
INTERPRETIVE PARSING TECHNIQUE

FOR BUILDING OBJECT NETWORKS

By

Nora Somogyi

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Computer Science

May, 2005

Nashville, Tennessee

Approved:

Professor Gabor Karsai

Professor Sandeep Neema

ACKNOWLEDGEMENT

 My heartiest thanks go to my advisor Dr Gabor Karsai for his invaluable guidance and

support, which kept me motivated throughout the course of this research.

 I would like to especially thank Dr Gabor Karsai and Dr Sandeep Neema for providing

valuable feedback.

 I would like to thank Feng Shi, Endre Magyari, Zsolt Kalmar and all the others in the

MoBIES project for helping me whenever I encountered a problem.

ii

TABLE OF COONTENTS

Page

ACKNOWLEDGEMENT .. ii

LIST OF TABLES...v

LIST OF FIGURES ... vi

LIST OF ABBREVIATIONS... vii

Chapter

I. INTRODUCTION..1

Existing technologies..2
Problems with the existing technologies ..2
Requirements of a new technology...3
Problem Statement..5
Layout of Chapters..6

II. BACKGROUND...8

The Unified Modeling Language..8
Universal Data Model...9
Grammars and Language ..12
Parsing and Parser Generation..16

III. MODELING CONTEXT-FREE GRAMMARS ...18

Introduction...18
Designing the Metamodel...18
Decorator ..19
Constraints ..21
Implementing Regular Expressions ..22
UDM object construction..23

Object creation ...24
Attribute setting ...25
Associations ...26

IV. INTERPRETIVE PARSING...28

Introduction...28
Internal Operation of the Interpretive Parser Tool..30

Logging ..30

iii

Lexical Analysis...30
Grammar Analysis ...31
Text file Analysis...32
UDM Object Network..32
Interpretive Parsing..32

V. EXAMPLES AND EVALUATION...34

State Chart...34
Time Series ...38
Evaluation ...43

VI. CONCLUSIONS AND FUTURE WORK..45

Conclusions...45
Future Work..45

Appendix

A. THE PSEUDO-CODE DESCRIPTION OF THE PARSER ALGORITHM47

B. GRAMMAR DESCRIPTION OF STATE CHART TEXT ...48

C. THE STATE CHART TEXT..50

D. THE OUTPUT STATE CHART MODEL...51

E. THE OUTPUT UDM STATE CHART OBJECT NETWORK..52

F. GRAMMAR DESCRIPTION OF SIMPLE TIME SERIES...53

G. GRAMMAR DESCRIPTION OF TIME SERIES WITH DATA TRIPLETS.........................54

H. THE SIMPLE TIME SERIES TEXT ...55

I. THE OUTPUT UDM SIMPLE TIME SERIES OBJECT NETWORK55

J. THE TIME SERIES TEXT WITH TRIPLETS ...56

K. THE OUTPUT UDM TIME SERIES WITH TRIPLETS OBJECT NETWORK56

REFERENCES ..57

iv

LIST OF TABLES

Table Page

1. An example context-free grammar..13

2. Rewrite the start symbol “program”..13

3. The EBNF version of the example grammar ..15

v

LIST OF FIGURES

Figure Page

1. The workflow of generating a UDM network from text ...3

2. The inputs provided to the interpretive parser tool ...6

3. The basic elements of UML class diagrams..9

4. The UDM Framework...10

5. C++ classes generated by UDM [4] ..11

6. The parse tree of the derivation...14

7. The syntax diagram of the example grammar ...15

8. Direct mapping to/from EBNF..16

9. The context-free grammar metamodel ..20

10. An example rule ..22

11. Object hierarchy in a class diagram ..25

12. Simple association in a class diagram ...26

13. Association class in a class diagram ...27

14. Association via association class...27

15. The six steps performed by the parser...30

16. GME metamodel for the State Chart paradigm...34

17. Example model for the State Chart paradigm ...35

18. The UML metamodel of the State Chart paradigm...36

19. UML metamodel for Time Series ...39

vi

LIST OF ABBREVIATIONS

API Application Programming Interface

ANTLR ANother Tool for Language Recognition

BNF Backus-Naur Form

DTD Document Type Definition

EBNF Extended Backus-Naur Form

BON Builder Object Network

DTD Document Type Definition

GME Generic Modeling Environment

IDE Integrated Development Environment

ISIS Institute for Software Integrated Systems

MIC Model Integrated Computing

MIPS Model Integrated Program Synthesis

OCL Object Constraint Language

UDM Universal Data Model

UML Unified Modeling Language

XML eXtensible Markup Language

XSD XML Schema Definition

XSL eXtensible Stylesheet Language

XSLT XSL Transformation

vii

CHAPTER I

I. INTRODUCTION

Numerous modern computer-based systems are large, complex, heterogeneous, and

mission-critical. The modifications of these systems involve risk that is proportional to the size

of the system and not to the size of the change; for that reason, systems must be designed to

evolve. There are many key factors that must be considered when designing these systems such

as application evolution and design environment evolution, and MIC (Model Integrated

Computing) can be used to facilitate this evolution. MIC is a methodology used to create and

evolve integrated, multiple aspect models of computer-based systems using concepts, relations,

and model composition principles to facilitate system/software engineering analysis of the

models and automatic synthesis of application from the models [1]. A model is an abstract

representation of an object or a concept; moreover, models can represent not only individual

entities but also a network of objects. However, there are many cases when only a textual

representation of an object network exists, and converting the textual representation into object

networks is a problem often encountered.

Many model-based tools are offered on the market, both academic and business, that can

be used to build and manipulate large object network models. Unfortunately, these tools usually

do not provide reusable mechanisms that can convert text to data structures; however, they

usually do provide processes to extract and format text from the object networks. Some tools for

creating and manipulating such network models are developed at the ISIS (Institute for Software

Integrated Systems), such as GME (Generic Modeling Environment) [3], UDM (Universal Data

Model) [4], and GReaT (Graph Re-writing and Transformation Engine) [5].

There is a need for converting text into data structures in a convenient way. In this thesis,

interpretive parsing techniques are introduced that provide a convenient way to parse a text file

and interpret the corresponding object construction actions defined in a grammar to generate

data structures from the text file.

1

Existing technologies

The UDM (Universal Data Model) framework includes the development process and a

set of supporting tools that are used to generate C++ programmatic interfaces from UML class

diagrams of data structures. UDM can be best used where object-oriented approach is followed

to describe the data structures [4]. UDM object networks are defined by class diagrams, and the

objects in the network are instances of classes. Similarly to UML, objects can have attributes,

and associations among objects can be defined. UDM includes several generic programs that

work on UDM data, such as the declarative pattern processor called UdmOclPat that interprets

UDM data network and generates text output through a simple OCL-based query language [6].

Although UdmOclPat provides a standard and convenient way to generate text output

from a data network, there is no standard way to close the loop and generate data network from

text. However, users can come up with different procedures to achieve this result. One common

way is to define a grammar for the text file in a well-known format (i.e., in EBNF), use a parser

generator tool such as ANTLR to generate a parser, and modify the generated parser’s source

code to execute UDM specific commands. Similarly, we can also write an XSLT script that

transforms a given XML to a specific XML format that complies with UDM’s XML data format,

but the trick is basically the same: we define a grammar and a parser in the script.

Problems with the existing technologies

Writing grammars and generating and modifying parsers is cumbersome and error prone

if the format and the content of the input text often change. The problem we have to face is that

whenever the structure of the text changes, we have to write a new or modify the existing

grammar, generate a new parser, and browse and modify the source code of the generated parser

to reflect the changes in the structure of the text.

However, users can use MIC to alleviate this cumbersome work by creating a GME

paradigm to build context-free grammars by drawing syntax diagrams. Staying wtih the example,

users can add ANTLR and UDM specific attributes to their paradigm and use BON [3] to write

an interpreter that generates an ANTLR specific grammar file from the model. After generating

the parser, there is no need to modify the source code provided that the built-in UDM specific

commands can be executed. However, the users cannot take the UML class diagram, i.e., the

metamodel of the UDM network for granted, either the UDM meta should exist or the users

2

should create them in advance. The parser cannot build an object network from the text without

the UDM meta information. As a result, the paradigm-dependent API files (.cpp, .h. and .xsd)

also should be generated. The workflow is shown on Figure 1.

Figure 1 The workflow of generating a UDM network from text

This compilation-based approach requires a deep knowledge of not only ANTLR but also

C++ STL and UDM. Moreover, this process is fragile because there are many code generation

steps, and if one fails, the others could fail, too, and thus, extra effort is needed to find the failing

step in the workflow. Another important problem with this approach is that everything must be

regenerated, recompiled, and linked even for small changes.

Requirements of a new technology

Converting text to an object network is a problem often arises; thus, there is a need for a

new technology that is easy to use and provides a convenient interface to extract data from the

text and generate a UDM object network. A grammar editor tool and a simple interpretive parser

that processes the text file and the constructed grammar is the right choice for solving the

problem. Generally, the process of computing the structural description for an overt form is

called interpretive parsing. In this case, interpretive parsing means to compute the structural

description of a UDM network from a given grammar and an arbitrary text.

Grammar editors are not widely offered because they are not general in the sense that a

grammar editor is either specific to a language or to a tool that uses the constructed grammar. For

example, ANTLR [16] uses grammars written in the EBNF meta language to generate specific

3

parsers to specific grammars. For that reason, many plug-ins are offered for already existing

popular IDEs, such as the ANTLR-aware multi-page text editor with syntax highlight [17] for

Eclipse [18]; however, no visual builder tools are offered that facilitate such grammar

construction. Although some visual builder tools exist, these tools are specific to or part of a

toolset, such as the Visual Grammar Builder Studio [19] that is used in the speech technology.

The required features of a grammar editor tool must be the following:

• It must offer the construction of context-free grammars. Context-free grammars

are simple enough to allow the construction of efficient parsing algorithms to

determine whether and how a given text corresponds to the grammar.

• It must offer a simple but powerful visual editor to open, create, edit, and save

grammars. A unique design view framework could display any context-free

grammar, and GME provides a way to create this framework. Customizable visual

icons are simpler to read and understand than a simple text itself. In addition,

copy, paste, import, export, and syntactic and semantic checks are already

available in GME that could further ease the development of these grammars.

• It must allow the user to conveniently assign UDM object construction actions to

the structures of the grammar. An interpretive parser can interpret and execute

these actions to build UDM networks.

• It must ease the design of the grammar by providing concise messages when

detecting ambiguities and other errors in the grammar during construction.

The parser generator ANTLR compiles the object construction actions found in its

grammar description into the generated parser, so the user has to modify the source code if

necessary and has to recompile and re-execute the parser. In contrast to this approach, our

interpretive parser interprets the UDM object creation actions included in its grammar

description. Since there are no intermediate source files to compile, the user does not have to

deal with compilation or linking.

The required features of an interpretive parser tool must be the following:

• It should work as a recursive descent LL(k) parser. Recursive descent parsers

recognize the class of LL(k) grammars for unbounded k. Although recursive

descent parsers lack speed, they have the advantages that they are simple yet

powerful can pass information down to subrules, and subrules can pass

4

information up, allowing for parameterized non-terminals. These advantages will

be used when interpreting UDM object construction actions of the grammar.

• It must offer early detection mechanisms of immediate or indirect left-recursion

[14] in the grammar because a formal grammar that comprises left recursion

cannot be parsed by a recursive descent parser. The running time of a recursive

descent parser is exponential, and a left recursion would result in an unbounded

recursive loop that would cause abnormal program termination.

• It must provide concise error messages when detecting lexical and syntactic errors

in the text or syntactic and semantic errors in the grammar. The user must be

notified where and why the text does not correspond to its grammar or the

grammar construction is not correct.

• It must provide concise error messages when the interpretations of UDM object

construction actions fail. The user must be notified where and why an

interpretation fails.

• It must be a simply and easy to use library to avoid complexity and other

intermediate compilation or linking processes.

Problem Statement

My objective is to develop a visual context-free grammar editor tool and an interpretive

parsing tool.

The grammar editor tool facilitates the design of a grammar visually, and no other inputs

are needed for this tool. The output of this tool is an MGA or XML file that serves as an input to

the parsing tool.

The interpretive parsing tool takes an input text file, an input grammar file, and a

destination UDM object network. After parsing the text file and interpreting the object creation

actions from the grammar, the parser tool returns the modified UDM network as an output. As

 shows, the inputs provided to the tool will be as follows: Figure 2

Text file: This text file can contain arbitrary plain or formatted text.

Context-free grammar file: The file contains a grammar model created in GME [3] using

the context-free grammar paradigm. The tool supports two of the three persistence technologies

of UDM, so this is usually in an MGA or XML file.

5

UDM network: This object network must be created with its root object in advance by the

user. We assume that the user of this parser tool already has the UML class diagram, the UDM

network, and the necessary framework to manipulate the UDM network.

Figure 2 The inputs provided to the interpretive parser tool

The interpretive parser tool will return the modified UDM network after performing the

following steps providing that no errors or exceptions occur:

• Read in the grammar file and check for ambiguity and left-recursion

• Configure the built-in recursive descent parser

• Read in the text file

• Open the UDM network and check for class diagram and root object

• Start the lexer, parse the text file, and interpret and execute the built-in UDM

object construction actions

In case of I/O or other parsing errors, the tool will stop and give either a concise error

message or a suggestion on how to correct the error or both.

Layout of Chapters

Chapter 2 contains an introduction to the standards and tools that are used in this thesis,

such as UML, UDM, grammars, and parsing techniques. Chapter 3 and 4 follows with the

architectures of the grammar editor and the interpretive parser tools and explains the motivation

6

behind the chosen techniques. Chapter 5 will give a real life example for using the interpretive

parser and compares its effectiveness to a hand-written application that can be used only on one

type of text input and UDM meta. Chapter 6 closes the thesis by drawing conclusions and

showing how related future work can improve this application.

7

CHAPTER II

II. BACKGROUND

The Unified Modeling Language

The Unified Modeling Language (UML) is a language for specifying, visualizing, and

documenting models of software systems, including their structure and design, in a way that

meets all of these requirements. UML can be used for not only software modeling but also

modeling of other non-software systems. UML is an OMG (Object Management Group [8])

standard, and the members of this not-for-profit computer industry specifications consortium

define and maintain the UML specification. [7]

UML represents a unification of the concepts and notations of Booch, Rumbaugh, and

Jacobson [10]. Notation plays an important role in modeling and the goal of the UML is to serve

as a universal notation for creating models of object-oriented software.

Many UML-based tools exist on the market, such as Rational Rose [9], and they can be

successfully used to analyze the requirements of the system and design a solution that meets

them. UML 2.0 [7] offers twelve standard diagram types to represent these results.

UML includes the following components for building object-oriented and component-

based systems [7]:

• Model elements — fundamental modeling concepts and semantics

• Notation — visual rendering of model elements

• Guidelines — idioms of usage within the trade

Class diagrams are the most commonly used artifacts of UML, and they represent the

static structure of the classes and their relationships, such as inheritance and aggregation, in a

system. UML class diagrams describe three different perspectives when designing a system, such

as conceptual, specification, and implementation. Class diagrams model class structure and

contents using design elements such as classes. [11] shows the basic elements of a UML

class diagram.

Figure 3

A class is represented by a rectangular icon divided into three parts: class name,

attributes, and operations. Attributes are listed along with their type and access modifiers, and

operations are listed along with their return types, parameters, and access modifiers.

8

Figure 3: The basic elements of UML class diagrams

Associations represent relationships between instances of classes, and each association

has two roles; each role is a direction on the association. We can indicate how many objects may

participate in a given relationship by assigning multiplicity to the role. Multiplicity indicators are

1 (exactly one), * (zero or more), 1..* (1 ore more), 0..1 (0 or 1), and so on. Generalization

implies inheritance, and this relationship is an association with a small triangle next to the class

being inherited. In contrast, an aggregation implies a part/whole relationship, and this

relationship is shown as an association with a diamond next to the class representing the

aggregate.

Universal Data Model

The UDM (Universal Data Model) tool suite defines the development process and

includes a set of supporting tools that are used to generate C++ programmatic interfaces from

UML class diagrams of data structures. These interfaces and the underlying libraries provide

9

convenient programmatic access and automatically configured storage services for data

structures as described in the input UML diagram [4].

Currently three persistent storage technologies are supported as follows:

 • XML with an automatically generated DTD/XSD file

 • MGA, the native interface of the GME modeling environment

 • Memory-based storage.

UDM can be best used where the object-oriented approach is followed to describe the

data structures. First, the object structure must be defined in the form of a class diagram, then the

components of these class diagrams, such as classes, attributes, and associations can be accessed

through the C++ API framework UDM generates. The generated API offers a convenient way

for building and manipulating object networks, and it also provides interfaces for navigation. The

UDM includes the following generic tools:

• UML paradigm for GME with a built-in interpreter

• UDM framework generator to generate the paradigm-dependent API files

• UdmCopy to port data between different persistent technologies

• UdmOclPat to interpret UDM data and generate text output

Figure 4: The UDM Framework

10

Figure 4 describes the UDM framework. The typical process of using UDM starts with a

UML class diagram created in GME by using the provided UML paradigm. Since the internal

format of GME is not compatible with UDM, we have to use the built-in interpreter to convert

the UML diagram to UDM diagram. The output is an XML file. Next, we can generate the

paradigm-dependent API files by passing the XML file from the previous step to the UDM

generator. The output is a header (.h) and a program file (.cpp) along with DTD files (.dtd, .xsd)

that correspond to the UML class diagram. The user can build a C++ project by including these

generated files and the UDM specific libraries and headers to provide a convenient API to access

components of a data structure based on the initial class diagram. However, the UDM provides

the generic interface TOMI that can be used to manipulate UDM data without the domain

specific, generated API, but this paradigm independent interface is not as efficient as the domain

specific, generated one.

The UDM API maps each UML class in the source diagram to a C++ class with the

corresponding name, and the mapping preserves namespaces. shows an example for

how UDM maps simple classes to UDM classes. As we can see from the picture, the generated

classes have a superclass in UDM, the Udm::Object. Every generated class derives from this

class, which also defines generic access and navigation interfaces. Object creation follows the

factory method design pattern; for that reason, static factory methods are provided for creating

objects for these classes.

Figure 5

Figure 5: C++ classes generated by UDM [4]

11

The UML attributes are also mapped to C++ members along with access methods to

them, but all attributes are considered to be public. The mapping preserves the inheritance

relationships of the UML diagram by converting them to public inheritance in C++. UML

containment relationships are translated into access methods for both the child and parent

classes. Containment is the most important relationship in UDM, and all objects must be

contained in exactly one parent, and this relationship can be changed by using the access

methods provided by the generated API.

Grammars and Language

Any natural or programming language has a vocabulary of words that can be used to

assemble legal sentences in the language. But not all possible sequences over a given vocabulary

are legal, as the sequences need to meet certain syntactic and semantic restrictions. Grammars

provide a method for specifying whether the sentences in a given language are syntactically legal

or not.

Example:

• Legal C++ statement: int i = 1;

• Illegal C++ statement: int for = i;

A generative grammar is defined by sets of terminal and non-terminal symbols, a start

symbol, and a set of production rules [15]. A grammar G is a structure of (N, T, P, S) where N is

a set of non-terminals, T is a set of terminals, P is a set of productions, and S is a special non-

terminal called the start symbol of the grammar. A formal language is a set of finite-length

words, such as character strings, drawn from some finite alphabet. The containment hierarchy of

classes of formal grammars that generate formal languages are defined by Chomsky [15]. The

Chomsky hierarchy consists of four levels, such as the type-0 unrestricted grammars, the type-1

context-sensitive grammars, the type-2 context-free grammars, and the type-3 regular grammars.

In a context free grammar, each rule consists of a left-hand side and a right-hand side,

where the left-hand side can be only a non-terminal symbol. The right-hand side of a rule

consists of a (possibly empty) sequence of terminal and non-terminal symbols separated by

spaces and operations that allow concatenation, alternation, repetition, and grouping of symbols.

Each rule can be viewed as a rewriting rule, specifying that whenever we have an occurrence of a

12

left-hand symbol, it can be rewritten to the right-hand symbol. Table 1 shows an example

context-free grammar that describes how to write a legal sentence in a simple language.

Table 1 An example context-free grammar

Left-hand side Right-hand side

program Block

block (statement)*

Identifier (a-z|A-Z

statement Assignment | while_stmt

assignment Identifier “=” expression

expression Identifier | number

while_stmt “while” expression “do” block “end”

)+

Number (0-9)+

As we can see, there is a start symb eol defin d for this grammar, and we can rewrite this

non-terminal symbol program as shown on Table 2:

Table 2 Rewrite the start symbol “program”

ogram pr

 • block

 • statement

 • assignment

 • identifier “=” expression

 • identifier “=” number

 • “a123” “=” “456”

The above rewrite sequence is also called as derivation. This derivation maps sentence

shown on Table 2 to a structure, and the derivation can be represented with a derivation or parse

tree, see Figure 6.

13

Figure 6 The parse tree of the derivation

The root of the parse tree corresponds to the start symbol program. In each step in the

derivation, we replace a non-terminal with its corresponding right-hand side. The symbols of this

right-hand side are added as children to the node. If the derivation is complete, we can read the

result from the tree because the leaves correspond to the terminal symbols in the original

sentence. The left-to-right order should be followed when reading the leaf nodes.

The Backus-Naur form (BNF) (also known as Backus normal form) is a metasyntax used

to express context-free grammars, i.e., a formal way to describe formal languages. BNF is widely

used as a notation for the grammars of computer programming languages, command sets, and

communication protocols. For historical reasons there are many variants of BNF, and EBNF is

one of them. The EBNF specification consists of terminal and non-terminal symbols that form

derivation rules. Terminal symbols can be constant tokens, constant characters, and regular

expressions over constant characters. A special of the non-terminal symbol is the start symbol

that denotes the non-terminal symbol from which the derivation starts. Parentheses are also used

to enhance readability. EBNF defines the following extensions to BNF:

• Kleene cross: ()+, a sequence of one or more elements

• Kleene star: ()*, a sequence of zero or more elements

• option: ()?, the element is optional

14

The example provided on Table 1 can be rewritten in EBNF form as follows on Table 3.

Table 3 The EBNF version of the example grammar

ntifier EQUAL expression

= IDENTIFIER | NUMBER

WHILE expression DO block END

IDENTIFIER := (a-z|A-Z)+

NUMBER := (0-9)+

inal symbols are represented with ellipses, and non-terminal symbols are

represented with rectangles. Figure 7 shows the syntax diagram that corresponds to the example

grammar above.

program : = block

block := (statement)*

statement : =assignment | while_stmt

assignment : = ide

expression :

while_stmt :=

WHILE := “while”

DO := “do”

END := “end”

EQUAL := “=”

Syntax diagrams are also used to express context-free grammars, and sometimes these are

preferred because they are intuitively more readable than the corresponding EBNF grammar

since they enable a better overview of the connectivity of concepts in the grammar. Syntax

diagrams are like flow charts be read from the left side to the right side, following

the arrows. Term

, and they can

Figure 7 The syntax diagram of the example grammar

15

The direct mapping of syntax diagram to/from EBNF is summarized on Figure 8.

Figure 8 Direct mapping to/from EBNF

Parsing and Parser Generation

The sentences of a language can be analyzed by extracting the grammatical structure of

the sen

etters), and "123" (a sequence of digits), and the

spaces also egular expressions to define each token, so

we can describe the tokens above as follows:

y a digit

 the tokens “a0”, “ben”, and “123” in the knowledge of the

definiti

tence, which is done by building a parse tree for the sentence. The language analysis of a

system consists of two consecutive steps, namely lexical and syntactic analysis.

A lexical analyzer, or in other words a scanner, is a program that takes a stream of

characters as input and outputs substrings it recognizes. Each substring is referred to as a token

and has a usually numeric identifier assigned to it to uniquely identify its type. [12] Assume that

we have an input string "a0 ben 123", and we want our lexical analyzer to recognize "a0" (a letter

followed by a digit), "ben" (a sequence of l

 have to be explicitly recognized. We use r

• [a-z][0-9] - a letter followed b

• [a-z]+ - a sequence of letters

• [0-9]+ - a sequence of digits

The lexical analyzer returns

ons of each token. The scanner has to recognize an unknown token, and it also has to

recognize the end of the input [12].

16

The syntactic analysis, or in other words the parsing, recognizes valid sentences of a

language by analyzing the syntax structure of a set of tokens passed to it from a lexical analyzer.

The parser accepts a stream of tokens from the scanner, extracts the grammatical structure of the

sentence, and builds a parse tree for the sentence. The parse tree can be constructed in two

different ways: top-down and bottom up [14]. In top-down or LL-parsing the parse tree is

constructed from the top down; in other words, the parser attempts to build a derivation of the

sentence from the start symbol of the grammar by replacing non-terminal symbols with their

corresponding right-hand side. In bottom-up or LR-parsing the parse tree is constructed from the

bottom up; in other words, the parser attempts to build a derivation from the sentence to the start

symbol. The difference between these two parsing methods lies only in the construction.

However, bottom-up method has more powerful recognition capability because it delays parsing

decisions as long as possible, but translation or compiling is generally easier with top-down

parsing. Both parsers make the same decisions when constructing their parse trees, namely which

non-terminal to choose when it rewrites a rule and which left-hand side rule to use when it

expands the chosen non-terminal. The parser usually needs to look at one or more tokens to

make its parsing decisions, and these tokens which the parser is examining but not yet consumed

are called lookahead tokens [13]. A top-down parser that needs to use a single lookahead token is

called LL(1) parser, and if it needs k lookaheads, then it is an LL(k) parser. Similarly, a bottom-

up pars

R is easy to understand,

powerful, flexible, and generates human-readable output; moreover, ANTLR provides excellent

support for parse tree construction, tree walking, and translation [16].

er that needs to use a single lookahead token is called LR(1) parser, and if it needs k

lookaheads, then it is an LR(k) parser.

We can automate the process of parsing by generating a parser from the grammar. An

advantage of using a parser generator is that it verifies that the grammar is suitable to the parsing

method being used. In top-down parsing, this results in the form of a recursive-descent program.

The recursive-descent parsing is based on recursive subroutines: a subroutine is written for every

non-terminal in the grammar, and these subroutines call each other in the order specified by the

grammar to simulate traversing a parse tree. The most popular parser generator tool is the

ANTLR [16]. ANTLR, ANother Tool for Language Recognition, is a language tool that provides

a framework for constructing recognizers, compilers, and translators from grammatical

descriptions containing Java, C#, Python, or C++ actions. ANTL

17

CHAPTER III

III. MODELING CONTEXT-FREE GRAMMARS

Any text can be generated from a UDM network by using the UdmOclPat program that

interprets UDM data network and generates text output through a simple OCL-based query

language [6]. This thesis addresses the goal to close the loop, i.e., to generate a UDM network

from a text file providing that the text file is grammatically correct. For that reason, a grammar

editor tool is needed, and the grammar is used to check the syntax of the text. The grammar can

be written by hand; however, this is tedious and cumbersome work because the grammar in a

text format is not intuitive and does not provide a good overview of the connectivity of concepts

in the grammar. This chapter focuses on this problem, i.e., it describes an environment to model

grammars.

Introduction

A grammar can be represented not only textually but also visually by syntax diagrams,

and GME provides a way to model the syntax diagram via a context-free grammar editor.

Although GME provides a mechanism to extract semantics from a model, we do not use this

feature because the graphical representation serves as an input to the interpretive parser tool

developed in the second part of the thesis.

Designing the Metamodel

The metamodel models context-free grammars that define syntax rules in terms of

terminal symbols (the elements of the source text) and non-terminal symbols (the syntactical

categories of the source language) and supports alternative definitions and recursion. A grammar

specification is a set of derivation rules are restricted: only non-terminal symbols are accepted on

the left side of a grammar rule, and a special non-terminal called the start symbol must be also

defined for a grammar.

The construction of the metamodel is straightforward from the descriptions of the syntax

diagrams. Symbols are GME atoms and the GME arrows are connections in the metamodel. We

need three types of symbols in the metamodel: terminal symbols, non-teminal symbols, and

18

references to non-terminal symbols. We distinguish three different types of terminal symbols,

namely constant tokens, constant characters, and regular expressions. Both terminal and non-

terminal symbols are GME atoms in the metamodel, but references to non-terminal symbols are

GME references.

A rule in the grammar is described as graph formed from symbols and connected with

directed arrows; thus, connections among symbols, among symbols and references, and among

references are defined. The context-free grammar metamodel, called CFG_ML is shown on

. In the hierarchy of a grammar model terminal and non-terminal symbols and rules

would be created in separate containers, and both terminal and non-terminal symbols must be

predefined before building up rules.

Figure 9

Decorator

GME provides a mechanism, called decorator, to improve and customize the visual

representation of the models. Although the presentation can be improved with icons, there are

certain circumstances when icons cannot provide enough information; for example, the icon

should change when certain property of a model element is modified. This problem can be

solved by using decorators in GME. Decorator components are assigned to the classes of the

metamodel; therefore, the default appearance of the objects in the model can be overwritten. In

our metamodel, non-terminal symbols are represented with rectangles, and the name of these

symbols is written inside the rectangle. Terminal symbols are represented with ellipses, and the

value property of these symbols is written inside the ellipse and the name of these symbols is

written under the ellipse. In case of a reference to a non-terminal, the name of the referred object

is written inside a red rectangle, and a reference icon is drawn in the right bottom corner of the

rectangle. Rules are also decorated, i.e., they are represented as green rectangles, and the name of

the rules is written inside the rectangle. Figure 10 shows a simple rule with a start symbol, a non-

terminal reference, and terminals.

19

Figure 9 The context-free grammar metamodel

20

Constraints

The metamodel addresses the goal to make the grammar development and design easier.

However, providing a domain-dependent modeling environment is not sufficient because certain

construction rules for models in the paradigm cannot be expressed only with class diagrams. For

this reason, GME provides a formal definition language to write these rules as constraints, and

this language is compatible with the OMG standard OCL (Object Constraint Language). The

constraints provided by CFG_ML paradigm perform semantic and syntactic checks on the model

as follows:

• Constraints on the grammar:

o One and exactly one start symbol must be defined grammar.

o A non-terminal symbol instance must appear only on the left-hand side of

no more than one rule.

• Constraints on a rule:

o A rule must have exactly one non-terminal on its left hand side.

o The name must be valid with respect to constraints on identifiers; i.e., no

empty string or white spaces are permitted.

o The name of the rule must be unique to avoid name collision.

o The rule must contain only instances of symbols.

• Constraints on a terminal folder:

o The name of a terminal symbol must be unique to avoid name collision

within the grammar.

• Constraints on a non-terminal folder:

o The name of a terminal symbol must be unique to avoid name collision

within the grammar.

• Constraints on a terminal symbol:

o Terminal symbols must be in upper case to facilitate readability.

o The value property of a terminal symbol must be valid, i.e., the property

cannot be empty.

• Constraints on a non-terminal symbol:

o Terminal symbols must be in lower case to facilitate readability.

• Constraints on a non-terminal reference:

21

o The reference must refer to an existing non-terminal; otherwise, the rule

cannot be evaluated.

Most of the constraints are checked on the fly, i.e., whenever a possibly relevant change

occurs during editing. However, the user can also initiate constraint checking by choosing the

corresponding GME command. The error messages and warnings are descriptive and pinpoint

the source of the error.

Figure 10 An example rule

Implementing Regular Expressions

The implementation of regular expression does not only process single characters but also

includes the following [12]:

• Character Sets: [a-z]

• Negated Character Sets: [^0]

• Any character: .

22

• One or more operator: +

• Repeat operator: {n[,[n]]}

• Optional operator: (A)?

• Zero or more operator: *

• The alternation operator: |

The optional operator is basically a specialization of the zero or more operator, and the

any character (.) meta-character is a special case. Regular expression examples [12]:

• [0-9]* : sequence of digits, i.e., an integral value, for example “19”

• 0|[-+]?[1-9][0-9]* : a zero digit or a sequence of non-zero digits with or without

the +/- sign, ie., the zero or any other positive or negative integral value, for

example “-138”

• [1-9][0-9]{0,2}(,[0-9]{3})* : for example “28” or “282293933”

• ([-+]?((([0-9]+[.]?)|([0-9]*[.][0-9]+))([eE][-+]?[0-9]+)?))

UDM object construction

The language of UDM construction actions should be as simply as possible to avoid

complexity; for that reason, the metamodel supports three types of UDM object construction

actions: object creation, attribute setting, and association definition. These actions are interpreted

whenever the parser finds them during the parsing process. The actions are associated with

connections between symbols; as a result, we can assign actions to a symbol not only when

entering but also when leaving one.

The UDM object construction actions facilitate object network building in a powerful,

convenient, and flexible way. The general syntax of the actions is:
command:param1:param2:param3:param4

, where command specifies the type of the action, such as object and association creation

and attribute setting of the object. The rest of the action contains the parameters of the action as

described below, and these parameters are separated by colons (:) from the command.

Terminal symbols represent tokens in the input text; for that reason, these terminal

symbols can be used as built-in variables. The parser stores these variables as key-value pairs,

where the key is the alias property of the terminal symbol, and the value is the token the terminal

symbol represents. The variable property of the terminal symbols is must be set to true;

23

otherwise, the parser omits the symbol as a variable. However, we must be careful because we

can not only initialize but also overwrite the value of a given this variable. For example, assume

that the alias property of a terminal symbol is set to p1, and the token this symbol represents is

“trigger”. If the variable property of the terminal symbols is set to true, the parser creates a

string key-value pair and stores “p1” as the key and “trigger” as the value of this pair. From

now on, we can use “p1” in the parameter list of any commands:
command:p1:param2:param3:param4

The parser substitutes “p1” with its value, so the parser interprets the following

command whenever encountering the above command:
command:trigger:param2:param3:param4

A UDM network requires the existence of a root object that serves as a root container of

the network. For that reason, the grammar provides a built-in variable called root to identify this

root object, and we can use this identifier in the parameter list of any commands:
command:root:param2:param3:param4
The parser uses the root object of the object network in the command above.

Object creation

The object creation action is the most important for the object network. It can be used to

create an object with a given name, with a given type, and within a given parent object. The

syntax for the object creation action is:
create:obj:obj_type:obj_parent

where obj specifies the variable name of the object to be created, obj_type specifies the

type of the object to b created, and obj_parent specifies the parent object in which obj is

created.

Figure 11 shows a small class diagram that can help to demonstrate how object creation

works.

The following actions result in the creation of two objects:
create:task1:Task:root

create:subTask1:SubTask:task1

The first object is the child of the root object of the network, Container, its type is Task,

and we can use task1 as a variable to refer to this created object later. The second object is a

24

child of the previously created task task1, its type is SubTask, and we can also use subTask1 as

a variable to refer to this created object later.

Figure 11 Object hierarchy in a class diagram

Figure 11

Attribute setting

The attribute setting action is used when certain property of an already created object

must be set. The syntax for the object creation action is:
set:obj:attribute_name:variable_type:variable_value

where obj specifies the object whose attribute must be set, attribute _name specifies

the name of the variable that must be set, variable_type specifies the type of the variable that

must be set, and finally variable_value specifies the new value for the variable.

UDM, and the thus the attribute setting actions, provides four types of attributes, namely

boolean, integral, real, and string types. The small class diagram on is also can be used

to demonstrate how attribute setting works.

Example:
create:task1:Task:root

create:subTask1:SubTask:task1

set:subTask1:value:real:val

As a result of these two object creation and one attribute setting actions, a small object

network will be created with two objects; furthermore, the value attribute of subTask1 will be

set to val. The parameter val refers to a built-in variable; in other words, there is a preceding

terminal symbol whose alias is val, and the token it represents will be assigned to the value

attribute.

The attribute setting action above shows that subTask1 has a real attribute value;

however, we can use other types to set the value of an attribute as follows:

25

set:obj1:init:int:val

set:obj2:init:real:val

set:obj3:init:string:val

set:obj4:init:bool:val

The attribute setting actions above show that obj1 has an integer attribute init, obj2

has a real attribute init, obj3 has a string attribute init, and obj4 has a boolean attribute

init.

Associations

The most important feature of UDM is the capability to associate, i.e., to connect object

in the object network. For that reason, this grammar provides a simple action that can be used to

associate certain objects via a given role. The syntax for this action is:
assoc:obj:role_name:assoc_obj

where obj specifies one end of the association that has the role role_name, and

assoc_obj specifies the object to be associated with obj.

Figure 12

Figure 12 Simple association in a class diagram

 shows a small class diagram that demonstrates how to define a simple

association between two objects:

The following actions result in the creation of two objects and an association for the class

diagram showed on Figure 12:
create:dv_obj:DV:root

create:tp_obj:TP:root

assoc:dv_obj:src_dv:tp_obj

26

The first object, dv_obj, is the child of the root object of the network, Container, and its

type is DV. The second object, tp_obj, is also a child of the root object, and its type is TP. The

association action connects the object tp_obj to the object dv_obj via the given role name

src_tp of dv_obj. Note that the references dv_obj and tp_obj are used to identify existing

objects in the network.

However, sometimes there is a need to assign attributes to association. For that reason, an

association class is used to define a connection between two objects as shown on Figure 13.

Figure 13 Association class in a class diagram

The following object construction actions create a small object network with two objects,

one association class, a connection between the two objects via the association class, and sets the

attribute city of the connection:
create:a:Arrival:root

create:d:Deaprture:root

create:tr:Transition:root

assoc:a:src:tr

assoc:d:dst:tr

set:tr:city:string:city_id

The created object network is shown on Figure 14.

Figure 14 Association via association class

27

CHAPTER IV

IV. INTERPRETIVE PARSING

Any text can be generated from a UDM network by using the UdmOclPat program that

interprets UDM data network and generates text output through a simple pattern based query

language [6]. This thesis addresses the goal to close the loop, i.e., to generate a UDM network by

parsing a text file. For that reason, a parser tool is needed, and the parser is used to build up a

UDM network from the text file based on a grammar. However, this interpretive parser does not

construct a parse tree; rather, it constructs a UDM network as the result of object construction

actions. This chapter focuses on a parser tool that provides convenient interfaces to parse texts

and build up a UDM network based on the grammar we created with the grammar modeling tool.

Introduction

A new grammar parser is developed for UDM in this thesis. This application is capable of

generating a UDM data network given any text file and a grammar file. The grammar file

contains the grammar rules of parsing and the UDM object construction actions. The text file

contains the arbitrary text that the parser can parse and analyze with the help of the UDM object

construction actions.

The typical usage of the interpretive parser corresponds to Figure 2 on Page 6. The

interpretive parsing tool takes three inputs, and processes them to build an object network. The

first input is a text file that contains arbitrary text to be parsed. The second input is the data

network the parser modifies by interpreting UDM object construction actions. The third and final

input is the grammar file that contains not only the parsing rules but also the construction actions

that the parser interprets.

The interpretive parser is a library, and the parsing is available as a library function. The

following example shows how the library function is invoked:
Text2UdmParser::Parser parser(<text file>, <data network>, <grammar

file>);

parser.parse();

28

This function is in the Text2Udm.lib library, which is the main objective of my thesis. As

previously introduced, the first parameter is text file with arbitrary text to be parsed, the second

parameter is the data network to be modified, and the third parameter is the grammar file. The

parser can throw two kinds of exceptions while running, so it is necessary to handle the

ParserException and the udm_exception it might throw.

The parser tool provides logging capabilities so that the user can decide whether to log

messages in a file. Therefore, the fourth parameter is optional, and by default the parser places a

log file name text2udm.log and writes information and error messages in this file. As a result,

the library function can also be invoked as follows.
Text2UdmParser::Parser parser(<text file>, <data network>, <grammar

file>, <logger parameter>);

parser.parse();

The 3rd party library Logger [20] is used to facilitate logging. This library is distributed

under the terms of GNU General Public License [21]. The library has the advantage that it is

easy to configure and several levels of logging are defined; however, it is required to add the

logger.dll 3rd party library to the PATH environment variable. There are four levels of logging

supported in the parser tool as follows:

• Parser::NO_LOG: no message is directed to the log file

• Parser::LOG_INFO: only information messages are directed into the log file

• Parser::LOG_ERROR: only error messages are directed into the log file

• Parser::LOG_INFO_ERROR: both information and error messages are directed

into the log file

For example, if we want to invoke the library function so that only the error messages

appear in the log file, we have to change the fourth parameter as follows:
Text2UdmParser::Parser parser(<text file>, <data network>, <grammar

file>, Parser::LOG_ERROR);

parser.parse();

Turning on the logger is suggested when using the interpretive parser tool for the first

time.

29

Internal Operation of the Interpretive Parser Tool

The parser performs five steps when processing its input and another step when building

the object network as shown on Figure 15.

Figure 15 The six steps performed by the parser

First, the parser constructs and configures the logger that will be used during parsing.

Second, it constructs a lexical analyzer that will recognize tokens from the input text file. Third,

it performs some basic analysis on the given, such and detecting left-recursion or other

ambiguity or constructing parsing table. During the fourth step, the parser analyses the text file;

in other words, it checks whether the text file exists and opens it for reading. In the final step of

the first phase, the parser checks whether the given data network is valid. In other words, it tests

whether the class diagram from which the data network should be designed exists. In the second

phase, the parser not only parses the text file against the grammar rules but also interprets the

built-in UDM object construction actions of the grammar.

Logging

The logger needs write permission for the directory where the parser library is used

because it tries to create a log file. If the user does not have write permission, the parser cannot

perform the next step.

Lexical Analysis

The interpretive parser library text2udm uses the 3rd party library BHLex [12] for lexical

analysis of the input text. Although this library is free, it is not under the terms of GNU General

Public License [21]. The library also has the advantage that it is easy to configure; however, this

lexer library is statically linked to the parser library, so no 3rd party library is needed. The main

advantage of BHLex is that is does not generate source code but constructs a state machine at

30

runtime; thus, a library function must be invoked to start the lexical analysis of the text. The

lexer recognizes the following tokens:

• Keywords: sequence of either upper case or lower case letters

• Key characters: key characters, such as (,), ‘,’, ., ; , /, -, +

• Identifiers: C-style identifier, i.e., a string started with a character or underscore

followed by digits, characters, or numbers

• Numbers: sequence of digits

• Other tokens: any combination of digits and characters

The lexer recognizes whitespaces and ignores them. As usual, keywords have preference

over identifiers; identifiers have precedence over numbers, and so on.

Grammar Analysis

One of the inputs of the parser is a context-free grammar model that uses the context-free

grammar metamodel developed in the first part of the thesis. The interpretive parser library uses

a grammar library to perform the parsing, and this grammar library is generated by UDM. In

other words, the parser does not construct a parse tree, it uses the UDM object network

correspondence of the original input context-free grammar model when parsing. The grammar

library is statically linked to the parser library.

When the parser performs the grammar analysis, then it basically performs sanity checks.

First, it checks whether a start symbol is defined for the grammar. This start symbol is a

distinguished non-terminal symbol, and the set of strings it denotes is the language defined by

the grammar. If no start symbol is defined, then the parser cannot find the entry point of the

grammar rules; as a result, parsing cannot be completed.

Second, the parser tries to detect indirect and immediate left-recursion. Since the parser is

a recursive-descent one, it is possible for it to loop forever when the leftmost symbol of the right

side of the rule is the same as the non-terminal on the left side. For that reason, it is essential to

detect left-recursion before starting to parse the text to avoid abnormal program termination.

In the next step, the parser checks whether the grammar is LL(1) because the parser uses

a single lookahead when making decisions. If the productions of a rule have a common prefix,

the parser could not determine which production was going to successfully match; hence, the

rule is ambiguous in the LL(1) sense.

31

The parser is table-driven; in other words, a table is used to guide the parser when

making decisions. This table is computed by the parser by using the first sets of the non-terminal

symbols, and this table can guide a parser of any language which has an LL(1) grammar. The

first set of a non-terminal symbol contains the set of terminals that begin the strings derived from

the given non-terminal [14]. Thus, in the final step, the parser constructs the first tables for its

non-terminal symbols that will be used when making parsing decisions.

If any of these steps fail, the library throws exceptions with descriptive messages and

returns to its invoker.

Text file Analysis

The parser receives a text file as an input, and it needs to perform some basic checks to

avoid I/O errors during parsing. In case the text file does not exist or cannot be read, i.e., the file

cannot be opened, the parser cannot perform the next step and throws an exception that explains

the problem.

UDM Object Network

The parser needs a UDM data object network to perform the UDM object construction

actions. It is not a requirement to give a new or empty network to the parser because the parser

does not takes whole network into consideration and does not deletes object; on the contrary, it

constructs objects and modifies these constructed objects. However, it is a requirement to give an

opened object network with UML class diagram to the parser. It is not necessary to explicitly

pass the UML class digram, but the object network must be opened; otherwise, the parser throws

an exception explaining the problem and exists.

Interpretive Parsing

The parsing process mimics the recursive-descent parsing technique combined with

predictive parsing. In other words, the parser does not contain a procedure for every non-terminal

symbol but contains only one procedure that is used recursively for every symbol. This

procedure does exactly two things: it decides which production to use by looking at the

lookahead symbol and uses the chosen production to invoke the recursive function and mimic the

32

right side. If there is a conflict between the two right sides for any lookahead, then we cannot use

this parser on the given grammar.

The pseudo-code description of the parser algorithm is shown in the Appendix.

The parser starts the parsing from the start symbol of the grammar. If the parser

encounters a non-terminal symbol, it makes its parsing decision by using a single lookahead

token. When the design decision is successfully made and the next symbol is found, the parser

checks the connection between the non-terminal and the next symbol and interprets the UDM

object construction actions if there is any. Similarly, whenever the parser encounters a reference

to a non-terminal symbol, it resolves the reference to a non-terminal symbol and recursively calls

the parse function by passing the resolved non-terminal symbol. When the recursion returns, the

parser advances to the next symbol of the production, interprets the UDM object construction

actions if there is any, and calls itself recursively by passing the next symbol of the production.

A terminal symbol results in matching the token with the lookahead, and the next input token

will be read. If the terminal does not match the lookahead, an error is declared. Again, the parser

moves to the next symbol of the production, interprets the UDM object construction actions if

there is any, and calls the recursion by passing the next symbol of the production.

When interpreting the UDM object construction actions, the parser uses two tables for

resolving variable names in the actions: one for the terminal symbols and one for the UDM

objects. The terminal symbols can be used as variables during the lifetime of the parser providing

that their alias and variable properties are set correctly. The created UDM objects are

automatically registered with the given object name in the object variable table, and they

lifecycle is similar to the other variable table. The object network specific API is not needed for

the parser because the interpreter uses the UDM TOMI Paradigm Independent Interface, a

generic interface [4] to perform object construction; however, the generic API is not as efficient

as the domain specific, generated one. If the generic interface encounters a problem, the parser

forwards the error message to its invoker and exists.

33

CHAPTER V

V. EXAMPLES AND EVALUATION

This chapter explains the usage and functioning of the language parser using some

examples. A step-by-step approach is taken to explain the construction of a grammar file to

achieve a desired output.

State Chart

In this first example, we look at a text that describes some state chart, and we use the

State Chart GME paradigm [5] to build an object network as shown on Figure 16.

Figure 16 GME metamodel for the State Chart paradigm

In the State Chart paradigm simple states, such as initial state and primitive state, and

compound states, such as and OR or AND state can be created. The paradigm also defines

transitions between these states, and transitions have attributes for setting triggers, guards, and

actions. A simple state chart model is shown on containing some states and transitions

between them.

Figure 17

34

Figure 17 Example model for the State Chart paradigm

The goal is to generate a Start Chart model from a text file. A generic tool is needed that

can take the specific text file, parses it, and creates the model. The text2udm library tool meets

these requirements.

The following example text describes a state chart with six states:

root_or_state NewOrState; // create a root OR state

and_state (AndState, NewOrState); // create an AND state

or_state (2_0, AndState); // create an OR state

init_state (Init, 2_0); // create an initial state

state (L0, 2_0); // create a simple state

state (L1, 2_0); // create a simple state

transition (tr2, 2_0); // create a transition

connect_src (L0, tr2); // connect states L0 and L1

connect_dst (L1, tr2); via transition tr2

transition (tr3, 2_0); // create a transition

trigger (tr3, x_tr) // set the trigger property

connect_src (L1, tr3); // connect states L0 and L1

connect_dst (L0, tr3); via transition tr3

The first step is to analyze and understand the text. First, there is a main OR state whose

name is NewOrState that contains all other states. Then, there is an AND state whose name is

AndState in the main OR state, and there one initial state and two simple states in the AND

state. The two sim ates are connected by transitions, and the trigger property of the second

transition is set to x_tr. The comments in the text file are not part of the text.

ple st

35

The State Chart paradigm tells us how to construct the grammar. First, that the root folder

of the generated model must be an OR state. Furthermore, each line of the text corresponds to a

command, such as create a state or transition, connect states, and set a property of a state or

transition, and each line is closed by a semicolon. The parameters of the state creation actions

are: the state to be created and the parent state of this stat, and these parameters are enclosed in

parentheses. Similarly, the parameters of the transition creation are the transition to be created

and the parent state of transition, and these parameter are also enclosed in parentheses. The

connect line has also two parameters, namely the state and the transition, and these parameter are

also enclosed in brackets. Setting an attribute of a state or transition starts with the name of the

attribute and requires two parameters: the state or transition whose property should be changed

and the value to be assigned to the attribute.

Before constructing the grammar, we must also consider the UML metamodel of the

State Chart paradigm because we will need this class diagram to build the object network later.

This class diagram contains the class name of the elements of the State Chart paradigm, such as

the states and transitions, and it also provides important information to facilitate the construction

of actions in the grammar. The UML metamodel of the State Chart paradigm is shown on

. The only difference we can see so far is the change in the role names for the states.

Figure

18

Figure 18 The UML metamodel of the State Chart paradigm

36

The constructed grammar can be rewritten in EBNF-like format, where the terminal

symbols are in between quotation marks:

start_symbol := root_or_states elements

root_or_states := (root_or_state)*

root_or_state := "root_or_state" identifier ";"

elements := (element)*

element := and_state | or_state | init_state | primitive_state |

 state_attr | connect | transition | transition_attr

and_state := "and_state" data_pair ";"

or_state := "or_state" data_pair ";"

init_state := "init_state" data_pair ";"

primitive_state := "state" data_pair ";"

state_attr := "default_tr" data_pair ";" | "marked" data_pair ";"

connect := "connect_src" data_pair ";" | "connect_dst" data_pair ";"

transition := "transition" data_pair ";"

transition_attr := "trigger" data_pair ";" | "guard" data_pair ";" |

 "action" data_pair ";" | "sync" data_pair ";"

data_pair := "(" identifier "," identifier ")"

identifier := [a-z|A-Z|0-9|_]+

The corresponding context-free grammar with the UDM construction actions can be

found in the Appendix.

We have the text file and the grammar so far, so we can use the text2udm library to

generate the state chart from the text as follows:

37

// create UDM data newtork

Udm::SmartDataNetwork out(StateChart::diagram);

out.CreateNew("output.xml", "StateChart.xsd",

 StateChart::RootFolder::meta, Udm::CHANGES_PERSIST_ALWAYS);

Udm::Object o_root = out.GetRootObject();

// create the parser

Text2Udm::Parser parser("sc_text.txt", &out, "SC_grammar.mga");

parser.parse();

// create GME model

Udm::SmartDataNetwork out2(StateChart::diagram);

out2.CreateNew("output.mga", "StateChart",

 StateChart::RootFolder::meta, Udm::CHANGES_PERSIST_ALWAYS);

out2 = out;

// close data networks

out.CloseWithUpdate();

out2.CloseWithUpdate();

The C++ source code above will create and open a UDM object network with XML

backend and a UDM object network with GME bac

kend; thus not only an XML file will be

generated but also a GME file that could be opened and checked. The outputs of the execution of

the source code above can be found in the Appendix.

Time Series

A time series is a collection of ordered pairs (t, X(t)), where t = time and X(t) = value of a

signal at a time t. This is the typical output from some kind of biocomputional simulation run, or

it is an experimental data obtained as time series of species concentrations (or activities). [22]

Time series data is widely used in BioSpice applications [23]. Although a recommendation exists

for the format of time series in BioSpice, the applications often do not use it.

A group of time series that belong together is identified by a label, and this label is

associated with its corresponding time and data values and stored in the root container of the

38

network. The users of time series usually want to access directly not only the labels of the time

series but also the time and data values; for that reason, all the time and data value should be

stored in the root container of network, too. The UML metamodel for time series that meets the

criteria described above is shown on Figure 19.

Figure 19 UML metamodel for Time Series

s contains labels, data values, and time points. Each data value

is asso

nd string.

A common format for time series contains series of labels and data pairs and uses real

values as follows [22]:

The container of time serie

ciated with one time point and a time series label, and the type of data value can be

boolean, integral, real, a

39

(

Cdc25_activation_Ca

(1.25, 0.8)

(2.5, 0.9)

(5, 1.0)

(10, 1.0)

)

(

Cdc25_inactivation_Ca

(5, 0.75)

(10, 0.5)

(20, 0.1)

(40, 0.0)

)

The goal is to generate a UDM object network from a text file. Again, a generic tool is

needed that can take the specific text file, parses it, and creates the model. The text2udm library

tool meets these requirements.

The first step is to construct the grammar that describes the text file above. Each time

series is enclosed between brackets, and each time series contain a label that identifies the time

series and a list of time – data value pair enclosed in brackets. The constructed grammar can be

rewritten in EBNF-like format, where the terminal symbols are in between quotation marks:

start_symbol := series_container_list

series_container_list := (series_container)*

series_container := "(" data_label series_list ")"

data_label := [a-z|A-Z|0-9|_]+

series_list : = (data_pair)*

data_pair := "(" time_point "," data_value ")"

time_point : = [0-9]+[.]?[0-9]*

data_value : = [0-9]+[.]?[0-9]*

40

The corresponding context-free grammar model with UDM construction actions can be

found in the Appendix.

However, there is another common format for time series that contains series of triplets: a

la point, and that data of real and boolean values [22]:

By slightly modifying the grammar above, we can construct a grammar for this format.

The constructed grammar can be rewritten in EBNF-like format, where the terminal symbols are

in

The corresponding context-free grammar model with UDM construction actions can be

found in the Appendix.

bel that identifies the timer series, the time
(

(Cdc25_activation_Ca, 1.25, 0.8)

(Cdc25_activation_Ca, 2.5, 0.9)

(Cdc25_activation_Ca, 5.0, 1.0)

(Cdc25_activation_Ca, 10, 1.0)

)

(

(Cdc25_inactivation_Ca, 5.0, true)

(Cd

c25_inactivation_Ca, 10, 0.5)

(Cdc25_inactivation_Ca, 20, 0.1)

(Cdc25_inactivation_Ca, 40, 0.0)

)

 between quotation marks:

start_symbol := series_container_list

series_container_list := (series_container)*

series_container := "(" series_list ")"

series_list := (data_triplet)*

data_triplet := "(" data_label series_list "," time_point ","

 data_value ")"

data_label := [a-z|A-Z|0-9|_]+

time_point : = [0-9]+[.]?[0-9]*

data_

value : = [0-9]+[.]?[0-9]* | boolean

boolean := "true" | "false"

41

We have the text file and the grammar so far, so we can use the text2udm library to

generate the object networks fr

// create data newtork

Udm::SmartDataNetwork out(TimeSeries::diagram);

out.CreateNew("output.xml", "TimeSeries.xsd",

 TimeSeries::Container::meta, Udm::CHANGES_PERSIST_ALWAYS);

Udm::Object o_root = out.GetRootObject();

// create the parser

Text2Udm::Parser parser("time_series_text.txt", &out, "TS_grammar.mga");

parser.parse();

// close data network

out.CloseWithUpdate();

// create data newtork

Udm::SmartDataNetwork out2(TimeSeries::diagram);

out2.CreateNew("output_triplet.xml", "TimeSeries.xsd",

 TimeSeries::Container::meta, Udm::CHANGES_PERSIST_ALWAYS);

Udm::Object o_root2 = out2.GetRootObject();

// create the parser

Te

parser2.parse();

om the texts:

The C++ source code above will create and open two UDM object networks with XML

backend, and builds up an object network for the simple time series and the time series with

triplets. The outputs of the execution of the source code above can be found in the Appendix.

Notice, that we use the same UML metamodel to build the object networks by using different

text formats and different grammars; moreover, the two data networks are completely identical.

xt2Udm::Parser parser2("time_series_triplet_text.txt", &out2,

"TS_grammar_triplet.mga");

// close data network

out2.CloseWithUpdate();

42

Evaluation

In this section, we will compare the generation of object networks from text files using

the provided text2udm library with another alternative techniques.

On use case is when an object network is in some kind of text format, and one wants to

use that with UDM. One alternative is to generate the UDM framework from the UML

metamodel of the given UDM network, and write a short program in which object creation

commands appear in the same order objects appear in the text file. The drawback of this method

is that whenever a new text file of different format is encountered, a completely new application

must be written, and the source code of any other application cannot be entirely reused. In

addition, the source code has to be modified if the same text file is handled slightly differently,

and the application also has to be recompiled, re-linked, and re-executed. Thus, this method is

basically a write once – use once technique. However, the provided text2udm library can

automate the process of generating object networks from text files. The provided grammar

modeling tool can be used to define the UDM object construction actions, and only this grammar

file mu

wever, UDM provides a GME backend, so

the tex

ally rather than dynamically, so the user of the library cannot

st be modified whenever a new text of different format is encountered. There is no need

of re-compilation or re-link of any source code; you only have to change the parameters when

invoking the text2udm library function.

Another use case is when the object networks are in some kind of text format, and a

visual representation of that text by using a GME paradigm should be build. GME provides an

interface that facilitates object network creation from XML, but does not provide an interface

that facilitates object network creation from arbitrary text. For that reason, the GME tool would

be used to create and connect the objects by hand. This is a really tedious and cumbersome work

for larger networks and large number of text files. Ho

t2udm library function ca be used once the grammar for a family of text files is

cponstructed. The provided library will generate GME models with the same paradigm from any

text files that can be parsed with the given grammar.

Although the parser library can be used successfully to build object networks from simple

text files, it has certain limitations. First, the parser cannot parser text files whose language

cannot be described with LL(1) grammars. In addition, the parser does not provide strategies to

recover from errors, so it exits rather that recovering and continuing parsing. Furthermore, the

built-in lexer is configured static

43

control the lexical analysis of the input text. Finally, the developed parser library is built with

Visual Studio 6.0; as a result, this library cannot be used neither with Visual Studio .NET nor

under UNIX operating systems.

44

CHAPTER VI

VI. CONCLUSIONS AND FUTURE WORK

Conclusions

Model based programming is becoming increasingly popular and important because it

can be

port the existing data into

the modeling tool in an easy and comprehensive way to avoid loss of data or cumbersome

manual transformation of data from one application to the other.

The developed interpretive parser tool provides a simple interface to users for generating

object networks from text files. It is generic and can be used with any kind of text providing that

the text can be parsed with the interpretive parser. The parser needs a grammar to successfully

parse the text and interpret the UDM object construction actions, and creating a grammar with

the provided context-free grammar builder tool is also easy and comprehensive. Although the

language of the UDM object construction actions is easy to understand and use, writing the

UDM object construction actions requires the knowledge of the UML metamodel of the

destination UDM object network.

Thus, the context-free grammar tool and interpretive parser tool developed in this project

offer several advantages in accomplishing the task of generating object networks from text files.

Future Work

used by not only programmers but also people who have specific domain knowledge but

little programming knowledge [6]. Many people encounter the problem that the old domain

specific data elements are stored in some kind of text format, and modeling tools do not provide

interfaces to import these data. In fact, there is a need to be able to im

Although the context-free grammar tool and interpretive parser tool can be used to

generate object networks from text files, and examples show how to apply them in real life, there

are many options for improvements.

The interpretive parser tool simulates a recursive-descent predictive LL(1) parser.

However, single lookahead is often not sufficient to make parsing decision, so it could be a

research topic how to extend the parsing capability to LL(k).

There are many different general strategies that a parser can employ to recover from a

syntactic error and continue parsing instead of exiting with error messages and error codes. Thus,

45

it could be another interesting research topic to implement a recovery mode and integrate with

either the grammar or the parser or both.

e parsing can be also improved or evolved.

In d be more useful for

o NTLR tool could

be used to generate the lexer, or other lexical analyzer tool should be considered.

The text2udm library was developed for Windows OS users; however, there is a growing

n d to ing systems. To make the

text2udm libra executable might require either the

re esi of th ibrar ific

The lexical analysis phase of the interpretiv

stead of giving types of tokens to be accepted by the application, it woul

the user if he or she could c nfigure the lexer, too. For that reason, either the A

ee use not only UDM but also this library under UNIX operat

ry platform independent or to provide a UNIX

-d gn e l y or the mod ation of the source code or both.

46

A. The pseudo-code description of the parser algorithm

tok // global variable to store a token
next() // routine that sets "tok" to token in input
first(symbol s) // the first set of non-terminal symbols s
match(terminal t) // routine that matches the tok with the actual

terminal symbol
interpret(action a) // routine that interprets the action
error() // error handling routine

parse (symbol s)

 if (s is nonterminal)
set productions // the productions of the rule
forAll (p : productions)
 if (tok is in first(p) OR match(p))
 transition t // transition from s to p
 action a // the object construction actions

 interpet(a)
 parse(p) // call itself recursively

 break

 else if (s is reference to a nonterminal)

symbol refTo // resolve the reference
parse (refTo) // call itself recursively
set symbols // the next symbols of the producitons
forAll (p : symbols)
 if (tok is in first(p) OR match(p))
 transition t // transition from s to p
 action a // the object construction actions

 interpet(a)
 parse(p) // call itself recursively

 break

 else if (s is terminal)
 if (match(s))

 if (s.variable = true)
 variable_table.add(s.alias, tok)
 next()
 else
 error()

set symbols // the next symbols of the producitons
forAll (p : symbols)
 if (tok is in first(p) OR match(p))
 transition t // transition from s to p

 action a // the object construction actions
 interpet(a)
 parse(p) // call itself recursively
 break

47

B. Grammar description of state chart text

48

49

C. The state chart text

root_or_state NewOrState;
and_state (AndState, NewOrState);
or_state (2_0, AndState);
init_state (Init, 2_0);
state (L0, 2_0);
state (L1, 2_0);
transition (tr2, 2_0);
connect_src (L0, tr2);
connect_dst (L1, tr2);
transition (tr3, 2_0);
connect_src (L1, tr3);
connect_dst (L0, tr3);
or_state (2_1, AndState);
init_state (Init, 2_1);
state (M0, 2_1);
state (M1, 2_1);
transition (tr4, 2_1);
connect_src (M0, tr4);
connect_dst (M1, tr4);
transition (tr5, 2_1);
connect_src (M1, tr5);
connect_dst (M0, tr5);
or_state (2_2, AndState);
init_state (Init, 2_2);
state (K0, 2_2);
state (K1, 2_2);
transition (tr7, 2_2);
connect_src (K0, tr7);
connect_dst (K1, tr7);
transition (tr8, 2_2);
connect_src (K1, tr8);
connect_dst (K0, tr8);

50

D. The output State Chart model

51

E. The output UDM state chart object network

<RootFolder xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="StateChart.xsd">
 <OrState name="NewOrState" Marked="false" DefaultTransition="">
 <AndState name="AndState" Marked="false" DefaultTransition="">
 <OrState name="2_0" Marked="false" DefaultTransition="">
 <Init name="Init" Marked="false" DefaultTransition=""/>
 <State _id="id6" name="L0" Marked="false"
dstTransition="id8" srcTransition="id9" DefaultTransition=""/>
 <State _id="id7" name="L1" Marked="false"
dstTransition="id9" srcTransition="id8" DefaultTransition=""/>
 <Transition _id="id8" name="tr2" Guard="" Action=""
isSync="false" Trigger="" dstTransition="id7" srcTransition="id6"/>
 <Transition _id="id9" name="tr3" Guard="" Action=""
isSync="false" Trigger="" dstTransition="id6" srcTransition="id7"/>
 </OrState>
 <OrState name="2_1" Marked="false" DefaultTransition="">
 <Init name="Init" Marked="false" DefaultTransition=""/>
 <State _id="idc" name="M0" Marked="false"
dstTransition="ide" srcTransition="idf" DefaultTransition=""/>
 <State _id="idd" name="M1" Marked="false"
dstTransition="idf" srcTransition="ide" DefaultTransition=""/>
 <Transition _id="ide" name="tr4" Guard="" Action=""
isSync="false" Trigger="" dstTransition="idd" srcTransition="idc"/>
 <Transition _id="idf" name="tr5" Guard="" Action=""
isSync="false" Trigger="" dstTransition="idc" srcTransition="idd"/>
 </OrState>
 <OrState name="2_2" Marked="false" DefaultTransition="">
 <Init name="Init" Marked="false" DefaultTransition=""/>
 <State _id="id12" name="K0" Marked="false"
dstTransition="id14" srcTransition="id15" DefaultTransition=""/>
 <State _id="id13" name="K1" Marked="false"
dstTransition="id15" srcTransition="id14" DefaultTransition=""/>
 <Transition _id="id14" name="tr7" Guard="" Action=""
isSync="false" Trigger="" dstTransition="id13" srcTransition="id12"/>
 <Transition _id="id15" name="tr8" Guard="" Action=""
isSync="false" Trigger="" dstTransition="id12" srcTransition="id13"/>
 </OrState>
 </AndState>
 </OrState>
</RootFolder>

52

F. Grammar description of simple time series

53

G. Grammar description of time series with data triplets

54

H. The simple time series text

(
Cdc25_activation_Ca
(1.25, 0.8)
(2.5, 0.9)
(5.0, 1.0)
(10, 1.0)
)
(
Cdc25_inactivation_Ca
(5.0, 0.75)
(10, 0.5)
(20, 0.1)
(40, 0.0)
)

I. The output UDM simple time series object network

<o tainer xmlns:xsi="http://www.w3.org/2001/XMLSchCn ema-instance"

xsi:noNamespaceSchemaLocation="TimeSeries.xsd">
 <data_label _id="id2" src="id4 id6 id8 ida" name="Cdc25_activation_Ca"/>
 <data_label _id="idb" src="idd idf id11 id13"
m Cdc25_inactivation_Ca"/>
 <real_data _id="id4" dst="id2" value="0.800000" dst_dv="id3"/>
 <real_data _id="id6" dst="id2" value="0.900000" dst_dv="id5"/>
 <real_data _id="id8" dst="id2" value="1.000000" dst_dv="id7"/>
 <real_data _id="ida" dst="id2" value="1.000000" dst_dv="id9"/>
 <real_data _id="idd" dst="idb" value="0.750000" dst_dv="idc"/>
 <real_data _id="idf" dst="idb" value="0.500000" dst_dv="ide"/>
 <real_data _id="id11" dst="idb" value="0.100000" dst_dv="id10"/>
 <real_data _id="id13" dst="idb" value="0.000000" dst_dv="id12"/>
 <time_point at="1.250000" _id="id3" src_tp="id4"/>
 <time_point at="2.500000" _id="id5" src_tp="id6"/>
 <time_point at="5.000000" _id="id7" src_tp="id8"/>
 <time_point at="10.000000" _id="id9" src_tp="ida"/>
 <time_point at="5.000000" _id="idc" src_tp="idd"/>

<time_poi

na e="

nt at="10.000000" _id="ide" src_tp="idf"/>
<
<
time_point at="20.000000" _id="id10" src_tp="id11"/>

 time_point at="40.000000" _id="id12" src_tp="id13"/>
</Container>

55

J. The time series text with triplets

K. The output UDM time series with triplets object network

(
(Cdc25_activation_Ca, 1.25, 0.8)
(Cdc25_activation_Ca, 2.5, 0.9)
(Cdc25_activation_Ca, 5.0, 1.0)
(Cdc25_activation_Ca, 10, 1.0)
)
(
(Cdc25_inactivation_Ca, 5.0, true)
(Cdc25_inactivation_Ca, 10, 0.5)
(Cdc25_inactivation_Ca, 20, 0.1)

25_inactivation_Ca, 40, 0.0) (Cdc
)

<Container xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="TimeSeries.xsd">
<boolean_data _id="idd" dst="idb" value="true" dst_dv="idc"/>

 <data_label _id="id2" src="id4 id6 id8 ida" name="Cdc25_activation_Ca"/>
 <data_label _id="idb" src="idd idf id11 id13"

name="Cdc25_inactivation_Ca"/>
 "/> <real_data _id="id4" dst="id2" value="0.800000" dst_dv="id3

<real_data _id="id6" dst="id2" value="0.900000" dst_dv="id5 "/>
 <real_data _id="id8" dst="id2" value="1.000000" dst_dv="id7"/>
 <real_data _id="ida" dst="id2" value="1.000000" dst_dv="id9"/>

<real_data _id="idf" dst="idb" value="0.500000" dst_dv="ide"/>
 <real_data _id="id11" dst="idb" value="0.100000" dst_dv="id10"/>
 <real_data _id="id13" dst="idb" value="0.000000" dst_dv="id12"/>
 c_tp="id4"/> <time_point at="1.250000" _id="id3" sr

me_point at="2.500000" _id="id5" src_tp="id6"/>
e_point at="5.000000" _id="id7" src_tp="id8"/>

 <ti
 <tim
 <time_point at="10.000000" _id="id9" src_tp="ida"/>
 tp="idd"/> <time_point at="5.000000" _id="idc" src_
 <time_point at="10.000000" _id="ide" src_tp="idf"/>
 <time_point at="20.000000" _id="id10" src_tp="id11"/>
 <time_point at="40.000000" _id="id12" src_tp="id13"/>
</Container>

56

http://www.omg.org/
http://www-306.ibm.com/software/rational
http://www-306.ibm.com/software/rational
http://aliweb.cern.ch/offline/geant4/uml/UMLElements.html
http://aliweb.cern.ch/offline/geant4/uml/UMLElements.html

57

ting", IEEE Computer, Apr.

ilt.edu/

REFERENCES

[1] J. Sztipanovits, and G. Karsai, \Model-Integrated Compu
1997, pp. 110-112.

[2] Institute for Software Integrated Systems, http://www.isis.vanderb

ystems, Vanderbilt
University, March 2003.

[4] Arpad Bakay, Endre Magyari, “The UDM Framework”, Institute for Software-
il 2003.

[5] Agrawal A., Karsai G., Shi F.: A UML-based Graph Transformation Approach for
Implementing Domain-Specific Model Transformations, ISIS-03-403, November,
2003.

[6] Anantha Narayanan, Declarative Techniques for Unparsing Complex Data
Structures, Thesis, ISIS, 2004

[7] OMG Unified Modeling Language Specification, Version 2.0, October 2004.

[8] The Object Management Group, http://www.omg.org

[3] GME 3 User’s Manual, Institute for Software-Integrated S

Integrated Systems, Vanderbilt University, Apr

[9] IBM Rational Software, http://www-306.ibm.com/software/rational

[10] J. Rumbaugh, I. Jacobson, and G. Booch, “The Unified Modeling Language
Reference Manual”, Addison-Wesley, 1998.

[11] Basic Class Diagram Elements (in UML)
http://aliweb.cern.ch/offline/geant4/uml/UMLElements.html

[12] BHLex: A Programmable Lexical Analyser,
http://www.codeproject.com/cpp/BHLex.asp

[13] Introduction to Grammars and Language Analysis,
http://www.cs.binghamton.edu/~zdu/parsdemo/gramintro.html

[14] Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman, “Compilers: Principles, Techniques
and Tools”, Addison-Wesley Pub Co, January 1986.

[15] Noam Chomsky, “Three models for the description of language”, IRE Transactions
on Information Theory, 2 (1956), pages 113-124

[16] Terrance John Parr, “ANTLR Reference Manual”, January 20003,
http://www.antlr.org/doc/index.html

http://www.voicewebsolutions.net/products/gram/features.htm
http://www.nick.rozanski.com/logger.htm
http://www.gnu.org/
https://users.biospice.org/home.php

58

[17] ANTLR plug-in for Eclipse, http://antlreclipse.sourceforge.net/

[18] The Eclipse Platform, http://www.eclipse.org/

[19] Voice Web Solutions, Visual Grammar Builder Strudio,
http://www.voicewebsolutions.net/products/gram/features.htm#4

[20] The ‘Logger’ Library , http://www.nick.rozanski.com/logger.htm

[21] The GNU General Library License, http://www.gnu.org/

[22] Time Series, http://jigcell.biol.vt.edu/FEbio.html

[23] BioSpice, https://users.biospice.org/home.php

