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CHAPTER I 

 

INTRODUCTION 

 
 
The striatum and movement.  The collection of nuclei referred to as the ―basal 

ganglia‖ was previously called the great cerebral nucleus by David Ferrier in 

1876 (see Swanson 2000).  The basal ganglia are an ill-defined group of 

subcortical nuclei, which consist of the neostriatum (caudate nucleus and 

putamen), globus pallidus, substantia nigra, and subthalamic nucleus.  The 

striatum is the largest nucleus of the basal ganglia and is so named because it 

has a striated appearance due to the dense fiber bundles of axons that course 

through the region (Willis T et al. 1965).  This ‖striped‖ structure was first 

illustrated by Andreas Vesalius in 1543 and later described by the seventeenth 

century physician, Thomas Willis, who designated the structure ―corpus 

striatum‖ in 1664 (Sarikcioglu et al. 2008).  Willis noted: 

 ―These bodies, if they should be dissected along the middle, 
appear marked, with medullar streak, as it were rays or beams; 
which sort of chamferings or streaks have a double aspect or 
tendency; to wit, some descend from the top of this body, as if 
they were tracts from the brain into the oblong marrow; and 
others ascend from the lower part, and meet aforesaid, as if 
they were paths of spirits from the oblong marrow into the brain.  
And it is worth observation, that in the whole head besides there 
is no part found chamfered or streaked after the like manner.‖   
 

 In primates the striatum is composed of the caudate nucleus and the 

putamen, the two nuclei being separated by the white matter of the internal 

capsule.  However in rodents a single structure is observed, with fascicles of 
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myelinated corticostriatal axons being dispersed throughout the structure.  The 

striatum is functionally divided into the dorsal striatum and the ventral striatum 

(see Figure 1).  Whereas the dorsal striatum is implicated in voluntary movement, 

as well as habit-based learning, the ventral striatum plays an important role in the 

translation of motivation to movement. 

 Modulation of movement processes is mainly what the striatum is known 

for, but it also plays important roles in procedural learning and reward pathways. 

The basal ganglia were suggested to be involved in movement at the beginning 

of the 20th century, based on the observation that damage to these structures 

resulted in movement disorders (Wilson SAK 1914; Mettler R and Mettler C 

1942; Mettler FA 1945; Divac et al. 1967; Denny-Brown D and Yanagisawa N 

1972).  Simplistically, the motor cortex sends information to the basal ganglia and 

the cerebellum; both areas of the brain send information back to the cortex via 

the thalamus.       

 

Diseases of the basal ganglia.  Disturbances in the basal ganglia result in a 

myriad of movement disorders, both hypokinetic and hyperkinetic. Hyperkinetic 

disorders, or disorders of increased motor function, include Huntington’s disease 

(HD), dystonia, and hemiballismus.  HD is a genetic, neurodegenerative disease 

in which striatal MSNs degenerate as a result of a mutation in the Huntington 

protein.  Dystonia involves sustained muscle contractions that cause twisting and 

abnormal postures.  Hemiballismus (―half jumping‖) is a rare disorder usually 
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seen after strokes that result in unilateral lesions in the vicinity of the subthalamic 

nucleus.    
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Figure 1.  The striatum is divided into the dorsal striatum (caudate and putamen) 
shown in blue and the ventral striatum (nucleus accumbens) shown in orange.  
Although illustrated is a distinct border between dorsal and ventral striatum, no 
such delineation truly exits in vivo.  Abbreviations: CPu, caudate and putamen; 
Acb, accumbens.  Image from Voorn et al. 2004. 
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 Probably the best known basal ganglia disorder is Parkinson’s Disease 

(PD).  Parkinson’s Disease is a hypokinetic disorder, in which there is reduced 

motor function.  The pathology of PD involves the degeneration of the pigmented 

dopamine cells in the substantia nigra (black substance, referring to the heavily 

pigmented dopamine neurons). The degeneration of the substantia nigra (SN) 

dopamine neurons results in a decrease in the amount of striatal dopamine (see 

Figure 2), and the appearance of the cardinal symptoms of PD: bradykinesia, 

resting tremor, and rigidity.  Postural instability is also observed, but usually 

presents somewhat later in the course of the disease.   

 The gold standard of treatment for PD is administration of the dopamine 

precursor L-dihydroxyphenylalanine (levodopa, L-DOPA).   Direct dopamine 

agonists have increasingly been used in the treatment of PD.  Although levodopa 

is incredibly beneficial in treating the symptoms of PD, after 3-7 years patients 

develop on-off effects and abnormal involuntary movements (dyskinesias).  Later 

in the course of PD, the full symptomatic responsive to L-DOPA treatment is 

decreased.   
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Figure 2.  Dopaminergic innervation of the striatum (caudate and putamen).   
A.) Normal nigrostriatal innervation is schematized in red.   B.) In Parkinson’s 
disease the substantia nigra dopamine cells degenerate with a resultant loss of 
striatal dopamine levels illustrated by the hatched and thinned red lines).  Image 
from Dauer et al. 2003. 
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Striatal cell morphology.  Two major types of neurons are found in the striatum: 

medium-sized cells and large cells (interneurons).  The cells of medium size are 

the projection neurons of the striatum. These cells were subsequently termed the 

medium spiny neurons (MSNs) by Kemp and Powell (1971), which are richly 

invested with dendritic spines.  MSNs account for approximately 90-95% of all 

striatal neurons and utilize γ-aminobutyric acid (GABA) as their classical 

neurotransmitter (Gerfen 1992).  As the name suggests, MSNs have a medium-

sized soma (8-17 µm in diameter) possess dendrites that radially emanate and of 

which are densely studded with dendritic spines (see Figure 3), the sites of 

excitatory synapses.   

 The geometries of dendritic spines suggest that they are independent 

compartments that ―protect‖ dendrites from sharp, rapid rises in intracellular 

calcium (Segal M 1993, 1995).  Segal noted:  

―I should like to take this a step further, and propose a novel 
function for spines: by isolating the synapse from the dendrite, 
the spine protects the neurons from toxic insults associated with 
the raised [Ca2+], that follows synaptic activity.‖  
  

For example spines with large heads and thin necks sequester calcium in the 

spine head, whereas in spines with a low spine head: neck diameter ratio 

calcium may frequently invade the neck of the spine and the dendritic shaft 

(Sabatini et al. 2002; Noguchi et al. 2005).   

 As originally suggested by Vogt and Vogt (1920), there are several types 

of MSNs.  Studies of Golgi-impregnated MSNs have revealed subtle differences 

in the location and density of dendritic spines on MSNs, with five different classes 
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of MSNs defined (Chang et al. 1982). By far the most common of MSNs are the 

so-called type I class, which possess aspiny proximal dendrites and somata with 

distal dendrites that are densely studded with dendritic spines.  Type II MSNs 

differ in that their somata occasionally possess spines and their dendrites have 

significantly fewer spines compared to that of the type I class.  Type III MSNs 

have less branched dendrites that are relatively aspiny and smooth.  Type IV 

MSN somata are aspiny and have dendrites that branch repeatedly with a very 

sparse labeling of spines.   Finally type V MSNs are similar to type IV in having 

aspiny somata, but differ in that the secondary dendrites branch significantly less 

and are very long (Chang et al. 1982).  There have been no studies examining 

functional, genetic, or neurochemical differences between the five types of 

MSNs. 
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Figure 3.  Medium spiny neuron in the dorsolateral striatum of a sham rat 
reconstructed using the computer software program Neurolucida. A magnified 
segment of dendrite is shown in the inset.    
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 As noted above, most (80-84%) MSNs are type I (Kita and Kitai 1988). 

There are no data on physiological differences across the five morphologically 

defined MSNs.  We will discuss MSNs as a single class.   

  

Defining MSNs by non-morphological criteria.  MSNs can also be defined on the 

basis of efferent projections, peptide content, and receptor expression.  Two 

populations of MSNs can be defined on the basis of their projection targets: 

MSNs that project to the substantia nigra (SN) form the so-called ―direct‖ 

pathway (striatonigral), while MSNs that contribute to the ―indirect‖ pathway 

(striatopallidal) innervate the globus pallidus (GP).  The name ―indirect‖ pathway 

MSNs came about because these cells project to the GP and then the SN, unlike 

the direct pathway MSNs which project directly to the SN.  Although it is clear 

that direct and indirect pathway neurons are functionally distinct (Gerfen et al. 

1990; Gerfen 2000; Day et al. 2006), the strict segregation of direct and indirect 

pathway MSNs projecting to the SN and GP is an oversimplification: MSNs 

project to both SN and GP but with markedly different degrees of terminal 

arborization (Wu et al. 2000; Levesque and Parent 2005).  For example, the 

direct pathway MSNs emit small axon collaterals to the GP that do not take up 

retrograde tract tracers efficiently, with the axon terminals in the SN being much 

more perfuse.  These data help explain why retrograde tracer studies have found 

small percentages of MSNs that are retrogradely labeled from both the GP and 

SN.  These target-defined MSNs can also be distinguished by the dopamine 

receptors and peptide co-transmitters they express: direct pathway MSNs 
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express the D1 receptor and the peptide co-transmitter substance P, whereas 

indirect pathway MSNs express the D2 receptor and enkephalin (Gerfen et al. 

1990).  In situ hybridization techniques have provided evidence for the lack of 

colocalization of D1 and D2 receptors on striatal MSNs (Gerfen et al. 1990; Le 

Moine et al. 1990, 1991).  Evidence for co-localization of D1 and D2 receptor 

expression has also been shown using immunocytochemistry (Aizman et al. 

2000), although conclusive data for D2 receptor antibody specificity is lacking. 

Pharmacological treatment with D1 or D2 agents selectively change the 

abundance of peptide transmitters in direct and indirect MSNs, suggesting 

functional distinctions between these two types of cells (Pollack and Wooten 

1992; Engber et al. 1992; Granata et al. 1996; Steiner and Gerfen 1999).  

 More recent data examining the physiological responses from D1 versus 

D2 receptor BAC transgenic mice suggest the presence of differences in MSN 

somatodendritic morphology as well as excitability.  Direct pathway (striatonigral) 

MSNs possess more primary dendrites and as a result have greater total 

dendritic length as compared to indirect pathway (striatopallidal) MSNs.  The 

resting membrane potential of striatonigral MSNs is also more hyperpolarized 

than that of the striatopallidal MSNs, which can be attributed to the increase in 

total dendritic length of D1 expressing MSNs (Gertler et al. 2008).     

   

Interneurons.  In addition to MSNs, the striatum contains several different classes 

of interneurons.  Among these are cholinergic interneurons, calretinin-positive 

GABAergic interneurons, parvalbumin-positive GABAergic interneurons, and 
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GABAergic interneurons that express somatostatin, neuropeptide Y and nitric 

oxide synthase (Kawaguchi et al. 1995).   The large aspiny cholinergic 

interneurons account for ~1-3% of striatal cells.  These interneurons express D2 

receptors that regulate acetylcholine release (LeMoine et al. 1990), but also may 

express in very low abundance D1-like (D5) receptors that potentiate GABAA 

receptors, resulting in enhanced hyperpolarization and slower discharge rates of 

these cells (Yan and Surmeier 1997; Bennett and Wilson 1998).  Equal in 

number to the cholinergic interneurons are the somatostatin producing 

interneurons, and GABA-ergic interneurons.  The GABA-ergic interneurons 

consist of 1) fast-spiking parvalbumin-positive, 2) low threshold spiking nitric 

oxide synthase-expressing, and 3) calretinin-positive interneurons.  Interneurons 

clearly play important functions regulating MSNs.  However, we have limited our 

studies to evaluating the corticostriatal regulation of MSN dendritic spines and 

will not discuss further interneurons. 

 

Synaptic architecture of MSNs.  Despite the above mentioned differences in 

MSNs, these cells have a simple characteristic synaptic architecture of afferents 

onto MSN dendritic spines.  MSNs receive inputs from the cortex, the thalamus 

and the SN, all of which synapse primarily onto distal dendrites (Kemp and 

Powell 1971).  In contrast, inputs to MSNs from axon collaterals of other MSNs 

and striatal interneurons tend to occur onto the soma or proximal dendrite (See 

Figure 4).  Both the cortex and the thalamus provide potent sources of excitation 

(glutamate) onto MSN dendritic spines (Kemp and Powell 1971).   Dopamine 
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synapses from the SN occur most frequently onto the neck of dendritic spines 

(72.1%, Smith et al. 1994), which also receive a glutamatergic input on their head 

(Smith et al. 1994).  Both DA and ionotropic glutamate receptors are localized to 

MSN dendritic spines.   
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Figure 4.  Medium spiny neuron afferents.  Schematic illustrates the distribution 
of glutamatergic (from cortex and thalamus), dopaminergic (substantia nigra), 
and cholinergic (large aspiny interneurons) inputs to the MSN, as well as GABA-
ergic afferents from recurrent axon collaterals of other MSNs. Image from Mink 
1999. 
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 MSNs possess two membrane states, an ―up‖ state and a ―down‖ state 

(Wilson & Kawaguchi 1996).  During the up state, the membrane potential of 

MSNs is depolarized to -60 mV, which enables the generation of spikes.  In the 

down state, the potential is -85 mV, and inactivation of the transient potassium 

channel current occurs and MSNs fire a short burst of action potentials.  These 

up and down states are determined by potent convergent cortical inputs onto 

MSN dendrites.  Dopamine overall modulates transitions between states.  

Specifically, D1 receptors on direct MSNs increase depolarization by enhancing 

the opening of L-type calcium channels, which leads to the potentiation of 

excitatory effects (Hernandez-Lopez et al. 1997).  Dopamine D2 receptors on 

indirect pathway MSNs tonically inhibit the L-type calcium channel (Hernandez-

Lopez et al. 2000; Day et al. 2006). 

 

Regulation of medium spiny neurons.  The dopamine innervation of the striatum 

arises from neurons in the SN and contributes to a characteristic synaptic triad 

involving SN and cortical afferents and the dendrites of striatal MSNs.  The 

synaptic arrangement of these three elements typically involves a dopamine 

synapse with the neck of a MSN dendritic spine, and a corticostriatal terminal 

synapsing onto the spine head (Bouyer et al. 1984; Freund et al. 1984; Smith et 

al. 1994).  This synaptic arrangement suggests that dopamine is in a position to 

modulate the influence of corticostriatal glutamatergic axons on MSNs  

(see Figure 5).  Additionally there are data indicating that D2-like (but not D4) 

heteroreceptors on the terminals of corticostriatal axons tonically inhibit release  
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Figure 5.  Schematic illustrating the medium spiny neuron synaptic arrangement 
in the striatum.  Shown in red is an MSN dendritic spine receiving a cortical 
glutamatergic input onto the spine head (orange) and a substantia nigra 
dopaminergic input onto the spine neck (yellow). 
 



   

 

17 

of glutamate from these axons (Rubinstein et al. 2001; Bamford et al. 2004b; see 

Figure 6).  Even if dopamine axons do not synapse onto spines directly, they are 

always present within 1.0 µm of dendritic spines (Arbuthnott and Wickens 2007), 

offering a potent paracrine (volume transmission) mode of regulation.  Thus, in 

the dopamine-depleted striatum excess glutamatergic drive from corticostriatal 

terminals, coupled with other mechanisms intrinsic to the MSN that are normally 

regulated by dopamine (Day et al. 2006), contributes to hyperexcitable MSNs 

(Florio et al. 1993; Colwell and Levine 1996; Surmeier and Kitai 1997; Meshul et 

al. 1999; Cepeda et al. 2001; Canales et al. 2002).    

 The thalamus is the second major source of glutamatergic input to the 

striatum.  Thalamostriatal terminals are found not only on dendritic spines, but 

also on the dendritic shaft.  We will restrict this discussion to the effects of 

cortico-striatal interactions, although it is clear that other players contribute to 

MSN function and regulation.   

    

 

 

 

 

 

 

 

 



   

 

18 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
Figure 6.  Dopamine D2 receptor localization on the striatal triad.  D2 receptors 
are evident on the dendritic spine (post-synaptic), and on the corticostriatal and 
dopaminergic terminals (presynaptic).  Image modified from Bamford et al. 2004. 
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 The experiments in this dissertation set out to elucidate specifically 

whether cortical lesions that disrupt the excitatory corticostriatal innervation or 

pharmacological suppression of corticostriatal glutamate release attenuates MSN 

spine loss in the DA-denervated striatum in rats.  Our studies began with 

elucidating the precise striatal region receiving innervation from the M1 motor 

cortex using neuroanatomical tract tracing techniques.  
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CHAPTER II 

 

CORTICOSTRIATAL PROJECTION 

 

  In his drawings of the connections of the nervous system from Golgi-

stained material, Cajal observed that certain pyramidal cells (PCs) in the cortex 

possess an axon that extends into the striatum.  Anterograde degeneration 

methods such as the Marchi technique subsequently allowed other scientists to 

bolster the evidence for a cortico-striatal projection (Glees 1944; Carman et al 

1965; Webster 1965).  With later advances in neuroanatomical tract-tracing 

techniques, including the development of anterograde and retrograde tracers, 

more information on the corticostriatal projection became known (Wilson 1987; 

McGeorge and Faull 1987, 1989; Wright et al. 2001, and Reiner 2003).   

 The corticostriatal fibers from nearly the entire ipsilateral neocortex project 

in a highly organized manner onto all of the neostriatum.  In all species examined 

the corticostriatal projection exhibits a distinct topographical organization in which 

the medial cortices project onto the more medial striatum (caudate nucleus) and 

the more lateral cortices preferentially innervate the more lateral striatum 

(putamen).  In addition to the ipsilateral corticostriatal innervation, a modest 

striatal innervation arises from the contralateral cortex. 

 

Striatal afferents from M1 cortex.  ―A pyramidal cell is not a pyramidal cell is not a 

pyramidal cell‖ (Deutch AY; contrarian misquote of Gertrude Stein’s ―A rose is a 
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rose is a rose is a rose‖).  Corticostriatal PCs are classified into 3 distinct groups 

based upon morphology, physiology and hodology.  Intratelencephalic (IT-type), 

pyramidal tract (PT-type), and more recently the slow conducting ipsilateral (SCI) 

pyramidal neurons all contribute to the striatal innervation (Landry et al. 1984; 

Wilson 1987; Cowan and Wilson 1994; Ballion et al. 2008).  IT-type neurons 

possess small perikarya approximately 12-15 µm in diameter and are primarily 

found in layers III and upper V; these PCs project bilaterally within the 

telencephalon, including to the basal ganglia and contralateral cortical sites 

(Levasque et al. 1996; Levasque and Parent 1998; Wright et al. 1999, 2001; 

Reiner et al. 2003).  The PT-type neurons are larger, with perikarya of 15-20 µm 

in diameter, and are primarily located in deep layer V of the cortex.  The main 

axon of the PT-type PC traverses the striatum, where it emits axon collaterals as 

the axon courses to the ipsilateral pyramidal tract (Wilson 1987; Cowan and 

Wilson 1994; Levesque et al. 1996; Reiner et al. 2003).  The SCI neurons are a 

subset of PT-type cells that can be distinguished from the latter on the basis of 

the latency of their antidromic response (Ballion et al. 2008).  The IT and PT-type 

cells have very similar discharge rates and spike waveforms (Cowan and Wilson 

1994). 

 It is not known if IT and PT PCs target different types of striatal MSNs or 

even interneurons.  Despite not being able to differentiate which PCs target 

MSNs, it is important to note that IT PCs send a contralateral projection to the 

striatum that is less dense than the PT PC ipsilateral projection.  However to a 
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certain degree, one can distinguish PT from IT cells based upon their laminar 

organization as well as soma size.   

 In order to determine the location of the striatal territory that receives an 

input from the M1 motor cortex, the anterograde tract tracer biotinylated dextran 

amine (BDA) was deposited into the M1 region, and the distribution of labeled 

axons in the striatum was charted.  In addition, a retrograde tract tracing study 

was performed using the retrograde tracer FluoroGold (FG) deposited into the 

dorsolateral striatum.  These studies were conducted to ensure that we 

examined MSNs in the region of the striatum that receives inputs from the cortex 

that will be ablated in studies described in chapter IV. 

 

Methods 

Animals.  Adult male Sprague-Dawley rats (Harlan; Indianapolis, IN), were group 

housed on a 12:12 light dark schedule with food and water freely available.   All 

studies were performed in accordance with the National Institutes of Health 

Guide for Care and Use of Laboratory Animals and under the oversight of the 

Vanderbilt University Animal Care and Use Committee. 

 

BDA iotophoresis into the M1 motor cortex. Animals were anesthetized with 

isofluorane and secured in a stereotaxic frame.  A 10%  BDA solution (BDA; MW 

10,000; Invitrogen, Eugene, OR) prepared in 0.1M sodium phosphate was 

loaded into fiber-filled glass pipettes (25-30 μm outer diameter) and was 

iontophoretically deposited into two sites in the M1 cortex (AP: +0.7; ML: +2.0, 
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+3.6; DV: -2.0, -2.3) using + 5.0 μA pulsed (7 sec on/off) current for 10 min for 

each site.  BDA was deposited into two sites in the M1 motor cortex to produce a 

large enough deposit encompassing all or most of the M1 cortex that was 

lesioned in subsequent studies.  Animals survived for 7-10 days before being 

sacrificed.  The distribution of anterogradely-labeled axons in the striatum was 

then determined in four animals.     

 

FG Iontophoresis into the dorsolateral striatum.  A 4% FG solution prepared in 

0.1M cacodyllic acid, was loaded into fiber-filled glass pipettes (25-30 µm OD) 

and deposited into the dorsolateral striatum by iontophoresis delivered at a 

current of +5.0 µA for 10 minutes (7 seconds on and off) (AP:+1.0, ML:+3.8, DV:-

4.2).  The animals were allowed to recover for 7 days before being sacrificed.   

 

Immunohistochemistry.  Animals were transcardially perfused with 0.1M sodium 

phosphate buffer followed by ice cold 4% paraformaldehyde (pH 7.4) in 0.1 M 

phosphate buffer.  Brains were removed, postfixed in 4% paraformaldehyde 

overnight and then cryoprotected in 30% sucrose solution at 4ºC. The tissue was 

then sectioned using a sliding microtome at 42 microns and processed for 

conventional immunoperoxidase or immunofluorescence (Bubser et al. 2005).  

BDA was visualized by immunofluorescence using a streptavidin antibody 

conjugated to the fluorescent protein Cy3 (1:1000, Jackson IR Labs, West Grove, 

PA) or immunoperoxidase using a streptavidin antibody conjugated to 

horseradish peroxidase (1:1600, Jackson IR labs, West Grove, PA).   FG was 
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visualized by immunohistochemistry using a rabbit anti-FG antibody (1:3000; 

Chemicon,Temecula, CA).     

 

Imaging data analysis. Microscopic images captured through a 20x 1.4 plan-Apo 

objective were acquired using a digital camera coupled to a computer running the 

cell reconstruction software Neurolucida (Microbrightfield Inc, Williston, VT).  

BDA-positive fibers and FG-positive cells were charted.  

 

Results 

Anterograde tract tracing.    The anterograde tracer was deposited into two sites 

within the M1 motor cortex (see Figure 7) to accurately define the area ablated in 

the focal cortical lesion experiments described in chapter IV, with anterogradely-

labeled fibers seen in the dorsocentral and dorsolateral precommissural striatum 

(see Figure 7 and 8).  We found that the majority of the pyramidal cells in the 

motor cortex project to the ipsilateral dorsocentral/lateral striatum; a small but 

significant innervation of the contralateral striatum was also observed.  We 

observed labeling of fiber bundles (pencils of Wilson) as well as thick and thin 

caliber axons that emanated from these fiber bundles.  The cortical innervation of 

the M1 recipient zone in the dorsocentral/lateral striatum was most dense closest 

to the corpus callosum and became less dense as a function of distance from the 

white matter.  The extent of anterogradely labeled fibers also gradually 

decreased as one moves caudally from the injection site.  
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Interestingly, we observed a somewhat different pattern of corticostriatal 

innervation contralateral to the BDA deposit compared to the ipsilateral striatum.  

There was a less extensive zone of innervation in the contralateral striatum that 

was shifted laterally compared to the ipsilateral striatal innervation seen.  

Specifically we observed a lateral and a ventral shift in the distribution of 

corticostriatal fibers in the contralateral striatum (see Figure 7).  All analyses of 

MSNs was performed on the ipsilateral corticostriatal innervation. 
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Figure 7.   Corticostriatal innervation detected using immunoperoxidase staining 
of BDA.  A.) The anterograde tracer BDA was deposited into the M1 motor 
cortex; denoted by red arrows (4x magnification).  B.) Neurolucida charting 
illustrates the corticostriatal fiber distribution in dorsolateral striatum. 
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Figure 8.  Corticostriatal innervation detected using immunofluorescence 
staining of BDA.  A.) The anterograde tracer BDA was deposited into the M1 
motor cortex and corticostriatal fibers are seen in the dorsolateral striatum (4x 
magnification).  B.) A high-powered magnification of the dorsolateral striatum 
illustrating the anterogradely labeled cortical fibers (20x magnification).  White 
arrow denotes myelinated corticostriatal axon bundle. Scale bars indicates A) 
500 µm and B) 100 µm.  
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Retrograde tract tracing.    In addition to the anterograde tracing of BDA-positive 

fibers in the striatum, we also used retrograde tract tracing to define the cortical 

origin of the dorsocentral/lateral striatum that was anterogradely labeled from the 

M1. The retrograde tracer FG was deposited into the striatum and FG-positive 

cells were charted in the cortex (see Figure 9).  FG-positive cells were seen in 

the sensory-motor cortices both ipsilateral and contralateral to the deposit with 

the majority being ipsilateral to the deposit (see Figure 9).  We observed FG-

positive PCs in layers III and V ipsilateral to the iontophoretic deposit.  This was 

slightly different in terms of the contralateral sensorimotor cortical innervation, in 

which we mainly observed layer V PCs.  This is consistent with layers III and V 

containing IT-type PCs which possess bilateral projections to the dorsolateral 

striatum.   
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Figure 9.  FG-positive cells in the cortex. A.) Photomicrograph illustrating the FG 
deposit in the striatum.  Red arrow indicates the FG deposit site.  B.)  A 
Neurolucida charting illustrating the location of cortical cells as revealed using the 
retrograde tracer FG deposited into the dorsolateral striatum (black circle).   
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Discussion 

The retrograde tracer experiments confirmed the anterograde data we 

obtained indicating the anatomical organization of a bilateral motor cortex 

projection to the striatum; these data confirmed previous tract tracing studies 

(Wilson 1987; McGeorge and Faull 1987, 1989; Wright et al. 2001, and Reiner 

2003).  Early studies using retrograde tracer deposits into the dorsocentral/lateral 

striatum reported retrogradely-labeled cells in the M1 and the primary sensory 

cortex (McGeorge and Faull 1987, 1989), with which our data was in agreement.  

Our anterograde tracer data were also comparable to previous reports of 

anterograde labeling from the motor cortex and adjacent cortical territories 

(Hoffer and Alloway 2001; Ramanathan et al. 2002; Alloway et al. 2006).  These 

data indicated that one can reliably define the location in the striatum that 

receives inputs from a given zone of cortex, such as the M1 region, although the 

precise borders of the territory cannot be identified.   
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CHAPTER III 

 

DOPAMINE DEPLETION-INDUCED DENDRITIC SPINE LOSS 

 

 The classic MSN synaptic arrangement described in the previous chapter 

involves the two major afferents to the striatum: nigral dopamine and cortical 

glutamatergic neurons terminating on MSN dendritic spines (Bouyer et al. 1984; 

Freund et al. 1984; Smith et al. 1994).  This synaptic architecture suggests a role 

for dopaminergic modulation of cortical information flow onto MSN dendritic 

spines.  There are a wide variety of structural, biochemical, physiological, and 

behavioral consequences that result from loss of the dopaminergic innervation of 

MSNs (Florio et al. 1993; Ingham et al. 1993; Colwell and Levine 1996; Surmeier 

and Kitai 1997; Meshul et al. 1999; Cepeda et al. 2001; Canales et al. 2002).  We 

will focus on the structural changes that result from striatal DA denervation.   

 A loss of the modulatory DA influence at the spine neck results in calcium 

invasion into the dendritic shaft (Carter and Sabatini 2004).  The geometries of 

the spine head and neck determines whether an electrical signal will reside within 

the spine or invade into the dendritic shaft and affect neuronal physiology 

(Holmes et al. 1990; Koch and Zador 1993; Svoboda et al. 1996).  Dopamine can 

play a role in dictating both the rate and the duration that calcium accumulates 

within the spine.  The dopamine input onto the spine neck can lead to activation 

of dopamine receptors that are present on spines, as well as DA heteroreceptors 

located on corticostriatal terminals, which tonically inhibit glutamate release 
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(Rubinstein et al. 2001; Bamford et al. 2004b).  Thus, the loss of the 

dopaminergic innervation of MSNs may result in excessive glutamatergic drive 

and potentially a slow excitotoxic process leading to the eventual retraction of 

dendritic spines (Nitsch and Riesenberg 1995).  

  The first documentation of structural alterations in MSNs was from 

histological analysis of brain tissue from postmortem PD patients, in which the 

dendritic tree appeared truncated with a noticeable loss of spines (McNeill et al. 

1988).  Subsequent direct experimental confirmation using a rodent model of 

parkinsonism suggested that the spine loss observed in PD patients occurred 

secondary to dopamine denervation of the striatum (Ingham et al. 1989).  

Dendritic spine loss occurs all along the dendrite (Ingham et al. 1993).  The loss 

of dendritic spines is not immediate, but becomes apparent around 12 days after 

striatal DA denervation, and persists thereafter (Ingham et al. 1993).  The 

magnitude of the decrease in spine loss ranges from 20-30% when examining all 

MSNs in rodents (Ingham et al. 1993; Day et al. 2006), while almost 50% spine 

loss is observed when examining specific subpopulations of MSNs (striatopallidal 

cells) (Day et al. 2006). Dopamine depletion of the striatum not only causes a 

loss of spines, but differentially affects subsets of spine types, specifically 

resulting in a decrease in the percentage of thin spines and an increase in the 

percentage of stubby spines (Neely et al. 2007).     

 Dopamine denervation of the striatum results in a significant decrease in 

MSN dendritic spine density. What is the temporal evolution of MSN spine loss?  

The experiments discussed below examine this issue.   



   

 

33 

Methods 

Experimental design.  Striatal DA depletion was accomplished by means of  

6-OHDA injections into the SN and DA denervation was verified via TH 

immunohistochemistry as well as by western blot assessment of TH 

immunoreactivity in total homogenates of the dorsolateral striatum.  Dendritic 

spine density and complexity was evaluated in DA-depleted and sham-lesioned 

animals using Golgi impregnation. 

 

6-OHDA-induced striatal dopamine depletion in rats.  Sprague-Dawley male rats 

(Harlan, Indianapolis, IN) ~90 days of age were group housed with food and 

water ad libitum.  Animals were anesthetized with isofluorane.  The rats were 

then unilaterally injected with 6-OHDA (4 ug/uL free base in 0.02% ascorbate) 

into two sites in the SN (AP: -5.3, L: 1.0 and 2.7, DV: -8.3, relative to bregma), 

with the lateral site receiving 1.0 µL and the medial site receiving 1.5 µL.  Each 

injection was delivered over a 10 minute period using a peristaltic pump-mounted 

syringe coupled to a 30 g injection cannula via PE tubing.  A sham lesion 

involved dropping the syringe for 2 minutes into the SN in the control rats. A 

control group was included in all the time points examined.  Groups consisted of 

six to eight rats per group, and animals were allowed to recover for 5, 12, or 21 

days before being sacrificed. 

 

Golgi-Cox impregnation of striatal MSNs.   Rats were deeply anesthetized with 

isofluorane, sacrificed, and brains removed from the skull.  The tissue was then 
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sectioned at 150 µm on a vibratome and the sections were immersed in 1% 

osmium tetroxide in water (EM Sciences, Hatfield, PA) for 30 minutes, followed 

by incubation in 3.5% potassium dichromate in water for 12 hours at room 

temperature.  After completion of the impregnation step, sections were then 

―sandwiched‖ between two glass slides and immersed in 1% silver nitrate 

solution for 4 hours protected from light.  Sections were then washed several 

times in 0.1 M phosphate buffer (pH 7.4) and mounted on 0.5% gelatin coated 

microscope slides.  Sections were then dehydrated, cleared in xylene and 

coverslipped.    

 

Dendritic measurements.  Randomly selected Golgi-impregnated MSNs in the 

dorsolateral striatum were reconstructed using the Neurolucida system 

(Microbrightfield, Inc.), incorporating images obtained at 600x and digitally 

magnified to 1200.      

In a series of preliminary studies we examined Golgi-impregnated MSNs 

to determine dendritic spine density at different points along the dendritic tree in 

adult rats with an intact dopaminergic innervation.  Although the primary dendrite 

had a low density of spines, spine density increases sharply and was statistically 

stable at distances of 60-130 µm distal to the soma (see Figure 11).  Spine 

density was significantly lower at distances greater than 180 µm, although this 

may reflect difficulties in silver impregnation of the most distal dendrites.  In 

addition, we also performed a Sholl analysis comparing dendritic spine densities 

in sham-lesioned animals.  We observed that spine density did not correlate with 
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distance from the soma (see Figure 10).  We therefore subsequently assessed 

spine density on 10-20 µm long dendritic segments located at distances 60-130 

µm from the soma. 

 

Assessment of striatal DA depletion.  Sections through the striatum and SN were 

processed for tyrosine hydroxylase (TH) immunohistochemistry using a mouse 

ant-TH antibody (1:3000; ImmunoStar, Inc., Hudson, WI) following our previously 

described method (Bubser et al. 2005).  Only rats with < 3 TH- immunoreactive 

axon segments per high powered (40x) field of the dorsal striatum were included 

in the analyses; SN dopamine neurons were almost entirely lost. 

 

 Tissue preparation.  Samples of dorsolateral striatum were punch dissected from 

1.0 mm thick coronal slices with an extra-thin wall stainless steel 19 g punch  

(~ 0.89 mm OD) for subsequent immunoblot analysis.  The small amount of 

tissue prevented us from preparing synaptosomal preparations without pooling 

samples, and we therefore performed analyses on whole tissue homogenates.  

Elapsed time between isofluorane anesthetization of the animal and flash 

freezing of the dissected samples was <3 minutes. Striatal samples were 

homogenized in 300 µL 2% SDS with 10 ug/mL leupeptin and 1 ug/mL pepstatin.   

Protein concentrations were assessed by the Lowry method (Lowry et al. 1951).   

 

Western blot assessment of protein levels.  Protein samples from total 

homogenates (20–40 µg protein per lane) were loaded onto SDS-PAGE gels, 
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followed by transferred onto nitrocellulose membranes, stained with Ponceau-S 

(Sigma, St. Louis, MO), and then digitally scanned. After blocking, membranes 

were probed with mouse anti-tyrosine hydroxylase (Immunostar) and mouse anti-

GAPDH (for use as a loading control) (Chemicon).   Membranes were then 

washed and incubated for 1 hour at room temperature with horseradish 

peroxidase-conjugated secondary antibodies. Horseradish peroxidase-

conjugated secondary antibodies were detected with enhanced 

chemiluminescence (Brown et al. 2005).  Specific immunoblot signals were 

quantified from films exposed in the linear range. The protein band densities in 

each lane were normalized to GAPDH.   

 

Data analysis.   All data were expressed on a per cell basis, after values from 5-9 

cells were averaged.  A power analysis revealed that in order to achieve 83% 

power at a Type I error rate of 0.05, the reconstruction of 6 cells per animal was 

required to detect changes in dendritic spine density.   

An unpaired t-test was performed to detect differences in the 6-OHDA 

lesioned group compared to the respective time point control group.  The 

nonparametric Kruskal Wallis ANOVA was used to assess statistical differences 

among spine types. 
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Figure 10.  Sholl analysis of spine density on dendrites as a function of distance 
from the soma.  Full reconstructions of MSNs were subjected to a Sholl analysis 
using Neurolucida explorer.   
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Figure 11. Medium spiny neuron dendritic spine density as a function of distance 
from soma in the adult rat.  In the proximal dendrites spines are relatively sparse.  
At a distance of 60-120 µm there was no significant difference in spine densities 
from the previous 10 µm segment of dendrite.  Spine densities at distances 
greater than 180 µm are significant lower because one cannot reliably obtain 
many longer dendrites due to cutting sections at 150 µm.   
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Results 

Extent of striatal dopamine depletion.  To evaluate the extent of the 6-OHDA SN 

lesions we assessed the amount of the DA biosynthetic enzyme, TH, in both the 

striatum and the SN by immunohistochemistry.  SN lesions produced a near 

complete elimination of the DA innervation of the striatum.  Figure 12 illustrates 

the amount of striatal (panel A) and SN (panel B) TH-immunoreactivity ipsilateral 

to the SN lesion and in the control contralateral hemisphere.  We also assessed 

TH-immunoreactivity in the dorsolateral striatum of control and 6-OHDA lesioned 

animals by western blot.  Tyrosine hydroxylase levels were found to be depleted 

by 91% in animals lesioned with 6-OHDA as compared to control animals and is 

shown in Figure 13. 

 

Dendritic spine changes.  Representative Golgi-impregnated MSNs are depicted 

in the photomicrographs shown in Figure 14.  Visually one can appreciate fewer 

spines in DA-denervated striatum relative to the control MSN dendrite.   

 MSN dendritic spine density was not significantly changed 5 days post-

operatively (Figure 15), but at 12 days after the lesion a significant but modest 

8% decrease in spine density was seen (t63=2.020, p=0.048).   We found the 

spine loss to be progressive and at 21 days post-lesion observed a 16-18% 

decrease in MSN dendritic spine density compared to the sham-lesioned  

(t215=8.445, p<0.0001).  DA denervation-induced spine loss persists and is 

progressive, as illustrated by the 28% decrease in MSN dendritic spine density 

one year following 6-OHDA lesion of the SN (see Figure 16). 
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Figure 12.  Tyrosine hydroxylase-like immunoreactivity in the striatum (CP; panel 
A) and substantia nigra (SN; panel B) of an animal with a unilateral 6-OHDA 
lesion of the right substantia nigra. Scale bars, 100 μm.  
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Figure 13.  Tyrosine hydroxylase immunoreactivity in the dorsolateral striatum of 
animals with a unilateral 6-OHDA lesion of substantia nigra or sham lesions 
(vehicle).  A representative immunoblot is illustrated above the quantification.  
The first band is from animals with a sham lesion and the second lane being from 
animals receiving 6-OHDA SN lesion. Groups consisted on 4-6 animals.  An un-
paired t-test was used to compare the lesioned group to its respective age-
matched control.    
* p < 0.0001 
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Figure 14.  Golgi impregnated MSNs from the intact (left panel, v) and dopamine 
depleted (right panel, 6-OHDA) striata.  One can readily appreciate the difference 
in spine number on MSNs between lesion and intact animals.  The scale bar is 
10 µm. 
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Figure 15.  Striatal DA depletion results in decreased MSN dendritic spine 
density.  Lesioned animals were compared to age-matched control animals 
(vehicle).  Significant decreases in spine density were observed at 12 and 21 
days post-lesion.  Groups consisted on 6-8 animals.  An unpaired t-test was used 
to compare the lesioned group to its respective age-matched control.   
 * p < 0.05 (corrected for multiple comparisons) 
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Figure 16. Dendritic spine loss is progressive and persists for at least a year.  3 
month old animals received 6-OHDA lesions of the substantia nigra and spine 
density assessed 12 months later.  Note that spine density is significantly lower 
than that depicted in Figure 11. Groups consisted on 6-8 animals.  An un-paired 
t-test was used to compare the lesioned group to the age-matched control.   
 * p < 0.001 
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 Despite a significant decrease in dendritic spine density seen at 12 and 21 

d after the 6-OHDA lesions, there was no significant change in the length of the 

longest MSN dendrite (see Figure 17). 
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Figure 17.  No significant difference observed in the longest dendrite measured 
at 5, 12 and 21 days post 6-OHDA SN lesions as compared to the control 
counterparts.  Groups consisted on 6-8 animals.   
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Changes in different morphological types of spines.  We observed that ~65% of 

MSN dendritic spines in adult control animals were of the thin type, followed by 

stubby spines accounting for 30%, and <5% of MSN spines being mushroom-

shaped.  Filopodia, defined as spine-like processes >4.5 μm in length, were 

almost never seen in the adult striatum. MSN dendritic spine types are illustrated 

in Figure 18. 

 We uncovered a small but significant shift in the proportions of the three 

mature spine types present on MSNs in the dopamine-denervated striatum, with 

significantly fewer thin spines (59%; H = 13.00, p = .0046) and a somewhat 

greater percentage of stubby spines (38%; H = 8.45, p = .0376).  The proportion 

of mushroom-shaped spines did not differ significantly in animals with striatal 

dopamine denervation relative to sham-lesioned control animals (see Figure 19).   
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 Figure 18.  Schematic illustrating the morphologies of dendritic spine types.  
Filopodia are immature spines that are > 4 µm in length.  Based on their 
shapes, mature dendritic spines can be categorized as thin-, stubby-, or 
mushroom-shaped.  Image from Hering et al. 2001. 
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Figure 19.  Changes in the proportions of different classes of dendritic spines in 
animals with cortical lesions and striatal dopamine depletion. Striatal dopamine 
depletion resulted in a loss of thin spines and an increase in stubby spines.  Note 
that the data are plotted as a percent of total spines, and therefore does not 
illustrate the changes in spine density. 
 
— — — — — —  
Groups consisted on 6-8 animals.  
* p < 0.01 for dopamine-depleted relative to thin spines in control subjects 
* p < 0.01 for dopamine-depleted relative to stubby spines in control subjects 
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Discussion 

Our results confirm and extend previous findings that MSN dendritic spine 

loss has a relatively slow onset after striatal DA depletion.  However, once 

established, the spine changes are progressive and the spine loss is stable for at 

least up to a year.   

 Several lines of evidence indicate that the loss of striatal DA is the cause 

of MSN dendritic spine loss (Ingham et al. 1989, 1993; Meredith et al. 1995; Day 

et al. 2006; Neely et al. 2007).  These include the response to 6-OHDA lesions of 

the SN (Ingham et al. 1989, 1993; Deutch 2006) and the observation that chronic 

D2 receptor antagonists also result in MSN spine loss (Kelley et al. 1997).  

Moreover reserpine depletion of catecholamine stores decreases the density of 

dendritic spines (Day et al. 2006).  Medium spiny neuron dendritic spine loss 

occurs in the MPTP mouse models of parkinsonism and in D2, but not D1 

receptor null mice (Villalba et al. 2009; Deutch 2007).   Because the extent of 

striatal DA depletion in the MPTP model is considerably less than the near total 

loss seen in the 6-OHDA model, it appears that complete disruption of the striatal 

DA innervation is not required for spine loss. However, it is not clear what degree 

of DA denervation is required before spine loss is seen.  Studies evaluating the 

effects of DA denervation on specific subpopulations of MSNs (using transgenic 

GFP-expressing DA receptor mice) have shown that MSN spine loss is restricted 

to striatopallidal (D2-expressing) cells, but not striatonigral (D1-expressing) cells 

(Day et al. 2006).  However, a recent study in non-human primates found that 

MPTP treatment resulted in loss of spines on direct pathway MSNs as well as 
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presumptive indirect pathway MSNs (Villalba et al. 2009).  It is not clear if the 

observation of spine loss occurring on both subsets of MSNs is because of the 

extended survival of MPTP treated primates (for up to 18 months), or simply 

reflects a species difference.  Interestingly, in a postmortem study of MSNs in 

idiopathic PD, we found that spine loss was much greater than seen in the 

animal models of parkinsonism (Zaja-Milatovic et al. 2005). Once again, it is not 

clear whether the spine loss occurring on both populations of MSNs is due to a 

species difference or because these patients survived for an extended period of 

time.  Nonetheless, the extent of spine loss in idiopathic PD is so large that it is 

reasonable to speculate that dendritic spine loss is not restricted to the indirect 

pathway MSNs (Zaja-Milatovic et al. 2005).  

 MSN spine loss was seen at 12 days or longer after DA depletion.  We 

found in animals that survived for 12 months after 6-OHDA (i.e., the animals 

were 15 months old at the time of sacrifice), that sham-lesioned animals suffered 

a significant loss of spines relative to control animals that were 3 months old.  

However, the degree of spine loss seen in these older animals referenced to 

control is the same as that seen in younger animals, suggesting that MSN 

dendritic spine loss is progressive.  Because the spine loss is progressive, 

following spine loss in animal models of parkinsonism may be useful as a metric 

for studying progression in PD.   

   

Dendritic spines.  Dendritic spines are remarkably plastic structures, changing in 

number and shape over time scales ranging from seconds to years (Crick 1982; 
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McKinney 2005; Alvarez et al. 2007; Harms and Dunaevsky 2007; Chen et al. 

2009).  Long-lasting changes in dendritic spine number have been documented 

in a number of neuropsychiatric disorders (Ferrante et al. 1991; Kaufmann and 

Moser 2000; Hill et al. 2006; Kalivas 2009; Tackenberg et al. 2009).  Cajal first 

thought that dendritic spines existed to increase the surface area of neurons.   

Later dendritic spines were hypothesized to serve as a defense mechanism and 

likened to the spines found on plants and animals, which play a role in protection.  

Spines are the sites of synaptic input and offer isolated compartments for the 

sharp rises in calcium that drive specific signaling cascades that would otherwise 

be toxic to the cell (Segal 1993, 1995).   

 Postmortem PD studies have reported that DA depletion not only causes a 

loss of MSN dendritic spines, but also decreases the length of the dendritic arbor 

of MSNs (Stephens et al. 2005; Zaja-Milatovic et al. 2005).  We did not observe a 

significant decrease in the length of the longest dendrite examined three weeks 

following 6-OHDA lesions.  However Solis and colleagues (2007) reported a 

decrease in dendritic length at 4 weeks post-operatively in Wistar rats.   Solis et 

al. (2007) also administered 8 mg/kg methamphetamine two weeks prior to 

sacrifice in order to assess lesion extent by rotational behavior.  Because 

methamphetamine has been reported to cause a neurotoxic loss of nigrostriatal 

DA terminals, it is not clear if the reported decrease in dendritic length is due to 

methamphetamine treatment or DA depletion.  Future studies will be required to 

determine if and when the dendritic length changes in rodent models of 

parkinsonism.  
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 We did not evaluate the structural differences in striatopallidal versus 

striatonigral MSNs.  Future experiments examining specific populations of MSNs 

in response to DA deafferentation will be critical. 

   

Post-synaptic glutamatergic signaling.  Although the primary cause of dendritic 

remodeling is the loss of DA signaling through the D2 receptor (Day et al. 2006; 

Deutch et al. 2007), it appears likely that changes in cortically-derived glutamate 

contributes to the changes in MSN spines.  Dopamine replacement therapy (L-

DOPA) in PD patients or in animals with striatal dopamine depletion does not 

restore spine loss (Stephens et al. 2005; Zaja-Milatovic et al. 2005; Deutch et al. 

2007), suggesting that after a period of time the dopamine receptor is uncoupled 

from its intracellular effectors.  This led us to hypothesize that directly 

manipulating corticostriatal glutamate release might reverse the MSN spine loss 

seen in the dopamine-denervated striatum.  

 Glutamatergic mechanisms are critically involved in determining both 

dendritic spine development and maintenance (Korkortian and Segal 2000; 

Passafaro et al. 2003; Lippman and Dunaevsky 2005; McKinney et al. 2005; 

Bloodgood and Sabatini 2007).  For example, glutamatergic signaling through 

NMDA receptors increases intra-spinous calcium levels, which determines spine 

morphology (Segal 2003).  These considerations suggest that corticostriatal 

neurons play a central role in determining the structure of MSN dendrites.   

The increase in glutamatergic drive onto MSNs in the DA-denervated striatum 

results in changes in expression of glutamate receptors that are localized to the 
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MSN spine, as well as scaffolding proteins associated with the receptors 

(Weihmuller et al. 1992; Fitzgerald et al. 1995; Dunah et al. 2000; Brown et al. 

2005; Hallett et al. 2005; Bayer et al. 2006).   For example a decrease in NMDA 

receptor NR1 and NR2B subunits occurs in response to striatal DA denervation 

(Dunah et al. 2000; Brown et al. 2005).  The decrease in NR2B is accompanied 

by an increase in tyrosine-phosphorylated NR2B, apparently as a compensatory 

mechanism to inhibit the binding of CAMKII and allow for a slow dissociation of 

preformed CAMKII-NR2B complexes (Chase and Oh 2000). Striatal DA depletion 

is also accompanied by changes in phosphorylation of glutamate receptors, 

including phospho-Ser831-GluR1 suggesting changes in trafficking (Brown et al. 

2005).   

  

Clinical relevance.  Several studies have reported that relatively late in the 

course of PD, a decreased responsiveness of motor symptoms to DA 

replacement therapy occurs (Marsden and Parkes 1977; Rinne 1981; Clissold et 

al. 2006).  In newly-diagnosed patients with PD, including those who have been 

treated with levodopa or DA agonists, there is an increase in striatal D2 binding 

potential (Rinne 1981; Kaasinen et al. 2000), consistent with the extensive 

(~70%) loss of striatal DA before motor symptoms appear (Hornykiewics and 

Kish 1987).  However, in advanced PD somewhat lower D2 binding densities are 

seen than in newly diagnosed patients.  This may be due to levodopa treatment 

or may be secondary to the loss of dendritic spines, on which DA receptors 

reside.  Dendritic spine loss once established by striatal DA denervation, does 
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not respond to DA replacement therapy (Stephens et al. 2005; Zaja-Milatovic et 

al. 2005), suggesting that to effectively treat late stage PD some intervention in 

addition to DA replacement is needed. 
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CHAPTER IV 

 

DECORTICATION ATTENUATES DENDRITIC SPINE LOSS 

 

Introduction 

 A recent in vitro study that examined the role of corticostriatal projections 

in dendritic remodeling in the dopamine-denervated striatum reported that 

complete decortication prevents the development of spine loss on striatal MSNs 

in organotypic slice co-cultures (Neely et al. 2007).   However, the ability of 

decortication to reverse spine loss that has already been established, which may 

be more relevant to treatment of PD, has not been examined in these cultures 

nor in vivo.   We therefore determined if decortication can reverse or prevent 

MSN dendritic spine loss in vivo.    

 

Methods 

Animals.  Adult male Sprague-Dawley rats (Harlan; Indianapolis, IN), were group 

housed on a 12:12 light dark schedule with food and water freely available.   All 

studies were performed in accordance with the National Institutes of Health 

Guide for Care and Use of Laboratory Animals and under the oversight of the 

Vanderbilt University Animal Care and Use Committee. 

 

Experimental design.  We first determined if focal lesions of the motor cortex in 

vivo could reverse the spine loss that occurred in response to striatal DA 
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denervation.  In the next experiment we determined if cortical lesions could 

prevent the development of MSN spine loss.   

 In the reversal experiment 6-OHDA lesions of nigrostriatal DA neurons 

were made, and then four weeks later, when spine loss was present, the motor 

cortex was lesioned with ibotenic acid (IA).  Animals survived for four weeks after 

the cortical lesions before being sacrificed. 

 In the prevention experiment striatal DA depletion was also accomplished 

by means of 6-OHDA lesions, but during the same surgery IA was used to lesion 

the motor cortex. Animals were sacrificed four weeks later.   

 

Surgical manipulations.   Animals were anesthetized with isofluorane and lesions 

of the motor cortex were made by injecting 1.0 μL of 45 nM ibotenic acid (Tocris; 

Ellisville, MO) into the M1 cortex (AP: +0.7; ML: +2.0, +3.6; DV: -2.0, -2.3) at a 

rate of 200 nL/min.  Control (sham) cortical lesions involved incision of the skin 

and placement of a burr hole.   

  Striatal DA denervation in the same animals was accomplished by 

injecting 6-OHDA HBr (4.0 μg/μL free base; Sigma-Aldrich; St. Louis, MO) into 

two sites in the SN (AP: -5.4, ML: +1.0, +2.4, DV: -8.4) in a volume of 1.5 μL 

(lateral injection site) and 1.0 µl (medial injection site) at a rate of 100 nl/min. 

 

Golgi impregnation.  Animals were transcardially perfused with 0.1 M phosphate 

buffer followed by an ice cold solution of 2.5% glutaraldehyde (EM Sciences; 

Hatfield, PA) and 2% paraformaldehyde (VWR; West Chester, PA) in 0.1M 
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phosphate buffer (pH 7.45).  Brains were removed and the forebrains postfixed 

for 3 hours. Coronal sections (150 μm) were cut on a vibrating microtome.  The 

sections were then incubated in 1% osmium tetroxide (EM Sciences) for 40 min, 

after which sections were transferred to 3.5% potassium dichromate (Sigma-

Aldrich) for 16 hours in a humid chamber.  The sections were then ―sandwiched‖ 

between glass slides and incubated in the dark in 1% silver nitrate (Sigma-

Aldrich) for 4-6 hours.  Sections were washed in water, mounted on 0.5% gelatin-

coated slides, dehydrated, cleared, and coverslipped with DPX (Sigma-Aldrich).  

 

Dendritic analyses of Golgi-labeled MSNs.  Microscopic images were acquired by 

a digital camera coupled to a computer running the cell reconstruction software 

Neurolucida (Microbrightfield Inc, Williston, VT), using a 60x 1.4 plan Apo 

objective with a 10x ocular.  The image was digitally magnified by a factor of 2 to 

yield a final magnification of 1200x. 

 Data from animals with cortical lesions that impinged on the corpus 

callosum were excluded from subsequent analyses, as were data from animals in 

which the lesions did not involve layer V, where the majority of cells that 

innervate the striatum are located.  

 Golgi-impregnated MSNs in dorsolateral striatum were reconstructed by a 

person unaware of the treatment conditions of the animals.  Neurons were 

randomly selected from the M1 recipient zone of dorsolateral striatum, provided 

that the cells had a soma diameter of 12-17 μm and through a 10x objective 

appeared to be well impregnated.  Dendritic spine density was measured on 
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dendritic segments 10-20 μm in length that were located 60-120 μm distal to the 

MSN soma.   

 

Immunohistochemistry.  Animals were transcardially perfused with 4% 

paraformaldehyde in 0.1 M phosphate buffer (pH 7.4). Forebrain and midbrain 

blocks of tissue were postfixed overnight and then cryoprotected in 30% sucrose 

for 2-4 days.  Coronal sections (42 μm) were cut on a freezing microtome.   

 To assess the extent of cortical IA or SN 6-OHDA lesions, free-floating 

brain sections were processed as described previously (see Bubser et al. 2005), 

using mouse anti-NeuN (1:1000; Chemicon, Temecula, CA) to reveal the borders 

of the cortical lesions, and mouse anti-TH (1:3000; ImmunoStar, Inc.) to stain 

dopaminergic neurons.   

 

FluoroJade C staining.  In order to determine if the cortical lesions resulted in any 

overt transsynaptic cell loss in the striatum, animals received IA injections of the 

motor cortex, and were sacrificed at various times between 2 and 28 days after 

the cortical lesions. The brains were processed to stain degenerating neurons 

using Fluorojade C (FJC; Schmued et al. 2005).  Animals were perfused with 4% 

paraformaldehyde and sections cut through the forebrain, mounted on 0.5% 

gelatin-coated slides, and dried overnight.  Slides were then incubated in a basic 

ethanol solution (1% NaOH in 80% ethanol), dehydrated for two minutes in 70% 

ethanol, and then incubated in 0.06% potassium permanganate for 10 minutes.  

Finally slides were incubated in 0.001% FJC (Chemicon) for 10 minutes, rinsed 
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three times in water, dried overnight, and dehydrated and cleared in xylene 

before being coverslipped with DPX. 

 

Anterograde tract tracing.  Collateral sprouting from remaining cortical cells could 

mask an effect of the cortical lesion on MSN spine loss in vivo. In order to 

determine if there is significant sprouting of cortical cells in response to M1 cortex 

lesions, we subjected rats to M1 lesions and four weeks later iontophoretically 

deposited the anterograde tracer BDA into the non-lesioned (contralateral) M1 

cortex.  Methods are as previously described in chapter II. 

 

Data analysis.  Dendritic spine densities were determined on branches of four 

primary dendrites from each reconstructed neuron, with at least five MSNs 

assessed in each animal (an average of 7.7 cells analyzed for each group in the 

prevention study, and an average of 10.0 MSNs for each group analyzed in the 

reversal experiment). We analyzed MSNs located in the striatal zone that 

receives inputs from the lesioned motor cortex, as well in a second region 

located ventromedial to the M1-innervated sector that does not receive significant 

M1 inputs (see Figure 20).  

 Average spine densities for each cell were collapsed to yield a mean MSN 

spine density.  In turn, these mean ―per cell‖ spine densities were collapsed to 

generate a mean MSN value for each animal.  This latter ―per animal‖ MSN spine 

density value was used for subsequent statistical analyses by means of two-way 

ANOVAs and subsequent Bonferroni t-tests if warranted by significant main 
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effects or a significant interaction.  The degree of MSN spine loss in the non-M1-

recipient zone of the striatum was analyzed relative to the 6-OHDA plus 

decortication group separately. 
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Figure 20.  MSNs were analyzed in the striatal region that receives afferents 
from the M1 cortex (black).  In addition we also analyzed MSNs in a region that 
does not receive a significant input from the M1 cortex as an internal control site 
(hatched).  CC, corpus callosum, STR, striatum. Scale bar, 500 μm. 
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Results 

Characterization of M1 motor cortex lesions.  Ibotenic acid injections lesioned the 

M1 motor cortex (see Figure 18); the lesions impinged medially on the M2 area, 

with some degree of lateral invasion into the forelimb region of the primary 

somatosensory cortex (see Figure 21).  Although the lesions sometimes involved 

areas adjacent to M1, for simplicity sake we refer to the lesioned region as the 

M1 area. The IA injections did not result in cavitation, and NeuN staining 

revealed intact underlying tissue (see Figure 21).  In most cases the lesion 

involved layers I-VI, although loss of cells in layer VI was variable. 

 

FluoroJade C staining.  We also determined if IA lesions of the motor cortex led 

to any overt degeneration of striatal MSNs, using FJC.  Unilateral IA lesions of 

the M1 cortex were placed and animals sacrificed 3, 7, 14, or 21 days later.  We 

observed that ibotenic acid injections caused extensive neuronal loss in the 

vicinity of the IA injection, as reflected by a dense aggregation of cortical FJC-

positive cells seen at two and four days postoperatively (see Figure 22).  FJC 

accumulation in the myelinated bundles of corticostriatal axons was seen 

ipsilateral to the lesion, but very few degenerating axons were seen in the 

contralateral striatum (see Figure 22).  At no time point up to 28 days after the 

ibotenic acid injection did we observe any FJC-positive cells in the striatum of 

animals with M1 lesions, consistent with a lack of transsynaptic degeneration of 

striatal neurons.    
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Figure 21.  Characterization of focal cortical lesions.  (A) A representative 150 
μm coronal section illustrating the cortical lesion, which in this case spanned 
layers I-V.  (B) The absence of NeuN-positive cells illustrates the loss of cortical 
neurons in the lesioned area and shows that the underlying tissue is intact. 
Reconstructions of the largest (black) and smallest (gray) cortical lesions as 
assessed by the loss of NeuN-like immunoreactive neurons is shown in panel C.  
Numbers refer to distance from the bregma skull suture (Paxinos and Watson 
2007).  Scale bars in panel A; 200 μm, panel B; 100 μm, and panel C; 500 µm. 
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Figure 22.  No Fluorojade C-positive (degenerating) MSNs were seen in the 
striatum after cortical ibotenic acid lesion.  Arrow denotes FJC-positive fiber 
bundle.  Although we did not see any degenerating (FJC-positive) MSNs, we did 
observe FJC staining of fascicles of corticostriatal axons in the striatum, 
consistent with degeneration of the corticostriatal innervation.  This staining was 
observed predominantly on the side of the cortical lesion (panel A), with few 
stained fascicles seen contralaterally (panel B), and was most intense in animals 
sacrificed four days after IA injections. Groups consisted of 3-4 animals.  Scale 
bar, 50 μm. 
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Cortical lesions reverse dopamine depletion-induced spine loss.  In this 

experiment we assessed if decortication could reverse MSN spine loss that was 

caused by 6-OHDA lesions performed four weeks earlier.  Cortical lesions 

significantly attenuated but did not totally reverse established MSN spine loss in 

the M1 recipient zone (omnibus ANOVA F3,21 = 7.98, p = .001), with a significant 

main effect of dopamine depletion (F1,21 = 20.2, p = .0002) but no significant 

interaction uncovered.  Post-hoc analyses revealed that striatal dopamine 

depletion resulted in a significant decrease in spine density (17.9%) compared to 

that seen in sham-lesioned control animals (p =.007); cortical lesions alone did 

not change MSN spine density relative to control (sham-lesioned) animals 

(Figure 23). However, M1 lesions placed four weeks after striatal dopamine 

denervation significantly attenuated the degree of MSN spine loss compared to 

the 6-OHDA-lesioned group alone (p = .008), with a 9.4% decrease in spine 

density relative to  sham-lesioned rats.  Thus, animals with striatal dopamine 

depletion suffered a loss of dendritic spines that was almost 50% less than that 

seen in animals without cortical lesions. The cortical lesions significantly 

attenuated MSN spine loss only in the M1-recipient zone of the striatum, and not 

in the ventromedially adjacent striatal sector that does not receive significant M1 

inputs (see Figure 23).  Representative dendritic segments are illustrated in the 

photomicrographs shown in Figure 24. 

 

Effects of concurrent cortical and 6-OHDA lesions on MSN spine density.   The 

omnibus ANOVA for the analysis of the effects of cortical lesions performed at 
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the same time as 6-OHDA lesions was significant (F3,27 = 9.37, p = .0002), with a 

significant main effect of dopamine depletion (F1,27 = 23.88, p < .0001) but no 

significant cortical lesion x 6-OHDA lesion interaction.  Post-hoc tests revealed 

that striatal dopamine depletion in animals with an intact cortex significantly 

decreased MSN spine density in the M1-recipient zone of animals relative to 

control rats (18.6%, p = .002).  In contrast, spine loss in animals with both cortical 

and 6-OHDA lesions averaged 10.3%.  Although spine loss was attenuated in the 

combined cortical + 6-OHDA lesions relative to the 6-OHDA-lesioned group 

alone, this effect did not reach statistical significance (p = .06) (see Figure 25).   

In the non-M1 recipient zone of the striatum there was no attenuation of spine 

loss (see Figure 25).   
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Figure 23.  Cortical lesions significantly reverse dopamine depletion-induced 
MSN spine loss.  Cortical lesions attenuated spine loss only in the M1 recipient 
zone (hatched bar) and not an adjacent territory (stippled bar).  Numbers inside 
each bar indicate the number of animals/group. A two-way ANOVA was used to 
assess differences amongst the groups. 
— — — — — — — —  
* p < 0.01 relative to control animals 
# p < 0.001 relative to 6-OHDA-lesioned animals with intact cortex  
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Figure 24.  Photomicrographs of representative Golgi-impregnated MSN 
dendritic segments are shown for A) control; B) 6-OHDA-lesioned; C) cortically-
lesioned; and D) 6-OHDA- plus cortically-lesioned animals.  Scale bar, 4 μm. 
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Figure 25.  Cortical lesions performed at the same time as 6-OHDA lesions of 
nigrostriatal dopamine neurons attenuate MSN spine loss.  Cortical lesions 
attenuated dopamine depletion-induced spine loss only in the M1 recipient zone 
(hatched bar) and not in an adjacent region of the striatum that does not receive 
inputs from the motor cortex (stippled bar). Numbers inside each bar indicate the 
number of animals/group. A two-way ANOVA was used to assess differences 
amongst the groups. 
 
— — — — — — — —  
* p < 0.01 relative to control animals 
# p = 0.06 relative to 6-OHDA-lesioned animals with intact cortex 
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Compensatory corticostriatal sprouting.    BDA deposited into the M1 cortex 

revealed corticostriatal fibers in the dorsolateral striatum, predominantly 

ipsilateral to the deposit in control animals.   However in addition we observed a 

small but significant innervation of the contralateral striatum (see Figure 26).  

Animals receiving M1 cortical lesions revealed a similar ipsilateral striatal 

innervation, but there appeared to be an expansion of the contralateral 

corticostriatal projection (Figure 26). 
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Figure 26.  Corticostriatal sprouting following M1 focal lesions.  BDA was 

deposited into the M1 cortex (unlesioned contralateral cortex) and BDA-positive 

fibers were charted in the striatum of A.) sham-lesioned animal and B.) an animal 

who received a focal cortical lesion (illustrated in black). 
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Discussion 

 Lesions of the motor cortex reversed the loss of MSN spines that occur 

after striatal dopamine denervation.  This observation provides the first evidence 

that MSN spine loss, once established, can be reversed.   

 

Effect of cortical lesions on MSN spines in the intact striatum.  We did not 

observe any effect of the cortical lesions on MSN spine density in animals with 

an intact striatal dopamine innervation.  In contrast, some previous studies have 

reported that cortical lesions decrease MSN spine density (Kemp and Powell 

1971; Cheng et al. 1997).  However, these earlier studies examined the effects of 

cortical aspiration lesions, which can easily damage the underlying striatal tissue, 

either by direct extension or secondary to edema.  Moreover, Cheng and 

colleagues (1997) noted that the decrease in MSN spine density was transient, 

being maximal at 10 days postoperatively and returning to baseline levels by 20 

days after the lesion, consistent with resolution of edematous changes. Because 

we examined animals at four weeks after the cortical lesion, we cannot exclude 

the possibility that there was a transient decrease in spine density in animals with 

IA cortical lesions that resolved by 28 days post-operatively. However, because 

dopamine denervation-induced MSN spine loss persists for at least one year 

(Ingham et al. 1989), the reversal of spine loss that we observed after cortical 

lesions cannot be due to recovery from the dopamine depletion.  

 To minimize the possibility of striatal damage by cortical lesions, we used 

IA to lesion the cortex. Although excitotoxic lesions can cause distant neuronal 
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loss, we did not observe FJC-positive MSNs at any time up to 28 days post-

lesion. Moreover, we found that spine density was unchanged in animals 

subjected to cortical IA lesions four weeks previously, suggesting that the cortical 

lesion did not compromise the structural integrity of MSNs.   

 

Effect of cortical lesions on dendritic spines in the dopamine-denervated striatum.  

A previous study in organotypic slice co-cultures found that complete ablation of 

the cortex performed at the same time as MPP+ treatment completely prevents 

MSN spine loss (Neely et al. 2007).  In our in vivo prevention experiment we 

observed a strong trend that did not reach statistical significance (p = .06).  

Because the in vitro study of Neely and colleagues (2007) indicated that total 

decortication completely prevented the development of dendritic spine loss in the 

dopamine-denervated striatum, and the fact that cortical lesions reverse existing 

spine loss, it is likely that the non-significant trend we observed in animals with 

focal cortical lesions represents a type II (false negative) error. 

 We therefore conducted both in vivo and in vitro studies, with the former 

examining the effects of a cortical lesion that left intact glutamatergic projections 

from the thalamus and the contralateral cortex, both of which synapse onto 

dendritic spines (Freund et al. 1984; Smith et al. 1994; Lacey et al. 2007).  

Despite not eliminating all glutamatergic inputs, we found that focal cortical 

lesions in vivo significantly reversed dopamine denervation-induced MSN spine 

loss and tended to prevent the development of spine loss.  We suspect that we 

observed a significant but incomplete reversal of spine loss because of the 
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presence of some of the remaining glutamatergic inputs after the cortical lesion 

(corticostriatal sprouting) (Napieralaski et al. 1996; Hughes-Davis et al. 2005).   

 The vesicular glutamate transporter 2 (VGluT2) is abundantly expressed 

by thalamostriatal but not corticostriatal neurons (Kaneko and Fujiyama 2002).  

Raju et al. (2008) found no change in striatal VGluT2 in dopamine-denervated 

MPTP-treated primates, consistent with intact striatal glutamate inputs from the 

thalamus.  Thus it is unlikely that the attenuation and not complete reversal was 

due to the thalamus.   

 Although we performed focal lesions of the M1 cortex there may be 

residual cells adjacent to the lesion site or in the contralateral cortex that provide 

glutamatergic inputs to MSNs.  These considerations suggest that our studies 

with unilateral cortical lesions represent a conservative test of the hypothesis that 

cortical denervation prevents and reverses spine loss in vivo. The attenuation, 

but not complete reversal, of spine loss may be secondary to the presence of 

surviving ipsilateral corticostriatal neurons that innervate regions immediately 

adjacent to the denervated sector, or because of sprouting of neurons from the 

contralateral cortex as we have demonstrated. 

 Because there are no clearly defined boundaries that distinguish the M1-

recipient zone from adjacent striatal tissue that does not receive M1 inputs, we 

restricted our analysis to a fairly conservative definition of the striatal M1-

recipient zone, based on our anterograde tracer studies as well as published 

data on the striatal projections of the motor and adjacent cortices (Alloway et al. 

2006).  The cortical lesion attenuated the loss of dendritic spines only in this M1-
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recipient zone of the striatum.  Spine densities of MSNs located in an area of the 

striatum ventromedial to the M1-innervated region did not differ significantly from 

those seen in animals with 6-OHDA lesions but an intact motor cortex. These 

observations argue that we were able to define accurately the striatal territory 

receiving inputs from the lesioned cortex.  

 

Methodological limitations of focal cortical lesions.  By performing cortical lesions, 

we partially removed not only the glutamatergic innervation of striatum but also 

other molecules present in cortical neurons that might play a role in regulating 

dendritic spine density, such as neurotrophic factors.  In order to delineate the 

effects of cortical factors versus a decrease in corticostriatal glutamatergic 

neurotransmission, we next examined the effects of mGluR 2/3 agonists, which 

dampen presynaptic glutamate release, on the effects of DA depletion-induced 

spine loss.   
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CHAPTER V 

 

MODULATION OF CORTICAL GLUTAMATE PREVENTS SPINE LOSS 

 

Metabotropic glutamate receptor subtypes.  Metabotropic glutamate receptors 

(mGluR) are seven transmembrane G-protein coupled receptors.  The mGluR 

subtypes are classified into three groups based upon sequence homology, 

coupling to second messenger systems, and their pharmacological properties 

(Conn and Pin 1997).  Group I metabotropic glutamate receptors include mGluR 

1/5 subtypes and are coupled to phosphoinositide hydrolysis.  Group II mGluRs 

contain mGluR 2/3 receptors and are negatively coupled to adenylate cyclase. 

These group II mGluRs are thought to act as autoreceptors regulating the 

amount of glutamate released (Lovinger and McCool 1995; Shigemoto et al. 

1997; Cartmell and Schoepp 2000).  In addition group II mGluRs also inhibit glial 

glutamate release (Winder and Conn 1996).  Finally mGluR 4,6,7, and 8 

comprise group III mGluRs, which are also negatively coupled to adenylate 

cyclase and differ in their sequence homology from group II and their affinities for 

various mGluR ligands .  

 

Metabotropic glutamate receptor distribution.  Immunohistochemical studies have 

revealed dense mGluR1 staining in the globus pallidus, SN, hippocampus, and 

cerebellum; lower levels are detected in the cortex and striatum (Berger et al. 

2001).  Intense immunoreactivity for mGluR5 has been observed in the olfactory 
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bulb, cortex, striatum, lateral septum, and hippocampus (Romano et al. 1995; 

Gubellini et al. 2004).  

 Immunohistochemical studies have detected mGluR2 in the olfactory bulb, 

cerebral cortex, striatum, hippocampus, and the thalamus (Ohishi et al. 1998). 

The group II mGluR 3 mRNA is also widely expressed in rodent brain, with 

prominent expression observed in the cerebral cortex, dentate gyrus, olfactory 

nucleus, reticular thalamic nucleus, and a few hypothalamic and brainstem nuclei 

(Ohishi et al. 1993).  mGluR 3 is localized to both neurons as well as astrocytes 

(Ohishi et al. 1993).  There is moderate expression of mGluR 3 mRNA in the 

basal ganglia (Ohishi et al. 1993).  In situ hybridization and northern blot analysis 

studies in humans are largely consistent with the rodent studies (Tanabe et al. 

1993; Fotuhi et al. 1994; Testa et al. 1994; Makoff et al. 1996; Simonyi et al. 

2005).   

 The group III mGluR (mGluR4-li) immunoreactivity has been observed in 

the cerebral cortex, striatum, globus pallidus, hippocampus, substantia nigra, and 

the cerebellum (Berger et al. 2001).  mGluR 4 mRNA is detected in the olfactory 

bulb, cerebral cortex, striatum, limbic forebrain, hippocampus, amygdala, 

midbrain and the cerebellum; while mGluR 7 mRNA is most densely expressed 

in the hippocampus, with lesser amounts in the olfactory bulb, cerebral cortex, 

striatum, and midbrain (Bradley et al. 2006).  This is a macroscopic overview of 

mGluR distribution and now we will discuss the cellular expression of mGluRs in 

the striatum. 
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Metabotropic glutamate receptor expression in the striatum.  All three mGluR 

receptor groups have been reported to be expressed by striatal cells.  Group I 

mGluRs are mainly found on MSNs, where they are localized to dendritic spines 

(Shigemoto et al. 1993), while groups II and III are mainly on presynaptic 

elements to MSNs (Testa et al. 1995; Kosinski et al. 1999; Smith et al. 2000; 

Corti et al. 2002; Pisani et al. 2002).  In addition, group II mGluRs are expressed 

on striatal interneurons and astrocytes.   

Striatal cholinergic interneurons express mGluRs 1,2, and 5 (Testa et al. 

1995; Pisani et al. 2002).  Stimulation of group I mGluRs results in a decrease in 

striatal acetylcholine (ACh) release (Marti et al. 2001).  A similar effect has also 

been observed with mGluR 2/3 agonists (Bonsi et al. 2007).  Astrocytes express 

mGluR 3 but not detectable levels of mGluR 2 (Testa et al. 1995). 

 

Metabotropic glutamate receptors in animal models of parkinsonism.  There have 

been surprisingly few studies of group II agonists in animal models of PD.  Of 

these few reports, group II metabotropic agonists have been suggested to reduce 

motor deficits in animal models of parkinsonism.   Treatment with mGluR 2/3 

agonists decreases reserpine-induced akinesia and haloperidol-induced rigidity 

(Konieczny et al. 1998; Dawson et al. 2000; Murray et al. 2002).  The mGluR 2/3 

agonist LY379268 has also been suggested to be neuroprotective as reflected by 

fewer nigrostriatal cells dying in response to MPTP treatment (Battaglia et al. 

2003).  In addition an enhanced potency of group II mGluR agonists has been 

reported in DA depletion-induced animals (Picconi et al. 2002).    
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Blockade of the mGluR 5 receptor has been reported to alleviate akinesia 

in 6-OHDA-lesioned animals and rats treated with haloperidol (Spooren et al. 

2001; Ossowska et al. 2001; Breysse et al. 2002).  In addition, the mGluR 5 

knockout mouse has been reported to be somewhat resistant to MPTP toxicity, 

although the mechanism is unclear (Battaglia et al. 2004). 

 

Metabotropic glutamate receptors in idiopathic Parkinson’s Disease.  Enhanced 

mGluR 5 binding has been reported in MPTP-treated non-human primates as 

measured with the PET tracer, [11C]MPEPY, in the striatum (Sanchez-Pernaute et 

al. 2008).  Recently the specific binding of mGluR 2/3 has been reported to be 

decreased in the caudate nucleus of parkinsonian patients (Samadi et al. 2009).  

The authors suggest that this decrease in mGluR 2/3 levels may be the result of 

compensatory changes as a result of increased glutamatergic neurotransmission.      

In order to determine if the loss of MSN dendritic spines requires  

corticostriatal glutamate release, and hence if cortical lesions may mitigate spine 

loss by suppressing glutamate release, we used organotypic slice co-cultures 

comprised of cortex, striatum, and ventrolateral mesencephalon (including the 

SN) to assess the effects of a group II metabotropic (mGluR 2/3) receptor agonist 

and a mGluR 5 antagonist.  Activation of mGluR 2/3 receptors that are located on 

corticostriatal terminals (Testa et al. 1998) dampens glutamate release (Lovinger 

1991; Calabresi et al. 1992; Lovinger and McCool 1995).   mGluR 5 receptors 

are located on the spines of MSNs and couple to Gq, suggesting that they 

modulate intracellular stores of calcium.  Thus mGluR 5 antagonists should 
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dampen the intracellular calcium seen in MSNs after DA depletion (Taylor et al. 

1991; Drissi et al. 1998; Kumar et al. 2008). 

 In order to examine if corticostriatal regulation of MSN dendritic spines is 

mediated by cortical glutamate, we determined if suppression of glutamate 

transmission would also attenuate DA depletion-induced spine loss.  We first 

assessed if stimulation of mGluR 2/3 receptors would prevent MSN spine loss, 

and then determined if blockade of mGluR 5 receptors would also prevent DA 

denervation-induced spine loss. 

 

Methods 

Organotypic slice cultures. Triple slice cultures consisting of cortex, striatum, and 

ventrolateral mesencephalon (SN) were prepared from the brains of P1-P2 

Sprague-Dawley rats (Harlan) following our previously described method (Neely 

et al. 2007).  A representative organotypic triple slice culture stained with 

toluidine blue is depicted in Figure 27.  Two cultures were plated in each well.  At 

14 days in vitro (DIV), by which time the MSNs achieve a mature dendritic 

morphology (see Neely et al. 2007), the dopamine innervation of the striatum 

was denervated by treatment of the cultures with 15 μM 1-methyl-4-

phenylpyridinium (MPP+) (Sigma-Aldrich).  This concentration of MPP+ causes a 

selective loss of DA but not other neurons in the cultures as assessed by 

propidium iodide accumulation (Neely et al. 2007).  MPP+ was removed 24 hours 

later and treatment with the mGluR 2/3 agonist LY379268 (1.0 μM; Tocris) 

started, with the agonist being added to the cultures at the time of media 
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changes (every other day for 14 days).  Culture media was collected at 14 DIV 

(just before MPP+ treatment) and again at 17 DIV, and stored at -80o C until 

subsequently assayed for the dopamine metabolite homovanillic (HVA) acid as 

an index of dopamine denervation.  The cultures were harvested at 28-30 DIV for 

analysis of dendritic spine density.  

 We determined if co-administration of an mGluR 2/3 antagonist to cultures 

would block the ability of the agonist LY379268 to prevent spine loss in 

dopamine-denervated cultures.  At 14-16 DIV the cultures were treated with 

MPP+, which was removed 24 hours later, at which time either the mGluR 2/3 

agonist LY379268 (1.0 μM), the antagonist LY341495 (0.2 μM), or both the 

mGluR 2/3 agonist and antagonist were added to the culture media.  The 

concentration of LY379268, which has at least an 80 fold higher affinity for group 

II mGluRs than other metabotropic glutamate receptors (Marek et al. 2000; 

Schoepp et al. 1999), was based on in vitro slice data from Marek et al. (2000) 

and Picconi et al (2002).  The concentration of the antagonist LY341495 (Monn 

et al. 1999; Schoepp et al. 1999) was also based on the data of Marek et al. 

(2000).  After 14 days, the cultures were harvested and ballistically labeled.  

  We also tested the effects of mGluR 5 blockade on MSN spine density, 

using the antagonist MTEP (10 µM).  MTEP is a highly selective and potent 

mGluR 5 antagonist that has been found to have virtually no effects on the other 

mGluR subtypes.  
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Ballistic labeling of cultures.   Cultures were fixed in 1.5% paraformaldehyde in 

0.1M phosphate-buffered saline for 25 minutes and then ballistically labeled with 

the carbocyanine dye CM-DiI (Invitrogen; Carlsbad, CA), following the general 

protocol of Gan et al. (2000), as modified by Neely et al. (2009).  Cultures were 

then mounted with Prolong Antifade (Invitrogen).  

 

Assessment of striatal dopamine depletion.  In order to determine the extent of 

MPP+-induced striatal DA depletion in the cultures, we measured the 

concentration of the DA metabolite HVA in the culture media both immediately 

before and 48 hours after MPP+ treatment.  The media was analyzed by HPLC-

EC, following our previously described procedure (Deutch and Cameron, 1992).  

Briefly, 500 µL of media was added to 125 μL of a 1M perchloric acid solution 

containing 0.2g/l NA2S2O5 and 0.05 g/l Na2-EDTA.  The samples were 

centrifuged at 23,000Xg for 5 min, injected on a C18 column (Alltech, Deerfield, 

IL) and HVA measured using an ESA 501A Coulochem detector (Chelmsford, 

MA).  HVA levels were expressed as pmol/ml medium.  Because DA is rapidly 

oxidized in the culture media and therefore below detection thresholds in control 

cultures, we focused on the DA metabolite HVA, which is stable.  Spine density 

in MSNs of cultures in which HVA levels were depleted by <70% were not 

analyzed. 

 

Dendritic spine analyses in diOlistically-labeled cultures. A confocal laser 

scanning microscope with a 60x 1.4 NA objective (with a 2x digital zoom to yield 
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a final magnification of 120x) was used to obtain z-stacks of MSN segments at 

0.5 μm intervals.  MSN spines were assessed on third and fourth order dendritic 

segments, of which 3-4 dendrites per neuron were analyzed.  

 

Data analysis.  Mean MSN spine density values per neuron were determined, 

after which these values were collapsed to yield a single ―per culture‖ value.  

These ―per culture‖ data were then analyzed by two-way ANOVAs. 
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Figure 27.  Organotypic triple co-culture stained with toluidine blue.  Cultures 
consisting of the cortex (ctx), striatum (str) and ventral mesencephalon (msc) 
were prepared from P1-2 Sprague dawley rats.  By 14 DIV cultures reestablish 
appropriate connections while maintaining cellular composition and MSN 
dendritic spines are mature.    
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Results 

Metabotropic glutamate receptors regulate spines. The treatment of cultures with 

MPP+ caused a marked (89.4%) decrease in the concentration of the dopamine 

metabolite HVA in media (t32 = 17.73, p < .0001), consistent with extensive 

striatal DA denervation.  A two-factor (dopamine x drug treatment) ANOVA was 

used to assess the effect of the mGluR 2/3 agonist on MPP+-induced spine loss, 

yielding an overall significant effect (F3,40 = 6.86; p < 0.001).  Main effects of both 

dopamine innervation (F1,40 = 5.33, p = .0262) and of drug treatment (F3,40 = 9.83, 

p = .003) were uncovered, with a strong trend toward an interaction (F1,40 = 4.08, 

p = .0502).   Post-hoc analyses revealed a significant decrease (26%) in MSN 

spine density compared to vehicle-treated cultures (p = .003; see Figure. 28).  

While treatment with the mGluR 2/3 agonist LY379268 had no effect on spine 

density in MSNs from cultures with an intact striatal dopamine innervation, the 

mGluR 2/3 agonist completely prevented MSN spine loss in MPP+-treated 

cultures, such that spine density did not differ significantly from control (intact 

dopamine innervation + vehicle-treated) cultures (see Figure 28).  Representative 

diOlistically-labeled MSN dendritic segments are shown in Figure 29.   

  

mGluR 2/3 antagonist blocks ability of LY379268 to attenuate spine loss.  In 

order to determine the specificity of the mGluR 2/3 agonist LY379268, we 

assessed if treatment with the mGluR 2/3 antagonist LY341495 would block the  
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Figure 28.  Treatment of slice cultures with the mGluR 2/3 agonist LY379268 

completely prevented dopamine depletion induced spine loss.  Each symbol 

represents the mean spine density in a single culture. The data were analyzed by 

a two-way ANOVA. 

— — — — — — — —  
** p < 0.005 relative to control cultures 
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Figure 29.  Photomicrographs of ballistically-labeled MSN dendrites.  A) dendritic 

segment of MSN from a control culture, B) MPP+-treated dendrite, and C) 

LY379268- plus MPP+ -treated dendrite. Scale bar, 2 µm. 
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actions of the group II metabotropic glutamate receptor agonist. As expected, 

post-hoc analyses revealed that MPP+ treatment significantly decreased spine 

density (p = .01).  The antagonist alone also caused a significant decrease in 

spine density (p = .037), while the combined treatment of the antagonist plus 

agonist in dopamine-depleted cultures did not significantly differ from the MPP+-

treated cultures alone, and thus completely reversed the protective effects of the 

mGluR 2/3 agonist (see Figure 30).  

 

Group I mGluR antagonist fails to attenuate DA depletion-induced spine loss.  

Treatment of cultures with an intact DA innervation with the mGluR 5 antagonist 

MTEP had no significant effect on MSN dendritic spine density (Figure 31).  As 

expected, we observed a significant effect of MPP+, which decreased spine 

density (p<0.01).  However, treatment of DA-depleted cultures with MTEP did not 

significantly attenuate the MSN dendritic spine loss seen in response to DA 

deafferentation (Figure 31).    
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Figure 30. Treatment of slice cultures with the mGluR 2/3 antagonist LY341495 

blocks the effects of the mGluR 2/3 agonist LY379268.  LY341495 significantly 

decreased MSN spine density in cultures with an intact dopamine innervation. 

— — — — — — — —  
* p < 0.05 compared to control cultures 
** p < 0.05 compared to control cultures 
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Figure 31. Treatment of slice cultures with the mGluR 1/5 antagonist MTEP fails 

to prevent dopamine depletion induced spine loss.  Cultures were maintained for 

14 DIV in which MPP+ treatment began.  MTEP treatment began at 15 DIV and 

was added to the culture media every other day until 29 DIV. 

— — — — — — — —  
** p < 0.01 relative to control cultures 
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Discussion 

Mechanism of action of cortical lesions.   A variety of in vivo and in vitro data 

suggest that striatal dopamine depletion increases glutamate release from 

corticostriatal terminals (Florio et al. 1993; Meshul et al. 1999; Cepeda et al. 

2001; Bamford et al. 2004a,b; Day et al. 2006).   Dendritic spine formation and 

maintenance are determined largely by changes in intracellular calcium levels, 

including NMDA receptor-driven increases in calcium levels.  Accordingly, we 

hypothesized that one mechanism that contributes to dopamine depletion-

induced MSN spine loss is the loss of tonic dopaminergic inhibition of the D2 

heteroceptor on corticostriatal terminals, leading to increased glutamate release 

(Bamford et al. 2004a), which in turn increases intraspinous calcium and 

culminates in spine loss.  Thus, we anticipated that cortical lesions would reduce 

excess glutamate release from cortical axons and thereby attenuate MSN spine 

loss.   

  Group II metabotropic glutamate receptors that are located 

presynaptically on corticostriatal terminals (Testa et al. 1998) are release-

modulating autoreceptors.  We therefore treated organotypic slice co-cultures 

with an mGluR 2/3 receptor agonist to dampen glutamate release from 

disinhibited corticostriatal axons.  In mature cultures, there are both extensive 

cortical and nigral projections to the striatum (Neely et al. 2007; Snyder-Keller et 

al. 2008).  MSNs in these cultures have both up and down states, and 

accordingly one sees both spontaneous and cortically-evoked activity of MSNs 

(Plenz and Kitai 1998; Snyder-Keller et al. 2008).  This is consistent with a 
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functional cortical regulation of striatal MSNs. The use of these cultures allowed 

us to determine specifically if the loss of cortical glutamate, as opposed to 

glutamatergic afferents from other areas such as the thalamus, was responsible 

for preventing spine loss.    

Treatment of dopamine-denervated cultures with the mGluR 2/3 agonist 

LY379268 completely prevented the spine loss.  It appears likely that the ability 

of LY379268 to block MSN spine loss is due to actions at mGluR 2/3 sites. 

LY379268 is a preferential agonist at mGluR 2/3 receptors (Schoepp et al. 1999; 

Imre 2007).   The agonist inhibits forskolin-stimulated cAMP accumulation in cells 

expressing mGluR 2/3 receptors (EC50 < 6 nM) but has very weak actions at 

mGluR4 and mGluR8 receptors (EC50 > 2 μM) and no significant actions at 

other mGluRs (Monn et al. 1999; Imre 2007).   In addition, we found that the 

mGluR 2/3 antagonist LY341495 completely reversed the protective effects of 

the agonist on MSN spines in the dopamine-depleted striatum.  Moreover, 

treatment of cultures containing an intact nigrostriatal dopamine system with the 

antagonist was sufficient to cause MSN spine loss, supporting the hypothesis 

that MSN spine loss results from excessive glutamate release from corticostriatal 

axons.    

Recently, Seeman and colleagues (2008) have suggested that mGluR 2/3 

agonists, including LY379268, are partial agonists at D2 receptors.  Because 

dopamine denervation-induced MSN dendritic spine loss is not reversed by 

levodopa treatment of rodents (Deutch et al. 2007), and because MSN spine loss 

is seen in postmortem striatal samples from PD patients who had received 
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chronic treatment with levodopa and/or dopamine agonists (Stephens et al. 2005; 

Zaja-Milatevic et al. 2005), the attenuation of spine loss in animals treated with 

the mGluR 2/3 agonist is probably not due to any actions of LY379268 at 

dopamine receptors.  This is consistent with the recent report of Fell et al. (2009) 

who did not observe any interaction between group II ligands and the D2 

receptor. 

 Group II metabotropic receptor agonists have been reported to afford 

protection against MPTP-induced striatal dopamine loss (Battaglia et al. 2003).  

However, we started treatment with LY379268 after treatment with MPP+, rather 

than administering the mGluR 2/3 agonist prior to or together with MPP+.  

Moreover, we observed extensive striatal dopamine depletion in cultures treated 

with LY379268, as reflected by an almost 90% decrease in media concentrations 

of HVA, indicative of striatal dopamine denervation.  

 Taken together, our data strongly suggest that the ability of LY379268 to 

attenuate MSN spine loss is due to actions at mGluR 2/3 receptors and not an 

off-target action of the drug.  Moreover, the observation that treatment of the 

cultures with an mGluR 2/3 antagonist in cultures with an intact striatal dopamine 

innervation elicited spine loss is consistent with the hypothesis that cortical 

lesions protect against dopamine depletion-induced MSN spine loss by reducing 

glutamate release from corticostriatal terminals.    

 It is likely that there are sources of glutamate in addition to corticostriatal 

axons that contribute to MSN spine loss. Extracellular glutamate levels involve 

not only synaptically-released glutamate but also glutamate release from 
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astrocytes through the cystine-glutamate exchanger as well as glutamate uptake 

through high-affinity glutamate transporters, including the astrocytic transporter 

GLT-1 (EAAT2) (see Kalivas 2009).  Because group II mGluRs are expressed by 

astrocytes (Testa et al. 1994), it is possible that the effects of the mGluR 2/3 

agonist are mediated in part by astrocytic glutamate transporters.  In addition, 

factors extrinsic to MSNs (such as certain trophic factors) and intrinsic to striatal 

cells (such as L-type voltage-gated calcium channels) may also play important 

roles. 

 

mGluR5 antagonist fails to prevent spine loss.  Group I mGluRs couples to Gq 

proteins which leads to the activation of PLC and increases in intracellular stores 

of calcium via the IP3 receptor.  Antagonizing this pathway should decrease 

release of calcium from intracellular stores in dendritic spines.  If intracellular 

stores of calcium play a role in dendritic spine loss then we should observe an 

attenuation of the DA depletion-induced spine loss.  However, we saw no such 

MTEP-induced protection. 

 There could be several explanations as to why we did not observe a 

protective effect of MTEP in the DA denervated cultures.  One possibility is that 

treating cultures with MTEP every other day was insufficient; however the mGluR 

2/3 agonist completely blocked spine loss with every other day administration, 

suggesting that this explanation probably does not account for the lack of MTEP 

effects.  More likely is the possibility that mGluR 5-mediated decreases in 

intracellular calcium are either not involved or that mGluR 5 antagonists-elicited 
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suppression of intracellular calcium stores is insufficient to afford spine 

protection.   

 

Methodological limitations of MSN spine density analysis.  In contrast to studies 

with group I mGluR antagonists, recent data suggest that mGluR 2/3 agonists do 

not attenuate levodopa-induced dyskinesias (Rylander et al. 2009).  Several 

studies have pointed to D1-expressing (direct pathway) MSNs as being critical to 

the development and maintenance of dyskinesias (Bordet et al. 2000; Carta et al. 

2008; Berthet et al. 2009; Darmopil et al. 2009).  In contrast, rodent studies 

indicate that MSN dendritic spine loss in the dopamine depleted striatum occurs 

in D2-expressing MSNs (Rodriguez and Pickel 1999; Day et al. 2007; Deutch et 

al. 2007), although a recent study in the primate suggests that spines are also 

lost on D1-expressing cells (Villalba et al. 2009).  Because the animals in our 

study were not treated with levodopa or other dopamine agonists, the attenuation 

of spine loss that we observed is not related directly to dyskinesias.  

 Because Golgi impregnation of neurons precludes the determination of the 

type of MSN, we cannot ascertain if the changes we observed occur in indirect or 

direct pathway MSNs.  The spine loss we observed secondary to DA denervation 

presumably occurs only in striatopallidal MSNs, with the prevention/reversal of 

spine loss also occurring on these indirect pathway cells.  However, we cannot 

eliminate the possibility that the striatonigral MSNs are being altered by the 

manipulations decreasing corticostriatal glutamate levels.  Future studies using 
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different methods that permit evaluation of spine changes in specific types of 

MSNs will be required to untangle changes in direct and indirect pathway MSNs. 

 

Methodological limitations of slice co-culture LY379268 study.  Treatment of the 

slice co-cultures with LY379268 completely prevented DA depletion-induced loss 

of spines.  The cultures provide a unique reduced system in which to study the 

mechanism of DA depletion-induced spine loss.  The cultures are spontaneously 

active, reestablish normal innervation patterns of the constituent parts, and 

possess up and down states.  As noted above a caveat to the use of these slice 

cultures was the fact that we did not replace the mGluR agonist or antagonist 

more frequently.   

Despite our every other day treatment regimen, we found that LY379268 

completely prevented DA denervation-induced spine loss. Because the cultures 

lack key mechanisms for eliminating the active drug, in vivo studies of the effects 

of LY379268 will need to use more frequent dosing of the drug.   

 

Developmental regulation of mGluR 2/3.   Ly379268 does not distinguish 

between mGluR 2 and mGluR 3.  Levels of both class II mGluRs are 

developmentally regulated.  mGluR 2 mRNA is low at PND 0 and gradually 

increases and levels off by PND 21. Unlike mGluR 2, mGluR 3 mRNA is elevated 

at PND 0 and gradually declines with aging (Jokel et al. 2001).  However, we do 
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not know the relative abundance of mGluR 2 and mGluR 3 receptors at 14-16 

DIV, the time point at which LY379268 was added to the culture media.  Future 

studies evaluating specific mGluR 2 and 3 agonists will help clarify which 

receptor sub serves the prevention of spine loss.  In addition to corticostriatal 

terminals expressing mGluR 2/3 receptors, cholinergic interneurons express 

mGluR 2 (Bell et al. 2002) and astrocytes express mGluR 3 (Testa et al. 1995).  

Parsing out the individual roles of corticostriatal as well as interneuron, and 

astrocytic mGluR 2/3 receptors will be an important topic for future studies.   
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CHAPTER VI 

 

DISCUSSION AND FUTURE DIRECTIONS 

 

To the best of our knowledge, this is the first demonstration of the ability of 

any treatment to reverse DA depletion-induced loss of striatal MSN spines once 

the spine loss is established.  Our in vivo data indicate that cortical lesions 

reverse the structural changes in MSNs, although it is not clear if this is a growth 

of ―new‖ spines or a rescue of spines that had retracted into dendritic shaft.  

Consistent with the second possibility are ultrastructural data indicating that the 

spine apparatus, an electron dense substance normally present only in dendritic 

spines, can be seen in the dendritic shaft after DA denervation (Nitsch and 

Riesenberg 1995).  The major protein constituent of the spine apparatus is 

synaptopodin, and thus it will be important to determine relative intraspinous as 

well as intradendritic levels of synaptopodin in the DA denervated striatum.   

Our data suggests that treatments that target corticostriatal glutamatergic 

projections may be a useful intervention in PD.  However, clinical trials of 

ionotropic glutamate receptor antagonists in Parkinson’s disease have been 

disappointing.  These trials focused on symptom reduction and did not assess 

disease (or symptom) progression.  Our data suggest that modulation of 

glutamatergic transmission through metabotropic glutamate receptors, 
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specifically mGluR 2/3 agonists, may be warranted in studies aimed at slowing 

progression in PD by halting the ongoing loss of MSN dendritic spines.   

 

Relation to motor deficits in parkinsonism.  Dopamine replacement with levodopa 

or direct DA agonists does not reverse MSN spine loss in either animal models of 

parkinsonism or in PD patients (Stephen et al. 2005; Zaja-Milatovic et al. 2005; 

Deutch 2007).  Our data on the effects of mGluR 2/3 agonists point to 

derangements in corticostriatal glutamatergic systems as contributing to the 

dendritic remodeling seen in the dopamine-denervated striatum.  This has 

significant implications for the treatment of Parkinson’s Disease.  

 Surprisingly few studies have examined the effects of mGluR 2/3 agonists 

on parkinsonian-like motor deficits (Murray et al. 2002; Feeley Kearney and Albin 

2004).  Murray et al. (2002) found that intraventricular administration of the 

mGluR 2/3 agonist LY379268 dose-dependently reversed reserpine-induced 

akinesia.  In contrast, Ossawska et al. (2007) did not observe any benefit of 

intrastriatal injections of a different mGluR 2/3 agonist, 2R,4R-APDC on 

haloperidol-induced motor deficits; it is not clear if this is because of the acute 

nature of the dopamine blockade achieved with haloperidol.   Clearly additional 

behavioral studies on the effects of group II mGluR agonists in animal models of 

parkinsonism is needed.  Our data suggest that metabotropic mGluR 2/3 

agonists may be beneficial in PD by either decreasing glutamatergic 

neurotransmission or perhaps by attenuating MSN dendritic spine loss.   
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 Dendritic spine loss is progressive and keeps pace with the age-related 

decline in MSN spine loss.  Spine loss compromises cortical input to the striatum 

and corticofugal circuitry.  The activity of corticostriatal neurons may also be 

decreased as a function of aging, and is associated with a decrease in spines on 

cortical PCs (Kabaso et al. 2009).  Although there have been discussions of 

potential roles of MSN spine loss in parkinsonism, there are no empirical data 

that address this issue.   This is because we have not previously had a means of 

reversing spine loss.  Our finding of the reversibility of spine loss in vivo opens 

the opportunity to begin to address the functional significance of spine loss in 

parkinsonism by treating animals and examining them in the spine loss condition, 

then inducing recovery and reexamining the animals.   

 Our data indicate that decortication reverses spine loss.  In our in vitro 

studies we showed that spine loss can be prevented by mGluR 2/3 agonists.  

However, we did not determine if the reversal elicited by the cortical lesion is 

attributable to suppression of glutamate release in the cultures because such 

studies require that the cultures be maintained for 6-7 weeks, a time point at 

which our cultures begin to degenerate.  However, we are now examining the 

effects of the mGluR 2/3 agonist on the DA denervated striatum in vivo.  If these 

data parallel the finding that decortication blocks spine loss, then mGluR 2/3 

agonists should provide an easy means with which to study the effects of DA 

depletion-induced spine loss.   

In addition to understanding the mechanism of spine loss, it will be 

important to address the status of the presynaptic partners of spines that are lost.  
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We have now shown that spine loss can be reversed, but have not examined the 

issue of whether the ―new‖ spines have presynaptic partners, i.e., have 

established functional synaptic contacts.  Moreover it is not known if any contacts 

of presynaptic elements onto new spines would route appropriately or if there 

would be ectopic localization of afferents to the spine or dendritic shaft.  It is 

intriguing to note that cortical inputs to the striatum express BDNF, although 

MSNs do not.  Some form of trophic support may be necessary for appropriate 

rewiring of the striatum to its normal state.  

In addition to the utility of the therapeutic strategy to suppress 

corticostriatal drive to benefit the motor symptoms, it may be possible that the 

same approach may offer promise for treatment of non-motor symptoms.  Patil 

and colleagues (2007) reported that mGluR 2/3 agonists are effective for treating 

the positive and negative symptoms of schizophrenia with minimal side effect 

liability.   The deficits in cognitive function in PD are in the executive realm and 

resemble the executive dysfunction seen in schizophrenia.  Because the early 

study of Patil et al. (2007) suggest that mGluR 2/3 agonists may target to some 

degree cognitive deficits as well as positive and negative symptoms, it is possible 

that the mGluR 2/3 agonists may be useful for treating these non-motor 

(cognitive) as well as the motor symptoms of PD.   
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