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 Matrix metalloproteinases (MMPs) are classically associated with late stage metastases, 

though previous work by our lab and others have expanded the role of MMPs to all stages of 

tumor development.  Using a genetic model of intestinal tumorigenesis, the Min (multiple 

intestinal neoplasia) mouse, we previously demonstrated a role for MMPs, in particular MMP-7, 

in the development of intestinal adenomas.    To further explore the role of proteinases in the 

development of intestinal neoplasia, I created a novel microarray to examine more than 500 

proteases for differential expression in intestinal tumors.  Relative microarray analysis found that 

MMPs-10, -13, and -14 have the highest fold change in expression in tumor compared to normal 

samples, while absolute microarray analysis indicated that MMPs-9, -12, -15 and -19 are present 

in tumor samples but not normal intestine.  As a result of this screen, I generated Min mice 

genetically deficient for various proteinases that were differentially detected in Min adenomas 

(MMP-2, -9, -12, and -19).  Genetic ablation of MMP-2, -12, or -19 did not affect tumor number 

or size, however, MMP-9 deficient Min mice developed 25% fewer tumors than littermate 

controls.  Further, in the context of intestinal tumors, the major cellular source of MMP-9 is 

neutrophils thus suggesting a pro-tumorigenic role of inflammation in early tumorigenesis.  

Additionally, our screen detected several mast cell produced proteinases in tumor tissue that 



were absent from normal intestine.  To examine the effect of mast cell proteinases in 

tumorigenesis, I generated mast cell-deficient Min mice.  Surprisingly, these mice developed 

50% more tumors than mast cell Min mice, thus indicating that mast cells function in an anti-

tumorigenic role early during intestinal tumorigenesis.  Thus, these studies demonstrate that 

proteinases and infiltrating inflammatory cells function in both pro- and anti-tumorigenic roles 

during early intestinal tumor development. 
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CHAPTER I 

 

INTRODUCTION 

 

Colorectal Cancer 

General Characteristics, Staging, Pathology, and Genetics 

Colorectal malignancies are the fourth most common type and the second most 

common cause of cancer related deaths in the United States after cancers of the lung and 

bronchus (American Cancer Society, 2007a).  The disease occurs with equal frequency in 

both men and women. In 2004 there were more than 150,000 new cases and 

approximately 50,000 deaths due to colorectal cancer, and similar numbers are predicted 

for 2007 (American Cancer Society, 2007a).  Approximately 50% of the Western 

population is predicted to develop colorectal tumors by 70 years of age with 10% of these 

cases progressing to malignancy (Fahy and Bold, 1998).  Worldwide there are predicted 

to be more than 600,000 deaths due to colorectal cancer and more than 1,100,000 new 

cases diagnosed in 2007 (American Cancer Society, 2007b).  A variety of risk factors that 

predispose a person’s susceptibility to developing colorectal cancers have been identified 

including family history, inflammatory bowel disease (IBD) , the presence of 

adenomatous polyps and diet (Jacobs et al., 2007).   

The two most commonly used staging systems used to describe the progression of 

colorectal cancer are known as the Dukes’ and AJCC/TNM systems (Benson, 2007).  The 

Astler-Coller modification of Duke’s classification system groups colorectal cancers into 

four stages based upon the depth of invasion and metastasis to local lymph nodes and 
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distant organs (Astler and Coller, 1954).  These stages are Dukes’ A, which is defined as 

invasion into the underlying submucosa or muscularis propria but confinement to the 

bowel wall.  Stage B designates tumors that have invaded deeper, through the serosa, but 

not spread to local lymph nodes.  Dukes’ stages C1 and C2 identify tumors that have 

metastasized to lymph nodes, and are differentiated in that stage C1 tumors, like stage A 

are confined to the bowel wall, while C2 tumors have spread through the serosa.  Tumors 

that have spread to distant organs are designated as Dukes’ stage D (Astler and Coller, 

1954).   

In contrast, the American Joint Committee on Cancer (AJCC) and Union 

International Contre le Cancer (UICC) advocate a classification scheme known as TNM6 

(International Union against Cancer. et al., 2002).  In the TNM6 system scores are 

calculated based upon three variables:  the depth of invasion of the primary Tumor 

(scored 0-4), the number of lymph Nodes involved (scored 0-3), and the presence or 

absence of distant Metastasis (scored 0-1).  Based upon the individual T, N and M scores, 

tumors are then grouped into stages identified by the roman numerals I-IV, with stage IV 

being the most advanced stage (Table 1) (International Union against Cancer. et al., 

2002).   

Patient survival strongly correlates with stage, with decreasing survival correlated 

with increasing stage (Benson, 2007).  Patients diagnosed with Dukes’ A (Stage I) 

colorectal cancer have a 5 year survival of greater than 90%; however, survival drops to 

5% as the disease progresses and involves distant organ metastasis (Fry et al., 1989).  A 

second important variable that correlates with survival rate is the degree of differentiation 

of the tumor.  Tumors are classified as either well, moderately, or poorly differentiated 
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based upon histological criteria.  The majority of colorectal cancers are “moderately 

differentiated”, and cancers that are graded as “poorly differentiated” are significantly  

 

Table 1:  Comparison of Dukes’ Staging versus TNM6 grading schemes for 
colorecteal cancer.  Astler-Coller modification of Dukes’ stages (far left) is compared to 
the newer AJCC-TNM6 system, which measures the depth of invasion in the tumor (T), 
the number of positive lymph nodes (N), and presence or absence of distant metastases 
(M). 

 

 

more likely to be associated with metastasis than moderately or well-differentiated 

tumors (Fry et al., 1989). Colorectal cancers directly invade the bladder, prostate, vagina, 

uterus, ureters, perineural muscle, pelvic bones, and sacral plexus (Willett et al., 1999).   

Metastatic spread to distant organs most commonly involves the liver, which can be 

detected in 10-30% of patients at time of diagnosis (Gatta et al., 2000).  Less commonly, 
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metastases are found in the lungs, vertebrae, brain, and bone marrow (Kanthan et al., 

1999). 

Rather than one single disease, colorectal cancer includes several tumors of 

several different cellular origins.  Most colorectal tumors are of epithelial origin, which 

includes adenocarcinoma, mucinous adenocarcinoma, signet-ring adenocarcinoma, 

squamous cell carcinoma, and adenosquamous carcinoma subtypes.  However, several 

other tumor varieties can develop in the colon and rectum of non-epithelial origin 

including carcinoid tumors (neuroendocrine cells), lipomas (adipocytes), lymphomas 

(lymphoid cells), and leiomyosarcomas (smooth muscle) (Brunicardi et al., 2005).  

Adenocarcinoma of the colon, by definition a tumor of the glandular epithelium, is the 

most common variety of colorectal cancer, and accounts for 95% of all colorectal 

malignancies (Ponz de Leon and Di Gregorio, 2001).   

The progression from normal colonic epithelium to invasive cancer involves 

several discreet morphological and genetic modifications.  The earliest lesion identified 

in the development of colorectal tumors is the presence of aberrant crypt foci (ACF).  

ACF are small clusters of abnormal crypts that can exhibit a variety of histopathologic 

features typical of tumors including enlarged, crowded nuclei; stratification of epithelial 

cells; depletion of mucin; and varying degrees of dysplasia (Di Gregorio et al., 1997) that 

can be used to further refine ACF into three groups- dysplastic, non-dysplastic, and 

mixed (Cheng and Lai, 2003).   

Adenomatous polyps, the smallest detectable lesion by routine colonoscopy, are 

defined as well demarcated, circumscribed lumps of epithelial dysplasia, and are the most 

common precursor lesion detected in the gastrointestinal tract (Haber, 2002).  Polyps are 
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extremely common in the Western population, and have been reported in as much as 50% 

of individuals over 50 years of age (Ponz de Leon and Di Gregorio, 2001).  Two general 

morphological categories of polyps exist:  pedunculated, that is adenomas that possess a 

stalk; and sessile, which are flat adenomas that rise above the surface.  Very small lesions 

(<1 cm) are occasionally referred to as “diminutive”, though this designation is 

uncommon (Weston and Campbell, 1995).  Polyps can be further subdivided into three 

major histological categories (villous, tubular, and tubulovillous) based upon their tissue 

architecture.  However, distinguishing a tumor as one type is somewhat ambiguous as the 

spectrum of tumor morphology is more of a gradient than three discreet points (Morson 

and Day, 2003).   

Several genetic changes occur during the progression from normal intestinal 

mucosa to invasive colorectal cancer including mutations to both oncogenes such as K-

ras, and β-catenin (Bos et al., 1987; Morin et al., 1997); and tumor suppressor genes 

including APC (adenomatous polyposis coli), MCC (mutated in colorectal cancer), DCC 

(deleted in colorectal cancer), and p53 (Figure 1) (Fearon and Vogelstein, 1990; Groden 

et al., 1991; Hollstein et al., 1991; Kinzler et al., 1991).  While there are likely numerous 

pathways that result in the development of colorectal cancer, a large majority (70-85%) 

of tumors develop via the “traditional pathway”, also known as the chromosomal 

instability (CIN) pathway (Worthley et al., 2007).  The traditional pathway involves a 

mutation or loss of APC, a mutation of K-ras, a loss of chromosome 18q (DCC), and 

finally deletion of chromosome 17p, which contains the tumor suppressor gene p53 

(Grady, 2004).  This pathway was generated by genetic profiling of both spontaneous and 

familial colorectal tumors at a variety of stages and compiling the results into a sequence 
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that reconciled the genetic and morphologic changes that occur during the development 

of colorectal cancer (Fearon and Vogelstein, 1990).   

 

 

  
Figure 1:  Genetic alterations that occur in the development of colorectal neoplasia.  
Mutations in the tumor suppressor APC or β-catenin are the initiating event in the 
development of colorectal cancer, and are carried in the germline of patients with the 
hereditary cancer syndrome FAP.  HNPCC, another hereditary cancer syndrome, 
involves mutations in the mismatch repair genes MSH-2 and MLH-1.  (Adapted from 
Kinzler and Vogelstein, 1996.) 

 

 

Spontaneous mutations in APC occur in nearly 70% of sporadic colorectal 

adenomatous polyps (Powell et al., 1992), and germline mutations in APC are the 

causative agent of the hereditary condition familial adenomatous polyposis (FAP) 

(Groden et al., 1991; Kinzler et al., 1991; Nishisho et al., 1991).  Patients with FAP 

develop hundreds to thousands of adenomatous polyps which invariably progress to 

colorectal cancer (Rustgi, 2007).  APC is a large 15 exon gene with several functional 

domains and mutations often result in a truncated protein missing the carboxy terminus 

(Rustgi, 2007).    APC has been shown be involved in a number of cellular processes 

including cell cycle regulation, migration, microtubule assembly, cell adhesion, apoptosis 

and cell fate determination via protein-protein interactions (Rustgi, 2007). 
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The most widely associated role for APC is as a master regulator of the Wnt 

pathway.  The carboxy terminal region of APC along with axin and glycogen synthase 

kinase-3 (GSK3), is crucial for phosphorylation and ultimately degradation of β-catenin 

(Korinek et al., 1997; Morin et al., 1997; Su et al., 1993).  In the absence of functional 

APC, β-catenin accumulates within the cytoplasm and eventually the nucleus where it 

promotes the transcription of Wnt pathway target genes through an interaction with a 

family of DNA binding proteins known as T-cell factor (Tcf) or lymphoid enhancing 

factor (Lef) (Behrens et al., 1996; Huber et al., 1996; Korinek et al., 1997).  Tcf target 

genes shown to be activated by β-catenin include protooncogenes such as c-myc (He et 

al., 1998) and WISP-1 (Xu et al., 2000), matrix metalloproteinases (Crawford et al., 

1999), and other genes known to contribute to tumor formation (Mann et al., 1999).  

Further, tumors that lack mutations in APC frequently have mutations in β-catenin, thus 

underscoring the importance of this pathway in the development of colorectal cancer. 

In summary, the development of colorectal polyps is a frequently occurring 

disease that affects 50% of the population over 70 years of age.  Fortunately, because of 

advances in early detection, many of these cases are detected and treated by routine 

colonoscopy before they progress to malignant lesions.  However, our understanding of 

the cellular changes that occur during tumorigenesis and disease progression is still quite 

poor.  In my work, I have sought to understand molecular events occurring in the tumor 

microenvironment of early stage tumors with the goal of identifying protective and pro-

tumorigenic proteinases in particular. 
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The Min Mouse as a Model Organism of Intestinal Tumorigenesis 

The Min (multiple intestinal neoplasia) mouse is a commonly used model for 

studying the development and treatment of colorectal cancer.  Generated as part of a 

forward genetic screen using ethynitrosurea mutagenesis, these mice were identified after 

exhibiting severe adult-onset anemia that was the result of the development of dozens of 

tumors throughout both the small and large bowel (Moser et al., 1990).  The mutation is 

heritable in an autosomal dominant manner, and subsequently, a single nonsense 

mutation (T A transversion at base pair 2549) was found in the murine orthologue of 

the human APC gene (Su et al., 1992).  This mutation results in a premature STOP codon 

at position 850, and as with human tumors, a truncated form of APC missing the carboxy 

terminus is produced (Su et al., 1992).  Homozygosity for the Min allele is embryonic 

lethal due to a defect very early in embryogenesis (Tam and Loebel, 2007).  Mice 

heterozygous for this allele develop numerous benign tumors through the intestinal tract, 

and females are predisposed to develop spontaneous mammary tumors.  Further 

characterization of these tumors revealed that multiple epithelial lineages were involved, 

suggesting that lesions likely arise from initiated mutipotent stem cells (Moser et al., 

1992). 

Mice heterozygous for the Min allele develop many symptoms that resemble the 

human familial FAP condition; however, there are significant differences as well.  While 

FAP tumors tend to be distributed throughout the colon, tumors in Min mice are much 

more commonly found in the small intestine, though colonic polyps do occur (Shoemaker 

et al., 1997a).  Tumors range in size from 0.5-8mm in diameter and like human tumors 

are heterogeneous and can morphologically be either pedunculated or sessile (Moser et 
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al., 1990).  Tumors develop from individual cells that have lost the second allele of APC, 

can be detected in animals as early as four weeks old (Yamada et al., 2002), and are 

frequently aneuploid (Rao et al., 2005).    A key limitation to the Min model is that 

tumors that do form are almost always benign, rarely progressing to become locally 

invasive, and virtually never metastasize (Shoemaker et al., 1997a).  Other APC mutant 

mice have been developed with varying tumorigenic profiles.  Most notable are mice with 

mutations at codons 716 (APCΔ716) and 1638 (APCΔ1638N).  In the case of 

APCΔ1638N, these mice have been reported to develop liver metastases (Kucherlapati et 

al., 2001), however, the life span of APCΔ1638N mutants is significantly longer than Min 

animals, and tumors are not detectable until 25 weeks of age (Kucherlapati et al., 2001).  

Moreover, the number of tumors that develop in each of these models is significantly 

fewer than in the Min mouse. 

A number of genetic factors have been shown modulate tumor development in the 

Min system.  The genetic background of the animal has been shown to tremendously 

influence tumor multiplicity and progression.  To date, there have been 7 genetic loci 

identified as “modifier of min” with strain specific tumor-resistant and sensitive alleles 

(Kwong et al., 2007).  The best characterized modifier locus is Mom1.  Mom1 was 

initially described as a dominant acting allele that conferred resistance to tumor formation 

in the Min system, and was found in AKR/J, MA/MyJ and CAST/J strains, but not in 

C57Bl/6 (Dietrich et al., 1993).  The allele mapped to a 4 cM region of chromosome 4, 

and was eventually identified as a secretory phospholipase, Pla2g2a (Cormier et al., 

1997).  Other modifier loci have been identified that both encode proteins, like Mom1, 

and are in non-coding regions, like Mom7.  Further, many of these loci are highly 
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polymorphic with at least five variant alleles known to exist (Haines et al., 2005; Kwong 

et al., 2007). 

Aside from the well established utility of the Min model in identifying the role of 

genetic modifiers of colorectal carcinogenesis, the model is commonly used to evaluate 

the efficacy of chemopreventative pharmacologic agents.  An excellent example of this is 

the protective role of NSAIDs (non-steroidal anti-inflammatory drugs) in tumorigenesis.  

COX-2 (cyclooxygenase-2), an inducible enzyme that mediates the production of 

prostaglandins, is frequently over-expressed in a variety of human tumors.  COX-2 

produced prostaglandins have been shown to both stimulate proliferation and confer 

apoptosis resistance to tumor cells.  Treatment of Min mice with NSAIDs that inhibit 

COX-2 activity dramatically inhibited tumor formation (Boolbol et al., 1996) and paved 

the way for human clinical trials which had similar results (Rostom et al., 2007). 

A second example of the utility of pharmacologic agents in the Min system is in 

the case of MMPs (matrix metalloproteinases).  MMP-7, normally produced by Paneth 

cells in the intestine, is frequently localized to tumor cells in colorectal lesions 

(McDonnell et al., 1991; Wilson and Matrisian, 1996).  Min mice with MMP-7 

genetically ablated develop ~60% fewer tumors than do littermate controls, implicating 

MMP-7 as pro-tumorigenic mediator of tumorigenesis (Wilson et al., 1997). 

Pharmacological inhibitors of MMPs, known as MMPIs (MMP Inhibitors), were also 

tested in the Min model.  MMPIs with broad spectrum activity that includes MMP-7 

inhibition resulted in a 48-70% inhibition of tumor formation (Goss et al., 1998; 

Wagenaar-Miller et al., 2003), indicating that the results of genetic modification can be 

recapitulated chemically in the Min model. 
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Despite some key differences, the molecular and pathologic parallels to human 

disease make the Min model an excellent tool for studying the development and treatment 

of early-stage colorectal tumorigenesis.  Furthermore, genetic and pharmacologic studies 

in this model system have emphasized the importance of proteolytic enzymes, in 

particular MMP-7, in the development of intestinal neoplasms, thus making the MMPs an 

attractive target for further study.   

 

 

MMPs and Cancer 

The Matrix Metalloproteinase Family 

The matrix metalloproteinases (MMPs), a subfamily of extracellular zinc-

dependant proteinases belonging to the metzincin subclan, MA(M), involved in numerous 

biological processes (Rawlings et al., 1998).  The MMPs are Collectively, MMPs are able 

to degrade all structural components of the extra-cellular matrix (ECM) (Nagase et al., 

2006), though a number of non-ECM bioactive substrates for MMPs have been 

discovered (Sternlicht and Werb, 2001).  While the majority of MMP activity is 

extracellular, recent studies have indicated that in certain conditions MMP-1, -2 and -11 

may act on intracellular proteins (Kwan et al., 2004; Limb et al., 2005; Luo et al., 2002).  

To date, 25 vertebrate, 23 human, and 22 murine MMPs have been identified (Sternlicht 

and Werb, 2001).  Multiple structural motif similarities exist between family members 

including a conserved zinc binding motif (HEXXHXXGXXH) and  a “Met turn” (usually 

ALMYP) both within the catalytic domain, and a “cysteine switch” motif (PRCGXPD) in 

the pro domain (Sternlicht and Werb, 2001). 
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Individual MMPs are referred to by a sequential numeric nomenclature system 

reserved for vertebrate MMPs, though many have common names that reflect substrates, 

expression, or cellular localization.  Classically, human MMPs can be categorized into 6 

groups based upon substrate preference and domain architecture: the matrilysins, the 

collagenases, the gelatinases, the stromelysins, the membrane-type MMPs, and “others”- 

MMPs that do not fit well into any of the other groups (Figure 2) (Nagase et al., 2006).   

The minimal domain structure that distinguishes MMPs consists of three domains 

required for secretion (pre domain), enzyme latency (pro domain), and catalysis (catalytic 

domain) (Nagase and Woessner, 1999).  The matrilysins are the only MMPs to have the 

minimal domain structure.  With one exception, MMP-23, all other vertebrate MMPs 

contain a hemopexin/vitronectin-like domain that is juxtaposed to the catalytic domain 

through a short linker region.  Rather than a hemopexin domain, MMP-23 contains a 

unique C-terminal cystein-array/immunoglobulin like domain.   

MMP-7 (matrilysin, MEROPS M10.008) and MMP-26 (matrilysin-2, 

endometase, MEROPS M10.029) are the two members of the matrilysins.  While humans 

have both members of this group, rodents lack MMP-26, which to date has only been 

detected in primate genomes (Huxley-Jones et al., 2007).  MMP-7 acts on a wide variety 

of ECM substrates including non-fibrillar collagens, gelatins, fibronectins, and 

proteoglycans (Quantin et al., 1989; Sellers and Woessner, 1980; Woessner and Taplin, 

1988).  Additionally, several non-ECM substrates for MMP-7 have been identified 

including pro-α-defensin, Fas-ligand, pro-tumor necrosis factor, and E cadherin (Nagase 

et al., 2006).  MMP-26 has the ability to proteolyze a number of ECM molecules as well, 

though, unlike most MMPs, is largely intracellulary stored (Nagase et al., 2006).   
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Figure 2:  Domain architecture of the MMP family.  MMP family members can be 
classified into five broad domains based upon substrate specificity and domain 
architecture.  Abbreviations are as follows:  Fn repeats (fibronectin repeats), H (hinge 
region), O (O-glycosylated domain), F (furin cleavage site), TM I (transmembrane 
domain Type I), GPI (GPI anchor), C Array (‘Cysteine array’), Ig Like (Ig-like domain). 
 
 
 
 

The collagenases include MMP-1 (interstitial collagenase, MEROPS M10.001), 

MMP-8 (neutrophil collagenase, MEROPS M10.002), MMP-13 (collagenase-3, 

MEROPS M10.013), and MMP-18 (Xenopus collagenase, MEROPS M10.018, not 

present in humans or mice).  Like the vast majority of MMPs, collagenases contain a 
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heompexin domain, that when present, influences enzyme activation, substrate binding, 

membrane activation and has been shown to have some catalytic activity (Sternlicht and 

Werb, 2001).  Collagenases are best known for their ability to degrade native, fibrillar 

collagen, though, like with all MMPs, non-matrix substrates have been found as well 

(Nagase et al., 2006).  Mice and rats have two copies of the gene for MMP-1, designated 

as mcola and mcolb, though these genes are only rarely expressed, and MMP-13 acts as 

the major collagenase in these animals (Balbin et al., 2001). 

The gelatinase group consists of two enzymes- MMP-2 (gelatinase A, 72kDa 

gelatinase, MEROPS M10.003) and MMP-9 (gelatinase B, 92kDa gelatinase, MEROPS 

M10.004).  Gelatinases contain three fibronectin type II repeats within the catalytic 

domain that bind to and aid in the degradation of gelatin (Murphy et al., 1994).  In 

addition to denatured collagen, the gelatinases have been shown to degrade type IV, V 

and XI collagen, laminin, and aggrecan; and, MMP-2, but not MMP-9, has been 

demonstrated to have some collagenolytic activity, but the in vivo relevance of this is not 

yet known (Nagase et al., 2006; Patterson et al., 2001). 

There are three members of the stromelysin subgroup: MMP-3 (stromelysin-1, 

transin, MEROPS M10.005), MMP-10 (stromelysin-2, transin-2, MEROPS M10.006) 

and MMP-11 (stromelysin-3, MEROPS M10.007).  The stromelysins and collagenases 

have similar domain architectures, but the stromelysins are unable to cleave insterstitial 

collagen (Nagase et al., 2006).  MMP-3 and -10 are highly homologous proteins with 

similar structure and substrate specificity, but differ in their tissue expression.  

Stromelysins-1 and -2 degrade a wide variety of ECM substrates including laminin, 

fibronectin, entactin, collagen IV, and proteoglycans.  However, MMP-11 is only 
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distantly related to the other stromelysins, and has been demonstrated to have only weak 

activity towards ECM components, but has been shown to readily cleave serpins (a class 

of serine protease inhibitors) (Murphy et al., 1993; Pei et al., 1994).    Evolutionary 

analysis of nucleotide sequence suggests that MMP-11 is more closely related to the 

membrane type MMPs than to the other stromelysins, though it is still classified as a 

stromelysin for historical purposes (Massova et al., 1998). 

  The membrane-type MMPs can be subdivided into two groups.  There are four 

type I transmembrane MMPs: MMP-14 (MT1-MMP, MEROPS M10.014), MMP-15 

(MT2-MMP, MEROPS M10.015), MMP-16 (MT3-MMP, MEROPS M10.016), and 

MMP-24 (MT5-MMP, MEROPS M10.023), and two glycosylphosphatidylinositol-

anchored proteins: MMP-17 (MT4-MMP, MEROPS M10.017), and MMP-25 (MT6-

MMP, MEROPS M10.024).  Like MMP-11, all members of the membrane-type group 

contain a furin recognition motif at the C-terminus of the propeptide (Nagase et al., 

2006).  MT1-MMP has been shown to have collagenolytic activity towards collagens I, II 

and III (Ohuchi et al., 1997) and mutant mice lacking this enzyme display skeletal defects 

suggesting a critical role for MT1-MMP in osteogenesis (Holmbeck et al., 1999).  A 

second important role for MT1-MMP is in cell surface activation of pro-MMP-2 (Sato et 

al., 1994), a capability probably also existing in MT2 and MT3-MMPs (Page-McCaw et 

al., 2007).  Additionally, MMP-23 (cysteine array MMP, MEROPS M10.022), while not 

classically classified as a membrane-type, is proposed to be a type II membrane protein 

having a transmembrane domain at the N-terminus of the propeptide (Pei et al., 2000). 

The remaining MMPs that do not fit well into any of the other categories, and are 

grouped together as “other MMPs”.  Three of the MMPs in this group (MMP-12, MMP-
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20, and MMP-27) have structural and genomic homology to the stromelysins, but are not 

classified as such.  MMP-12 (macrophage metalloelastase, MEROPS M10.009) has been 

shown to degrade elastin, fibronectin, proteoglycans and is primarily expressed by 

macrophages, but is also detected in chondrocytes and osteoclasts (Hou et al., 2004; 

Kerkela et al., 2001).  MMP-19 (RASI, MEROPS M10.021), was first detected in the 

activated lymphocytes and plasma from patients with rheumatoid arthritis, and has a very 

wide expression pattern including most organs and proliferating keratinocytes (Sadowski 

et al., 2003).  MMP-20 (enamelysin, MEROPS M10.019) has an extremely restricted 

expression pattern and is found in newly formed tooth enamel and during periodontal 

disease (Ryu et al., 1999).  MMP-21 (Xenopus MMP, XMMP, MEROPS M10.026), is a 

poorly characterized MMP with a wide expression pattern, and is commonly expressed 

by basal and squamous cell carcinomas (Ahokas et al., 2003).  MMP-27 (chicken MMP, 

CMMP, MEROPS M10.027) was originally detected in chicken embryo fibroblasts 

where it was given the designation MMP-22.  However, in mammals it is only known 

from genomic sequences and to date has not been characterized (Yang and Kurkinen, 

1998).  The last member of the “other” group, MMP-28 (epilysin, MEROPS M10.030), is 

thought to function in wound repair and is detected in a wide variety of tissues including 

cartilage, heart, lung, placenta, testis, and the gastrointestinal tract (Saarialho-Kere et al., 

2002).  Like MMPs-11 and -17, MMPs-21, -23 and -28 contain furin recognition 

sequences adjacent to the catalytic domain suggesting that they are likely to be 

intracellularly activated and secreted as activate enzymes (Nagase et al., 2006).    

Lastly, a specialized class of protein inhibitors known as the tissue inhibitors of 

metalloproteinases (TIMPs) are frequently associated with the MMPs.   There are 4 
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TIMP family members, and TIMPs reversibly inhibit MMP activity and demonstrate 

some inhibitory selectivity towards particular MMP family members.  In addition, TIMPs 

have also been shown to also mediate activation of pro-MMPs by acting as a scaffolding 

partner and bringing the pro-MMP is close juxtaposition to an activating proteinase 

(Sternlicht and Werb, 2001). 

 

Regulation of MMP Activity 

The expression and activation of MMPs is tightly regulated at multiple levels to 

ensure that active MMPs are present only in appropriate conditions.  This strict control 

affects every stage of the MMP’s lifecycle including modulators of transcription, 

translation, secretion, activation, and catalytic activity of mature enzymes.  

Transcriptional control of MMPs can be up- or downregulated by factors including 

several growth factors (TGFβ, EGF), ECM proteins, phorbol esters (12-O-tetradecanoyl-

phorbol-13-acetate [TPA]), cell stress, and changes in cell shape (Parks and Mecham, 

1998).  Many of these stimuli function by inducing the expression or activity of the proto-

oncogenes c-fos and c-jun, which bind AP-1 sites within the promoter region of several 

MMPs (Sternlicht and Werb, 2001).  However, while some stimuli coordinately regulate 

some MMP genes, other stimuli can have differential effects.  In humans, transforming 

growth factor-β (TGFβ) signaling increases transcription of MMP-13, but downregulates 

expression of MMPs-1 and -3 (Uria et al., 1998).  Additionally, the same stimulus may 

have different effects on expression depending on the cellular target.  Cultured human 

keratinocytes express MMP-10 when treated with TPA, but fibroblasts react to the same 

stimulus by expressing MMP-3 (Windsor et al., 1993).  Thus, MMP transcription is 
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dependent upon the context of not only appropriate stimulus, but of cellular origin as 

well.   

While atypical for MMPs, mechanisms do exist that affect transcribed MMP 

sequences prior to translation and effectively modulate activity and amount of mature 

protein.  One way that MMP activity is modulated is by the production of splice variants.  

There are several splice variants of MMP-16, normally a cell surface associated protein, 

and one splice variant results in the production of a soluble and proteolytically active 

isomer (Matsumoto et al., 1997).  MMPs also may be regulated by modulating the 

stability of mature mRNA, prior to translation.  Stabilizing mRNA results in more 

proteins produced per mRNA molecule, thus effectively increasing the concentration of 

the target gene.  For example, phorbol esters and epidermal growth factor (EGF) have 

been shown to stabilize transcripts of MMP-1 and MMP-3 (Delany et al., 1995).   

Conversely, TGFβ has been shown to destabilize MMP-13 transcripts, resulting in fewer 

molecules of MMP-13 made per transcript (Delany et al., 1995).  

Freshly synthesized MMPs contain two domains that are absent in active 

enzymes, a pre- and a pro- domain.  Prior to secretion of pro-MMPs, a hydrophobic 

stretch of amino acids known as the ‘pre’ domain is removed.  This pre-domain is 

important for targeting MMPs for extracellular secretion.  While most MMPs are secreted 

constitutively once they are translated, instances exist of where pro-MMPs are stored in 

secretory granules until the cell receives an appropriate stimulus.  Circulating neutrophils, 

a class of leukocytes, synthesize and store MMP-8 and MMP-9 in tertiary granules, 

which are only released following neutrophil activation by specific pro-inflammatory 

mediators (Hasty et al., 1990).  A second example of this is MMP-12, which is produced 
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and then stored by macrophages until an appropriate stimulus (protein kinase C activation 

as a result of PAR-1 stimulation) leads to secretion (Raza et al., 2000).  Furthermore, 

evidence exists that MMP-26 may also be stored intracellularly, but the molecular 

mechanisms behind this are unknown (Marchenko et al., 2004). 

Most MMPs are synthesized and secreted as inactive zymogens (proMMPs) that 

must first be activated to become enzymatically capable of acting on substrates.  A 

mechanism commonly referred to as “stepwise activation” is used to cleave the pro 

domain and produce an active MMP.   Stepwise activation refers to a two-step 

mechanism whereby a proteinase susceptible bait region is removed from the pro region 

by non-specific proteinases resulting in a conformational change.  This conformational 

change allows other MMPs, or in some circumstances the MMP intermediate itself, to 

completely remove the remainder of the propeptide, and produce a mature, active protein 

(Nagase et al., 1990).  MMP-2, however, is an interesting exception to this mechanism, 

and is activated at the cell surface through a multistep pathway that involves MMP-14 (or 

MMP-15) and TIMP-2.  In this tri-molecular mechanism, activated MMP-14 on the cell 

surface binds to and is inhibited by free TIMP-2.  The C-terminal domain of the bound 

TIMP-2 acts as a receptor for the hemopexin domain of proMMP-2, which is then 

cleaved by a second molecule of MMP-14, and activated by a second molecule of MMP-

2 (Deryugina et al., 2001).  This system has a secondary control in that low levels of 

TIMP-2 favor activation of MMP-2, while high levels of TIMP-2 saturate free MMP-14 

and thus prevent MMP-2 activation. 

Finally, once active, MMPs are sensitive to inhibition by protein inhibitors- the 

TIMPs.  To date, four TIMP members have been identified: TIMP-1, TIMP-2, TIMP-3, 
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and TIMP-4 (Sternlicht and Werb, 2001).  TIMP family members share a 37-51% 

sequence homology, and as a group reversibly inhibit all MMP family members in a 1:1 

stoichiometry (Clendeninn and Appelt, 2001).   TIMPs contain 12 highly conserved 

cysteine residues that form six intrachain disulfide bridges to produce a six-loop, two-

domain structure (Williamson et al., 1990).  Additionally, there are non-specific 

proteinase inhibitors such as the serum constituent α2-macroglobulin.  Like MMPs, the 

expression pattern of TIMPs varies considerably between tissues, and individual TIMPs 

differ in their ability to bind and inhibit MMPs (Woessner and Nagase, 2000).  Thus, 

multiple control mechanisms exist that allow for tight control of MMP activity at several 

levels (Figure 3).  These mechanisms frequently overlap; resulting in distinct expression 

patterns and generating feedback loops that result in tightly regulated MMP expression, 

activation, and activity. 

 

MMPs in Tumorigenesis and Cancer Progression 

Cancer is the result of a progressive series of genetic and physiologic events that 

disrupt the normal tissue homeostasis.  In 2000, Hanahan and Weinberg described 

“Hallmarks of Cancer”, six events that are essential in the transformation from normal 

cells to a malignant neoplasm.  These events are: (i) immortalization, (ii) resistance to 

apoptosis, (iii) self sufficiency with respect to growth signals, (iv) insensitivity to anti-

proliferative signals, (v) sustained angiogenesis, and (vi) the ability to invade local and 

distant tissues (Hanahan and Weinberg, 2000).  By virtue of a degrading a wide variety of 

ECM substrates and localizing to the invasive edge, MMPs have been historically 

associated with only the latest of these hallmarks - local invasion and metastasis.   
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Figure 3:  Regulation of MMPs occurs at multiple levels.  MMPs activity is tightly 
regulated at the RNA level through control of (1) transcription, (2) post-transcriptional 
splicing, and (3) RNA stabilization.  At the protein level MMP activity is modulated by 
(4) storage in vesicles until an appropriate signal mediates controlled release, (5) 
activation of latent pro-enzymes to a catalytically active form, and (6) inhibition by a 
class of endogenous proteins known as TIMPs. 
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However, several lines of experimental evidence have demonstrated roles for MMPs at 

all stages of tumor development in both pro- and anti- tumorigenic roles (Lopez-Otin and 

Matrisian, 2007; Martin and Matrisian, 2007; Noel et al., 2008).Aberrant MMP activity 

has been shown to mediate the earliest stages of tumorigenesis.  MMP-3, a stromally 

expressed MMP, is commonly over-expressed in breast tumors.  Exposure of a normal 

mammary epithelial cell line, Scp2, to MMP-3 causes cells to undergo epithelial to 

mesenchymal transition (EMT), presumably through the cleavage of E-cadherin, and a 

loss of cell-cell adhesions (Radisky et al., 2005).  Further, MMP-3 treated cells express a 

splice variant of Rac1, which causes intracellular concentration reactive oxygen species 

(ROS) to increase.   High intracellular ROS concentrations directly cause oxidative 

damage of DNA and subsequently genomic instability, as well as the promotion of EMT 

by stimulating the expression of the transcription factor Snail (Radisky et al., 2005; 

Sternlicht et al., 1999). 

MMP overxpression has been shown to produce tumors that are refactory to pro-

apoptotic stimuli, a process that is thought to work through Darwinian selection for 

resistant clonal populations.  Fas ligand (FasL) is a type II membrane protein expressed 

by several inflammatory cell lineages and upon binding to its receptor, Fas, rapidly 

induces a signal cascade that ultimately results in target cell apoptosis.  Using a mouse 

model of prostate involution, a process dependent upon FasL-Fas interactions, mice that 

lack MMP-7 have a 67% decrease in apoptotic index, when compared to wild type 

controls (Powell et al., 1999).  MMP-7 has been shown to generate a soluble form of 

FasL that is functionally competent, and rapidly induces apoptosis of cells in culture upon 

acute exposure.  However, chronic exposure to this soluble form selects for a population 
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of cells that are refractory to Fas mediated apoptosis (Fingleton et al., 2001; Vargo-

Gogola et al., 2002).   

MMPs are capable of stimulating tumor cell proliferation in a number of ways.  

Perlecan and decorin, two components of the ECM, bind and sequester fibroblast growth 

factor (FGF) and TGF-β, respectively, both of which can be liberated by MMP activity, 

and result in cellular proliferation (Imai et al., 1997; Whitelock et al., 1996).  Similarly, 

MMPs are capable of degrading inhibitory binding proteins, resulting in the release of 

active growth factors.  Insulin-like growth factor binding proteins (IGF-BPs) bind to and 

sequester active IGFs, limiting their bioavailability.  By direct proteolytic cleavage, 

MMP-7 degrades IGF-BP3, and releases active IGF-II which promotes cellular 

proliferation (Miyamoto et al., 2007).  MMPs activity directly can convert inactive 

growth factors to an active form, as seen by MMP-2 and MMP-9 processing of inactive 

TGF-β to an active form (Yu and Stamenkovic, 2000).  Thus, by degrading inhibitory 

binding proteins, or by directly liberating or activating latent growth factors, MMPs have 

been shown to modulate proliferation of tumor cells.   

Angiogenesis, the process by which tumors become vascularized, is both 

positively and negatively regulated by MMPs.  Vascular endothelial growth factor 

(VEGF), a potent stimulator of angiogenesis, exists in an inactive complexed state bound 

to connective tissue growth factor (CTGF).  This complex is attacked by MMP-14, CTGF 

is degraded, releasing active VEGF and stimulating angiogenesis(Hashimoto et al., 

2002).  Further, VEGF is cleaved by MMPs-3 and MMP-9 to generate a truncated protein 

incapable of binding heparin sulfates, and thus promoting an irregular pattern of 

neovascularization (Lee et al., 2005).  Additionally, since VEGF binds strongly to matrix 
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proteins due to heparin binding domains, degradation of ECM by MMPs is thought to be 

another mechanism by which MMPs can increase levels of bioactive VEGF (Bergers et 

al., 2000).  Conversely, MMP activity can inhibit angiogenesis.  MMPs--3, -12, -19, and -

25 cleave cell-surface urokinase-type plasminogen activator receptor (uPAR), resulting in 

less cellular urokinase plasminogen activator (uPA) binding, and consequently, 

diminished formation of angiogenic structures (Andolfo et al., 2002; Koolwijk et al., 

2001).  A number of studies have shown that anti-angiogenic peptides such as angiostatin 

or tumstatin can be generated by MMP cleavage of plasmin or collagen IV, respectively.  

In this regard, MMP-12 mediated generation of angiostatin is considered to be highly 

relevant to its apparent anti-tumor role (Acuff et al., 2006; Cornelius et al., 1998; 

Houghton et al., 2006).  Similarly, MMP-9 appears to suppress tumor growth in some 

models through generating of angiostatin or tumstatin (Chen et al., 2005; Hamano et al., 

2003). 

Several studies have recently detailed other apparently protective, anti-

tumorigenic roles for MMPs.  Mice lacking MMP-8, an enzyme predominantly expressed 

by neutrophils, develop significantly more papillomas than littermate controls when 

treated with DMBA+TPA, a common chemical carcinogenesis model of skin 

tumorigenesis.  This effect was rescued by bone-marrow transplantation, demonstrating 

that neutrophil-derived MMP-8 is sufficient to restore the protective effect of this MMP 

(Balbin et al., 2003).  Similarly, mice deficient for MMP-3 develop tumors sooner than 

littermate controls, and this increased growth rate was coupled with an elevated rate of 

proliferation, though apoptosis was unaffected (McCawley et al., 2004).  In both of these 
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studies, MMP-mediated alteration of chemokines was suggested as the mechanism 

behind the effects seen. 

In conclusion, in recent years the role of MMPs in tumor development has expanded 

dramatically.  Historically, MMPs have been viewed as pro-tumorigenic, and in 

particular, associated with pro-metastatic spread, although current evidence demonstrates 

that MMPs are key players during all stages of tumor development.  Several MMPs are 

differentially over-expressed in human colon cancer.  To date, MMPs-1, -2, -3, -7, -8, -9, 

-10, -11, -12, -14, -21, and -25 have been found to be more abundant in colon tumors 

compared to normal colonic tissue.  Conversely, MMP-19 and -28, while normally 

present in colon tissue, are less abundant in colonic neoplasms, however, the 

consequence of the dysregulation of these MMPs is unclear (Ahokas et al., 2002; Bister 

et al., 2004; Sun et al., 2007; Wagenaar-Miller et al., 2004).  Because of the expanded 

role of MMPs to include all stages of tumor development, and the protective, anti-

tumorigenic role observed for several MMPs, I aimed to generate a comprehensive 

profile of MMPs expressed in a mouse model of colorectal tumor development.  

Furthermore, genetic ablation of several MMPs in the Min system allowed me to 

investigate functions of specific pro- and anti-tumorigenic MMPs that can be used to 

develop more specific MMPIs.  
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CHAPTER II 

 

MATERIALS AND METHODS 

 

Mice Breeding and Genotyping 

Preparation of Genomic DNA 

 Genomic DNA for genotype analysis was prepared from the distal tip of the tail 

by incubating a 3mm section of tail in 100μl of a lysis buffer composed of 25 mM NaOH, 

0.2 mM EDTA.  After incubation in the lysis buffer for 25 minutes at 95° C, 100μl of 40 

mM Tris-HCl solution was added to neutralize the alkali, and the preparation was briefly 

mixed by vortexing. 

 

Min Mice 

 Min mice (C57Bl/6J-APCMin/+) were purchased from the Jackson Laboratory (Bar 

Harbor, ME) to establish a breeding colony with wild-type C57Bl/6J mice from the same 

source.  All mice were maintained on a high-fat 5015 diet (LabDiet, Purina, St. Louis, 

MO) which has been shown to enhance tumorigenesis in the Min model system (van 

Kranen et al., 1998).  Pups were weaned at 3 weeks of age and genotyped by PCR 

analysis.  A 340 base pair product was amplified using the primers 5’- TTC TGA GAA 

AGA CAG AAG TTA-3’ and 5’-TTC CAC TTT GGC ATA AGG C-3’.  PCR reactions 

contained 50 pmol each primer (Invitrogen), 1μl NaOH isolated genomic DNA, and 

HotstarTaq master mix (Qiagen, Valencia, CA) consisting of Taq polymerase, reaction 

buffer, and dNTPs.  Reactions were performed on a RoboCycler Gradient 96 (Strategene, 
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La Jolla, CA) using the following program:  15 min at 94° C (1 cycle); 30 sec at 94° C, 1 

min at 55° C, 1 min at 72° C (35 cycles); 2 min at 72° C (1 cycle).  The product from this 

PCR reaction was run out on a 1.5% agarose 1X TBE gel containing 0.001% (v/v) 

ethidium bromide and visualized under UV light. 

 

Generation of MMP-2-/- Min Mice 

 Min mice lacking MMP-2 were generated by crossing female mice deficient for 

MMP-2 (Itoh et al., 1997) with male mice carrying the Min allele.  Resulting female 

offspring heterozygous for MMP-2, were crossed with male mice heterozygous for 

MMP-2 and carrying the Min mutation.  Four week old mice were genotyped for MMP-2 

by PCR analysis using genomic DNA isolated from the tail as previously described and 

the following primers:  MMP-2 KO FW:  5’-TAG AAT TCC TGC AGC CCG-3’, MMP-

2 KO RV: 5’-CAA ACT ACA ACC AGC TGC TC-3’ (knockout product 243bp); MMP-

2 WT FW: 5’-CAA CGA TGG AGG CAC GAG TG-3’, MMP-2 WT RV: 5’-GCC GGG 

GAA CTT GAT CAT GG-3’ (wild type product 535bp).  PCR reactions contained 50 

pmol each primer (Invitrogen), 1μl NaOH isolated genomic DNA, and HotstarTaq master 

mix (Qiagen, Valencia, CA) consisting of Taq polymerase, reaction buffer, and dNTPs.  

Reactions were performed on a RoboCycler Gradient 96 (Strategene, La Jolla, CA) using 

the following program:  15 min at 94° C (1 cycle); 1 min at 94° C, 45 sec at 52° C, 30 sec 

at 72° C (33 cycles); 7 min at 72° C (1 cycle).  Resulting products were run out on a 1.5% 

separated on a 1.5% agarose gel by electrophoresis and visualized with ethidium 

bromide. 
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Generation of MMP-2-/-;MMP-7-/-Min Mice 

 Min mice deficient for both MMP-2 and MMP-7 were generated by crossing 

female mice deficient for MMP-2 with male mice deficient for MMP-7.  The resulting 

female offspring, heterozygous for both MMPs (MMP-2-/+;MMP-7-/+), were crossed back 

to a male MMP-7 deficient animal generating animals heterozygous for MMP-2, but 

lacking MMP-7 (MMP-2-/+;MMP-7-/-).  Non-littermate F2 animals were then crossed to 

generate mice lacking both MMP-2 and MMP-7 (MMP-2-/-;MMP-7-/-).  Double knock 

out female animals were crossed with a male mouse heterozygous for the Min allele, but 

wild type for both MMP loci to generate a single male MMP-2-/+;MMP-7-/+;APCMin/+ 

founder, from which four discrete lines were selectively generated- mice lacking MMP-2 

(MMP-2-/-;APCMin/+), MMP-7 (MMP-7-/-;APCMin/+), double deficient (MMP2-/-;MMP-7-/-

;APCMin/+) and wild type controls (APCMin/+) (Figure 4). 

 

Generation of MMP-9-/- Min Mice 

 MMP-9 deficient Min mice were generated by crossing female mice deficient for 

MMP-9 (Vu et al., 1998) with male mice carrying the Min allele.  Resulting female 

MMP-9 heterozygous pups, were crossed with male pups carrying the Min allele and 

heterozygous for MMP-9.  Four week old mice were genotyped for MMP-9 by PCR 

analysis using genomic DNA isolated from the tail as previously described and the 

following primers:  MMP-9 KO FW:  5’-CTC AGA AGA ACT CGT CAA GA-3’, 
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Figure 4:  Summary of the breeding strategy used to generate MMP-2; MMP-7 
double deficient Min mice.  To minimize genetic variation between lines, a single 
APCMin/+; MMP-7-/+; MMP-2-/+ male founder was used to selectively generate four 
separate mouse lineages to examine the effect of ablating MMP-7 and MMP-2 in the Min 
model.   
 

 

MMP-9 KO RV: 5’-GGA TTG CAC GCA GGT TCT CC-3’; MMP-9 WT FW: 5’-GCA 

TAC TTG TAC CGC TAT GG-3’, MMP-9 WT RV: 5’-TAA CCG GAG GTG CAA 

ACT GG-3’ were used to generate a 600bp product indicative of the knockout allele, and 

a 300bp product indicative of the wild type allele.  PCR reactions contained 50 pmol each 

primer (Invitrogen), 1μl NaOH isolated genomic DNA, and HotstarTaq master mix 

(Qiagen, Valencia, CA) consisting of Taq polymerase, reaction buffer, and dNTPs.  

Reactions were performed on a RoboCycler Gradient 96 (Strategene, La Jolla, CA) using 

the following program:  15 min at 94° C (1 cycle); 1 min at 94° C, 1 min at 58° C, 1 min 

at 72° C (35 cycles); 5 min at 72° C (1 cycle).  Resulting products were run out on a 1.5% 

agarose gel and visualized using ethidium bromide. 
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Generation of MMP-12-/- Min Mice 

MMP-12 deficient Min mice were generated by crossing female mice deficient 

for MMP-12 (Shipley et al., 1996) with male mice carrying the Min allele.  Resulting 

female progeny heterozygous for the MMP-12 allele, were crossed with male siblings 

carrying the Min allele and heterozygous for MMP-12.  Four week old mice were 

genotyped for MMP-12 by PCR analysis using genomic DNA isolated from the tail as 

previously described and the following primers:  MMP-12 KO FW:  5’-GAC CAC CAA 

GCG AAA CAT-3’, MMP-12 KO RV: 5’- CAA GAA GGC GAT AGA AGG -3’; 

MMP-12 WT FW: 5’-GCA TAC TTG TAC CGC TAT GG-3’, MMP-12 WT RV: 5’-

TAA CCG GAG GTG CAA ACT GG-3’ were used to generate a 150bp product 

indicative of the knockout allele, and a 230bp product indicative of the wild type allele.  

PCR reactions contained 50 pmol each primer (Invitrogen), 1μl NaOH isolated genomic 

DNA, and HotstarTaq master mix (Qiagen, Valencia, CA) consisting of Taq polymerase, 

reaction buffer, and dNTPs.  Reactions were performed on a RoboCycler Gradient 96 

(Strategene, La Jolla, CA) using the following program:  15 min at 94° C (1 cycle); 30 

sec at 94° C, 30 sec at 55° C, 20 sec at 72° C (35 cycles); 5 min at 72° C (1 cycle).  

Resulting products were run out on a 2% agarose gel and visualized with ethidium 

bromide. 

 

Generation of MMP-19-/- Min Mice 

MMP-19 deficient Min mice were generated by crossing female mice deficient 

for MMP-19 (Pendas et al., 2004) with male Min mice.  Resulting female MMP-19 
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heterozygous pups were crossed with male pups heterozygous for MMP-19 and carrying 

the Min allele.  Four week old mice were genotyped for MMP-19 by PCR analysis using 

genomic DNA isolated from the tail as previously described and the following primers:  

MMP-19 KO FW:  5’-TCT TGA TTC CCA CTT TGT GGT TC-3’, MMP-19 KO RV: 

5’-GTC CGG CTC ATC CTC GAC TAT TT-3’; MMP-19 WT FW: 5’-TTT GGT AGG 

GCA GGA GTT AAT GG-3’, MMP-19 WT RV: 5’-GGT AGG TTG GAG GGC AAG 

AGG AA-3’ were used to generate a 1500bp product indicative of the knockout allele, 

and a 300bp product indicative of the wild type allele.  PCR reactions contained 50 pmol 

each primer (Invitrogen), 1μl NaOH isolated genomic DNA, and HotstarTaq master mix 

(Qiagen, Valencia, CA) consisting of Taq polymerase, reaction buffer, and dNTPs.  

Reactions were performed on a RoboCycler Gradient 96 (Strategene, La Jolla, CA) using 

the following program:  15 min at 95° C (1 cycle); 30 sec at 95° C, 30 sec at 55° C, 30 

sec at 72° C (38 cycles); 10 min at 72° C (1 cycle).  Resulting products were run out on a 

1.5% agarose gel and visualized with ethidium bromide. 

 

Generation of c-kitW-sh/W-sh Min Mice 

 Male and female Min (C57Bl/6J-APCMin/+), Sash (C57Bl/6J-c-kitW-sh/W-sh) and 

wild type littermates (C57Bl/6J) were bred in our laboratory from breeder mice obtained 

from The Jackson Laboratory (Bar Harbor, ME).  Min-Sash (C57Bl/6/J APCmin/+;c-kitW-

sh/W-sh) mice were generated by crossing a male Min mouse with female Sash (C57Bl/6/J - 

c-kitW-sh/W-sh) mice.  The resulting mice, heterozygous for the W-sh allele, were crossed to 

each other, carrying the Min allele along the paternal lineage.  Mice were genotyped for 
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the Min allele by PCR and for the Sash mutation based upon coat color (Grimbaldeston et 

al., 2005). 

 

Tissue Collection, Processing and Tumor Measurements 

Tissue Collection and Tumor Measurements 

 Intestines were excised from freshly sacrificed animals, flushed with PBS, filled 

with 10% phosphate buffered formalin and fixed overnight at 4ºC.  The following day, 

intestines were rinsed and immersed in 70% ethanol for long term storage.  Tumor 

incidence and location were recorded with the aid of a dissecting microscope by two 

counters, one of which is blinded to the genotype of the animals.  Tumor diameter at the 

widest point was measured to the nearest 100μm using digital calipers and a dissecting 

microscope. 

 Tumors designated for histological analysis were excised with minimal surrounding 

uninvolved tissue and paraffin embedded on end using a histoprocessor (Tissue-Tek 

Vacuum Infiltration Processor) according to the manufacturer’s instructions.  5 μm thick 

sections were cut and mounted on Superfrost Plus glass slides (Fisher Scientific) for 

histological or immunohistochemical analyses. 

 

RNA Isolation, Microarray and Real-Time PCR Analysis 

RNA Isolation 

Pools of small intestinal adenomas were harvested from the ilea of six 15-week 

old Min mice.  To prevent contamination of control tissue with microscopic tumors, 

normal ileal tissue was harvested from non-Min littermates for use as control tissue.  

Samples obtained from individual mice were processed and analyzed independently. 
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Tissues were placed into RNAlater solution (Qiagen, Valencia, CA) and stored 

overnight at 4ºC.  The following day, total RNA was isolated from and purified using an 

RNeasy mini kit (Qiagen).  Briefly, 5 adenomas were pooled such that they had a total 

mass of 150mg.  For control samples, 150mg of normal ilea with Peyer’s patches 

removed was used.  Tissue was rinsed in DEPC treated PBS to remove residual 

RNAlater, then immersed in 2ml Trizol reagent (Invitrogen, Carlsbad, CA) and 

homogenized using a rotor/stator homogenizer.  Trizol prepared RNA was further 

purified using a Qiagen RNeasy Mini kit with on column RNase-free DNase I digestion 

(Qiagen). 

RNA concentration and integrity was measured by the Vanderbilt Microarray 

Shared Resource (VMSR) using a NanoDrop ND-1000 Spectrophotometer (NanoDrop 

Technologies, Wilmington, DE) and Agilent 2100 Bioanalyzer (Agilent Technologies, 

Santa Clara, CA), respectively.  Samples showing a RNA integrity number (RIN) of less 

than 7.0 were excluded from further analysis. 

 

cDNA Microarray Construction 

 A custom cDNA microarray containing probes capable of identifying species 

specific human and murine MMPs and TIMPs was constructed by cloning divergent 

regions of orthologous genes.  Briefly, divergent regions were identified by aligning 

orthologues and highly homologous genes as previously identified using the 

CLUSTALW multi-sequence alignment tool (Massova et al., 1998; Thompson et al., 

1994).  Divergent regions of low homology were visually identified from CLUSTAL W 

alignments and targeted for probe construction.  To ensure that divergent regions were 
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specific for the gene of interest, nucleotide sequences were submitted to the BLAST 

(Basic Local Alignment Search Tool) search algorithm and compared against both the 

human and murine genomic sequences, and considered unique if no other transcripts 

were detected with an e score of less than 1x10-30 (Altschul et al., 1990). 

 Once identified, targeted sequences were cloned by obtaining EST (Expressed 

Sequence Tag) clones (Research Genetics, Huntsville, AL) of the region of interest to be 

used as a template for PCR amplification.  However, in several instances, EST coverage 

of unique regions was poor and genomic DNA or RT-PCR generated cDNA products 

were used as templates (Table 2).  Additionally, several orthologous MMPs exhibited 

extremely high homology between human and murine sequences such that creating 

probes capable of differentiating between sequences was not possible.  Thus, gene 

profiling of MMPs-16, -19, -24, -25, -27 and -28 are shared common probes for human 

and murine and cannot differentiate between species.    

Probes were generated by PCR amplification of targeted regions from publicly 

available EST clones.  PCR reactions were performed by using EST positive bacteria as a 

template and a re-annealing temperature gradient of 47-58°C on a Robocycler Gradient 

96 thermocycler (Stratagene).  Specifically, 5μl of bacteria containing the EST of interest 

was used as a template for a 50ul PCR reaction containing 20pmol each primer using a 

Promega 2X PCR Taq kit (Promega).  Eight identical reactions were setup for each 

probe, reactions were first heated to 95ºC for 5 minutes to lyse the EST containing 

bacteria, reactions were then amplified for 35 cycles: 30 seconds melt at 95ºC, 1 minute 

reannealing across a 47-58ºC gradient, and 1 minute extension at 72ºC.  Resulting  
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Table 2:  Summarization of primers and templates used for generation of cDNA 
probes.   .  Abbreviations  H: Human, M: Mouse, EST: Expressed Sequence Tag, 
cDNA: coding DNA. 
 
 

Gene Species Source Forward Primer Reverse Primer 
MMP-1 H Subclone 5’-TTT CTT TCA TGG AAC 

AAG AC-3’ 
5’-TTT TGT ACC CAC CAT TTG 
TG-3’ 

 M Genomic 5’-AAA AAC GTG AAT GGC 
AAG GA-3’ 

5’-TGT GTT TTG GTC CAA CGA 
GG-3’ 

MMP-8 H EST 5’-GTT TAT AAT CCT GTA 
GGT CAG-3’ 

5’-AAA CTG CTG AGA ATT ACC 
TA-3’ 

MMP-11 M EST 5’-TGG GGG AAC TGG AGT 
GTC CTT GCT G-3’ 

5’-AGC AGT GCT GCG AAA 
AGG GCT TCA G-3’ 

MMP-12 M cDNA 5’-TGA AGG GTG CTT GCT 
GGT TTT-3’ 

5’-TTA CAG ATA AAC CAG TTG 
GCC TCT G-3’ 

MMP-14 H cDNA 5’-CGC AGC CTC CTT GCT 
TCT CT-3’ 

5’-GGG GCT GGA CAG ACA 
CAA AG-3’ 

 M EST 5’-GGC TGC TCT CAC CCG 
TCC TG-3’ 

5’-TTG CCT TCA AGT GCA GAG 
CC-3’ 

MMP-15 H EST 5’-TGT GGT TCT GAG ATG 
GCT CCC AGG G-3’ 

5’-ACC AGG GGG GCC AGA 
CAG TCT CC-3’ 

 M EST 5’-ATC AGG TAG CAC ACC 
GCA GC-3’ 

5’-TGT GTG TGG CTA GGA GGG 
CA-3’ 

MMP-16 H Genomic 5’-CCC AGT AAA ATT TCA 
GGA TT-3’ 

5’-GAA GTT CAA TTG TGG GTT 
TT-3’ 

MMP-17 H EST 5’-TGT TGG TCT GGA ACG 
CGT CAC AGG G-3’ 

5’-GCT GGG CAG GCT CAG GTG 
GCA AG-3’ 

 M EST 5’-GGA TCC CCA GTA CTC 
AGC AGG ACT TG-3’ 

5’-GCC CTC GAG AAC TCT CTT 
ACT TGT GAA AC-3’ 

MMP-19 H/M EST 5’-CGA TAT TCC CAG GCC 
CTC ATG-3’ 

5’-AGA CAC TCG GAA CAA 
GGG GC-3’ 

MMP-20 H cDNA   

 M cDNA 5’-GTC GTG TGT CAG AGA 
CAC TC-3’ 

5’-CAC ACA CAT GAG TGC ACA 
TA-3’ 

MMP-23 H EST 5’-CAG CCC TGA GCC CCA 
CAG CA-3’ 

5’-AGC GCA GCA ACG TCT CCC 
TG-3’ 

 M EST 5’-GGC ACG AGG CCT ACG 
TCG CG-3’ 

5’-ACA TTT CCC TGA GCT GCA 
TT-3’ 

MMP-24 H/M EST 5’-GCC AAG CTT ACT CCC 
CCT CAT TAA TGT TG-3’ 

5’-GCC CTC GAG AAA AGG 
TAG TTT GGG TTA GG-3’  

MMP-25 H/M EST 5’-GCG CTT CCC CAA GAA 
CAG CA-3’ 

5’-TGT TCG GTC TGG ATG GCT 
CC-3’ 

MMP-26 H cDNA 5’-GCC AAG CTT CAG ACA 
TCA AGG TTT CTT TC-3’ 

5’-GCC TCG AGA TTA TGG AGC 
TCT GAT TCC C-3’ 

MMP-27 H/M EST 5’-GCC AAG CTT AGA CAT 
GTC TTC TCC AAG TC-3’ 

5’-GCC CTC GAG ATC ATA AGA 
GTT TAA GCT TG-3’ 

MMP-28 H/M EST 5’-CGC TGA CAT CCG GCT 
CAC CTT CTT C-3’ 

5’-TGG GAG CTG GAC GGC CAC 
TGA G-3’ 

TIMP-1 M Subclone 5’-CTA AAA GGA TTC AAG 
GCT GT-3’ 

5’-AAA ACT CTT TGC TGA GCA 
GG-3’ 

TIMP-3 H EST 5’-CAG GAG ACA CTA CCC 
TTC CA-3’ 

5’-ATC TAA GAA GCC TCT ACC 
CC-3’ 

TIMP-4 H EST 5’-TTT TTG GTT TCA TTC 
CTG CC-3’ 

5’-AAG AAG TGC CAA GTG 
GAC AG-3’ 

 M EST 5’-GTC CTT TGA CCA TCA 
CCA CCT G-3’ 

5’-TTG GGA GAC AGG GAA 
GAG GG-3’ 
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products were gel purified using low melting point agarose (SeaKem) and ligated into 

pCR2.1-TOPO using a Topoisomerase I mediated ligation according to manufacturer’s 

directions (TOPO-TA cloning kit, Invitrogen).  DNA was prepared using a Qiagen 

MaxiPrep column, and 20μg of purified plasmid DNA was provided to the Vanderbilt 

DNA Sequencing Core for sequencing to ensure that the constructed probe was free of 

PCR artifacts.  Probe sequences were then realigned with their target sequences using 

CLUSTALW for annotation purposes.  Positive clones were supplied to the Vanderbilt 

Microarray Shared Resource (VMSR), amplified using M13 primer sites that flank the 

probe sequence and spotted onto glass microarray slides. 

 

MMP-1 

 Human:  A 314-base pair fragment corresponding to bases 1382-1695 of human 

MMP-1 (NM_002421) was subcloned by PCR into pCR2.1-TOPO-TOPO (Invitrogen) 

from a plasmid containing a sub-clone of human MMP-1 using the following primers: 

FW: 5’-TTT CTT TCA TGG AAC AAG AC-3’ and RV:5’-TTT TGT ACC CAC CAT 

TTG TG-3’. 

 Murine:  A 205-base pair fragment corresponding to bases 128-332 of murine 

MMP-1b (mcolb, NM_032007), but common to both mcola and mcolb was cloned into 

pCR2.1-TOPO using murine genomic DNA as a template.  The primers used for this 

reaction were FW: 5’-AAA AAC GTG AAT GGC AAG GA-3’ and RV:5’-TGT GTT 

TTG GTC CAA CGA GG-3’. 
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MMP-2 

 Human:  An 884-base pair fragment corresponding to bases 1201-2084 of human 

MMP-2 (NM_004530.1) was previously generated by inserting an PvuII-BamHI 

fragment of human MMP-2 into pBluescript KS II+ (Rodgers et al., 1994).  

 Murine:  A 1089-base pair fragment corresponding to bases 890-1987 of murine 

MMP-2 (NM_008610.1) was created by inserting an RT-PCR product murine post 

partum uterus origin into pGEM3Z.  RT-PCR was performed using primers FW:5’-GGT 

GGC AAT GCT GAT GGA CA-3’ and RV:5’-TTG GTT CTC CAG CTT CAG GT-3’ 

(Reponen et al., 1992). 

 

MMP-3 

 Human:  A 555-base pair fragment corresponding to bases 1227-1781 of human 

MMP-3 (NM_002422.2) was previously generated by inserting a ClaI-AccI fragment of 

full length human MMP-3 into pGEM7Z  (McDonnell et al., 1991). 

 Murine:  A 480-base pair fragment corresponding to bases 904-1383 of murine 

MMP-3 (NM_010809.1) was previously generated by inserting a KpnI-XhoII fragment 

of murine MMP-3 into pGEM4 (Witty et al., 1995). 

 

MMP-7 

 Human:  A 818-base pair fragment corresponding to bases 20-837 of human 

MMP-7 (NM_002423.2) was previously generated by inserting a XhoI-XbaI fragment of 

full length human MMP-7 into pGEM7Z  (McDonnell et al., 1991). 
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 Murine:  A 479-base pair fragment corresponding to bases 406-884 of murine 

MMP-7 (NM_010810.1) was previously generated by RACE PCR from RNA of post 

partum uterus origin as previously described (Witty et al., 1995). 

 

MMP-8 

 Human:  A 501-base pair fragment corresponding to bases 1532-2032 of human 

MMP-8 (NM_002424.1) was previously generated by PCR amplification (Heppner et al., 

1996). 

Murine:  A 260-base pair fragment corresponding to bases 177-436 of murine 

MMP-8 (NM_008611.2) was cloned into pCR2.1-TOPO using an EST (AI265065) as a 

template.  The primers used for this reaction were FW: 5’- GTT TAT AAT CCT GTA 

GGT CAG-3’ and RV:5’- AAA CTG CTG AGA ATT ACC TA-3’. 

 

MMP-9 

Human:  A 798-base pair fragment corresponding to bases 1537-2334 of human 

MMP-9 (NM_004994.1) was cloned by generating a EcoRV-HindIII fragment using a 

full length cDNA template (Heppner et al., 1996). 

Murine:  An 835-base pair fragment of murine MMP-9 (NM_013599.1) was 

previously cloned by isolating an EcoRV-NdeI fragment from full length murine MMP-9 

cDNA (Rudolph-Owens, unpublished). 
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MMP-10 

Human:  A 528-base pair fragment corresponding to bases 1047-1574 of human 

MMP-10 (NM_002425.1) was cloned by generating a EcoRV-NdeI fragment into 

pGEM5Z using a full length cDNA template  (McDonnell et al., 1991). 

Murine:  A707-base pair fragment corresponding to bases 632-1338 of murine 

MMP-10 (NM_019471) was created by restriction digest of full length murine MMP-10 

cDNA with PstI and SacI.  The resulting fragment was ligated into pGEM4 (Witty et al., 

1995). 

 

MMP-11 

 Human:  A 324-base pair fragment corresponding to bases 1819-2160 of human 

MMP-11 (NM_005940.2) was generated by PCR using an EST (BG104963) as a 

template and primers FW:5’- TGG GGG AAC TGG AGT GTC CTT GCT G-3’ and 

RV:5’- AGC AGT GCT GCG AAA AGG GCT TCA G-3’.  The resulting product was 

inserted into pCR2.1-TOPO. 

 Murine: A 1042-base pair fragment corresponding to bases 998-2039 of murine 

MMP-11 (NM_008606.1) was created by digesting a cDNA for full length murine MMP-

11 with restriction enzymes PvuII and PstI, and the resulting fragment was inserted into 

pGEM5Z (Rudolph-Owen et al., 1997). 

 

MMP-12 

 Human: A 424-base pair fragment corresponding to bases 1-423 of human MMP-

12 (NM_002426.1) was generated by digesting a cDNA for full length human MMP-12 
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with restriction enzymes HindIII and BamHI, and the resulting fragment was inserted 

into pGEM7Z (Curci et al., 1998). 

 Murine: A 242-base pair fragment corresponding to bases 1401-1642 of murine 

MMP-12 (NM_008605.1) was produced by PCR amplification using a full length cDNA 

for murine MMP-12, and primers FW:5’- TGA AGG GTG CTT GCT GGT TTT-3’ and 

RV:5’- TTA CAG ATA AAC CAG TTG GCC TCT G-3’.  The resulting amplicon was 

inserted into pCR2.1-TOPO. 

 

MMP-13 

 Human:  A 690-base pair fragment corresponding to bases 103-792 of human 

MMP-13 (NM_002427.2) was inserted into pGEM-T for use as a in situ hybridization 

probe (Vaalamo et al., 1997). 

 Murine:  An 838-base pair fragment corresponding to bases 1624-2461 of murine 

MMP-13 (NM_008607.1) was amplified by PCR and inserted into pGEM7Z (Rudolph-

Owen et al., 1997).   

 

MMP-14 

 Human:  A 180-base pair fragment corresponding to bases 2091-2270 of human 

MMP-14 (NM_004995.2) was cloned from a full length cDNA by PCR using the primers 

FW:5’-CGC AGC CTC CTT GCT TCT CT-3’ and RV:5’-TTG CCT TCA AGT GCA 

GAG CC-3’ and inserted into pCR2.1-TOPO. 

 Murine:  A 216-base pair fragment corresponding to bases 1999-2214 of murine 

MMP-14 (NM_008608.1) was cloned from an EST (accession BE332566) using the PCR 
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primers FW:5’-GGC TGC TCT CAC CCG TCC TG-3’ and RV:5’-TTG CCT TCA AGT 

GCA GAG CC-3’ and inserted into pCR2.1-TOPO. 

 

MMP-15 

 Human:  A 366-base pair fragment corresponding to bases 2097-2462 of human 

MMP-15 (NM_002428.1) was generated by PCR amplifying a corresponding region of 

an EST (BG327005) using the primers FW:5’-TGT GGT TCT GAG ATG GCT CCC 

AGG G-3’ and RV:5’-ACC AGG GGG GCC AGA CAG TCT CC-3’ and inserted into 

pCR2.1-TOPO. 

 Murine: A 105-base pair fragment corresponding to bases 2002-2106 of murine 

MMP-15 (NM_008609.1) was PCR amplified using an EST (BF537603) as a template 

and primers FW:5’-ATC AGG TAG CAC ACC GCA GC-3’ and RV:5’-TGT GTG TGG 

CTA GGA GGG CA-3’.  The resulting amplicon was ligated into pCR2.1-TOPO. 

 

MMP-16 

 Human and Murine:  The loci encoding human and murine MMP-16 (are highly 

homologous and EST coverage is poor.  Accordingly, a single probe to a highly 

conserved region common to both orthologues was constructed for this MMP.  Primers 

FW:5’-CCC AGT AAA ATT TCA GGA TT-3’ and RV:5’-GAA GTT CAA TTG TGG 

GTT TT-3’ were used to amplify a 234-base pair fragment using human genomic DNA 

(Promega) as a template.  The resulting product was inserted into pCR2.1-TOPO. 
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MMP-17 

 Human:  A 325-base pair fragment corresponding to bases 2076-2400 of human 

MMP-17 (NM_016155.2) was cloned from an EST (AI829838) using PCR primers 

FW:5’-TGT TGG TCT GGA ACG CGT CAC AGG G-3’ and RV:5’-GCT GGG CAG 

GCT CAG GTG GCA AG-3’ and inserted into pCR2.1-TOPO. 

 Murine:  A 372-base pair probe for murine MMP-17 (NM_011846.3) 

corresponding to bases 1897-2268 was constructed using an EST (BF471718) as a 

template for PCR amplification with the primers FW:5’-GGA TCC CCA GTA CTC 

AGC AGG ACT TG-3’ and RV:5’-GCC CTC GAG AAC TCT CTT ACT TGT GAA 

AC-3’.  The resulting amplicon was inserted into pCR2.1-TOPO. 

 

MMP-19 

 Human and Murine:  Human and murine MMP-19 exhibit a high degree of 

homology, and no ESTs specific for murine MMP-19 are commercially available.  

Because of this, a single probe was constructed that would recognize both human and 

murine MMP-19 transcripts.  To create this probe, a 312-base pair region of a human 

EST (AA481345) was cloned by PCR amplification.  Primers FW:5’-CGA TAT TCC 

CAG GCC CTC ATG-3’ and RV:5’-AGA CAC TCG GAA CAA GGG GC-3’ were used 

to generate an amplicon which was then inserted into pCR2.1-TOPO. 

 

MMP-20 

 Human:   A 512-base pair fragment corresponding to bases 926-1437 of human 

MMP-20 (NM_004771.2) was cloned from full length cDNA (J. Caterina) using PCR 
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primers FW:5’-TGA AAT CTA GTT CTT GGA TTG GTT G-3’ and RV:5’-TCT AAT 

GTG GAT TGA AAT TC-3’ and inserted into pCR2.1-TOPO. 

 Murine:  A 254-base pair fragment of murine MMP-20 (NM_013903.1) 

corresponding to bases 1539-1792 was cloned from a full length cDNA provided by C. 

Overall using primers FW:5’-GTC GTG TGT CAG AGA CAC TC-3’ and RV:5’- CAC 

ACA CAT GAG TGC ACA TA-3’ for PCR.  The resulting amplicon was inserted into 

pCR2.1-TOPO. 

 

MMP-21 

 Human and Mouse:  MMP-21 is a poorly characterized MMP with highly 

restricted expression currently only detected during narrow developmental windows and 

during certain malignancies (Ahokas et al., 2002).  Furthermore, searching for suitable 

EST clones to use as template for generating a probe for either human or murine MMP-

21 (NM_147191.1 and AY124569.1, respectively) revealed no suitable ESTs that are 

commercially available.  Thus, the decision was made to omit MMP-21 from the array. 

 

MMP-23 

 Human:  A 201-base pair probe corresponding to bases 11-211 of human MMP-

23A (AJ005256.1) was generated by PCR amplification using primers FW:5’- CAG CCC 

TGA GCC CCA CAG CA-3’ and RV:5’- AGC GCA GCA ACG TCT CCC TG-3’ and 

an EST (BI834812) as a template.  The resulting fragment was ligated into pCR2.1-

TOPO. 
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 Murine:  A 207-base pair fragment of murine MMP-23 (NM_011985.1) 

corresponding to bases 159-365 was cloned from an EST (BF549980.1) using PCR 

primers FW:5’- GGC ACG AGG CCT ACG TCG CG-3’ and RV:5’- ACA TTT CCC 

TGA GCT GCA TT-3’, the resulting aplicon was gel purified and ligated into pCR2.1-

TOPO. 

 

MMP-24 

 Human:  Because of a high degree of homology between human and murine 

MMP-24, a shared probe was generated. 

 Murine:  A 348-base pair fragment of murine MMP-24 (NM_10808.3) 

corresponding to bases 2854-3201 was cloned from an EST (AB021226) using PCR 

primers FW:5’- GCC AAG CTT ACT CCC CCT CAT TAA TGT TG-3’ and RV:5’- 

GCC CTC GAG AAA AGG TAG TTT GGG TTA GG-3’ and the resulting fragment was 

ligated into pPCR-Script (Stratagene). 

 

MMP-25 

 Human and Murine:  Murine MMP-25 currently only exists as a theoretical 

sequence based upon genomic sequencing, to date full length cDNA has not been 

published.  Further, human and murine MMP-25 (NM_022468.3 and NM_001033339.1, 

respectively) exhibit nearly 100% homology when aligned using CLUSTALW or 

FASTA.  Thus, a decision was made to generate a shared probe. 

 To do this, a 263-base pair fragment was cloned from a human EST 

(NM_022468.3) using the PCR primers FW:5’- GCG CTT CCC CAA GAA CAG CA-3’ 
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and RV:5’- TGT TCG GTC TGG ATG GCT CC-3’.  The cloned fragment was gel 

purified and inserted into pCR2.1-TOPO. 

 

MMP-26 

 Human:  A 238-base pair fragment of human MMP-26 (AF248646.1) 

corresponding to bases 449-686 was cloned from a full length cDNA provided by Q. A. 

Sang using the PCR primers FW:5’- GCC AAG CTT CAG ACA TCA AGG TTT CTT 

TC-3’ and RV:5’- GCC TCG AGA TTA TGG AGC TCT GAT TCC C-3’, and inserted 

into pCR2.1-TOPO. 

 Murine:  MMP-26 has only been detected in primate genomes to date, thus no 

probe was generated. 

 

MMP-27 

 Human and Murine:  As with MMP-25, murine MMP-27 only exists as a 

theoretical sequence based upon genomic sequencing, an human and murine MMP-27 

(NM_022122.1 and NM_001030289.1, respectively) exhibit nearly 100% homology 

when compared by CLUSTALW alignment.  Thus, a decision was made to generate a 

shared probe. 

 A 152-base pair probe corresponding to bases 1478-1629 of human MMP-27 was 

produced by PCR amplification using an EST (AI436025.1) as a template and FW:5’- 

GCC AAG CTT AGA CAT GTC TTC TCC AAG TC-3’ and RV:5’- GCC CTC GAG 

ATC ATA AGA GTT TAA GCT TG-3’ as primers.  The resulting amplicon was 

propogated by insertion into pCR2.1-TOPO. 
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MMP-28 

 Human and Murine:  Human and murine MMP-28 (NM_024302.2 and 

NM_080453.2, respectively) exhibit an extremely high degree of homology thus a single 

probe that recognized both sequences was generated.  A 356-base pair fragment of human 

MMP-28 corresponding to bases 809-1164 was generated by PCR amplification using an 

EST (BI914743) as a template and the primers FW:5’- CGC TGA CAT CCG GCT CAC 

CTT CTT C-3’ and RV:5’- TGG GAG CTG GAC GGC CAC TGA G-3’, the resulting 

product was gel purified and ligated into pCR2.1-TOPO.  

 

TIMP-1 

 Human:  A 650-base pair fragment of human TIMP-1 (NM_003254.1) 

corresponding to bases 68-717 was previously generated  

 Murine:  A 212-base pair fragment of murine TIMP-1 (NM_011593.1) 

corresponding to bases 211-422 was generated by PCR amplification using a previously 

described subclone as a template (Rudolph-Owen et al., 1997) and FW:5’- CTA AAA 

GGA TTC AAG GCT GT-3’ and RV:5’- AAA ACT CTT TGC TGA GCA GG-3’ as 

primers.  The resulting fragment was ligated into pCR2.1. 

 

TIMP-2 

 Human:  A 446-base pair fragment of human TIMP-2 (S48568.1) corresponding 

to bases 508-953 was previously generated and inserted into pGEM3Z by Ken Newell. 
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 Murine:  A 364-base pair fragment of murine TIMP-2 (M82858.1) corresponding 

to bases 294-657 was previously generated by digesting a full length cDNA with PstI and 

KpnI and ligating the resulting fragment into pGEM3Z (Rudolph-Owen et al., 1997). 

 

TIMP-3 

 Human:  A 294-base pair probe corresponding to bases 4031-4324 of human 

TIMP-3 (U14394.1) was produced by PCR amplification using an EST (BG621406) as a 

template and FW:5’- CAG GAG ACA CTA CCC TTC CA-3’ and RV:5’- ATC TAA 

GAA GCC TCT ACC CC-3’ as primers.  The resulting product was ligated into pCR2.1-

TOPO. 

 Murine:  A 318-base pair fragment of murine TIMP-3 (NM_011595.1) 

corresponding to bases 578-895 was previously generated by digesting full length TIMP-

3 cDNA with EcoRI and PstI, the resulting fragment was gel purified and ligated into 

pBlueScript KSII(+) (Rudolph-Owen et al., 1997). 

 

TIMP-4 

 Human:  A 331-base pair fragment of human TIMP-4 (NM_003256.1) 

corresponding to bases 843-1173 was generated by PCR amplification using an EST 

(AW293304) as a template and FW:5’- TTT TTG GTT TCA TTC CTG CC-3’ and 

RV:5’- AAG AAG TGC CAA GTG GAC AG-3’ as primers.  The aplicon produced by 

this reaction was gel purified and ligated into pCR2.1-TOPO. 

 Murine:  A196-base pair fragment corresponding to bases 735-930 of murine 

TIMP4 (AF282730.1) was generated by PCR amplification of an EST (AW047381) 
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using the primers FW:5’- GTC CTT TGA CCA TCA CCA CCT G-3’ and RV:5’- TTG 

GGA GAC AGG GAA GAG GG-3’, resulting in a fragment that was then ligated into 

pCR2.1-TOPO. 

 

Affymetrix Hu/Mu ProtIn Array Construction 

In conjuction with the Protease Consortium, a novel microarray capable of 

distinguishing between closely related homologous and orthologous protease transcripts 

was created on the Affymetrix platform.  The constructed array, known as the Hu/Mu 

ProtIn Array, or alternatively as Protease Chip (Affymetrix product “Protease520066F”), 

contains 972 custom probesets that cover all identified human and murine  proteinases, 

proteinase inhibitors, and interacting proteins (Schwartz et al., 2007). 

Initially, default Affymetrix probe sets were used for construction of the array, 

however, not all probes were species specific.  To fix this, probes set sequences provided 

by Affymetrix were compared to orthologous and highly homologous sequences by 

BLAST-N analysis with weighting for “short, nearly exact matches” (Altschul et al., 

1990).  Unique and highly homologous regions prone to cross talk were identified and 

probes were then redesigned and by Affymetrix to avoid homologous regions. 

Microarray analysis was performed using the Hu/Mu ProtIn array, product 

#Protease520066F (Affymetrix, Santa Clara, CA) (Schwartz et al., 2007).  cRNA 

synthesis, labeling, fragmentation and microarray hybridization, scanning, and analysis of 

differentially expressed transcripts was performed by the VMSR. 
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Real Time PCR Analysis 

Real-time PCR analysis of mast cell protease genes (mcpts) and MMPs was 

performed on RNA samples used for microarray analysis to further characterize mast cell 

protease expression.  cDNA was synthesized from 1μg total RNA using an iScript cDNA 

reverse transcriptase kit, following the manufacturer’s instructions (Bio-Rad, Hercules, 

CA).   The resulting cDNA products were diluted 1:5 using sterile distilled water prior to 

real-time PCR analysis.    Real-time PCR reactions were performed using IQ Real-Time 

Supermix with SYBR Green (Bio-Rad) on a Bio-Rad iQ5 thermocycler.  Reactions were 

run in triplicate for murine mcpt and MMP gene family members using previously 

described PCR primers (Martinez et al., 2005; Yamada et al., 2003) with a standard 2-

step amplification program. Fold change was determined by comparing the mean Ct 

levels between tumor and control samples, after adjusting for reference gene expression 

(GAPDH), significance was determined by using a two-sample t-test as previously 

described (Bowen et al., 2006). 

 

Histochemical and Immunohistochemical Analyses 

Chloroacetate Reaction (CAE) to Demonstrate Mast Cells 

Five-micron paraffin embedded, formalin-fixed sections were dewaxed and 

brought to water through graded alcohols.  To demonstrate mast cells in tumor and 

normal tissue the chloroacetate reaction (Leder, 1979) was performed using Fast Blue BB 

(Sigma, St. Louis, MO), counterstained using Alum-Kernechtrot (Humason, 1979) and 

mounted in permount (Sigma).  Positive cells were counted per unit area as measured by 

NIH ImageJ software. 

49 
 



Immunohistochemistry 

Five-micron paraffin embedded, formalin-fixed sections were dewaxed and 

brought to water through graded alcohols.  Sections were treated with 0.6% hydrogen 

peroxide in methanol to destroy endogenous peroxidase prior to antigen retrieval.  

Antigen retrieval was accomplished by heat denaturation by microwaving sections for 10 

minutes in a 10mM sodium citrate solution, except where noted.  Non-specific binding 

was inhibited by incubation in a blocking solution (10mM Tris-HCl pH7.4, 0.1M MgCl2, 

0.5% Tween20, 1% BSA, 5% Serum) for 1hr at room temperature.  Primary antibodies 

were diluted in blocking solution and applied at 4 C° overnight.  Appropriate IgG 

controls were used on adjacent sections to evaluate background staining.  Sections were 

washed with TBST (150mM NaCl, 10mM Tris, 0.05% Tween 20) and incubated with 

appropriate biotinylated secondary antibody for 1hr at room temperature.  Positive cells 

were visualized with an avidin-biotin peroxidase complex (Vectastain Avidin-Biotin 

Complex kit, Vector Laboratories, Burlingame, CA) and 3,3’-diaminobenzidine 

tetrahydrochloride substrate (Sigma).  Nuclei were counterstained with Mayer’s 

hematoxylin (Sigma), washed in TBS, dehydrated through alcohols, cleared in xylenes 

and mounted. 

 

Immunohistochemical Visualization of Proliferation and Apoptosis 

Proliferating cells were detected by immunohistochemical staining for phospho-

Histone H3 (Ser10) (Upstate, Lake Placid, NY).  Secions were prepared as described 

using heat denaturation.  Primary antibody was applied at a 1:250 dilution overnight at 4° 
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C overnight, and detected using a goat anti-rabbit secondary (Vector Laboratories, 

Burlingame, CA).  

Alternatively, in BrdU treated animals, proliferation was measured by staining for 

BrdU incorporation.  Briefly, mice were given a single injection of 75mg/kg BrdU in 

PBS one hour before sacrifice.  Incorporated BrdU was then detected with a monoclonal 

antibody (Accurate Chemical, Westbury, NY) using trypsin denaturation according to the 

manufacturer’s directions.  Monoclonal primary antibody was applied at a 1:400 dilution 

at 4° C overnight, and a (mouse immunoabsorbed) rabbit anti-rat secondary antibody was 

used at 1:500. 

Apoptotic nuclei were visualized by immunohistochemical staining of cleaved 

caspase-3(Asp175) (Cell Signaling Technology, Danvers, MA) using citrate antigen 

retrieval.  A 1:400 dilution of a  polyclonal primary antibody was applied overnight, and 

a 1:500 dilution of biotinylated goat anti-rabbit IgG was used for visualization using 

DAB as a substrate.  Alternatively, TUNEL staining according to manufacturer’s 

instructions (Millipore, Billerica, MA) on adjacent sections for comparison between 

methods. 

 

Immunohistochemical Demonstration of Leukocyte Populations 

Eosinophils were detected using a monoclonal rat antibody specific to murine 

major basic protein (MBP), kindly provided by James J. Lee, Ph.D. (Mayo Clinic 

Arizona, Scottsdale, AZ).   Antigen was retrieved using Dako antigen retrieval solution 

(Dako, Glostrup, Denmark) and 3-in-1 proteinase solution (Zymed, Carlsbad, CA).  
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Primary antibody was applied at 1:500 dilution overnight at 4° C, and a biotin conjugated 

rabbit anti-rat (mouse immunoabsorbed) was used to detect positive cells. 

Neutrophils were stained using a monoclonal anti-neutrophil antibody (AbD 

Serotec, Oxford, UK) at 1:100 dilution, and a rabbit anti-rat secondary antibody.  T cells 

were visualized using polyclonal antibodies recognizing CD3ε (Santa Cruz 

Biotechnology, Santa Cruz, CA) at 1:1500, and a rabbit anti-goat secondary (Vector 

Laboratories).  Macrophages were demonstrated by staining for F4/80 antigen using a 

monoclonal antibody and proteinase K antigen retrieval (AbD Serotec) at 1:100 dilution 

overnight at 4° C and a rabbit anti-rat secondary. 

 

MMP-9 and von Willebrand Factor Immunohistochemistry 

Paraffin embedded, formalin-fixed sections were dewaxed and rehydrated through 

a series of graded alcohols.  Sections were treated for 30 minutes with 0.6% hydrogen 

peroxide in methanol to destroy endogenous peroxidase prior to antigen retrieval.  

Antigen was retrieved either by microwaving sections for 10 minutes in 10mM sodium 

citrate buffer (MMP-9), or treatment with a [40ug/ml] solution of Proteinase K for 30 

minutes at room temperature (vWF).  Non-specific binding was inhibited by incubation 

in a blocking solution (10mM Tris-HCl pH7.4, 0.1M MgCl2, 0.5% Tween20, 1% BSA, 

5% Serum) for 1hr at room temperature.  Rabbit polyclonal anti-mouse MMP-9 (used at 

1:250 dilution) (Abcam, Cambridge, MA) or rabbit anti-human vWF antibodies (1:1000 

dilution) (Dako), were diluted in blocking solution and applied at 4° C overnight.  

Appropriate IgG controls were used on adjacent sections to evaluate background staining.  

Sections were washed with TBS (150mM NaCl, 10mM Tris) and incubated with 
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appropriate biotinylated secondary antibody for 1hr at room temperature.  Positive cells 

were visualized with an avidin-biotin peroxidase complex (Vectastain Avidin-Biotin 

Complex kit, Vector Laboratories, Burlingame, CA) and 3,3’-diaminobenzidine 

tetrahydrochloride substrate (Sigma).  Nuclei were counterstained with Mayer’s 

hematoxylin (Sigma), washed in TBS, dehydrated through alcohols, cleared in xylenes 

and mounted. 

 

Immunohistochemical Quantification 

Metamorph software (Molecular Devices, Downingtown, PA) was used to 

measure vWF staining intensity.  Three sections from five each MMP-9 null and wild 

type littermate mice were analyzed for positive staining area per total area and reported as 

percent.  Groups were compared using a two-tailed t test. 

 

Immunofluorescent Colocalization of MMP-9 and Leukocyte Markers 

Five micron, paraffin embedded, formalin fixed sections were dewaxed and rehydrated 

through alcohols.  Sections were microwaved in a 10mM sodium citrate solution to 

retrieve antigen for 10 minutes and allowed to cool.  Non-specific staining was prevented 

by treating sections with a blocking solution for 1 hour at room temperature.  Sections 

were simultaneously treated with a rabbit polyclonal antibody to detect MMP-9 and an 

antibody to detect leukocytes for 6 hours at room temperature.  Neutrophils were stained 

using a monoclonal rat anti-neutrophil antibody (AbD Serotec, Oxford, UK).  B cells 

were visualized using a rat monoclonal antibody recognizing CD45R/B220 (AbD 

Serotec).  Macrophages were demonstrated by staining for F4/80 antigen using a rat 
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monoclonal antibody (AbD Serotec).  Sections were washed in PBS, and incubated with 

fluorescently labeled secondary antibodies (Molecular Probes, Carlsbad, CA) and DAPI 

to visualize nuclei then mounted in aqueous mounting media (Biomeda, Foster City, CA). 
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CHAPTER III 

 

RESULTS 

 

MMPs in Mouse Models of Colon Cancer 

 MMPs are widely expressed by a variety of neoplasms.  Previously, we have 

investigated the expression of various MMP family members in the development of 

intestinal adenomas using different mouse models of intestinal tumorigenesis.  Strikingly, 

genetic ablation of MMP-7, an epithelially expressed MMP-7, reduced tumor multiplicity 

by 58% in the Min mouse model.  Furthermore, analysis of tumors from these animals by 

in situ hybridization revealed that like human tumors, murine tumors express MMPs-2, -

3, -7, -10, and -13 (Wilson et al., 1997).  While only a subset of tumors normally 

expressed MMP-2, upon genetic ablation of MMP-7, all tumors that formed were found 

to express MMP-2 (Table 3).  However, since our initial screen, several additional MMP 

family members have been identified.  Many of these MMPs have been detected in 

tumors.  We sought to generate a comprehensive profile of MMPs expressed by normal 

murine small intestine and intestinal adenomas that we could then use to identify targets 

for further study. 

 

Microarray Profiling of Intestinal Adenomas 

 The development of microarray technology has allowed an investigator to 

compare the expression of thousands of genes simultaneously.  Microarray based analysis 

uses thousands of unique cDNA or oligonucleotide probe sequences that are spotted onto  
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Table 3:  Expression analysis of MMPs expressed in Min tumors as previously 
determined by in situ hybridization.  (Wilson et al., 1997) 

 

 

 

microscope slides.  Depending on the commercial platform used, purified mRNA is then 

converted into fluorescently labeled cDNA (spotted arrays) or cRNA (Affymetrix based 

arrays).  For traditional spotted arrays, samples to be compared are labeled with different 

fluorophores, hybridized to the same slide, and the difference in hybridization between 

samples is detected by laser scanning.  Alternatively, oligonucleotide based arrays such 

as the Affymetrix platform, require each sample to be hybridized to an individual array, 

and hybridization between arrays is compared (Figure 5) (Bucca et al., 2004; Staal et al., 

2003).   

 To generate a profile of which MMPs are differentially expressed in intestinal 

tumors, we developed two separate microarrays capable of distinguishing between highly 

homologous sequences.  Initially, I subcloned fragments of all human and mouse MMPs 

and TIMPs capable of distinguishing between orthologous sequences for the construction 

of a cDNA array.  Additionally, in conjunction with the Protease Consortium, I aided in  
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Figure 5:  Comparison of traditional glass slide cDNA microarrays to the 
Affymetrix Gene Chip platform.  Isolated RNA is labeled by in vitro transcription with 
either fluorescent dyes (Glass slide arrays) or biotin (Affymetrix) labeled nucleotides 
prior to hybridization to an array containing thousands of genes.  Hybridization intensity 
is determined by laser scanning.  For traditional array analysis the ratio between sample 
intensity is compared, whereas with Affymetrix arrays hybridization intensity between 
samples is compared using for individual Gene Chips per sample (Staal et al., 2003). 
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the construction of a novel dual-species Affymetrix array also capable of distinguishing 

closely related orthologues (Schwartz et al., 2007).  Tissue was harvested from normal 

small intestine and tumors from the ilea of Min mice and stored overnight in RNAlater, a 

mild fixative that has been demonstrated to stabilize RNA and improve yield.  Total RNA 

was isolated from tissue by using a rotor-stator homogenizer and RNeasy mini kit 

(Qiagen).  RNA concentration and integrity were assessed using UV spectrophotometry, 

and samples with a 260/280 absorbance ration of 1.95-2.05 were submitted to the 

Vanderbilt Microarray Shared Resource (VMSR) for cDNA transcription, labeling, 

hybridization, and microarray scanning.  Two adenoma samples were compared on our 

cDNA array to a common normal sample, and an intensity ratio was determined by 

ArrayAssist Lite software (Table 4).  Alternatively, multiple samples were compared 

using a novel Affymetrix array containing probes for all currently known human and 

murine proteinases. 

Because of the high degree of divergence observed between samples as assayed 

on the cDNA array, as well as the enhanced ability of the Affymetrix array to distinguish 

signal versus noise and the availability of a greatly expanded probe set, we opted to 

continue our studies using the Affymetrix platform rather than spotted arrays.  Additional 

samples were isolated and assayed using the Affymetrix Hu/Mu ProtIn array using both 

absolute and relative analysis.  Relative analysis identified MMP-10, -13, and -14 as 

significantly more abundantly expressed in tumor tissue than normal intestine, a finding 

also reported by others (Martinez et al., 2005).  Additionally, comparing absolute analysis 

calls between groups revealed MMP-9 and -12 as present in tumor tissue, but  
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Table 4:  Expression analysis of MMP family members in tumor tissue compared to 
normal ileum.  Total RNA was isolated from ileal tumors and normal small intestine of 
Min mice as described in the Materials and Methods.  Microarray analysis was performed 
using a custom created cDNA microarray by the VMSR.  Numbers indicate fold change 
of hybridization intensity, with positive numbers indicative of increased expression in 
tumor samples and negative numbers indicative of less abundant transcript in tumor. 
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Table  5:  Affymetrix microarray analysis of MMP family members from normal 
ilea and intestinal tumors.  Four samples of normal ileal tissue were compared to six 
pools of adenomas isolated from Min mice and compared using a novel Affymetrix 
microarray by relative and absolute analysis.  Relative analysis revealed that transcripts 
for MMP-10, -13, and -14 are more abundant in tumor tissue than normal intestine.  
Absolute analysis identified MMP-9 and -12 as expressed in tumor, but not in normal 
intestine. 
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absent from normal intestine (Table  5).  Generally, the expression profile generated by 

Affymetrix analyses was more similar to the cDNA profile generated for Mouse B, 

though methodological differences between the two techniques minimize the utility of 

such a comparison.  

  To confirm our microarray findings we used real-time PCR analysis, which 

allows relative quantification of the abundance of target genes across samples.  Real-time 

PCR was performed on all samples submitted for Affymetrix microarray analysis, and 

relative abundance of transcripts for MMPs-10, -12, and -13 was determined in 

comparison to GAPDH, a housekeeping gene with relatively stable expression across 

cells.  Primers for MMP-9 and -14 did not produce reliable results.  Using an algorithm 

built into the PCR machine software package (BioRad iQ 4) levels of transcripts were 

quantified.  Thus, microarray results were validated by Real Time PCR, confirming that 

MMPs-10, -12, and -13 are differentially expressed in tumor samples (Figure 6).  These 

results have identified MMPs-9, -10, -12, -13, -14, and -15 as MMPs that are expressed 

differentially by intestinal adenomas. 

 

Analysis of Heterogeneity of MMP Expression in Min Tumors 
 

Previously, it has been shown that ablation of specific MMPs results in alterations 

of the expression of other MMP family members (Rodgers et al., 1994; Rudolph-Owen et 

al., 1997).  Because of the variation in MMP expression between tumors and apparent 

expressional compensation of MMP-2 previously observed (Wilson et al., 1997), I 

hypothesized that individual tumors may express different subsets of MMPs, and in mice  
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Figure 6:  Relative expression analysis of selected MMPs in intestinal adenoma 
tissue compared to normal intestine.  Real time PCR was used to validate microarray 
analysis.  Abundance of transcripts for selected MMPs was compared to GAPDH, and 
results are reported as a ratio compared to normal tissue.  PCR to detect MMP-9 and -14, 
two other genes found to be differentially expressed was also performed, but did not 
produce measurable product. 
 
 
 
 

with particular MMPs genetically ablated, that presence of other MMP family members 

is able to compensate for this and would be detectable by relative expression analysis. 

The construction of the Affymetrix protease array provided a unique opportunity 

to assay both the absolute presence of transcript as well as quantification of “present” 

transcripts.  To test my hypothesis, I isolated individual tumors from wild type, MMP-7 

deficient, and MMP-2; MMP-7 double deficient animals.  Relative analysis across 

samples did not detect any significant variations within groups, and across groups the 

only difference detected was a decrease in the abundance of transcripts for MMP-7 and 

MMP-2 in animals with those MMPs genetically ablated.  Absolute analysis of samples 

revealed that in contrast to the hypothesis, tumors were very homogeneous in their 
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expression of MMPs (Table 6).  The only difference detected between groups by absolute 

analysis was that “present” signal for MMP-8 was detected in all tumors from all mice 

lacking MMP-7, but in only one out of six tumors assayed from wild-type Min mouse.  

MMP-8 is largely produced by neutrophils, and the presence of this transcript  

 

Table 6:  Tumors from wild-type and mice lacking MMP-7 or MMP-2 and MMP-7 
do not exhibit variability in their expression of MMPs.  To examine the possibility 
that MMP ablation resulted in transcriptional compensation of other MMP family 
members, microarray analysis was used to assay the expression of all MMPs in mouse 
tumors.  No significant variation within sets was observed, though all tumors examined 
from mice lacking MMP-7 expressed transcript encoding MMP-8, which was detected in 
only one tumor from wild type Min. 
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may indicate enhanced neutrophil infiltration into tumors from mice lacking MMP-7.  

Expression analysis using real time PCR analysis produced similar results (data not 

shown).  From these findings we can conclude that transcriptional compensation does not 

occur in the context of the intestinal adenomas that form in Min mice. 

Data presented here have expanded the spectrum of MMP family members shown 

to be expressed in intestinal adenomas.  Profiling of tumors using a novel Affymetrix 

microarray has largely mirrored our previously generated profile generated by in situ 

hybridaztion, with a few additions.  MMP-3, detected in roughly half of tumors by in situ 

hybridization was not regularly detected by absolute microarray analysis; however, this 

may be due to methodological assumptions used by this method.  Absolute analysis uses 

a proprietary algorithm to compare the ratio of binding to “perfect match” probes to 

“mismatch” probes, which other than a single base substitution at position 13 are 

sequentially identical (Staal et al., 2003).  False absent calls are favored by this approach 

as high background and sequentially homologous genes tend to increase the mismatch 

signal.   

MMP-7, another gene we previously detected as differentially expressed in tumor 

was not found to be differentially expressed using either absolute or relative analysis.  

However, our previous data looked at expression of only epithelial cells rather than whole 

tumor.  Paneth cells normally produce this MMP, so it is not surprising that absolute 

analysis did not detect a difference.  While the relative transcript abundance was 

increased in tumor, this gives no detail to the cellular origin of the transcript, and if this 

experiment were to be repeated using laser captured epithelial cells only, I would expect 

a difference to be obvious. 
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An interesting finding of these experiments is the modulation of expression of 

MMP-9 and -12.  Both of these MMPs are largely produced by inflammatory cells (Noel 

et al., 2008), thus enhanced expression observed in tumor tissue may simply be a 

reflection of leukocyte infiltration into the tumor, a concept further explored later in this 

chapter.  Enhanced expression of MMPs-10 and -13 in intestinal adenomas of the Min 

mouse has previously been reported (Martinez et al., 2005; Wilson et al., 1997).  Both of 

these MMPs have previously been shown to be produced by stromal cells within the 

tumor, though the functional consequence of this expression is unknown.  Based upon 

previous data and the results from my microarray screen, I chose to further examine the 

role of MMPs-2, -9, -10, -12, -13, and -19 in tumorigenesis using the Min mouse model. 

 

The Role of MMP-2 in Intestinal Tumorigenesis 

 Previously, we have demonstrated that genetic ablation of MMP-7 reduces tumor 

multiplicity by 58% in the Min mouse.  Additionally, while only a subset of wildtype 

Min tumors normally express MMP-2, upon genetic ablation of MMP-7 the reduced 

number of tumors that develop all express MMP-2, suggesting that MMP-2 may 

functionally compensate for MMP-7 in the development of intestinal tumors.  To 

examine this possibility we used selective breeding to develop a MMP-2 deficient Min 

mouse. 

   
Female MMP-2 deficient mice were crossed with male Min mice to generate mice 

heterozygous for MMP-2.  Two heterozygotes were crossed carrying the Min allele along 

the parental lineage in order to generate littermate mice that are either deficient, 

heterozygous or wild-type for MMP-2.  Mouse genotype at the MMP-2 and APC loci  
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Figure 7:  MMP-2 ablation does not affect tumor multiplicity or size in the Min 
model.  (A)  Tumor multiplicity in MMP-2 deficient Min mice (35.7 tumors/mouse) was 
similar to that of wild-type (36.3 tumors/mouse) and heterozygous (41.7 tumors/mouse) 
littermates.  Difference is not statistically significant, Mann-Whitney t test.  (B)  Tumors 
from MMP-2 deficient mice are of similar size distribution to tumors from wild type 
littermates.  Least squares estimate of average tumor diameter found that the typical 
tumor from a MMP-2 deficient mouse was 1.1mm, while wild-type littermates was 
0.95mm.  Difference is not statistically significant, mixed model ANOVA analysis. (C)  
Overlay of trace from panel B.  Dashed lines represent individual mice, solid lines 
represent average tumor distribution. 
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were analyzed by PCR analysis.  Mice with MMP-2 genetically ablated developed a 

similar number of tumors to wild-type and heterozygous littermate controls (Figure 7A).  

Further, ablation of MMP-2 did not affect either spatial distribution of tumors within the 

intestine, nor size (Figure 7B-C). 

 Previous data suggest that while MMP-7 is a key mediator of tumorigenesis, 

MMP-2 may be able to functionally compensate for ablation of MMP-7.  To examine this 

possibility we developed MMP-2; MMP-7 double deficient mice.  In contrast to 

previously published results, MMP-7 deficient Min mice did not develop statistically 

fewer tumors than wild-type Min littermates.  However, unlike previous studies, separate 

lineages derived from a common progenitor were compared rather than littermates, which 

could generate divergent lines within the sample pool.  Although a conservative breeding 

strategy was utilized in an attempt to minimize divergence, I cannot exclude this as an 

explanation for the variability observed.  Additionally, at the time when this pilot study 

was conducted a syndrome of unknown etiology arose within several lineages of the 

mouse colony that manifested in hydronephrotic kidneys, extraordinary variability in 

tumor burden, increased juvenile mortality, and frequent gastrointestinal inflammation as 

determined by gross necropsy.  Mice displaying any of these symptoms were excluded 

from analysis, which severely limited our sample pool of wild-type Min and MMP-7 

deficient Min mice.  Regardless, tumor multiplicity was similar in mice lacking both  
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Figure 8:  Effect of ablating both MMP-2 and MMP-7 in the Min model.  Because of 
the potential for MMP-2 and -7 to functionally compensate for each other, we created 
mice lacking both of these MMPs.  No further reduction in tumor multiplicity was 
observed when compared to MMP-7 deficient animals suggesting that MMP-2 does not 
significantly contribute to adenoma formation in the Min model. 
 
 
 

 

MMP-2 and MMP-7 when compared to wild-type or MMP-7 deficient littermates (Figure 

8), and was similar to historical data comparing MMP-7 deficient Min mice.  Taken 

together, all these data suggest that MMP-2 does not significantly contribute to the 

development of intestinal adenomas in the Min model. 

 

The Role of MMP-12 in Intestinal Tumorigenesis 

 MMP-12 was one of two MMPs differentially detected by absolute microarray 

analysis as absent in normal intestinal tissue, but present in adenomas.  High levels of 
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macrophage derived MMP-12 is commonly associated with an improved prognosis in 

colorectal tumors (Asano et al., 2007; Zucker and Vacirca, 2004).  Because of these 

changes, we postulated that MMP-12 functionally acts to inhibit tumor development, and 

that genetic ablation of this gene would result in a significant enhancement of tumor 

multiplicity, size and progression.   

Male Min mice and female MMP-12 deficient mice on the C57BL/6 background 

were purchased from the Jackson Lab and crossed to generate pups heterozygous for 

MMP-12.  Wild type and heterozygous control Min mice developed an average of 

35.2±14.9 and 54.3±21.6 tumors per mouse, respectively.  In comparison, Min mice 

lacking MMP-12 developed an average of 44.0 ±23.9 tumors per mouse, not a 

statistically significant difference (Figure 9A).  Similarly, the average tumor diameter 

was not significantly different between from wild-type control (1.1mm) and MMP-12 

deficient (1.2mm) animals (Figure 9B-C). 

Taken together, these data suggest that while MMP-12 expression has been shown 

to predict a good prognosis, genetic ablation does not affect early stage tumorigenesis.  

However, while MMP-12 may be functionally protective during later stages of tumor 

progression, we could not assess such using the current model system.  Alternatively, 

high macrophage density within colorectal tumors has also been shown to be an indicator 

of positive prognosis (Forssell et al., 2007).  While macrophages are abundant throughout 

human tumors, they tend to localize peritumorally in Min adenomas, and MMP-12 may 

simply be acting as a marker for macrophages in the context of human intestinal 

adenomas.   
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Figure 9.  MMP-12 ablation does not affect tumor multiplicity or size in the Min 
model.  (A)  Tumor multiplicity in MMP-12 deficient Min mice (44.0 tumors/mouse) 
was similar to that of wild-type (35.2 tumors/mouse) and heterozygous (54.3 
tumors/mouse) littermates.  Difference is not statistically significant, Mann-Whitney t 
test.  (B)  Tumors from MMP-12 deficient mice are of similar size distribution to tumors 
from wild type littermates.  Least squares estimate of average tumor diameter found that 
the typical tumor from a MMP-12 deficient mouse was 1.2mm, while wild-type 
littermates was 1.1mm.  Difference is not statistically significant, mixed model ANOVA 
analysis. (C)  Overlay of trace from panel B.  Dashed lines represent individual mice, 
solid lines represent average tumor distribution. 

 

70 
 



The Role of MMP-19 in Intestinal Tumorigenesis 

 MMP-19 has been detected on the surface of activated peripheral blood 

mononuclear cells, TH1 lymphocytes (Sedlacek et al., 1998), and is normally expressed 

throughout the intestine in both enterocytes (Mueller et al., 2000) and occasional stromal 

fibroblasts and macrophages, though expression by intestinal epithelial cells is decreased 

upon transformation suggesting a role in enterocyte shedding (Bister et al., 2004).  

Microarray analysis detected only a weak presence of transcripts for MMP-19 in normal 

tissue, yet in two tumor samples transcripts were found.  Because of these seemingly 

disparate findings, we examined the effect of MMP-19 ablation in the Min model.  We 

hypothesized that if MMP-19 was functioning in a protective role, then ablation of MMP-

19 would enhance tumorigenesis, with deficient animals developing more tumors and 

tumors that are larger in size.  Male Min mice and female MMP-19 deficient mice on the 

C57BL/6 background were obtained from J. Caterina and crossed to generate pups 

heterozygous for MMP-19.  Min mice lacking MMP-19 developed an average of 41.0 

±19.8 tumors per mouse, whereas wild type and heterozygous control Min mice 

developed an average of 49.7±28.9 and 35.1±10.8 tumors per mouse, respectively (Figure 

10A).  Similarly, the average tumor diameter was not significantly different between 

wild-type control (1.0mm) and MMP-19 deficient (1.0mm) animals (Figure 10B-C). 

Taken together, these data suggest that MMP-19 does not significantly contribute 

to intestinal tumorigenesis in the Min model despite the apparent expression difference.  

Given that MMP-19 has been detected on the surface of various lymphocytes, it is 

possible that the difference observed in transcript abundance is due to differential TH1 

infiltration. 
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Figure 10:  MMP-19 ablation does not affect tumor multiplicity or size in the Min 
model.  (A)  Tumor multiplicity in MMP-19 deficient Min mice (41.0 tumors/mouse) 
was similar to that of wild-type (49.7 tumors/mouse) and heterozygous (35.1 
tumors/mouse) littermates.  Difference is not statistically significant, Mann-Whitney  t 
test.  (B)  Least squares estimate of average tumor diameter found that the typical tumor 
from both MMP-19 deficient and wild-type littermates was 1.0mm.  Difference is not 
statistically significant, mixed model ANOVA analysis. (C)  Overlay of trace from panel 
B.  Dashed lines represent individual mice, solid lines represent average tumor 
distribution. 

72 
 



The Role of MMP-9 in Intestinal Tumorigenesis 
 

 Transcripts encoding the proteinase MMP-9, like MMP-12, were absent from 

normal tissue, but abundantly expressed in tumor.  MMP-9 is produced by several 

stromal cell populations including neutrophils, mast cells, macrophages, fibroblasts, as 

well as by the tumor epithelial cells directly (Noel et al., 2008).  Previous studies using 

mice with MMP-9 genetically ablated have shown that MMP-9 deficient animals develop 

fewer tumors than do littermate controls, but those tumors that do develop are more 

aggressive and of a more advanced phenotype (Coussens et al., 2000).  While an 

excellent model of early stage tumorigenesis, the Min model is limited in that tumors that 

develop rarely invade and never metastasize.  Because of the seeming dual role of MMP-

9 in both promoting tumorigenesis but inhibiting tumor progression, we hypothesized that 

MMP-9 ablation in the Min mouse would decrease tumor multiplicity, but that those 

tumors that formed may be larger or more progressed as determined by the presence of 

local invasion or distant metastasis. 

 MMP-9 deficient Min mice were developed by crossing male Min mice to MMP-

9 deficient females, obtained from Z. Werb.  Mice lacking MMP-9 developed 26.5±17.7 

tumors on average.  In comparison, wild-type littermate Min mice developed 35.0±26.1, 

and heterozygotes 32.9±16.2 (Figure 11A).  This decrease indicates a 25% reduction in 

tumor multiplicity in MMP-9 deficient animals.   

Tumors that arose in MMP-9 deficient animals were further characterized for 

phenotypic differences.  Average tumor diameter was similar between MMP-9 deficient 

and wild-type Min littermates (Figure 11B-C), suggesting that MMP-9 ablation affected 

tumor  
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Figure 11:  MMP-9 ablation does not affect tumor multiplicity or size in the Min 
model.  (A)  Tumor multiplicity in MMP-9 deficient Min mice (26.5 tumors/mouse) was 
significantly reduced in comparison to wild-type (35.0 tumors/mouse) and heterozygous 
(32.9 tumors/mouse) littermates.  p=0.0440, Difference is statistically significant, Mann-
Whitney t test.  (B)  Tumors from MMP-9 deficient mice are of similar size distribution 
to tumors from wild type littermates.  Least squares estimate of average tumor diameter 
found that the typical tumor from a MMP-9 deficient mouse was 1.0mm, while wild-type 
littermates was 1.0mm.  Difference is not statistically significant, mixed model ANOVA 
analysis. (C)  Overlay of trace from panel B.  Dashed lines represent individual mice, 
solid lines represent average tumor distribution. 
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incidence, but not tumor growth.  MMP-9 expression has been observed in several cell 

types, including tumor epithelial cells.  To identify the cellular source of MMP-9 in these 

tumors, immunohistochemical staining was employed.  MMP-9 staining was not 

observed in any epithelial cells, but was abundantly detected throughout stromal and 

intravascular cells, suggesting that intratumoral MMP-9 was of leukocyte origin (Figure 

12).  To further examine this, I performed immunofluorescent co-localization using 

markers for different leukocyte populations. All intratumoral MMP-9 positive cells co-

stained with an antibody that specifically recognized neutrophils.  A single MMP-9 

positive macrophage was observed at the tumor periphery, and none were detected 

intratumorally (Figure 13).  No MMP-9 positive B lymphocytes were detected.  Because 

MMP-9 staining localized to neutrophils, we examined intratumoral neutrophil 

abundance in both wild-type and MMP-9 deficient Min mice.  Neutrophils were equally 

abundant in tumors from both groups (Figure 14).   

 
 Neutrophil derived MMP-9 has been shown to be a critical mediator of 

angiogenesis (Ardi et al., 2007; Nozawa et al., 2006).  To determine if MMP-9 deficiency 

resulted in less vascularized tumors, we employed immunohistochemical staining to 

detect total (von Willebrand Factor) and angiogenic (CD-31) vasculature in tumors from 

MMP-9 deficient animals and littermate controls.  Initial experiments indicated that 

tumors from wild type mice on average had twice as much total vasculature as measured 

by immunohistochemistry for vWF, a marker of total vasculature; however  
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Figure 12:  MMP-9 localization by immunohistochemical staining.  A:  A monoclonal 
antibody raised to react with murine MMP-9 demonstrated abundant stromal cells were 
positive for MMP-9 (brown staining, hematoxylin counterstain).  Scale bar indicates 
40μm.   B:  Serotype control antibody produced no positive staining.  Scale bar indicates 
40μm. 
 
 
 
 

 
Figure 13:  Imunofluorescent co-staining of MMP-9 and Leukocyte Markers.  To 
further determine the cell populations producing intratumoral MMP-9, fluorescent co-
staining was used to visualize (A) neutrophils (anti-neutrophil), (B) macrophages (F4/80) 
and (C) B lymphocytes (B220).  All intratumoral MMP-9 was of neutrophil origin, while 
one MMP-9 positive macrophage was observed at peri-tumorally.  No MMP-9 positive B 
cells were observed.   
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Figure 14:  Neutrophil density is similar in tumors from wild type and MMP-9 
deficient tumors.  Immunohistochemical staining for neutrophils was performed on 
tumors from 5 each MMP-9 deficient mice and wild type littermates.  Percent positive 
area was calculated using MetaMorph software by first masking an area of interest, and 
then quantifying positive pixels per total pixels. 
 

 

this finding was not supported in follow up experiments using larger data sets.  Repeated 

Taken together, these studies indicate that like epithelial produced MMP-7, neutrophil 

derived MMP-9 functions in a pro-tumorigenic capacity early in the development of 

intestinal tumors.  
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CHAPTER IV 

 

AN ANTI-TUMORIGENIC ROLE FOR MAST CELLS 

 

Introduction 

 Mast cells are a group of bone marrow derived granulocytes most commonly 

associated with allergy, though recent studies show them to be involved in a wide range 

of physiological and pathological processes (Leslie, 2007).  Classically, mast cells are 

divided into two sub-populations based upon their histochemical properties and 

anatomical distribution (Hallgren and Gurish, 2007).  Connective-tissue mast cells 

(CTMCs) are found throughout the skin, peritoneum and intestinal submucosa, while 

mucosal mast cells (MMCs) are found throughout the epithelial surface of the lung and 

intestinal mucosa (Miller and Pemberton, 2002).  In addition to anatomical distribution, 

these two broad classes of mast cells also differ in their expression of tryptases and 

chymases (Caughey, 2007).  Generally, MMC tend to express both chymases and 

tryptases, while CTMC express only tryptases, though recent evidence suggests that mast 

cell heterogeneity is broader than just the two classically defined groups (Caughey, 

2007). 

Mast cell activation, typically by IgE receptor cross-linkage or Toll-like receptor (TLR) 

binding (Metz et al., 2007), induces mast cells to secrete various pro-inflammatory 

mediators (Bischoff and Kramer, 2007).  These mediators include cytokines and small 

molecules involved in leukocyte recruitment and activation, vasodilation, angiogenesis, 

and mitogenesis (Frankenstein et al., 2006; Theoharides et al., 2007).  Conversely, in 
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some circumstances, mast cells have been demonstrated to limit inflammation, and many 

mast cell secreted mediators have both pro- and anti-inflammatory aspects indicating a 

central role for mast cells in modulating inflammation (Metz et al., 2007).  Increased 

abundance of mast cells has been observed in various human tumors, and is frequently 

associated with a good prognosis (Hedstrom et al., 2007; Rajput et al., 2007).   

Results of microarray profiling of intestinal adenomas, revealed a striking 

increase in the abundance of mast cell expressed transcripts as reported here.  Because of 

the well established role of inflammation in the development and progression of 

colorectal neoplasms (Clevers, 2004), we generated a mast cell-deficient Min mouse to 

examine the role of mast cells in the early stages of intestinal tumorigenesis.   

 

Results 

 

Mast cells are present in intestinal adenomas of Min mice 

As part of a broader screen to determine which proteinases were differentially 

expressed in Min adenomas compared to normal murine small intestine, we used the 

Hu/Mu ProtIn microarray from Affymetrix that contains probe sets for all known human 

and murine proteinases (Schwartz et al., 2007).  Numerous mast cell related transcripts 

were more abundant in tumor tissue than in normal distal small intestine (Table 7).    

Real-time PCR analysis of murine mast cell protease (mcpt) transcripts was performed to 

validate microarray findings, and mcpt-1, -2, -5, -6 and -7 transcripts were found to be 

significantly more abundant in adenomas than normal tissue (Figure 15). 
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Table 7:  List of 31 genes differentially expressed in intestinal adenomas of Min mice 
as compared to normal intestinal tissue.  Microarray profiling intestinal adenomas 
using a novel Affymetrix Hu/Mu ProtIn chip revealed 31 genes that significantly 
differentially expressed as revealed by relative microarray analysis.  Several mast cell 
related transcripts were identified from this screen as indicated by gray shading.  Positive 
Log2 ratio indicates genes more abundant in tumor, while negative rations indicate genes 
more abundant in normal tissue. 
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Figure 15:  Relative expression analysis of mast cell proteases in intestinal adenoma 
tissue compared to normal intestine.  Real time PCR was used to validate microarray 
results indicating an increase in the abundance of several mast cell proteinase transcripts 
in intestinal adenomas.  Abundance of transcripts for mcpt genes was compared to 
GAPDH, and results are reported as a ratio compared to normal tissue.  Black bars 
represent chymase family members, and gray bars represent tryptase family members.  
Reactions were run for six tumor samples and four normal controls in triplicate.  Fold 
change was determined in comparison to change in GAPDH.  *, P<0.05; **, P<0.005.    
 

 

To examine the distribution of mast cells within tumors, chloroacetate staining 

was performed to demonstrate chymase, a marker of mucosal mast cells (Leder, 1979).  

Mast cells were only occasionally present in normal intestinal tissue, and when present, 

were restricted to the base of the villus.  However, in tissue isolated from tumors, mast 

cells were found throughout the tumor and surrounding stroma (Figure 16A-D).  As 

previously observed in a chemical-induced model of colorectal tumorigenesis 

(Wedemeyer and Galli, 2005), mast cell density was enhanced in tumor tissue compared 

to normal small intestine (Figure 16E).    Combined, these observations demonstrate that 
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mast cell distribution is changed and abundance is increased in both benign and 

malignant tumor tissue.   

 

 

 

Figure 16:  Mast cells are more abundant in adenomas from Min mice than normal 
murine small intestine.  A-D:  Histochemical staining for chymase.  Leder’s esterase 
reaction was employed to visualize mast cells (dark blue stain) in normal small intestine 
at low (A, scale bar 150μm) and high power (B, scale bar indicates 50μm) and tumor in 
low (C, scale bar 320μm) and high power (D, scale bar indicates 50μm).  Tissue was 
counterstained with Kernetrocht’s nuclear red.  E:  Abundance of chymase positive cells 
was measured in normal and tumor tissue.  Significantly more chymase positive cells 
were found in tumor tissue than normal controls.  Multiple sections of individual tumors 
and normal small intestine were counted from four each Min mice and wild-type 
littermate controls.  Each point represents an individual measurement; hash mark, mean.  
**, P<0.005, difference is statistically significant, Student’s two-tailed t test.   
 

 

 

Mast cell ablation results in increased tumor multiplicity and size 

Previously, epidemiological studies have linked high numbers of infiltrating mast 

cells into tumors with a positive prognosis (Hedstrom et al., 2007; Rajput et al., 2007); 

hence the hypothesis was that the increase in mast cell density was evidence of a host 

response to the tumor.  To test this possibility we used a genetic approach. 
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To examine the role of mast cells in intestinal tumorigenesis, we generated Min-

Sash (APCMin/+;c-kitW-sh/W-sh) mice. Mice homozygous for the W-sh allele at the c-kit 

locus lack mucosal mast cells, though unlike the phenotypically similar c-kit W/W-v 

mutants, Sash mice are not sterile, nor anemic, have normal levels of intestinal TCRγδ T 

cells (Metz and Maurer, 2007), and are easily genotyped based upon their coat color 

(Figure 17).   

 

 

 

Figure 17:  Sash mutants are easily genotyped based upon coat color.  Sash mice, a c-
kit mutant, are named for the characteristic white “sash” seen in heterozygous mice on 
the C57Bl/6 background.  Wild type mice have a normal coat color, while mice 
homozygous for the W-sh allele are white due to a defect in melanocyte survival. 
 
 
 
 
 

Mice were raised on a high-fat diet, which has been shown to enhance intestinal 

tumorigenesis (van Kranen et al., 1998), and were euthanized at 17 weeks of age.  On 

average, Min-Sash mice developed 52.8 tumors while Min littermates developed 38, 

representative of a 36% increase on average of tumor multiplicity when mast cells are 

absent (Figure 18A).  Additionally, tumor diameter was 33% larger in Min-Sash mice  
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Figure 18:  Tumor multiplicity in the small intestine in mice generated from an 
APCMin/+-c-kitW-sh/W-sh cross.  A:  Min-Sash (APCMin/+;c-kitW-sh/W-sh) mice develop 
significantly more tumors than Min littermates at 17 weeks of age.  A total of 50 Min 
mice, 16 homozygous for the W-sh allele, 17 heterozygous for the W-sh allele, and 17 
wild-type for the W-sh allele mice were counted for tumors; hash mark, mean.  
**,P<0.005; ***, P<0.0005, differences are statistically significant, Poisson regression.  
B:  Size distribution of min adenomas from wild-type (gray) and Min-Sash (black) mice.  
Tumors were measured with digital calipers from four Min-Sash mice (n=209) and five 
Min (n=213) littermate controls.  Tumors from a total of 10 mice, 4 Min-Sash 
(homozygous for the W-sh allele), 1 heterozygous for the W-sh allele and 5 wild-type 
were measured.  Min-Sash mice develop significantly larger tumors than wild-type 
littermates, P<0.05, difference is statistically significant, repeated measures ANOVA test. 
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than in Min littermates (Figure 18B).  These findings suggest a protective role for mast 

cells in intestinal tumorigenesis. 

 

Mast cell deficiency impairs apoptosis of tumor cells 

Because tumors were found to be both more numerous and larger in Min-Sash 

mice, we examined tumor cell proliferation and apoptosis.  Proliferation was assayed by 

immunohistochemical staining for phospho-Histone H3, a marker specific for late 

anaphase and mid-metaphase mitosis (Hendzel et al., 1997).  Proliferation was not 

statistically different between Min-Sash and Min litter mates (Figure 19A and 19B).  

BrdU incorporation, a marker of DNA synthesis, produced similar results (Figure 20A).  

To assess apoptosis, tumors were sectioned and immunohistochemically stained for 

cleaved caspase-3, and positive cells per unit area were compared.  Tumors from Sash 

mice had 33% fewer apoptotic nuclei per unit area than wild type controls (Figure 19C 

and 19D).  TUNEL staining produced similar results (Figure 20B).  The effect of mast 

cell ablation on adenoma formation and growth was therefore likely due to effects on 

adenoma cell apoptosis. 

 

Tumors from mast cell deficient mice have reduced eosinophil infiltrate 

Mast cells have been shown to induce apoptosis through signaling to other 

immune cells.  To determine if the observed difference in apoptosis was the result of 

differential immune cell infiltration into the tumor, immunohistochemical staining for 

eosinophils, neutrophils, macrophages, and T cells was performed.  Eosinophils and 

neutrophils were found throughout the tumor and adjacent tissue of both Min and Min-  
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Figure 19:  Apoptosis is inhibited in intestinal adenomas from Min-Sash mice 
compared to littermate controls; proliferation is not affected.  A:  Intestinal 
adenomas were assayed for proliferative cells by phospho-Histone H3 
immunohistochemistry.  Positive cells were counted per unit area using NIH ImageJ 
software; hash mark, mean, not significant.  B:  Phospho-histone H3 staining (dark 
brown staining) in tumors isolated from Min (top) and Min-Sash mice (bottom).  Nuclei 
were visualized by counterstaining with hematoxylin.  Scale bar indicates 100μm.  C:  
Intestinal adenomas were isolated from Min (n=7) and Min-Sash (n=7) littermates and 
stained for cleaved caspase-3, a marker of apoptosis.  Positive cells were counted per unit 
area as determined by NIH ImageJ software.  hash mark, mean  *, P<0.05, difference is 
statistically significant, Mann-Whitney two-tailed t test.  D:  High power 
photomicrograph of caspase-3 immunohistochemistry (dark brown stain) in tumors 
isolated from Min (top) and Min-Sash (bottom) mice (63x), scale bar represents 50μm.  
Nuclei were counterstained with Mayer’s hematoxylin. 
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Figure 20:  Alternative quantification of proliferation and apoptosis performed by 
histochemistry for incorporated BrdU or TUNEL staining, respectively.   
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Figure 21:  Eosinophils are less abundant in adenomas from Min-Sash mice 
compared to wild-type littermates; other leukocyte populations are not affected.  
Intestinal adenomas were isolated from wild-type and Min-Sash littermates and profiled 
for leukocyte populations by immunohistochemical staining.  A:  Immunohistochemical 
demonstration of MBP-positive cells indicating eosinophils in wild-type (left) and Min-
Sash (center) mice.  Scale bar indicates 100 μm.  Quantitation of eosinophils in Min-Sash 
mice compared to Min controls (right); hash mark, mean, *, P<0.05, difference is 
statistically significant, Student’s two-tailed t-test.  B-C:  Immunohistochemical 
demonstration of neutrophils (anti-neutrophil+) (B) and T cells (CD3ε+) (C) in tumor 
tissue isolated from Min (left) and Min-Sash (center) mice.  No differences were detected 
between groups (right).   Scale bar indicates 100μm. 
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 Sash mice, however, fewer eosinophils were present in tumors of Min-Sash mice 

compared to Min littermates (Figure 21A).  No differences were detected in the number 

or distribution of neutrophils, (Figure 21B).  T cells were primarily detected adjacent to 

tumor with very few intratumoral cells, and no difference was detected between Min and 

Min-Sash mice (Figure 21C).  Macrophage staining was exceptionally sparse and 

virtually all macrophages detected were located in adjacent stromal tissue; no difference 

was detected between groups.  

To confirm that mast cells were responsible for this phenotype, we attempted to 

repopulate the gut with bone marrow derived mast cells.  To reconstitute intestinal mast 

cells into Min-Sash mice,1-week old Min and Min-Sash mice received a single i.p. 

injection of GFP tagged BMMC.  At 17 weeks of age mice were euthanized and 

intestines were harvested and tumor multiplicity and size were measured.  The presence 

of reconstituted mast cells was visualized by both GFP immunohistochemistry and direct 

GFP fluorescence.  GFP-positive mast cells were rarely detected in tumors from any of 

the mice, though abundant GFP-positive cells were observed in intestinal lymph nodes 

(Figure 22).  Since reconstituted mast cells did not appear to home to the tumors, at least 

at the 17 week time point, we asked if they altered the infiltration of endogenous mast 

cells or eosinophils to the tumors.  The abundance of intratumoral mast cells was not 

significantly different between treated and previously described untreated Min or Min-

Sash mice (Figure 23A).  Compared to untreated mice, the eosinophil density in Min-

Sash mice remained unchanged, but Min mice that received an injection of BMMC had a 

significantly increased density of intratumoral eosinophils (Figure 23B).  Interestingly,  
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Figure 22.  Cultured bone marrow mast cells preferentially migrated to intestinal 
lymph nodes, but not tumors.  GFP tagged bone marrow mast cells were injected 
intraperitoneally into 1 week old Min-Sash pups in an effort to repopulate mucosal mast 
cells throughout the gut.  Mast cells (green) were visualized by direct 
immunofluorescence and only rarely detected in tumors (left), but were abundant 
throughout intestinal lymph nodes (right) and spleen.  Eosinophils (red) were detected 
with a monoclonal antibody to MBP and present throughout both tissues. 
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Figure 23:  Bone marrow mast cell (BMMC) injection reduces adenoma formation 
in Min mice.  A:  Min mice treated with an intraperitoneal injection of bone marrow 
mast cells did not have an increased abundance of mast cells in tumors compared to non-
treated controls; bars, mean; Difference is not statistically significant, Student’s two-
tailed t test.  B:  Eosinophil density is not increased in tumors isolated from Min mice 
that received a BMMC injection compared to non-treated controls; bars, mean.  
Difference is not statistically significant, Student’s two-tailed t test.  C:  Tumor 
multiplicity in the small intestine is reduced in Min mice treated with an intraperitoneal 
injection of bone marrow mast cells (BMMC->Min) compared to untreated controls.  
***, P<0.0005, difference is statistically significant, Poisson regression. 
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Min mice that received a single i.p. injection of mast cells developed 40% fewer 

tumors than previously described Min controls.  In contrast, BMMC treated Min-Sash 

mice did not develop significantly fewer tumors than untreated Min-Sash controls.  The 

difference in tumor multiplicity correlated positively with intratumoral eosinophil density 

(Figure 23C), suggesting a significant anti-tumor role for eosinophils. 

In summary, ablation of mast cells correlated with a decrease in tumor-infiltrating 

eosinophils but not of any other leukocyte lineage examined.  Overall, our results support 

a protective, anti-tumor role for mast cells and eosinophils in intestinal tumorigenesis and 

provide experimental validation of an epidemiological observation. 
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CHAPTER V 

 

DISCUSSION AND FUTURE DIRECTIONS 

 

Discussion 

 

 The goal of the work described in this dissertation was to investigate the role of 

host derived proteinases in an animal model of early intestinal tumorigenesis.  In order to 

generate a comprehensive profile of all proteinases expressed by intestinal tumors of the 

Min mouse model system, we developed a custom Affymetrix microarray containing 

probes for all known human and murine proteinases.  Based upon the profile that was 

generated, I tested the effect of ablating various MMPs on tumor multiplicity in the Min 

system.  I have demonstrated that genetic ablation of MMP-2, -12, or -19 does not affect 

multiplicity or growth of intestinal adenomas in mice harboring the Min mutation.  

However, deleting MMP-9 significantly reduces tumor multiplicity in this model system, 

suggesting that MMP-9 plays a pro-tumorigenic role.  Furthermore, immunofluorescent 

co-staining has identified neutrophils as the major cellular source of MMP-9 in these 

tumors.  Additionally, using this microarray I detected an increase in mast cell 

proteinases in Min adenomas and have shown that mucosal mast cells function in a 

protective, anti-tumor role in the intestine.  Although I was unable to identify the 

molecular mediators responsible for this protective effect, data suggests that it may be 

mediated through the recruitment of eosinophils.  Taken together, these results suggest 
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that inflammatory mediators function in both pro- and anti-tumorigenic capacities during 

early intestinal tumorigenesis, a concept that will be further explored in this chapter. 

 

Microarray Expression Analysis of MMPs in Intestinal Adenomas 

Previously, using in situ  hybridization, we generated an expression profile of the 

MMPs expressed by intestinal adenomas of Min mice, which suggested 1) that these 

tumors are heterogeneous in their expression of MMPs, and 2) that genetic ablation of 

MMP-7 may be functionally compensated for by increased expression of MMP-2 

(Wilson et al., 1997).  Since our initial screen, several additional MMP family members 

have been identified. Many of these genes are extremely restricted in their expression 

pattern, and in some cases are only produced by specific cell lineages.  Further, these 

initial experiments used in situ hybridization, a time consuming technique that assays 

each gene of interest independently, making analysis of large families of genes expensive 

in terms of both labor and materials.  To gain a more comprehensive characterization the 

MMPs expressed by these tumors, I utilized microarray analysis, which enables the 

analysis of thousands of genes simultaneously and allowed me to easily examine 

expression levels of MMPs and other types of proteinases in intestinal tumorigenesis.   

Affymetrix microarray experiments produce two different, but related types of 

results that are commonly referred to as absolute and relative analyses.  Absolute analysis 

generates a call of whether a gene is present or absent based upon a proprietary algorithm 

that compares hybridization of target sequence to “Perfect Match” and “Mismatch” 

oligonucleotide probes (Affymetrix, 2004).  This type of analysis is most useful for 

comparing large sets of samples, but is prone to false negatives when there is high 
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background such as the case when examining genes with high sequence homology or 

degraded RNA.  In contrast, relative analysis compares the intensity of hybridization 

between samples.  Because transcriptional regulation of many genes functionally results 

in a gradient of expression rather than simple all-or-nothing binary state, this approach 

allows more subtle examination of gene expression (Biggar and Crabtree, 2001).  Further, 

biological samples frequently contain numerous cell types, and while a given gene may 

be regulated in a binary fashion in any given cell, in the larger context of a tissue or organ 

the transcriptional contribution of each cell type typically resembles more of a graded 

response if the percent composition of cell lineages varies between samples. 

Using a custom Affymetrix microarray containing probes for all currently known 

human and murine proteinases, inhibitors, and interacting proteins; I have generated a 

comprehensive profile of the expression pattern of proteinases that are present in normal 

murine small intestine and intestinal adenomas of the Min model system.  Absolute 

analysis of isolated normal small intestine and Min adenomas confirmed our previously 

reported findings (Wilson et al., 1997), and additionally identified four additional MMP 

family members that had not previously been reported to be expressed by Min adenomas.  

Furthermore, relative comparison between these two tissues revealed three MMPs and 

several other proteinase genes that were significantly more abundant in intestinal 

adenomas than normal tissue.  These findings provide additional targets for further study 

of the development and progression of intestinal neoplasia, and provide experimental 

evidence that lead to our experiments examining other MMP family members and the 

potential role of mast cell proteinases described in Chapters III and IV.     
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I have demonstrated that transcripts encoding MMPs-10, -13, and -14 are 

significantly more abundant in Min adenomas than normal intestinal tissue as determined 

by relative analysis, and that MMP-15, which is not detected in normal intestine, is 

present in adenomas as determined by absolute analysis.  Unfortunately, I was unable to 

test the effect of genetic ablation of these MMPs.  Mice lacking MMP-10 and -13 have 

been developed (Parks, 2004; Stickens et al., 2004), but were produced on different 

genetic backgrounds than the C57Bl/6 background that is optimal for Min studies.  These 

MMP-deficient mice would need to be backcrossed in order to make uniform 

comparisons within our studies.  This process has been started but was not possible to 

finish before the completion of my studies.   

Several tumor models have detected an increase in the expression of MMP-13 that 

correlates with advanced progression (Wagenaar-Miller et al., 2004), and is frequently 

expressed by transformed epithelial cells (Blavier et al., 2006; Rath et al., 2006) and 

chronic, but not acute wounds (Vaalamo et al., 1997).   Further, genetic ablation of 

MMP-13 has been shown to limit tissue damage in a model of hepatic injury (Uchinami 

et al., 2006), and targeted inhibition by of MMP-13 at the RNA level potently inhibits 

tumor growth (Ala-aho et al., 2004).  Taken together, these data suggest a role for pro-

tumorigenic role for MMP-13 in tumor development, which suggests that had I 

completed these studies that MMP-13 deficient Min mice would develop fewer tumors 

than littermate controls. 

MMP-10 is poorly understood in the context of tumor development, though has 

been shown to be expressed by migrating enterocytes that border intestinal ulcerations, 

suggesting a role in cell motility (Salmela et al., 2004; Vaalamo et al., 1998).  
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Additionally, MMP-10 has been shown to confer resistance to p53 induced apoptosis 

(Meyer et al., 2005).  MMP-10 and MMP-3 are highly homologous enzymes (Massova et 

al., 1998), and because of the role of MMP-3 as a mediator of initiation, I hypothesize 

that ablation of MMP-10 would result in decreased tumor multiplicity in the Min model.  

However, due to the role of MMP-10 in migration, a more significant role may be 

revealed by using a model capable of metastasis. 

MMP-14 deficient animals exhibit a number of severe developmental 

abnormalities and die prematurely making them unsuitable for use in a Min study 

(Holmbeck et al., 1999).  To date, despite several attempts, MMP-15 deficient animals 

have not been successfully developed (Seiki, 2004).  We have however examined the 

contribution of four different stromal MMPs to the development of intestinal adenomas in 

the Min model system- MMP-2, -9, -12 and -19.   

   

MMP-2 Does Not Contribute to Early Tumor Development in the Min Model 

I had predicted that ablation of MMP-2 would reduce tumor multiplicity in the 

Min model.  Though not detected as differentially expressed in our microarray screen, 

MMP-2 is expressed by stromal cells in a large percentage of Min intestinal adenomas 

(Wilson et al., 1997).  Additionally, while MMP-7 ablation has been shown to reduce 

tumor multiplicity in Min mice, of the tumors that do form, all of these tumors express 

MMP-2 suggesting that in the absence of MMP-7 that MMP-2 may function in a 

compensatory role in promoting tumorigenesis (Wilson et al., 1997).  MMP-2 has been 

shown to regulate the activity and activation of other MMPs (MMP-1, -2, -13), acts upon 

a wide spectrum of substrates resulting in cleavage products with pro-inflammatory (pro-
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TNFα, pro-IL-1β) and mitogenic (IGFBP-3, IGFBP-5) effects (Cauwe et al., 2007), and 

has been shown to contribute to tumor growth in an experimental animal model of 

pancreatic tumorigenesis (Bergers et al., 2000), thus making MMP-2 an attractive target 

for further investigation. 

I have demonstrated that genetic ablation of MMP-2 does not affect tumor 

multiplicity or size in the Min model, a finding that is in agreement with previous 

unpublished studies (Wagenaar-Miller, 2002).  However, previous studies using mice 

deficient for MMP-2 in other tumor model systems, have focused on later stage disease 

and, in particular, the processes of angiogenesis and metastasis (Bergers et al., 2000).  

Angiogenesis is thought to be required once tumors achieve sufficient diameter (Naumov 

et al., 2006).  In the Min model, while adenomas may be as large as 5mm across, the 

majority of tumors morphologically are sessile, therefore flat, and thus may not require 

extensive angiogenesis.  Further, tumors in the Min model only rarely progress to 

invasive adenocarcinoma and never metastasize, so any contribution of MMP-2 to 

metastatic spread would not be relevant in this system.  Nevertheless, because of the 

overlapping substrate specificity of proteinases, there remains the possibility that in the 

absence MMP-2 other enzymes are able to functionally compensate in performing roles 

that ultimately result in tumorigenesis. 

Because of this compensatory possibility, and previous data that suggested that 

MMP-7 and -2 are compensatory in the Min model, I investigated tumorigenesis in 

MMP-2; MMP-7 double deficient Min mice.  I had anticipated that ablation of both 

MMP-2 and MMP-7 would further reduce tumor multiplicity, compared to MMP-7 null 

controls.  However, while MMP-2/MMP-7 double deficient mice developed slightly 
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fewer tumors than MMP-7 deficient littermates, this difference was not significant.  To 

examine the possibility that ablation of specific MMPs induces compensation by other 

MMP family members, we used microarray and real-time PCR analysis to compare the 

expression profile of tumors from wild type Min mice, Min mice with MMP-7 

genetically ablated, and MMP-2/MMP-7 double knockout Min mice.  Surprisingly, in 

contrast to previous experiments, tumors are largely homogeneous in their expression of 

MMPs across all genotypes examined, and the only statistically significant difference 

detected between samples was the absence of MMP-7 and MMP-2 from animals with 

those MMPs genetically ablated.  However, the absence of compensatory transcription of 

other MMP family members may be partially due to methodological limitations of 

microarray analysis, which emphasizes large differences in transcript abundance of 

genes.  Further, in order to ensure that we recovered sufficient RNA to analyze; our 

initial microarray experiments were performed on pooled tumor tissue samples, rather 

than individual tumors, which homogenizes the sample pool thus making low frequency 

transcripts appear to be more common.  However, follow up experiments performed with 

RNA isolated from individual tumors did not display variability, either.  Taken together, 

these findings suggest that MMP-2 does not contribute to early tumorigenesis in the Min 

mouse model, and that transcriptional compensation by other MMP family members does 

not occur in this model system. 

 

MMP-12 Does Not Contribute to Early Tumor Development in the Min Model System 

To investigate the role of MMP-12 in the development of intestinal neoplasia, we 

developed Min mice lacking MMP-12.  We had expected that mice lacking MMP-12 
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would develop more tumors than littermate controls, and that these tumors would 

progress to a more advanced state for a number of reasons.  MMP-12 has been shown to 

be produced by tumor epithelial cells, though as its trivial name macrophage elastase 

suggests, is primarily produced by macrophages (Lavigne and Eppihimer, 2005).  High 

levels of macrophage derived MMP-12 is commonly associated with an improved 

prognosis in colorectal tumors (Asano et al., 2007; Zucker and Vacirca, 2004).  

Additionally, a recent study by Tan, et al. found that low densities of tumor associated 

macrophages (TAMs) correlate with increased depth of invasion; and that patients with a  

high TAM had fewer lymph node metastasis and an higher 5-year survival rate than those 

whose tumors had a low density of TAMs (Tan et al., 2005).  Further, TAM have been 

associated with increased levels of apoptotic tumor cells in colorectal cancer (Higgins et 

al., 1996), and have been shown to be capable of directly stimulating tumor cell apoptosis 

(Cui et al., 1994).     

Previous work in our lab using Lewis lung carcinoma cells demonstrated that 

animals deficient for MMP-12 developed a similar number of tumors as did wild-type 

littermates, but that animals lacking MMP-12 developed large tumors more frequently 

(Acuff et al., 2006).  These studies have correlated host MMP-12 expression with an 

angiostatic host response, and implicate MMP-12 as an anti-angiogenic mediator, perhaps 

through the degradation of plasminogen to generate angiostatin (Acuff et al., 2006; 

Houghton et al., 2006; Shapiro, 1999).  Because of these reasons, I analyzed the tumor 

multiplicity and the distribution of tumor diameter in MMP-12 deficient Min mice.  

When compared to littermate control mice, MMP-12 developed a similar number of 

tumors, and tumors from both groups were similar in size.  Attempts to visualize 
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angiogenic vasculature were unsuccessful, though given the small size of the tumors, 

angiogenesis is unlikely to be required for tumor growth, a hypothesis supported by the 

literature (Alferez et al., 2008).  That genetic ablation of MMP-12 did not affect tumor 

multiplicity or size in Min mice, indicates that host derived MMP-12 is not a critical 

mediator in the development of the early stage intestinal tumors that develop in this 

model organism.  However, the lack of an observable effect upon MMP-12 ablation may 

be due to the early nature of the tumors of the Min model, and only observable by using a 

model system that develops more advanced tumors.  One such model that could be used 

to assess the role of MMP-12 in later stage tumors is the Smad-3 deficient mouse.  Unlike 

the Min model mice with Smad-3 genetically ablated develop highly aggressive tumors 

of the large bowel that are much larger in size, frequently invade through the bowel wall, 

and metastasize locally to regional lymph nodes (Zhu et al., 1998).   Based upon previous 

literature indicating a protective role for MMP-12, and data indicating that this protective 

effect is due to a decrease of anti-angiogenic factors, I predict that had I used a model 

involving later stage tumors that involve angiogenesis, that ablation of MMP-12 would 

result in increased tumor size.   

 

MMP-19 Does Not Contribute to Early Tumor Development in the Min Model System 

I had expected that ablation of MMP-19 in the Min model would accelerate tumor 

development, and that animals lacking this enzyme would develop more tumors, that 

these tumors would be larger, and potentially metastatic.  Expression analysis has 

demonstrated that MMP-19 is produced by activated peripheral blood mononuclear cells, 

TH1 lymphocytes (Sedlacek et al., 1998), and throughout the intestine in both enterocytes 
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and occasional stromal fibroblasts and macrophages (Mueller et al., 2000).  In contrast to 

most other MMPs, epithelial expression of MMP-19 is decreased in transformed cells 

(Bister et al., 2004), and lost during malignant progression (Impola et al., 2005).   

MMP-19 was only marginally detected in normal murine intestine by microarray 

analysis, and weakly in some pooled samples of intestinal polyps.  However, this 

detection pattern was similar to that of MMP-3, which was previously detected in 

approximately 50% of intestinal adenomas by in situ hybridization, and may reflect a 

large degree of heterogeneity within polyp pools.  In a previous study of skin 

carcinogenesis that used MMP-19 deficient animals, it was shown that the depth of tumor 

invasion is deeper and that angiogenesis occurs earlier in MMP-19 deficient animals, 

suggesting a protective role for MMP-19 (Jost et al., 2006).   

To examine the effects of MMP-19 on early tumorigenesis, MMP-19 deficient 

mice were crossed into the Min model.  However, ablation of MMP-19 did not affect 

tumor multiplicity or size, and no evidence of metastatic spread was observed.  Thus, 

while MMP-19 may affect later stages of tumor development, it does not influence early 

stage tumorigenesis, at least in the Min model. 

 

Leukocyte Derived MMP-9 Contributes to Intestinal Tumorigenesis 

We had expected that Min mice lacking MMP-9 would develop fewer tumors 

than littermates, but those tumors that did develop to be of a more advanced phenotype.  

This dichotomy has previously been observed in studies that used a mouse model of skin 

tumorigenesis.  Animals that lacked MMP-9 developed fewer tumors than wild-type 
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littermates, but those tumors that did develop were more aggressive and of a higher grade 

(Coussens et al., 2000).   

Using absolute microarray analysis, we found that transcripts encoding MMP-9 

were absent from normal intestinal tissue, but were readily detected in all tumor samples 

analyzed.  In the context of a tumor, MMP-9 (gelatinase B) is produced by a wide variety 

of stromal cells including neutrophils, mast cells, macrophages, fibroblasts, and 

epithelium (Noel et al., 2008).  Further, MMP-9 expression is dramatically augmented in 

colorectal tumors, and tends to increase as the disease progresses (Islekel et al., 2007).   

When mice with MMP-9 genetically ablated were bred into the Min model, 

animals that lacked MMP-9 developed significantly fewer tumors than did littermate 

controls, suggesting that MMP-9 functions in a pro-tumorigenic role.  However, there 

was no difference in tumor size, nor any evidence of local or distant metastatic spread.  

Immunofluorescent staining revealed that neutrophils are the major source of 

intratumoral MMP-9.  A single MMP-9 positive macrophage was observed, though this 

cell localized to the tumor periphery. 

A well known role for MMP-9 is as a master regulator for angiogenesis.  In our 

model, MMP-9 co-localized with neutrophils, a finding consistent with previous findings 

that MMP-9 is stored in the tertiary granules of neutrophils (Opdenakker et al., 2001).  

Neutrophils have been implicated as a key regulator of the initial angiogenic switch 

(Nozawa et al., 2006) by virtue of their granule contents which are unique in that they 

contain TIMP-1 free MMP-9 (Ardi et al., 2007).  Despite several attempts to detect 

angiogenesis by immunohistochemistry for CD-31, we were unable to reliably 

demonstrate a difference in angiogenic vasculature between samples.  Additionally, when 
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total vasculature was visualized using von Willebrand Factor as a marker, no apparent 

difference in vascularization was detected between tumors from MMP-9 deficient 

animals and wild-type controls.  While an angiogenesis mechanism would explain a 

difference in tumor size, I didn’t actually observe any such dissimilarity between wild-

type and MMP-9 null Min mice.  Thus, as previously discussed, the Min model is an 

early model of tumor development, and because adenomas that develop in the Min model 

are typically of flat morphology, extensive angiogenesis may not be required for tumor 

survival.  Hence, the pro-tumorigenic effect of MMP-9 is likely to be due to something 

other than a pro-angiogenic factor. 

The effect observed here suggests a role for MMP-9 early in the development of 

neoplastic lesions.  One potential way that MMP-9 could impact early tumor 

development is through the generation of reactive oxygen species.  Such a pathway has 

been particularly well described for MMP-3, which incidentally can also act as an 

activator of pro-MMP-9 (Inuzuka et al., 2000).  MMP-3 expression induces an 

alternatively spliced form of the small GTPase rac1 known as rac1b.  This variant 

induces an increase in intracellular ROS, elevated levels of the transcription factor Snail, 

and ultimately genomic instability, though the initial cleavage product leading to this 

change has not yet been identified (Radisky et al., 2005).  Importantly, this effect has also 

been observed for MMP-9, which has been shown to be capable of substituting for MMP-

3 in this same pathway (Radisky et al., 2005).  Further, rac1b has been shown to 

potentiate the Wnt pathway, thus enhance transcription of MMP genes (Esufali et al., 

2007) and potentially setting up a run-away feedback loop. 
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Further, MMP-9 activity could be processing cytokines, a mechanism that has 

been shown to be a major regulator of neutrophil activity.  For example, MMP-9 

mediated cleavage of full length IL-8 (1-77) to a truncated form (7-77) enhances IL-8 

activity by more than tenfold (Van den Steen et al., 2000).  This enhanced activity 

stimulates neutrophils via a positive feedback loop resulting in increased IL-8 binding, 

migration, production of MMP-9 (Opdenakker et al., 2001) and ROS (Guichard et al., 

2005), and ultimately degranulation (Van den Steen et al., 2000).  Thus, it is possible that 

MMP-9 mediated differences in cytokine signaling are involved as upstream mediators of 

rac1b expression. 

Another possibility is that MMP-9 is promoting tumorigenesis through the 

processing of growth factors, either by direct cleavage, or indirectly via the activation of 

other MMPs as previously discussed (Imai et al., 1997; Whitelock et al., 1996).  

Specifically, an MMP-9 dependent effect has been observed in the proliferation and 

morphogenesis of mammary endothelial cells.  In vitro stimulation of mammary 

epithelial cells with TNF-α induces cell proliferation and branching morphogenesis, an 

effect that is blocked with MMP-9 specific inhibitor (Lee et al., 2000).  However, such an 

effect need not necessarily be due to direct activation by MMP-9.  Specifically, MMP-9 

has been shown to activate other MMPs, including MMP-2 which has been shown to 

liberate bound IGF from binding proteins (Thrailkill et al., 1995). 

Alternatively, the effect may be the result of MMP-9 influencing neutrophil 

behavior.  MMP-9 activity has been shown to produce factors that regulate cell 

proliferation, migration, and apoptosis.  Furthermore, it has been demonstrated that 

neutrophils themselves metabolize carcinogens to reactive oxygen and nitrogen species 
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that damage adjacent cells (Josephy and Coomber, 1998).  Defects in neutrophil 

migration associated with MMP-9 deficiency have been reported in some (Khandoga et 

al., 2006), but not all (Felkel et al., 2001) model systems.  In our samples, that there was 

no apparent difference between the number of neutrophils in Min tumors of wild-type 

and MMP-9 null mice suggests that MMP-9 is not essential for neutrophil recruitment or 

migration to tumors in the gastrointestinal tract. 

In conclusion, data presented here present pro-tumorigenic role for inflammatory 

cells, in particular, neutrophils, though the molecular mechanisms responsible for this 

effect are as of yet unknown. 

 

Mast Cells Function in an Anti-Tumor Capacity 

 I assayed intestinal tumors using a novel Affymetrix microarray to identify 

dysregulated proteinases that could potentially contribute to the development of tumors.  

Interestingly, an unexpected finding of this screen was the detection of several mast cell 

derived proteinases that were more abundantly expressed in tumors than normal intestinal 

tissue.  Histochemical staining demonstrated that mast cells are more abundant in tumor 

than normal intestinal tissue, and because of these finding, I further explored the role of 

mast cells in intestinal tumorigenesis.  I have demonstrated that mast cell deficient 

animals developed more abundant and larger benign tumors than mast cell competent 

littermates.  Furthermore, tumors isolated from mast cell deficient mice had diminished 

numbers of apoptotic nuclei and fewer intratumoral eosinophils when compared to wild 

type littermates, though other leukocyte populations were unchanged between groups.      
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The prognostic significance of mast cell infiltration into tumors remains unclear 

with studies suggesting that high levels of mast cell infiltration is both a positive 

(Hedstrom et al., 2007; Nielsen et al., 1999; Rajput et al., 2007; Tan et al., 2005) and a 

negative (Gulubova and Vlaykova, 2007) prognosis in the setting of colorectal and other 

cancers.  In the studies reporting a positive prognosis, subjects were grouped into cohorts 

of high and low mast cell density and subjects with higher mast cell densities correlated 

with increased survival and a reduced risk of recurrence as well as decreased incidence of 

local and distant metastasis.  However, there remains a paucity of in vivo experimental 

tumorigenesis studies to determine the mechanisms by which mast cells exert this 

protective effect. 

My findings are contrary to a report of a pro-tumorigenic effect of mast cells in 

intestinal tumorigenesis induced by the carcinogen 1-2-dimethylhydrazine (DMH) 

(Wedemeyer and Galli, 2005).  However, there are significant differences between the 

models used in my study as compared to the study by Wedemeyer et al.  One key 

difference is the stage of the tumors examined.  DMH treatment results in malignant 

carcinomas of the colon, whereas the Min model produces benign adenomas that do not 

metastasize.  A protective effect of the immune/inflammatory system is often observed in 

early-stage tumorigenesis, whereas at later stages inflammatory mediators can promote 

tumor progression (Coussens and Werb, 2002).  In a study by Gulubova et al., a high 

density of mast cells in association with angiogenic “hot spots” was found to correlate 

with decreased survival and a poor prognosis (Gulubova and Vlaykova, 2007).  Coussens 

et al. reported that an increase in mast cells resulted in enhanced angiogenesis in a model 

of squamous epithelial carcinogenesis (Coussens et al., 1999).  However, it should be 
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emphasized that the pro-angiogenic role for mast cells reported by this group was 

observed using connective tissue mast cells, which are known to express a different 

cohort of granular proteins than the mucosal mast cells found throughout the gut 

(Bradding et al., 1995; Caughey, 2007). 

A second important difference between my study and data previously reported by 

Wedemeyer et al. (Wedemeyer and Galli, 2005), is the mechanism of tumor initiation.  

The Min mouse is the result of a single mutation at base pair 850 in the gene APC 

(Adenomatous polyposis coli) which results in a truncated protein (Miyaki et al., 1994; Su 

et al., 1992).   Mutations in the tumor suppressor gene APC are an early event in 

adenoma development (Fearon and Vogelstein, 1990), and are found in 30-70% of 

spontaneous adenomas (Ichii et al., 1993).  In contrast, chemically-induced tumors are a 

result of random mutations to known oncogenes and tumor suppressor genes.  For 

instance, tumors induced by DMH or its metabolite AOM (azoxymethane) lead to 

frequent mutations in β-catenin (Takahashi et al., 2000)  and to a lesser extent K-ras 

(Takahashi and Wakabayashi, 2004), both of which are rarely mutated in Min adenomas 

(Shoemaker et al., 1997b; Suzui et al., 2002).  The consequence of mast cell interactions 

with tumor cells may be dependent on the underlying genetic alterations in the tumor.  

Lastly, in my study, the mice that were used were of a pure C57Bl/6j background, 

whereas the previous report used a WB-C57Bl/6j F1 hybrid.  Strain differences have been 

reported to affect tumorigenesis and progression in both the Min model and DMH/AOM 

induced carcinogenesis through the presence of modifier loci (Diwan and Blackman, 

1980; Moser et al., 2001; Shoemaker et al., 1998).  There also remains the possibility that 
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differences exist in the intestinal microenvironment between the two strains, and that 

these are responsible for the discrepancy. 

My data suggest a model whereby mast cells function in a protective role by 

promoting apoptosis of tumor cells.  Mast cells have been shown to indirectly induce 

apoptosis via degradation of extracellular matrix components by mast cell produced 

chymase and granzyme B leading to epithelial cell anoikis (Ebihara et al., 2005; Pardo et 

al., 2007).  In addition, mast cells have been shown to directly mediate tumor cell 

apoptosis via secretion of soluble factors such as TNF (Latti et al., 2003) or by 

production of reactive peroxides (Henderson et al., 1981).  While capable of direct 

cytotoxicity, mast cells have been shown to enhance the cytotoxicity of other 

granulocytes, and in particular, eosinophils (Capron et al., 1978).  

There are multiple levels at which eosinophils are regulated:  generation in bone 

marrow, emigration from bone marrow, recruitment to tissue, activation and 

degranulation.  Evidence exists for mast cell produced factors having the ability to 

regulate all of these steps.  For example, mast cell secreted IL-5 and stem cell factor 

(SCF) have been shown to control differentiation of hematopoetic precursor cells into 

eosinophils (Metcalf et al., 2002; Oskeritzian et al., 1996).  Eosinophil migration, 

particularly in the intestine, is largely mediated by the chemokine Eotaxin-1, an activity 

that is impaired in mast cell deficient mice (Harris et al., 1997).  Additionally mast cell 

produced chymase has been shown to induce eosinophil migration in vivo (He and Walls, 

1998).  Activation and degranulation of mature eosinophils has been shown to be 

dependent on mast cell produced SCF and leukotriene C4 (Oliveira et al., 2002).  Once 

activated, eosinophils are capable of producing several soluble factors that have been 
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shown to induce apoptosis of tumor cells such as eosinophil peroxidase (EPO), 

eosinophil cationic protein (ECP), major basic protein (MBP), and granzyme B (Costain 

et al., 2001).  Hence, there are multiple ways in which mucosal mast cell deficiency can 

impact eosinophil biology.   

Based on the correlation between presence of enhanced populations of both 

mucosal mast cells and eosinophils in the intestine of Min mice, my data suggests a 

model whereby mast cells are protective in the intestine through both direct effects on 

tumor cell apoptosis and/or indirectly through the recruitment and activation of 

eosinophils.  This model is supported by reports of mast cell and eosinophil function in 

immunosurveillance and by studies that correlate high mast cell and eosinophil infiltrates 

with a good prognosis in colorectal cancer (Nagtegaal et al., 2001; Pretlow et al., 1984).    

My studies provide experimental evidence to support the epidemiological observation of 

a protective effect of mast cells on colorectal tumorigenesis.  Conversely, in comparison 

to the pro-tumorigenic effect observed for neutrophils, I have demonstrated an anti-

tumorigenic role for mast cells. 

 

Conclusions and Future Directions 

 

 The work in this thesis began as a study of the range of proteolytic enzymes 

expressed during the development of intestinal tumorigenesis.  I then began to examine 

potential functional roles using a genetic ablation approach.  During the course of these 

studies I have discovered that the cellular sources of many of the proteinases relevant to 

tumor development are inflammatory cells.  Chronic inflammation has long been 
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associated with the development and progression of neoplasia, and taken together, these 

experiments further refine the role of MMPs and inflammation in early intestinal 

tumorigenesis.  For example, several studies have shown that patients with long-term 

inflammatory bowel disease have an increased incidence of colorectal neoplasia (Xie and 

Itzkowitz, 2008).  However, the molecular mediators linking inflammation to the 

development of neoplasia are still obscure. 

We have demonstrated that MMP-9 promotes tumor formation, and that 

neutrophils are the major source of MMP-9 in these tumors, although the mechanism 

behind this is unclear.  While neutrophils are the primary intratumoral source of MMP-9, 

we cannot exclude the possibility that another cell type produces this enzyme much 

earlier in tumor development, and that initial expression is ultimately what initiates 

tumorigenesis.   

One such pathway that has been previously implicated in MMP-9 mediated 

tumorigenesis is through the induction of ROS.  Reactive oxygen radicals have long been 

implicated in the development and progression of tumors and have been demonstrated to 

stimulate tumor development via several mechanisms including by the promotion of 

genomic instability, cellular proliferation, angiogenesis, motility, and the influx of 

inflammatory cells.  However, there exists a paucity of in vivo data using broad, multi-

stage models to support the role of ROS in tumor development.  Recently however, 

genetic and pharmacologic agents have been developed that inhibit ROS production and 

activity (Storz, 2005), and application of these models in the context of tumor 

development could refine the role of ROS in tumorigenesis. 
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While ROS activity may ultimately be responsible for tumor development, the 

upstream mediators that ultimately trigger this pathway remain obscure.  The obvious 

approach to identify these candidates is through proteomic screening.  However, previous 

attempts to identify substrates for MMP-7 using whole tumor extract at various stages 

produced inconclusive results.  However, unlike MMP-7, MMP-9 expression is 

ultimately a product of bone marrow derived cells that can much more easily be 

manipulated, perhaps even to allow comparisons from within the same mouse. 

Furthermore, these studies have clarified the spectrum of MMPs known to affect 

tumorigenesis in the Min model.  We have now shown that MMP-7 and MMP-9 both 

promote tumorigenesis, while MMPs-2, -12, and -19 do not affect tumor multiplicity or 

size.  While we did not find evidence of compensatory transcriptional upregulation 

between MMP family members, there exists the possibility that despite similar transcript 

copy number enhanced mRNA stability or translation of more protein is present in tumor 

compared to normal tissue.  Further, there may be functional compensation across MMP 

or even other proteinase family members that is simply not measurable by assaying 

transcript abundance.  In retrospect, that MMP-2;MMP-7 double deficient mice behaved 

similarly to MMP-7 deficient mutants is not surprising given that MMP-2 ablation did 

not affect tumor multiplicity.  However, given that both MMP-7 and MMP-9 have been 

shown to affect tumorigenesis alone, it would be worth assessing them both in 

combination. 

In this thesis, I have provided experimental evidence showing that inflammatory 

cell populations function in both pro- and anti-tumorigenic fashions.  I propose that as 

illustrated in Figure 24, shifts in the balance between these two diametrically opposed  
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Figure 24:  The balance between anti- (blue) and pro-tumorigenic (red) effects of 
inflammation exists as a continuum within the intestine.  Neutrophil-derived MMP9 
functions in a pro-tumorigenic fashion, and thus genetic ablation results in decreased 
tumor formation.  Conversely, mast cell deficiency impairs normal anti-tumorigenic 
effects resulting in enhanced tumor formation. 
 

 

 

functions ultimately determine the nascent tumor fate.  Testing this hypothesis requires 

an appropriate mouse model system that allows the examination of various leukocyte 

populations throughout various stages of tumor development.  Ideally, testing the role of 

neutrophil derived MMP-9 would be achieved using a mouse that lacks neutrophils.  

While there do exist mutant mice that lack mast cells, eosinophils, lymphocytes and to a 

degree macrophages, there are currently no known lines of neutrophil deficient mice.  

While it is possible to largely eliminate neutrophils by the treating mice with an anti-

neutrophil depleting antibody, this effect is short lived, requires repeated treatments, and 

given our current understanding of tumor development in the Min mouse, would require 

that developing mice be treated in utero.  Nevertheless, supposing these technical 

challenges could be overcome, if the major source of MMP-9 is neutrophils, then I would 

expect that Min mice lacking neutrophils and MMP-9 knockout Min mice would develop 

a similar number of tumors.   
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A problem with this approach is that while it does allow the direct testing of 

neutrophils, it supposes that neutrophils are strictly functioning as pro-tumorigenic 

through the release of MMP-9.  It is possible that while neutrophil derived MMP-9 may 

promote tumorigenesis, other neutrophil derived factors function in an anti-tumor 

capacity, and that a relatively crude approach of simply removing all neutrophils could 

result in increased tumor burden.  A cleaner system would be to develop a tissue specific, 

or even cleaner, a cell specific knock-out.  A genetic mutation resulting in the lack of 

neutrophil secondary granules has been identified in mice, however, to date the genetic 

elements responsible for tertiary granules, the granules that contain MMP-9, have not 

been identified (Lekstrom-Himes et al., 1999).  However, if such a gene were to be 

identified, it could be used to breed mice specifically lacking neutrophil derived MMP-9 

while retaining other neutrophil activity for examination in the Min system.   

Conversely, I have shown that ablation of mast cells results in enhanced tumor 

formation, presumably through an eosinophil effected mechanism, though the molecular 

signals behind this modulation are unknown.  The most obvious next step is to investigate 

the effect of eosinophil ablation in our model system.  Two eosinophil deficient mouse 

lines have been described to date, IL-5/CCL11–/– and dblGATA that could be used to 

examine the role of eosinophils in this system.  Assuming that mast cells activity is 

simply to modulate eosinophil activity, I would expect that eosinophil deficient Min mice 

would phenocopy Min-Sash mice.  However, a more likely outcome is that eosinophil 

deficient Min mice would develop more tumors than eosinophil competent littermates, 

but less than Min-Sash mice, thus indicating that mast cells exert their anti-tumor affect 

through multiple cell types.   
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Mast cells were initially identified in our model due to an increase in the 

abundance of several mast cell produced proteases.  It is likely that different sub-cohorts 

of mucosal mast cells express different combinations of mast cell proteinases (Friend et 

al., 1998).  While I have broadly examined the effect of ablating mast cell proteinases by 

removing mast cells entirely from the system, the role of the individual proteinases has 

not been assessed.  Knockout mice lacking every known mast cell proteinase individually 

have been developed.  Unpublished data has demonstrated that mcpt-4 deficient mice 

develop dramatically smaller tumors in a fibrosarcoma model, a change that is likely due 

to a reduction of angiogenesis in the knockout animals (Stevens, 2008).  However, the 

major mast cell proteinases that were more abundant in our tumors were mcpt-2 and 

mcpt-5, two chymases that have not to date been closely studied in the context of tumor 

development.  However, chymases have been implicated in the induction of apoptosis 

(Heikkila et al., 2008), and since we do see a reduction in apoptosis upon mast cell 

elimination, it is reasonable to hypothesize that genetic ablation of these proteinases 

would result in a reduction in apoptosis, though because of the overlapping substrate 

specificity of murine mast cell proteinases (Stevens, 2008), a combination of multiple 

mast cell proteinases may have to be ablated to have an effect. 

Alternatively, rather than focusing on specific cell lineages, it may be more 

beneficial to explore the role of broadly expressed inflammatory molecules in the 

development of intestinal tumors.  For example, genetic ablation of MyD88, a toll-like 

receptor (TLR) adaptor molecule expressed in several leukocyte lineages, has been 

shown to dramatically inhibit tumor development and progression in genetic and 

carcinogen induced models of colorectal cancer (Rakoff-Nahoum and Medzhitov, 2007), 
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suggesting that it may be more beneficial to examine specific pro-inflammatory pathways 

rather than specific cell populations. 

In conclusion, I have presented evidence that components of the innate immune 

system function in both pro- and anti-tumor capacities early during tumor development.  

Further characterization of the molecular mechanisms responsible for these effects could 

lead to novel therapeutic strategies in the treatment and prevention of cancer. 
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