Bodick et al., 1997b; 

Cummings et al., 2001).  If M1 receptor activation is responsible for, or plays an 

important role in, these effects of nonselective cholinergic agents, M1 receptor PAMs 

could provide a viable approach to symptomatic treatment of AD.   Furthermore, in 

addition to potential efficacy in reducing symptoms in AD patients, recent studies suggest 

that mAChR activation could reduce accumulation of toxic Aβ protein, thereby providing 

additional disease modifying effects.  For instance, the muscarinic agonist AF102B was 

shown to decrease production of the amyloidogenic peptide Aβ42 in the cerebral spinal 

fluid of AD patients (Nitsch et al., 2000).  Furthermore, preclinical studies with a related 

mAChR agonist, AF267B suggest that mAChR activation increases non-amyloidogenic 
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processing and prevents Aβ formation (Caccamo et al., 2006).  While these earlier 

mAChR agonists are not selective for the M1 receptor relative to other mAChR subtypes, 

more recent studies revealed that the M1 receptor-selective agonist, TBPB, has similar 

effects in PC12 cells (Jones et al., 2008).   

 The present finding that BQCA reverses deficits in compound discrimination 

reversal learning in a transgenic mouse model of AD provides exciting support for the 

hypothesis that highly selective M1 receptor PAMs may provide efficacy in treatment of 

at least some domains of cognitive function in AD (Chapter IV).  Furthermore, the 

finding that BQCA promotes non-amyloidogenic APP processing suggests that these 

agents could also reduce amyloid burden.  In future studies, it will be important to fully 

explore the effects of BQCA in animal models that reflect other domains of cognitive 

function that are impaired in AD patients.  For instance it is possible that M1 receptor-

selective PAMs will have robust efficacy in improving PFC-dependent learning, but have 

lesser effects on hippocampal-dependent learning.  A mouse model of AD with 

impairments in hippocampal-dependent memory tasks could be used to test whether 

BQCA could restore performance in the Morris water maze or in other forms of spatial 

memory that require intact hippocampal functioning.  Also, other types of cognitive 

function may involve different mAChR subtypes and be differentially affected by 

selective activators of the M1 receptor versus selective PAMs of other mAChR subtypes, 

such as the recently reported M4 and M5 receptor-selective PAMs (Brady 2008; Chan 

2008; Shirey 2008; Bridges 2009).  Interestingly, the high subtype-selectivity of BQCA 

may prove to be important for achieving maximal effects in increasing non-

amyloidogenic APP processing.  Previous studies suggest that activation of M2 and/or M4 
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mAChR subtypes may have an antagonistic effect on the non-amyloidogenic APP 

processing shown to be promoted by M1 receptor activation (Farber et al., 1995).  Thus, 

in addition to reducing the adverse effect profile, it is possible that selective activation of 

the M1 receptor may provide greater efficacy in regulating APP processing.   

 In addition to implications for AD, the electrophysiology studies reveal 

interesting findings that may provide important insights related to the potential roles of 

mAChRs in regulating PFC function.  For instance, when added alone, BQCA induced a 

slight inward current and a slight increase in sEPSC frequency (Chapter IV, (Shirey et 

al., 2009)).  This suggests that there may be a low tonic level of M1 receptor activity or a 

low level of endogenous acetylcholine in slices that can be potentiated by BQCA.  

Furthermore, it was interesting to find that CCh induced a small reduction in sEPSC 

frequency when added in the presence of a saturating concentration of the selective M1 

antagonist, VU0255035.  This suggests that activation of another mAChR subtype can 

reduce sEPSC frequency and that this effect is unmasked when the M1 receptor is 

selectively blocked.  To test the hypothesis that this inhibitory effect is mediated by the 

M4 receptor subtype, the selective M4 PAM, VU0152100, could be used alone and in 

combination with a low concentration of CCh.  If this hypothesis were correct, I would 

expect to see a decrease in sEPSCs in the presence of VU0152100 and CCh.  

Interestingly, while effects of CCh on sEPSC frequency were dramatically reduced in M1 

receptor knockout mice, CCh did induce a small effect in slices from these animals.  This 

suggests that another mAChR subtype may be capable of eliciting this response and 

could partially compensate for genetic deletion of the M1 receptor.  Importantly, the 

effect of the highly selective M1 receptor PAM, BQCA, was eliminated in M1 receptor 
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knockout mice, suggesting that the effects of this compound are fully dependent on 

activation of the M1 receptor.  Discovery of new mAChR subtype-selective ligands for 

multiple mAChR subtypes over the last year will allow for a better understanding of the 

roles of mAChR subtypes in regulating PFC function. 

 Recent clinical and animal studies raise the possibility that mAChR agonists may 

provide a novel approach for treatment of schizophrenia (Felder et al., 2001; Langmead 

et al., 2008a; Conn et al., 2009b).  For decades, the prevailing theory behind the etiology 

of schizophrenia has been that excessive dopaminergic neurotransmission in the central 

nervous system is the major contributing factor underlying this severe psychiatric illness. 

This so-called dopamine hyperfunction hypothesis is based primarily on the observation 

that stimulation of the endogenous dopamine system (e.g. with amphetamine or cocaine) 

often leads to transient psychotic symptoms in healthy individuals (Bymaster et al., 2002; 

Raedler et al., 2007).  Furthermore, all clinically relevant antipsychotic drugs, both 

typical and atypical, possess significant antagonist activity at D2 dopamine receptors 

(D2Rs) (Carlsson, 1988; Bymaster et al., 2002; Raedler et al., 2007).  Thus, the majority 

of the efforts to discover novel therapeutic agents for the treatment of schizophrenia have 

been aimed at developing therapies that result in some level of D2R blockade or a 

combination of blockade of D2Rs and other monoamine receptors.  Nevertheless, D2R 

antagonists are only partially effective in treating schizophrenia, in that they only 

improve the positive symptoms associated with the disease, despite the fact that the 

negative and cognitive symptoms also markedly impact the quality of life for 

schizophrenic patients.  In addition, these therapies also are often poorly tolerated 

because of numerous side effects including sedation, weight gain, sexual dysfunction, 
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diabetes and Parkinson’s disease-like symptoms.  Furthermore, greater than 25% of 

schizophrenia patients do not respond to these dopamine-based therapies.  Thus, while it 

is evident that dopamine does play a prominent role in the pathogenesis and treatment of 

schizophrenia, the dopamine hyperfunction hypothesis of schizophrenia fails to account 

for all aspects of this disorder. It is increasingly evident that other neurotransmitter 

systems are likely involved.  Based on this, it is unlikely that exclusive focus on 

discovery and development of antagonists of D2Rs and other monoamine receptors will 

provide fundamental breakthroughs in the standard of treatment of schizophrenia patients 

relative to current therapies.   

 In recent years the mAChRs, namely M1 and M4, have emerged as potential novel 

targets for the treatment of schizophrenia.  This is based on clinical studies demonstrating 

efficacy of mAChR agonists in treatment of positive symptoms in schizophrenia patients, 

as well as multiple animal studies suggesting that mAChR agonists could be useful in 

treatment of cognitive dysfunction in schizophrenia patients (Bymaster et al., 2002).  A 

growing body of evidence from clinical and animal studies involving pharmacological 

manipulations, post mortem tissue analysis, and brain imaging is consistent with this 

hypothesis (Raedler et al., 2007).  Furthermore, Shekhar and colleagues (Shekhar et al., 

2008) recently reported that the M1/M4 receptor–preferring agonist xanomeline induced a 

robust improvement in positive and negative symptoms, as well as some measures of 

cognitive function, in schizophrenic patients.  While recent advances suggesting potential 

utility of mAChR activators in treatment of schizophrenia have been exciting, there have 

been few selective pharmacological tools available to fully explore this emerging 

muscarinic hypothesis of schizophrenia.  Unfortunately, previous attempts to develop 
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traditional orthosteric agonists that are highly selective for individual mAChR subtypes 

have been unsuccessful.   

The recent discovery and optimization of highly selective positive allosteric 

modulators of M1 and M4 provides a major advance in establishing a new approach for 

developing highly selective activators of these receptors.  The data presented provide 

further support for the ability to achieve high subtype selectivity by targeting allosteric 

sites and provide exciting new data demonstrating that highly selective M4 PAMs have 

robust activity in at least one animal model that is similar to effects previously described 

for the non-selective orthosteric mAChR agonist, xanomeline (Stanhope et al., 2001).  

The finding that VU0152099 and VU0152100 mimic effects of xanomeline in an animal 

model that has been used to predict antipsychotic activity (Brady et al., 2008) is 

especially promising in light of clinical studies demonstrating the clinical efficacy of 

xanomeline in schizophrenia patients.  This raises the exciting possibility that selective 

activation of M4 may provide a novel approach for the treatment of some symptoms 

associated with schizophrenia.  Based on animal studies, it is likely that both M1 and M4 

receptors may be important for clinical efficacy in this patient population (Felder et al., 

2001; Gerber et al., 2001; Miyakawa et al., 2001; Marino and Conn, 2002; Messer, 

2002b; Anagnostaras et al., 2003; Bymaster et al., 2003b; Tzavara et al., 2004; Brady et 

al., 2008; Langmead et al., 2008a; Shirey et al., 2008).  Availability of BQCA along with 

the systemically active M4 receptor-selective PAM, VU0152100, should make it possible 

to evaluate the effects of selective activation of each of these mAChR subtypes as well as 

co-administration of both BQCA and VU0152100 in a range of animal models that may 

be relevant to the antipsychotic effects of xanomeline.    



227 
 

 In addition to their potential relevance for schizophrenia, mAChRs also are 

thought to regulate motor function by exerting effects on dopaminergic transmission in 

the basal ganglia (Pisani et al., 2007; Raedler et al., 2007).  For instance, multiple 

electrophysiology studies with M4 knockout mice have led to the suggestion that 

activation of the M4 mAChR may oppose some actions of dopaminergic neurons on 

striatal motor function (Calabresi et al., 1998; Sanchez-Lemus and Arias-Montano, 

2006).  Again, the lack of highly selective activators of M4 has made it impossible to test 

this hypothesis directly.  Also, previous studies with traditional orthosteric muscarinic 

agonists bypass the action of endogenous ACh in the basal ganglia and do not provide 

information about the effects of endogenous acetylcholine on motor activity.  The finding 

that highly selective M4 potentiators reverse amphetamine-induced hyperlocomotor 

activity in rats provides exciting new evidence in support of the hypothesis that 

endogenous ACh plays an important role in regulating dopaminergic control of motor 

function.  Because these compounds do not activate M4 directly, but selectively increase 

responses of M4 to endogenous ACh, this provides direct evidence that this response can 

be modulated by endogenous ACh acting on M4 receptors.  In addition, this raises the 

possibility that selective M4 modulators could provide a novel approach to treatment of 

other disorders involving altered dopaminergic function in the basal ganglia, including 

Parkinson’s disease and dystonia.  Ongoing studies in the Conn lab are in fact examining 

the efficacy of M4 PAMS in animal models of these diseases. 

 In conclusion, the recent development of compounds that selectively activate or 

modulate individual mAChRs provides an exciting new opportunity to begin to answer 

questions about the role of these receptors in normal and pathological CNS function.  
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These tools will also allow the further validation of individual mAChR subtypes as 

therapeutic targets for a variety of disorders including AD and schizophrenia.  One 

important aspect of research will include the elucidation of various signaling cascades 

activated by different classes of orthosteric and allosteric ligands.  Preliminary data from 

our lab and others suggests that allosteric agonists of the M1 receptor like TBPB (Jones et 

al., 2008) do not induce β-arrestin recruitment or activate mPFC neurons in the same 

manner as CCh; it will be important to determine whether specific signaling pathways 

like these and ERK1/2 activation are necessary for the therapeutically beneficial effects 

of mAChR activation.  One way to assess the involvement of β-arrestin recruitment in the 

CCh-induced activation of mPFC neurons would be to perform recordings of sEPSCs in 

the presence of CCh using mice lacking the β-arrestin protein.  If this signaling molecule 

is required for the muscarinic activation of mPFC layer V neurons, this effect would 

likely be absent or altered in the β-arrestin knockout mice.  An alternate strategy could 

involve the use of a β-arrestin blocking peptide or antibody in the recording pipet in 

experiments with wildtype mice or rats.  Likewise, a selective, cell permeable MEK 

inhibitor could be used in the recording bath to determine if ERK1/2 phosphorylation is 

required for CCh-induced increase in sEPSCs.   If these experiments yielded data that 

support the involvement of these signaling proteins, this would be one possible 

explanation for the lack of effect of M1 allosteric agonists like TBPB and VU0184670 on 

mPFC neurons since these compounds do not appear to induce β-arrestin recruitment. 

 It will also be interesting to examine the efficacy of PAMs in animal models of 

diseases that involve degeneration of cholinergic nuclei.  Because postsynaptic mAChR 

expression remains largely intact despite the loss of cholinergic input, it has been 
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hypothesized that activation of these remaining postsynaptic receptors will alleviate many 

of the cognitive impairments associated with cholinergic decline (Caccamo et al., 2009).  

While this may be true for direct-acting agonists, it may not be possible to achieve 

therapeutic efficacy using allosteric potentiators that do not directly activate mAChRs.  

Depending on the level of disease progression and cholinergic degeneration, allosteric 

compounds could display a varying array of efficacies.  The recent development of 

selective M1 activators that are suitable for use in clinical trials with patients suffering 

from AD will also allow researchers and clinicians to determine the disease-modifying 

potential of these compounds.  Although initial studies indicating that the M1-preferring 

agonist AF102B decreased levels of Aβ in CSF of AD patients (Nitsch et al., 2000), it 

remains to be seen if sustained, selective M1 activation will have any effect on disease 

progression or pathology in brain tissue of this patient population. 

 Because the M1/M4-preferring agonist xanomeline lacked true subtype selectivity 

and caused dose-limiting side effect associated with activation of peripheral M3 receptors 

(Shekhar et al., 2008), clinical trial assessing the ability of this drug to significantly 

improve the symptoms of schizophrenia were somewhat limited.  However, a growing 

body of literature including studies using knockout mice and initial studies with 

VU0152100, TBPB, and BQCA support the hypothesis that M1 and M4 receptors show 

great promise as therapeutic targets for diseases involving cognitive impairment such as 

AD and schizophrenia.  Whether drugs that selectively activate these receptors will 

provide a more tolerable side-effect profile than that of AChE inhibitors or xanomeline 

remains to be seen.  It will also be critical to determine if selective activation of M1 or M4 
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alone will be sufficient to improve symptoms of schizophrenia in the same manner as 

xanomeline. 
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