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CHAPTER I 

 

 

INTRODUCTION 

 

 

This document summarizes the research that I have completed at the Center for Intelligent 

Mechatronics between August, 2008 and June, 2014. The presented work is by no means 

achieved on my own, but is rather a part of collective effort by a group of researchers at the 

center lead by Dr. Michael Goldfarb, who has made significant contributions to the field of 

assistive and rehabilitative robotics. My work has focused on the control of assistive devices for 

individuals with limb amputations and spinal cord injuries. This chapter describes the motivation 

behind this work, followed by a brief overview of the physiology behind the control of human 

movement in terms of neural science and physiological control loops. 

 

The remaining chapters consist of published (or soon to be published) works describing the 

specific control methods and their implementation. Chapter II describes the use of pattern 

recognition of physiological signals for volitional control of powered prostheses. This 

manuscript was published in the IEEE Transactions on Biomedical Engineering. Chapter III 

describes the implementation of a dynamic step trigger within a finite-state control structure that 

improves the walking speed of a powered lower limb exoskeleton for individuals with paraplegia. 

This manuscript is ready to be submitted to a journal to be determined. Chapter IV describes the 

use of a cooperative control method for a system consisting of paralyzed muscles activated by 

functional electrical stimulation (FES) and powered lower limb exoskeletons for gait restoration 

in paraplegic individuals. This manuscript has been accepted for publication in the IEEE 

Transactions on Neural Systems and Rehabilitation Engineering. 

 

1. Motivation 

With recent advances in robotic technology, assistive devices designed to restore legged mobility 

for the mobility impaired have started to emerge in both research and commercial settings. Using 

embedded sensors, actuators, and microcontrollers, these devices are capable of performing 
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precise movements. However, because an assistive device must work with a human user, it must 

perform the movements at the appropriate moment (e.g. when the user wants it to) to ensure 

proper operation. Furthermore, depending on the nature of the user’s impairment, many of the 

user’s physiological control loops necessary for proper motor control are disrupted. To ensure 

safe operation as an assistive device, the device must compensate for the disrupted control loops 

in some manner. 

 

2. Physiologic Control of Movement 

The information presented in this section is obtained predominantly from various chapters in 

Principles of Neural Science by Kandel, Schwartz, and Jessell (4th edition, 2000). This section is 

designed to serve as a background material for the pathophysiology behind limb amputations and 

spinal cord injuries. I have put together Figures 1.1, 1.2, and 1.3 in order to provide a simplified 

description of the physiology of purposeful movement, based on my understanding of the 

information from Principles of Neural Science. 

 

2.1 Overview 

Physiologic control of purposeful movement requires continuous interactions between the 

sensory and motor systems. The sensory system combines various types of sensory information 

about the body and the environment, such as joint position, visual, vestibular, and auditory 

information, to form spatiotemporal images of the person’s own body, as well as how it is 

interacting with the environment [1]. Multiple areas of the cerebral cortex, cerebellum, basal 

ganglia, thalamus, brain stem, and spinal cord are involved in the planning, coordination, and 

execution of purposeful action [2]. Some areas are involved in high-level control, such as 

decision making and planning of movement. Other areas are involved in low-level control, such 

as coordination and execution of movement. 

 

2.2 Sensors 

In the human body, sensory receptors throughout the body provide sensory information about the 

body and the surrounding environment. Sensory areas of the cerebral cortex use the signals from 

throughout the body to convert the sensory signals into cognition. For example, understanding 

the position and spatial orientation of lower limbs and how they are moving in space requires 
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sensory information from multiple sources. First, information about joint angles and how fast 

they are moving are sensed by muscle spindles and golgi tendon organs in skeletal muscles [3]. 

The sensory receptors then send the sensory information to the spinal cord via sensory fibers in 

the form of action potentials (described in Chapter I Section 2.4) [3]. The spinal cord relays the 

signals to the cerebral cortex. The brain then integrates the joint position information with the 

spatial orientation of the body, which is provided by the vestibular system, to form an image of 

the position and spatial orientation of the limbs, as well as how they are moving in space. Many 

other sensory systems, such as the visual system and auditory system, are also integrated and 

processed to form a complete internal image of the body and the surrounding environment. 

 

2.3 Controllers 

The central nervous system (CNS) carries out the function of the controller. Multiple areas of the 

brain and the spinal cord are involved in the planning and execution of purposeful movement 

based on the sensory input and the intended action (Figure 1.1) [2]. Specifically, the thalamus 

acts as a switchboard for incoming sensory information and relays it to the cerebral cortex. The 

cerebellum plays a major role in managing the timing and coordination of movement [4]. Areas 

of the cerebral cortex manage high-level control of movement, such as the movement planning, 

decision making, and making adjustments to anticipated disturbance. The brainstem and the 

spinal cord act as a relaying station for ascending and descending signals between the body and 

the brain, as almost all sensory and motor signals must go through the spinal cord and the 

brainstem. Low-level details and coordination of movement are carried out by spinal circuits, 

which are regulated by descending signals from the brain [5]. 
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Figure 1.1.  Overview of the physiologic control of purposeful movement 

 

2.4 Transmission of Signals 

An axon of a neuron is a long elongated structure that conducts nerve impulses from the cell 

body to another site [3]. It can be thought of as a conductive wire that transmits signals 

throughout the body. A signal travels down an axon in a series of changes in electric potentials 

across the cell membrane, called an action potential. An action potential propagates down an 

axon because there are voltage-gated ion channels that are activated by a nearby action potential 

[3]. 
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2.5 Actuators 

Actuators used for purposeful movement are skeletal muscles crossing one or more joints. When 

an action potential reaches a myocyte (muscle cell), calcium ions are released into the cytoplasm 

(intracellular space) from a specialized organelle within the myocyte. The release of calcium ions 

allow overlapping filaments within the muscle (actin and myosin) slide past each other, resulting 

in shortening of the overall length of the muscle [6]. The resulting contraction of a muscle group 

generates torque at the joint it crosses. 

 

3. Physiology of Electromyography (EMG) and Functional Electrical Stimulation (FES) 

This section gives a brief description of two methods that can be used to interface robotic devices 

with the neural control loops. The first method can be used to convey physiological motor output 

signals from the user to the device. The second method can be used to convey motor output 

signals from the device to the user. 

 

3.1 EMG 

Contraction of a muscle requires movement of charged ions throughout the muscle. Because the 

fibers in the muscle are activated in an asynchronous manner, the flow of charged ions results in 

temporal changes in electric potential across the muscle. Surface electrodes on the skin over a 

muscle can detect these changes in electric potential during muscle activity. This is called 

surface electromyography (EMG) [6]. In the case of a limb amputation, EMG can be used to 

detect muscle activity in the residual limb, as shown in Figure 1.2. 

 

3.2 FES 

Propagation of an action potential is mediated by voltage-gated sodium channels along the axon 

of a neuron [3]. Because these channels open or close based on the electric potential across the 

cell membrane, anything that changes the membrane potential past the activation threshold will 

trigger an action potential along the axon. When an external source of current is applied across 

peripheral nerves innervating a muscle group, the resulting action potentials can activate the 

innervated muscle group. This is called functional electrical stimulation (FES) [7]. FES can be 

used to activate paralyzed muscles of individuals with spinal cord injuries, as long as the 

peripheral nerves innervating the muscles are intact, as shown in Figure 1.3. 
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4. Effects of Limb Amputation on Control of Movement 

In the case of a limb amputation, everything distal to the injury site is missing, including some 

portions of the sensory receptors and actuators, as shown in Figure 1.2. Most of the time, there 

are intact residual muscles and sensory receptors proximal to the injury, but because the 

activation of residual muscles does not result in joint movement, the sensory receptors no longer 

provide correct information. As a result, the low-level control loops are disrupted in the case of a 

limb amputation (Figure 1.2). 

 

 

Figure 1.2.  Effects of limb amputation in physiologic control of movement 
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5. Effects of Spinal Cord Injury on Control of Movement 

In the case of a spinal cord injury, the actuators (muscles) and the sensory receptors are present, 

but the sensory information does not reach the high-level controllers, and the motor output signal 

does not reach the actuators (Figure 1.3). Some feedback loops, such as low-level spinal motor 

circuits, are intact below the injury, but they are not correctly regulated, as the signals regulating 

the circuits originate from above the injury level (Figure 1.3). 

 

 

Figure 1.3.  Effects of spinal cord injury in physiologic control of movement 
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6. Underlying Theme of the Presented Approaches 

During the development of each control approach, the controller was designed so that an 

assistive device can compensate for impaired physiological functions in individuals with 

mobility impairments, while maximizing the use of retained physiological functions. Once the 

controller was found to be functional, it was simplified as much as possible (to the best of our 

knowledge) without compromising functionality. Overall, emphasis was given to practicality and 

usability, so that real users with mobility impairments would find the devices useful and benefit 

from using them. 
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CHAPTER II 

 

 

VOLITIONAL CONTROL OF POWERED ASSISTIVE DEVICES 

 

 

 

The control method presented in this chapter uses pattern recognition of EMG signals to convey 

the user’s intent to powered prosthetic devices. Electric actuators in a powered prosthesis can 

provide the functionality of the user’s muscles as actuators, while embedded sensors can provide 

sensory information for low-level control, in a similar manner to sensory receptors in the body. 

In order to achieve volitional control of a powered prosthetic device, the user’s intent needs to be 

conveyed to the device in some form of physiological signals. The manuscript presented in this 

chapter describes a control method that uses EMG signals for high-level control of a powered 

transfemoral prosthesis exclusively for nonweight-bearing settings, while low-level control is 

achieved by closed-loop controllers within the device. Note that the approach is not intended for 

locomotive function, which is periodic and achievable with finite-state control structures. Rather, 

the approach described here is intended to provide purely volitional movement during activities 

such as sitting and non-weight-bearing standing. The presented control method uses a machine 

learning algorithm to minimize the need for manual calibration in the presence of noise and 

variations in EMG signals. This manuscript was published in the January, 2011 issue of the IEEE 

Transactions on Biomedical Engineering. 
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1. Manuscript 1: Volitional Control of a Prosthetic Knee Using Surface Electromyography 

 

1.1 Abstract 

 

This paper presents a method for providing volitional control of a powered knee prosthesis 

during non-weight-bearing activity such as sitting. The method utilizes an impedance framework, 

such that the joint can be programmed with a given stiffness and damping that reflects the 

nominal impedance properties of an intact joint. Volitional movement of the knee joint is 

commanded via the stiffness set-point angle of the joint impedance, which is commanded by the 

user as a function of the measured surface electromyogram (EMG) from the hamstring and 

quadriceps muscles of the residual limb. Rather than use the respective EMG measurements from 

these muscles to directly command the flexion or extension set-point of the knee, the presented 

approach utilizes a combination of quadratic discriminant analysis and principal component 

analysis to align the user’s intent to flex or extend the knee joint with the pattern of measured 

EMG. The approach was implemented on three transfemoral amputees, and their ability to 

control knee movement was characterized by a set of knee joint trajectory tracking tasks. Each 

amputee subject also performed the same set of trajectory tracking tasks with his sound side 

(intact) knee joint. The average root mean square trajectory tracking errors of the prosthetic knee 

employing EMG-based volitional control and the intact knee of the three subjects were 6.2 and 

5.2 degrees, respectively. 

 

1.2 Introduction 

 

Although prosthetic knee joints for transfemoral prostheses have traditionally been energetically 

passive devices, powered, semi-autonomous knee joints have recently started to emerge in the 

research community [8-10] and on the commercial market [11, 12]. While passive knee 

prostheses can only react to mechanical energy imparted by the amputee, powered knee 

prostheses have the ability to act independently of mechanical energy from the user. As such, the 

nature of the user communication with and the control of a powered prosthesis is substantially 

different from the control of a traditional, energetically passive prosthesis. Various methods have 

been presented in the engineering literature for the control of powered knee prostheses [8, 9, 13, 
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14]. These approaches utilize instrumentation on the prosthesis and/or the sound leg to form knee 

joint angle trajectories or impedances for the powered knee prosthesis to track while standing, 

walking, or transitioning between sitting and standing. All these methods rely on some form of 

physical input from the user for communicating with the powered knee prosthesis. That is, 

although the user need not provide the energy for movement (as is the case with traditional 

dissipative knee prostheses), the user must still provide physical input that can be measured by 

instrumentation on the prosthesis and/or sound leg (e.g., weight-bearing on the prosthesis, torque 

and/or acceleration from the affected-side hip joint, movement of the sound-side leg, etc.). In the 

absence of such physical input, the amputee is unable to convey intent to or provide control of 

the powered prosthesis.  

 

1.2.1 Volitional Control of Powered Knee Prostheses 

 

Note that activities such as standing, walking, or transitioning between sitting and standing all 

involve physical input and/or energy exchange between the residual limb and prosthesis. An 

important class of movement, however, which does not involve any significant physical input 

from the user, is the task of non-weight-bearing volitional control of knee movement while 

sitting or standing. That is, people regularly shift their body while sitting, often requiring 

significant movement of the knee joints. Such movement has both physiological and practical 

purposes. Regarding the former, weight shifting during sitting is known to play an important role 

in ensuring healthy circulation of blood in weight-bearing tissues [15]. Regarding the latter, 

sitting in confined areas, such as in automobiles, airplanes, theatres, and classrooms, often 

requires shifting of body position (particularly of the knee joints) in order to accommodate a 

particular ergonomic space and/or the movement of other individuals into or out of that space. 

Such movement is referred to herein as volitional control of the knee joint during non-weight-

bearing activity. Note that such volitional control is also useful in non-weight-bearing standing, 

such as when flexing the knee to look at the bottom of a shoe, or when placing the foot on an 

elevated surface (such as a chair) to tie or untie, or don or doff a shoe. In the case of a traditional, 

energetically passive prosthesis, an amputee can achieve “volitional” control functionality by 

manipulating the prosthetic knee leg with his or her hands. Since a powered knee prosthesis has 

the capability to move itself, however, such artificial manipulation is fundamentally not required 
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for volitional movement of the knee joint. Despite this, since such activity does not involve 

significant physical input from the amputee, the previously cited control approaches do not 

provide an effective means of communication with the prosthesis. As such, this paper presents a 

method for the volitional control of the knee joint during non-weight-bearing activity which 

utilizes a pair of surface electromyogram (EMG) electrodes (on the ventral and dorsal aspects of 

the thigh, respectively), presumably integrated into the amputee’s socket interface. Note that this 

approach is intended to be integrated with the impedance-based weight-bearing controllers for 

standing, walking, and transitioning between sitting and standing described in [8, 9], and as such 

is utilized only for the volitional control of the knee joint during non-weight-bearing activity. 

The approach for EMG-based volitional control of the knee is implemented on a powered knee 

prosthesis on three transfemoral amputee subjects. The ability of the amputee subjects to control 

knee movement is compared to their ability to move their sound knees during similar activity. 

 

1.2.2 EMG-based Control of Lower Limb Prostheses and Orthoses 

 

Other researchers have investigated the use of surface EMG for the control of lower limb 

prostheses and orthoses. In the case of passive knee prostheses, Horn [16] developed a prosthesis 

with an electrically activated knee flexion lock, and used surface EMG from the residual limb of 

a transfemoral amputee to trigger the engagement and disengagement of the lock. A similar 

approach was also reported by Saxena and Mukhopadhyay [17]. Aeyels et al. [18-20] developed 

a computer-controllable passive knee prosthesis based on an electrically modulated brake, and 

utilized surface EMG from three sites on the residual limb of a transfemoral amputee for gait 

mode recognition, which in turn was used to switch the prosthesis into the appropriate gait mode. 

 

Figure 2.1.  Block diagram of the myoelectric volitional impedance controller 
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More recently, Huang et al. [21, 22] utilized surface EMG from multiple electrodes on 

transfemoral amputees to classify movement intents while walking. With regard to using EMG 

for the real-time control of a powered knee prosthesis, the only prior work of which the 

investigators are aware is that of Donath [23], who attempted to use surface EMG from the 

quadriceps and hamstrings to control the motion of a hydraulically actuated powered knee 

prosthesis during walking. Donath concluded his study with the assertion that use of such an 

approach during gait would be challenging, due in part to difficulty in obtaining reliable EMG 

measurement “due to noise pick up and movement artifact.” Other researchers have used surface 

EMG measured from the lower leg for the control of powered ankle joints in transtibial 

prostheses, or powered joints in ankle-foot orthoses (AFOs). With regard to the former, Au et al. 

[24] describe two approaches for predicting desired ankle movement from EMG measurement of 

the lower leg. As described in [25], Au et al. subsequently describe a control structure that relies 

only on physical input for control within a given activity mode, and uses EMG input to switch 

between the appropriate activity modes (and specifically between level walking and stair 

descent). With regard to powered AFOs, Ferris et al. [26-28] describe the use of EMG measured 

from the lower leg to control the assistive pressure in a pneumatically actuated AFO. Finally, 

Kawamoto and Sankai [29] describe a control system for an assistive exoskeleton with powered 

hip and knee joints, in which the assistive torque from the exoskeleton is proportional to the 

measured EMG from the associated flexion or extension muscles. The authors are not aware of 

any prior work utilizing EMG for the volitional control of knee joint motion in a powered knee 

prosthesis (aside from [23], which unlike the present work, attempted to use EMG for the real-

time control of gait). 
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1.3 Volitional Control Structure 

 

The volitional control framework is intended to provide volitional control of the knee with a joint 

output impedance similar to that of the native limb. As such, rather than use the measured EMG 

to prescribe joint torque, angle, or angular velocity, the presented framework utilizes measured 

EMG to prescribe the angular velocity of an equilibrium point of joint impedance that consists of 

the combination of a joint stiffness and damping. In this manner, the knee moves to a desired 

position with a joint output stiffness and damping prescribed by the controller, thus presumably 

moving in a more natural manner (relative to a high-output-impedance position controller), and 

resulting in a more natural interaction between the user, prosthesis, and environment. 

 

The structure of the volitional controller is shown in Figure 2.1. Note that a real-time intent 

recognizer, such as the one described in [9], would be used to switch between this (volitional) 

controller and other weight-bearing control structures (such as those described in [8]). Note also 

that EMG is used to generate an angular velocity command (rate of change of the knee 

equilibrium point) rather than a position command, so that the user contracts the residual limb 

musculature only to move the joint and can relax when maintaining any given knee joint angle 

(as is commonly the case in upper extremity myoelectric control). Specifically, the joint torque 

command is given by: 

 

   bk emg  )(
 

(1) 

 

where the equilibrium point θemg is given by 

 

  
t

emgoemg dt

 

 (2) 

 

where k is the prescribed joint stiffness, b is the prescribed joint damping coefficient, θ is the 

knee joint angle, and θo is the initial angle when the control system switches to the volitional 
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(non-weight-bearing) controller and ωemg is the angular velocity reference generated from the 

quadriceps and hamstring EMG, as described in the following section. 

 

1.4 Reference Velocity Generation 

 

The impedance controller utilizes the measured surface EMG from the quadriceps and hamstring 

muscles to generate a joint angular velocity reference, ωemg, to drive the joint angular impedance 

equilibrium point, θemg, and thus to drive the motion of the knee. The simplest method for doing 

so would be to use  
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where eh and eq represent the measured (i.e., rectified and filtered) EMG from the hamstring and 

quadriceps muscles, respectively, and kh and kq are simple gains. Equation (3) also assumes that 

an appropriate deadband is applied to the measured EMG, to avoid “jitter” in the angular velocity 

reference command. Equation (3) is similar to the method used for the control of myoelectric 

upper extremity prostheses. Despite this, use of equation (3) provided only marginal performance 

in the presented volitional controller. Specifically, as described subsequently (and indicated in 

Figure 2.2), two of the three amputee subjects on which the approach was implemented 

demonstrated a significant degree of co-contraction when attempting to contract either the 

hamstrings or quadriceps in an isolated manner. With sufficient training, these subjects could 

possibly be trained to avoid co-contraction. Co-contraction, however, is a natural neuromuscular 

response (particularly in the lower limb musculature). As such, in an effort to render the 

volitional controller as natural as possible, the authors chose to train the controller to properly 

interpret co-contraction, rather than train the subjects to avoid it. Therefore, as indicated in the 

control structure of Figure 2.6 and described below, the controller first utilizes pattern 

classification to classify the user’s intent with regard to flexion or extension of the knee, then 

utilizes a projection operator to extract the desired magnitude of the joint angular velocity 

reference from the measured EMG data. 
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1.4.1 Flexion-Extension Classification 

 

As previously mentioned, rather than train the subjects to avoid co-contraction while 

commanding flexion or extension of the knee, the authors utilize a pattern classification approach 

to distinguish user intent to flex or extend the knee. In particular, the authors utilized a quadratic 

discriminant analysis (QDA) classifier to distinguish between the user’s intent to flex or extend. 

Note that a linear discriminant analysis (LDA) classifier was also applied to the classification 

problem, although the QDA was chosen due to improved classification accuracy (based on the 

mean accuracy obtained with a five-fold cross-validation for each subject), and because the QDA 

is not significantly more complex (or computationally expensive) than the LDA classifier. 

Specifically, QDA uses the quadratic decision boundary of the form c1 + c2eh + c3eq + c4e
2

h + 

c5eheq + c6e
2

q = 0 to classify the sample consisting of the processed EMG data from the two 

channels, eh and eq, to the extension and flexion classes where the coeffiecients ci, i=1,2,…,6 are 

generated during the training of the QDA classifier. Details of the LDA and QDA methods can 

be found in several pattern classification references, such as [30]. Note that a database of EMG 

(versus intent) data is required to parameterize the flexion/extension classifier, as described 

below. 

 

1.4.2  EMG Measurement and Preprocessing 

 

Although the eventual intent is to embed surface EMG electrodes in the prosthesis socket, for the 

implementation described herein, commercially available surface electrodes were used to acquire 

EMG signals from the residual quadriceps and hamstring muscles of the amputee subjects. The 

electrodes (B&L Engineering, model BL-AE-W, Santa Ana CA) were active bipolar units with 

dry contacts. Each electrode contained an integrated differential amplifier of gain 200 and a 

bandpass filter, with low and high roll-off frequencies of 10 and 3000 Hz, respectively. The 

distance between the poles within each electrode was 34 mm. Each electrode also included a 

(single) reference contact, located midway between the two poles. For each subject, electrodes 

were placed over the quadriceps and the hamstrings. Electrode locations were chosen to 

maximize the strength and reliability of signals while minimizing crosstalk from nearby muscles. 

Once the locations were determined, pictures were taken of the residual limb to ensure 
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consistency between sessions for electrode placement. The locations of electrodes varied slightly 

between subjects due to variations in post-surgical limb anatomy. The signals from the active 

electrodes were further low-pass filtered using a second-order analog filter with 5 Hz cutoff 

frequency. The filtered signals were then acquired by a computer running MATLAB Real Time 

Workshop at 1000 Hz sampling frequency using a 16-bit digital-to-analog converter card. The 

digital signals were processed using a first-order high-pass filter with 20 Hz cutoff frequency, a 

rectifier, and a first-order low-pass filter with 2 Hz cutoff frequency. 

 

1.4.3 EMG Intent Database Generation 

 

Generating a classifier training database consisted of recording 100 seconds of EMG data for 

knee flexion and 100 seconds for knee extension for each subject, with a one-minute rest in 

between, and thus the entire training session lasted less than five minutes. For each 

flexion/extension class, each subject was asked to visualize extending the knee on the amputated 

side at 0, 25, 50, 75 and 100 percent of full effort, several times for durations ranging from 1 to 5 

seconds, over the total data collection period of 100 seconds at 100 Hz sampling frequency. The 

extension data was recorded first, followed by a rest period of approximately one minute, 

followed by the same procedure for flexion data. All EMG data was normalized into the interval 

[0, 1]. The data was additionally thresholded at 20% maximum effort, such that samples in the 

interval [0, 0.2] were effectively removed from the database, in order to mitigate baseline EMG 

noise and muscular tonicity. Based on this thresholded database, the QDA classifier was 

parameterized to classify each subject’s preprocessed EMG as intent to either flex or extend the 

knee joint. 

 

1.4.4 Reference Velocity Magnitude 

 

The QDA provides a probabilistic optimal separation boundary of the EMG data to the flexion 

and extension classes. Within a given class (flexion or extension in this case), the “magnitude” of 

the data is the projection along the principal axis of that class. In the control approach described 

herein, this projection is generated via principal component analysis (PCA), which projects the 

two-dimensional EMG data along a principal (either flexion or extension) axis. Using the data 
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belonging to each class, two 2x2 PCA projection matrices WE and WF were computed. In the 

real-time implementation, one of these projection matrices was used to extract the “magnitude” 

information, based on the result of QDA classification as follows:  
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The magnitude of the angular velocity reference for the joint impedance set-point, ωemg, is 

therefore the PCA-based projection of the two-dimensional EMG data along the principal axis of 

either the flexion or extension data. Details of PCA can be found in several references, such as 

[31]. Note that the projected EMG data is scaled between zero and the maximum reference 

velocity to generate the desired angular velocity reference. The maximum reference velocity is 

determined as the maximum reasonable angular velocity command for volitional control of the 

knee joint.  

 

In contrast to (3), which obtains a reference angular velocity (for the volitional control 

impedance set-point) by projecting data along a hamstring/quadriceps set of measurement axes, 

the presented approach (which combines QDA classification with PCA projection of the two-

dimensional EMG data) establishes a probabilistically optimal linear transformation from a 

hamstring/quadriceps set of axes to a flexion/extension set of axes (based on the training dataset). 

As such, the subject need not be trained to isolate the contraction of individual muscle groups but 

rather is free to co-contract the hamstring and quadriceps groups in a natural manner when 

intending knee flexion or extension. 

 

1.5 Experimental Implementation 

 

1.5.1 EMG-based Reference Velocity Generation 

 

The volitional knee joint controller was implemented on three transfemoral amputee subjects. 

The subjects were all male, between the ages of 20 and 60, and between 3 months and 4 years 
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post amputation. Two subjects were unilateral transfemoral amputees, while one subject (subject 

3) was a bilateral amputee, with a transfemoral amputation on one leg and a transtibial on the 

other. In all cases, all subjects were characterized by a prosthetic knee on one limb and an intact 

knee on the other. Note that all aspects of the study described herein were approved by the 

Vanderbilt Institutional Review Board, and all subjects signed informed consent forms prior to 

participation. Figure 2.2 shows the EMG intent database corresponding to each subject. Recall 

that these databases correspond to 100 seconds of flexion data at various degrees of (muscular) 

effort, and 100 seconds of extension data, also at various degrees of effort. Note that the xq axis 

represents the measured, preprocessed, normalized, and thresholded EMG for the quadriceps 

group, while the xh axis represents the EMG for the hamstring group. As seen in the figure, two 

of the three subjects (subjects 1 and 3) demonstrated a significant amount of muscular co-

contraction when intending volitional movement of the prosthetic knee. Interestingly, subject 1 

primarily demonstrated significant co-contraction during intent to extend the knee, while subject 

3 primarily demonstrated significant co-contraction during intent to flex the knee. For all 

subjects, the LDA and QDA boundaries between classes along with the pseudo-classification 

boundary described by (3) are shown in the figures. Recall that, based on a five-fold cross-

validation of classification accuracy, QDA classification in general provided higher classification 

accuracies, and therefore was used in the control experiments to classify intent to flex or extend 

the knee. Specifically, the mean accuracies of the classifiers over 5 CV-fold for each of the three 

subjects were 0.99, 0.80 and 0.86 for the LDA and 1.0, 0.86 and 0.90 for the QDA. Note that, 

particularly in the cases of subjects 1 and 3, the simple thresholding approach (described by (3)) 

entails a considerable amount of erroneous “classification” of intent, even in the case of large 

amplitude EMG (xi > 0.3). In contrast, the QDA classification boundaries entail little to no 

classification error, particularly in large amplitude EMG. 

 

Once intent to flex or extend the knee is known, the magnitude of the angular velocity for the 

impedance set-point is obtained by projecting the corresponding data point onto its principal axis 

via PCA. A representative example of the corresponding PCA projections for subject 1 is shown 

in Figure 2.3. In the figure, the xp axis corresponds to the PCA projection of the flexion and 

extension data along the principal component of that data. As such, the angular velocity for the 

impedance set-point of the volitional knee joint controller is given by: 
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where α is the maximum desired set-point velocity (corresponding to maximum muscular effort), 

γ is the value at which the normalized EMG is thresholded (in this case γ = 0.2), xp is the PCA 

projection along the principal axis (as shown in Figure 2.3). 

 
Figure 2.2.  Classification of extension and flexion reference signals using QDA and LDA for 

amputee subjects 1, 2 and 3 (Figures a, b and c). Simple boundary depicts the pseudo-

classification boundary if the simple control rule in (3) is used. xq and xh denote the normalized 

EMG signals for the quadriceps and hamstring muscles, respectively. 

 
Figure 2.3.  PCA projections of extension (a) and flexion (b) reference signals of amputee 

subject 1. For the actual samples (measured), xq and xh denote the normalized EMG signals for 

the quadriceps and hamstring muscles, respectively. For the PCA projections, xp and xs denote 

the first principal and second principal components, respectively. 
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Figure 2.4.  The powered transfemoral prosthesis. 

 

1.5.2 Volitional Trajectory Tracking of a Powered Knee Prosthesis 

 

The volitional knee controller was implemented on each of the three amputee subjects with the 

powered transfemoral prosthesis shown in Figure 2.4 and described in detail in [8]. Note that the 

prosthesis used in these experiments also contains a powered ankle, although the ankle was not 

explicitly commanded in these experiments and remained in a “neutral” configuration. In order 

to characterize the effectiveness of the volitional controller for purposes of moving the knee joint, 

an experiment was developed which required each subject to track various types of knee joint 

angle movements. During these experiments, each amputee was presented with a computer 

monitor that showed in real-time a desired knee angle as a trajectory, along with the knee angle 

of the powered prosthesis, as measured by the joint angle sensor on the prosthesis. Since the 

authors did not have prosthesis sockets with embedded EMG electrodes for each subject, and 

since the volitional controller is intended for non-weight-bearing activity such as sitting, the 

subjects did not wear the powered prosthesis during the knee control experiments, but rather the 

subjects were seated in a chair, with the powered knee prosthesis mounted to a bench 

immediately next to the subject, in an orientation that was consistent with their seated position. 

The subjects were free to shift their weight and reposition the residual limbs during the sessions, 

and no significant changes in the EMG signals were observed. Aside from the QDA and PCA 

parameters extracted from the EMG intent database, all subjects utilized the same set of 
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volitional control parameters for the powered prosthesis. Specifically, the stiffness of the 

impedance controller was selected as k = 1.0 Nm/deg, the damping as b = 0.01 Nm/deg/s, the 

maximum set-point velocity α = 50 deg/s. These parameters were selected experimentally to 

provide an acceptable bandwidth and natural appearance of motion. 

 

In order to characterize volitional control of various types of motion, four different desired 

trajectories were constructed (labeled as trajectories A through D). The trajectory A joint angle 

tracking task consisted of set-point trajectories requiring the subject to quickly change the knee 

angle in 8 to 45 degree increments and to hold it for 5 to 10 seconds. Trajectory B consisted of 

sloped trajectories, which were intended to measure the subject’s ability to move the prosthesis 

at different constant velocities. Trajectories C and D consisted of sinusoidal waves at 0.2 and 

0.33 Hz, respectively (i.e., five-second and three-second periods, respectively), which were 

intended to measure the subject’s ability to move the leg up and down smoothly at continuously 

varying velocities. Trajectories A and B lasted for a total duration of 160 seconds each, while 

trajectories C and D lasted for a total duration of 80 seconds each.  

 

For each amputee subject, three sessions of experiments were conducted, each on a different day, 

with each successive session approximately one week apart. During the experimental sessions, 

the amputee spent approximately one hour practicing the tracking of the four trajectories (A 

through D), during which the various trajectories were presented to the amputee in an arbitrary 

order. After completion of the third session (i.e., after approximately one hour of practice in the 

third session once the experimenters concluded that the subject’s performance had plateaued), 

the subject’s performance was evaluated in a single set of performance tests, consisting of one 

trial each of trajectories A through D. Trajectory tracking performance data for all three subjects 

for these four trajectories is shown in Figure 2.5. The mean root mean square (RMS) trajectory 

tracking error for each amputee subject for each of the four trajectories is summarized in Table 1. 

The last column shows the average RMS trajectory tracking error across the three subjects, along 

with the standard deviation corresponding to the respective means. Finally, Table 1 also shows 

the average RMS tracking error across all subjects and all trajectories (i.e., mean of the last 

column), along with the corresponding standard deviation, which are 6.2 deg and 0.71 deg, 
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respectively. The latter indicates similar levels of tracking performance between the three 

subjects (which is also evidenced in Figure 2.5). 

 

1.5.3 Comparison to Intact Knee Trajectory Tracking 

 

In order to provide context for the trajectory tracking data summarized in Table 1, corresponding 

experiments were conducted to assess the ability of each amputee to track the same set of knee 

joint angle trajectories with his sound knee. These experiments were conducted in a single 

session, since familiarization with the prosthesis and volitional impedance controller was not 

necessary (i.e., each subject was already quite familiar with the movement control of his sound 

knee). As such, each subject spent approximately 15 minutes practicing each set of trajectories, 

until each was comfortable with his ability to track the trajectories. Once sufficiently 

comfortable, each subject’s performance was evaluated in a single set of performance tests, 

consisting of one trial each of trajectories A through D. Movement of the sound knee was 

measured using a knee brace instrumented with a goniometer. The knee brace did not impose any 

significant constraints on knee movement. Intact knee trajectory tracking data for all three 

subjects (whose prosthetic side data is shown in Figure 2.5) for the four trajectories is shown in 

Figure 2.6, and a summary of the mean RMS errors for the intact knee (corresponding to Table 

1) is given in Table 2. As shown in the last column of Table 2, the average RMS tracking error 

across all subjects and all trajectories for sound knee tracking was 5.2 deg, with a corresponding 

standard deviation of 1.0 deg. Recall that the average RMS tracking error across all subjects and 

all trajectories for the EMG-based prosthesis knee tracking was 6.2 deg (with a standard 

deviation of 0.71 deg). Thus, the data indicates that all three subjects performed similarly (i.e., 

relatively small standard deviation relative to the respective means), and that on average, the 

difference in tracking error between the prosthetic and intact knee joints was one degree. With 

regard to the various trajectory types, the average RMS errors for trajectory A (steps) were 7.7 

deg and 6.8 deg, respectively, for the prosthetic and intact joints, and thus the difference in 

average error was 0.9 deg. The average RMS errors for trajectory B (ramps) were 3.4 deg and 2.1 

deg, respectively, for the prosthetic and intact joints, and thus the difference in average error was 

1.3 deg. For trajectory C (the slower sinusoid), the average RMS errors were 5.6 deg and 5.7 

deg, respectively, for the prosthetic and intact joints. Despite this, the standard deviation in the 
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average RMS error was significantly different between the two, indicating that the sound side 

tracking of the slow sinusoid was more consistent between the three subjects than the prosthetic 

side. Finally, for trajectory D (the faster sinusoid), the average RMS errors were 7.9 deg and 6.2 

deg, respectively, for the prosthetic and intact joints, and thus the prosthesis controller 

demonstrated 1.7 deg more error on average than the intact joint. 

 
Table 1: RMS Error for EMG Control of Powered Knee 

 Subject 1 EMG Subject 2 EMG Subject 3 EMG 
EMG Control 

Avg. (SD) 

Trajectory A 6.8 8.2 8.0 7.7 (0.76) 

Trajectory B 2.5 3.9 3.7 3.4 (0.76) 

Trajectory C 4.4 7.2 5.3 5.6 (1.4) 

Trajectory D 8.4 8.3 7.1 7.9 (0.72) 

Subject Avg. 5.5 6.9 6.0 6.2 (0.71) 

 

Table 2: RMS Error for Volitional Control of Intact Knee 

 Subject 1 Sound Subject 2 Sound Subject 3 Sound 
Sound Side 

Avg. (SD) 

Trajectory A 6.1 6.8 7.6 6.8 (0.75) 

Trajectory B 1.4 1.8 3.1 2.1 (0.89) 

Trajectory C 4.6 6.1 6.4 5.7 (0.96) 

Trajectory D 4.5 6.4 7.7 6.2 (1.6) 

Subject Avg. 4.2 5.3 6.2 5.2 (1.0) 

 

 
Figure 2.5.  EMG-controlled powered prosthesis knee position tracking for all three subjects for 

trajectories A-D (Note that C and D show only a segment of the longer sinusoidal trajectory.). 
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Figure 2.6.  Sound-side knee position tracking for all three subjects for trajectories A-D (Note 

that C and D show only a segment of the longer sinusoidal trajectory.). 

 

1.6 Conclusion 

 

This paper describes a volitional impedance control framework that allows a transfemoral 

amputee to control the motion of a powered knee prosthesis during non-weight-bearing activity. 

The control is based on an impedance framework wherein the joint exhibits programmable joint 

stiffness and damping characteristics, and knee movement is provided by commanding the joint 

stiffness equilibrium angle. The time rate of change of this angle (which is the desired angular 

velocity) is provided by measurement of the surface EMG from the hamstring and quadriceps 

muscles. Rather than directly associate the hamstring EMG with knee flexion and the quadriceps 

with knee extension, which would require the user to artificially isolate contraction of these 

muscle groups, the approach incorporates a combination of pattern classification and principal 

component projection to align the measured EMG with the user’s desire to flex or extend the 

knee joint. The resulting control approach was implemented on three transfemoral amputee 

subjects, and the resulting EMG volitional control was shown to provide effective control of 

knee joint motion during non-weight-bearing activity. The proposed approach, if implemented 

with EMG electrodes embedded into the socket, can provide amputees using powered knee 
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prostheses with the ability to perform effective volitional control of knee joint motion during 

non-weight-bearing activity. 
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CHAPTER III 

 

 

ENHANCING A WALKING CONTROLLER FOR LOWER LIMB EXOSKELETONS 

TO ENABLE INCREASED WALKING SPEEDS 

 

 

In the previous chapter, the user’s intent was conveyed to the device using physiological signals 

(EMG). The control method presented in this chapter does not directly interface with the user’s 

physiological signals but rather uses embedded sensors in the device to convey the user’s intent 

to the device, which, in this case, is a lower limb exoskeleton for gait restoration in paraplegic 

individuals. A powered lower limb exoskeleton containing actuators, sensors, and 

microcontrollers can perform consistent motions in a similar manner to the low-level control of 

spinal circuits. Although such an exoskeleton attached to an individual with paraplegia can 

override the dysregulated spinal circuits in the body, the low-level controllers in the device are 

still disconnected from the person’s high-level controllers (i.e. the brain). The manuscript 

presented in this chapter describes a high-level step trigger method for level-ground walking 

using information from inertial measurement units (IMUs) within the exoskeleton. The controller 

takes the user’s dynamics into account based on a simple inverted pendulum model in order to 

improve gait speed. This manuscript is ready for submission to a journal to be determined. 
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1. Manuscript 2: Toward the Use of Robotic Exoskeleton to Facilitate Community Ambulation 

for Individuals with Paraplegia 

 

1.1 Abstract 

 

Recent advances in robotics technology have enabled the emergence of powered exoskeleton 

devices that have the potential to enable community or limited community ambulation for people 

with paraplegia. Preliminary studies published to date, however, indicate that these systems 

provide average walking speeds well below those generally prescribed for community or limited 

community ambulation. In order to increase walking speed, this paper proposes a dynamic 

control component that leverages knowledge of user dynamics to enable a more dynamic form of 

walking. The dynamic control approach is implemented on an exoskeleton and compared to the 

non-dynamic (quasi-static) control approach on a single subject with thoracic-level motor 

complete spinal cord injury (SCI), and is shown to improve average walking speed by a factor of 

more than two. In order to demonstrate efficacy of the control approach across multiple subjects, 

the exoskeleton and dynamic controller were assessed on four additional individuals with 

thoracic-level motor complete SCI, and were shown to provide similar gait speeds across all 

subjects. The average gait speed across all subjects was 0.37 m/s, which approaches (although 

does not fully achieve) the range of walking speed generally prescribed for limited community 

and community ambulation. The paper also reports results of other mobility assessments on the 

five subjects performed with the dynamic controller, such as the timed up-and-go and six-minute 

walk tests. 

 

1.2 Introduction 

 

The inability to stand and walk is one of the most significant impairments resulting from 

paraplegia [32]. In addition to diminished mobility, the inability to stand and walk can entail 

significant health implications, including loss of bone mineral content, pressure-induced skin 

problems, impaired lymphatic and vascular circulation, impaired digestive function, reduced 

respiratory and cardiovascular capacities, muscle spasticity, and increased incidents of urinary 

tract infection [7, 33-38]. 
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In an effort to restore legged locomotion to individuals with spinal cord injuries, some 

researchers have developed robotic lower limb exoskeletons to facilitate walking, utilizing 

external power (e.g., a battery pack) in combination with joint actuators (e.g. electric motors) to 

provide motive power. Some of the efforts in this regard include [39-48]. While these devices 

have been shown to be capable of providing legged mobility, few studies have been reported on 

mobility assessment of these devices on paralyzed individuals. To the best of the authors’ 

knowledge, two papers have published employing standard mobility assessment instruments to 

assess the legged mobility of paralyzed individuals using powered exoskeleton devices. One of 

these papers, by Esquenazi et al., reports average walking speed of 0.25 m/s (SD, 0.15 m/s), as 

measured by the ten-meter walk test (10mWT), in 11 subjects with thoracic-level paraplegia [49]. 

The other paper, by Farris et al. (i.e., essentially by the authors of this paper), compares 

ambulation with KAFOs to ambulation with a lower limb exoskeleton in a single subject with 

T10 complete paraplegia, and reports average walking speed with the exoskeleton of 0.17 m/s, as 

measured by a series of 10mWTs [50]. According to one study, the minimum gait speed 

necessary for community ambulation is 0.49 m/s, mainly due to time limits at crosswalks [51]. 

Another study prescribes a gait speed of 0.4 m/s for limited community ambulation [52]. In both 

cases, it is reasonable to assert that the reported average gait speeds of 0.17 to 0.25 m/s for 

exoskeleton walking are substantially below the gait speeds of 0.4 to 0.49 m/s generally 

prescribed for limited community and community ambulation (respectively). 

 

In order to improve speed (with the intent of enabling limited community or community 

ambulation), the authors describe here a modification to the control method presented in Farris et 

al. that introduces a dynamic model to facilitate a dynamic initiation of each subsequent step, and 

thus to foster a more dynamic form of locomotion. After developing the dynamic approach, the 

controller is implemented on an exoskeleton and the resulting gait speed compared on a single 

subject to the (previously reported) non-dynamic control approach, and is shown to improve 

walking speed by more than a factor of two. The modified controller is then implemented on five 

thoracic-level subjects and shown to provide a highly consistent gait speed across these five 

subjects. 
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1.3 Materials and Methods 

 

1.3.1 Controller 

 

As described in detail in [47], walking in the exoskeleton is controlled by a finite state machine 

(FSM), consisting of four essential states, as illustrated in Figures 3.1 and 3.2, which are right 

step (state 1), double-support with right foot forward (state 2), left step (state 3), and double-

support with left foot forward (state 4). During normal walking, the state machine moves 

sequentially through these states in a repeating fashion. When a right step is triggered (i.e., when 

state 1 is entered), the exoskeleton executes predetermined joint angle profiles (given in [47]), 

which executes swing phase in the right leg and stance phase in the left. Once the right step has 

completed, the FSM enters state 2, which is double-support with the right foot forward. When a 

left step is triggered, the exoskeleton executes joint angle profiles corresponding to left leg swing 

phase and right leg stance phase, and once completed, the FSM enters state 4, which is double-

support with left foot forward. Therefore, when walking the controller moves fluidly through 

states 1 and 3 (right and left step), then waits in states 2 and 4 (double-support) for the user to 

trigger the subsequent step. The primary purpose of waiting in double-support for the user to 

trigger the subsequent step is to ensure that the user’s postural configuration is such that taking a 

step will result in movement forward, rather than falling backward. In the control approach 

reported previously (17), the condition for triggering a step was based on the user’s center of 

pressure (CoP), which is the vertical projection of the user’s center of mass (CoM) onto the floor 

in the sagittal plane, falling in front of the forward foot. In the simplified model of walking 

depicted in Figure 3.3, this condition corresponds to triggering a subsequent step when 𝜃 ≤ 0, 

where 𝜃 is the angle of the user’s stance leg in the vertical plane. This ensures that, when the 

exoskeleton performs joint motions for taking a step, the user steps forward, rather than fall 

backward. While this trigger method ensures that the user steps forward, it also requires that the 

user shift his or her CoP (using his or her arms and stability aid) far enough forward to meet this 

condition every step, which requires a deliberate effort and additional time between steps. The 

additional time between steps required to meet this condition has a substantial influence on 

walking speed. 
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Figure 3.1.  The finite state machine with four states involved in walking: right step (state 1), 

double-support with right foot forward (state 2), left step (state 3), and double-support with left 

foot forward (state 4). 

 

 
Figure 3.2. FSM for exoskeleton walking 

 

 
Figure 3.3.  Updated step trigger method. The system is modeled as an inverted pendulum 

rotating about the stance foot, and a step is triggered if there is enough kinetic energy to 

overcome the potential energy needed to step forward. 
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Recognizing that healthy walking is characterized by dynamic movement, the authors modified 

the previously implemented step trigger to account for a simple model of the user dynamics. 

Rather than require the CoP to fall forward of the forward foot, the dynamic step trigger uses a 

simple model of the user to estimate the user’s forward kinetic energy, and initiates a step when 

the user’s CoP, in combination with his or her estimated kinetic energy, will result in forward 

movement. Specifically, the approach is based on the dynamics of a simple inverted pendulum 

(Figure 3.3), and a step is triggered if 

 

 𝐾𝐸 ≥  𝑃𝐸 (1) 

 

where KE is the kinetic energy of the system and PE is the potential energy difference between 

the current position and the highest point of the inverted pendulum. In this model, 

 

 𝐾𝐸 =  
1

2
𝑚𝐿2𝜃2̇ (2) 

 

where m is the mass of the system, L is the distance from the stance foot to the center of mass, 

and 𝜃̇ is the angular velocity of the user’s stance leg rotating about the stance foot. Similarly, in 

this model, 

 

 𝑃𝐸 =  𝑚𝑔𝐿(1 − cos 𝜃) (3) 

 

where g is the gravitational constant, and 𝜃 is the angle of the user’s stance leg in the vertical 

plane. Substituting equations 2 and 3 into equation 1 gives the condition for triggering a 

subsequent step: 

 

 𝜃2̇ ≥
2𝑔

𝐿
(1 − cos 𝜃) (4) 

 

Note that, for quasi-static movement (𝜃̇ ≅ 0), this condition reduces to the same used previously 

(i.e., step is triggered when 𝜃 ≤ 0). As the user moves with increasing forward (i.e., angular) 



33 
 

velocity, however, the step trigger should occur increasingly earlier, while still maintaining the 

safety assurance of moving forward. 

 

1.3.2 Exoskeleton 

 

The dynamic walking control approach was implemented on the Vanderbilt lower limb 

exoskeleton, which is shown in Figure 3.4. The exoskeleton incorporates four control actuators 

(brushless DC motors acting through speed reduction transmissions) that provide sagittal-plane 

torques at the right and left hip and knee joints (relative to the exoskeleton frame). The control 

actuators are capable of providing continuous torques at each joint of approximately 20 N·m, and 

peak torques of approximately 80 N·m for durations on the order of a few seconds (thermally 

limited). The exoskeleton is used with ankle foot orthoses (AFOs), which provide stability at the 

ankle joints and transfer the weight of the exoskeleton to the ground. Instrumentation (for 

measurement of configuration angles, equation 4, and of state machine switching conditions, 

Figure 3.3) include absolute and incremental encoders at each joint, and one six-axis inertial 

measurement unit (IMU) in each thigh link (i.e., two total). The exoskeleton is powered by a 30 

v, 120 W·hr lithium polymer battery with a mass of approximately 600 g. The total mass of the 

system, including the battery, is approximately 12 kg (26.5 lb). A more detailed description of 

the exoskeleton is provided in [53]. 

 

 
Figure 3.4.  Vanderbilt lower limb exoskeleton 



34 
 

1.3.3 Preliminary Validation of Dynamic Walking Control Approach 

 

In order to provide a preliminary validation of the dynamic walking step trigger, the dynamic 

walking step trigger was implemented on the lower limb exoskeleton and compared to the non-

dynamic (quasi-static) step trigger, on a single subject with thoracic-level motor complete spinal 

cord injury (SCI). The subject, listed as Subject 1 in Table 3, was a 43-year-old male, 11 years 

post a T10 AIS A spinal cord injury. The subject is shown walking in the exoskeleton in Figure 

3.5 (note that the subject gave permission for publication of the photograph). In the validation 

testing, walking speed was measured using the 10mWT, in which the subject was instructed to 

“walk as fast as you safely can” over a 14 m distance, with the middle 10 m segment being timed 

to determine walking speed. The test was repeated three times for each step trigger. The subject 

was allowed to rest fully between trials, and specifically was required to achieve a resting 

hearting rate prior to beginning the next 10mWT. As reported in Table 4, the mean walking 

speed for the three 10mWT using the quasi-static step trigger was 0.17 m/s (with a standard 

deviation, SD, of 0.01), while the mean walking speed with the dynamic trigger (equation 4) was 

0.37 m/s (SD, 0.02). As such, the walking speed was more than doubled with the dynamic 

walking trigger, while the variation in walking speed across trials remained small (i.e., walking 

speeds were quite consistent using both step trigger methods). Note that in these trials, rather 

than using a measured value for the distance from the stance foot to the center of mass, the 

length L in equation 4 was approximated at 1 m. 

 

 
Figure 3.5. Subject 1 walking using the exoskeleton 
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Table 3: Summary of Subject Profiles 

 Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 

ASIA Impairment 

Scale 

AIS A 

(Complete) 

AIS A 

(Complete) 

AIS A 

(Complete) 

AIS A 

(Complete) 

AIS B (Sensory 

Incomplete) 

Injury Level T10 T10 T8 T11 T6 

Years since Injury 11 3 4 4 2 

Gender Male Male Male Male Male 

Age 43 41 41 30 19 

Height (m) 1.85 1.83 1.75 1.83 1.75 

Weight (kg) 75 100 82 64 54 

 

 
Table 4: Three-run Average (SD) Mobility Data for Subject 1: Previous vs. Updated Step Trigger Method 

 Previous Step Trigger (Static) Updated Step Trigger (Dynamic) 

10mWT    

 Time (s) 58 (3.1) 27 (1.2) 

 Speed (m/s) 0.17 (0.01) 0.37 (0.02) 

6MWT    

 Distance (m) 64 (4.5) 97 (0.58) 

 

 

1.3.4 Assessment of Dynamic Walking in Multiple Subjects 

 

In order to demonstrate efficacy of the dynamic walking control approach across multiple 

subjects, the exoskeleton and dynamic controller were assessed on four additional individuals 

with thoracic-level motor complete SCI (i.e., a total of five subjects with thoracic-level motor-

complete injuries). Table 3 provides information regarding the injuries and other essential 

characteristics of the five subjects. As indicated in the table, all subjects had injuries ranging 

from T6 to T11, four had sensory and motor complete injuries (AIS A), and one had a sensory 

incomplete injury with no motor function below the level of injury (AIS B).  

 

In addition to using the 10mWT, the exoskeleton and dynamic walking controller were 

additionally assessed by using as assessment instruments the six-minute walk test (6MWT), and 

timed up-and-go (TUG) test. While the 10mWT provides a measure of the gait speed over a 

short distance, the 6MWT measures the gait speed over a longer distance and duration, and also 

involves turns, whereas the 10mWT only involves walking in a straight line. The TUG test 

characterizes a person’s ability to perform transitions between basic movements, such as sit-to-

stand, stand-to-walk, walk-to-stand, turn in place, and stand-to-sit. The 10mWT, 6MWT, and 
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TUG test have all been shown to have high test-retest correlation coefficients (all around 0.98) 

and high levels of validity in assessing the functional mobility in individuals with neurological 

impairment [54-57]. Each subject repeated each tests three times, and each after heart rate 

returned to resting. All assessments were conducted at Shepherd Center, Atlanta, GA, between 

April 2013 and December 2013, with approval from the Shepherd Center and Vanderbilt 

University IRBs. Note also that, rather than use a measured value for the distance from the stance 

foot to the center of mass for each subject, the length L in equation 4 was approximated as 1 m 

for all trials and all subjects. 

 

1.4 Results and discussion 

 

Table 5 summarizes results for each assessment instrument, and for each subject. The average 

walking speed across all subjects, as measured by the 10 mWT, was 0.37 m/s (SD, 0.04). 

Average speeds for each subject ranged from 0.32 m/s to 0.42 m/s. The distance covered in 6 

minutes averaged 97.8 m (SD, 10) and ranged from 89.8 m to 111.9 m. Note that since the 

6MWT used 30.5 m (100 ft) spans between turning points, completing the 6MWT required each 

subject on average to complete 3 turns. Given the control system as described in (17), each turn 

requires that the subject transition from a walk state to a standing state; turn in place; then 

transition from a standing state to a walking state. The time required to complete each turn 

reduces the average walking speed substantially. The TUG tests were on average completed in 

72.4 s (SD, 14), with times ranging from 56.3 s to 96.8 s. Note that the TUG test consists of 

transitions between standing, walking, turning, walking, turning, and sitting down, and thus the 

amount of walking is small relative to other activities. Nonetheless, the ability to independently 

complete a TUG test is an important indicator of potential for home and community use. 

Table 5. Three-run Average (SD) Mobility Data for Five Subjects 

 Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Average 

10mWT        

 Time (s) 27.4 (1.2) 23.9 (0.9) 29.3 (1.1) 26.2 (0.5) 30.5 (0.7) 27.6 (2.7) 

 Speed (m/s) 0.37 (0.02) 0.42 (0.02) 0.33 (0.01) 0.38 (0.01) 0.32 (0.01) 0.37 (0.04) 

6MWT        

 Distance (m) 96.9 (0.6) 111.9 (12.5) 90.0 (1.9) 89.8 (2.9) 100.5 (5.9) 97.8 (10) 

TUG Test        

 Time (s) 96.8 (4.2) 69.0 (3.7) 69.1 (1.5) 70.6 (6.9) 56.3 (1.3) 72.4 (14) 
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1.5 Conclusion 

 

Ideally, an exoskeleton system should provide walking speeds appropriate for community or 

limited community ambulation. This study proposed a walking controller that enables a dynamic 

form of exoskeleton walking, which was shown to increase walking speed by a factor of two 

relative to a non-dynamic controller. The control approach was additionally shown to provide 

highly consistent walking speeds across five subjects with thoracic-level motor-complete injuries 

of varying levels, with an average walking speed (0.37 m/s) that approaches the range of speeds 

(0.40 to 0.49 m/s) prescribed for limited community and community ambulation. Despite this, 

the walking speeds achieved in this study remain on average somewhat below those prescribed 

for community or limited community ambulation.  
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CHAPTER IV 

 

 

COOPERATIVE CONTROLLER COMBINING FES 

WITH POWERED EXOSKELETONS 

 

 

While the previous work showed that a person with paraplegia could walk in a safe and 

consistent manner using a powered exoskeleton, the electric motors in the exoskeleton were the 

only sources of motive power, and the user’s joints were simply moved in a passive manner. If 

the user’s own muscles could also be used to create movement, the user might receive greater 

degrees of physiological benefits, in addition to reducing battery power consumption. The 

manuscript presented in this chapter uses functional electrical stimulation (FES) of paralyzed 

muscles as sources of actuation along with the electric motors of a powered exoskeleton, and a 

cycle-to-cycle adaptation ensures that the two types of actuators work together to achieve safe 

and efficient gait in individuals with paraplegia. This manuscript has been accepted for 

publication in the IEEE Transactions on Neural Systems and Rehabilitation Engineering. An 

addendum to this chapter describes the circuit design of the muscle stimulator used in this study. 
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1. Manuscript 3: An Approach for the Cooperative Control of FES with a Powered Exoskeleton 

during Level Walking for Persons with Paraplegia 

 

1.1 Abstract 

 

This paper describes a hybrid system that combines a powered lower limb exoskeleton with 

functional electrical stimulation (FES) for gait restoration in persons with paraplegia. The 

general control structure consists of two control loops: a motor control loop, which utilizes joint 

angle feedback control to control the output of the joint motor to track the desired joint 

trajectories, and a muscle control loop, which utilizes joint torque profiles from previous steps to 

shape the muscle stimulation profile for the subsequent step in order to minimize the motor 

torque contribution required for joint angle trajectory tracking. The implementation described 

here incorporates stimulation of the hamstrings and quadriceps muscles, such that the hip joints 

are actuated by the combination of hip motors and the hamstrings, and the knee joints are 

actuated by the combination of knee motors and the quadriceps. In order to demonstrate efficacy, 

the control approach was implemented on three paraplegic subjects with motor complete spinal 

cord injuries ranging from levels T6 to T10. Experimental data indicates that the cooperative 

control system provided consistent and repeatable gait motions and reduced the torque and 

power output required from the hip and knee motors of the exoskeleton compared to walking 

without FES. 

 

1.2 Introduction 

 

One of the most significant impairments resulting from paraplegia is the inability to stand and 

walk [32]. In addition to diminished mobility, spinal cord injury (SCI) and the inability to stand 

and walk can entail significant health implications, including loss of bone mineral content, 

pressure-induced skin problems, increased incidence of urinary tract infection, muscle spasticity, 

impaired lymphatic and vascular circulation, impaired digestive operation, and reduced 

respiratory and cardiovascular capacities [58]. In an effort to restore legged locomotion to 

individuals with paraplegia, a number of researchers have investigated the use of functional 

electrical stimulation (FES) to artificially elicit and control leg muscle contraction, thereby 
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utilizing the musculature and metabolic power supply of the paraplegic subject to generate 

legged locomotion. Some of the research efforts in this regard include [59-69]. In addition to 

providing power for locomotion, FES-aided gait has also been shown to provide a number of 

associated physiological benefits, some of which include increased muscle strength, increased 

bone density, decreased spasticity, and improved cardiovascular health [7, 33-38]. Despite this, 

FES-based systems entail a number of challenges; most notably, muscles are difficult to control, 

particularly in the absence of adequate sensory information, and muscle torque output tends to 

fatigue rapidly, as a byproduct of the synchronous activation and preferential recruitment of fast-

twitch muscle fibers associated with FES. 

 

In order to address these challenges, some researchers have developed hybrid systems, which 

combine FES with lower limb orthoses [70-77]. The orthoses described in these works vary 

widely, but generally incorporate some combination of joint and/or load sensing (e.g., joint angle 

sensing), joint coupling (e.g., via reciprocating gait orthoses), and controllable joint locking or 

braking (e.g., electrically-actuated knee locks). Such systems also commonly restrict non-

essential degrees-of-freedom (DOFs) during standing and walking. As a result, these devices 

reduce the number of DOFs that require control and introduce control elements that improve 

control of movement. These systems do not provide motive power for locomotion, but rather rely 

on FES as the source of motive power. Relative to FES-only approaches, hybrid approaches have 

shown improved control of movement and reduced muscle fatigue (the former a result of sensing 

and/or controlled braking elements, the latter generally a result of using the orthosis to lock the 

knee joints during standing and stance). 

 

Rather than utilize the metabolic power source provided by stimulated muscle, other researchers 

have developed powered lower limb exoskeletons to facilitate walking, which utilize external 

power (e.g., a battery pack) in combination with joint actuators to provide a source of motive 

power that actively generates leg joint movement. Some of the efforts in this regard include [39-

48, 78, 79]. Powered exoskeletons avoid the controllability and fatigue issues associated with 

FES and (to a lesser extent) hybrid-FES approaches, but do not offer (to the same extent) several 

physiological benefits associated with FES, and similarly do not leverage the presence of the 

metabolic power supply. 
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In this paper, the authors combine the use of an externally powered lower limb exoskeleton with 

FES, in order to form a powered hybrid FES system. The intent of the system is to combine the 

power and movement control advantages of the powered lower limb exoskeleton with the 

physiological benefits provided by FES. The proposed system is of the same general class of 

systems as the hybrid FES systems previously cited (i.e., [70-77]), but incorporates two sources 

of motive power (metabolic and robotic), and therefore offers additional control authority with 

which to supplement the FES. Such an approach requires a control methodology that can 

effectively combine these dissimilar sources of motive power, which is the topic of this paper. 

 

Some researchers have recently explored the notion of combining FES with powered exoskeleton 

systems for individuals with paraplegia, as described in [80, 81]. In [80], the authors describe a 

feasibility study combining quadriceps stimulation with a lower limb exoskeleton that includes 

hip and knee joint actuation. In that work, the authors manually tune a quadriceps stimulation 

pulse on a single healthy subject, and show that once appropriately tuned, the quadriceps 

stimulation decreased the torque required from the knee actuator to achieve similar joint angle 

tracking. In [81], the authors also describe a control method for combining FES with a powered 

knee joint, and implemented this method on five healthy subjects. In that work, the knee joint 

motor is controlled by a variable-stiffness controller, with the stiffness controlled as a function of 

the interaction torque between the user and the exoskeleton. Concurrently, the knee extensor 

muscle stimulation is controlled by a PID controller, and knee flexor muscle stimulation is 

controlled by an iterative learning controller.  

 

In this paper, the authors describe a control method for the cooperative control of a powered 

exoskeleton and FES, and demonstrate its efficacy on three SCI subjects. The method takes a 

different approach than those previously cited, and in particular, combines high-bandwidth 

position feedback around the motor actuators with quasi-real-time torque feedback around 

muscle stimulation, in order to minimize the motor torque required for each successive stride. 

The authors apply the cooperative control approach on an exoskeleton with powered hip and 

knee joints, in combination with a four-channel FES system that stimulates the quadriceps and 

hamstrings muscle groups of each leg, such that the quadriceps are used to provide extension at 
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the knee during swing, and the hamstrings are used to apply extension at the hip during stance. In 

order to demonstrate the efficacy of the approach, the cooperative controller was evaluated on 

three subjects with thoracic-level motor-complete SCI during level walking. Data is presented 

comparing the joint trajectories and exoskeleton torque and power requirements with and without 

muscle stimulation. 

 

1.3 Cooperative Controller 

 

1.3.1 Overview 

 

The goals of the cooperative controller are (1) to ensure consistent and repeatable gait motions in 

the presence of time-varying and poorly-modeled muscle response, and (2) to maximize the 

constructive contribution of muscle torque in providing motive power for movement. Since 

muscle torque output resulting from electrical stimulation is known to have highly time-varying 

behavior, and since real-time sensing of muscle torque is not generally available, the authors do 

not attempt to use real-time control of the muscle to achieve motion tracking. Rather, the control 

architecture achieves the aforementioned objectives by combining a high-bandwidth, high-

control-authority feedback loop that relies on the motors to ensure consistent joint trajectory 

tracking, with a low-bandwidth, low-accuracy component that adaptively (on a step-by-step basis) 

shapes the nature of the muscle stimulation in an effort to create a constructive influence on the 

motor control loop that effectively reduces the torque required from the motors. In this manner, 

the torque contribution from the muscles can be viewed as a disturbance to the exoskeleton joint 

trajectory control loop, and the purpose of the stimulation controller is to create a joint torque 

“disturbance” that energetically assists the closed-loop joint trajectory controllers. The general 

structure of the joint-level control architecture is illustrated in Figure 4.1. Note that muscle 

torque m
~  is unidirectional, and that the validity of the torque summing junction in the joint angle 

feedback loop implicitly assumes an appropriate degree of backdrivability in the joint actuators.  
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Figure 4.1.  Joint-level control architecture of the cooperative controller combining high-

bandwidth position feedback around the motors with quasi-real-time torque feedback around 

muscle stimulation. The motor control loop ensures consistent joint trajectory tracking, while the 

stimulation profile generator adaptively (on a step-by-step basis) shapes the nature of the muscle 

stimulation to create constructive muscle torque. Note that Ts goes high when a step is triggered, 

and remains high for the duration of the step. 

 

The control structure shown in Figure 4.1 incorporates two feedback loops. The first is the motor 

control loop, which is a PD control loop that uses joint angle feedback (in real time) to control 

the output of the joint motors to track the desired joint trajectories. The second feedback control 

loop is the muscle control loop. The muscle control loop does not occur in real time, but rather 

occurs on a step-by-step basis (as described below), and at each successive step utilizes the 

motor torque profiles measured from preceding steps to adapt the shape of the muscle 

stimulation profile in an effort to reduce the motor torque required for the subsequent step. Each 

time a subsequent step is triggered (indicated by the Ts switch in Figure 4.1), the control loop 

executes a predetermined joint angle trajectory and utilizes a stimulation profile that was 

adaptively determined immediately following the end of the preceding step. As such, the 

stimulation profile does not change within a given step, but rather is updated between successive 

steps. 

 

1.3.2 Measurement of Estimated Muscle Torque 

 

As previously stated, the stimulation controller adapts the stimulation profile based on the motor 

torque profiles observed during previous steps. Specifically, the exoskeleton is capable of 

measuring motor torque but is unable to directly measure the torque contribution from the 

stimulated muscle. Direct measurement of muscle torque would require instrumentation between 

the muscle and joint (e.g., in the respective muscle tendon), which is not practical for the 
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proposed application. Recognizing that gait is a periodic event, rather than monitor muscle 

torque contribution in real time (or use model-based methods such as a disturbance observer), the 

muscle torques can be monitored in quasi-real time by comparing measured joint motor torques 

during gait cycles with and without FES, assuming that the differences in torques between 

respective gait cycles are primarily attributable to stimulated muscle contraction. Specifically, 

the control architecture assumes a quasi-stationary periodic system, and in particular assumes 

that the joint angle trajectories and the joint dynamics remain essentially invariant between steps. 

Note that this assumption does not assume an invariant muscle dynamics (i.e., dynamics between 

stimulation and muscle torque), which in general will vary considerably over time. 

 

Given the quasi-stationary periodic assumption, a baseline measurement of the requisite motor 

torques can be recorded by initially walking without stimulation, and an estimate of muscle 

contribution in subsequent gait cycles can be provided by subtracting motor torque contribution 

during cycles with FES from the baseline. The method of muscle torque measurement is thus as 

follows. The controller initializes by taking several steps without using muscle stimulation. A 

nominal torque profile n is established by averaging the motor torque required to track the 

desired joint angle profile over these several steps. Once this nominal torque profile is 

established, the portion of that profile corresponding to the stimulated muscle group (the positive 

or negative portion of the torque, depending on whether the muscle group is a flexor or extensor 

group) is regarded as the torque reference r  for that muscle group. Ideally, a stimulation profile 

would be generated such that the stimulated muscle provides a muscle torque contribution that 

exactly matches the torque reference (in which case the motors would not contribute any torque 

during the corresponding portion of that movement). Following establishment of the nominal 

torque profile, the torque contribution from the stimulated muscle can be estimated by 

subtracting the motor torque measured during a step with FES from the nominal torque profile: 

 

 exoFESnm    (1) 

 

where m  is the estimated muscle torque profile for a given step, and exoFES  is the motor torque 

measured during a step with FES. Note that in the implementation described here, all torque 
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profiles are established as a filtered five-step average, as described in more detail in the 

implementation section. Note also in Figure 4.1 that m
~  is used to denote the actual muscle 

torque, which is not (in this system) known or directly measurable. Following each step, the 

torque reference profile r  is compared to the estimated muscle torque profile m  , and the 

difference between the two profiles is used to adaptively shape the muscle stimulation profile as 

subsequently described.  

 

1.3.3 Adaptive Shaping of Stimulation Profile 

 

Figure 4.2 describes the nature of the adaptive stimulation profile generation. Since the torque 

references for all stimulated muscle groups considered here have an essentially pulse-like 

character (see results section), and since stimulation is regarded here as a low-accuracy, low-

bandwidth component of control, the authors restrict the envelope of the stimulation profile to be 

in the form of a pulse. Note that this pulse is the envelope of the actual stimulation waveform 

(see Figure 4.2). Note also that although a rectangular pulse profile (controlled in an on-off 

manner) was selected for the work presented here, the general adaptation method could be 

similarly implemented with a more complex stimulation profile shape, if desired. 

 
Figure 4.2.  Parameters involved in adaptive stimulation profile shaping. The stimulation 

envelope profile, which is expressed using the pulse start time st , pulse duration dt , and pulse 

amplitude si , is adaptively shaped based on feature differences between the torque reference r  

and the estimated muscle torque m . 
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With the assumption of a rectangular pulse profile, the stimulation profile associated with each 

step can be defined by three parameters, which are the pulse start time st (relative to the step start 

time), the pulse duration dt , and the pulse amplitude si  (i.e., current amplitude of the stimulation 

waveform), all of which are identified in Figure 4.2. The stimulation profile is adaptively shaped 

based on feature differences between r  and m  as described in Figure 4.2. Specifically, the 

feature differences between the torque profiles are described by the muscle torque lag time lt , 

which is the period of time by which m  lags r ; the pulse width difference given by: 

 

 wmwrw ttt   (2) 

 

where wrt  and wmt  are the respective pulse widths of r  and m ; and the difference between the 

reference and estimated muscle torque amplitude given by T (which is the error in torque 

amplitude). Given an initial set of values describing the pulse profile, the parameters describing 

the stimulation profile are adaptively updated after each step as follows. The pulse start time for 

the next step is given by: 

 

 )1()1()(   klksks ttt  (3) 

 

where )(kst  is the start time of the stimulation pulse for the next step; )1( kst  is the start time of the 

stimulation pulse in the preceding step; and )1( klt  is the measured muscle torque lag time (from 

the preceding step). The pulse duration of the next step is given by: 

 

 )sgn( )1()1()(   kwkdkd tDtt  (4) 

 

where )(kdt  is the pulse duration of the stimulation pulse for the next step; )1( kdt  is the pulse 

duration of the stimulation pulse in the preceding step; )1(  kwt  is the measured pulse width 

difference (from the preceding step); and D is a predetermined increment (set to an increment 
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that would add or remove one stimulation pulse for the implementation here). Note that, unlike 

the start time, the pulse duration is quantized by the period of the stimulation waveform. For 

example, for a stimulation frequency of 40 Hz, the minimum increment in duration would be 25 

ms. As such, this adaptive component is subject to the quantization imposed by the selected 

frequency of stimulation. Finally, the amplitude of the stimulation profile, which corresponds to 

the current amplitude of each individual stimulation pulse, is adaptively incremented or 

decremented as follows: 

 

 )sgn( )1()1()(   kksks TIii  (5) 

 

where )(ksi  is the pulse amplitude of the stimulation pulse for the next step; )1( ksi  is the pulse 

amplitude of the stimulation pulse in the preceding step; )1(  kT  is the measured error in torque 

amplitude (from the preceding step); and I is a predetermined increment (2.5 mA for the 

implementation here, as discussed subsequently). Hysteresis elements were added to (4) and (5) 

in order to prevent chatter as the stimulation duration and amplitude converge to steady-state 

values. 

 

Therefore, each parameter defining the stimulation pulse profile is adaptively updated at 

discrete-time intervals corresponding to each subsequent step time. The start time and pulse 

duration stimulation profile parameters are simply shifts of the pulse start and end times, relative 

to the start time of the step, to best align the muscle torque pulse with the pulse reference, and 

where the end time (as determined by the pulse duration) is subject to the quantization effects of 

stimulation. The pulse amplitude is essentially controlled by a slew-rate-limited proportional 

control law, updated at a discrete time step that corresponds to each subsequent stride. Note 

finally that all stimulation pulse parameters are bounded within appropriate limits. 

 

1.3.4 Muscle Fatigue Detection 

 

In order to prevent overstimulation of fatigued or non-responsive muscles, the controller 

monitors the torque output of each muscle and selectively stops stimulating any individual 
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muscle group that it deems severely fatigued. Severe muscle fatigue is defined for purposes of 

this controller as a muscle gain (i.e., joint torque output relative to stimulation amplitude input) 

one third the maximum observed muscle gain. That is, for a given input, once the muscle is only 

able to generate one third the output torque it was previously able to generate, it is considered 

substantially fatigued and thus considered essentially unresponsive to the stimulation controller. 

If muscle fatigue is detected for a given muscle over five consecutive steps, the controller stops 

stimulating the fatigued muscle for a period of two minutes to allow time for recovery. 

 

1.4 Experimental Implementation 

 

The control approach described in the previous section was implemented on a powered lower 

limb exoskeleton supplemented by FES, and its ability to provide effective control was assessed 

on three subjects with thoracic-level motor-complete SCI. Specifically, the exoskeleton included 

powered actuation at both hip and knee joints, and the FES system included four channels of 

stimulation, which were the quadriceps and hamstrings muscle groups of each leg. The 

quadriceps consists of four heads: rectus femoris, vastus lateralis, vastus intermedius and vastus 

medialis. The rectus femoris is a biarticular muscle spanning both the hip and knee joints with its 

two actions being hip flexion and knee extension. The other three act on the knee joint only with 

their main action being knee extension [82]. Overall, contraction of the quadriceps muscle group 

as a whole generates an extension torque at the knee. The hamstrings consist of three heads: 

semitendinosus, semimembranosus and the long head of biceps femoris. All three are biarticular 

muscles spanning both the hip and knee joints with their main actions being knee flexion and hip 

extension [82]. When the knee joint is immobilized, as it is in the stance phase in this application 

(by the normally-locked knee joints of the exoskeleton), hamstring contraction generates an 

extension torque at the hip. As such, four cooperative control loops were included in the hybrid 

system, two consisting of hip motors supplemented by hamstring stimulation (used during the 

stance phase of walking), and two consisting of knee motors supplemented by quadriceps 

stimulation (used during the swing phase of walking). 
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1.4.1 Lower Limb Exoskeleton 

 

The Vanderbilt lower limb exoskeleton, shown in Figure 4.3, is a powered exoskeleton described 

in [46, 47] for gait restoration in persons with paraplegia. It includes electric motors at both hip 

and knee joints, in addition to a four-channel muscle stimulator, used here for stimulation of the 

quadriceps and hamstrings muscle groups. In addition to the motors, the knee joints additionally 

incorporate normally-locked brakes, which were implemented primarily as a safety measure, to 

prevent knee buckling in the event of a power failure. The device does not have foot and ankle 

sections but rather is used with standard ankle foot orthoses (AFOs). The total exoskeleton mass 

is 12 kg (26.5 lb) including the 29.6 V, 3.9 A·hr lithium polymer battery.  

 

 
Figure 4.3.  Vanderbilt lower limb exoskeleton 

 

The exoskeleton is controlled via a pair of embedded electronic systems, one located within each 

thigh segment, each containing an 80 MHz PIC32 microcontroller, in addition to a pair of 

switching servoamplifiers for the knee and hip motors of the respective leg. The electronics 

board in each leg additionally incorporates a two-channel electrical stimulator, which provides 

computer-controllable electric stimulation for the quadriceps and hamstrings muscle groups of 

each leg. Each stimulator produces two independent channels of current-controlled symmetrical 

biphasic stimulation pulses. The pulse width, current amplitude, and pulse frequency of each 

biphasic stimulation channel are controllable via the microcontroller. One of the two exoskeleton 
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control boards, along with the plug-in electric stimulator that is typically mounted on it, is shown 

in Figure 4.4. In order to facilitate prototyping and implementation of the cooperative controller, 

the embedded system in the exoskeleton is interfaced with MATLAB Real-Time Workshop via a 

CAN tether, such that all sensor inputs and control outputs of the exoskeleton, including 

stimulation channels, are assessable and controllable, respectively, from a laptop computer. 

 

 
Figure 4.4.  Exoskeleton control board, shown with muscle stimulator module (which plugs into 

the control board within the outline shown) 

 

1.4.2 Controller Implementation 

 

The four cooperatively actuated muscle/motor pairs are the left and right quadriceps and knee 

motor combination (used during swing), and the hamstrings and hip motor combination (used 

during stance). As such, the control structure shown in Figure 4.1 was implemented at each of 

these four joints. The inputs to these joint-level cooperative controllers are governed by a finite 

state machine (FSM), which is described in detail in [47]. For purposes of walking, the FSM is 

described by four essential states, which are right step (state 1), double-support with right foot 

forward (state 2), left step (state 3), and double-support with left foot forward (state 4), as 

illustrated in Figure 4.5. During normal walking, the state machine moves sequentially through 

these states in a repeating fashion, as illustrated in Figure 4.6. As described in [47], each 

successive step is initiated by a shift in the location of the projection of the user’s estimated 
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center of pressure (CoP) along the ground in the sagittal plane, relative to the user’s forward foot 

(i.e., when the CoP projection shifts forward to a sufficient extent, the subsequent step will be 

triggered). When a right step is triggered (i.e., when state 1 is entered), predetermined joint angle 

profiles (given in [47]) are used as input in the control loops for the right knee and hip control 

loops (for swing), and for the left hip control loop (for stance), while the left knee is locked. 

Additionally, the most recent right quadriceps stimulation profile is used as input to the right 

knee control loop, and the most recent left hamstrings stimulation profile is used as input to the 

left hip control loop. Once the right step has ended (i.e., the joint trajectories are complete), the 

FSM enters state 2, and motors alone are used to hold the double-support posture. When a left 

step is triggered based on the projected CoP (i.e., when state 3 is entered), the predetermined 

joint angle profiles (given in [47]) are used as input in the control loops for the left knee and hip 

control loops (for swing), and for the right hip control loop (for stance), while the right knee is 

locked. Additionally, the most recent left quadriceps stimulation profile is used as input to the 

left knee control loop, and the most recent right hamstrings stimulation profile is used as input to 

the right hip control loop. Note that in the states for which a given joint does not utilize 

stimulation, the control structure remains as shown in Figure 4.1, with the stimulation profile set 

to zero (i.e., the controller simply tracks a given trajectory with motors only). 

 

 
 

Figure 4.5.  The finite state machine with four states involved in walking: right step (state 1), 

double-support with right foot forward (state 2), left step (state 3), and double-support with left 

foot forward (state 4). 
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Figure 4.6.  The four states involved in walking and the muscles stimulated 

 

As previously described, upon initiation of walking, the initial five steps (of each cooperatively-

controlled joint) occurred without stimulation, and the measured motor torque profile from each 

step was averaged to establish a nominal torque profile. Note that the five-step averaging was 

implemented to account for slight variations in motor torque between each step (which was 

observed despite the assumption of a stationary process), and to prevent substantial deviations in 

the estimated torque profile from occasional atypical steps. A muscle torque reference profile 

was created from the nominal torque profile by considering only the direction of torque 

corresponding to the stimulated muscle group. For the experiments described here, both muscle 

groups generated extension torques about their respective joints. As such, only the positive 

portions of the nominal torque profiles were used to establish the torque reference for each 

muscle group. Once this torque reference was established (i.e., after the first five steps, for a 

given leg), the control parameters describing the stimulation pulse envelope were initialized as 

follows. The pulse start time was set to occur 200 ms prior to the onset of the torque reference 

pulse; the pulse duration was set to the same duration as the torque reference pulse; and the pulse 

amplitude was set to 45 mA.  

 

The control parameters describing the stimulation pulse envelope were subsequently adapted 

every subsequent step, based on the adaptation method previously described. For the experiments 

presented here, motor torque measurements were median-filtered with a window size of 75 ms 

(i.e., 15 samples at 200 Hz), low-pass filtered with a cutoff frequency of 30 Hz, and running 

averaged over the preceding five steps. The difference between the nominal torque profile and 
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measured torque during stimulation was considered the estimated muscle torque (equation 1). 

The control parameters describing the stimulation pulse envelope were then adapted, based on 

the previously described adaptation rules (equations 3-5), using the differences between the 

estimated muscle torque profile (from the previous step) and the torque reference (established 

from the first five steps), in order minimize the differences between the two. For the control 

implementation described here, the step-wise increment (i.e., slew rate) for current amplitude 

adaptation (equation 5) was set to 2.5 mA. The respective step sizes (for stimulation duration and 

amplitude) serve as the gains of the discrete-time (i.e., step-by-step) adaptive controller. 

Maintaining low adaptation gains enhances the stability of adaptation, at the cost of limiting 

responsiveness (e.g., requiring four steps to adapt the stimulation amplitude by 10 mA). 

Although these gains are low, they provide sufficient responsiveness for this application, since 

the intent of the control system is to provide hundreds of steps of walking per session. 

 

1.4.3 Experimental Demonstration 

 

The cooperative controller was implemented on three subjects with motor-complete spinal cord 

injuries ranging from levels T6 to T10. Two subjects had motor and sensory complete paraplegia 

(American Spinal Injury Association Impairment Scale, AIS, A classification), and one had 

motor-complete, sensory-incomplete paraplegia (AIS, B classification). The essential physical 

and injury characteristics of each subject are listed in Table 6. Subject 2 had prior experience 

with FES and was using it for quadriceps stimulation for a few hours a month at the time of this 

study. Subjects 1 and 3 had no prior experience with FES. 

 

Table 6: Summary of Subject Profiles 

 Subject 1 Subject 2 Subject 3 

ASIA Impairment 

Scale 
AIS A (Complete) AIS A (Complete) 

AIS B 

(Sensory Incomplete) 

Injury Level T8 T10 T6 

Years since Injury 4 11 2 

Gender Male Male Male 

Age 41 43 19 

Height (m) 1.75 1.85 1.75 

Weight (kg) 82 75 54 
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Commercially available surface electrodes were used to stimulate the muscles. For the 

quadriceps, electrodes were applied to the anterior thighs with the subjects sitting up. For the 

hamstrings, electrodes were applied to the posterior thighs with the subjects lying supine with the 

leg held in a position with the knee extended and hip flexed. Figure 4.7(a) indicates the location 

of the surface electrodes. Once the electrodes were applied, muscle contractions were visually 

confirmed before donning the exoskeleton. After donning the exoskeleton, the electrode leads 

were connected to the exoskeleton stimulator jacks. The stimulation waveforms consisted of 

biphasic waveforms with a 200 µs pulsewidth for each polarity of the biphasic wave, for a 

combined pulsewidth of 400 µs, and implemented with a pulse frequency of 50 Hz for the 

quadriceps and 25 Hz for the hamstrings. Note that the quadriceps groups were stimulated at 50 

Hz (rather than 25) to increase the resolution of the stimulation pulse envelope in time (i.e., to 

provide a pulse envelope resolution of 20 ms in time rather than 40 ms). 

 

 
Figure 4.7.  Experimental setup. (a) Surface electrodes placed over the quadriceps and 

hamstrings. (b) Subject walking with the exoskeleton. 

 

Following donning of the system, subjects were instructed to walk continuously at a comfortable 

pace. Figure 4.7(b) shows a subject walking in the FES-assisted exoskeleton. The controller was 

initialized as described above. Each subject walked continuously on level ground for 

approximately ten minutes, approximately half while using FES, and half without, while data 

was continuously recorded regarding joint angles, motor torque, and stimulation levels. In terms 

of steps, Subject 1 took 140 steps with FES and 139 steps without FES for a total of 279 steps; 
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Subject 2 took 160 steps with FES and 164 steps without FES for a total of 324 steps; and 

Subject 3 took 99 steps with FES and 105 steps without FES for a total of 204 steps. In order to 

provide a high degree of uniformity between the conditions with and without FES, the system 

alternated continuously every ten steps between the controller without FES and the controller 

with FES. Note that system could only switch controllers during the double-support phases of 

gait (i.e., states 2 or 4). A video is included in the supplemental material showing one of the SCI 

subjects (Subject 2) walking with and without FES. 

 

1.5 Results and Discussion 

 

1.5.1 Reference Torques and Stimulation Profile Adaptation 

 

Figures 4.8 and 4.9 show representative measured nominal and reference torques corresponding 

to walking (excerpted from data from Subject 2). Specifically, Figure 4.8(a) shows the nominal 

torque corresponding to the swing phase of the knee joint with stimulation, which is the total 

knee joint motor torque measured during the swing phase and averaged over five gait cycles 

without stimulation. Figure 4.8(b) is the positive portion of the nominal torque, which is the 

portion in which the torque is extending the knee, and thus the only portion during which the 

quadriceps group can contribute. Figures 4.9(a) and (b) show the same, but taken at the hip joint 

during the stance phase, and showing the portion of torque to which the hamstrings can 

contribute (which is most of the stance phase). Note that the stance and swing phases are both 

one second because when a step is triggered, each joint follows a predetermined trajectory, 

which (for the trajectory used for these experiments) occurs over one second for both the stance 

and swing sides. Double-support phase, which is not shown in the data, occurs for a duration 

determined by the subject (i.e., the duration of double support depends on the time for the subject 

to trigger the next step). 
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Figure 4.8.  Quadriceps torque reference generation. (a) Nominal knee motor torque during 

swing. (b) Reference generated by removing flexion torques. 

 

 
Figure 4.9. Hamstring torque reference generation. (a) Nominal hip motor torque during stance. 

(b) Reference generated by removing flexion torques. 
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Figures 4.10 and 4.11 show the stimulation pulse profile parameter adaptation for the quadriceps 

and hamstrings, respectively, for Subject 1 over the course of data collection with FES (i.e., over 

140 steps). Note that the stimulation amplitude is shown as zero when walking without FES. As 

evidenced in the plots, the pulse parameters nominally converge, although vary somewhat about 

the nominal values, presumably due primarily to muscle fatigue. Also, one can observe in Figure 

4.11 the two periods during which the controller observed severe muscle fatigue (as previously 

defined), and in response turned off muscle stimulation for two respective two-minute rest 

periods. As indicated in Figure 4.10, the quadriceps muscles did not exhibit severe fatigue during 

this data set. 

 

 
Figure 4.10.  Stimulation parameter adaptation for right quadriceps of Subject 1 during 10 

minutes of walking. (a) Stimulation start time ts (dashed line) and duration td (solid line). (b) 

Stimulation level is (solid bar). 
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Figure 4.11.  Stimulation parameter adaptation for left hamstrings of Subject 1 during 10 minutes 

of walking. (a) Stimulation start time ts (dashed line) and duration td (solid line). (b) Stimulation 

level is (solid bar). 

 

1.5.2 Joint Angle Trajectories 

 

Figure 4.12 shows knee and hip joint angle trajectories during controller states 1 and 3 (i.e., 

during a step) for all steps taken by each subject, both with and without FES. Specifically, the 

plots show the average knee joint angles during the swing phase and the hip joint angles during 

the stance phase for steps taken with and without FES for each subject (along with plus and 

minus one standard deviation in the thin lines). Consistent hip and knee joint motions, as 

indicated by the data, support the (previously stated) claim that the exoskeleton is able to ensure 

consistent, reliable, repeatable motion in the presence of (quadriceps and hamstring) muscle 

stimulation. Consistent gait motions can also be observed in the included supplemental video, 

which shows one of the subjects walking with and without FES. 
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Figure 4.12.  Knee joint trajectories during swing (a, b, and c) and hip joint trajectories during 

stance (d, e, and f) without FES (solid lines) and with FES (dashed lines) for three subjects. 

Thick lines are joint trajectories averaged over all steps. Thin lines indicate one standard 

deviation. 

 

1.5.3 Muscle Torque and Power Contributions 

 

1) Quadriceps 

In all three subjects, the knee joint torque and power output required from the motor during the 

swing phase was lower with FES (i.e., quadriceps stimulation). Figure 4.13 shows the average 

knee joint power and motor torque with and without FES. Specifically, Figure 4.13 shows the 

average motor torque measured at the knee joints while walking with and without FES, along 

with plus and minus a standard deviation for each. On average, the torque contribution from the 

quadriceps ranged from 18% to 29% during the entire swing phase, for an average of 21% across 

all three subjects (Table 7). Note that the quadriceps is only able to provide a torque in extension 

(positive in the figure), and note also that the quadriceps on average provides the majority of the 

torque in the interval in which it is able to contribute (approximately 0.5 s to 0.9 s for Subject 1, 

0.5 s to 0.7 s for Subject 2, and 0.45 s to 0.65 s in Subject 3). During this interval, the quadriceps 

contributed between 69% and 84% of the torque required for knee extension (with the remainder 

provided by the motors), for an average of 79% across all three subjects (Table 8). Figure 4.13 

also shows the average motor power measured at the knee joints while walking with and without 
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FES, along with plus and minus a standard deviation for each. As seen in the figure, the average 

power was essentially unchanged in swing flexion (i.e., up to approximately 0.5 s) with FES but 

on average was substantially lower during swing extension. In particular, the stimulated 

quadriceps contributed between 12% and 24% of knee joint power during the entire swing phase 

for an average of 20% across all three subjects (Table 7). During the extension interval only, the 

quadriceps contributed between 61% and 93% of the power for an average of 80% across all 

three subjects (Table 8). The computed average torque and power contributions from the 

quadriceps for all three subjects, during the entire swing phase, and during the subset of the 

swing phase during which the quadriceps generated torque, are given in Tables 7 and 8. 

 

 

Figure 4.13.  Exoskeleton knee motor torque (a, b, and c) and power (d, e, and f) during swing 

without FES (solid lines) and with FES (dashed lines) for three subjects. Positive values indicate 

extension torques, and negative values indicate flexion torques. Thick lines are averages of all 

steps. Thin lines indicate one standard deviation. 
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Table 7: Exoskeleton Knee Joint Motor Torque and Power With and Without FES 

  Without FES With FES 
Muscle 

Contribution 

Subject 1 

Absolute Mean Knee Torque 

(SD) 
7.2 N·m (2.6) 5.2 N·m (2.1) 29% 

Mean Positive Knee Power 

(SD) 
14 W (6.4) 10 W (4.7) 24% 

Subject 2 

Absolute Mean Knee Torque 

(SD) 
9.9 N·m (1.9) 8.4 N·m (2.1) 15% 

Mean Positive Knee Power 

(SD) 
14 W (4.1) 12 W (4.3) 12% 

Subject 3 

Absolute Mean Knee Torque 

(SD) 
7.2 N·m (2.0) 5.9 N·m (2.1) 18% 

Mean Positive Knee Power 

(SD) 
7.3 W (2.0) 5.7 W (1.8) 23% 

Three Subject 

Average 

Absolute Mean Knee Torque 

(SD) 
8.1 N·m (1.6) 6.4 N·m (1.7) 21% (7.3) 

Mean Positive Knee Power 

(SD) 
12 W (3.7) 9.4 W (3.4) 20% (6.3) 

 

 

Table 8: Exoskeleton Knee Joint Motor Torque and Power With and Without FES during Extension Torque Interval 

Only 

  Without FES With FES 
Muscle 

Contribution 

Subject 1 

Absolute Mean Knee Torque 

(SD) 
5.3 N·m (2.9) 0.84 N·m (2.2) 84% 

Mean Positive Knee Power 

(SD) 
6.5 W (8.1) 0.96 W (5.2) 85% 

Subject 2 

Absolute Mean Knee Torque 

(SD) 
6.9 N·m (1.7) 1.2 N·m (2.5) 82% 

Mean Positive Knee Power 

(SD) 
5.0 W (3.2) 0.36 W (3.4) 93% 

Subject 3 

Absolute Mean Knee Torque 

(SD) 
3.6 N·m (1.7) 1.1 N·m (2.1) 69% 

Mean Positive Knee Power 

(SD) 
1.2 W (2.8) 0.45 W (3.0) 61% 

Three Subject 

Average 

Absolute Mean Knee Torque 

(SD) 
5.2 N·m (1.7) 1.1 N·m (0.19) 79% (8.0) 

Mean Positive Knee Power 

(SD) 
4.2 W (2.8) 0.60 W (0.32) 80% (17) 
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2) Hamstrings 

The left hamstrings of Subject 1 were unresponsive to FES, presumably due to lower motor 

neuron damage associated with the spinal cord injury. As such, data from the left hamstrings of 

Subject 1 were not considered in the assessment of the cooperative control performance. All 

other muscle groups in all three subjects responded to FES and were included in the assessment 

of the controller performance.  In all three subjects, the hip joint torque and power required from 

the motor during the stance phase was lower with FES (i.e., hamstring stimulation). The average 

hip joint torque and power with and without FES are shown in Figure 4.14. Specifically, Figure 

4.14 shows the average motor torque measured at the hip joint while walking with and without 

FES, along with plus and minus a standard deviation for each. Based on the measured data, the 

hamstrings provided between 7.9% and 25% of the necessary hip torque during the entire stance 

phase, for an average of 18% across all three subjects (Table 9). Figure 4.14 also shows the 

average motor power measured at the hip joint while walking with and without FES, along with 

plus and minus a standard deviation for each. The hamstrings contributed between 7.5% and 31% 

of the hip joint power to the entire stance phase of gait, for an average of 20% across all three 

subjects (Table 9). The average torque and power contributions from the hamstrings for all three 

subjects during the entire stance phase are given in Table 9. Note that regarding the quadriceps 

and hamstrings contributions, with regular use of the exoskeleton (with FES), one would expect 

the results to show improved muscle strength and resistance to fatigue (see, for example, [14]). 
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Figure 4.14.  Exoskeleton hip motor torque (a, b, and c) and power (d, e, and f) during stance 

without FES (solid lines) and with FES (dashed lines) for three subjects. Positive values indicate 

extension torques, and negative values indicate flexion torques. Thick lines are averages of all 

steps. Thin lines indicate one standard deviation. 

 

 

Table 9: Exoskeleton Hip Joint Motor Torque and Power With and Without FES 

  Without FES With FES 
Muscle 

Contribution 

Subject 1 

Absolute Mean Hip Torque 

(SD) 
13 N·m (3.3) 10 N·m (3.0) 25% 

Mean Positive Hip Power 

(SD) 
4.7 W (1.5) 3.3 W (1.3) 31% 

Subject 2 

Absolute Mean Hip Torque 

(SD) 
21 N·m (7.6) 16 N·m (5.9) 20% 

Mean Positive Hip Power 

(SD) 
7.9 W (3.9) 6.2 W (3.0) 22% 

Subject 3 

Absolute Mean Hip Torque 

(SD) 
19 N·m (5.2) 17 N·m (5.3) 7.9% 

Mean Positive Hip Power 

(SD) 
7.3 W (2.9) 6.7 W (2.8) 7.5% 

Three Subject 

Average 

Absolute Mean Hip Torque 

(SD) 
18 N·m (3.7) 15 N·m (4.0) 18% (9.0) 

Mean Positive Hip Power 

(SD) 
6.6 W (1.7) 5.4 W (1.9) 20% (12) 
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3) Variability in Muscle Response 

The controller was able to generate good muscle torque tracking in the presence of variable 

muscle behavior, as illustrated by Figure 4.15. Specifically, Figure 4.15 shows the average 

stimulation profile for the quadriceps, the torque reference profile, and the estimated muscle 

torque profile for the quadriceps stimulation of the right quadriceps of Subject 1 (Figure 4.15(a)), 

the left quadriceps of Subject 2 (Figure 4.15(b)), and the left quadriceps of Subject 3 (Figure 

4.15(c)) during ten minutes of walking. Although all three stimulation profiles resulted in similar 

torque reference tracking, the respective pulse profiles were substantially different. Specifically, 

the left quadriceps of Subject 2 required shorter stimulation duration (60 ms vs. 260 ms and 280 

ms for the other two), while achieving similar output duration. The left quadriceps of Subject 3 

required higher stimulation amplitude, even though the torque output was lower (approximately 

4.5 N·m vs. 9.5 N·m for the other two). The muscles also exhibited substantially different 

dynamics between the start of the pulse and onset of torque, ranging from 75 ms to 200 ms. Note 

that the stimulation profiles shown in Figure 4.15 are averages of multiple steps, and that muscle 

behavior varied over time within each subject as well (e.g., the stimulation pulse start time, 

duration, and amplitude shown in Figure 4.15(a) are averages of Figure 4.10). 

 

 

Figure 4.15.  Variability in muscle response to FES. Stimulation envelope profile (filled 

rectangles), reference (solid lines) and observed (dashed lines) muscle torque for (a) right 

quadriceps of Subject 1, (b) left quadriceps of Subject 2, and (c) left quadriceps of Subject 3. 

 

1.5.4 Feasibility of Hybrid Approach and Future Direction 

 

The overarching goal of this study is to validate the feasibility of the hybrid control method that 

combines FES with a powered exoskeleton, which is expected to enhance physiological benefits 
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and concurrently minimize electrical power consumption. This study has shown that (1) the 

hybrid approach is technically feasible, (2) it is capable of providing consistent and repeatable 

gait motions, and (3) the muscle contribution reduces the torque and power required from the 

device. However, regarding physiological benefits of FES, a clinical trial with predefined 

endpoints and additional subjects for statistical power will be necessary in order to characterize 

the extent of health benefit resulting from the hybrid control approach.  

 

1.6 Conclusion 

 

The authors have presented a control approach that enables the cooperative control of a powered 

lower limb exoskeleton in combination with FES. The intent of the hybrid system is to provide 

the physiological benefits associated with FES, with the reliability and control benefits 

associated with the exoskeleton. The control approach treats the muscle stimulation as a 

disturbance to a high-bandwidth motor control loop, and incorporates a step-wise adaptation that 

shapes the stimulation profile based on the torque measurement from previous steps to shape the 

muscle “disturbance” in such a way that minimizes the required motor torque. Experimental 

results from testing the cooperative control system on three motor-complete thoracic-level 

paraplegic subjects indicated highly consistent hip and knee movement; the ability of the 

controller to actively adapt the muscle stimulation despite substantial variability in muscle 

dynamics, both within and between subjects; and the effective reduction of motor torque and 

power as a result of muscle stimulation. 
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2. Addendum to Manuscript 3: Multichannel Biphasic Signal Generator Circuit 

 

The muscle stimulator used in this work was designed and built in-house so that it can be 

embedded into the system both physically and for control purposes. It is controlled by the 

microprocessors in the exoskeleton, and its design incorporates novel features that allow it to 

generate multiple channels of current-controlled biphasic stimulation waves from a single source, 

thus reducing the number of components and the physical footprint of the circuit board. A 

provisional patent application has been filed based on the circuit design. 

 

2.1 Hybrid H-bridge 

 

In order to produce biphasic stimulation waves (i.e. to command current in both directions), the 

circuit uses four transistors in an H-bridge configuration with a transformer in the middle of the 

bridge. Figure 4.16 shows the H-bridge design. Closing (i.e. activating) transistors H1 and L2 

results in current flowing through the transformer from left to right. Opening (i.e. deactivating) 

transistors H1 and L2, and closing transistors H2 and L1 reverses the direction of the current (so 

that current flows from right to left across the transformer). 

 

 
Figure 4.16.  Hybrid H-bridge design 
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The H-bridge consists of two different types of transistors (thus the name hybrid H-bridge). 

Metal–oxide–semiconductor field-effect transistors (MOSFETs) are used as high-side transistors 

H1 and H2, and they act as on-off valves. In order to control the amount of current flowing 

through the transformer, bipolar junction transistors (BJTs) are used for transistors L1 and L2. 

Used in conjunction with a sense resistor, Rs, the low-side BJTs act as valves that control the 

amount of current that flow through the transformer. Figure 4.17 shows a biphasic stimulation 

pulse generated from the hybrid H-bridge. 

 

 
Figure 4.17.  A biphasic stimulation pulse generated from the hybrid H-bridge 

 

2.2 Signal Multiplexer 

 

The circuit design takes advantage of the fact that muscle stimulators have very low duty cycle 

(around 2 % to 4 %), so that it can produce multiple channels from a single H-bridge. The 

microcontroller sends commands to the transistors, so that the H-bridge produces multiple 

biphasic waves that are staggered in time, and the waves are routed to different channels using 

high-bandwidth relays (that are also microcontroller-controlled), as shown in Figure 4.16. The 

stimulation pulse profile (pulsewidth, pulse amplitude, and pulse frequency) can be controlled 

independently for each channel. Figure 4.18 shows four channels of stimulation waves of 

varying pulse amplitude and frequencies generated from a single H-bridge source. 
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Figure 4.18.  Four channels of biphasic pulses generated from a single H-bridge source 
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CHAPTER V 

 

 

CONCLUSION 

 

 

This dissertation presents several control methods for assistive devices designed to provide 

functional benefits to individuals with mobility impairments. The underlying theme behind each 

method is maximizing the use of available physiological functions while compensating for the 

missing portions with sensors and actuators in the robotic device. Whenever deemed appropriate, 

theoretical principles were employed for the purposes of functionality, and we attempted to 

simplify each control method as much as possible without compromising functionality. For the 

volitional control method using EMG presented in Chapter II, a machine learning algorithm was 

implemented in order to account for variations in EMG signal patterns and baseline noise levels 

(both between different users and within each user), thus minimizing the need for manual tuning. 

For the step trigger controller presented in Chapter III, the system was modeled as an inverted 

pendulum in order to take the user dynamics into account, thus improving the gait speed. For the 

cooperative controller combining FES with powered lower limb exoskeletons presented in 

Chapter IV, a step-wise adaptation method was implemented in order to account for variations in 

muscle response to FES (both between different users and within each user), while providing 

physiological benefits of using FES. For each control method, utmost priority was given to 

practicality and usability, so that the proposed method can benefit real people, rather than focus 

on theoretical aspects for academic purposes. 

 

1. Validation of Efficacy of Control Methods and Statistical Significance 

 

In order to assess the effectiveness of the control methods, each control method was tested on 

multiple subjects for whom the controller was developed. The volitional control method using 

EMG was tested on three subjects with transfemoral amputations. The step trigger controller for 

lower limb exoskeletons was tested on five subjects with motor-complete spinal cord injuries. 

The cooperative controller combining FES with powered lower limb exoskeletons was tested on 
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three subjects with motor-complete spinal cord injuries who were FES-responsive. In all cases, 

results indicate that the proposed control methods are able to provide functional benefits to 

individuals with mobility impairments. 

 

In addition to providing functional benefits, another important goal of these devices is to provide 

physiological benefits. However, assessing the extent of physiological benefits would require 

full-scale clinical trials, which are beyond the scope of this work, as the Center for Intelligent 

Mechatronics is primarily an engineering laboratory focused on device development. 

Furthermore, these devices are laboratory prototypes that will undergo significant changes before 

they become available to end users. 

 

2. Commercial Translation and Conflict of Interest Disclosure 

 

The devices and control methods presented in this dissertation have been licensed to commercial 

partners. The awarded patents, provisional patent applications, and know-how generated from 

the powered transfemoral prosthesis have been licensed to Freedom Innovations, LLC, a 

prosthesis manufacturer based in Irvine, California. I am a co-inventor on a patent licensed to 

Freedom Innovations, LLC (US Patent 8,623,098 B2, “Systems and method for volitional control 

of jointed mechanical devices based on surface electromyography,” granted, January, 17, 2014), 

and therefore have a financial interest in the successful commercial translation of the device. The 

provisional patent applications and know-how generated from the powered lower limb 

exoskeleton have been licensed to Parker Hannifin Corporation, a multinational manufacturer of 

motion and control technologies headquartered in Cleveland, Ohio. I am a co-inventor on a 

provisional patent application and know-how licensed to Parker Hannifin Corporation and 

therefore have a financial interest in the successful commercial translation of the device. 

 

3. Future Work 

 

It seems to me that there is always more work to be done with any research projects, and that is 

the case with the work presented in this dissertation. For the volitional control method using 

EMG presented in Chapter II, one of the downsides of the pattern-recognition controller is that 
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the controller needs to be trained before use. If there is some form of physiological co-

contraction pattern in the residual quadriceps and hamstring muscles while walking using the 

powered prosthesis, and if there is a correlation between the co-contraction pattern and the user’s 

intent to flex or extend the knee joint, it may be possible to calibrate the controller while walking, 

so that separate training sessions are not necessary. For the step trigger controller presented in 

Chapter III, the controller models the system as an inverted pendulum rotating in the sagittal 

plane (front to back movement), and it does not take the frontal-plane motions into account (side 

to side movement). This is due to the fact that the current hardware does not have any actuators 

in the frontal plane. As a result, frontal-plane stability is provided solely by stability aid (i.e. 

walker or forearm crutches). In the future, implementing frontal-plane actuators (for hip 

abduction and adduction) could provide frontal-plane stability and reduce dependency on 

stability aid. For the cooperative controller combining FES with powered exoskeletons presented 

in Chapter IV, the controller has been shown to be effective for level-ground walking. In the 

future, the cooperative controller may be implemented for other activities, such as stair ascent 

and descent,  

 

As for the future direction of the field of assistive robotics in general, it is not obvious how the 

field will develop over the next decade or two, since the field is still at its infancy. There is still a 

lot more work to be done in many aspects of the powered prostheses and lower limb 

exoskeletons. Regardless, in my opinion, one thing we must keep in mind as researchers is that 

we should take the least invasive course possible for the user. In the case of volitional control of 

the control of powered prostheses, using surface EMG is likely an acceptable option for most 

users since the surface electrodes can be embedded in the already existing sockets over the 

residual limbs, requiring no additional work for the user. For the population with lower limb 

amputation, anything more invasive seems excessive. Even for individuals with spinal cord 

injuries, the existing non-invasive methods have been shown to be capable of determining the 

user’s high-level intent (e.g. to walk or to stop walking) with high accuracy. For the purposes of 

walking, more invasive measures, such as electroencephalography (EEG) or, as an extreme 

example, cortical electrodes on the user’s brain, do not seem that they would ever be an 

acceptable option. For restoring upper extremity function, the control method will likely require 

some form of neural connection to the user, which may require more invasive measures for some 
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users. In the case of using FES along with an exoskeleton, some may be willing to undergo 

minor surgical procedures to have small wireless stimulators implanted under the skin, since the 

current method (using wired surface electrodes over the muscles) can be cumbersome and the 

cost of surface electrodes can add up over time. 

 

In the immediate future, more significant impact (at the user level) will likely come from 

advancements on the hardware side. The supporting technologies will continue to improve, 

providing engineers with more accurate sensors, better actuators, and higher capacity batteries. 

With these advancements, self-contained assistive devices can become smaller, lighter, more 

powerful, and less expensive, so that they can become widely available and be used by the 

people who need them. 
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