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CHAPTER I 

 

INTRODUCTION 

 

1.1 Thesis Introduction 

Ionizing radiation exposure of metal-oxide-semiconductor (MOS) devices can 

alter their electrical performance, sometimes leading to failure. Permanent failure modes 

such as total dose effects occurring due to continuous exposure to radiation and 

temporary effects occurring from a transient high-energy particle radiation, viz. single 

event effects, are some of the most commonly studied device failure mechanisms in the 

domain of radiation effects and reliability. Radiation species in the form of electrons, 

photons, neutrons, protons and other heavy ions are omnipresent in a space environment. 

Electronic systems in satellites deployed in space and in other areas, prone to radiation 

exposure, run the risk of suffering from these aforementioned damage events during 

everyday operation. Hence it is extremely important to carefully design radiation-

hardened electronics in satellites used for inter-planetary space exploration, 

communication, navigation, and surveillance purposes. Additionally advanced weaponry, 

instrumentation in nuclear power plants and detectors in high-energy radiation physics 

also have to be manufactured considering the ill effects of radiation exposure [1].  

The consequences of radiation damage have been studied over many years to 

understand the physics associated with the device failure.  Careful research to decipher 

the fundamental mechanisms has resulted in an enormous growth of this field of science. 

Furthermore these radiation studies have led to a better understanding of the commonly 
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observed intrinsic defects in the MOS device structures. As a consequence the generation, 

evolution and annealing of processing related, as well as radiation-induced defects, have 

been well understood from the perspective of a typical poly-Si/SiO2/Si MOS device 

configuration [1]. However these studies need to be extended further to the current 

technology trends, which predict substitution of these traditional materials in future MOS 

devices designed for high as well as low operating voltages. 

In the realm of microelectronics, there has always been increased pressure to 

improve the operational speed and efficiency in semiconductor devices. This has 

stimulated enhanced research activity in the device community with regard to materials 

and electronics for advanced technologies. MOS devices have been at the forefront of the 

silicon technology revolution, owing to their ubiquitous use in integrated chips (ICs). 

From a materials perspective, the IC manufacturing industry owes a great deal of its 

success to the existence of the silicon (Si) and the ability to grow a thermal oxide on 

silicon, i.e., silicon dioxide (SiO2). The continuing demand for device scaling and high-

power electronics has raised concerns over the use of conventional materials in the device 

architecture. Efforts are underway to change the poly-Si/SiO2/Si combination in the 

integrated circuits as each material has its own limitations in their functionality for future 

devices. 

Silicon as a device substrate, has dominated electronic materials for the past forty 

years. However silicon is not ideal for high power and high temperature applications 

where a wider band gap and a higher thermal conductivity are desirable [2, 3]. Some 

important areas highlighting such widespread applications would be electric power 

transmission and distribution, aircrafts, spacecrafts, ships and other instrumentation that 
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require superior radiation hardness. Wide band-gap semiconductors with band-gap larger 

than 2 eV viz. silicon carbide (SiC), diamond and the group III-nitrides are the potential 

replacements, are capable of better performance under such extreme environments. SiC 

seems to be the leading contender owing to its commercial availability and ease of 

integration into the state-of-the-art complementary-metal-oxide-semiconductor (CMOS) 

fabrication sequence. This primarily is due to its ability to oxidize thermally to form the 

gate oxide (SiO2), like silicon [4, 5]. Additionally, silicon carbide (SiC) possesses unique 

physical properties that are extremely favorable for high temperature and high-power 

electronics [2, 3]. This has led to the growth of SiC in the domain of power metal-oxide-

semiconductor field effect transistors (MOSFETs) similar to the existing Si power 

MOSFETs [6].  

A good quality interface (SiO2/SiC) and a high quality bulk oxide are important 

factors in determining the eventual use of these materials for SiC-based MOSFETs. 

Following oxidation, the densities of interface traps in SiO2/SiC structures typically are 

on the order of 1012 - 1013 cm-2 eV-1. Our group, and a few others, has successfully 

demonstrated a reduction in these densities using NO, H2 and NO+H2 post oxidation 

interface passivation techniques for SiC based MOS devices. Defects at the interface 

have been significantly reduced by orders of magnitude to 1011 cm-2 eV-1 [7-15]. With 

improvements in device quality, reliability is the next key factor to address, which can 

help determine the practical use of these devices. In this thesis, we report the effect of this 

interfacial nitrided layer to charge accumulation/trapping using radiation as a tool to 

generate electron-hole pairs (EHPs) in the oxide. The first part of the thesis deals with 

understanding the response to radiation induced charge trapping as a function of NO 
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treatment in MOS devices fabricated using SiC a device substrate for high power 

applications. 

The second part of the thesis includes materials configuration, which is about to 

alter the traditional poly-Si/SiO2/Si gate stack mainly, for low power electronics. It 

relates to examining the reliability of high-κ dielectrics, which was recently announced as 

the group of materials that would power the device-scaling trend to satisfy Moore’s law 

for the 45 nm and 32 nm technology generations [16, 17]. Gate dielectrics, a key 

component in electronic devices have been extensively studied in the semiconductor 

industry. Silicon dioxide has been the gate dielectric material of choice for the industry 

for the sequential CMOS process. The ability to thermally grow good quality SiO2 has 

enabled it to serve the device scaling until the 65 nm technology generation. It exhibits 

desirable properties like excellent interface quality, low trap density, high thermal 

stability, thickness controllability, and good reliability.  

The shrinking of device dimensions into the deep sub-micron regime has 

introduced a multitude of problems for the continued usage of SiO2 in future MOS 

devices. Serious challenges are being faced due to fundamental limitations of SiO2, which 

are almost impossible to overcome in the fabrication and device operation domain. 

Scaling has resulted in the thicknesses of these dielectrics being reduced down to a 

couple of monolayers, which not only aggravates the gate leakage current problem but 

also raises doubts over the uniformity of these films over a 300 mm wafer. The gate 

leakage increases to values of more than 100 A/cm2, well above the specification limits 

of the International Technology Roadmap for Semiconductors (ITRS), especially for low 

power technologies [18]. The predominant contribution in the rapid increase of the gate 
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leakage current arises from direct tunneling of carriers between the electrodes for oxides 

with physical thicknesses below 2 nm. This results in increased off-state leakage current 

flowing in these devices leading to heat dissipation problems. Various aspects of circuit 

performance such as stand-by power, operational speed, and noise margin of a CMOS 

inverter are affected [19]. Additionally, increased boron penetration effects in these thin 

oxides pose as a major reliability issue for the pMOSFETs. Several other reliability issues 

like Negative Bias Temperature Instability (NBTI), Time Dependent Dielectric 

Breakdown (TDDB), and carrier injection studies due to increased electric fields across 

the oxides have become increasingly important due to the thinning of these oxides. One 

reliability problem where an improvement is observed is in the total dose radiation 

tolerance of these devices due to a significant reduction in the volume of the oxide 

material. However other reliability concerns and device operational issues far outweigh 

the improvement of the total dose response. Hence the change to these high-κ materials 

was determined to be required and industry has begun the replacement of SiO2 with these 

alternative gate dielectric materials. 

 The introduction of high-κ materials in MOS devices has been referred to as the 

biggest and most important change in the electronics industry in forty years. Hafnium 

oxide due to its high dielectric constant has been considered one of the possible 

replacements for SiO2, to enable future device scaling [19]. Oxides with a higher κ value 

use a thicker film to achieve the same capacitance. Ideally this reduces the on/off state 

leakage current flowing through the devices relative to a SiO2 layer yielding the same 

capacitance. Oxides physically thicker than 1 nm SiO2 but with a considerably smaller 

equivalent oxide thickness (EOT) are being introduced for the 45 nm and 32 nm 
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technology nodes. The EOT is represented as the thickness of the dielectric in terms of 

SiO2 by normalizing its physical thickness with the ratio of its dielectric constant with 

that of SiO2 (κ = 3.9). 

t
EOT

= t
high−κ

κ
SiO2

κ
high−κ

     (1.1) 

 

Reliability has been of major concern in these devices. It is extremely important to 

address the issue of reliability in these devices as it involves altering the conventional 

poly-Si/SiO2/Si configuration by replacing the gate oxide (SiO2) with an alternative gate 

dielectric and the gate electrode (poly-Si) with a metal (TiN/RuO2/TaN among others) for 

reasons discussed later in the chapter. Threshold voltage shifts due to charge trapping 

during processing and subsequent usage in extreme environments can alter the 

operational characteristics in these devices [20-28]. Owing to a higher dielectric constant, 

the pressure on oxide thinning has eased out. However the prospect of using thicker 

oxides has resurrected the total dose radiation response issue due to the increased 

vulnerability of these devices to radiation damage. Furthermore, it is important to 

fundamentally understand the behavior of this new set of materials with their exposure to 

incoming radiation. The introduction of metals as the gate electrode instead of poly-Si 

may also affect the damage in these thin oxides due to dose enhancement effects as will 

be discussed in further detail in this thesis. It is of great significance to the radiation 

effects community to achieve a better understanding of the charge trapping characteristics 

of these materials and a determination of how they compare to the traditional SiO2 based 

devices. Due to the increased certainty of these devices being the building blocks of 
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electronic components in future space components, total dose response is one of the areas 

under extensive scrutiny. In the second part of this report we pursue this objective by 

investigating the reliability of these devices from the perspective of charge trapping under 

bias stress and under conditions of exposure to x-ray irradiation.  

 By combining the aforementioned parts of the thesis concerning the radiation 

responses of these two material systems, this dissertation aims to provide additional 

information for establishing reliable design rules for future MOS devices intended for 

both, high and low operating voltage when exposed to a radiation environment. This 

chapter starts with a brief introduction about fundamental material properties of the two 

material systems in question (SiO2/SiC for high power and HfO2/Si for low power 

electronics) followed by experimental results in the forthcoming chapters.  

 

1.2 Materials introduction 

1.2.1 Silicon Carbide (SiC) – candidate material for high power devices 

 Silicon carbide is a suitable candidate for high temperature and high power 

electronics for a variety of reasons, namely, larger band-gap, higher thermal conductivity 

and higher critical field as compared to silicon [2, 3]. With its potential use at higher 

temperatures, wider band-gap offers the advantage of lower leakage currents. 

Furthermore, the detrimental effects of device heating on its performance can be 

significantly minimized due to higher thermal conductivity. A higher critical field as 

compared to Si serves to lower the on-resistance for high power devices. The power 

dissipation relationship of P = I
2
R

on
 explains the role of the on-resistance (Ron) in these 

devices. The on-resistance is the total resistance from the source to drain in the linear 
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portion of the on-state of device operation. It consists of resistances from the source, 

channel, drift, drain and the source and drain contact regions. A detailed representation of 

these regions in a SiC Power MOSFET is as shown in Figure 1.1. The predominant  

 

contribution to the resistance comes from the region with a higher breakdown voltage, the 

drift region, due to its relatively low doping. The low doping leads to the space charge 

region being formed mostly in the drift region at the body-drift p-n junction under bias 

RCH 

ISD 

RD 

P Base 

N- Drift  
Region 

N+ Substrate 

SiC 

Source (VSD) 

SiO2 

Gate 

Drain 

N+ 

Figure 1.1. Schematic diagram of a vertical power MOSFET. n-inversion 
channel formed by the application of a positive gate voltage. The arrow 
indicates the flow of electrons from source to drain. 
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with the applied voltage across it. The specific on-resistance (on-resistance multiplied by 

the area) of the drift region, and thus the ideal specific on-resistance, is given by  

Ron,sp =
4VBD

2

εsµn EBD

3     (1.2) 

where VBD is the expected breakdown voltage, εs is the permittivity of SiC, µn is the bulk 

carrier mobility, and EBD is the critical breakdown field [3]. This specific on-resistance 

needs to be minimized as shown in Figure 1.1. The breakdown field in the denominator 

of equation 1.2 can be imagined in terms of the critical field (Ec) that can be sustained by 

the drift region before breakdown. The thickness of this drift region is defined by the 

amount of depletion in the ON mode of the device. With low doping in the drift region, 

the depletion width is larger as xd ∝ (Nd )−1/ 2 . The doping can also be adjusted such that 

the maximum field that can be applied is close to the critical field at which avalanche 

breakdown occurs Ec. Since Ec ∝ (Eg)
1/2, the higher Eg of SiC allows for a higher critical 

field that can be applied before breakdown occurs. Hence this factor of a higher EBD plays 

a significant role in reducing the Ron,sp as shown in equation 1.2. Hence with higher 

breakdown fields (~ 7 times) than silicon, the device functions at higher voltages with a 

lower on-resistance. 

Crystallographically SiC consists of bilayers of tetrahedrally bonded silicon and 

carbon atoms. It may be composed of layers with the same stoichiometry but a variable 

order of stacking along the stacking direction, the c-axis. This phenomenon of one-

dimensional polymorphism is called polytypism. Silicon carbide has more than 200 

polytypes. The most common are 3C, 4H, 6H, and 15R with the alphabetic notations 

referred to as Ramsdell’s notations, relating to the crystal structure with C meaning 

Cubic, H – Hexagonal, and R – Rhombohedral and so on. Different polytypes show 
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different band gaps with 3C having a band gap of 2.4 eV and 4H with a band gap of 3.3 

eV. The 4H-SiC is most suitable for high power applications due to its wider band-gap 

and higher and isotropic electron mobility [29].  

A quantitative comparison elucidating the advantages of 4H-SiC compared to Si is as 

shown in Table 1.1 [30-33]. A symbolic representation of the stacking sequence of 4H-

SiC is as shown in Figure 1.2. 4H-SiC MOSFET technology usually involves crystal 

faces of either (0001) Si-face, (1120) a-face, or ( 0001) C-face. The faces are as shown 

schematically in Figure 1.3. The (0001) Si-face is a basal plane in the hexagonal close  

 

 

A 

B 
C 
B 
A 

B 
C 

B 
A 

C 

<0001> 

<1120> 

 

 

Figure 1.2. Figure showing the (11 20) plane of the 4H-SiC polytype showing 
the Si-C bilayers with a height c of the 4H unit cell of about 10.05 Å (Figures 
adopted from http://matsunami.kuee.kyoto-u.ac.jp). 
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Table 1.1 A quantitative comparison highlighting the advantages of 4H-SiC 
compared to Si [30]. 

 

 

pack structure with all the surface atoms consisting of Si atoms. The opposite face of this 

basal plane is ( 0001) C-face, which is C-terminated. The (1120) a-face is a non-polar face 

with 50 % C and 50 % Si atoms in the plane as represented by the shaded area in the 

figure. Most previous studies have considered the (0001) Si-face as epitaxial growth 

Property Si 4H-SiC 

Lattice constant (Å) a = 5.43 a = 3.073, c = 10.05 

Band gap (eV) at 300 K 1.12 3.26 

Dielectric constant (εr) 11.9 9.7 

Intrinsic carrier density (cm-3) 1.45 x 1010 8.2 x 10-9 

µe⊥c  µeΙΙc  Electron mobility (cm2/V-s) 

 

1417 

880 800 

Hole mobility (cm2/V-s) 471 ≤ 120 

Electron effective mass (
m⊥e

m0

); 

(density of states calculations) 

1.08 0.45 

Hole effective mass (
m⊥e

m0

); 

(density of states calculations) 

0.55 0.66* 

Thermal conductivity (W/cm-s) 1.5 4.5 

Saturation carrier velocity (cm/s) 1.0 x 107 2.0 x 107 

Critical field 0.3 2.0 

Specific on-resistance (relative to Si)  3 x 10-3 
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techniques are more developed on this face. Owing to a better technical understanding of 

the Si-face we have tried to address the reliability concerns on this particular face in this 

study. However from the perspective of inversion layer mobility, it has been reported that 

the highest mobility occurs for the (1120) a-face. 

< 0001> 

x  

z  

< 1120 > 

< 0001 >  

a – face 

C – face 

y

Figure 1.3. The (0001) Si-, (11 20) a- and (0001) C- faces of SiC. 
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In comparison with silicon, where the channel mobility is about one third of its 

bulk mobility, the highest reported channel mobility in SiC is about 100 cm2/Vs for 6H 

and 20 cm2/Vs for 4H prior to any post-oxidation annealing treatment. These are much 

lower than Si when compared with the respective bulk values of 400 cm2/Vs and 800 

cm2/Vs respectively. The low effective channel mobilities are largely due to higher 

interface trap densities (Dit) near the conduction band edge, large problem in n-type 4H-

SiC as compared to the n-type 6H-SiC [34]. Figure 1.4 shows the interface trap density as 

a function of the band-gap for 4H and 6H-SiC as measured using the Hi-Lo Capacitance-

 

Figure 1.4. Interface trap density across the bandgap in 4H and 6H-SiC, as 
measured by the Hi-Lo CV technique (triangles) and the AC conductance 
technique (circles and squares) [34]. 
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Voltage (C-V) and AC conductance techniques as measured by Das et al. [34]. In 6H-SiC 

with Eg ~ 2.9 eV, most of the defect states lie above the conduction band edge, while for 

4H-SiC (Eg ~ 3.3 eV), these fall into the forbidden gap. Nitrogen incorporation at the 

interface has proven to be a reliable way to enhance the inversion layer mobility using 

post oxidation anneals in NO and N2O [7-14]. In some cases a further improvement was 

achieved by following this with an annealing step in H2 ambient [15]. In the future course 

of the thesis we limit ourselves to discussions on the 4H-SiC polytype. It was observed 

that mobility enhancements achieved due to post oxidation annealing treatments on 

SiO2/4H-SiC were strongly dependent on the crystal face with the maximum mobility 

being achieved with NO+H2 treatment for the a-face SiC. Figure 1.5 shows the field 

effect mobility on lateral test MOSFETs on two of the crystal faces (Si-face and a-face) 

after both the passivation procedures [30]. With continuous improvement in the device 

quality and mobility values, SiC is on the verge of application for high power devices, 

and we address the reliability issue from a radiation tolerance point of view. We report 

the first observation of enhanced positive charge trapping in nitrided devices and discuss 

the need to optimize the nitrogen content during post oxidation anneals to improve 

reliability in these device structures. 
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Figure 1.5. Plot of the improvement in the field effect mobility as a function of gate 
voltage for the Si-face and a-face 4H-SiC samples with different passivation 
procedures [30]. 
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1.2.2 Hafnium Oxide (HfO2) – future candidate material for low power devices 

 The continual scaling of devices follows the famous prediction by Dr. Gordon 

Moore in the 70’s, which is now referred to as the Moore’s Law where he mentioned that 

the total number of devices on a chip would double every 2 years. The trend has been 

maintained (Figure 1.6) [16, 17]. As mentioned previously this has resulted in better 

integrated circuit functionality at lower cost. One reason for this successful scaling is the 

excellent material and electrical properties of the dielectric (SiO2). The concept of 

packing more transistors on a single chip necessitates constant thinning of this dielectric 

for each generation. Figure 1.7 shows the decreasing feature size and gate oxide thickness 

over the years [35]. With technologies reaching below the 90 nm, a number of roadblocks 

are being encountered to keep pace with the Moore’s law of scaling. Ultrathin silicon 

dioxide and its nitrided alternatives not only have fundamental limitations, but it is 

increasingly difficult to manufacture and control. Direct tunneling of electrons between 

the electrodes through the oxide increases the off-state leakage current [19]. At high 

fields in the oxide, the tunneling current is predominantly Fowler Nordheim, where Vi = 

Eid > ΦB (ΦB = barrier height) and at low fields direct tunneling is observed, where Vi = 

Eid < ΦB [36, 37]. The direct tunneling current is a strong function of the thickness of the 

material and its band offsets. The transmission probability (T) is given by [36, 37].  

 

T = 1+
E0

2 sinh2
kW

4E(E0 − E)

 
 
 

 
 
 

−1

    (1.3) 

and,       

  

k =
2m E0 − E( )

h
2

 

 
 
 

 

 
 
 
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Figure 1.6. Plot showing number of transistors increasing over the 
years in Intel transistors [35]. 

 

 

Figure 1.7. Plot of the decreasing feature size for the respective 
technology node with decrease in gate oxide thickness (secondary Y 
axis) over the years [35]. 
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where, E0 is the band offset, E is the energy of the incoming particle and W is the 

material thickness. Hence with thinner SiO2, the predominant form of leakage is from 

direct tunneling of carriers. From the materials point of view we need to recall that the 

limit for thickness scaling of SiO2 is about 0.7 nm for the full band gap of SiO2 bulk to be 

formed. However with the inclusion of interface roughness this number increases to 1.2 

nm [38]. This reduced band offset can additionally increase leakage current in these thin 

dielectrics. Figure 1.8 highlights the gate leakage problem with a simulated tunneling 

current in the MOS structure plotted as a function of potential drop in the oxide (Vox) for 

 

Figure 1.8. Simulation results of gate tunneling current for various SiO2 
thicknesses [39]. 
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various SiO2 thicknesses [39]. Reliability also becomes a problem in these thin devices 

because current flowing through these oxides during its operation can result in generation 

of defects in the bulk of the oxide as well as at the SiO2/Si interface. When a critical 

density is reached, breakdown (or quasi-breakdown) can occur resulting in failure of the 

device [40-42]. This phenomenon was explained using a percolation model approach 

from the time-to-breakdown distributions of ultrathin layers of SiO2 by Degraeve et al. 

[43, 44].  

The Semiconductor Industry Association (SIA) has established some of the 

technical goals to be achieved for technologies below 90 nm node as shown in Table 1.2. 

These include introducing new gate stack materials and integration processes for the 

CMOS fabrication scheme, including surface and interface control.  

Table 1.2 The SIA roadmap for future technology nodes 

 
Year 2007 2010 2013 2016 

Technology mode 65 45 32 22 

Lgate (MPU) 35 nm 25 nm 18 nm 13 nm 

EOT (nm) MPU 0.9 0.7 0.6 0.5 

Gate-leakage 
(nA/µm) @ 100 °C 

230 330 1000 1670 

Nominal VDD (V) 1.1 1.0 0.9 0.8 

 

1.2.2.(i) Other high-κκκκ dielectrics 

A search for a material beyond the conventional thermally grown SiO2 has 

brought a multitude of alternative gate dielectric materials into contention. They enable 
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the scaling with a higher dielectric constant (κ) wherein the capacitance (C) can be 

maintained the same by increasing the thickness (d) of the gate dielectric (Eq. 1.4).  

C =
κε

0
A

d
     (1.4) 

This increase in thickness of the gate oxide reduces the leakage by orders of magnitude, 

at the same time keeping a considerably low effective oxide thickness (EOT). Figure 1.9 

shown below compares the leakage current density Jg decrease for a high-κ material with 

an EOT equivalent to that of SiO2 with tphys = 15 Å [19].  

 

 

Figure 1.9. Comparison of gate current densities for tphys = 1.5 nm SiO2 as 
against teq = 1.5 nm for high-κκκκ as a function of gate voltage. This highlights 
orders of magnitude reduction in Jg thereby leading to a reduction in standby 
power consumption (alternate Y axis) [19]. 
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Alternative gate dielectrics involve a wide range of materials with κ ranging from 

4 to sometimes higher than 100. For evaluating its material properties, we broadly 

classify them into three different categories, moderate-κ (4 < κ < 10), high-κ (10 < κ < 

100) and ultra high-κ (κ > 100). In the forthcoming section we consider a couple of 

materials of interest in each category for further discussion.  

One of the ultra high-κ materials, BST ((Ba, Sr)TiO3) with κ ~ 300 has been 

investigated by various groups for DRAM [45] as well as MOS applications [46]. Large 

hysteresis is one of the major issues in these materials and the formation of a low-κ 

interfacial layer interferes with the objective of achieving a lower EOT. Additionally due 

to increased κ, the short channel MOSFET cross-section for the dielectric appears more 

like a rectangle instead of a sheet which requires the channel potential to be controlled 

not only by the gate but also by the source and drain [47]. Although these issues can be 

taken care of with a reduced effective κ due to the low-κ interfacial layer, several other 

issues have to be sorted out for these materials to be introduced into the MOS fabrication 

line.  

In the category of moderate-κ materials, Si3N4 stands out as one of the most 

suitable materials to substitute SiO2 due to excellent interface and better reliability [48, 

49]. But the relatively low-κ value of ~ 7.5 is not necessarily ideal for long-term scaling. 

Al2O3 is a similar candidate with κ ~ 10 with large band offsets and well-behaved 

MOSFET characteristics but shows poor carrier mobility owing to interfacial fixed 

charges [50, 51]. This results in a higher Dit, which is related to the mobility degradation 

from Coulomb scattering [52]. Hence its candidacy is hampered by a combination of 

these problems with a not so high κ value. Finally various materials with a high κ value 
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(10 < κ < 100) were studied as replacements for SiO2. Investigations carried out on Ta2O5 

and TiO2 (κ ~ 80) revealed the thermal instability of these oxides to Si when exposed to 

high temperatures of processing and fabrication [53-59]. Studies by Hubbard and Schlom 

elucidate the thermodynamic stability of binary metal oxides on silicon [60]. In this work, 

the Gibb’s free energy calculations were carried out for reduction of metal oxides and 

silicide/silicate formation. These show that BeO, ZrO2 and MgO are thermodynamically 

more stable as compared to the others. Physical and chemical similarity between Zr and 

Hf results in identical stability being observed for HfO2. The similarity is observed in 

both having approximately the same atomic and ionic radii, (ionic radii for Hf4+ ~ 0.78 Å 

and Zr4+ is ~ 0.79 Å), and under ambient pressure, both oxides undergo a phase change 

from monoclinic to tetragonal to cubic structure (with the same space group in each case) 

as the temperature increases [61]. Hence ZrO2 and HfO2 stand out as the best possible 

alternatives for SiO2 in the MOS configuration [62, 63]. 

Another important aspect to consider during the selection of an alternative 

dielectric material is the inverse relationship between the dielectric constant κ and energy 

gap Eg with this being one of factors that define the band offsets between the oxide and 

the semiconductor. Figure 1.10 shows different oxides and the trend of the dielectric 

constant with its band gap [19, 64]. Oxides with a higher κ value are composed of 

elements with a higher atomic number (transition metals) in the periodic table. In the case 

of these transition metals, the atomic d orbitals are partially filled, which tends to 

introduce levels with high density of states in the oxide band gap between the anti-

bonding and bonding states, which reduce the overall band gap of the dielectric. This  

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

additionally results in lowered conduction and valence band offsets between the oxide 

and the underlying silicon, which directly contributes to the increase in leakage current. 

Figure 1.11 shows a schematic representation of the band gap of various alternate gate 

dielectrics and its band offset with silicon [64]. Hence the high-κ dielectric has to be 

wisely chosen and/or the interface has to be appropriately engineered to take advantage 

of these new materials. Table 1.3 shows the comparison of the fundamental material 

properties of HfO2 and ZrO2. Although ZrO2 and HfO2 have similar dielectric constants 

(ε ~ 25 for both) and similar band gaps (

! 

Eg(ZrO2 )
 ~ 5.8 eV and 

! 

Eg(HfO2 )
 ~ 6.0 eV), ZrO2 

was seen as less appropriate due to its reduced thermodynamic stability as compared to 

HfO2. 

 
Figure 1.10. Figure showing the trend of reduction of band gap (Eg) with increase 
in the dielectric constant (εr) for various alternate dielectric materials [19, 63]. 
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Figure 1.11. Schematic diagram of the band gap of various alternate dielectrics 
with its band offset for Si [63]. 
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HfO2 has a more negative Gibbs energy of formation (cf – 260 kcal/mol) as 

compared to ZrO2 (cf – 248 kcal/mol) [65]. On contact with silicon, this property was 

found to reduce interface mixing and prevent/minimize the silicate/silicide formation 

upon post-formation treatments such as source/drain dopant activation anneals. This 

enhanced thermal stability has led to HfO2 as the leading contender [19, 66]. 

Furthermore, with intense research over the past few years it has been shown that HfO2 in 

the form of silicates (to increase thermal budget) and nitrides (to avoid dopant diffusion 

into the oxide) can be scaled down to an EOT ≤ 10 Å to enable device scaling for a 

couple of technology generations. This report involves the reliability studies undertaken 

with pure HfO2 as the gate dielectric in the MOS devices studied. 

Table 1.3 Comparison of material properties of SiO2, HfO2, and ZrO2 

 
Material Properties SiO2 HfO2 ZrO2 

Dielectric constant (εεεεr) 3.9 ~ 25 ~ 25 

Band gap (eV) 9 6.0 5.8 

Conduction band offset (eV) 3.5 1.5 1.4 

Valence band offset (eV) 4.4 3.4 3.3 

Refractive index 1.46 2.2 2.05 

Density (g/cm3) 2.27 9.68 6.1 

Lattice constant (Å) - 5.11 5.1 

Lattice mismatch with Si - ~ 5.7 % 6 % 

Thermal expansion coefficient 0.5 x 10-6 K-1 5.3 x 10-6 K-1 8 x 10-6 K-1 
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1.2.3 Gate electrode materials 

It is important to note that another constituent (gate electrode) of the conventional 

gate stack of the poly-Si/SiO2/Si combination had to be changed in order to realize the 

use of these high-κ oxides. This must be taken into account in reliability studies such as 

radiation effects, since the total dose in the ultrathin oxide regimes is dominated by the 

materials around it, as will be discussed in later chapters. Metal gates have replaced poly-

Si mainly in order to avoid dopant penetration and poly-Si depletion effects in the 

ultrathin EOT regimes. Moreover in the case of metal gate electrodes, issues of interlayer 

mixing at the oxide/gate electrode interface, which reduces the net capacitance of the 

stack, is drastically reduced. The absence of a poly-Si gate improves the thermal budget 

by eliminating the need for gate electrode dopant activation anneals. Two approaches are 

normally employed for the selection of a gate metal, either using a single mid-gap gate 

metal (TiN – our case) or the use of dual metal gates. Mid-gap gate metals are chosen for 

having a symmetrical threshold voltage (VT ~ 0.5 V) for both nMOS and pMOS based 

devices. In this thesis we present studies involving TiN as the gate metal. On the other 

hand, use of dual metal gates such as Al for nMOS and Pt for pMOS, reduces this VT to ~ 

0.2 – 0.3 V, a desirable value for below 90 nm technology generation. It is however 

necessary to consider the unavoidable oxidation of Al at high temperatures and the cost 

and ineffective adherence of Pt to these gate oxides. This has resulted in using metals 

such as RuO2 or nitrided metal gates such as TaN owing to their appropriate work 

functions, thermal stability with the oxide, low sheet resistance and easy integration into 

CMOS fabrication [19].  
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1.3 Thesis outline 

This chapter has provided an introduction to the fundamental properties of this 

new set of materials, which serve to define the future gate stack combination. An attempt 

has been made to encompass some of the background details into the evolution of these 

material systems to challenge the existing semiconductor materials domain. Chapter II 

briefly explains the terminologies with insights into the physical nature and 

understanding of the processing and radiation induced traps. These are discussed for both, 

the oxide bulk as well as for the interfaces. It builds on the long existing and relatively 

well-known literature of radiation response of SiO2/Si based devices and reviews the 

current understanding of the SiO2/SiC and HfO2/Si based device structures exposed to 

incoming radiation.  

Chapter III describes the materials analysis and pre-irradiation characterization 

performed on SiO2/SiC system as a part of this thesis. It also includes a short description 

of the various analytical techniques used in our group to profile the nitrogen content at 

the SiO2/SiC interface. MOS characterization performed for pre-irradiation Dit analysis is 

also included as a part of this chapter.  

Chapter IV describes the first observation of enhanced positive charge trapping of 

nitrided SiO2/SiC based MOS devices, and their comparison to the response of non-

nitrided samples. It includes results from other reliability tests, which confirm the 

consistency between different experimental techniques. The results indicate a need to 

optimize the nitrogen content during the post-oxidation passivation procedures to strike a 

balance between reductions in the Dit and simultaneously provide a considerable hardness 

assurance to radiation effects and other reliability issues.  
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Chapter V includes several physical characterizations as a part of pre-irradiation 

measurements performed to verify the stoichiometry and oxide (bulk and interlayer) 

thicknesses. MOSFET characterization studies undertaken prior to radiation exposure are 

also discussed. 

Chapter VI deals with bias stress and the ionizing radiation response of hafnium 

based oxides on silicon. The majority of the previous work was done on MOS capacitors 

with most of them performed on thicker gate oxides. In this work we aim to study the 

reliability of these state-of-the-art MOS transistors fabricated using an industry standard 

sequential CMOS process flow. The device response is studied as a function of positive 

and negative electric fields, with varying bulk oxide and interlayer thicknesses. 

Chapter VII describes the results from the radiation induced charge trapping 

studies performed as a function of varying bulk HfO2 and SiO2 interlayer (IL) 

thicknesses. These studies identify enhanced trapping in the bulk of the oxide apart from 

discussing additional trapping in the SiO2 interlayer in thicker HfO2-based MOSFETs. 

Finally in the last chapter, Chapter VIII, we summarize the findings from the 

experimental results. With this work we hope to provide a useful contribution to the field 

of reliability physics for materials, which are likely to play a pivotal role in future high 

and low power devices. We believe this will improve our current understanding of 

radiation effects and reliability in these devices and eventually design better devices for 

the future. 
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CHAPTER II 

 

RADIATION BASICS & BACKGROUND LITERATURE 

 

2.1 Basics of Radiation Effects 

Exposure to ionizing radiation generates electron-hole pairs (EHPs) in 

semiconductors as mentioned in the previous chapter. In MOS devices, we however 

worry about device degradation due to these EHPs generated in the oxides. In this chapter 

we present the mechanisms associated with the interaction of these charged species, 

predominantly with the gate dielectrics. This interaction depends on the type, kinetic 

energy of the incoming radiation, charge state and the mass of the incoming projectile 

and similarly it will also be affected by the mass, atomic number (Z) and density of the 

target material [1]. 

The incident species can consist of photons, electrons, protons or any other heavy 

nuclei, and for matters of relevance to this thesis we restrict our discussion to photon 

interactions. An incoming photon can interact with matter in three different ways, 

namely, photoelectric effect, Compton effect and pair production [2]. In the case of 

photoelectric effect, the incident photon interacts with an electron from the inner shell of 

the target atom and loses all of its energy thereby ejecting the electron from the atom. 

This electron is a free electron, often termed as a photoelectron, and has energy 

equivalent to the energy of the incoming photon minus its binding energy. The 

photoelectron further traverses through the material to create EHPs. Compton scattering 

involves higher energy photons, which interact with the atom, thereby releasing part of its 
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energy in creating a Compton electron and the remaining energy of the photon being still 

available to create additional free carriers.  Pair production occurs at very high energies 

of E > 1.02 MeV, wherein the incident photon creates an electron and a positron pair and 

the photon is completely annihilated. Figure 2.1 provides the probability of each of these 

events occurring as a function of energy of the projectile and the Z of the target material 

[3]. For the photon energy ranges considered in this thesis, photoelectric effect is the 

major contributing phenomenon for the creation of EHPs.  

Electrons and holes generated in the gate and the isolation dielectrics can either 

recombine or be trapped at defects in the oxides. The percentage that escapes 

 

Figure 2.1. The probability of different mechanisms of photoelectric effect, 
Compton scattering and pair production occurring for different Z of the target 
material as a function of the incoming photon energy [1]. 
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recombination is a strong function of the electric field and is commonly referred to as 

charge yield [2, 4]. A significantly large field will be more efficient in the separation and 

hence the charge yield can be higher owing to a reduced recombination of radiation-

induced charges [4, 5]. The phenomenon of charge trapping in the oxide with cumulative 

radiation dose is known as total ionizing dose (TID) effect, which further leads to altering 

the electrical performance of the device. This trapping is highly dependent on the 

processing conditions and the quality of the gate oxide. In this chapter we will emphasize 

on the nature and mechanisms of charge trapping in the gate oxides and use radiation as a 

tool to understand the oxide quality. 

It is important to note that other effects such as single event effects (SEE) also 

form a substantial part of the radiation effects and reliability studies for devices used in 

modern day technologies. These are triggered by the dense plasma of EHPs generated 

from the incoming projectile that follow the path of the projectile. They are broadly 

classified into soft and hard errors. Soft errors such as single event upsets (SEU) are 

generated when a logic state of the circuit is changed. The hard errors lead to permanent 

damage due to a large amount of energy deposited in a small area of the dielectric, 

frequently referred to as single event gate rupture (SEGR) or from high current 

conditions arising from the passage of protons and other heavy ions leading to single 

event latch-ups (SEL). There are other forms of single event related device failures 

depending on the nature of the device, the details of which can be found elsewhere [6, 7]. 

We however restrict all of the future discussions to TID effects, the focus of this 

dissertation. 
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2.2 Total Ionizing Dose (TID) effects 

Charging of oxides (gate, field and isolation) occurs by the mechanisms as 

described pictorially in the form of band diagrams in Figure 2.2 [8]. We consider a 

simple case where a positive voltage is applied on the gate metal and the applied field 

induces band bending in the MOS device as shown in the corresponding figure. A 10 keV  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

photon (Aracor x-rays) traversing through this device configuration deposits its energy by 

generating photoelectrons via the photoelectric effect, which in turn create EHPs 

throughout the system. The photoelectron deposits its energy in the oxide by losing ~ 17 
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Figure 2.2. Schematic representing the fundamental radiation induced EHP 
generation with bulk hole trapping and movement of the charge centroid to 
the interface under bias [8]. 
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to 18 eV (in SiO2) [9-11] for each EHP. A certain fraction of the EHPs undergo 

recombination, from the remaining charge most of the electrons in the oxide are swept 

away, depending on the applied field direction (built-in field, if none applied), in this 

case, towards the gate metal. This occurs in time scales of a few picoseconds assisted by 

the high mobility of electrons in the oxide. The slower drifting holes get trapped in the 

micro-structural defects and pre-existing traps in the oxide. These further transport slowly 

towards the oxide/Si interface through localized states in the oxide [5]. Electrons 

tunneling from Si very close to the interface or thermal emission from the trap sites can 

neutralize/decrease a certain fraction of these holes while others remain deep in the oxide 

as positive oxide trap charges [12-14]. These trapped charges can cause a shift in the 

threshold voltage and increase gate leakage in these devices. Another form of trapped 

charge commonly referred to as interface trapped charge arises from the charges trapped 

at the unsatisfied Si dangling bonds (without H passivation) at the oxide/Si interface. 

According to widely accepted models, these can increase with radiation due to the release 

of hydrogen in the bulk from hole hopping and its subsequent interaction with another 

hydrogen at the interface to form H2 thereby leaving an unsatisfied dangling bond at the 

interface [15-21]. At threshold, these are predominantly positively charged for p-channel 

transistors and negatively charged for n-channel transistors, as will be discussed further 

in detail.  

In general, these two types of charging in the bulk and at the near 

interface/interface region can modify the electrical performance of a MOSFET as shown 

in Figures 2.3a and 2.3b. Figure 2.3a shows an n-channel MOSFET (p-type Si substrate) 

under the influence of a positive gate bias (V
G

+
), which causes a high enough electric field 
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    + + + + + + + 
+ + 

Source Gate Drain 

N+ N+ 

Substrate 

Channel turned 
ON when VG = 0 

p-type Silicon substrate 

Field Oxide Gate Oxide 

Source Gate Drain 

N+ N+ 

Substrate 

Channel turned 
ON when VG > 0 

p-type Silicon substrate 

Figure 2.3a. Cross-section of a nMOSFET (p-type Si substrate) before irradiation with 
inversion conditions at positive gate voltage (VG > 0). Figure 2.3b. showing the same 
structure after exposure to radiation results in inversion conditions even at zero gate bias 
(VG = 0) due to trapped positive oxide charge [1]. 
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to create an inversion channel when the gate voltage exceeds the threshold voltage (V
T

). 

This along with a potential difference applied between the source and drain regions, 

results in a current flowing between the terminals. Hence the applied gate voltage 

controls the formation of the inversion channel in the MOSFET structure. Now consider 

Figure 2.3b where the radiation has introduced positive charges in the oxide as discussed 

before with the centroid of the charge very close to the oxide/Si interface. This generates 

additional space charge fields at the Si surface, which leads to offsets or shifts in the turn-

on voltage of the MOSFET. For a significant positive trap charge, the device can be 

turned ‘ON’ even at zero gate bias as shown in the figure. This leads to an increase in the 

static power supply (OFF state) for the IC, which may lead to device failure. Charge 

trapping in the field oxides and SOI-buried oxides also cause similar problems with 

increases in the OFF-state leakage current. 

 

2.3 Nature and mechanism for charge trapping 

2.3.1 Oxide-Trapped Charge ( N
ot

) 

 Zaininger [22] and Grove and Snow [23] put forth a simple model for the oxide 

trapped charge wherein they mentioned that EHPs are created by breaking Si-O bonds 

under irradiation. Some of them recombine, and the remaining electrons get swept 

towards the metal gate under a positive gate bias. The holes move by an anomalous 

stochastic hopping transport under the influence of a field towards the Si substrate. Some 

of them may be annealed (short-term or transient recovery) depending on field and 

temperature, while a significant portion of them may be trapped in long-term trapping 

sites close to the interface. The predominant contribution to the trapped oxide charge 
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comes from this positive charge trapping, as thermally grown oxides are known to have 

low concentrations of electron traps [24]. The fraction of hole trapping is also a function 

of the oxide-processing conditions [16]. A primary oxide defect in SiO2, which induces 

hole trapping, is known as an ′ E  center or an oxygen vacancy as verified by Electron 

Spin Resonance (ESR). It is identified as a trivalent silicon atom with an unpaired 

electron in a dangling orbital, back-bonded to three other oxygen atoms [25, 26]. The 

oxygen vacancy can be formed by damage caused during dopant implantation or during 

various post-oxidation annealing treatments, which may cause out-diffusion of oxygen at 

higher temperatures thereby generating more ′ E  centers [27]. Different configurations of 

the ′ E  centers were discussed by Warren et al. [28]. The most widely accepted precursor 

is the ′ E 
γ
 center, which has been deemed responsible for the oxide-trapped charge ( N

ot
) 

in SiO2 [25, 29, 30]. The creation of this ′ E  center by radiation-induced trapping can be 

expressed in the simplest chemical form as shown below 

 

SihSiSi
nirradiatio ≡≡−≡  →+      ≡• Si   (2.1) 

 

The precursor bridging-oxygen vacancy on the left of the equation provides a weak 

strained bond configuration for the two silicon atoms. This system, after trapping a hole 

under irradiation, becomes an Electron Paramagnetic Resonance (EPR) active state by 

giving rise to 
+
Si ≡ O3 and another Si with a dot denoting the dangling orbital. Pictorial 

representation of the precursor and the EPR active state is as shown in Figure 2.4. It is 

evident that the positively charged silicon after hole trapping relaxes into a planar 

configuration while the neutral Si relaxes towards the vacancy. The radiation-induced  
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oxide trapped charge in the case of SiO2 based devices is predominantly positive. For a 

typical C-V measurement on a MOS device on Si following irradiation, when the Fermi 

level is at mid-gap the acceptor and donor like traps are charged neutral hence the voltage 

shifts on the C-V curve at mid-gap ( ∆V
mg

) is entirely due to these oxide charges trapped 

in the bulk/near interfacial region of the oxide. Hence at mid-gap, the voltage shift due to 

total oxide trap charge ( ∆V
ot

) increase is given by the Winokur and McWhorter technique 

[31, 32] where 

∆V
ot

= ∆V
mg

     (2.2) 

The total increase in the number of oxide traps ( ∆N
ot

) at mid-gap is given by 

∆N
ot

 = −Cox

∆V
mg

qA
        (2.3) 

The change in interface trap charges over time following irradiation is discussed in the 

forthcoming section. It was further verified from gamma ray irradiation/annealing 

+ h+ + 

Fixed 
positive 
charge 

Si-Si sub-oxide 
bond 

Figure 2.4. Mechanism showing the formation of the E’ center from a Si-Si 
sub-oxide bond (O2 vacancy) [8]. 
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experiments that the trapping (irradiation)/recovery (annealing) of mid-gap voltage shift 

( ∆V
mg

) correlated to the increase/decrease in the ′ E 
γ
 signal thereby supporting the model 

for the cause of bulk oxide charge trapping [26]. 

 In the case of SiO2/SiC based samples, the bulk of the oxide was believed to be 

similar to stoichiometric SiO2 as employed in Si based devices. Hence the radiation 

induced bulk defects were presumed to be similar, as will be shown in Chapter IV. 

However the interface is completely different from the Si-based interface, with the 

presence of extensive defects often assumed to be of excess carbon. This could lead to a 

difference in the charge trapping characteristics in the non-nitrided SiO2/SiC samples 

itself. Additionally the presence of a larger band gap opens the possibility of exposing 

additional states in the gap that were not a matter of concern in Si. Previous radiation 

experiments have addressed some of these issues mostly in 3C [33] and 6H [34], with 

some literature in 4H-SiC [35-38]. In the work included in this thesis, we report the first 

observation of enhanced positive charge trapping under radiation for nitrided 4H-SiC 

MOS capacitors under the influence of an applied field. The nitridation of these samples 

can add to the complexity as the presence of nitrogen at the interface and near-interface 

region can improve/degrade the trapping observed in the non-nitrided case. Another 

factor is the high temperature processing (~ 1150 °C) and growth of these oxides as 

compared to the traditional SiO2/Si processing temperatures of 900 °C to 1000 °C may 

increase the concentration of ′ E 
γ
 centers. Chapter IV essentially addresses the 

aforementioned concerns in these devices, which are potential candidates for high-

temperature and high-power electronics. 
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For the second category of samples of HfO2/Si, the issue of understanding the charge 

trapping using radiation, and its comparison to SiO2 based devices, is even more 

challenging. This is mainly due the bulk and the interface of the oxide; both are 

completely different from SiO2/Si. One of the main issues being that the oxide is not 

thermally grown for the alternative gate dielectrics and their susceptibility to 

polycrystallization during post metallization treatments can cause additional trapping. 

The other being the oxygen deficiency in the SiO2 interlayer (IL) that results from oxygen 

uptake during the high-κ growth and processing [39]. These can influence further charge 

trapping. The knowledge and understanding of defects in SiO2/Si based devices have 

been established over the years with a plethora of experiments conducted to investigate 

their nature. However for HfO2 although a lot of previous research (mostly on capacitors) 

has been undertaken to understand charge-trapping behavior under radiation in HfO2/Si 

based devices [40-44], a similar proficiency in the understanding is still lacking for these 

alternative gate dielectrics, especially for the response of MOSFETs. To address this 

issue Chapters VI and VII deal with the radiation response of these HfO2-based 

MOSFETs. These are studied in the ultrathin EOT range of less than 2.5 nm thickness 

corresponding to the regimes of importance in the CMOS industry. 

 

2.3.2 Interface-Trapped Charge ( ∆N
it
) 

Interface charge trapping was described initially by a two-stage model by McLean 

[18]. He proposed that during the first stage, the radiation generated holes free hydrogen 

ions in the SiO2 bulk as they move to the SiO2/Si interface. In the second stage these 

undergo a dispersive hopping transport to the interface, react with hydrogen at the 
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interface, releasing H2 thereby creating an interfacial Si dangling bond [18]. A graphical 

representation of the mechanism is as shown in Figure 2.5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This model was consistent with the results of several others [15, 17, 19, 20, 45-

47]; a modification was put forth by Griscom [48] wherein he argued that chemical 

reaction is possible even with a neutral hydrogen where an electron is provided from the 

substrate to support the model proposed by McLean. This interfacial dangling bond was 

the prime reason for the generation of states in the middle of the Si band gap at the 

+ h+ H

H+ ion released 

H 

Trivalent Si-H 
bond 

H

H+ ion 
(in bulk SiO2) 

Hopping in the oxide 

H H 

H2 molecule 
released dangling 

bond 

(111) Si/SiO2 interface 

H H H 

Figure 2.5. Mechanism showing the formation of the Pb center defect 
structures at the Si/SiO2 interface as described in the literature using the 
hydrogen model [8]. 
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SiO2/Si interface. The chemical reactions that are usually deemed responsible for the 

hydrogen induced interface trap creation are represented as  

H
+ + H − Si ≡ Si  →  H2 + Si

+ ≡ Si    (2.4) 

Alternatively, atomic hydrogen reacts as     

H
+ + e

− → H
0  and    (2.5) 

Si ≡ Si − H + H
0 → Si

− ≡ Si + H2      (2.6)       

    

Here Si
— is a dangling bond. In the case of the proton as shown in equation 2.4 the 

electron is supplied by the Si substrate for the formation of H2 [49]. The time, 

temperature and field dependence of the interface trap-generation was studied using 

different electrical techniques; however ESR was one of the most important physical 

techniques used for determining the structure of these individual defects.  

 The ESR techniques revealed defects identified as P
b
 centers, which were 

responsible for the interface trap generation. Initially, two different P
b
 centers were 

observed on Si (100), P
b 0

 and P
b1

 namely, which were found to be process-induced 

interface traps as schematically represented in Figures 2.6a and 2.6b for the (100) and 

(111) Si faces [25, 26, 29, 30, 50]. Figure 2.6a for the Si (111) face shows that the 

physical structure of the P
b 0

 center is a Si back bonded to three other Si atoms in the 

substrate with the fourth dangling orbital normal to the interface extending into the oxide. 

For the (100) face as shown in Figure 2.6b, the structure for P
b 0

 is similar, except that the 

dangling bond extending into the oxide is at an oblique angle instead of being normal [51, 

52]. For the P
b1

 defect, a few researchers have speculated its physical structure with a Si  
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back-bonded to two other silicon and an oxygen atom with a dangling bond into the oxide 

[51, 52] but a better understanding of these defects are being pursued [53]. Additional 

radiation experiments revealed no observed increase in the P
b1

 ESR signal following 

Pb0 
P  

Pb1 

Si (100) surface 

Pb0 

Si (111) surface 

Figure 2.6a. Schematic representing the structure of a Pb0 defect center 
shown here as a Si dangling bond extending in a normal direction into 
the oxide and attached to three other Si atoms in the substrate at the 
SiO2/Si (111) interface [52]. 

Figure 2.6b. Schematic representing the structure of a Pb0 defect center 
shown here as a Si dangling bond at an oblique angle attached to three 
other Si atoms and a Pb1 defect represented as a Si dangling bond 
attached to two other Si atoms and an oxygen atom at the SiO2/Si (100) 
interface [52]. 
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radiation doses on the SiO2 based samples. It was further suggested by Stesmans [54] that 

these were electrically inactive defects. Further investigations revealed that the P
b1

 signal 

increased with significantly higher doses as compared to doses for P
b 0

 [55]. The P
b 0

 

signal increased linearly with increasing doses as observed by Lenahan et al. on Si (100) 

surfaces [56]. Lenahan also observed a correlation between ∆D
it
 and the P

b 0
 during 

irradiation as well as isochronal annealing measurements [50]. The increase in the P
b 0

 

signal (interface traps) can be explained with the widely accepted hydrogen model as 

mentioned previously which leads to a time dependent increase in the ∆N
it
 following 

irradiation.  

Interface traps can be charged or discharged depending on the location of the 

Fermi level in the band gap, which can be modified by the bias applied to the 

semiconductor (band-bending). Interface traps in the upper portion of the band gap are 

considered to be acceptor type and are negatively charged when filled and neutral when 

empty. Similarly, the interface traps in the bottom portion of the band gap are donor type 

and are neutral when filled and positively charged when empty. Thus for silicon, the 

interface traps are charge neutral for a device biased at mid-gap [57, 58]. However the 

change in the number of interface traps ( ∆N it) between mid-gap and flatband can be 

represented using the charge separation technique as [31, 32] 

       ∆N
it

= Cox
(∆V fb − ∆Vmg)

qA
             (2.7) 

where ∆V fb  and ∆Vmg  refer to the change in the flatband voltage and mid-gap voltages 

respectively, Cox  is the absolute capacitance in F and A is the area of the gate metal 

contact. 
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The interface traps cause negative threshold voltage shifts for p-channel 

transistors and positive threshold voltage shifts for n-channel transistors. Mobility 

degradation is also observed owing to coulomb scattering from the trapped charges 

flowing in the inversion layer [20, 59]. These further affect the timing parameters of an 

IC and decrease the drive of the transistors. 

Regarding this thesis, the interface issues are completely different for the case of 

SiO2/SiC and somewhat similar for HfO2/Si, both relative to SiO2/Si. For SiO2/SiC, it is 

important to note that not only can the interface have defects but also the presence of 

carbon can give rise to a variety of defects at the interface [60-63], which will be 

discussed in detail in Chapter IV. In SiC, the time constants for the interface charges to 

respond to the gate bias sweep below Ec-E = 0.6 eV to mid-gap are extremely large [64]. 

Hence the response to detrapping when the Fermi level bends deeper in the band gap is 

very minimal, and these charges tend to appear as fixed charges as will be discussed in 

detail in Chapter IV. Chapter IV also explains the role of nitrogen at the interface/near-

interface and its effect on charge trapping from radiation [65]. However these results call 

for the need to undertake comprehensive spectroscopic studies to understand the defect 

nature in these wide-band gap semiconductor structures. In the second system of HfO2-

based structures the interfacial region is more SiO2-like due to an intentional thermal 

SiO2 layer grown to reduce the interface trap density ( D
it
), thereby improving the 

mobility. However, the D
it
 still appears to be in the range of 1012 eV-1 cm-2, which leads 

to almost negligible interface trap charge increase due to the already pre-existing higher 

density of defects. Additionally the ultrathin dielectric layers considered in these 

MOSFETs and the reduced band offsets, contribute to the observed volatility of the 
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radiation induced trapped charge owing to neutralization/annihilation of a significant 

number of these near interface/interface charges [66]. A detailed quantitative analysis is 

provided in Chapter VI of this dissertation. 

 

2.3.3 Border traps 

 The term “border traps” was first introduced by D. M. Fleetwood in 1992 [67] and 

a more comprehensive explanation was given in the 1993 paper [68]. They are simply 

explained as near interfacial oxide traps that are able to exchange charge with the 

underlying silicon on the time scale of the measurements. The location of these traps is 

very close to the interface and their response to the electrical sweep make them look like 

interface traps. It was concluded that the trapping/detrapping of these border traps was a 

strong function of the measurement delay during the C-V and I-V sweeps. Measurements 

of 1/f noise suggested that the noise signal was almost entirely from near interfacial traps 

and that ambiguities had to be resolved to distinguish these from actual interface traps 

[69-71]. Hence the coining of this term for near-interfacial oxide traps provided a much-

needed update to the terminology for the oxide traps developed by the Deal committee 

[72]. There is still some uncertainty on the exact structure of these border traps and it is 

possible that the relevant defect structure may vary for different materials and processing. 

In this work we discuss about these kinds of traps to explain the transient 

charging/discharging in the alternative high-κ devices under bias stress, which exist more 

importantly owing to the oxygen deficient, SiO2 interlayer in these devices. A schematic 

representation of the location of these traps is as shown below in Figure 2.7 [68]. 
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2.4 Annealing/Recovery studies 

 Different kinds of annealing studies have been employed to understand the 

activation energies for the recovery behavior in the gate oxides after a particular total 

dose. Isothermal annealing is studied at constant temperatures for varying times and 

V 

Gate Oxide Si 

+ 

+ 

+ 

+ + 

+ 

+ 

+ 

+ 

+ 

+ 
- - 

- 

- 

- + 

+ 

+ 

+ 
+ 

Gate Si 

V 

Oxide 

“Switching States” 

“Fixed States” 

Oxide Traps 

“Border Traps” 
“Interface Traps” 

Figure 2.7. Image highlighting a pictorial representation of the traditional 
oxide and interface traps and traps closer to the interface (border traps), 
which can respond to the gate bias under the time scale of the 
measurements [68]. 
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isochronal annealing is studied at constant time intervals for varying temperatures. 

Zaininger found that most of the recovery in SiO2/Si based devices took place between 

150 °C and 300 °C [73]. The basic process of annealing proceeds by two mechanisms, 

tunneling and thermal excitation. The tunneling probability, which is a strong function of 

the distance, is the dominant mechanism at room temperatures, but thermal emission 

plays an important role at higher temperatures [14]. This fact has been verified by various 

Thermally Stimulated Current (TSC) experiments by Fleetwood et al. and others [14, 68, 

74-79]. We have performed isochronal annealing studies on our samples of SiO2/SiC 

after nitridation to determine the activation energy using a model described in Chapter 

IV. In the case of HfO2/Si based devices most of the trapped charge was annealed at 

room temperatures by reversing the bias on the electrodes, which agrees with tunneling 

being the dominant annealing mechanism owing to reduced band offsets. 

 This dissertation includes most of the terminologies and mechanisms discussed in 

this chapter for charge trapping and annealing. We find correlations between the existing 

literature on SiO2/Si system and the two advanced systems studied (SiO2/SiC and 

HfO2/Si). Interesting similarities and differences are discussed in the subsequent chapters. 
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CHAPTER III 

 

NITROGEN PROFILING & MOS CHARACTERIZATION FOR SiO2/4H-SiC 
DEVICE STRUCTURES 

 

3.1. Overview 

 Materials characterization (physical and electrical) of the SiO2/SiC materials with 

and without NO passivation has been performed by numerous techniques. Medium 

Energy Ion Scattering (MEIS) [1], Nuclear Reaction Analysis (NRA) [2, 3], Secondary 

Ion Mass Spectroscopy (SIMS) [4], and Electron Energy Loss Spectroscopy (EELS) [2, 

5], have been used previously to profile the nitrogen content in these material systems. 

Room temperature C-V, high temperature C-V and photo-CV are some of the techniques 

that have been used for electrical characterization of as-oxidized and NO annealed 

SiO2/SiC MOS structures [6-10]. In this chapter we summarize the previous work done 

on physical characterization that support our results on the radiation effects. We have 

performed two of the three electrical characterizations as mentioned above namely Hi-Lo 

Capacitance-Voltage (C-V) [11] and photo-CV [6] measurements. The objective of the 

first part of the thesis which requires the understanding of radiation induced charge 

trapping response of N in a SiO2/SiC configuration is very much dependent on the 

location and the content of nitrogen in the SiO2/SiC structure. This chapter includes 

profiling results and electrical response, followed by discussion of the results for each of 

the technique used to understand the role of nitrogen from the perspective of materials 

analysis and device characterization. 
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3.2. Physical characterization of as-oxidized and NO annealed SiO2/SiC 

 One of the main objectives of this thesis is to understand the response to radiation 

induced charge trapping for SiO2/SiC based devices after subjecting them to NO induced 

interface passivation. Typically SiC oxidation is performed at 1150 °C followed by a NO 

anneal at 1175 °C. Not only is it important to know the role nitrogen plays at the 

interface, but it is of value to quantify the nitrogen profile and content in the MOS 

system. Several groups have been actively involved in the studies of nitrogen passivation 

at the SiO2/SiC interface with some of initial work described in Ref. [12, 13]. Nitrogen 

profiling included in this chapter is mostly based on previous work done within the 

research group and reported by McDonald et al. [3, 4, 14] and Dhar et al. [1, 2, 15]. 

These profiling methods assume significance to this thesis since the samples prepared for 

this dissertation work were exposed to the same oxidation and NO post oxidation 

annealing (POA) treatments (similar instrumentation and growth recipe) as the ones used 

in these previous studies. Studies carried out in our group have verified the nitrogen 

content using primarily four different physical characterization techniques. These are 

NRA, EELS, SIMS, and MEIS and the corresponding concentrations for the nitrogen at 

the SiO2/SiC interface were mentioned within the sensitivity limits of these experimental 

techniques.  
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3.2.1. Nuclear Reaction Analysis (NRA) 

A detailed investigation using nuclear reaction analysis (NRA) for nitrogen 

quantification is elaborately described by McDonald et al. [3]. It involved measuring the 

nitrogen content using nuclear reaction analysis (NRA) using the 15N(p,α) 12C reaction at 

Ep = 1 MeV and alpha particle detection at 180°. Si-face samples were prepared using 

wet oxidation procedure at 1150 °C for 30 min with 15N18O post oxidation annealing at 

1000 °C for 4h at 10-mbar pressures. Figure 3.1 shows the profile of the nitrogen 

detected as a function of depth into the oxide, with the thickness of the oxide being ~ 30 

nm. The areal density of 15N for this sample was measured to be ~ 2 x 1014 cm-2 for the 

 
Figure 3.1. Concentration profiles of 15N in SiO2/SiC annealed in 10 mbar of 
15N18O at 1000 °C for 4 h. The origin corresponds to the surface; the 
SiO2/SiC interface is at ~ 30 nm [2, 3]. 
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4h anneal sample. Similar studies performed by Dhar et al. [2] further explains the 

nitridation anisotropy as a function of the different crystal faces of SiC detected using 

NRA and SIMS analysis. In these studies, the content of 15N measured by NRA on the Si-

face was about (1.62 ± 0.1) x 1014 cm-2 and higher density was achieved for the C-face of 

about (4.8 ± 0.2) x 1014 cm-2. Only 10 % difference was found between the densities for 

the a-face and the C-face. It was concluded that the concentration of nitrogen follows the 

trend for oxidation rates for the crystal faces. Improved depth resolution was obtained 

electron energy loss spectroscopy (EELS) as will be discussed in the next section. 

 

3.2.2 Electron Energy Loss Spectroscopy (EELS) 

 The N elemental profiles as performed by Chang et al. [5] and Dhar et al. [2] are 

as shown in Figure 3.2 obtained on the Si- and the C-face annealed for 2h in NO after the 

dry oxide growth. Samples similar to the NRA samples were fabricated for the EELS 

experiments with the only difference being that these samples were annealed under 

flowing 14NO gas at 1 atm unlike the NRA samples, which were annealed at 100 Torr. 

This showed up as a factor of 2 in the nitrogen concentration between the two techniques. 

Spatially, a higher N concentration (3.5 x 1014 cm-2 for Si-face) was measured close to 

the interface followed by a constant level of the N profile. Both the EELS and NRA were 

in agreement within experimental error limits thereby confirming the presence and spatial 

location of nitrogen at the SiO2/SiC interface. 
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Figure 3.2. The nitrogen intensity profile as obtained by EELS at the 
SiO2/4H-SiC interface of a NO-annealed C-face (a) and Si-face(b) 
sample showing that N is detected only at the interface [2, 5]. Artifacts 
resulting from inadequate background subtraction of the EELS 
spectrum yield positive values of N intensity for positions outside the 
interface region. 
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3.2.3 Secondary Ion Mass Spectroscopy 

 Si-face p-type 4H-SiC samples were exposed to dry oxidation at 1150 °C for 30 

min followed by NO anneal at 1150 °C for 4h at pressures of 100 Torr (with 15NO) and 1  

atm (with flowing 14NO) according to the studies performed by McDonald et al. [4]. 

Figure 3.3 shows SIMS profile of the sample annealed at 1 atm with an oxide thickness 

of ~ 20 nm. It is evident from the figure that nitrogen accumulates at the SiO2/SiC 

interface in these samples. The N areal density was measured to be ~ 4.8 x 1014 cm-2 at an 

oxide depth of 20.3 nm as shown in the figure. These were studied as a function of oxide 

thickness and it was found that the N peak moves with the interface as the oxide grows 

 

Figure 3.3. SIMS profiles of SiO2/4H–SiC annealed in NO at 1150 °C at 1 atm for 
a period of 4h. The N areal density is 4.8 x 1014 cm-2 with an oxide depth of 20.3 
nm [4]. 
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into the SiC for higher thicknesses thereby elucidating the influence of N at passivating 

the interface. 

3.2.4. Medium Energy Ion Scattering (MEIS) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.4. MEIS spectra of ( 1120) 4H–SiC; Sample as-oxidized at 1150 
°C (top) compared to a sample that underwent a NO POA at 1175 °C for 
2 h after the oxidation (bottom). Nitrogen incorporation at or near the 
interface can be observed from the spectra. The difference in amount of 
oxygen in the two samples is due to different thickness resulting from 
etching of the oxide [1]. 
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4H-SiC of the (1120) polytype (a-face) was used to fabricate samples for MEIS 

analysis [1]. The samples after a standard clean, were subjected to routine oxidation for 

4h at 1150 °C in dry oxygen followed by NO POA process at 1175 °C in flowing Ar for 2 

h. A standard sample was made by annealing in Ar at the oxidation temperature for 30 

min after oxidation. 100 keV H+ ions were used at a normal incidence and 125° scattering 

geometry for the analysis. For improved interface resolution the oxide layer was carefully 

etched using HF to thin down the oxide. Figure 3.4 shows the MEIS spectra for both the 

as-oxidized and the nitrided 4H-SiC a-face samples. Nitrogen incorporation at or near the 

interface was confirmed as seen from the figure. The areal density calculated from the 

area under the peak revealed an estimate of 6.6 x 1014 at/cm2 for the data on the a-face. 

Similar measurements were done on the Si-face and the areal density was found to be a 

little higher with nitrogen content of 1.16 x 1015 at/cm2 at the interface. This layer of 

nitrogen was found to be very close to the interface (within 1 nm) as measured from the 

full width half maximum of the MEIS spectrum, within the depth resolution limits of the 

system [1, 10]. 

All the aforementioned four techniques confirm the presence of N with areal 

densities and distribution values close to each other. These results assure a similar profile 

and concentration values for the samples studied in the radiation response studies. The 

pre-irradiation electrical characterization results of our NO annealed capacitor structures 

serve as evidence to the fact that nitrogen was involved in reducing the Dit in the nitrided 

samples as compared to the as-oxidized ones. This crucial evidence of Dit reduction, 

thereby proving the ‘N’ presence before irradiation, is an important factor as the radiation 
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response is strikingly different for the NO annealed samples as compared to the as-

oxidized ones. 

 

3.3 Electrical characterization of as-oxidized and NO annealed SiO2/SiC 

 The pre-irradiation electrical behavior of the capacitors was analyzed using Hi-Lo 

Capacitance-Voltage (C-V) [11] and photo-C-V measurements [6]. The photo C-V 

technique was employed to measure the buildup of slower interface traps. Pre-irradiation 

characterization was done for comparison of hysteresis and prominent features of the C-V 

curves with the post-irradiation curve. These features on the C-V curves are indicative of 

slow interface traps and near interface (border) traps [6, 16]. The effect of NO passivation 

on the reduction in the interface trap density ( Dit ) was verified using the C-V technique 

[11, 17] as shown in Figure 3.6. 

 

3.3.1 Room temperature Hi-Lo C-V technique 

 MOS capacitors for the electrical measurements were prepared on 4H-SiC Si-face 

substrates. Commercially available 4H-SiC (n-type, (0001) Si-face) substrates with 

nitrogen doping of 5 x 1015 cm-3, were used. A 10 µm thick epitaxial layer was grown on 

these n+ substrates. Before the oxidation step, samples were cleaned using an industry 

standard RCA cleaning procedure. Approximately 34 nm thick oxides were grown by 

performing dry oxidation at 1150 °C for 4 h. The samples were annealed in flowing Ar 

for 30 min at the same temperature after oxidation. Some of the samples were 

subsequently nitrided at 1175 °C in flowing NO for 2h. The gas was changed back to Ar 

and the temperature ramped down to 900 °C before removing the samples from the 
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furnace. Two layers of gate metal, namely 100 nm of Mo followed by 100 nm of Au, 

were deposited by DC sputtering. Circular MOS capacitor contacts with diameters of 350 

µm and 700 µm were patterned and defined using standard photolithography and lift-off 

techniques [18]. The capacitors were characterized using simultaneous hi-lo capacitance 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.5. 100 kHz C-V curves showing the high frequency (black curve) and 
the quasistatic (red curve) plotted for an as-oxidized (3.5a) and NO annealed 
sample (3.5b). 
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voltage (C-V) measurements to measure the effective oxide charge and interface trap 

density ( Dit  calculated by comparing the high frequency-100 kHz and quasi-static 

measurements) before irradiation. Figures 3.5a and b show the pre-irradiation high 

frequency (CH) and quasi-static (CQ) C-V curves plotted [18] for both the nitrided and the 

non-nitrided Si-face 4H-SiC samples. The slight shift between the CH and CQ for a given 

gate voltage for the as-oxidized samples is an indication of a high density of interface 

defects (Dit) in these samples. For Figure 3.5b, the both the capacitance curves follow 

simultaneously for the gate bias sweep with no offset thereby indicating a reduction in the 

Dit. Nitridation on different crystalline faces of 4H-SiC has been effective in the 

reduction in the net negative charge at the interface owing to the NO anneal. Prior studies 

have discussed the evidence of carbon clusters, oxycarbides, suboxides and Si and C 

dangling bonds at the interface [19, 20]. It has been proposed that N passivates these 

traps at the interface thereby decreasing the net negative charge at the SiO2/SiC interface 

[4, 9, 14]. It is also important to note that these C-V curves do not invert as shown in the 

figures, with the evidence of a slope that continues with increasing d.c bias. The 

condition is referred as deep depletion and it occurs since the thermal generation rate of 

SiC at room temperature is too low for the inversion layer to form in a reasonable period 

of time [6, 17]. This might lead to misleading calculations of interface traps for the 

device and this problem is normally tackled by using techniques such as photo-CV, 

which will be discussed later in the chapter. 

Figure 3.6 shows a plot of interface trap density Dit (eV-1cm-2) extracted as a 

function of energy from the conduction band edge (Ec-E) in eV. It shows that the Dit 

before nitridation was measured to be on the order of 3 x 1012 eV-1 cm-2 and following 
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nitridation is reduced by almost an order of magnitude to 7 x 1011 eV-1 cm-2 at Ec-E = 0.2 

eV. Figure 3.7 shows that this Dit reduction is more pronounced near the band edges as 

compared to the states deeper in the band gap. This Dit reduction is also true for the a-

face samples as observed by Dhar et al. following NO annealing on oxides grown on 

(1120) face of 4H-SiC [1]. The authors also mention about the presence of nitridation 

anisotropy that exists depending on the crystal face of 4H-SiC under observation. A 

crystal face dependent variation before nitridation in the absolute number of defects at the 

SiO2/SiC interface leads to a corresponding difference in the degree of N passivation for 

the different faces of 4H-SiC [2]. Furthermore, it was observed that for both Si-face and 

 

Figure 3.6. Comparison of the Dit in eV-1cm-2 between the as-oxidized and 
the NO annealed sample plotted as a function of distance from the 
conduction band edge (Ec-E) in eV. 
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the a-face, N plays a critical role in the upper half of the 4H-SiC band gap, close to the 

conduction band edge due to its increased ability to reduce the interface trap density 

appreciably more for states up to Ec-E ~ 0.6 eV [10]. The Dit curves are plotted only to 

the limit of Ec-E of 0.6 eV since the data below this energy window are not reliable for 

understanding C-V measurements done at room temperature.  

At room temperature the interface traps 0.6 eV away from the conduction band 

edge trap/emit carriers as a function of the d.c. bias sweep thereby responding to the 

Fermi level position. For carriers trapped in deep states at Ec-E > 0.6 eV, the time 

constants are too large (several years) at room temperature and they do not respond to the 

 

Figure 3.7 Dit reduction in eV-1cm-2 between the as-oxidized and the NO 
annealed sample plotted as a function of distance from the conduction 
band edge (Ec-E) in eV. 
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gate bias sweeps. These time constants increase exponentially with energy from the band 

edge [6]. In our case (n-type 4H-SiC), the time constant for electron emission from an 

interface trap into the conduction band can be written as [6, 21] 

τ e(E) =
1

σ eυTNc

exp
Ec − E

kT

 

 
 

 

 
                                    (3.1) 

where σ e  is the capture cross-section for electrons, υT  is the electron thermal velocity, 

Nc  is the effective density of states in the conduction band, ( Ec − E )  is the energy 

location of the interface trap relative to the conduction band edge, k is the Boltzmann’s 

constant, and T is the absolute temperature. Hence the charges trapped in these interface 

traps remain trapped and appear as fixed charge on the time scales of the measurements 

thereby not creating a substantial stretch-out in the C-V curve [6].  

 

3.3.2 Photo-CV measurement technique 

 An alternative technique of photo-CV (capacitance measured under UV exposure) 

[22] was employed for better understanding of slower interface traps deeper in the band 

gap. Figure 3.8 shows the photo-CV measurements done on Si-face samples as a part of 

pre-irradiation characterization for the capacitors. These were done for the NO annealed 

and as-oxidized samples. The procedure involves sweeping the curves first from 

accumulation to deep depletion (thermal generation rate is low for inversion), which 

refers to the lower curve. The bias was held in deep depletion at a particular voltage for a 

long time with the UV lamp now turned ON. This results in photo-generation, which 

creates the inversion layer and the capacitance slowly rises to a higher equilibrium value 

on the C-V meter. After this layer is formed, the light is switched off and the sample is 

swept back to accumulation. These were performed on samples NO annealed for 2h at  
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1175 °C with an oxide thickness of ~ 50 nm. The stretch-out is reduced substantially after 

NO annealing as seen from the photo-CV curves in Figure 3.8a and b, which is an 

 

 

Figure 3.8. Photo-CV done by performing a accumulation to depletion gate 
sweep followed by UV excitation in depletion and sweeping back from 
depletion to accumulation after turning UV light off for as-oxidized (3.8a) and 
nitrided (3.8b) SiO2/4H-SiC MOS capacitors. The oxide thicknesses for these 
samples were ~ 50 nm. 
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indication of Dit reduction with annealing in these capacitors. 

 

3.4 Conclusion 

 These pre-irradiation device characterizations were performed to understand the 

quality of the oxide and the device behavior before and after NO annealing. The results of 

materials analysis from previous studies unequivocally verify the presence of nitrogen at 

the SiO2/SiC interface. Our electrical studies show that this nitrogen incorporation 

correlates with an improvement in the device behavior of NO annealed structures. 
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4.1 Abstract 

The total dose radiation response of nitrided and non-nitrided n-type 4H-SiC is 

reported for metal oxide semiconductor capacitors exposed to 10-keV X-rays under 

positive bias. The radiation response is affected strongly by differences in the SiC band 
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gap and interface/near interface SiO2 trap density from typical Si MOS devices. 

Significantly higher net trapped positive charge densities were observed in nitrided n-SiC 

MOS capacitors compared to the non-nitrided samples. The mechanisms contributing to 

the differences in the charge trapping in these devices are discussed. Differences in the 

interfacial layer between SiO2/Si and SiO2/SiC are responsible for the observed 

dissimilarities in charge trapping behavior. 

 

4.2 Introduction 

Silicon has been the most widely used semiconductor material and has remained 

largely unchallenged in the microelectronics industry for the past several decades. 

However, silicon is not ideal for some high power applications where a larger energy gap 

and higher thermal conductivity are desirable. Silicon carbide (SiC) possesses unique 

physical properties that are extremely favorable for high temperature and high-power 

electronics. For the 4H-SiC polytype, properties include a wide band gap (~3.3 eV), high 

thermal conductivity (4.5 W cm-1 s-1), high electron saturation velocity (2.0 × 107 cm s-1) 

and a high breakdown field (2.0 MV cm-1) [1], [2]. The ability to grow thermal oxides 

(SiO2) using conventional thermal oxidation (like Si) is a major advantage for the 

development of SiC metal oxide semiconductor field effect transistors (MOSFETs) [3], 

[4]. Recent developments in SiC device technology have opened up the aerospace and 

aircraft domains for SiC based power electronics, where these devices could be utilized 

for substantial weight savings and enhanced jet engine performance. Among the 

numerous SiC polytypes (that is, having the same chemical composition, but with 

different crystal structures from different stacking orders), 4H- and 6H-SiC are 
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commercially available in a quality considered appropriate for device applications. Of the 

different forms of SiC, the 4H-SiC polytype is considered the most desirable as compared 

to the others due to its significantly higher and more isotropic bulk carrier mobility [5]. 

This work focuses on the effects of ionizing radiation on the charge trapping behavior of 

MOS capacitors fabricated on 4H-SiC substrates. 

Historically, 4H-SiC MOSFETs suffered from low inversion channel mobilities 

due to extremely high pre-irradiation interface trap densities (Dit) close to the 4H-SiC 

conduction band-edge (Dit > 1013 cm-2 eV-1). Annealing in hydrogen, which is a key in 

improving the quality of the interface in SiO2/Si is not effective in the case of SiC [6]. 

Alternatively, nitridation of the SiO2/SiC interface has emerged as the most effective 

solution to reduce the pre-irradiation interface trap densities. Nitridation via post-

oxidation annealing in NO results in significant reduction of Dit (Dit ~ 1012 cm-2 eV-1 at 

Ec-E ~ 0.1 eV) and subsequently improves channel mobility [7]-[10]. For applications in 

radiation environments, it is important to study the radiation tolerance of 4H-SiC MOS 

devices. In this paper, we report the x-ray radiation response of positively biased (Eox = ~ 

+1.5 MV/cm) nitrided and non-nitrided 4H-SiC MOS capacitors grown on the (0001) Si 

face. We compare the results of these irradiations to previously published data for 

grounded irradiations and find significant differences, mainly due to enhanced hole 

trapping [11]-[14]. These results provide new insights into the nature of charge trapping 

at the SiO2/SiC interface. 
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4.3 Experimental section 

Commercially available 4H-SiC (n-type, (0001) Si-face) substrates with nitrogen 

doping of 5 x 1015 cm-3, were used to fabricate the MOS capacitors. A 10 µm thick 

epitaxial layer was grown on these n+ substrates. Before the oxidation step, samples were 

cleaned using an industry standard RCA cleaning procedure. Approximately 34 nm thick 

oxides were grown by performing dry oxidation at 1150 °C for 4 h. The samples were 

annealed in flowing Ar for 30 min at the same temperature after oxidation. Some of the 

samples were subsequently nitrided at 1175 °C in flowing NO for 2h. The gas was 

changed back to Ar and the temperature ramped down to 900 °C before removing the 

samples from the furnace. Two layers of gate metal, namely 100 nm of Mo followed by 

100 nm of Au, were deposited by DC sputtering. Circular MOS capacitor contacts with 

diameters of 350 µm and 700 µm were patterned and defined using standard 

photolithography and lift-off techniques. A schematic diagram of the capacitor stack is as 

shown in Figure 4.1. 

  

 

 

 

 

  

 

 

 

n–SiC 

Oxide 

Au/Mo  

Au 

Figure. 4.1. Schematic diagram of the capacitor stack with Au/Mo gate 
metal contact, ~ 34 nm thermal oxide, 4H – SiC substrate, and Au back 
contact. 
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The capacitors were characterized using capacitance voltage (CV) measurements 

to measure the effective oxide charge and interface trap density (Dit – calculated by 

comparing the high frequency and quasistatic measurements) before irradiation [15]. Pre-

irradiation CV measurements on the nitrided and non-nitrided capacitors verified the 

effect of nitrogen incorporation in reducing the interface trap density (Dit) from ~ 7 × 1012 

cm-2 eV-1 to 1 × 1012 cm-2 eV-1 at Ec-E = 0.2 eV after nitridation. 

Nitrided and non-nitrided SiC MOS capacitors were irradiated in an ARACOR 

10-keV X-ray source at a dose rate of 31.5 krad (SiO2)/min. Post-irradiation 

characterization was performed by similar CV measurements. The irradiations were 

performed as a function of bias and dose for the two different samples. The samples were 

exposed at room temperature to doses of 30 to 10,000 krad(SiO2) at a positive bias (Eox = 

~ 1.5 MV/cm) during irradiation. The CV curves were measured at 100 kHz at room 

temperature with a ramp rate of 0.5 V/s for the dc voltage sweeps. The shifts in these 

curves were compared with the pre-irradiation high-frequency curves for calculating 

radiation-induced charge buildup. The Winokur and McWhorter charge separation 

technique was used for further analysis [16]. For Si MOS devices, the midgap voltage 

shift, ∆Vmg is frequently assumed to be proportional to the increase in oxide-trap charge 

density. The stretchout in the CV curves between midgap and flatband along the voltage 

axis, commonly referred to as ∆Vit, was used to estimate the increase in the interface trap 

density following the irradiations [16]-[18]. It should be noted that midgap voltage shifts 

for a wide band-gap material such as SiC include significant contributions from deep 

interface traps (which appear as fixed charge) in addition to the oxide trapped charge, as 

we discuss further below. Hence, effects that usually would be observed in the threshold 
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or flatband voltage for Si MOS devices can be observed in midgap voltage for SiC MOS 

devices. In addition, in SiC, the major fraction of ∆Vit arises from interface traps with 

energy levels between flatband and ~ 0.6 eV from the conduction band edge [19]. This 

contrasts with Si where the energy levels of the interface traps measured from CV 

analysis are located between flatband and inversion. In order to further investigate the 

radiation-induced charge, isochronal annealing studies were performed by annealing at a 

positive bias of 5 V at temperatures from 25 °C to 175 °C [20]. The sample was heated in 

25 °C steps and held at the respective temperatures for 10 min before cooling back down 

to room temperature for CV measurements. The contributions from the positive and the 

negative charges were extracted from these measurements. 

 

4.4 Results and Discussion 

4.4.1 Fundamental band gap and interlayer differences in SiO2/Si and SiO2/SiC 
 

It is important to understand the basic differences between the SiO2/Si and the 

SiO2/SiC MOS systems before addressing the radiation damage behavior. As the bulk of 

the oxide grown on SiC is stoichiometrically similar to oxides grown on Si, bulk hole 

trapping is expected to be similar to the trapping in SiO2/Si capacitors when exposed to 

radiation. On the other hand, the SiO2/SiC interface is markedly different than Si. In 

addition, there exists a considerable difference in the band gap and band offsets of Si and 

SiC with respect to SiO2. A detailed schematic diagram of the band gap of SiC and Si 

with respect to SiO2 is shown in Figure 4.2. Note that certain intrinsic defects common to 

both the SiO2/Si and SiO2/SiC system may fall within the band gap of SiC, but not in Si. 

Furthermore, in SiC, the response times of the interface traps during the CV sweep 
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increase exponentially with energy from the band edge. As a consequence, interface traps 

deeper in the SiC band gap (Ec-E ~ 0.6 eV to Ec-E ~ midgap for n-SiC), appear as fixed 

charge, as they do not respond to changes in the applied bias during the time scale of the 

CV measurements [19]. 

 

SiO2 

~ 9.0 eV 

4H-SiC 

~ 3.23 eV 

Si 
~ 1.1 eV 

Defect 
states 

4.7 eV 

3.2 eV 
2.7 eV 

3.05 eV 

Figure 4.2. Schematic band diagram of Si, 4H-SiC and SiO2 shows that the 
wider band gap in the case of 4H-SiC results in more interface trap 
buildup being observed which otherwise would have figured outside the Si 
band gap. 
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4.4.2 Radiation results (nitrided & non-nitrided) 

Figures 4.3 and 4.4 show the radiation response of nitrided and non-nitrided 

SiO2/4H-SiC samples under positive bias. For the non-nitrided devices, initially the CV 

curves shift to the left due to a predominance of trapped positive oxide-trap charge, but 

then shift to the right with higher doses owing to the buildup of negative charge. Contrary 

to the non-nitrided case, the nitrided samples continued to show a monotonic increase in 

the net positive charge for all irradiation doses up to 10 Mrad(SiO2), as evident from 

Figure 4.4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 4.3. 100 kHz CV curves showing first positive charge trapping, and 
then a turnaround from positive to negative charge trapping for non-nitrided 
capacitors biased at 1.5 MV/cm. 
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∆Vmg and ∆Vit are plotted as functions of dose for both sample types in Figures 

4.5 and 4.6, respectively. The turnaround in ∆Vmg is seen clearly for the non-nitrided 

devices at doses above ~ 300 krad(SiO2) in Figure 4.5; indicating lower net trapped 

positive oxide-trap charge than the nitrided devices. For higher doses, negative charge 

trapping dominates for the non-nitrided devices. Hence a charge compensation effect is 

observed for the non-nitrided samples similar to earlier work using electron injection 

[21]. The turnaround from net positive to negative charge trapping in midgap voltage for 

the non-nitrided samples can be attributed to deep interface trap buildup (Ec-E ~ 0.6 eV to  

Figure. 4.4. 100 kHz C-V curves showing the increased positive 
charge trapping for positively biased (Eox = ~ + 1.5 MV/cm) nitrided 
capacitors. 
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Figure 4.5. Voltage shifts (∆Vmg) as a function of dose in Mrad(SiO2) 
for nitrided and non-nitrided samples positively biased at 1.5 MV/cm. 

 
Figure 4.6. Voltage shifts (∆Vit) as a function of dose in Mrad(SiO2) 
for nitrided and non-nitrided samples positively biased at 1.5 
MV/cm. 
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midgap) and/or negative charge buildup due to near-interfacial electron traps [12], [13], 

[22]. The precursors to these electron traps may not be charged during pre-irradiation 

characterization when the Fermi level sweeps through the band gap, but become charged 

due to ionizing radiation. Earlier studies have reported interface trap buildup at non-

nitrided SiO2/SiC interfaces resulting from electron injection via photo and Fowler-

Nordheim methods [21]-[24]. A significant density of acceptor states was observed at the 

SiO2/SiC interface after electron injection as compared to SiO2/Si [21], [23]. This was 

tentatively ascribed to the presence of excess carbon in the form of carbon clusters with 

sp
2 bonding at the SiO2/SiC interface. Thus, the turnaround observed in the midgap 

voltage plotted in Figure 4.5 may be due to the result of compensation of positive charge 

from both negatively charged deep interface traps and near-interface electron traps. 

In the nitrided case, the midgap voltage shifts due to the increase in the oxide trap 

charge with increasing dose and do not show a turnaround effect. Net positive charge 

trapping continues to the highest dose studied. Hence, the nitridation process and/or the 

nitrided interlayer, on the order of ≤ 1 nm from the SiO2/SiC interface, must contribute in 

an essential way to the observed differences in trapping between the nitrided and the non-

nitrided samples [25]. The ∆Vmg was observed to be about –10 V at 10 Mrad(SiO2) for 

the nitrided capacitors. This does not appear to reach saturation, indicating the possibility 

of more hole trapping for doses above 10 Mrad(SiO2). The values of ∆Vit estimated from 

the differences in the flatband and midgap voltage shifts indicate a small increase in 

interface-trap density in both cases (nitrided and non-nitrided), plotted as a function of 

dose in Figure 4.6, however once again we caution that this measures only relatively 

shallow interfaces traps in SiC MOS devices, with deeper traps contributing to midgap 
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voltage shifts, in contrast to Si MOS devices, where the full interface-trap distribution 

contributes to ∆Vit. 

Photo-CV was performed on a different set of nitrided and non-nitrided samples 

fabricated using the same procedure as described earlier in this chapter. The oxide grown 

this time was ~ 50 nm. These MOS capacitors were exposed to a 5 Mrad(SiO2) total 

radiation dose. Photo-CV curves were measured before and after the final x-ray dose for 

investigating the hysteresis. Figure 4.7 shows the post-irradiation hysteresis observed 

using photo-CV for these two samples. On comparison with the pre-irradiation photo-CV 

hysteresis for the two samples (Figure 3.8), clearly the non-nitrided samples did not show 

a large increase in the hysteresis (~ 0.5 V) at flatband. The nitrided sample on the other 

hand showed a significant increase of ~ 3 V in the hysteresis measured at flatband 

condition following the x-ray dose. These results indicate the presence of slower interface 

traps deeper in the band gap which can respond to the gate bias after UV-exposure 

thereby indicating a substantial increase in the number of these states with a 5 

Mrad(SiO2) x-ray dose. 

 

4.4.3 Enhanced positive charge trapping in F-N tunneling and VUV experiments 

 Charge injection studies using Fowler-Nordhiem (F-N) tunneling and 

internal photoemission were performed by Rozen et al. to verify the enhanced positive 

charge trapping in the nitrided SiO2/4H-SiC MOS capacitors, as originally observed in 

the x-ray studies. These measurements reproduced the hole trapping effect as shown in 

Figure 4.8. These figures show a trend similar to the x-ray results with trapped charge 

density in both these experiments plotted as a function of emitted/injected hole density.  
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Figure 4.7. Photo-CV done by performing a accumulation to depletion gate 
sweep followed by UV excitation in depletion and sweeping back from 
depletion to accumulation after turning UV light off for as-oxidized and 
nitrided SiO2/4H-SiC MOS capacitors after a 5 Mrad(SiO2) x-ray dose at + 
1.5 MV/cm oxide field. The oxide thicknesses for these samples were ~ 50 nm. 
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The details of the experiments and the relevant discussion for the findings are described 

in Ref. [26]. The magnitude of the charge trapping is not the same as the x-rays since the 

x-ray fluence is relatively high as compared to the injected/emitted charges. It is also 

important to note the similarity in the charge trapping behavior for the non-nitrided 

 

Figure 4.8. Plot of the trapped charge density versus emitted hole density (VUV) 
/injected hole density (F-N tunneling) for the nitrided 4H-SiC MOS capacitors 
Ref. [26]. 
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samples in all of the three charge-trapping methods described here. Charge trapping is an 

undesirable device attribute, but the nitrogen content is necessary for device performance. 

This excellent agreement in the charge-trapping trend for both the nitrided and the non-

nitrided samples using different techniques strongly suggests the need to optimize the 

nitrogen content for better reliability in these devices. It necessitates the need to arrive at 

optimum nitrogen content in order to strike a balance between Dit reduction and improved 

reliability following post oxidation annealing treatments in these devices. 

 

4.4.4 Mechanisms for enhanced positive charge trapping in nitrided capacitors 

We first note that much larger shifts in the nitrided SiC MOS devices observed 

here are larger than in previous studies of devices irradiated without bias [11]-[14], owing 

to the increased charge yield for biased irradiation, as opposed to unbiased irradiation 

[27]. One possible reason for the extremely large positive oxide-trap charge densities in 

these devices is the large oxygen vacancy density that is expected from the extremely 

high oxidation temperatures necessary to grow SiO2 on SiC. Previous electron-

paramagnetic resonance, electrical, characterization, and thermally stimulated current  

(TSC) studies have shown a strong correlation between high oxidation temperatures, high 

oxygen vacancy densities, and large net positive-oxide-trap charge buildup [28]-[30], at 

least in the absence of the charge compensation processes observed in the non-nitrided 

devices above in Figures 4.3 and 4.5. Indeed, detailed TSC studies of nitrided oxides 

have shown a significant enhancement of O-vacancy related hole trapping in reoxidized 

nitrided oxides for Si MOS devices [31]. 
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We now discuss other mechanisms unique to SiC for the enhancement in midgap 

voltage shifts in the nitrided devices that is suggested by recent experimental and 

theoretical work. Oxidation of SiC to form SiO2 requires the removal of C (typically in 

the form of CO that leaves the growing oxide) [32]. Some of the C, however, inevitably 

remains at the interface and forms defect structures. Nitridation in NO plays a significant 

role in passivating the fast interface traps, presumably by removal of π-bonded carbon, 

and also is known to eliminate slow trap centers in the near interfacial region of SiC [33], 

[34]. This reduction occurs over the entire band gap of SiC, although most drastically 

near the conduction band edge. This pronounced reduction of the density of interface and 

near-interface electron traps at nitrided interfaces means there is less compensation of the 

positive charge trapped in the bulk of the oxide and hence no evidence of turnaround for 

the nitrided capacitors. Moreover, extensive theoretical calculations [35], done using 

density-functional theory (local-density approximation with generalized gradient 

corrections for exchange-correlation, ultra-soft pseudo-potentials, plane-wave basis sets, 

and large supercells; details of the supercells are reported in Ref. [30]), combined with 

available experimental evidence and prior analysis, have led to the conclusion that the 

SiO2/SiC interface contains a transition layer that can best be described as a Si-C-O 

bonded amorphous network composed of Si-O-Si bridges, and direct Si-Si, C-C, and Si-C 

bonds [35]. Si atoms would be primarily fourfold-coordinated because C atoms would 

preferentially occupy sites with threefold coordination, in which case they can be referred 

to as C dangling bonds (amorphous carbon has both three- and four-coordinated C; 

amorphous SiC contains C dangling bonds but there is no evidence for Si dangling 

bonds). Thus, the primary defect structures that can produce localized energy levels in the 
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SiC band gap are isolated C dangling bonds, C dangling-bond complexes (e.g., a C-C 

bond where both C atoms are threefold coordinated), and Si-Si bonds (the latter are true 

defects in the SiC/SiO2 interface, whereas they appear as defects at the Si/SiO2 interface 

only when they are longer than normal Si-Si bonds). C dangling bonds have localized 

levels in the SiC band gap. Si-Si bonds, depending on the bond length, may have both a 

bonding and an antibonding level in the SiC band gap (bottom and top of the band gap, 

respectively).  

It has further been proposed that nitrogen passivation of interface traps occurs 

because it is energetically favorable for N to replace threefold-coordinated C and Si 

atoms (N always prefers threefold coordination, whereas C assumes both, with a slight 

preference for three, as in graphite versus diamond). The result is a Si-C-N-O bonded 

interlayer [35]. New calculations, using density functional theory suggest that the 

threefold-coordinated N at the SiC/SiO2 interface results in a localized level at  ~ 0.5 eV 

from the valence band edge of SiC due to the N lone pair. This lone pair can trap holes 

under ionizing radiation, thereby enhancing the effects of increased positive charge 

trapping in the NO passivated samples. 

Finally, we note that it is likely that the nitrogen also reduces the densities of 

interface defects that appear as fixed charge in SiC devices, but would show up as 

interface traps in Si devices, consistent with observations of the effects of nitridation on 

oxides on Si [36]-[38]. The absence of charge compensation via interface-trap buildup 

would show up as increased midgap voltage shifts in the nitrided devices. 
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4.4.5 Annealing studies 

Owing to the similar densities in the range of 1012 cm-2 for both positive and 

negative charges, the compensation effect explains the apparent superior radiation 

hardness of non-nitrided SiC MOS structures as described elsewhere [39]. This 

counterbalance between the two charges in the non-nitrided samples was verified from 

isochronal annealing studies [20] conducted at + 5 V bias as evident from the C-V curves 

in Figure 4.9.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The figure shows pre-irradiation and post-irradiation C-V curves measured after 

10 Mrad(SiO2). The elevated temperature annealing studies were performed after two 

 
Figure 4.9. C-V curves plotted for the annealing cycles for non-
nitrided capacitors with pre-irradiation (--∆∆∆∆-- open triangles), 10 
Mrad(SiO2) (--οοοο-- open circles), 150 °°°°C anneal (--  -- closed triangles) 
and 300 °°°°C anneal (--  -- closed stars) indicating the compensation 
effect. 
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weeks of room temperature annealing with all of the positive charges annealed at 150 °C. 

A significant portion of the negative charge annealed at higher temperatures (~ 300 °C). 

This was confirmed from the isochronal annealing measurements. The C-V curves begin 

to shift towards positive voltages with every 25 °C temperature increase (all curves not 

shown), indicating a decrease in the net-trapped positive oxide trap charge. Finally, at 

150 °C, the C-V curves no longer shift with increasing temperature, and the curve 

remains on the positive side of the pre-irradiation curve until significantly higher 

temperatures are reached (direct annealing to 300 °C, as described further).  

This validates the hypothesis of the existence of both positive and negative 

charges, with only the negative contribution present after a 150 °C anneal. The C-V 

curves still exhibit stretch-out, compared to pre-irradiation curve, even after annealing at 

150 °C. The temperature was further increased directly to 300 °C, this time with no bias 

applied, and the C-V curve shifted back to its pre-irradiation position and the radiation-

induced stretchout disappeared. This confirms the annealing of interface trapped charge 

at higher temperatures and is consistent with earlier reports [21], [23]. The possibility of 

electron injection during the annealing cycles was probed by biasing the pre-irradiated 

devices at + 5 V for 10 min at 100 °C and no change in the C-V behavior was observed.  

Annealing studies were also conducted on nitrided samples, with the detrapping 

of most of the predominant positive charge observed between 25 °C and 175 °C. These 

studies were performed using the same procedure as for the non-nitrided samples as 

described above. We introduce a model for obtaining a activation energy for the 

annealing of the predominant positive charge in the nitrided samples.  Removal of 

positive charges occurs by hole emission during these isochronal annealing studies 
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[40],[41]. The probability of this emission pem (T) is determined from the shift in the 

flatband voltage in these NO-annealed capacitors.  
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where )( TTQtrap ∆−  is the number of trapped charges present at the starting temperature 

before each temperature increase, )(TQtrap  is the amount of charges remaining at end of 

each annealing step, ∆T  represents the temperature increase of 25 °C under a positive 

bias of Eox ~ 1.5 MV/cm. As a control experiment it was observed that there was no 

evidence of electron tunneling induced neutralization from the semiconductor at room 

temperature at the fields mentioned above over a period of 20 mins. Hence assuming that 

charge annealing occurs from thermal emission at increased temperatures we can write 

the equation for activation energy as mentioned below 

pem (T) ≡ ∆teth (T) ∝∆tT
2
e

−Ea / kT       (4.2) 

where eth  is the thermal emission rate, ∆t is the incremental hold time of 10 minutes at 

each temperature and Ea  is the activation energy. A fit to the curve of pem (T) vs T for 

the activation energy as shown in Figure 4.10, yields Ea  of approximately 0.3 eV. Hence 

if we assume that holes emit into the valence band of SiO2, this energy represents a state 

above the SiO2 valence band edge. This indicates that some of the states introduced from 

nitrogen incorporation fall within the band gap of SiC. 

These curves did not shift to the right of pre-irradiation as much as the non-

nitrided samples did after the 175 °C anneal. These studies suggest the presence of 
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exceedingly high positive charge and reduced negative charge contribution for the 

nitrided samples. The loss of the stretchout and return of the CV curve to its pre-

irradiation position (curves not shown) was verified by annealing further from 175 °C to 

300 °C, similar to the non-nitrided samples. Hence the post-irradiation annealing studies 

confirm the presence of positive and negative charge contributions to the C-V behavior in 

the nitrided and non-nitrided SiC MOS capacitors.  

 

4.5 Conclusion 

The total ionizing dose response of nitrided and non-nitrided SiO2/SiC capacitors 

under positive bias was studied. Negative charge trapping in non-nitrided SiO2/SiC 

devices was found to be significantly higher than for typical SiO2/Si MOS structures. The 

high oxidation temperatures required to grow SiO2 on SiC lead to high oxygen vacancy 

 

Figure 4.10. A fit for extracting the activation energy for the model describing the 
dependence of the hole emission probability on temperature during the isochronal 
annealing cycle Ref. [26]. 
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densities. For the nitrided MOS capacitors, higher net positive charge build-up was 

observed, consistent with a lower density of interface and near-interface electron traps. 

Theoretical calculations also suggest a nitrogen lone pair present in the proximity of the 

valence band edge of SiC may increase positive trapped charge in the nitrided devices. It 

is also likely that these devices exhibit a decrease in interface defects that would appear 

as interface traps in Si devices, but function as negative fixed charge in SiC owing to its 

wider band gap. 
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5.1 Abstract 

 HfO2-based dielectrics with SiO2 interlayers (ILs) were investigated for 

stoichiometry and thickness verification. Physical and electrical characterizations were 

performed as a function of varying bulk HfO2 and SiO2 IL thicknesses. These ion beam 
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and XRR measurements validate the oxide growth and deposition parameters with results 

indicating the thickness values of the HfO2 bulk and the SiO2 interlayers to be close to the 

targeted ones. Out-diffusion of Si and O is verified by the experimental results of 

Medium Energy Ion Scattering. Capacitance values are consistent with silicate formation 

in the dielectric. Current-Voltage (I-V) measurements provide additional information 

about the quality of the device and its operation.  

 

5.2 Introduction 

 High-κ gate dielectrics on Si wafer can result in a high concentration of interface 

and near interface defects due to its thermodynamic instability, which can ultimately 

affect device performance [1]. Interface engineering schemes have been extensively 

studied over the past few years to tackle such intermixing issues [2, 3]. The introduction 

of a thin SiO2 interlayer (IL) and/or its nitrided alternatives before the high-κ deposition 

improves the interface quality at the expense of reduced capacitance. Future metal-oxide-

semiconductor (MOS) devices are likely to incorporate the thin oxide layer to improve 

the inversion layer mobility in these high-κ devices. The presence of nitrogen in the form 

of doping in the interlayer can have additional benefits like lower leakage and higher 

drive currents [1]. The high-κ gate dielectric included in this study is hafnium oxide 

(HfO2), the material recently announced by Intel and IBM as the potential gate dielectric 

that would enable future scaling. Hafnium oxide is usually deposited using Atomic Layer 

Deposition (ALD) for better control of thickness and improved homogeneity of the thin 

films. It is extremely important to investigate the quality, composition and thickness of 

this oxide and its IL thickness values post metal gate deposition for establishing a reliable 
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CMOS recipe. This work concentrates on the physical and electrical characterization of 

varying thicknesses of bulk HfO2 layers and SiO2 ILs. We find excellent agreement 

between these techniques within ~ 10-15% experimental uncertainty for the various bulk 

and IL thicknesses studied. This study has been carried out as a part of this dissertation 

work, which concentrates predominantly on the radiation induced charge trapping 

response of HfO2-based MOSFETs. These MOSFETs were fabricated using the same 

recipes as the ones used for making samples for materials analysis.  

 Radiation induced charge trapping is a strong function of the thickness of the 

dielectric facing the beam. Charge trapping occurring from radiation in the gate dielectric 

can be significantly altered due to the presence of an interlayer, a dielectric-dielectric 

interface and their intermixing issues. Hence it is important to reliably understand the 

materials structure of the system for interpreting the charge trapping characteristics of 

these oxide structures under radiation and bias stress. This work concentrates on these 

issues specifically as a part of pre-irradiation characterization for these advanced gate 

dielectric materials. 

 
 
5.3 Experimental section 

5.3.1 Sample preparation 

 Bare oxide films of varying bulk and IL thickness were fabricated for pre-

irradiation materials and electrical (C-V) characterization. The HfO2 samples were 

deposited by the controlled Atomic Layer Deposition (ALD) technique at SEMATECH. 

Before the high-κ deposition, an intentional SiO2 interlayer (IL) was thermally grown 

(for thicker ILs) or by ozone treatment (for thinner ILs) on the bare Si wafers. The 



 103 

sample matrix for pre-irradiation characterization of HfO2/SiO2/Si included four different 

configurations of varying bulk and interlayer oxide thicknesses as shown in Table 5.1a. 

All the samples except for sample 1 were exposed for post deposition anneal (PDA) 

treatments. MOSFETs were fabricated by depositing similar films using the same ALD 

process for complete device characterization. For the MOSFET fabrication, the (001) Si 

wafers were subjected to an industry standard CMOS process flow for the gate oxide 

deposition. This was followed by gate metal deposition with subsequent PDA treatments. 

The transistors fabricated for device characterization are as shown in Table 5.1b. 

Table 5.1a. Sample configuration for materials analysis with different HfO2 bulk 
and SiO2 interlayer (IL) thicknesses 

 
Samples tHfO2 (nm) tSiO2 (nm) PDA treatment 

Sample 1 3.0 1.1 No PDA 

Sample 2 7.5 1.1 NH3 700 °C 30T 60s 

Sample 3 3.0 2.0 NH3 700 °C 30T 60s 

Sample 4 7.5 3.0 NH3 700 °C 30T 60s 

 

Table 5.1b. Sample configuration for device characterization with different HfO2 
bulk and SiO2 interlayer (IL) thicknesses 

 
Samples tHfO2 (nm) tSiO2 (nm) PDA treatment 

Sample 1 3.0 1.1 NH3 700 °C 30T 60s 

Sample 2 7.5 1.1 NH3 700 °C 30T 60s 

Sample 3 3.0 2.0 NH3 700 °C 30T 60s 
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Radiation induced charge trapping is a strong function of the composition of the oxide 

film. Apart from verifying the thicknesses of the bulk HfO2 and SiO2 interlayers, some 

additional insight into the composition of the dielectric layers can help in understanding 

the reason for charge trapping variation between these layers. This part of the chapter 

reports the results of several analytical techniques such as Rutherford Backscattering 

Spectrometry (RBS-annular and grazing geometries), Channeling, X-Ray Reflectometry 

(XRR), Medium Energy Ion Scattering (MEIS), and Capacitance-Voltage (C-V) 

measurements that were performed to verify the thicknesses and the composition in these 

bare HfO2 (with SiO2 IL) samples. The relative concentrations of Hf, O and Si are 

verified using ion beam techniques like RBS and MEIS. 

Capacitor structures were fabricated with Al gate metal deposited by thermal 

evaporation and Au was sputtered for a large area back metal contact. MOS transistors 

were also fabricated using the state of the art 65 nm technology node for pre-irradiation 

MOSFET characterization. In the following section results from all of these techniques 

are discussed in further detail. 

 

5.3.2 Physical Characterization 

5.3.2a Rutherford Backscattering Spectroscopy (RBS) 

 Rutherford Backscattering Spectroscopy (RBS) relies on the interaction of a 

projectile atom (M2) of energy (E0) with a target atom (M1) resulting in a simple elastic 

collision. This interaction results in the projectile being scattered back at an angle (θ ) 

depending on its differential scattering cross-section ( dσ /dΩ) with an energy (E1) that is 

defined by the kinematic factor (K). The kinematic factor (K) is given by  
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K = E1 / E0 =
(M2

2 − M1
2 sin2 θ)1/ 2 + M1 cosθ

M2 + M1

 

 
 

 

 
 

2

            (5.1) 

Hence the energy of the outgoing projectile is characteristic of the mass of the target 

atom. This is the basic principle for the elemental identification of an unknown target 

atom. The integrated area under the spectrum for the respective element can be related to 

the amount of material that interacts with the incoming projectile. The elemental yield (Y) 

as given in the equation 5.2 depends on the average differential scattering cross-section, 

σ  (integral of dσ /dΩ over the solid angle of the detector), the areal density of the 

scattering element(s) (Nt in at/cm2), the total number of incident particles (Q) and 

detector solid angle (Ω) [4-6]. 

Y = σΩ.Q.Nt      (5.2) 

This is the fundamental formula used for calculating the bulk HfO2 and SiO2 IL 

thicknesses (Nt) mentioned in this chapter. Table 5.2 shows the average differential 

scattering cross-sections and the kinematic factors calculated for an incoming 1.8 MeV 

4He beam backscattered in an annular geometry (θ  = 180°) for the elements considered 

in this investigation. 

A 1.8 MeV He+ beam from a Van de Graaff electrostatic accelerator was used to 

perform the RBS analysis. The detector was placed in an annular geometry at an exit 

angle of θ  ~ 175°. A 100 keV Bi implanted sample with a calibrated areal density of ~ 

4.8 x 1015 at/cm2 was used for routine calibration prior to performing RBS measurements 

on the HfO2 samples. 
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Table 5.2. Average differential scattering cross-sections and kinematic factors 
calculated for an incoming 4He beam at 1.8 MeV backscattered in the annular 
(180°°°°) geometry 

 

 

 
In order to accurately determine the total Hf and O peaks from the amorphous SiO2 and 

the nanocrystalline HfO2 layer, channeling along <100> was conducted for all the 

samples using the annular detector geometry. The areal densities of Hf, O and Si (IL) 

performed in an aligned (non-random) direction are mentioned in the next section. As 

shown below channeling studies provide a better estimation of the areal densities for the 

two films (HfO2 and SiO2).  

 

5.3.2b. Channeling measurements along <100> Si-substrate direction 

For an accurate thickness determination of the HfO2 bulk it is necessary to 

measure the total O counts with minimal error, which includes counts from HfO2 bulk as 

well as SiO2 IL. According to channeling theory, the backscattered energy spectrum is 

considerably different for an aligned crystal compared to amorphous/nanocrystalline 

material. The scattering yield of an aligned spectrum is reduced by almost two orders of 

Differential scattering cross-section 

(mb/sr) 

 

Kinematic Factor (K) 

 

Elements 

180° 180° 

Hf 8175.2 0.91 

O 90.25 0.36 

Si 301.47 0.56 
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magnitude with a peak at a position corresponding to scattering from surface atoms. This 

is due to the shadow cone formed and channeling, which results in the incoming 4He ions 

interacting with primarily the surface atoms; and atoms deeper into the crystal escape 

direct beam interactions due to this shadowing effect in a crystalline lattice. The 

backscattering yield from an amorphous/nanocrystalline layer coincides with a random 

spectrum. As the ion beam traverses deeper into an aligned crystalline substrate the yield 

is considerably reduced, but is still higher than a perfectly crystalline lattice [4, 6]. This is 

due to multiple scattering that occurs as the beam traverses the amorphous HfO2/SiO2 

layer. Multiple scattering refers to the small angle scattering events that result in angular 

directions outside the critical angle (ψ ) for a specific thickness of the nanocrystalline 

material [4, 6]. This latter phenomenon is important to consider as we relate these events 

to the increase in the intrinsic Si surface peak in the channeling analysis.  

Channeling analysis was performed with He+ at 1.8 MeV on all the samples along 

the <100> channel direction with backscattered counts collected using both annular as 

well as grazing angle detectors. Ion channeling was performed by aligning the sample for 

axial channeling along the normal <100> crystal direction, after mounting the sample on 

a two axis goniometer. Figure 5.1 shows the plot of annular random and channeling 

spectrum for the 3 nm HfO2/1 nm SiO2 sample. Using equation 5.2 and a known 

standard, the areal density of Hf atoms was calculated for the four samples (Table 5.4). 

The area under this peak is independent of the orientation of the sample due to its 

nanocrystalline nature as shown in Figure 5.1 for the 3 nm HfO2/1 nm SiO2 sample. In 

channeling analyses, the error values are minimized due to a more pronounced O peak 

observed, which assists in performing better background subtraction owing to a reduction 
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in the Si background counts as evident from Figure 5.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The scattering minimum yield ( χmin) measured for the crystalline silicon was 

used as a figure of merit to understand the degree of channeling, which is given by [4, 6] 

χmin <100>
=

Yield<100>channel

Yieldrandom

    (5.3) 

where Yield<100>channel refers to the backscattered counts for a given set of channel 

numbers (energy scale) collected in a <100> channeling direction and Yieldrandom  is the 

counts in a random direction for the same set of channel numbers. The χmin  with 

statistical errors along the <100> channel for all the samples in the annular geometry is as 

 

Figure 5.1. Rutherford Backscattering (RBS) spectrum of a 3 nm HfO2/1 
nm SiO2 layered dielectric stack in a random (blue curve) and along a 
<100> channeling (red curve) direction. It is important to notice that the 
O peak which is not as conspicuous in the random is much more evident 
in a channeled spectrum thereby reducing the background subtraction 
error for accurate estimation of O counts. 

 

 

 S
i  E0 = 1.8 MeV 4He 

E1 = KaE0 H
fO

2  

SiO
2  IL

 

Hf peak 

O peak Si surface 
peak 



 109 

shown in Table 5.3. The increased χmin  as compared to single crystal silicon (typically ~ 

4 %) is due to multiple scattering from nanocrystalline HfO2 and the amorphous SiO2 

layer as discussed previously. Note that χmin  increases with increase in overall film 

thickness (bulk + IL). 

Table 5.3. Channeling minimum yield % χχχχmin for all the four samples measured 
along the <100> channel dierction using an annular detector.  

 
  

 

 

 

 

 

 

Table 5.4 shows the concentration of Hf in at/cm2 with statistical errors and can be 

compared to the Hf expected for the deposition recipe used. The total O concentration 

after background subtraction is shown in Table 5.5 with statistical errors. The expected 

values for total O according to the CMOS fabrication recipe are also given. Assuming a 

perfect stoichiometric 1:2 ratio for the Hf:O, the corresponding oxygen remaining in 

at/cm2 is as shown in Table 5.6 with the error propagation taken into consideration. The 

remaining oxygen was presumably the contribution from the SiO2 IL with the expected 

contribution for the O in the SiO2 IL shown in the adjoining column assuming a perfect 

stoichiometric SiO2. We report an exceptional agreement in these numbers with the 

expected values including the respective errors being very close to the calculated values. 

 tHfO2 / SiO2
 % χmin

 (180°- Annular) 

Sample 1 3 nm/1.1 nm 6.11 ± 0.04 

Sample 2 7.5 nm/1.1 nm 10.62 ± 0.06 

Sample 3 3 nm/2 nm 6.95 ± 0.05 

Sample 4 7.5 nm/3 nm 12.36 ± 0.06 
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We hereby confirm the values of the bulk HfO2 and the SiO2 IL as estimated from the 

growth parameters to be largely consistent with the calculated values.  

 

Table 5.4. The measured and expected concentration of Hf in at/cm2 tabulated for 
the annular detector geometry for the all the four samples studied with the 
statistical errors 

 
Hf measured (1015 at/cm2)   

tHfO2 / SiO2
 

Hf expected 

(1015 at/cm2) 180° 

Sample 1 3 nm/1.1 nm 8.24 8.29 ± 0.03 

Sample 2 7.5 nm/1.1 nm 20.6 20.20 ± 0.05 

Sample 3 3 nm/2 nm 8.24 8.10 ± 0.03 

Sample 4 7.5 nm/3 nm 20.6 20.72 ± 0.05 

 

Table 5.5. The measured and expected concentration of total O in at/cm2 (including 
HfO2 and SiO2 IL) tabulated for the annular detector geometry for the all the four 
samples studied with the statistical errors 

 
Ototal measured (1015 at/cm2)   

tHfO2 / SiO2
 

Ototal expected 

(1015 at/cm2) 180° 

Sample 1 3 nm/1.1 nm 21.28 
 

21.90 ± 2.01 

Sample 2 7.5 nm/1.1 nm 46.0 45.50 ± 2.42 

Sample 3 3 nm/2 nm 25.28 
 

24.23 ± 2.32 

Sample 4 7.5 nm/3 nm 54.4 
 

55.08 ± 2.92 
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Table 5.6. The measured and expected concentration of remaining O in at/cm2 after 
subtracting the HfO2 contribution assuming a 1:2 ratio for Hf to O tabulated for the 
annular detector geometry for the all the four samples studied with the statistical 
errors 

 
Interlayer O measured  

(1015 at/cm2) 

  

tHfO2 / SiO2
 

 
Interlayer O 

expected 
(1015 at/cm2) 

180° 

Sample 1 3 nm/1.1 nm 4.84 
 

5.32 ± 2.01 
 

Sample 2 7.5 nm/1.1 nm 4.84 
 

5.10 ± 2.42 

Sample 3 3 nm/2 nm 8.80 
 

8.02 ± 2.32 

Sample 4 7.5 nm/3 nm 13.2 
 

13.6 ± 2.92 

 

Further investigations were performed to estimate the silicon contribution for this 

interlayer as extracted from the Si surface peak. Studies performed by Bongiorno et al. 

[7-9] to determine the intrinsic Si surface peak in a SiO2/Si configuration along a specific 

channeling direction at various energies suggest that the total Si surface peak yield is 

given by  

Ysurface− peak = Yintrinsic−Si + Yreconstructed−Si    (5.4) 

Earlier studies by Feldman et al. [10] and Stensgaard et al. [11] about the Si surface 

peaks combined with the recent studies from Bongiorno et al. [9] predict the intrinsic Si 

surface peak at 1.8 MeV 4He along a <100> channeling direction to be ~ 1.1 x 1016 

at/cm2. Previous studies also mention the presence of reconstructed Si which accounts for 

~ 3 ML (monolayers) i.e. ~ 2.04 x 1015 at/cm2 of Si contributing to the total silicon 

surface peak yield at these energies. This contribution remains relatively constant 
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irrespective of the SiO2 layer thickness [7, 9]. Taking into account these numbers and 

comparing them with the numbers obtained from the surface peaks in our analysis of gate 

oxides reveal the presence of excess Si contribution in the measured Si surface peaks. 

These were calculated using the equation below [7, 9] 

Yexcess = Ysurface− peak − (YSiO2 −IL + Yintrinsic−Si + Yreconstructed−Si)   (5.5) 

As a first approximation the Si yield for SiO2 IL was estimated from the remainder of the 

O yield as shown in Table 5.6 assuming a perfect stoichiometric SiO2. The intrinsic and 

the reconstructed values remain the same as mentioned earlier. After accounting for these 

contributions using equation 5.5 we observe excess Si contribution in the surface peak as 

mentioned in Table 5.7. 

 

Table 5.7. The measured concentration in at/cm2 from the Si surface peak of total 
Si, Si in SiO2 assuming a 1:2 Si to O ratio from the ‘O remaining’ numbers in Table 
5.6, and excess Si deduced from equation 5.5 tabulated here for annular geometry 
for the all the four samples studied with the statistical errors as mentioned in the 
table. The background subtraction, which may involve a significant amount of error 
was performed as pictorially represented in Figure 5.2 and 5.3. 

 
  

tHfO2 / SiO2
 

Si surface peak  

(1015 at/cm2) at 

180° 

Si in SiO2  

(1015 at/cm2) at 

180° 

excess Si  

(1015 at/cm2) at 

180° 

Sample 1 3 nm/1.1 nm 18 ± 0.03 2.66 ± 1.0 5.5 

Sample 2 7.5 nm/1.1 nm 29 ± 0.03 2.55 ± 1.2 16.04 

Sample 3 3 nm/2 nm 23 ± 0.03 4.01 ± 1.1 10.77 

Sample 4 7.5 nm/3 nm 32 ± 0.04 6.8 ± 1.5 19.59 
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One probable reason for the increased Si contribution, as already mentioned, is owing to 

the enhanced multiple scattering in the HfO2 bulk. We also speculate the presence of 

some strain at the HfO2/SiO2 interface or in the SiO2 IL due to the scaling of the excess Si 

with the HfO2 bulk grown on top, which may cause an increase in the surface peak yield. 

There may be additional errors in the values for the reconstructed-Si owing to great deal 

of intermixing that occurs in the SiO2 IL with the deposition of a bulk HfO2 layer on the 

top of the thermal oxide. One of the largest sources of error apart from the statistical error 

lies in the background subtraction for estimating the total Si yield in the Si surface peak 

[11]. Figures 5.2 and 5.3 show the method adopted for subtracting the background from 

the Si surface peak for determining the amount of ‘excess Si’. All these sources of errors 

 

Figure 5.2. Annular RBS spectrum of a 3 nm HfO2/1 nm SiO2 layered 
dielectric stack in a <100> channeling direction. Inset shows the schematic of 
the background subtraction done to estimate the yield of Si surface peak. 
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as discussed above can overestimate the excess Si yield in these samples. 

 To summarize, RBS in combination with channeling was efficiently used to verify 

the grown sample structures as to gate oxide and IL thicknesses. It is important to know 

the amount and quality of material exposed to x-ray irradiations for studying its charge 

trapping characteristics. Furthermore, the issues of interface mixing as a function of 

increased HfO2 bulk thickness adds to the complexity in understanding the charge 

trapping and hence it is necessary to investigate the thickness and quality of each gate 

dielectric stack to identify the possible reasons for the differences in the total dose 

response. This characterization technique has been a key tool in achieving these goals for 

 

Figure 5.3. Annular RBS spectrum of a 7.5 nm HfO2/1 nm SiO2 layered 
dielectric stack in a <100> channeling direction. Inset shows the increased 
yield of Si surface peak due to multiple scattering and possible strain effects 
in the SiOx IL. 
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investigating the device response as discussed in Chapter VI and Chapter VII. 

 

5.3.2c. X-Ray Reflectometry (XRR) 

X-ray Reflectometry (XRR) is a noninvasive way of monitoring the thickness of 

thin film structures. This technique can be applied equally well to amorphous, crystalline 

and polycrystalline structures [12]. It relies on the difference in the electron densities 

between the substrate and the thin film. Specular x-ray reflectance is used to characterize 

the electron density profile. This technique is very useful for HfO2 since it has a much 

higher electron density than the Si substrate underneath. It is however difficult to measure 

the interlayer thickness as there is insufficient electron density variation between SiO2 

and the Si substrate. Hence we report thickness results only for bulk HfO2 using this 

technique. 

The XRR measurements were taken using a BedeMetrixTM-L tool [13]. A 

monochromatic x-ray beam was set at a grazing angle with the HfO2/SiO2 layers. The x-

rays reflect from film as well as the interlayer and forms interference fringes (Kiessig 

fringes) from which the film thickness, density and roughness can be calculated. The 

angle at which the sudden drop in the intensity occurs is known as the critical angle and 

is proportional to the electron density. The number of fringes in the reflectivity profile is 

a function of the thickness of the film, the denser the profile (the smaller the fringe 

spacing), thicker the film.  

XRR for our samples was measured using a 250 µm incident beam and detector 

slits, scanning θ-2θ up to ~ 4° with the specular reflection captured. This XRR data is 

further autofit using a simulation model taken from the Bede REFS program with 
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accurate data fitting and parameter optimization [14]. This work uses a single layer model 

to fit the targeted 3 nm HfO2 and a two-layer model with denser HfO2 on top to fit the 

targeted 7.5 nm HfO2 samples. Table 5.8 summarizes the modeled results.  

Table 5.8. XRR results derived from a simulation model used to fit the measured 
data for estimating the HfO2 bulk thickness for all the samples under study. The 3 
nm HfO2 layer was modeled using a single layer model whereas the 7.5 nm HfO2 
samples were modeled using a two layer model as shown in the table 

 
 

Sample 

Target High-κ 

film thickness 

[nm] 

 

HfO2 thickness 

[nm] 

 

HfO2 density 

[g/cm3] 

 

HfO2 roughness 

[nm] 

1 3.0 2.93 13.9 0.43 

1.05 14.3 0.45 2 7.5 

6.05 10.2 0.89 

3 3.0 2.75 15.4 0.28 

0.88 16.9 0.5 4 7.5 

6.28 11.0 0.76 

 

 

The thicknesses of the bulk HfO2 including the film roughness as shown in the 

table are in close agreement with the HfO2 thicknesses measured using RBS/Channeling 

studies. There is a significant density variation observed in these measurements as 

compared to the ones mentioned in Ref. [15]. These are potentially due to the following 

reasons. The tools used for the XRR measurements for the results mentioned in Ref. [15] 

are different from the ones used for these measurements. Hence an instrumentation 
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variation with some offset in the measuring parameters can be expected. Additionally, the 

samples in the Ref. [15] were fabricated using HfCl4 as the precursor, whereas the 

samples in these measurements were fabricated using the method as described in Ref. 

[16]. Furthermore, one of the most significant contributions to the error comes from the 

difficulty in measuring accurate densities for extremely thin films using XRR technique. 

Careful beam alignment is necessary as the measurements are very sensitive to the 

alignment. Improper beam position can result in a substantial error (~ ±10%) in the 

density especially in the case of measurement of extremely thin films. However for films 

with low roughness, this technique provides an accurate estimation of oxide thickness.  

 

5.3.2d. Medium Energy Ion Scattering (MEIS) 

 The MEIS measurements were performed at the Laboratory for Surface 

Modification at Rutgers University as a part of the materials study for these high-k 

samples. MEIS is another powerful technique used in surface science to study the 

structural and compositional properties of surfaces and thin films. It is a high resolution, 

low energy version of the RBS technique. In this technique, the fundaments of beam 

interactions between the incident ion and the target nuclei remain the same as RBS as 

described in section 5.3.2a. Similar to the RBS, energy analysis of the exiting ions leads 

to the distinction of various masses. Light ions (usually p+ and He+) with energy of 40-

400 keV are incident along a channeling direction. Structural and compositional 

information is gathered from the energy and angle resolved detection of the backscattered 

ions. 

 In our experiment, 130 keV H+ ions from a 400 keV High Voltage Engineering 
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ion implanter were used to conduct the MEIS analysis. After surface scattering, ions from 

the horizontal scattering plane were collected into a Toroidal Electrostatic Analyzer 

(TEA). Opposite voltage polarities were applied on the deflecting plates to drive the ions 

towards a Position Sensitive Detector (PSD). Focusing of the TEA was performed to 

focus ions with the same energy leaving the surface from the same spot but along 

different directions as well as ions exiting along horizontal parallel directions to arrive at 

the same spot on the PSD. Micro-channel plates in the PSD enable the creation and 

amplification of an electron cloud resulting from ions hitting these plates. This electron 

cloud further impinges on the multi-anode collector, which computes the angle and 

energy of the incident ions from the relative amounts of charge collected. 

 Figures 5.4 and 5.5 show the MEIS spectra collected for two of the four samples 

(3 nm HfO2/1 nm SiO2, and 7.5 nm HfO2/1 nm SiO2) under scrutiny in this chapter for 

stoichiometry and thickness verification. The black lines indicate the actual spectrum 

with the peaks for the lower Z elements (Si and O) zoomed up (10 x) for easy 

identification of the peaks. The red curve riding over the actual spectrum is a simulation, 

which was fit to a layered distribution of hafnium oxide and hafnium silicate throughout 

the dielectric stack as shown in the figure adjacent to the actual spectrum for each of the 

sample. Table 5.9a and 5.9b show the Hf, O and Si at/cm2 as calculated from the MEIS 

fits as shown in Figures 5.4 and 5.5. The expected Hf and O numbers remain the same as 

the ones mentioned for the RBS results for all the samples. 
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Figure 5.5. MEIS spectrum of a 7.5 nm HfO2/1 nm SiO2 sample with the 
black curve depicting the actual spectrum. The red curve is a simulation 
fit to the layered gate stack that best fits the measured spectrum. 
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Table 5.9a. The concentration of Hf, O and Si in at/cm2 estimated from the 
simulation fit to the MEIS spectrum for each of the layer in the dielectric stack for 
the sample with 3 nm HfO2/1 nm SiO2 

 
Element 

 
Concentration ×1015 [at/cm2] 

 
 

Hf 
 

 
0.36(Hf0.3Si0.2O2)+0.40(Hf0.5Si0.05O2)+6.90(HfSi0.02O2)+0.66(Hf0.7Si2O2) 

= 8.32 
 

 
O 
 

 
1.82(Hf0.3Si0.2O2)+1.61(Hf0.5Si0.05O2)+13.81(HfSi0.02O2)+1.90(Hf0.7Si2O2)+3.23(SiO2) 

= 22.37 
 

 
Si 
 

 
0.18(Hf0.3Si0.2O2)+0.04(Hf0.5Si0.05O2)+0.14(HfSi0.02O2)+1.90(Hf0.7S2O2)+1.61(SiO2) 

= 3.87 
 

 

Table 5.9b. The concentration of Hf, O and Si in at/cm2 estimated from the 
simulation fit to the MEIS spectrum for each of the layer in the dielectric stack for 
the sample with 7.5 nm HfO2/1 nm SiO2. 

 
Element 

 
Concentration ×1015 [at/cm2] 

 
 

Hf 
 

 
0.16(Hf0.3Si0.2O1.6)+0.41(Hf0.5Si0.2O1.6)+ 19.38(HfSi0.05O1.6) 

= 19.95 
 

 
O 
 

 
0.88(Hf0.3Si0.2O1.6)+1.32(Hf0.5Si0.2O1.6)+ 31.02(HfSi0.05O1.6)+3.6(SiO) 

= 36.82 
 

 
Si 
 

 
0.11(Hf0.3Si0.2O1.6)+0.17(Hf0.5Si0.2O1.6)+ 0.97(HfSi0.05O1.6)+3.6(SiO) 

= 4.85 
 

 

The areal density of Hf (at/cm2) is in very good agreement with the Hf numbers measured 

using RBS. The O at/cm2 is in fair agreement as compared to the values measured using 

RBS. The observed variation may be from some sputtering occurring in the low energy 
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spectrum during measurements and/or non-uniformity in the oxide layer thickness. The Si 

surface peaks in these spectra are indicative of Si out-diffusion into the bulk oxide layer 

towards the surface of bulk HfO2. It is important to note that the Si at/cm2 mentioned in 

these tables are for total Si that is distributed throughout the whole of the layered 

dielectric stack. It does not include the contribution from the reconstructed and intrinsic 

Si surface peak as discussed in RBS measurements. The MEIS results also confirm the 

intermixing in the interlayer and the O out-diffusion into the bulk of the HfO2 thereby 

forming a sub-stoichiometric SiOx interlayer. These results are consistent with previous 

results, which discuss the depletion of O from the SiO2 IL during the growth of a thicker 

HfO2. These results additionally indicate increase in the O vacancies in the SiOx 

interlayer in thicker HfO2 samples with the possibility of the presence of defects that may 

exist owing to the presence of Si diffused from the SiO2 IL underneath in the HfO2 layer. 

 

5.3.3 Electrical characterization of HfO2-based MOS capacitors and MOSFETs 

Electrical measurements were done using C-V analysis for pre-irradiation 

characterization [17]. These were done primarily to verify the thicknesses of the bulk and 

SiO2 IL before radiation damage experiments were performed. Circular dots of Al gate 

metal with 0.5 mm diameter were deposited with a shadow mask on bare oxide wafers 

using thermal evaporation. A Signatone hi-lo frequency C-V station was used to perform 

the C-V analysis for measuring the accumulation capacitance (Cox). Effective capacitance 

was modeled as two capacitances in series and the theoretical capacitance was calculated 

with the values of κHfO2
~ 24  corresponding to pure HfO2 and κHfSixOy

~  7 for hafnium 

silicates with κSiO2
~ 3.9 for SiO2 [1]. Different values for κ were considered, as the real 
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value of κ is unknown owing to the silicate formation in the bulk of the dielectric as 

shown in the histogram in Figure 5.6. MEIS studies indicate the intermixing in these 

samples and the κ values for comparison were taken from previous studies of variation in 

the bulk HfO2 dielectric constant as a function of Si concentration [18, 19]. The lowest 

achievable capacitance value is mentioned by considering an admixture of hafnium 

silicate and SiO2 with about 50 % Si in-diffusion, which is close to the value measured by 

MEIS for Si in the bulk of the dielectric. This calculated capacitance values were 

 

Figure 5.6. Histogram of the maximum capacitance (Cox) that can be 
achieved modeled as two capacitances in series for CHfSixOy and CSiO2 with 
different dielectric constant values (κκκκ ~ 24, and 7) due to Si intermixing 
into the bulk of HfO2 as compared to the actual Cox measured on the four 
different samples involved in this study. 
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compared to the experimentally measured value as shown in Figure 5.6. Figure 5.7 shows 

a sample Hi-Lo C-V curve measured for the 7.5 nm HfO2/3 nm SiO2 IL samples. These 

results show that the capacitances measured using C-V show a slight variation with the 

values calculated using theoretical methods as mentioned above. The disagreement might 

be due to the Si intermixing in the dielectric, which might lead to reduced dielectric 

constant hence a low measured capacitance (Cox) value as compared to the theory. 

Previous materials analysis studies performed by several authors on the HfO2 and ZrO2 

growth on Si reveal the variation in the κ-value as a function of the Hf/Si ratios [18, 20]. 

Our MEIS results as mentioned previously also strongly support of our C-V results with 

the evidence of Si uptake into the bulk of the HfO2 during the growth of the high-κ oxide 

 
Figure 5.7. 100 kHz room temperature high frequency and quasi-
static C-V curves measured for a 7.5 nm HfO2/3.0 nm SiO2 MOS 
capacitor. 
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as well as during post deposition anneal.  

MOSFETs were fabricated at SEMATECH using the same CMOS recipe as the 

one used for the gate oxide deposition for materials analysis. This was followed by 

lithography, dopant implantations in the source-drain regions, source-drain dopant 

activation anneal, interface passivation procedures and a 700 °C post deposition anneal 

(PDA) in N2 to fabricate p and n-MOSFETs with respective well doping on a p-type Si 

substrate. In the following paragraph we briefly describe the I-V characterization 

conducted on these transistors to measure the threshold voltage (VT) and the sub-

threshold characteristics prior to bias stress and radiation dose experiments. All the 

samples under investigation were drawn to the 65 nm technology node. The results 

mentioned below are for MOSFETs with a physical gate oxide thickness of ~ 7.5 nm 

HfO2/1 nm SiO2 and W/L of 10 µm/0.25 µm. Routine I-V characterization was performed 

to investigate the device behavior including the drive current and the gate leakage in 

these MOSFETs. The 3 nm HfO2/1 nm SiO2 showed the highest leakage current followed 

by the 7.5 nm HfO2/1 nm SiO2 smaples with the lowest leakage achieved for the 3 nm 

HfO2/2 nm SiO2 transistors at Eox = +3 MV/cm. These leakage currents varied from 

nanoamperes to picoamperes for the different thicknesses under investigation. The Ids-Vgs 

curves for the 7.5 nm HfO2 MOSFETs with W/L of 10 µm/0.25 µm are as plotted below. 

Figures 5.8 and 5.9 are for nMOSFETs and pMOSFETs respectively with a drain voltage 

of 100 mV applied for the carrier flow from source to drain (potential gradient) and 

source and substrate terminals grounded. The off-state Ids is on the order of a few fA as 

can be seen from the figures. Figures 5.10 and 5.11 show the Ids-Vds characteristics for 

different gate voltages from Vg = ± 0.8 to ± 2.0 V for the same n and pMOSFETs  
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Figure 5.8. Pre-rad Ids-Vgs curves for a nMOSFET with W/L = 10 
µm/0.25 µm measured as a function of Vds = 100 mV. These were 
measured for nMOSFETs with tphys = 7.5 nm HfO2/1 nm SiO2. 

 

Figure 5.9. Pre-rad Ids-Vgs curves for a pMOSFET with W/L = 10 
µm/0.25 µm measured as a function of Vds = -100 mV. These were 
measured for pMOSFETs with tphys = 7.5 nm HfO2/1 nm SiO2. 
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Figure 5.10. Pre-rad Ids-Vds curves for a nMOSFET with W/L = 10 
µm/0.25 µm measured as a function of different gate voltages (Vg = 
0.8 to 2.0 V). These were measured for nMOSFETs with tphys = 7.5 
nm HfO2/1 nm SiO2. 

 

 

Figure 5.11. Pre-rad Ids-Vds curves for a pMOSFET with W/L = 10 
µm/0.25 µm measured as a function of different gate voltages (Vg = 
-1.2 to -2.0 V). These were measured for pMOSFETs with tphys = 7.5 
nm HfO2/1 nm SiO2. 
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respectively. The source and the substrate currents were also monitored and were found 

to be on the order of a few pA in these transistors. All these preliminary investigations 

were performed as a part of the pre-irradiation characterization in these devices with 

different HfO2 and SiO2 IL thicknesses. The selection of the device for radiation 

experiments was performed by choosing devices with minimal gate leakage and off-state 

drain current. 

 

5.4 Conclusion 

The chapter provides detailed information on the materials and device quality of 

samples used in the radiation experiment. Intermixing and diffusion issues can change the 

composition of the dielectric thereby altering its trapping characteristics. Hence it is 

important to ascertain and verify the thicknesses and composition of the oxide layers in 

these devices, especially due to the inclusion of the interlayer in the dielectric stack. 

These results underpin the comparisons made in the future chapters for the observed 

variation in the radiation response between the different transistor structures.  
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6.1 Abstract 

Radiation induced charge trapping in ultrathin HfO2-based n-channel MOSFETs 

is characterized as a function of dielectric thickness and irradiation bias following 

exposure to 10 keV X-rays and/or constant voltage stress. Positive and negative oxide-
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trap charges are observed, depending on irradiation and bias stress conditions. No 

significant interface-trap buildup is found in these devices under these irradiation and 

stress conditions. Enhanced oxide-charge trapping occurs in some cases for simultaneous 

application of constant voltage stress and irradiation, relative to either type of stress 

applied separately. Room temperature annealing at positive bias after irradiation of 

transistors with thicker gate dielectric films leads to positive oxide-trapped charge 

annihilation and/or neutralization in these devices, and net electron trapping. The oxide 

thickness dependence of the radiation response confirms the extreme radiation tolerance 

of thin HfO2 dielectric layers of relevance to device applications, and suggests that hole 

traps in the thicker layers are located in the bulk of the dielectric. A revised methodology 

is developed to estimate the net effective charge trapping efficiency, fot, for high-κ 

dielectric films. As a result, estimates of fot for Hf silicate capacitors and Al2O3 transistors 

in previous work are reduced by up to 18 %. 

 

6.2 Introduction 

Gate dielectric scaling allows for continuing increases in circuit speed and 

packing density for CMOS integrated circuits (ICs) [1]. To date, traditional silicon 

dioxide (SiO2)
 and its nitrided alternatives have made this scaling possible at the expense 

of increases in the off-state leakage current and resulting increases in the power 

dissipation [2]. To overcome these limits, alternative gate dielectrics are being widely 

studied and are on the verge of commercial adoption. They allow a physically thicker 

dielectric layer to be used, while providing capacitance equivalent to SiO2. Hafnium 

oxide (HfO2), with relative dielectric constant ~15 to 26, depending on processing and 
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alloying techniques, is a leading candidate to replace SiO2 in modern CMOS technologies 

[3]. While significant performance improvement was achieved recently [4], it is 

important to establish increased reliability in these materials and devices [5]-[9]. 

Significant reliability concerns include negative bias temperature instability (NBTI), time 

dependent dielectric breakdown (TDDB) [10],[11], carrier injection [12]-[16], and 

radiation induced charge trapping [17].  

Extensive studies of radiation damage on SiO2-based MOSFETs have been 

reported [18],[19]; however, similar studies on HfO2-based devices are somewhat 

limited. Early work on HfO2 and/or Hf silicate-based devices concentrated on studying 

the radiation response of thicker dielectrics, primarily using capacitors [17],[20],[21]. In 

an ionizing radiation environment, hole trapping is usually the dominant source of 

radiation-induced oxide-trap charge in SiO2-based devices, with some electron trapping 

possible at high radiation doses and/or for extreme electrical stressing conditions, due to 

low capture-cross section neutral electron traps in the oxides [22],[23]. In contrast, recent 

work demonstrates the existence of a significant number of bulk electron traps in HfO2 

with much higher capture cross sections than in SiO2, which can affect the charge 

trapping significantly [24]-[29]. This trapping can depend strongly on device processing 

and dielectric layer thickness [21],[26]. Hole trapping studies on capacitors, mostly on 

thicker hafnium oxides, suggest the presence of processing induced defects both in the 

SiOx interlayer and in the bulk of the hafnium oxide [30]-[35].  

In this work we investigate radiation-induced charge trapping and trapped charge 

compensation and/or annihilation effects during post-irradiation annealing for HfO2-

based MOSFETs (< 2.5 nm Effective Oxide Thickness - EOT) with varying bulk HfO2 
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thicknesses (3 nm and 7.5 nm). The combined effects of radiation exposure and trapped 

charge injection during and after irradiation are found to be extremely strong functions of 

bias, with charge injection during electrical stress either adding to or offsetting the 

radiation-induced charge trapping, depending on the detailed exposure and injection 

conditions. Ultrathin HfO2 gate dielectrics are found to be quite radiation tolerant, and 

more resistant to charge injection for typical operating bias conditions than thicker 

dielectrics. These results are encouraging for future applications of ultrathin HfO2 in 

radiation environments. In addition, we suggest modifications of a previous expression 

developed by Felix et al. [20] to estimate the charge trapping efficiency of high-κ 

dielectric layers, and provide significant revisions to literature estimates of trapping 

efficiencies for Hf silicate and Al2O3. 

 

6.3 Experimental Details 

TiN/HfO2 gate stack nMOSFETs were fabricated on Si (100) 200 mm wafers 

using a standard CMOS transistor process flow, which includes a 1000 °C/10 s dopant 

activation. The HfO2 dielectric was deposited on top of a chemical oxide (~ 1 nm) using 

atomic layer deposition chemistry, TEMA (tetrakis ethyl methyl amino) Hf+O3, followed 

by a post-deposition anneal in N2. The transistors examined in this work were fully 

processed standard high-κ MOSFETs fabricated in a 65 nm technology. The transistors 

under investigation had a width to length ratio (W/L) of 10 µm/0.25 µm. Figure 6.1 shows 

the cross-section of a standard nMOSFET used in these experiments. Capacitance-

voltage (C-V) measurements were performed on capacitors on the same die as the 

transistors to enable accurate measurement of the EOTs. The SiOx interlayer (IL) 
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thickness as confirmed from Transmission Electron Microscopy (TEM) was ~ 1 nm. The 

EOTs of the gate stacks with tphys = 7.5 nm and tphys = 3.0 nm physical high-κ thicknesses 

were measured to be 2.3 nm and 1.5 nm, respectively. 

The devices were exposed to 10 keV X-rays in an ARACOR irradiator under 

different gate bias conditions (negative, positive, and zero bias) with the other three 

terminals grounded. Die-level samples were irradiated to a cumulative dose of 10 

Mrad(SiO2) at a dose rate of 31.5 krad(SiO2)/min, with bias applied by probe contacts 

that were located so as not to shadow the beam. Current-voltage (I-V) characteristics were 

measured using an Agilent 4156 semiconductor parameter analyzer. All biased 
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Figure 6.1. Cross-section of the nMOSFET examined in this work. The 
inset shows a detailed view of the high-κ gate stack with a SiOx 
interlayer. 
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irradiations, voltage stresses, and electrical characterizations were done in-situ in the 

ARACOR system to minimize experimental sources of error due to measurement delays 

and probe contact. Standard threshold voltage shifts, subthreshold current-voltage (I-V) 

curves, and leakage current values were measured after each step in X-ray dose. Constant 

voltage stress (CVS) studies were performed on time scales comparable to those required 

for the 10 Mrad(SiO2) irradiations. These tests were performed to separate the 

contributions of bias-induced charge trapping/creation [36] in these oxides from 

radiation-induced shifts. There were no significant changes in the subthreshold I-V curve 

stretchout for the irradiation or stress results reported here, as illustrated below. Thus, no 

significant irradiation or stress induced interface trap buildup is observed in these devices 

[37],[38]. This is not unusual for HfO2 [17],[21],[25], although significant interface-trap 

buildup has been observed in other types of devices processed differently [39],[40]. 

Electric fields (Eox) were corrected for gate (TiN)-to-silicon work function; gate biases of 

+2 V/-2 V for 7.5 nm devices correspond to Eox values of ~ 2.7 MV/cm and –2.0 MV/cm, 

and gate biases of +1 V/-1 V for 3 nm devices are equivalent to Eox values of ~ 3 MV/cm 

and -1.9 MV/cm, respectively.  

 

6.4 Results and Discussion 

6.4.1 Pre-irradiation measurements 

Pre-irradiation Ids-Vgs curves were measured at Vds = 0.1 V; standard linear 

threshold voltage VT measurements were performed. The pre-irradiation VT values were ~ 

0.75 V and ~ 0.45 V for the thicker and the thinner oxides, respectively. Gate leakage 

currents measured on the transistors were on the order of ~ 1 pA for the tphys = 7.5 nm and 
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~ 30 nA for the tphys = 3.0 nm oxide samples at Vgs = +1 V; these levels are consistent 

with expectations for these material layer thicknesses [2]-[12].  

6.4.2 Total dose results for 7.5 nm and 3.0 nm oxides 

  

Figures 6.2a and 6.2b show Ids-Vgs curves to a total dose of 10 Mrad(SiO2) for devices 

with 7.5 nm and 3 nm oxides, irradiated at 0 V gate bias. The 7.5 nm sample in Figure 

6.2a exhibits a threshold voltage shift (∆VT) of –0.35 V at 10 Mrad(SiO2). This 

corresponds to a net oxide-trap charge density projected to the interface, ∆Not, of ~ 3.2 x 

1012 cm-2 [37],[38]. The midgap technique of Winokur and McWhorter was used to 

separate the contributions of interface and oxide trap charge from the I-V curves 

[37],[38]. The dominant contribution to the VT shifts (∆VT) was due to oxide trap charge 

 

Figure 6.2a. I-V characteristics as a function of x-ray dose at 0 V 
irradiation bias for a dielectric thickness of 7.5 nm. 
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(∆Vot), with only minimal contribution from the interface traps (∆Vit) [37],[38] in Figure 

6.2a. The radiation-induced shifts for the thinner sample in Figure 6.2b were much 

smaller than for the thicker oxides, consistent with the reduction in oxide-trap charge 

trapping during irradiation of ultrathin SiO2 of equivalent physical thickness [18],[20]. 

Figures 6.3 and 6.4 summarize the zero, negative, and positive bias radiation-induced 

threshold voltage shifts for the 7.5 nm and the 3 nm gate oxides, respectively. The charge 

trapping in the 7.5 nm devices in Figure 6.3 is much greater than in the 3 nm samples in 

Figure 6.4 in all cases; the 3 nm devices are quite radiation tolerant, showing less than 25 

mV shift for all doses and bias conditions. As discussed below, the 3 nm devices were 

 

Figure 6.2b. I-V characteristics as a function of x-ray dose at 0 V 
irradiation bias for a dielectric thickness of 3.0 nm. 
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stable against applied-bias induced charge trapping on the time frames of the radiation 

exposures in Figures 6.3 and 6.4. In contrast, the positive and negative bias responses for 

the thicker oxides in Figure 6.3 were found to be a combination of radiation- and stress-

induced charge trapping. In neither type of sample did the gate leakage current vary 

significantly during irradiation for any bias condition. The lack of significant charge 

trapping in the 3 nm devices in Figure 6.4 confirms that the stable charge trapping in the 

thicker devices is most likely a result of traps in the HfO2 bulk, since the IL layers are 

processed similarly in the two kinds of films. Note that these are pure HfO2 based 

devices, and the bulk HfO2 almost certainly crystallizes during the high-temperature post-

 

Figure 6.3. ∆VT due to CVS + irradiation at different gate bias 
conditions for a 7.5 nm gate oxide transistor. 
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deposition anneal treatments. The oxides following these anneals are in the form of phase 

separated individual nano-crystallites. The grain boundaries form a source for electrically 

active defects created during the oxide processing [41]. Oxygen vacancies and 

interstitials, which form the primary defect states in the oxide, can segregate along these 

grain boundaries and introduce localized electron and hole trapping levels in the HfO2 

band gap [26],[41]-[44].  

 

 

 

Figure 6.4. ∆VT due to CVS + irradiation at different gate bias conditions 
for a 3.0 nm gate oxide transistor. 
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6.4.3 Constant Voltage Stress (CVS) and biased irradiations 

Controlled CVS experiments were conducted on the transistors of different oxide 

thicknesses (tphys = 7.5 nm and tphys = 3.0 nm), owing to the observed charging of the 

thicker dielectric layers with time under bias, even without irradiation. This charging is 

possibly due to shallow electron and hole traps in HfO2 dielectric films, which (as 

discussed above) are located mostly in the bulk of the film [26]-[33] under these stress 

conditions, as evidenced by a lack of stable charge trapping in the thinner dielectric 

layers. It is also possible for this trapping to occur in the SiO2 interlayer, which may not 

show up as a detectable voltage shift in the 3 nm HfO2 samples owing to an increased 

leakage in these thinner dielectrics, which can cause annihilation/neutralization of these 

trapped charges. It is necessary to note that the reduced band offsets (ECBO ~ 1.5 eV and 

 

Figure 6.5. Transmission probability plotted as a function of distance into the 
oxide for both SiO2 (green curve) and HfO2 (blue curve) on Si. It is evident 
from the figure that the tunneling probability is much higher for HfO2 as 
compared to SiO2 owing to the reduced band offsets of ECBO ~ 1.5 eV on Si. 
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EVBO ~ 3.4 eV) in the HfO2 samples play a significant role in the tunneling of charges that 

causes transient trapping and detrapping in the HfO2/SiO2 layers [45-47]. Fundamentally 

the transmission (tunneling) probability can be solved quantum mechanically for SiO2 

and HfO2, using equation 1.2 as shown in Chapter I [48]. The Figure 6.5 plotted using 

this equation shows that, for HfO2 the tunneling probability is much higher than SiO2 

owing to reduced band offsets but improves with higher thicknesses. The presence of a 

thin ~ 1 Å SiOx interlayer does not serve as a good blocking electrode for avoiding the 

tunneling of charges. Theoretical investigations reveal that a SiO2 thickness of ~ 7 Å is 

required for a complete formation of a O-Si-O bond taking into consideration its bond 

angles, which with the addition of roughness can increase to ~ 1.2 nm [49].  This is in 

support of the observed transient charging (in 7.5 nm MOSFETs) near the interface in 

these dielectric layers. Additionally, the increase of O deficiency (vacancies) in this 

interlayer with the growth of HfO2 and their intermixing effects results in the formation 

of hole as well as electron traps that can act as trapping centers for carriers tunneling 

from Si under bias stress [50]. Furthermore, the presence of the HfO2/SiO2 interface in 

addition to traditional SiO2/Si interface can also be one of the reasons for the observed 

threshold voltage shifts of ± 0.15 V for the corresponding negative and positive bias 

stress conditions. 

 

1) Negative CVS and irradiation 

Transistors with 7.5 nm oxides were stressed at negative, positive, and zero bias 

for a total of 5 h, which matches the time under bias during 10 Mrad(SiO2) irradiation. A 

fresh set of transistors with the same W/L ratio was used for all of the biased irradiations. 
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The 0 V measurements serve as a control to determine whether room temperature storage 

or the sequence of I-V sweeps performed to characterize the transistor response is 

changing the device characteristics measurably on the time frame of the measurements. 

No shifts in the I-V curves occurred with storage in air with the gate electrode grounded 

and repeated measurements for either the 7.5 nm or 3 nm samples on the time frames of 

the irradiations in Figures 6.2-6.4.  

Figure 6.6 shows CVS at -2 V (squares) and the combined effects of -2 V bias and 

irradiation (circles). The time scale on the top axis is matched to the time required for the 

dose in Mrad(SiO2) on the bottom axis for irradiation. Negative CVS on the 7.5 nm 

samples for 5 h at room temperature resulted in a maximum value of ∆VT of ~ -0.15 V. 

 

Figure 6.6. Threshold voltage shifts (∆VT) due to CVS (-2 V) and CVS (-2 
V) + irradiation on 7.5 nm samples. The bottom x-axis shows the dose in 
Mrad(SiO2). The top x-axis shows the time during CVS. 
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The threshold voltage VT decreases rapidly at very short times during CVS (< 60 s) and 

then saturates. The maximum shift corresponds to a net value of ∆Not of ~ 1.4 × 1012 cm-

2. The combined effects of irradiation and CVS lead to approximately three times greater 

degradation (∆VT = ~ –0.42 V; ∆Not of ~ 3.8 × 1012 cm-2).  

The VT shift during negative CVS is due to the tunneling of holes from the p-Si. 

The reduced experimental HfO2/Si valence band offset of ~ 3.2 eV (theoretical ~ 3.4 eV), 

compared to ~ 4.8 eV for SiO2/Si, increases the tunneling probability as mentioned 

earlier [45]-[47]; the relatively large shifts at room temperature for small fields indicate 

there must be shallow hole traps in the HfO2 [26]-[33].  

2) Positive CVS and irradiation 

S 

 

 

 

 

 

 

 

 

 

 

  

Figure 6.7. Threshold voltage shifts (∆VT) due to CVS (+2 V) and CVS 
(+2 V) + irradiation on 7.5 nm samples. The bottom x-axis shows the 
dose in Mrad(SiO2). The top x-axis shows the time during CVS. 
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Similar CVS and combined irradiation/CVS experiments were also performed 

under positive bias. As shown in Figure 6.7, for CVS only (squares), a positive ∆VT is 

observed. This is due to electron trapping in pre-existing traps in the HfO2 film [36],[51]. 

The electron injection from the Si dominates as compared to the hole injection from the 

metal under positive gate bias due to lower conduction band offsets (~ 1.5 eV) on the 

oxide/Si interface as compared to the metal/oxide interface (~ 2.3 eV) [45]-[47]. 

Additionally, the presence of an enhanced moment arm effect at the oxide/Si interface 

makes charge near the Si interface more effective in shifting the threshold voltage than 

charge near the gate interface. Intrinsic electron traps can also be present due to the Jahn-

Teller splitting of the Hf bonding site, which can introduce defects in the HfO2 band gap 

as shown by previous studies [52],[53]. Net negative charge builds up to a dose of 1 

Mrad(SiO2) as a result of CVS induced electron trapping. For higher doses, radiation-

induced positive charge trapping in the bulk HfO2 or the SiOx interlayer neutralizes 

and/or offsets this electron trapping, leading to a decrease in the magnitude of the 

positive threshold voltage shifts observed in Figure 6.7. This shows that bias-induced 

electron trapping dominates over radiation-induced hole trapping for these devices and 

irradiation conditions. 

6.4.4 Biased Annealing Studies 

Following irradiation, the annealing characteristics of the 7.5 nm gate oxide 

devices were measured at room temperature for different annealing biases. Both the 

irradiation and annealing were done in-situ with the recovery process monitored 

immediately after irradiation. Samples were exposed to the three different bias conditions 

(zero, positive and negative) during irradiation, and annealing was characterized for 
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different gate biases [54]. Figures 6.8 and 6.9 illustrate the injection-induced recovery in 

these devices for two irradiation and annealing bias combinations. Table 1 summarizes 

the net oxide-trap charge density projected to the interface (∆Not) after irradiation and 

anneal/recovery for all biases studied in this work. Similar trends in electron and hole 

trapping are observed for similar irradiation and bias conditions to Figures 6.8 and 6.9.  

 

1) -2 V Irradiation/+2 V Annealing  

Figure 6.8 shows results for a 7.5 nm device that was irradiated at negative bias 

and annealed at positive bias [39]. The figure demonstrates the absence of any detectable 

electron trap creation during post-irradiation annealing. This can be verified from the fact 

 

Figure 6.8. ∆VT as a function of irradiation and annealing for 7.5 nm devices 
exposed to 10 Mrad(SiO2) at -2 V bias and annealed at room temperature at +2 
V bias. 
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that positive bias stress only (Figure 6.7) shows comparable magnitudes of threshold 

voltage shift as that of this sample (during +2 V anneal). Electron tunneling during the 

post-irradiation anneal annihilates or compensates [18] the irradiation and stress-induced 

trapped holes, and additionally traps electrons to produce a net ∆VT of +0.12 V 

(equivalent to a net charge of ~ 1.1 × 1012 cm-2) at the conclusion of the irradiation and 

annealing sequence. 

 

2) +2 V Irradiation/-2 V Annealing  

Figure 6.9 shows the opposite irradiation and annealing bias pair. In contrast to 

Figure 6.8, the threshold voltage first shifts positively during irradiation (net electron 

 

Figure 6.9. ∆VT as a function of irradiation and annealing for 7.5 nm devices 
exposed to 10 Mrad(SiO2) at +2 V bias and annealed at room temperature at -2 V 
bias. 
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trapping), and negatively during anneal (net hole trapping). During the -2 V annealing, 

the sample continues to trap positive charge, although at a decreasing rate at the end of 

the 5 h time period. The net shift is much more than that observed for bias-only stress at -

2 V with no irradiation (Figure 6.6). This illustrates that radiation-induced trapped holes 

during the positive bias irradiation are not being annihilated by the electron trapping. 

Instead, their effects are compensated. The additional hole injection during the -2 V 

anneal in turn more than fully compensates these electrons. As a result, the maximum 

threshold voltage shift at the end of the measurement is ~ -0.26 V. The reversal of the 

net-trapped oxide charge from the annealing experiments highlights the volatile nature of 

the charge resulting from charge injection in these devices. Hence, the values shown here 

reflect only the relatively more stable trapped charge that is present after typical current-

voltage measurements (typically requiring 30-60 s to complete) are performed. 

Table 6.1. Irradiation and annealing conditions for the annealing experiments 
performed. Values of ∆∆∆∆Not (cm-2) are summarized for 10 Mrad(SiO2) X-ray 
irradiation at a dose rate of 31.5 krad(SiO2)/min. Values of ∆∆∆∆Not (cm-2) following 
room temperature anneal are also shown for times of 1 min and 5 h. 

 

∆∆∆∆Not (cm-2) 

(after annealing) 

 

 

 

Irradiation/Annealing 

bias (V) 

∆∆∆∆Not (cm-2) 

(after 

 irradiation) 
1 min 5 h 

A -2/-2 3.2 x 1012 3 x 1012 3.1 x 1012 

B -2/0 3.1 x 1012  2 x 1012 2 x 1012 

C -2/+2 3.7 x 1012 - 0.8 x 1012 - 1.1 x 1012 

D 0/+2 2.7 x 1012 - 1.4 x 1012 - 1.35 x 1012 

E +2/-2 - 0.9 x 1012 1.7 x 1012 2.4 x 1012 



 148 

6.5 Net Effective Charge Trapping Efficiency 

Estimates of net effective charge-trapping efficiency in high-κ dielectrics as 

projected to the Si/oxide interface have been obtained previously using an expression 

presented originally by Felix et al. [20]: 
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Here fot is the net effective radiation-induced oxide-trap charge trapping efficiency, ∆Vot 

is the threshold-voltage shift due to oxide-trap charge, εox is the dielectric constant of 

SiO2, -q is the electron charge, κg is the number of electron-hole pairs generated per unit 

dose per unit volume in the dielectric layer, fy is the charge yield, teq is the equivalent SiO2 

dielectric thickness, teq is the physical dielectric thickness, and D is the dose deposited in 

the dielectric layer. It is especially important to note that dose enhancement effects 

typically have been neglected in the application of equation 6.1 in previous studies of 

high-κ devices [20],[54]. 

We now critically re-examine the assumptions that underlie equation 6.1. This 

approach assumes that the trapping defects are associated with the initial materials 

fabrication and are not caused by the impinging radiation. During X-ray irradiation, 

photoelectrons are generated in the gate metal, the gate dielectric, and the substrate. 

Electron-hole (e-h) pairs are ultimately generated in the gate dielectric layer by the 

secondary electrons generated by the incident X-rays impinging on the dielectric layer 

and its immediately surrounding materials. For the structure depicted in Figure 6.1, the 

ultrathin gate dielectric is surrounded by the much thicker Si substrate and a relatively 
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thick TiN gate contact, each of which has an effective Z less than HfO2. For 10-keV X-

rays, the actual electron contribution produced in the very thin HfO2 layer is very small 

compared to the much thicker adjacent materials; as a result, the dose in the gate 

dielectric is determined almost entirely by the Z of the surrounding materials [55]-[58]. 

For Si, Z = 14; for Ti, Z = 22; and for N, Z = 7. With an estimation error that is less than 

other experimental uncertainties (primarily in the charge yield, as discussed below), we 

can approximate the dose deposited in the gate dielectric layers in this study as the dose 

deposited in Si. (The actual dose is slightly larger because the effective Z is not the 

arithmetic mean of 22 and 7, 14.5, but weights the higher Z Ti more heavily than the N. 

Offsetting this somewhat is the much thicker Si layer thickness than the TiN layer 

thickness. Hence, we have used the Si dose as a reasonable approximation of the effective 

dose in the dielectric layer after secondary electron equilibration.) This contrasts with the 

equilibrium SiO2 dose typically quoted in the literature for convenience, and used in 

previous estimates of charge trapping efficiency in high-κ materials [20],[54]. The dose 

in Si is ~ 1.8 times higher than the equilibrium SiO2 dose [55]-[58], which affects the 

value of D in equation 6.1 significantly. Interestingly, because of the relative layer 

thicknesses and dose enhancement and roll-out effects at these low radiation energies, 

differences in the relative stopping powers of electrons in HfO2 and SiO2, which are 

significant, do not enter the estimate of dose in these devices, at least to first order. 

It is also possible to develop an improved estimate of the charge generation rate in 

HfO2 over that developed by Felix et al. [20],[54], which used a simple ratio of the SiO2 

and high-κ dielectric band gaps to estimate an average energy per electron hole pair of ~ 

11 eV. Instead, we estimate the average energy per electron-hole pair in HfO2 from the 
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Shockley-Klein equation to be ~ 15 [59],[60], since the average energy per e-h pair 

decreases much more slowly for band gaps above ~ 5 eV than for lower band gaps 

[59],[60]. This provides an improved value of κg of ~ 9.2 × 1012 cm-3rad-1(HfO2), which 

is ~ 27% lower than the value obtained using the method of Felix et al. [20],[54]. 

 The final remaining source of uncertainty in estimating the effective trapping 

efficiency in these devices is the charge yield. Because of the significant charge injection 

during positive-bias and negative-bias irradiations, the most easily compared data that are 

suitable for obtaining trapping efficiency estimates for the 7.5 and 3 nm oxides are the 0 

V data in Figures 6.2-6.4. At 0 V, the electric field is dominated by the TiN-to-Si work 

function difference initially, and then changes with time as charge is trapped in the bulk 

of the dielectric layer. Moreover, literature estimates of charge yield to date are limited to 

SiO2 [57],[61]. Because of these uncertainties, it is difficult to know the charge yield in 

HfO2 at the same level of accuracy as the other parameters in equation 6.1. Hence, more 

study is warranted on this important topic. Consistent with values of charge yield 

observed in 0 V irradiations for thinner oxides in [57],[61], we estimate fy to be ~ 0.35 ± 

0.05 in the 0 V irradiations for the 7.5 nm oxides. For the 3.0 nm oxides the value of fy 

was estimated to be ~ 0.45 owing to a higher field (~ 1 MV/cm) in the oxide at 0 V. After 

incorporating the new values for κg, fy and D, and using the ∆VT shift at 500 krad(SiO2) 

for the zero bias irradiations, the estimated net trapping efficiencies for these devices and 

irradiation conditions are ~ 45 ± 6%  for the 7.5 nm devices and ~ 13% for the 3.0 nm 

devices. 

In studies by Felix et al. [20],[62], the estimated value including uncertainties in 

charge yield (fy ) was revised to ~ 0.35 ± 0.05 (instead of 0.2 in [20]) for a field of ~ 0.3 
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MV/cm for the silicates and the value ~ 0.45 was maintained for ~ 1 MV/cm field on the 

aluminum oxide based transistors in [62]. Table 6.2 provides revised estimates at a dose 

of 500 krad(SiO2) for the Hf silicates and at 1000 krad(SiO2) for the Al2O3 based 

transistors. These data are based on the revised calculations of dose that incorporate dose 

enhancement, as well as revised estimates of κg and the charge yield (fy), as mentioned 

above.  

  
Table 6.2. Previous and revised estimates (correcting κκκκg, fy and D) of trapping 
efficiencies with a weighted average of ~ 1.73 (Al-Si) for the dose enhancement 
factor calculated for HfSiOx capacitors [20] and Al2O3 capacitors [62]. 
 

 

Gate  

material 

 

Dose  

Enhancement, 

relative to SiO2 

 

Dielectric type 
 

 

Previous 

estimates 

% fot 

 

Revised 

estimates 

% fot 

Al 1.73 HfSiO  28 10 - 13  

Al 1.73 Al2O3  31 14 

 

6.6 Conclusion 

We find that stress-induced charge trapping can significantly modify the 

irradiation and annealing response of transistors with 7.5 nm HfO2 dielectric layers. 

Under positive irradiation or stress bias, electron trapping dominates; under negative bias, 

hole trapping dominates. Reversing the bias during irradiation or anneal quickly leads to 

a change in sign of threshold voltage shifts due to charge injection into process-induced 

electron and hole traps in these devices. Transistors built with ultra-thin HfO2 (such as 

the 3 nm gate oxide devices) are much less sensitive to irradiation or bias stress than 
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devices with 7.5 nm dielectrics. These thin-dielectric devices are more technologically 

relevant for future integrated circuit fabrication, and clearly are very promising 

candidates for radiation-hardened microelectronics. We also have developed improved 

estimates of dose and charge generation rates in high-κ dielectrics exposed to 10-keV x-

ray irradiation, which enable improved estimates of charge trapping efficiency over those 

previously obtained in the literature. The remaining, dominant source of uncertainty in 

these estimates is the charge yield in high-κ devices. 
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7.1 Introduction 

In the realm of microelectronics, there has always been increased pressure to 

improve the operational speed and efficiency in semiconductor devices. MOS devices 

have been at the forefront of the silicon technology revolution, owing to their ubiquitous 
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use in integrated chips (ICs). The gate dielectric scaling in each successive technology 

generation allows for continuing increases in circuit speed and packing density for 

integrated circuits (ICs). Upcoming CMOS technology generations of 45 nm technology 

and below require shrinking the physical dimensions of devices in all respects [1]. 

Traditional silicon dioxide (SiO2)
 and its nitrided alternatives have made this scaling 

possible at the expense of increases in the off-state leakage current and resulting 

increases in the power dissipation [2]. To overcome these limits, alternative gate 

dielectrics are being widely studied and on the verge of commercial adoption. Hafnium 

oxide (HfO2), with dielectric constant ~15 to 26, is one of the potential candidates to 

replace SiO2 in modern CMOS fabrication [3]. HfO2-based MOSFETs have recently been 

announced as devices that would power the 45 nm and the 32 nm technology nodes. A 

thin (~ 1 nm) SiO2 interlayer (IL) forms an integral part of this gate stack. This results in 

a better interface with reduced intermixing of the HfO2 at the expense of decrease in the 

effective dielectric constant [4]. Reliability aspects of charge trapping in these dual oxide 

layer devices have been extensively studied using bias stress mechanisms [5-7]. 

Radiation acts as an alternative tool to investigate the charge trapping response of these 

devices. The layer contributing predominantly to this charge trapping in the dual oxide 

layer stack is still a matter of debate. It is of scientific interest to know the fundamental 

contribution to charge trapping for each of the constituent materials and its location in the 

gate dielectric. Our results indicate the presence of predominant hole trapping in both, the 

interlayer as well as in the bulk as confirmed from the radiation induced charge trapping 

response of these dielectric layers as a function of varying bulk HfO2 and SiO2 IL 

thicknesses. These results additionally verify the possibility of increase in the O 
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vacancies in the SiO2 IL with the growth of a thicker HfO2 on the top which can cause 

increased interlayer hole trapping. Furthermore, we discuss the presence of charge 

neutralization from direct tunneling induced leakage currents in these devices due to 

reduced band offsets, which can lead to underestimation of the pure charge trapping 

response of the individual materials in these gate dielectric layers.  

In charge trapping/buildup studies of HfO2 gate dielectrics, both electron and hole 

trapping have been reported in the literature. Theoretical studies have predicted the 

negative U behavior of O2-, which supports its amphoteric nature acting as a hole as well 

as an electron trap [8, 9]. Recent reliability studies have described electron trapping in 

these oxides with a very high trapping cross-section as compared to traditional SiO2 [6, 

10-14]. This trapping can depend strongly on device processing and dielectric layer 

thickness [11, 15]. Previous charge trapping studies in HfO2-based MOS capacitors and 

some recent work on MOSFETs, have reported positive charge trapping on both thinner 

and thicker hafnium oxides, thereby suggesting the presence of processing induced 

defects both in the SiOx interlayer and in the bulk of the hafnium oxide [16-22]. Recent 

probing of the location of these traps and some previous work have concentrated more on 

the non-sotichiometric SiOx interlayer being the primary source for the trapping in these 

oxides [23-25]. In our recent work on HfO2-based MOSFETs, radiation induced hole 

trapping was found to be significantly more in the thicker devices (7.5 nm HfO2/1 nm 

SiO2) as compared to thinner samples (3 nm HfO2/1 nm SiO2) [21]. Increased leakage 

current from direct tunneling in the 3 nm HfO2/1 nm SiO2 samples was one of the main 

reasons for the observation of negligible shifts in the thinner HfO2 samples due to 

possible annihilation/neutralization effect of trapped charges in the dielectric. However 
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additional confirmation is required to identify the layer contributing predominantly to the 

radiation induced charge trapping. In this chapter we try to answer this equivocal problem 

by investigating the radiation induced charge trapping in these MOSFETs as a function of 

bulk HfO2 and SiO2 IL thicknesses. The thicknesses of the gate dielectrics studied here 

are 7.5 nm HfO2/1 nm SiO2, 3 nm HfO2/1 nm SiO2 and 3 nm HfO2/2 nm SiO2 as shown 

in the schematic diagram in Figure 7.1. From the observed results of these three samples 

we try to address the issue of individual layer contribution to the substantial positive 

charge trapping in these gate dielectrics. 

 

7.2 Experimental section 

Non-metal covered (bare) oxide films for materials characterization were grown 

using the same oxide growth recipe that was used for transistor fabrication used in the 

total dose experiments. Extensive material characterization experiments on these oxides 

were performed using different techniques like Rutherford Backscattering Spectroscopy 

(RBS), Channeling, Medium Energy Ion Scattering (MEIS) and X-Ray Reflectance 

(XRR) as described in detail in Chapter V [26, 27]. These measurements were performed 

to verify the bulk HfO2 and the SiO2 IL thicknesses and stoichiometry of the individual 

layers. Samples for Capacitance-Voltage (C-V) analysis were fabricated by depositing Al 

gate metal dots using a shadow mask in an evaporator and Au back contacts were sputter 

deposited after a back oxide etch. C-V measurements were performed to compare the 

measured and the calculated theoretical capacitances. 
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The total dose experiments were performed on MOS transistors. The high-κ 

MOSFETs examined in this work were fabricated using industry standard CMOS process 

flow in a 65 nm technology. TiN/HfO2 gate stack nMOSFETs were fabricated on Si 

Source Gate Drain 

p-type well 

Gate Oxide 

N+ N+ 

p-type Substrate 

P+ 

TiN 
 3.0 nm HfO2 

2 nm SiO2 

TiN 
 3.0 nm HfO2 

 1 nm SiO2 

TiN 

 

7.5 nm HfO2 

1 nm SiO2 
 

Figure 7.1. Cross-section of a HfO2-based nMOSFET (p-type Si substrate). Inset 
showing the three different thicknesses of HfO2 bulk and SiO2 interlayers (IL) 
included in this study. 
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(100) 200 mm wafers using a standard CMOS transistor process flow, which includes a 

1000 °C/10 s dopant activation. Approximately 1 nm chemical oxide and ~ 2 nm thermal 

oxide was grown for the two different interlayer samples followed by HfO2 deposition 

using atomic layer deposition (ALD) chemistry using TEMA (tetrakis ethyl methyl 

amino) Hf+O3, followed by a post-deposition anneal in N2. Three different MOSFETs 

with varying bulk and ILs were fabricated by this technique (7.5 nm HfO2/1 nm SiO2, 3 

nm HfO2/1 nm SiO2, 3 nm HfO2/2 nm SiO2). The transistors under investigation in these 

samples had a width to length ratio (W/L) of 10 µm/0.25 µm.  

Control experiments of constant voltage stress (CVS) were performed on time 

scales comparable to those required for the 10 Mrad(SiO2) irradiations for all the three 

sample configurations. These tests were performed to separate the contributions of bias-

induced charge trapping/creation [5] in these oxides from radiation-induced shifts. 

Standard threshold voltage shifts, subthreshold current-voltage (I-V) curves, and leakage 

current values were measured after each step in X-ray dose as well as after each interval 

of bias stress in the CVS measurements. Gate biases were corrected for the TiN-Si work 

functions in order to determine the field across the oxides. Following this compensation, 

the applied voltages of +2 V/-2 V for 7.5 nm/1 nm devices correspond to Eox values of ~ 

2.7 MV/cm and –2.0 MV/cm; gate biases of +1 V/-1 V for 3 nm/1 nm devices are 

equivalent to Eox values of ~ 3 MV/cm and -1.9 MV/cm; and gate voltages of + 1.25V/-

1.25 V correspond to Eox values of ~ 3 MV/cm and ~ - 2 MV/cm for the 3 nm/2 nm 

devices.  

An ARACOR irradiator with a 10 keV x-ray source was used to irradiate the die-

level samples under negative and positive gate bias conditions with the other three 
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terminals grounded. These were irradiated to a cumulative dose of 10 Mrad(SiO2) at a 

dose rate of 31.5 krad(SiO2)/min, with bias applied by probe contacts that were located so 

as to avoid shadow effect of the beam. An Agilent 4156 semiconductor parameter 

analyzer was used to measure the current-voltage (I-V) characteristics. All biased 

irradiations, voltage stresses, and electrical characterizations were done in-situ in the 

ARACOR system to minimize experimental sources of error due to measurement delays 

and probe contact thereby resulting in better reproducibility of results.  

 

7.3 Results 

7.3.1 Materials analysis 

RBS/Channeling results for all the samples are as mentioned in Tables 5.4 to 5.7 

in section 5.3.2a and 5.3.2b of Chapter V. These results confirm the measured thickness 

to be close to the targeted thickness as expected from the growth recipe. MEIS 

measurements performed on two of the samples (7.5 nm HfO2/1 nm SiO2 and 3 nm 

HfO2/1 nm SiO2) indicate some intermixing of the HfO2 and SiO2 layers which thereby 

changes the bulk composition and invariably alters the κ-value. XRR measurements 

verified the bulk thicknesses for all the samples as mentioned in Chapter V. C-V 

measurements revealed Cox values, which were much lower than the theoretical Cox 

assuming two capacitances in series for the two stacked oxide layers (refer Figure 5.6 of 

Chapter V). This difference was consistent with some intermixing and a smaller dielectric 

constant of the total dielectric. 
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7.3.2 Constant Voltage Stress (CVS) 

Constant voltage stress of positive and negative fields as mentioned above on the 

physically thickest sample (7.5 nm HfO2/1 nm SiO2) and the thicker IL (3 nm HfO2/2 nm 

SiO2) sample produced some threshold voltage shifts when stressed to a period of 5h. For 

the 7.5 nm HfO2 transistors, transient trapping and detrapping was observed depending 

on the bias polarity. This was observed to be very instantaneous with the application of 

the bias stress. A threshold voltage shift (∆VT) of ± 150 mV was consistently observed 

for these samples with a negative VT shift (positive charge trapping) for negative gate 

voltage and vice versa. Figures depicting these results can be found in Chapter VI. The 

constant voltage stress induced shifts for the 2 nm IL devices are as shown in Figure 7.2. 

Both the bias polarities produce minimal negative threshold voltage shift indicating some 

positive charge trapping in some of the transistors. We would like to add that these 

effects are not substantial to arrive at a definite conclusion about these shifts for both the 

gate biases. The shifts were found to be close to zero considering experimental error and 

device-to-device variation limits as indicated from the experimental error bars in Figure 

7.2. These results additionally prove the absence of any substantial metal injection in 

these devices under the oxide fields studied in this work. For the physically thinnest 

sample, there were no detectable shifts observed for similar bias stress conditions. The 

bias induced trapping, if any, was possibly neutralized by the increased leakage currents 

on the order of a 100-150 nA flowing through these devices during constant voltage 

stress (CVS) and/or I-V measurements. 
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7.3.3 Total dose results 

Radiation exposure of these sample sets under the bias conditions of -2 MV/cm as 

shown in Figure 7.3 resulted in predominant positive charge trapping with a maximum 

∆VT ~ 400 mV observed in 7.5 nm HfO2 samples up to a total dose of 10 Mrad(SiO2). 

The leakage currents during the measurements in the 7.5 nm samples were on the order of 

Jg ~ 0.1 A/cm2. It was found that with repeated I-V sweeps, partial recovery (~ 50 %) was 

observed due to annihilation/neutralization from substrate injection of negative charges 

 

Figure 7.2. The figure shows threshold voltage shifts (∆∆∆∆VT) due to bias stress 
at + 3MV/cm and -2 MV/cm with experimental error bars (closed symbols) 
and biased x-ray irradiations (open symbols) at the same electric fields as 
the bias stress experiments. The irradiations were performed up to a total 
dose of 10 Mrad (SiO2) at dose rate of 31.5 krad(SiO2)/min. 
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during the repeated gate bias sweeps in the 7.5 nm HfO2 samples. This hints at significant 

number of these charges being present very close to the interface, like border traps [28] in 

the SiO2 interlayer that can exchange charge with silicon on the time scale of the 

measurements. It is however important to note that a residual shift of ~ 200 mV shift was 

found to be relatively stable to subsequent sweeps. Owing to a high leakage (Jg ~ 3-5 

A/cm2) induced neutralization (during I-V measurements) for the 3 nm/1nm samples, no 

radiation induced shifts were observed with radiation dose up to 10 Mrad(SiO2). Similar 

irradiation and pre and post-irradiation measurements were performed on the 3 nm 

HfO2/2 nm SiO2 samples. For the 3 nm HfO2/2 nm SiO2 samples, the leakage currents at 

 

Figure 7.3. The figure shows a comparison of the threshold voltage shifts 
(∆∆∆∆VT) between the three different samples (3 nm/1 nm, 3 nm/2 nm, 7.5 
nm/1 nm) as a function of x-ray dose under -2 MV/cm electric field. The 
irradiations were performed up to a total dose of 10 Mrad (SiO2) at dose 
rate of 31.5 krad(SiO2)/min for all the samples. 
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the gate biases studied were found to be on the order of ~ 20 pA (Jg ~ 8 x 10-4 A/cm2). 

These thicker IL samples showed a consistent negative voltage shift of ~ 50 mV during 

the irradiations up to a total dose of 10 Mrad(SiO2) at the oxide fields studied. This 

indicates predominant positive charge trapping with radiation dose under minimal 

injection conditions. Relative to the thinner interlayer samples (7.5 nm HfO2/1 nm SiO2) 

where injection dominates the initial part of ∆VT vs. dose curve, this sample illustrates 

the pure radiation response of such a system. 

For the radiation response of samples under positive gate bias conditions (Eox ~ 

+3 MV/cm) as shown in Figure 7.4, the thickest samples show predominant electron 

 

Figure 7.4. The figure shows a comparison of the threshold voltage shifts 
(∆∆∆∆VT) between the three different samples (3 nm/1 nm, 3 nm/2 nm, 7.5 
nm/1 nm) as a function of x-ray dose under +3 MV/cm electric field. The 
irradiations were performed up to a total dose of 10 Mrad (SiO2) at dose 
rate of 31.5 krad(SiO2)/min for all the samples. 
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trapping from instantaneous injection occurring from the inversion condition in Si. 

However this is observed at low doses as the ∆VT is dominated initially by electron 

injection as compared to the radiation induced bulk hole trapping. At higher cumulative 

doses, this trend is altered owing to the increased positive charge accumulation in the 

bulk as well as in the IL, which offsets the ∆VT observed from carrier injection. For the 

thinnest samples there was minimal change in the ∆VT shifts owing to neutralization 

probability arising from enhanced gate leakage in these samples [21]. The radiation 

response of the thicker IL samples at Eox ~ +3 MV/cm was almost identical to its 

response to a negative bias irradiation as discussed earlier. The net positive charge 

saturates at a maximum ∆VT shift of ~ 50 mV (similar to the negative bias irradiation) as 

shown in Figure 7.4. Hence irrespective of the bias polarity during CVS and irradiations, 

the devices with thicker interlayer continue to trap excess positive charge. The gate 

leakage currents did not change during the whole course of the irradiations for all the 

samples.  

There were no detectable shifts in the subthreshold I-V curve behavior for the 

irradiation or stress results reported in this work. This confirms the absence of interface 

trap buildup in these MOSFETS under the irradiation and stress conditions. Similar 

results have been reported previously with minimal interface trap build up in these 

materials owing to a higher pre-existing density of defects at the interface (Nit ~ 1012 cm-

2) [18, 19]. 
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7.4 Discussion 

The 7.5 nm HfO2/1 nm SiO2 samples exhibit threshold voltage shift (∆VT) under 

constant voltage stress due to charge injection dominated by the silicon surface condition 

of accumulation/inversion, which leads to the transient trapping and de-trapping. For 3 

nm HfO2/1 nm SiO2 MOSFETs, absence of threshold voltage shift is due to enhanced 

leakage current which neutralizes/annihilates the injection charge on the time scale of the 

conventional D.C. Ids-Vgs measurements. High leakage is predominantly from increased 

probability of direct tunneling in these devices even in the presence of ~ 1 nm SiOx 

interlayer. This phenomenon is discussed with Figure 6.5 highlighting the tunneling 

probability in case of the HfO2 based devices in Chapter VI.  

Theoretical calculations reveal that it takes ~ 0.7 nm for the complete band gap 

formation of SiO2, with interface roughness this value can even approach 1.2 nm [29]. 

Hence for the thinner IL samples, the reduced band offsets play a significant role in the 

substrate charge injection. For the 7.5 nm samples, injection from the gate metal, if any, 

was overshadowed by the Si-substrate induced charge injection. Additionally, it is 

important to realize that VT shift is defined by the position of charge centroid in the 

dielectric. Substrate injection charges in this case being closer to the interface dictates the 

threshold voltage shift more as compared to charges tunneling from the gate metal into 

traps located closer to the metal/oxide interface [21]. Furthermore, the physically thicker 

HfO2 aids in this respect thereby not altering the VT shifts from the perspective of charges 

tunneling from the gate electrode. It is however critical to determine the possibility of 

injection from the gate metal, hence the bias stress evaluation of the thicker interlayer 

serves as an ideal sample to determine this probability. The 2 nm SiO2 IL in these 
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samples acts as a better blocking electrode thereby minimizing (although not completely 

eliminating) the substrate charge injection in these bias conditions as shown in Figure 

7.2. The absence of threshold voltage shift under bias stress is also indicative of 

negligible charge injection from the metal electrode in all the samples studied in this 

work.  

On exposure of these devices to x-rays, the photons interact with the dielectric 

and generate photoelectrons (direct ionization), which further creates electron hole pairs 

(EHPs) in the oxide. In these thin oxides however the secondary photoelectrons from the 

metal and the silicon contribute to substantial EHP creation in the dielectric. A significant 

number of these EHPs recombine due to the applied electric field; the remainder of them 

gets trapped. This quantity is defined by the term “charge yield” which alters the C-V and 

I-V characteristics of the device. The total dose results as measured from the I-V sweeps 

for the three different sample structures are as shown in Figure 7.3 and Figure 7.4 for Eox 

~ -2 MV/cm and Eox ~ +3 MV/cm respectively for comparison. The enhanced positive 

charge trapping in the 7.5 nm HfO2 samples is owing to an increased bulk oxide as well 

as increase in the oxygen vacancies in the SiO2 IL from a thicker HfO2 growth. The 

oxygen vacancy argument is explained by Ryan et al. [23] and Bersuker et al. in their 

recent studies [30]. According to their investigation, the growth of a thicker HfO2 layer 

(longer high temperature exposure of the IL) results in the formation of a sub-

stoichiometric SiOx interlayer which can form amphoteric traps as mentioned previously 

in the chapter. These results are also verified by the MEIS results for our samples, which 

indicate the formation of this sub-stoichiometric layer for the 7.5 nm HfO2 samples and a 

relatively stoichiometric SiO2 in the thinner HfO2 samples. Theoretical investigations by 
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various authors predict the diffusion of oxygen vacancies and interstitials from the bulk 

HfO2 to the Si interface. These studies also mention about their eventual segregation at 

this interface being thermodynamically and kinetically favorable [31-33]. This 

additionally supports the formation of a SiOx IL during the HfO2 deposition and post 

deposition anneal as already observed by the MEIS technique. However the residual 

trapping of ~ 200 mV in the 7.5 nm samples also hints at some bulk hole trapping in 

these MOSFETs. Fundamentally, if all of these charges were to be distributed in the 

interlayer, we would expect no net ∆VT shift from the gate bias sweep owing to the high 

leakage from the quantum mechanical tunneling (reduced conduction band offset ECBO ~ 

1.5 eV) within ~ 1 nm from the Si substrate into the oxide. The very existence of the 

remnant VT shift is a strong indication of some bulk hole trapping apart from the 

increased SiO2 IL trapping in thicker HfO2 samples, which is consistent with previous 

studies [18, 19, 21]. This inference is also strongly supported by the results of earlier 

investigations about the observation of defects in the bulk of the HfO2, which are 

responsible for the positive charge trapping [20, 34, 35]. However the nature of the defect 

has been speculated to be similar to the ′ E γ  center (similar to Si-Si oxygen vacancies 

observed in the traditional SiO2/Si) from the EPR measurements [20]. The work 

described in this chapter combined with the understanding on the previous studies on the 

defect identification suggests the presence of Hf-Hf (bridging O vacancy) to be a possible 

defect state distributed in the bulk of the HfO2. Theoretical studies also predict oxygen 

vacancy and interstitial defects in the bulk of hafnium dioxide at various energy levels in 

the HfO2 band gap, which could be a potential reason for the observed residual threshold 

voltage shift [8]. The 3 nm HfO2/1 nm SiO2 sample shows negligible voltage shifts with 
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total dose. However the presence of a thinner bulk HfO2 accompanied by a possible 

reduction in the O vacancies in the SiO2 IL owing to the reduced growth of HfO2 bulk (3 

nm instead of 7.5 nm) cannot serve as a direct explanation to this reduced charge 

trapping. This is due to increase in the leakage current in the 3 nm HfO2/ 1 nm SiO2 

samples, which can neutralize/annihilate the trapped charge thereby resulting in 

negligible shifts in these samples. Hence a comparison of the total dose results of these 

samples with the thicker IL samples (~ 2 nm SiO2) can help gain a better understanding 

on the radiation induced charge trapping in these layered dielectrics. With a completely 

evolved band gap of ~ 9 eV, the minimal charge injection and neutralization reveals the 

pure radiation response in these devices. These thicker IL (~ 2 nm SiO2) devices with a 

threshold voltage shift of ~ 50 mV at 10 Mrad(SiO2) indicate minimal radiation induced 

trapping owing to reduced volume of bulk HfO2. Additionally, the presence of a thinner 

HfO2 bulk oxide (shorter exposure time for SiO2 IL at higher temperature) on the 2 nm 

SiO2 layer does not leach this interlayer of any substantial O thereby producing less O 

vacancies in the IL.  

The radiation response of this sample can be imagined to be the worst-case 

scenario for the 3 nm HfO2/1 nm SiO2 sample if one were to measure the pure radiation 

response without bias/leakage current induced neutralization. This brings an interesting 

observation that considering this scenario, the trapping in the 3 nm /1 nm samples will 

not scale with HfO2 thickness. Furthermore, it is important to consider that ~ 400 mV 

shift observed under 10 Mrad(SiO2) x-ray dose in the 7.5 nm sample is probably 

underestimated as the currents at the gate bias studied were around 3-5 nA (Jg ~ 0.1 

A/cm2), which can cause some leakage induced annihilation/neutralization of the trapped 
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charge. This additionally offsets the scaling of the trapped charge from the perspective of 

increase in bulk HfO2 thickness for the 7.5 nm HfO2 samples. This probably is one of the 

other reasons for the argument supporting the enhanced IL trapping in the thicker HfO2 

MOSFETs. Hence the total dose response of the physically thickest sample (7.5 nm 

HfO2/ 1 nm SiO2) and the thicker IL sample (3 nm HfO2/ 2 nm SiO2) and our MEIS 

results combined with the previous studies suggest that a significant amount of trapping 

occurs in the SiOx interlayer with the growth of a thicker bulk HfO2. The presence of 

residual trapping ~ 200 mV on the time scale of the measurements following the I-V 

sweeps are indicative of additional bulk hole trapping.  

Finally, the radiation response of the thicker IL samples at Eox ~ +3 MV/cm agree 

with the results of the 7.5 nm HfO2/1 nm SiO2 samples at similar oxide fields wherein it 

was concluded that the predominant trapping in the dielectric stack is positive which 

offsets the initial bias induced negative injected charge from the silicon at higher doses. 

This can be seen from absence of any negative charge trapping for the total dose response 

at +3 MV/cm on the 2 nm SiO2 IL samples. We would also like to add that probability of 

neutralization of the trapped charge during the D.C. current voltage measurements is 

significantly high and the bias stress and the radiation response could be considerably 

underestimated for all the samples. The use of faster techniques like pulsed Id-Vg and 

frequency dependent charge pumping methods can provide a better estimate of these 

trapped charges. 
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7.5 Conclusion 

From the radiation responses of the three different samples under investigation we 

conclude that the sub-stoichiometric SiOx interlayer and the HfO2 bulk contains a 

significant number of hole traps which affects the radiation response in these systems. 

The transient trapping and de-trapping observed in these samples suggest the presence of 

border traps in the form of O vacancies in the SiO2 IL which affects the bias stress and 

total dose response. The observation of residual trapping in the thicker bulk HfO2 

samples clearly indicates the substantial contribution of the bulk HfO2 layer to this hole 

trapping. For the future technology nodes (< 1 nm EOT), these issues do not pose a real 

problem as reduced volume of the gate oxide will cause less charge trapping as can be 

seen from our 3 nm HfO2/1 nm SiO2 samples. However trapping, if any, will be 

neutralized/annihilated by the increased tunneling induced gate leakage in these devices. 
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CHAPTER VIII 

 

SUMMARY AND CONCLUSIONS 

 

To summarize, the radiation response of the two material systems (SiO2/SiC and 

HfO2/Si) discussed in this dissertation work has highlighted the major issues associated 

with charge trapping in these future high power and low power candidate materials from 

a reliability perspective. This thesis includes the first observation of predominant hole 

trapping in nitrided SiO2/SiC MOS devices when subjected to x-ray irradiations. Nitrogen 

incorporation at the interface with high temperature NO annealing at 1175 °C passivates 

electrically active interface defects as measured from the decrease in the Dit (1013 eV-1cm-

2 to 1012 eV-1cm-2), thereby enhancing the inversion layer mobility. Although this 

significantly improves the device characteristics for SiO2/SiC based MOS devices, it 

suffers from its susceptibility to enhanced hole trapping thereby questioning its 

reliability.  

The enhanced positive charge trapping with irradiation in the presence of nitrogen 

at the SiO2/SiC interface was subsequently confirmed with similar trends in Fowler-

Nordheim and VUV (Very Ultra Violet) photo-injection studies. These studies suggest 

that high temperature growth in conjunction with the presence of ~ 1 nm thick nitrided 

interface results in an increased density of hole traps that can hamper device operation 

and its long-term reliability. Non-nitrided samples exhibit an improved radiation response 

owing to reduced positive charge trapping due to the absence of nitrogen and/or the 
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neutralization/annihilation of this reduced positive trap charge with some electron 

trapping at the interface/near interface defects. 

Isochronal annealing studies performed on nitrided samples provide an activation 

energy Ea ~ 0.3 eV for device recovery. Theoretical calculations reveal the presence of a 

nitrogen lone pair present in the proximity of the valence band edge of SiC, which may 

be one of the reasons for the observed positive charge trapping in these devices. More 

elaborate spectroscopic studies are required to identify the defects responsible for the 

enhanced positive charge trapping in these nitrided SiO2/SiC based MOS devices. Finally 

our results stress on the need to optimize the nitrogen content in these material systems in 

order to strike a balance between reducing the density of defects at the interface (Dit) and 

improving its operational reliability.  

Studies of radiation and bias stress induced charge trapping in low power 

candidate material systems of HfO2/SiO2/Si have underlined the fundamental issues that 

can affect device reliability in these gate stacks. The presence of the SiO2 interlayer (IL) 

adds to the complexity of understanding the pure radiation response in these high-κ 

MOSFETs. The introduction of SiO2 IL was important from the perspective of device 

operation as it serves to reduce the remote phonon scattering (soft optical phonon 

coupling with carriers) and remote coulombic scattering (increased trapped charge) in 

these devices thereby improving its mobility. The bias stress response indicated towards 

the presence of significant electron and hole traps in the sub-stoichiometric SiOx IL, 

which can alter the device threshold voltage thereby affecting its electrical characteristics. 

Additionally, the response to radiation of HfO2/Si material system also confirmed the 
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presence of net hole trapping in the bulk as well as in the SiOx interlayer (IL), which can 

be detrimental to device performance.  

Radiation response of gate oxides, which is a strong function of the material 

thickness and processing, apart from nature and energy of the ionizing species and oxide 

fields during radiation, require adequate controlled experiments to be performed to 

understand the former parameters to analyze and compare between different device 

structures. Materials analysis undertaken to verify the gate oxide and IL thickness 

confirm the targeted results from the growth recipe. RBS, MEIS and XRR results were 

found to be in agreement for verification of these thicknesses. Furthermore, MEIS results 

indicate towards the presence of some intermixing in these samples during HfO2 growth 

and high temperature post deposition anneals which can affect the desired device 

capacitance. The deviation of the accumulation capacitance measured using Hi-Lo C-V 

measurements from the calculated theoretical value strongly hints towards the possibility 

of this poorly understood intermixing phenomenon. These intermixing issues in the 

interlayer and in the oxide bulk can play a significant role in defining the charge trapping 

characteristics in these layered gate dielectric stacks during the bias stress and radiation 

studies.  

Lastly, these studies performed as a function of HfO2 bulk and SiO2 IL 

thicknesses under different fields supports previous literature on the presence of 

predominant hole trapping both in the bulk as well as in the SiO2 IL under radiation 

conditions. The annealing/neutralization of these radiation induced trapped charges with 

bias reversal strongly implies the charge injection induced recovery in the devices from 

reduced band offsets. The direct tunneling of these charges from the Si substrate under 
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such low fields explains the volatility of the trapped charge in these devices. The 

incorporation of dose enhancement effects due to the metal gate and underlying Si in 

these thin dielectrics provide refined estimates of net effective charge trapping efficiency 

in these gate dielectrics. Finally, as seen from the charge trapping response of the thinner 

HfO2 MOSFETs, these reliability issues do not pose a major problem for the gate 

dielectric thicknesses that will be used for future technology generations. 

 

 




