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CHAPTER I 

 

INTRODUCTION 

 

Learning is often plagued both by a lack of connected understanding and by the 

inability to transfer knowledge to novel problems. Understanding the processes that affect 

knowledge change is central both to theories of learning and to the development of 

effective strategies for overcoming these problems. Much research has attempted to 

address this problem by investigating different instructional strategies. One alternative 

approach is to begin with the view that most of the information we seek to communicate 

to learners is conveyed by symbols.  It follows that our choice of symbols may directly 

affect cognition independently of the instructional strategies that we apply.  

The current research starts from this perspective and investigates how 

manipulating dimensions of the symbols used to instantiate knowledge in a novel domain 

can affect learning and transfer. Specifically, the current series of experiments 

investigates an information-based account of concreteness in a complex mathematical 

domain. Briefly, on this account concreteness is defined as the information – both 

perceptual and conceptual – that a symbol communicates independently of its currently 

intended use. Each experiment follows a general theme in which participants are taught a 

set of abstract rules using various symbol sets and are tested to ascertain the extent to 

which symbol choice affects learning and transfer. In this case, learning is defined as the 

ability to successfully perform tasks with the same symbols used for initial training, and 

transfer is defined as the ability to successfully perform similar tasks using new symbols. 
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In particular, these experiments evaluate whether conceptual information associated with 

a symbol can have effects for learning and transfer that parallel those of perceptually 

concrete symbols (see page 4 for a description). 

In this introductory chapter, I first will lay out the basics of this information-based 

account of concreteness. Then I will briefly review the current literature on perceptual 

concreteness. In the process I will raise some questions about the concept of conceptual 

concreteness, putting forth some specific hypotheses that will be addressed by the 

experiments that follow. Please see Chapter 6 for more in-depth reading on the theoretical 

framework employed. 

 

The Information-based account of concreteness 

 There is ongoing debate on the tradeoffs between using abstract versus concrete 

symbols as tools to promote the building of knowledge structures. Interestingly, this 

debate often takes place in the absence of a definition for either of the terms ‘abstract’ or 

‘concrete’.1 On the one hand, the idea that concrete materials benefit children’s learning – 

based upon the Piagetian notion that children’s thinking is inherently concrete – has a 

long history in developmental psychology and education (Goldstone & Son, 2005; Uttal, 

Scudder, & DeLoache, 1997). Bruner expanded the applicability of this concrete to 

abstract shift to include the thinking novices more generally, including adult novices (see 

McNeil & Uttal, 2009). Counter to this current, some researchers have argued that 

concrete symbols may be ill suited to serve as teaching aids when compared to abstract 

symbols in certain contexts. Though details of the arguments questioning the value of 

                                                
1 Please see page 3 for the definitions of ‘abstract’ and ‘concrete’ used in the current 
work. 
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concrete symbols vary, they converge on the concern that properties of concrete symbols 

that are not part of the to-be-learned knowledge can impede or corrupt the building of 

new knowledge structures (Goldstone & Son, 2005; Leslie, 1987; McNeil & Jarvin, 

2007; Novick, 1988; Sloutsky, Kaminski, & Heckler, 2005; Uttal et al., 1997). 

In investigating concreteness, researchers have focused on how concrete objects 

or examples affect learning and transfer, at times arguing that concrete symbols can aid 

learning, and at others arguing that concrete symbols impede learning and transfer. 

Interestingly, these authors almost never address the question of what concreteness is. 

Indeed, a comprehensive survey of the literature reveals that concrete and concreteness 

remain vaguely defined terms. Concrete has alternatively been taken to refer to: a) 

symbol’s physicality as counterposed to the more mentalistic nature of a referent (McNeil 

& Jarvin, 2007; Uttal et al., 1997); b) the high degree of iconicity of a given symbol in 

contrast with a more abstract alternative (Goldstone & Sakamoto, 2003); c) the degree of 

perceptual richness of a given symbol relative to others(Sloutsky et al., 2005); and d) the 

degree to which a symbol is embedded or situated within a particular context (Gentner & 

Medina, 1998; Goldstone & Son, 2005; Koedinger, Alibali, & Nathan, 2008). To be 

clear, these different conceptions of concreteness are not all given as explicit definitions 

but instead often lie implicit in the writings of various authors, with the operating 

definitions to be extracted from usage in context. Hence, the construct concrete, so 

frequently conceived of as an important explanatory variable often goes without explicit 

definition. This means that problems of construct validity are endemic to discussions 

about the merits and demerits of using concrete symbols to promote learning. It would be 

helpful to find a definition of concreteness that can help bridge these various conceptions. 
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One definition that might fulfill this bridging function is that of Kaminski 

(2006c), who offers a comprehensive definition of concreteness. She uses the term 

concrete not necessarily to imply tangible, physical objects, but rather as a way to 

describe something about the degree of contextualization of alternative representations of 

a given concept: 

“concrete versus abstract is not a dichotomy; it is a continuum where 
concrete instantiations provide the learner with more information than 
abstract instantiations. For a given concept, instantiation A is more 
concrete than instantiation B if A provides the learner with more 
information than B. Consider the increase in conveyed information as 
concreteness increases from a stick figure of a person to an elaborate 
drawing to a photograph to a real person. This conveyed information may 
be perceptual or conceptual in nature.” (p4)  
 

From this perspective, what makes a symbol concrete is its informational load 

relative to other symbols. On this view, concrete symbols are information rich, 

and abstract ones are information sparse. Although she notes that some versions 

of this interpretation of concreteness have been used by other researchers, I find 

her version to be a clearer, more explicit statement of what often remains implicit 

in the studies she cites (Gentner, Loewenstein, & Thompson, 2003; Goldstone & 

Sakamoto, 2003; Goldstone & Son, 2005). By focusing on informational load as 

the mechanism by which concreteness operates, this account fits squarely within 

information processing theories of cognition. It can be used to generate 

hypotheses about concreteness that can be unpacked according to the different 

types of information involved (e.g. sensory, perceptual, conceptual) and the 

different demands each type of information may impose. 
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The effects of perceptual concreteness 

One important aspect of this information-based formulation is that it explicitly 

allows that concreteness – viewed as the informational load of a symbol independent of 

its present use – can be either perceptual or conceptual in nature. Several lines of research 

have explored the ways that perceptual information might contribute to concreteness. 

None, however have attempted to isolate the effects of the conceptual information borne 

by a symbol from the effects of perceptual information borne by that symbol. The present 

research is motivated by the question of whether such conceptual information can exert 

effects that parallel the effects of perceptual information (concreteness) with regard to 

learning and transfer.  

Previous research has shown that perceptual concreteness can significantly affect 

learning and transfer. Moreover, the evidence suggests that the effects of concrete 

symbols on initial learning in a domain may differ from their effects on transfer. On the 

one hand, concreteness has often been shown to be detrimental to transfer. Its effects on 

initial learning, however, are more varied and seem to hinge upon whether the 

information communicated by the symbols is aligned with the content of the to-be-

learned task. 

  One particularly instructive study that investigates this differences between the 

effects of perceptual concreteness on learning and its effects on transfer is Sloutsky et. al. 

(2005). The experimenters used different symbol sets to instantiate a novel rule-governed 

learning domain. The first set was labeled the abstract group and used perceptually sparse 

two-dimensional shapes to instantiate the rules of the task. The second group, the 

concrete group, instantiated the same rules using screen images of novel, color, 3-D 
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objects (see Figure 1). The use of perceptually sparse 2-D symbols in contrast to 

perceptually richer screen images of novel 3-D symbols allowed the authors to 

manipulate the relative concreteness of the stimuli used. Again, concreteness was defined 

as the amount of perceptual information in the symbols. Both groups did equally well on 

the learning task, but differed in their abilities to transfer from one symbol set to the 

other. There was a transfer advantage for abstract symbols, whereby participants  

 

Figure 1. Stimuli from Sloutsky, Kaminski & Heckler, 2005  

 

performed better on concrete symbols if they first learned the task using abstract symbols. 

By contrast, performance with abstract symbols was equivalent regardless of which 

symbol set was used for initial learning. Thus, perceptually sparse symbols led to 

superior transfer relative to more concrete perceptually rich symbols.  

In a second experiment, the perceptually sparse group was replaced with specific 

and identifiable 3-D objects. The authors argued that, in this case, the group of 
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identifiable objects was now relatively more concrete than the 3-D computer generated 

objects because it was perceptually richer. In this case, the transfer was also better from 

the more abstract symbols to the more concrete symbols. This finding was especially 

interesting, because it suggests that concreteness is relative: the same symbols that were 

more concrete in experiment 1 were more abstract in Experiment 2. These authors have 

used this paradigm in multiple ways to make a strong case that perceptually concrete 

symbols do not promote transfer as well as abstract ones (Kaminski, Sloutsky & Heckler, 

2005; Kaminski, Sloutsky & Heckler, 2008, Kaminski, Sloutsky & Heckler, 2009). Other 

researchers have converged on this finding (Goldstone & Sakamoto, 2003; Novick, 

Catley & Funk, in preparation; see Table 1). 

In contrast to the generally negative effects of concreteness on transfer, the effects 

of concreteness on initial learning in a domain are not so clear. Some have found that 

increasing the perceptual richness of a symbol can actually impede its ability to promote 

learning (McNeil, Uttal, Jarvin, & Sternberg, 2009; Sloutsky et al., 2005). For instance, 

the third experiment of Sloutsky et. al. found that increasing the perceptual richness of 

symbols impeded learning relative to perceptually sparse symbols of the same shape. 

Others have found that learning with perceptually concrete symbols can aid initial 

learning in certain contexts (Goldstone & Sakamoto, 2003; T. Martin & Schwartz, 2005). 

One factor that has been shown to effect whether or not perceptual concreteness aids 

learning is whether or not the concreteness is aligned with the to-be-learned task. For 

instance, using a modular arithmetic task, Kaminski, et. al. (2005; 2006a) showed that 

perceptually concrete symbols boosted initial learning relative to abstract symbols when 

those symbols were aligned with the structure of the to-be-learned task. More generally, 
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it has been argued that concrete representations that communicate relevant aspects of a 

to-be-learned task can promote learning (Goldstone & Sakamoto, 2003). 

 

The case for conceptual concreteness 

One shortcoming of the research on concreteness in general is that it often fails to 

distinguish between the effects due to sensory information and the effects due to 

conceptual information. For instance, Sloutsky et. al. (2005) argued that the effects of 

concreteness were due to differences in the sensory aspects of the symbols – black and 

white 2-D symbols vs. colorful 3-D symbols. By contrast, the perceptually rich group in 

experiment 2 was deemed to be more concrete because the objects were recognizable. In 

this case, the ‘percepts’ of the ring, cup, and knife (unlabeled but clearly recognizable in 

Sloutsky et. al., 2005; see Figure 1) are what add information. It seems, however, that 

these percepts may have exercised their effects by activating conceptual information.  

From the outset, a holistic view of perception might predict that the concepts 

associated with a symbol should affect concreteness. At the very least, it is clear that 

concepts and percepts can be tightly linked. This percept-concept link is evidenced by 

well-documented differences in perception of identical stimuli based on expertise (Chi & 

Ceci, 1987; Goldstone, 1994; Rosch, 1975). If percepts are more than mere sensation 

(Kellman et al., 2008) then we should expect that much of what affects the perception of 

a symbol might go beyond mere sensation and include prior knowledge. This may have 

been the case in Experiment 2 of Sloutsky et. al. (2005).  

As an illustrative example, Goldstone and Sakamoto (2003) provides another 

notable case in which effects ascribed to ‘perceptual’ concreteness of symbols may have 
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Table 1 

Articles Reviewed Investigating the Effects of Perceptual Concreteness 

Author Participants Manipulation Findings – Learning Findings – Transfer 
Goldstone & 
Sakamoto, 
2003 

Undergradu
ates 

Exp I. Corresponding agents either 
the same color or cross-mapped 
 
Exp II. Blue marble in first 
simulation corresponds to either blue 
marble or black/white soccer ball in 
the next simulation 
 
Exp III. very similar to II. 
 
Exp IV. ants and food simulation 
was either abstract (dots, blobs) or 
concrete (ants, apples). 

Exp IV. Low performers showed 
better initial learning with the 
concrete symbols 

Exp I-III Low performers 
transfer better when 
receiving cross-mapped or 
dissimilar agents first. 
 
Exp IV Low performers 
transferred better when 
given the abstract version. 

Goldstone & 
Son, 2005 

Undergradu
ates 

4 training conditions: (1) concrete, 
(2) abstract, (3) concreteness faded 
from abstract→concrete, and (4) 
concreteness faded from 
concrete→abstract 
 

Initial Learning was best with 
concrete groups 

Transfer was better with the 
abstract group. 
 
If training employed 
concreteness fading in either 
direction ( either 
abstract→concrete or 
concrete→abstract) then 
transfer was improved 

Kaminski, 
2006c 

Undergradu
ates 

X manipulations of Many perceptual 
concreteness 

Across X experiments, Abstract 
symbols generally lead to better 
learning. Abstract symbols always 
lead to better transfer.  

 

Kaminski, 
Sloutsky & 
Heckler, 2008 

Undergradu
ates 

Abstract vs. 3 alternative sets of 
concrete symbols 
 

Initial Learning was equivalent 
across abstract and concrete 
symbols 

Transfer was better when 
initial learning was with 
concrete symbols. 
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Kaminski, 
Sloutsky, & 
Heckler, 2005 
 

Undergradu
ates 

2X2 manipulation of relevant 
perceptual concreteness and 
perceptual richness 

Initial learning was better with 
relevant concrete symbols than 
those with no relevant concreteness. 
 
 

Symbols with no relevant 
concreteness supported 
better transfer. 
 
Perceptually sparse symbols 
with no relevant 
concreteness supported 
transfer best of all. 

Kaminski, 
Sloutsky, & 
Heckler, 
2006a 
 

6th grade 
students 

Abstract vs. Relevant Concrete 
Generic 

   

Initial learning was better with 
relevant concreteness.  

Transfer was better with the 
abstract set. 

Kaminski, 
Sloutsky, & 
Heckler, 
2006b 
 

Undergradu
ates 

Exp I. Abstract vs. Relevant 
Concrete vs. Irrelevant Concrete 
 
Exp II. Abstract vs. Relevant 
Concrete Half the sample was given 
object correspondences between the 
learning and transfer instantiations 

 

Exp. I Initial learning with different 
tasks led to differences in 
recognition of the deep structure of 
the task.  
 
 

Exp II. Those who learned 
with relevant concrete 
symbols needed to be given 
object correspondences to 
transfer. Those who learned 
with abstract symbols 
transferred regardless. 

Martin & 
Schwartz, 
2005 

9 & 10 year 
old children 

Physical materials vs. Pictorial 
materials 
 

Learning was best with physical 
materials 

N/A 
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McNeil, Uttal, 
Jarvin & 
Sternberg 
(2009) 

4th 5th and 
6th grade 
students 

Exp 1: Perceptual rich dollar bill 
manipulatives vs. No manipulatives 
 
Exp 2: Perceptually rich vs. bland 
dollar bills vs. no manipulatives 

Exp 1: No manipulatives group 
solved problems more accurately  
 
Exp 2: Performance was worse with 
rich manipulatives than other 
conditions. Perceptually rich 
symbols led to fewer conceptual 
errors relative to the other two. 

N/A 

Novick, Catley 
and friends 
(under review) 
 

Undergradu
ates 

Photographs of recognizable species 
(concrete) vs. Written labels of novel 
biological species (abstract) 

No differences in initial learning. Transfer was better when 
initial learning was with 
abstract symbols 

Petersen & 
McNeil, 2008  

3 yr-olds 2 X 2 manipulation of familiarity 
and perceptual richness of the 
symbols used.  

Found familiarity X richness 
interaction. Perceptual richness hurt 
performance with familiar objects, 
but improved performance with 
unfamiliar objects.  

N/A 

Sloutsky, 
Kaminski, & 
Heckler, 2005 

Undergradu
ates 

Exps 1 & 2: Perceptually concrete or 
abstract symbols given for training, 
and learning and transfer from one 
type to the next is assessed for 
various presentation orders. 
 
Exp 3: Perceptually sparse vs. 
Perceptually rich symbols  

Exp 1: Learning was better with 
more abstract groups relative to 
concrete ones. 
 
 
 
Exp 3: Learning was superior with 
perceptually sparse symbols 

Exp 1: Transfer was better 
from more abstract to more 
concrete. 
 
 
 
Exp 3: N/A 
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actually emerged from conceptual knowledge activated by those symbols. In this 

experiment, participants learned a novel competitive specialization procedure using 

identical cover stories about ants foraging for food. The process was instantiated using 

either concrete symbols that used iconic pictures of ants and fruit or abstract symbols that 

represented ants as dots and food as nondescript blobs (see Figure 2).  

 

 

Figure 2. Stimuli from Goldstone & Sakamoto (2003). 

 

In this experiment, the concrete instantiation supported better initial learning, but 

the abstract instantiation supported better transfer to a novel context governed by the 

same processes. The researchers concluded that learning with concrete symbols 

encouraged learners to develop context bound interpretations that impeded transfer to 

new situations Notably, participants in the concrete training condition were more likely to 

give domain-specific, anthropocentric interpretations of the ants’ behavior (e.g. “one ant 
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scares the other away” or “the ants are tempted by both food piles” for the concrete group 

versus “animals move quickly to food they are close to” or “It helps to make an ant move 

quickly at first and then more slowly” for the abstract group). These analyses support the 

contention that students were using conceptual information contained in the symbols 

(thinking in terms of little ant communities) when trained using concrete versus abstract 

symbols. It appears that the perceptual information that counted in this case was the 

degree of symbolic iconicity with real ants and food.  This apparently operated via 

activating the anthropomorphic ant concepts instead of via some difference in raw 

sensory processing between instantiations.  

Overview of current experimental questions 

 The current experiments were designed to isolate the effects of conceptual 

information in arbitrary symbols from perceptual information using the modular 

arithmetic task from Sloutsky, Kaminski & Heckler (2005). Specifically, three 

hypotheses were tested: 

Hypothesis 1: Concreteness refers to the content communicated by a symbol, and 

this content can be either perceptual or conceptual in nature. Prior research has 

demonstrated the effects of perceptual information. The current research sought to isolate 

the effects of the conceptual information contained in symbols over and above the 

perceptual information that they contain. If the conceptually concrete symbols in these 

experiments show parallel patterns for supporting learning and transfer relative to 

abstract symbols (i.e. aiding initial learning but harming transfer relative to abstract 

symbols) then there is a face-valid argument that conceptual information acts similarly to 

perceptual information in this context (see Son & Goldstone, 2009). The implication 



  

 14 

would be that such conceptual information is indeed functionally concrete. The three 

experiments below tested this hypothesis by comparing the efficacy with which various 

conceptually concrete symbol sets promote learning and transfer with the Sloutsky task 

relative to abstract symbol sets. 

Hypothesis 2: Alignment of conceptual concreteness with to-be-learned content is 

an important factor. One major factor determining the effects of conceptual concreteness 

should be the degree to which relevant associated knowledge is aligned with the to-be-

learned structure. To the degree that the information is aligned with structure, then it 

should facilitate learning (see Bassok, Chase, & S. A. Martin, 1998; Kaminski et. al., 

2005, 2009) At the same time, this alignment is expected to effect transfer negatively 

because it is expected to lead learners to focus on surface knowledge instead of on the 

deep structure of the task (see Kaminski et. al., 2006b). To the degree that such 

information is actually misaligned or directly contrary to the to-be-learned content, then 

there should be competition between the to-be-learned association and prior knowledge. 

In such a case, a symbol that brings to mind misaligned information may demand an extra 

sort of inhibition to support learning. Because this misalignment has not been tested 

before, there were no strong predictions relative to transfer. Experiments 1 & 2 tested this 

hypothesis using Arabic numerals.  

Hypothesis 3 – Conceptual Concreteness should be manipulable. If concreteness 

depends in part on the strength of prior associations, then it follows that there should be 

an a priori expectation that it is manipulable. On the long-term view, such experience-

based differences would be predicted by well-documented differences in perception of 

identical stimuli based on expertise (see Bransford, Brown & Cocking, 1999; Chi & 
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Ceci,1987). In the short term, it seems that contexts that either strengthen or weaken 

preexisting links between a given signifier and the content associated with it should 

modulate the effects of concreteness. This has not been explicitly studied before, but 

there is an a priori case for such effect that follows from an information-based 

conception of concreteness. Experiments 2 and 3 examined this prediction for relevant 

concreteness, both by manipulating what prior knowledge is activated using well-known 

symbols (exp 2) and how much prior knowledge is developed using novel symbols (exp 

3). 
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CHAPTER II 

 

EXPERIMENT 1 

 

Experiment 1 sought direct evidence that conceptual content associated with a 

symbol could render a symbol concrete. Specifically, I investigated whether or not Arabic 

numerals function similarly to perceptually concrete symbols when teaching 

mathematically governed concepts. It is arguable that Arabic numerals are rendered 

concrete relative to many other symbols due to the information that they automatically 

communicate to adult learners. That such information is overlearned to the point of 

automaticity is evidenced by various examples of mathematical stroop effects (Bull & 

Scerif, 2001; Washburn, 1994) as well as neurological studies that show specialized brain 

activation in response to exposure to symbolic number (Cohen Kadosh & Walsh, 2009; 

Nieder & Dehaene, 2009). Theoretically, it follows that Arabic numerals may have 

acquired some experience-based concrete properties for adult learners. Experiments 1 & 

2 explored this possibility, searching for similar effects on performance for numerals as 

were observed for perceptual salience in Sloutsky et. al. (2005). In particular, the pattern 

is for concrete symbols to support initial learning, but for there to be a transfer advantage 

for initially learning with abstract symbols compared to concrete ones. The design was 

geared to address the question whether manipulating a symbol’s alignment with prior 

knowledge and usage affected learning and transfer over and above perceptual attributes. 

The experimental methodology closely followed that of Sloutsky et. al. (2005). 

Instead of using stimuli that varied on perceptual richness to manipulate concreteness, the 
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experiment used the conventional symbols 0, 1, and 2 as concrete symbols and the 

abstract symbols , ●, and ♦ as learning stimuli for instantiating the domain of addition 

modulo 3.3 As explained above, the numerals were considered to be the more concrete of 

the two groups, because people’s experience with them was expected to be very 

powerfully associated with prior mathematical knowledge, whereas the perceptually 

sparse shapes of the abstract set weren’t expected to have any strong and necessary 

associative connections with information relevant to the task.  

The domain was instantiated using the following three alternative symbol sets: an 

aligned concrete set (0, 1 & 2) with 0 defined as the identity; a perceptually identical 

misaligned concrete (2, 1 & 0), with 2 defined as the identity; and an abstract set ( , ,

), with  defined as the identity. The aligned set was so named because use of 0 as the 

identity element easily aligns with participants’ prior integer addition schemas. The 

misaligned set’s use of 2 as the identity was expected to compete with prior addition 

schemas (see figure 2). The abstract set was neither aligned nor misaligned with the to-

be-learned domain. It was hypothesized that familiarity with the conventional uses of 

previously known symbols would distract learners from underlying structure, with 

diverging effects for learning and transfer. 

 

Hypotheses 

Learning. It was expected that the aligned symbol set would promote superior 

learning relative to both the abstract and misaligned sets. On its surface, modular 

arithmetic shares several similarities with integer arithmetic. Hence, the aligned set was 

                                                
3 Mathematically speaking, a commutative group is a set on which a law of composition is defined, which 
is associative and has an identity element, and such that every element has an inverse (Artin, 1991). 
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expected to provide a learning boost by activating a preexisting addition knowledge, 

which communicates relevant aspects of the to-be-learned information (see Kaminski et. 

al., 2006a). The misaligned symbols were expected to impede learning relative to the 

aligned set. Although this set was also expected to activate integer arithmetic schemas, 

the object correspondences were misaligned between the set as used in the experiment 

and as used in typical integer addition (e.g. 2 is the identity so 2 and 0 yield 0 for the 

misaligned symbols,). This misalignment with the preexisting arithmetic schema was 

expected to require inhibition of prior knowledge, depressing learning. Finally, the 

abstract symbol set was not expected to activate any relevant knowledge, so it was 

anticipated to support initial learning superior to initial learning with misaligned symbols, 

though inferior to initial learning with the aligned concrete set.  

Transfer. Transfer from the abstract to the aligned set was expected to be superior 

when compared to transfer from the aligned to the abstract set. Initial learning with the 

abstract group was expected to allow the learner to acquire rules in a more 

decontextualized manner, supporting knowledge acquisition more in tune with the deep 

structure of the task. In contrast, initial learning with the aligned symbols was expected to 

impede transfer relative to initial learning with the abstract set, because the knowledge 

generated was expected to be tied to knowledge imported from preexisting integer 

arithmetic schemas (Goldstone & Sakamoto, 2003; Sloutsky et al., 2005). Integer 

arithmetic conflicts in some aspects with the structure of modular arithmetic even for 

aligned numerical symbols (most notably, arithmetic modulo 3 has a cyclical nature and 

lacks a well defined property of ordinality). Hence, the learning gains due to alignment 
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were expected to come at the expense of a somewhat impoverished understanding of the 

deep structure of the task, imposing a cost on transfer performance.  

As for the transfer between abstract and misaligned symbols, predictions were 

less certain. Again, initial learning with the abstract group was expected to support 

knowledge acquisition that is not tied to the specific symbols and therefore more 

facilitative to transfer. On the other hand, it might be that those who proved to be 

successful at learning with misaligned symbols despite the misalignment might actually 

acquire a better understanding of the underlying structure due to the task difficulty. For 

these participants, the misaligned symbol set might even support transfer performance as 

well as abstract symbols. 

 

Method 

 

Participants  

 Consent was obtained from 56 adults from the metropolitan Nashville community 

recruited through Vanderbilt’s SONA system. One participant was dropped from the 

study for failure to complete the experimental tasks. The final sample (n = 55) included 

many participants who were not Vanderbilt students (31%). Mean age for the sample 

25.5 years (range 18 to 55, SD = 7.0). Participants were paid $10 for participation.  

 
Design 

 The experiment was conducted in 5 phases presented over approximately one 

hour: 1) training with one symbol set (the learning set), 2) testing with that symbol set, 3) 

training with a second symbol set (the transfer set), 4) testing with that symbol set, and 5) 
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a series of follow up questions about the correspondences between the first and second 

symbol sets and strategies used to produce answers.  

The initial symbol set always served as the learning set for each participant, and 

the second set served as the transfer set. Participants were randomly assigned to one of 

four orders of symbol set presentation: abstract-then-aligned (n = 13); aligned-then-

abstract (n = 14); abstract-then-misaligned (n = 14); or misaligned-then-abstract (n = 14). 

 

Materials and Procedure 

The training phase introduced the rules governing the symbol systems. The 

relations between the elements of each symbol set were governed by the rules of a 

commutative algebraic group of order three and isomorphic to the integers under addition 

modulo three. The rules of the various sets are depicted in Figure 3. The goal of training 

was to teach the explicit rules presented in Figure 3 and to provide implicit exposure to 

the mathematical properties governing the set (e.g., associativity, commutativity, and the 

existence of the identity element and of inverse elements). Training for each of the three 

symbol sets was similar.  

The rules were introduced by fictional characters using separate cover stories for 

the abstract and the concrete symbol sets. The abstract set was presented as a symbolic 

language discovered on an archaeological search, per Sloutsky et. al. (2005). In this 

language, pairs of different symbols combined to yield a resulting symbol. Concrete 

(numeral) sets were presented as a new type of mathematics recently invented by a 

fictional mathematician. In this system, different pairs of numerals are “transformed” to 

yield a resulting numeral. Note that the concrete cover stories neither used typical names  
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Figure 3. Rules governing the modular arithmetic task 

 

for mathematical operations (e.g. add, subtract, etc.) nor used canonical symbols denoting 

mathematical operations (e.g. +, - , ∗, /, etc). Cover stories for aligned concrete and 

misaligned concrete sets were identical except for the object correspondences.  



  

 22 

 Participants completed the experiment individually, with all training and testing 

stimuli presented on a Mac PowerBook G4 laptop computer using Superlab 4 software 

(Cedrus Corporation, 2007). Participants progressed through the experiment in a self-

paced manner. During the training phase, the governing rules were presented one at a 

time and stated explicitly. For instance, the abstract training told participants that 

combining the symbols and ●always results in the symbol . Instead of explicitly 

mentioning mathematical properties of the operations (e.g. commutativity), the training 

session mentioned that ,● “gives the same result as” ●, . The concrete training 

sequence was very similar, with the differences note above (see Appendices A, B, and C 

for details).  

Each test phase consisted of 23 multiple-choice problems that required 

participants to apply the previously learned rules (see Figure 4 for sample problems). Due 

to a programming error, accuracy data for one of the items was not collected for half of 

all participants, so data analysis was based on 22 questions. For all symbol sets, the test 

items were completely isomorphic and were presented in the same order. Responses for 

the test phase items were recorded by computer.  

 A series of follow up questions was asked at the conclusion of the second test 

phase. Students were asked a) to indicate the appropriate object correspondences between 

the two learned symbol sets, b) to explain how they managed to determine each object 

correspondence, c) to indicate whether or not the task generally reminded them of 

something they’d had experience with in the past, d) to indicate whether or not the task 

reminded them of arithmetic and arithmetic properties specifically. Responses for the 

follow up questions were recorded by paper and pencil.  
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Figure 4. Sample problems used in the assessment 

 

 A series of follow up questions was asked at the conclusion of the second test 

phase. Students were asked a) to indicate the appropriate object correspondences between 

the two learned symbol sets, b) to explain how they managed to determine each object 

correspondence, c) to indicate whether or not the task generally reminded them of 

something they’d had experience with in the past, d) to indicate whether or not the task 

reminded them of arithmetic and arithmetic properties specifically. Responses for the 

follow up questions were recorded by paper and pencil.  
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Responses to the follow-up questions included in analysis were coded as 

described in the results section. Independent raters coded 20% of responses with 93% 

agreement. 

 

Measures 

The dependent variables were the numbers of questions answered correctly for 

each symbol set. Initial learning was indexed by overall accuracy on the 1st test block. 

Transfer was measured by examining order X symbol type interactions in a repeated-

measures model with symbol type (abstract or concrete) as a within-subject factor and 

order (abstract first or concrete first) as a between-subjects factor. Such an interaction can 

indicate that there were differences between symbols regarding the incremental boost that 

learning with the first symbol set gave to accuracy for the symbol learned second, and 

follow-up tests are necessary to determine if the interaction indicates this specific effect. 

Main effects for symbol and order were of secondary interest. Symbol effects indicate 

differences in accuracy between symbol types when performance on each is collapsed 

across order. Existence of order effects would indicate that learning with a particular 

symbol type first boosts overall accuracy across both trials in a given learning order 

compared to the alternative learning order. 

 

Results 

 In presenting the results, I first describe accuracy for initial learning with the 

different symbol sets. I follow this summary with an analysis of transfer. Finally, I 

explore the potential effects suggested by some of the exploratory follow-up questions.  
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Initial Learning 

 A univariate ANOVA was conducted to assess the effect of symbol type on initial 

accuracy. Initial learning score was the dependent variable and symbol type (abstract, 

aligned, and misaligned) served as the 3-level independent variable. Contrary to 

expectations, there were no differences in initial learning between groups F(2,55) = .81, p 

= .45, η2 = .03. In fact, the nonsignificant mean difference that appeared between initial 

learning on abstract and aligned symbols was in the wrong direction, with highest 

accuracy in the abstract condition (see Table 2),.  

 

Table 2. 

Initial Learning Accuracy For Each Symbol Type 

Initial Learning (full sample) 

1st Block Abstract Aligned Misaligned 

Mean 

(SD) 

16.48 

(5.20) 

14.57 

(5.64) 

14.71 

(5.43) 

 

 

Transfer 

Ceiling effects. There was an apparent problem with a ceiling effect for the 

measure that could potentially affect transfer scores. Sloutsky et. al. (2005) found similar 

results and performed a supplementary analysis with lower performers to account for the 

influence of ceiling effects, and found that the effects of the experimental manipulation 

were larger for lower performing participants than for the full sample.  
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To assess the issue in the current experiment, a conservative estimate of a 95% 

confidence interval around a ceiling score of 22 was created using a binomial 

approximation to the mean:  . Here p0 – the probability of 

getting the problem correct by chance – was set to .25 (This was a conservative estimate 

because three of the items on the assessment actually had p0 = .5). This yielded a CI of 

18-22 for a perfect score. In each of the four possible conditions, at least 43% of 

participants scored within the confidence interval for perfection (see Table 3). Thus, it 

does seem that the posttest had a compromised ability to show increases from the 

learning to transfer trials. To deal with the compressed variability on the top end of the 

spectrum, two sets of data analyses were conducted for transfer: one based on the full 

sample and one based on the lower performing participants after conducting median splits 

for initial learning accuracy for each of the four possible learning orders. This median 

split on initial learning scores is appropriate for analysis of transfer, because it amounts to 

selecting on an independent variable (initial learning accuracy), which does not introduce 

bias (King, Keohane & Verba, 1994). The transfer analyses reported below will generally 

be those conducted on the full sample with supplemental commentary on low performing 

sample where appropriate. 

It was expected that the abstract symbol set would support better transfer to the 

aligned set than vice versa. It was less clear if the abstract symbols would support better 

transfer to misaligned symbols than vice versa. Because no participant saw both aligned 

and misaligned symbol sets, evaluation of transfer is broken down by type of concrete 

symbol learned. This ultimately results in analysis of two separate pairs of conditions: a) 

abstract-then-aligned vs. aligned-then-abstract; and b) abstract-then-misaligned vs. 

! 

CI = p ±1.96 p0(1" p0)
n
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misaligned-then-abstract. Two sets of repeated measures ANOVAs were conducted, 

using symbol type (abstract or concrete) as a within subjects factor and order (abstract 

first or concrete first) as a between subjects factor. These separate analyses paralleled 

those conducted in Experiments 1 and 2 of Sloutsky et. al. (2005). 

 

Table 3. 

Percent of Participants scoring ≥18 on Initial Learning Set by Condition  

Order 1st  

     2nd  

Abstract→ 

Aligned 

Aligned→  

Abstract 

Abstract→  

Misaligned 

Misaligned→ 

Abstract 

% Scoring ≥18 69.2 42.9 42.9 42.9 

Median cut 

score 

<20 <18 <18 <16 

Proportion of 

sample 

remaining 

6 of 13 

46.2% 

8 of 14 

57.1% 

 

8 of 14 

57.1% 

 

8 of 14 

57.1% 

 

 

Abstract vs. Aligned. Overall, there was no main effect for order or symbol, 

F(1,25) = 1.32, p = .26, η2= .05 and F(1,25) = .41, p = .53, p = .26, η2= .30, respectively. 

As predicted, there was a significant symbol X order interaction, F(1,25) = 10.80, p < 

.01, η2= .30. Follow up tests indicated that there were significantly larger differences in 

performance for aligned symbols as a function of learning order than for abstract 

symbols. The participants who learned with abstract symbols first performed significantly 

better on the aligned symbols than those who learned the aligned symbols initially, t(25) 
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= 2.39, p = .03 (see Table 4). In contrast, there was no difference in accuracy for abstract 

symbols between learning orders, t(25) = .13, p = .90. In summary, learning with abstract 

symbols first boosted later learning with aligned symbols, but learning with aligned 

symbols first did not aid later learning with abstract ones (see Figure 5). As expected, 

these effects were even stronger and in the same direction for lower performing 

participants. 

 

Table 4. 

Accuracy by Order for Different Learning Groups 

 

The transfer results with the abstract-aligned pairing closely resemble the transfer 

results from the abstract-perceptually rich comparison of Sloutsky et. al., 2005. This 

Order 
Type of Concrete Symbol Symbol Type 

Abstract 1st Concrete 1st 

Abstract 
17.15 

(5.34) 

17.43 

(5.42) 
Aligned 

Aligned 
19.08 

(3.93) 

14.57 

(5.64) 

    

Abstract 
15.86 

(5.19) 

18.07 

(3.75) 
Misaligned 

Misaligned 

 

16.43 

(6.16) 

14.71 

(5.43) 
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serves as one instance in which the conceptual content tied to an arbitrary symbol (Arabic 

numerals) had very similar effects on learning and transfer as perceptual concreteness. 

  

 

 

  

 

 

 

Figure 5. Transfer Results for Abstract vs. Aligned Symbols 

 

 Abstract vs. Misaligned. There was no main effect for order., F(1,26) = .02, p = 

.89, η2 < .01. There was a nonsignificant trend for somewhat higher overall accuracy with 

abstract symbols than with misaligned symbols, F(1,26) = 3.46, p = .07, , η2 = .12. 

Continuing the pattern of stronger effects for low performers, this trend toward an effect 

for symbol type reached significance with the lower performing groups, F(1,14) = 5.87, p 

= .03, η2 = .30. This finding was in accord with the general hypothesis that should be a 

decrement for learning with misaligned symbols relative to abstract and aligned ones. 

There was also a significant symbol X order interaction, F(1,26) = 6.87, p = .01, η2= .21. 

Follow up tests, however, showed no large differences in performance for misaligned 

symbols as a function of learning order when compared to abstract symbols. Instead, 

accuracy was equivalent regardless of order both for abstract, t(26) = 1.29, p = .30, and 

for misaligned symbols t(26) = .78, p = .44 (see Figure 6). There was no differential 
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transfer; instead both symbols equally supported transfer each to the other. It appears that 

the interaction emerged because performance on each symbol type was somewhat higher 

when it was learned second than when it was learned first.  

 

Figure 6. Transfer Results for Abstract vs. Misaligned Symbols 

 

 The results for the misaligned versus abstract pairing were different from those 

for the aligned versus abstract pairing. In particular, there was a transfer advantage for 

abstract symbols relative to aligned symbols, but there was no such advantage relative to 

misaligned symbols. The difference is striking because the aligned sets (0, 1, 2) and 

misaligned sets (2, 1, 0) were perceptually identical. If the effects of concrete versus 

abstract symbols could be accounted for by perceptual differences, then there should have 

been no differences between the aligned and misaligned symbols vis-à-vis abstract ones. 

Therefore, differences between pairings could only be due a) to prior knowledge that 

subjects imported into the learning situation and b) to the way that prior knowledge is 

activated.  
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Follow-up Questions 

Of the series of paper and pencil follow up questions that each participant 

received, two items were added to the analysis for exploratory purposes. These were 

remind-of-arithmetic, the degree to which the task reminded participants of arithmetic as 

indicated on a likert scale from 1 (strongly disagree) to 4 (strongly agree); and 

interchangeable, whether or not participants explicitly recognized that the non-identity 

elements were interchangeable (1 = yes).  

This second variable, interchangeable, provides some insight into the degree to 

which participants began to understand the deep structure of the task. Owing to the nature 

of modular arithmetic, the non-identity elements both a) generate each other (e.g. ●,● →

 and , →●) and b) act as inverses, yielding the identity when combined (e.g. ●,  

→ ). This means that the non-identity element in one set can be mapped 

interchangeably to the non-identity elements in another set. Hence, for the aligned set 

(0,1,2), the 1 can be mapped either to the ● or the . By contrast, the 0 can only be 

properly mapped to the . Explicit recognition of this fact indicates a deeper 

understanding of the task structure than the belief that identity elements map in a strict 

one-to-one fashion.  

As above, repeated measures ANCOVAs were conducted on assessment scores, 

using symbol type as a within subjects factor, presentation order as a between subjects 

factor, and remind-of-arithmetic and interchangeable as covariates. Preliminary analyses 

showed that interchangeable was the only of the two covariates to have significant 

effects for the Abstract vs. Aligned pairs. Both interchangeable and remind-of-arithmetic 
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had significant effects for the Abstract vs. Misaligned pairs. The nonsignificant 

covariates were dropped from the analyses, and the ANCOVAs were rerun.  

Abstract v Aligned Sets. Interchangeable was not contingent upon learning order, 

χ2(1,27) = 1.45, p = .23. It significantly predicted accuracy for the Abstract vs. Aligned 

groups, F(1, 24) = 30.90, p < .01, η2 = .56, with participants who recognized that the 

mappings of the non-identity elements were interchangeable performing significantly 

better than those who did not (see Table 5). This effect was larger and in the same 

direction for low performers.  

 

Table 5 

Average Accuracy Across Trials by Recognition of Interchangeability 

 Condition 

 
Abstract-

Aligned 

Aligned-

Abstract 

Abstract- 

Misaligned 

Misaligned – 

Abstract 

Interchangeable  
19.73 

(2.38) 
18.44 

(3.02) 
19.93 

(1.59) 
18.93 

(2.47) 

Not Interchangeable 
9.25 

(2.47) 
11.60 

(4.99) 
12.36 

(5.39) 
13.86 

(3.76) 

 

 

Abstract vs. Misaligned Sets. There was also a main effect for interchangeable for 

the Abstract vs. Misaligned groups, F(1, 24) = 14.21, p < .01, η2 = .37. Participants who 

recognized that the mappings of non-identity elements were interchangeable were more 

accurate than those who did not (see Table 5). There was also a main effect for remind-
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of-arithmetic, F(1, 24) = 8.53, p = .01, η2 = .26. Participants who were reminded of 

arithmetic were more accurate than those who did not. This difference was qualified by a 

symbol X remind-of-arithmetic interaction F(1, 24) = 5.19, p = .03, η2 = .18. Further 

analysis indicated that participants who were more reminded of addition scored higher on 

misaligned symbols than those who were not, B = 2.68, t(24) = 3.67, p < .01, but 

equivalently on abstract symbols, B = 1.03, t(24)=1.41, p =.17. Again, effects were 

stronger and in the same direction for low performing participants. 

 

Discussion 

Contrary to my hypotheses, there were no differences in initial learning across 

symbol types. In fact, what difference there was between aligned and abstract symbol sets 

was even in the wrong direction. This may have resulted because the concrete symbols 

failed to adequately activate preexisting addition schemas. Experiment 2 explores this 

possibility. Although there were no difference in initial accuracy for different symbol 

types, there was a trend suggesting an overall learning decrement for misaligned concrete 

symbols when compared to learning for abstract symbols when performances with each 

were collapsed across the two different orders of learning. Although this result does not 

confirm the hypothesized decrement expected for the misaligned set on initial learning, it 

does suggest that the hypothesis may warrant further investigation. 

Regarding transfer, abstract symbols seemed to support transfer to aligned 

symbols better than vice versa. As predicted, participants performed better with the 

aligned symbols after learning the abstract symbols first, but performed equivalently on 

the abstract symbols, regardless of presentation order. For the misaligned vs. Abstract 
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groups, however, neither symbol type supported transfer better or worse to the other. 

Instead, learning with one symbol type was equally likely to boost later performance on 

the other. 

Follow-up questions indicated that explicit recognition of the interchangeability 

of non-identity elements was a large predictor of performance. This was to be expected as 

such recognition indicated better appreciation for the deep structure of the task. 

Moreover, remindings of arithmetic boosted performance with misaligned symbols. This 

was somewhat surprising as the hypothesized decrement should be due to such prior 

knowledge. It bears mentioning that ‘arithmetic’ is not at all synonymous with ‘addition’, 

and it is possible that this distinction may in some way account for the finding. 

The most important finding of this experiment bears repeating: There was a 

transfer advantage for abstract symbols relative to aligned symbols, but not relative to 

misaligned symbols, even though the aligned symbols (0, 1, 2) and misaligned symbols 

(2, 1, 0) were perceptually identical. The only difference between the sets lay in the way 

that rules governing the sets were relatively aligned or competing with established 

arithmetic schemata. These transfer performance differences between the aligned and 

misaligned symbol sets suggest that symbolic concreteness is indeed affected by prior 

experience with a given symbol.  
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CHAPTER III  

 

EXPERIMENT 2 

 

Experiment 1 provided evidence that alignment of numerical symbols with the 

structure the learning task could affect transfer for the modular arithmetic task. I 

hypothesized that this was because the presence of numerals activated participants’ 

preexisting integer arithmetic schemas, and that this activated prior knowledge acted as a 

form of concreteness – that is, information communicated by the symbols – that affected 

performance. In mirroring the results obtained by manipulating perceptual richness in 

Sloutsky et. al., (2005) and Kaminski et. al. (2006a), Experiment 1 provided evidence 

that under certain circumstances, the conceptual information associated with a symbol 

can operate similarly to perceptual concreteness in supporting initial learning while 

impeding transfer when compared to abstract symbol sets. Although the results of 

Experiment 1 directly support the importance of alignment, they only provide 

circumstantial evidence of the proposed activation mechanism as a driver of the effects. 

The purpose of experiment 2 was to provide further evidence that the activation of prior 

knowledge is indeed a factor in determining how effectively concrete a symbol is in any 

given context. This experiment manipulated an initial warm-up to activate or deactivate 

participants’ prior knowledge of integer arithmetic to modulate the effects of 

concreteness observed in Experiment 1. Beyond providing evidence for the role of 

alignment in conceptual concreteness, activation by brief practice could provide evidence 
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that the effects of concreteness on learning and transfer are manipulable in the immediate 

short term. 

 

Hypotheses 

It should be noted that neither the addition warm-up nor the font comparison 

warm-up was conceived to duplicate Experiment 1. In the case of the addition warm-up, 

activation of preexisting addition schemas was expected to be higher, increasing the 

effects of conceptual concreteness. On the other hand, the font comparison warm-up was 

expected to deactivate mathematical knowledge generally, thereby decreasing the effects 

of conceptual concreteness. This new warm-up manipulation yielded expectations that 

diverged a bit from those of Experiment 1. 

Learning. It was hypothesized that activating conventional addition schemas with 

an addition warm-up would improve initial learning with aligned symbols and impede 

initial learning with misaligned symbols while leaving initial learning with abstract 

symbols unaffected. Consequently, it was expected that initial learning with aligned 

symbols would be superior to that with abstract symbols, which in turn was expected to 

be superior to that with misaligned symbols (aligned > abstract > misaligned). This 

hypothesis was tempered by cognizance of the high number of participants scoring at 

ceiling in Experiment 1. Because of anticipated ceiling effects, it was expected that the 

instrument would not be able to detect differences between the initial learning with 

aligned and abstract symbol sets, but should detect differences between those two sets 

and the misaligned set (aligned = abstract > misaligned). In contrast, the font comparison 

warm-up was expected to deactivate prior math knowledge, encouraging participants to 
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view the numerical stimuli simply in terms of shape. Hence accuracy on initial learning 

was expected to be equivalent across groups (i.e. aligned = abstract = misaligned). 

Transfer. It was further predicted that transfer effects from the abstract to aligned 

groups would be stronger following an addition warm-up. It was expected for transfer to 

be greater from the abstract condition to the aligned condition than vice versa, despite the 

fact that initial scores on aligned symbols was expected to be greater. In particular, I 

expected the activation of prior schema to further impede acquisition of the deep 

structure of principles governing the task when learning with aligned symbols, causing a 

transfer deficit relative to learning with abstract symbols. I expected that there would 

continue to be no differential transfer for the abstract vs. misaligned groups. Abstract 

symbols typically yield similar accuracy rates independent of learning order, and 

misaligned symbols are not expected to benefit much because of the competition 

instigated by the addition warm-up. 

Following the font comparison warm-up, I expected for the transfer differences 

between abstract and aligned to be attenuated compared to following an addition warm-

up. I expected that the misaligned vs. abstract comparison would continue to fail to show 

preferential transfer in any given direction. This was because the deactivation of 

numerical knowledge induced by the font comparison warm-up was expected to render 

the Arabic numeral sets relatively more abstract, yielding transfer that was roughly 

equivalent across symbol types. 
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Method 

 

Participants 

 Participants were undergraduate students from Vanderbilt University recruited for 

course credit (n =134). Self-reported mean math SAT score was 675 (range 560 to 800, 

SD = 58.7) and mean math ACT was 30 (range 20 to 36, SD = 3.9). 

 

Design and procedure 

 The procedure was identical to that of Experiment 1 with one exception. A warm-

up phase was added prior to the initial training phase of the experiment. Students were 

randomly assigned to either an addition warm-up or to a font comparison warm-up. After 

completing the warm-up, participants in both the addition and font groups proceeded 

through a procedure identical to that of Experiment 1. 

Participants in the addition group solved 8 sets of 15 two-addend addition 

problems (e.g. 2 + 0 = _ see Figure 7) prior to engaging in the modular arithmetic tasks. 

Problems were presented one at a time on a computer monitor, and participants entered 

answers via keystroke. Participants were allowed three seconds to solve each problem 

before the screen progressed to the next problem, but were encouraged to solve the 

problems as quickly and accurately as possible. All problems involved pairs of single 

digit addends from 0 to 9. Sixty percent of all trials involved 0, 1, or 2 as addends in 

order to ensure ample activation of these particular experimental stimuli as associated 

with addition. The font comparison warm-up employed the same pairs of digits as the 

addition problems, but instead of being asked to add, participants were asked to press a 
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key indicating whether or not numerals were of the same font (e.g. decide if the following 

digits are displayed in the same font 2 0).  In sum, Experiment 2 crossed the addition vs.  

 

 

Figure 7. Addition and Font Comparison Warm-up Stimuli 

 

font comparison warm-up dimension the four presentation orders from Experiment 1, 

abstract-then-aligned (n = 34); aligned-then-abstract (n = 33); abstract-then-misaligned 

(n = 33); and misaligned-then-abstract (n = 34). 

All assessments, scoring methods, and coding schemes were identical to those of 

Experiment 1. Independent raters coded 20% of responses to the follow-up questions 

included in analysis with agreement ranging from 92% to 100%. 

 

Results 

 First, I describe a manipulation check conducted in order to verify a) whether 

warm-up affected activation of prior arithmetic schemas and b) whether subjective 

reports of such activation were predictive of accuracy. Next, differences in initial learning 

with the different symbol sets are described, with attention to difference induced by the 

warm-up tasks. This summary is followed by an analysis of transfer effects. Finally, I 

examine potential differences in participant recognition of deep structure as suggested by 

answers to the exploratory follow-up questions.  
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Subjective reports of schema Activation 

Although there was no direct measure for whether or not the warm-up activated 

the integer addition schema, one of the paper and pencil follow-up questions asked, “Did 

the task remind you of anything you’ve learned in the past?” Responses were dummy 

coded into the binary variable reminded-addition to indicate whether or not respondents 

answered that the task reminded them of addition. This open-ended question was asked 

upon completion of training and testing on both symbol sets. Although it is an imperfect 

indicator of schema activation, such a reflective self-report of subjective experience can 

provide tentative evidence for whether or not the warm-up manipulation worked as 

planned.  

A Chi-square test was conducted to confirm whether or not warm-up influenced 

likelihood of a participant reporting being reminded of addition. As expected, the data 

suggest that the addition warm-up may have increased the likelihood that the task 

reminded the participants of addition when compared to the font comparison task, 

χ2(1,134) = 11.94, p < . 01 (See Table 6).  

 

Table 6 

Participants Reporting Being Reminded of Addition by Warm-up 

 

 

Warm-up Yes No 

Font Comparison 7 58 

Addition 25 44 
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As a secondary check, a one-way ANOVA was performed on the entire sample 

with initial learning score as the dependent variable and symbol type and remind-addition 

as the independent variables. There was a main effect for remind-addition, F(1,132) = 

6.77, p = .01 η2= .05, so that participants who reported being reminded of addition scored 

higher (M = 18.44, SD = 4.30) than those who did not (M = 15.77, SD = 5.26).  

 These data suggest that the manipulation did lead to differences in activation of 

participants’ addition schemas. Moreover, the overall accuracy differences between those 

who were reminded of addition and those who were not support the view that activation 

does indeed affect performance on the task.  

 

Initial Learning 

 Initial learning was expected to exhibit a pattern in which aligned = abstract > 

misaligned (assuming ceiling effects in the aligned and abstract conditions) after the 

addition warm-up and an alternative pattern in which aligned = abstract = misaligned 

after the font comparison warm-up. To examine these effects, a univariate ANOVA was 

conducted with accuracy on initial learning trials as the dependent variable, type of 

symbol as a 3-level independent variable (abstract, aligned, or misaligned), and type of 

warm-up as a 2-level independent variable (font comparison or addition). 

 Contrary to predictions, there was no main effect for warm-up, F(1,128) = .84, p 

= .364, η2 = .01. There was also no main effect for symbol, though there was a 

nonsignificant trend in the predicted direction, F(2,128) = 2.44, p = .09, η2 = .04. 

Because there was already a specific a priori prediction for a symbol effect, a planned 

contrast was analyzed to examine the relation further. The single degree of freedom 
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contrast (.5*abstract, .5*aligned, -1*misaligned) was designed to test for a decrement due 

to misaligned symbols relative to the others. In particular, a contrastXwarm-up effect was 

expected whereby the contrast would not be significant for the font comparison warm-up, 

but would be significant for the addition warm-up. 

Contrary to hypotheses, there was a main effect for the contrast Ψ(.5, .5, -1) , 

F(1,130) = 4.66, p = .03, η2 = .04, indicating that initial learning accuracy was lower for 

misaligned symbols than for abstract and aligned symbols. There was, however, no 

contrastXwarm-up interaction, F(1,130)=1.95, p=.17, η2 = .02. This finding was curious 

given the patterns observed in the data (see Figure 8. Visual inspection suggests that 

performance across symbols was equivalent for those receiving the warm-up task, but 

different for those receiving the addition task. For purposes of exploration, separate 

univariate ANOVAs examining the effect of symbol type on learning were run, and these 

results also suggested effects for symbol with the addition group, F(2,66)=3.45, p=.04, η2 

= .10, but not for the font comparison group, F(2,62) = .30, p=.74, η2 = .01. Thus, 

although there was no warm-upXsymbol interaction that emerged from the omnibus  

 

 

Figure 8. Initial learning performance by symbol type and warm-up 
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ANOVA, there do seem to be small differences in initial accuracy that stemmed from the 

warm-up manipulations. These relations warrant further study.  

 

Transfer 

As in Experiment 1, there was an apparent problem with ceiling effects for the 

assessment, especially with abstract and aligned symbols following the addition warm-

up. A conservative estimate of a 95% confidence interval around a ceiling score of 23 

was created using a binomial approximation to the mean:  

where p0 represents the probability of chance success, and n represents the number of 

trials in the assessment. For the confidence interval estimate, p0 was set to .25 (This was a 

conservative estimate because three of the items on the assessment actually had p0 = .5). 

This yielded a CI of 19-23 for a perfect score. In each of the four possible conditions, at 

least 35.3% of participants scored within the confidence interval for perfection (see 

table). As a result, the posttest had a compromised ability to show increases from the 

learning to transfer conditions. To deal with the compressed variability on the top end of 

the spectrum, a secondary data analysis was conducted for lower performing participants 

based on median splits for each of the four conditions as in Experiment 1. The transfer 

analyses reported below will generally be those conducted on the full sample with 

supplemental commentary on low performing sample where appropriate. 

As in Experiment 1, the evaluation of transfer was broken down into analyses of 

pairs of learning order by concrete symbol learned. This ultimately resulted in analysis of 

two separate pairs of conditions: a) abstract-then-aligned vs. aligned-then-abstract; and b) 

! 

CI = p ±1.96 p0(1" p0)
n
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abstract-then-misaligned vs. misaligned-then-abstract. Two sets of repeated measures 

ANOVAs were conducted, using symbol type as a within subjects factor and order 

(abstract first or concrete first) and warm-up type (addition or font comparison) as 

between subjects factors. Initial analyses indicated no significant effects for warm-up, so 

the variable was dropped from the model and the ANOVAs were rerun. 

Abstract vs. Aligned. There was no main effect for order. Collapsing across 

symbol type, accuracy for the Aligned-then-Abstract group was equivalent to that for the 

Abstract-then-Aligned group, F(1,65) = .16, p = .69, η2 < .01. There was no main effect 

for symbol, indicating that overall accuracy with aligned symbols was equivalent to 

overall accuracy with abstract symbols when scores were collapsed across the between 

subjects variable of order F(1,65) = 1.49, p = .23, η2 = .02 (see Table 8).  

There was a significant symbol X order interaction, F(1, 63) = 23.21, p < .01, η2= 

.26. As predicted, subsequent analysis showed somewhat larger differences in 

performance for aligned symbols as a function of learning order than for abstract 

symbols. There was a trend for participants who learned in the abstract-then-aligned 

conditions to perform significantly better on the aligned symbols than those who learned 

the aligned symbols initially, t(65) =1.79, p = .08. In contrast, there was no difference in 

accuracy for abstract symbols across conditions, t(65) = 1.04, p = .30. This pattern 

emerged more strongly amongst lower performers with no difference for abstract scores, 

t(35) = 1.25, p = .22, but an increase in accuracy for aligned symbols when initial 

learning was abstract symbols, t(35) = 2.36, p = .02. Hence, learning with abstract 

symbols seemed to have somewhat boosted later learning with aligned symbols compared 
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Table 7. 

Percent of Participants scoring ≥19 on Initial Learning Set by Condition 

   
Warm-

up 

Order 1st  

   2nd  

Abstract→ 

Aligned 

Aligned→  

Abstract 

Abstract→  

Misaligned 

Misaligned→ Abstract 

% Scoring ≥19 37.5 56.3 37.5 35.3 

Median cut score < 19 < 20 < 19 < 17 

Font 

Compari

son Proportion of sample 

remaining after split 

10 of 16 

62.5% 

10 of 16 

62.5% 

10 of 16 

62.5% 

10 of 17 

58.8% 

% Scoring ≥19 83.3 64.7 47.1 35.3 

Median cut score  < 20 < 20  < 19 < 16 

Addition 

Proportion of sample 

remaining after split 

8 of 18 

44.4% 

9 of 17 

52.9% 

9 of 17 

52.9% 

9 of 17 

52.9% 
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Table 8. 

Accuracy by Order for Different Learning Groups 

 

 

to learning with aligned symbols first. In contrast, learning with aligned symbols first did 

not aid later learning with abstract ones to the same extent (see Figure 9). As expected, 

these effects were even stronger and in the same direction for lower performing 

participants. As in Experiment 1, the transfer results with the abstract vs. aligned pairing 

parallel the transfer results from the abstract-perceptually rich comparison of Sloutsky et. 

al. (2005). 

Abstract vs. Misaligned. There was no main effect for order., F(1,65) = .07, p = 

.80, η2 < .01. There was a main effect for symbol such that there was higher overall 

performance with abstract symbols than with misaligned symbols, F(1,65) = 7.28, p = 

.01, η2 = .10. Once again, this effect was stronger among low performers (see Figure 10). 

 

Order 
Type of Concrete Symbol Symbol Type 

Abstract 1st Concrete 1st 

Abstract 17.35 18.45 
Aligned 

Aligned 19.24 17.33 

    Abstract 16.21 17.67 

Misaligned Misaligned 

 
16.85 14.76 
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Figure 9. Transfer Results for Abstract vs. Aligned Symbols 

 

There was also a significant symbol X order interaction, F(1,65) = 7,28, p = .01, 

η2= .10. Follow up tests, however showed that performance was equivalent regardless of 

order both with abstract symbols, t(65) = 1.17, p = .25, and with misaligned symbols, 

t(65) = 1.61, p = .11. As predicted, there was no differential transfer; instead both abstract 

and misaligned symbols equally supported transfer each to the other. It appears that the 

interaction emerged because performance on each symbol type was somewhat higher 

when it was learned second than when it was learned first.  

 

 

 Figure 10. Transfer Results for Abstract vs. Misaligned Symbols 
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Follow-up Questions 

The follow-up items remind-of-arithmetic and interchangeable were added to the 

analysis for exploratory purposes. As above, repeated measures ANCOVAs were 

conducted on assessment scores, using symbol type as a within subjects factor, 

presentation order as a between subjects factor, and remind and interchangeable as 

covariates. Interchangeable was the only covariate for which effects emerged, so remind-

of-arithmetic were dropped from the model and the ANCOVAs were re-run. 

 Abstract vs. Aligned sets. For this group, the likelihood of recognizing 

nonidentity interchangeability was contingent upon learning order χ2(1,67) = 9.34, p < 

.01, (see Table). Those who learned on abstract symbols first were more likely to 

recognize interchangeability than those who first learned on aligned symbols. This means 

that participants who learned with aligned symbols first were less likely to explicitly note 

this aspect of the deep structure of the task than those who first learned with abstract 

symbols. This finding is in accord with the prediction that learning with aligned symbols 

would impede appreciation for the deep structure of the task. It may also help explain the 

relative transfer advantage for abstract symbols relative to aligned ones. 

The contingency of interchangeable upon learning order presents the possibility 

that interchangeable may be causally related to learning order for the abstract vs. aligned 

sets. If this is the case, then collinearity between interchangeable and order complicates 

interpretation of the statistical tests. This covariate should be explicitly analyzed with a 

design aimed at unpacking its causal relations. 

 Abstract vs. Misaligned sets. The likelihood of recognizing nonidentity 

interchangeability was not contingent upon learning order for this set of symbols, 
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χ2(1,67) = .13, p = .72 (see Table 9). Participants were equally as likely to acknowledge 

this aspect of the deep structure of the task when they learned with misaligned symbols 

first as they were when they learned with abstract symbols first. This is consistent with 

the possibility that misalignment of the task with prior knowledge encouraged 

participants to abandon prior knowledge when trying to understand the task.  

 

Table 9 

Number of Participants Recognizing Interchangeability by Order of Learning 

 

 

Inserting interchangeable into the transfer analysis for abstract vs. misaligned sets 

does not change the significance or direction of any of the effects of the original analysis. 

Thus, it is much more straightforward to interpret the analysis. Those who recognized the 

interchangeability of nonidentity elements scored higher than those who did not, F(1,64) 

= 30.48, p < .01, , η2 = .32 (see Table 10). 

 

  Recognized Non-Identity 

Interchangeability 

  No Yes 

Abstract 1st  11 23 
Abstract vs. Aligned 

Aligned 1st  23 10 

    Abstract 1st  17 16 
Abstract vs. Misaligned 

Misaligned 1st  19 15 
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Table 10. 

Average Accuracy Across Trials by Recognition of Interchangeability 

 Condition 

 
Abstract-

Aligned 

Aligned-

Abstract 

Abstract- 

Misaligned 

Misaligned – 

Abstract 

Interchangeable  
20.02 

(1.75) 

19.25 

(3.82) 

20.47 

(2.16) 

18.13 

(3.70) 

Not Interchangeable 
14.68 

(5.06) 

17.30 

(4.38) 

12.82 

(4.97) 

14.71 

(4.29) 

 

 

Discussion 

Initial learning was lower with misaligned symbols. Moreover this difference 

appeared to be greater for the addition warm-up condition than for the font comparison 

warm-up. This suggests that the activation of relevant prior knowledge modulated the 

effects of conceptual concreteness in this case. 

The transfer finding were very similar to those in Experiment 1. Abstract symbols 

supported transfer to aligned symbols better than vice versa. As predicted, participants 

performed somewhat better with the aligned symbols after learning the abstract symbols 

first, but performed equivalently on the abstract symbols, regardless of presentation 

order. For the misaligned vs. Abstract groups, however, neither symbol type supported 

transfer better or worse to the other. Instead, learning with one symbol type was equally 

likely to boost later performance on the other. 



  

 51 

Follow-up questions indicated that explicit recognition of the interchangeability 

of non-identity elements was a large predictor of performance. Moreover, recognition of 

this interchangeability was contingent upon learning order for the aligned vs. abstract 

groups. It seems that those who got aligned concrete symbols first were less likely to 

recognized this interchangeability than those in other conditions. Still performance was at 

least as high for these participants as it was for others. This finding was consistent with 

the findings of Kaminski et. al., (2006b), which found that those who learned with 

perceptually concrete symbols were less able to recognize the structure of the task in new 

forms after learning with aligned perceptually concrete symbols. This raises the 

possibility that the processes supporting accuracy with aligned symbols may be different 

from those supporting accuracy with abstract symbols. 



  

 52 

CHAPTER IV  

 

EXPERIMENT 3 

 

The purpose of this experiment was to investigate the effects of irrelevant 

conceptual concreteness on learning and transfer. Experiments 1 & 2 provided evidence 

that the conceptual information associated with symbols could affect learning and 

transfer for the modular arithmetic task. Notably, the concrete symbols used for the task 

were Arabic numerals which contained conceptual information that was in some way 

relevant to the learning tasks – be it aligned or misaligned. This leaves open the question 

of whether irrelevant conceptual concreteness – that is conceptual information that is 

completely unrelated to the learning task – might have effects on learning and transfer. 

This experiment examined these relations, once again controlling for the perceptual input 

of the symbols while manipulating the conceptual information communicated by the 

symbols.  

In this case the domain was instantiated using the two alternative symbol sets for 

learning – a meaningful concrete set and a perceptually identical empty concrete (see 

Table 11) – and using a set identical to the abstract sets used in Experiments 1 & 2 to 

measure transfer. The meaningful set was so named because it was expected that the 

label and interpretation of the symbols would imbue them with more conceptual 

information relative to the empty symbols.  

 

Hypotheses 
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Learning. It was expected that the meaning associated with the solutions for the 

meaningful group would render the symbols effectively more concrete than in the empty 

condition. Likewise, stimuli in the empty condition, because they were not given labels, 

were expected to communicate less information and were therefore more abstract.  

 

Table 11. 

Abstract, Meaningful, and Empty Stimuli for Experiment 3 

 

Symbol 
Identity Element Non-Identity Elements 

Learning Symbols 
         

Label for 

Meaningful 

Group 

Hallway mirror as 

seen by a crawling 

baby 

A man who’s caught 

his bowtie in an 

elevator 

An alien in a flying 

saucer signaling a left 

turn 

    Transfer Symbols 

 
 

 

 

 

Because the concreteness was not relevant to the learning domain, there should be 

no support to boost learning accuracy with meaningful symbols relative to the empty 

ones. In fact, the concreteness of the meaningful symbols might even impose an extra 

processing load that slow initial learning. Thus, it was expected that initial accuracy for 

the empty group would be greater than or equal to that of the meaningful group. This 
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would parallel the finding in Experiment 3 of Sloutsky et. al. (2005) that increasing 

irrelevant perceptual concreteness can impose costs on learning. 

 Transfer. The empty symbols were expected to support transfer better than 

meaningful symbols because they are relatively more abstract. The names associated with 

the meaningful group were expected to make the knowledge supported by such symbols 

more context bound and thusly less transportable. On the other hand, the empty symbols 

– because they don’t communicate extraneous information – were expected to allow 

participants to pay more attention to the deep structure of the task at hand. 

 

Method 

 

Participants 

 Consent was obtained from 50 undergraduate students from Vanderbilt University 

recruited for course credit. Of the 50, two were dropped from the analysis because they 

had participated in earlier versions of the experiment that employed tasks identical to the 

current transfer task. Mean math SAT score obtained from the registrar was 666 (range 

560 to 800, SD = 54.8) and mean math ACT was 29 (range 18 to 35, SD = 3.6). 

 

Design 

 The experiment was conducted in 6 phases presented over approximately one 

hour: 1) a brief introduction to the stimuli used in the initial learning task (functioned as 

the experimental manipulation), 2) training with one symbol set (the learning set), 3) 

testing with that symbol set, 4) training with a second symbol set (the transfer set), 5) 
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testing with that symbol set, and 6) a series of follow up questions about the 

correspondences between the first and second symbol sets and strategies used to produce 

answers. Participants completed the experiment individually, with all training and testing 

stimuli presented on a computer in a self-paced manner. 

 

Procedure 

 The introductory phase was intended to introduce the participants to the stimuli in 

a way that would seem independent of the training task to follow. Participants were 

randomly assigned to either receive empty (n = 25) or meaningful (n = 23) versions of the 

initial training stimuli. After assignment to group, participants were given four minutes to 

study eight novel stimuli adapted from Price (2000). The stimuli, known as ‘droodles’ (a 

combination of doodle and riddle), were novel ambiguous drawings that have associated 

names or solutions that make the drawings sensible (see example). Both groups studied 

stimuli that were identical with one exception: those in the meaningful group were asked 

to study pictures paired with their associated names, and those in the empty group were 

asked to study pictures without names. Participants in each group were instructed that 

they would later be asked to recall the stimuli studied from a larger series of stimuli.  

Immediately after the introductory phase, participants completed a 13 trial recall 

task. The task was presented in Superlab on a Macintosh Powerbook G4, and answers 

were recorded using a combination of keystroke and paper and pencil responses. For each 

recall trial, groups were presented with a series of three stimuli with an additional ‘None 

of the Above’ option to choose from. Either zero or one of the stimuli from the eight 

presented in the memorization phase was presented among the answer choices. The 
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remaining stimuli were taken from a list of widely recognized corporate logos (see 

Appendix E). Those in the meaningful group were first asked to choose which of the 

three stimuli (or none of the above) was presented as part of the memorization task and 

then asked to write the matching name of the image on the paper and pencil answer sheet. 

Those in the empty group were also asked to choose the previously presented image, but 

instead of being asked to name the (unnamed) droodle, were asked to name one of the 

corporate logo distractors to match the verbal load of the task performed by the 

meaningful group. 

The training phases introduced the rules governing each symbol system. As in 

Experiments 1 & 2, the relations between the elements of each symbol set were governed 

by the rules of addition modulo three. Training for each of the symbol sets was nearly 

identical. The rules were introduced by fictional characters with separate cover stories for 

the abstract and the concrete conditions. The learning (i.e. droodle) sets were presented as 

a type of card game played by children in a foreign country. In this system, different 

children pointed to combinations of cards, and the child who was ‘it’ needed to figure out 

the winning card based upon the cards that others pointed to (adapted from Kaminski, 

2006c). The transfer set was identical to the abstract set from Experiments 1 & 2..In this 

experiment, as counterposed to Experiments 1 & 2, the abstract symbol set always 

functioned as the transfer task.  

Each training phase was immediately followed by a test phase. The test phase 

consisted of 23 multiple-choice questions that required participants to apply the 

previously learned rules. For all symbol sets, the test questions were completely 

isomorphic to the test phase of Experiments 2 and were presented in the same order.  
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A series of follow up questions identical to those asked in Experiments 1 & 2 was 

asked at the conclusion of the second test phase (see Appendix F for a detailed list). 

Independent raters coded 20% of responses to the follow-up questions included in 

analysis with 92% agreement. 

 

Results 

 

Initial Learning 

An independent samples t-test was conducted to examine differences in initial 

learning. Score on the droodle set served as the test variable and condition (meaningful or 

empty) served as the grouping variable. Contrary to expectations, there was no difference 

in initial learning between the meaningful (M=9.35, SD = 2.08) and empty (M=10.36, 

SD=3.50) groups t(46) = 1.21, p = .23. The manipulation failed to make a difference for 

initial learning. 

Indeed, it appears that there was very little initial learning to support transfer in 

the first place. The expected value of chance performance on the task is 7 (Five problems 

with 2 answer choices, and 18 problems with 4 answer choices). A conservatively 

constructed 95% confidence interval around the expected chance value (using a binomial 

distribution with 25% random probability of correct answer) yields the confidence 

interval 4.18 < x < 9.81. This means that any score at below 10 is equivalent to chance 

performance. Overall, 52% of participants in the empty condition and 69.6% of 

participants in the meaningful condition scored at or below chance on the learning trials. 

Moreover, the mean initial learning scores in each condition were at chance levels (see 
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Table 12). There was no difference in the likelihood of scoring below chance in either 

condition, χ2(1,48) = 1.55, p=.21). Thus, it is arguable that the initial learning task was 

ineffective for assessing differential transfer.  

 

Table 12. 

Percent scoring at or below chance on initial learning set by condition  

  Meaningful Empty 

 Mean Initial Learning Accuracy 

(SD) 

9.35 

(2.08) 

10.36 

(3.50) 

% Scoring ≤ 10 69.6 52 

 

 

Transfer 

To assess transfer we conducted a repeated-measures ANOVA, using trial 

(learning vs. transfer) as a within subjects factor and initial learning symbol (empty vs. 

meaningful) as a between subjects factor. There was a main effect for trial, F(1,46) = 

62.92, p < .01, η2 = .59, indicating that accuracy was higher for the transfer symbol set 

than for initial learning symbol sets. Contrary to expectations, there was no main effect 

for the manipulation of initial learning symbol, F(1,46) = 1.46, p = .23, η2 = .03. There 

was no difference between accuracy in overall performance collapsed across trials for 

those in the empty vs. meaningful conditions. Finally, there was no trialXcondition 

interaction, F(1,46) = .04, p = .85, η2 < .01, to suggest that accuracy on the transfer set 
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varied in response to the experimental manipulation between groups that initially learned 

using the meaningful (M=15.17, SD = 5.13) and empty symbols (M=16.48, SD=5.30). 

 

Follow-up Questions 

Of the series of paper and pencil follow up questions that each participant 

received, two items found to be predictive in previous experiments were added to the 

analysis for exploratory purposes. These were remind-of-arithmetic, the degree to which 

the task reminded participants of arithmetic mathematics as indicated on a likert scale 

from 1 (strongly disagree) to 4 (strongly agree); and interchangeable, whether or not 

participants explicitly recognized that the non-identity elements were interchangeable. 

There were no significant effects for remind-of-arithmetic, so it was dropped from the 

model and analyses were rerun.  

A repeated-measures ANCOVA was conducted using trial as a within subjects 

factor, condition as a between subjects factor, and interchangeable as a covariate. 

Interchangeable did predict overall performance collapsed across trials and conditions, 

F(1,44) = 16.00, p < .01, η2 = .27, with those who explicitly recognized nonidentity 

interchangeability (M = 15.57, SD = 2.17) scoring higher than those who did not (M = 

11.75, SD = 3.11). There was, however, no trialXconditionXinterchangeable interaction 

to suggest that recognition of nonidentity interchangeability modulated transfer supported 

by either condition, F(1,44) = 1.47, p =.23.  
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Discussion 

 There were no differences in initial learning or transfer between conditions. In 

fact, it seems that there was very little in the way of overall initial learning to begin with, 

as a large proportion of the sample scored at chance levels. Without evidence of initial 

learning, assessments of transfer are difficult. 

 Two likely explanations present themselves for explaining the low overall rates of 

accuracy on the initial learning trials. First, there is the perceptual concreteness associated 

with the droodles used for learning. Both sets pack more irrelevant perceptual 

concreteness than any of the symbols used in Experiments 1 & 2. Second, the way the 

task is introduced with these symbols is a bit different from the ways the task is 

introduced with other symbols. It may be that learning the task in terms of a children’s 

pointing game is simply more difficult than other instantiations used, which both present 

the task as combining elements to yield a third.  
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CHAPTER V 

 

GENERAL DISCUSSION 

 

 The current research examined some novel implications generated by an 

information-based account of symbolic concreteness. In particular, it was aimed at 

investigating whether or not the conceptual information associated with a symbol could 

function similarly to perceptual concreteness in a novel mathematical domain. This 

discussion begins with a consideration of three hypotheses that motivated the work: 1) 

That there should be a conceptual analog to perceptual concreteness; 2) that the 

alignment of conceptual information with the to-be-learned content should modulate its 

effects on learning and transfer; and 3) that the effects of conceptual concreteness should 

be manipulable by interventions that affect the activation of information associated with 

the symbol. It then briefly raises a key limitation of the current experiments and how that 

limitation might be addressed. Finally, it considers some general implications of the 

research when couched against the larger theoretical backdrop of the information-based 

account of concreteness. 

 

A conceptual analog for perceptual concreteness? 

When paired with abstract symbols in a way aligned with the structure of the 

learning task, Arabic numerals exhibited a pattern for learning and transfer that was quite 

similar to that exhibited by perceptually rich concrete symbols in other studies that 

employed the same task (Kaminski et. al., 2006a; Kaminski et. al., 2006b; Sloutsky et. 



  

 62 

al., 2005). That is, there was a transfer advantage for learning with abstract symbols first 

relative to learning with Arabic numerals whose conventional usage was aligned with the 

task. This effect was found in both Experiments 1 and 2. These similar patterns of 

performance suggest a conceptual analog for perceptual concreteness. 

Furthermore, it appears that initial learning with aligned symbols manifested 

some of the typical problems associated with learning using concrete symbols. As 

discussed above, one of the ways that concrete symbols are supposed to help learning is 

by aiding memory access, but they are thought to impair transfer by taking attention away 

from the deep structure of the task. This seems to have been the case with aligned 

symbols. Recall that participants in Experiment 2 were less likely to recognize the 

interchangeability of nonidentity elements when they initially learned with aligned 

symbols. This means they were less likely to see the deep structure of the task, despite the 

fact that they faired just as well on initial accuracy as those who learned abstract symbols 

first. The disconnect between learning and transfer with aligned symbols might be 

explained by the boost that prior knowledge gave to learning the rules. Two-thirds of the 

rules to be learned could simply be imported from prior arithmetic schemas (0+1, 0+2, 

0+0, and 1+1), leaving only two rules to be memorized (1+1 and 2+2). If these rules were 

applied mechanically, learners could solve problems with a high degree of accuracy 

without noticing the deep structural elements of the task. Initial learning based on such 

simple memory aids would be expected to be tied to prior knowledge and not to transfer 

as well. The observed pattern of results seems consistent with this explanation and 

parallels the results obtained using relevant perceptual concreteness (Kaminski et. al., 

2006b). 
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The alignment of conceptual information with the to-be-learned content should modulate 

its effects on learning and transfer 

The results found with aligned numerals stood in contrast to the results with 

misaligned numerals. Although there was a transfer advantage for abstract symbols 

relative to aligned ones, no such transfer advantage existed for abstract symbols relative 

to misaligned symbols. Instead, transfer was roughly equivalent between abstract and 

misaligned symbols. Even though there was no transfer advantage for abstract symbols 

relative to misaligned ones, there a small overall advantage for performance with abstract 

symbols relative to misaligned symbols in Experiments 1 and 2. No such general 

performance difference emerged between abstract and aligned symbols. These 

differences all emerged because of the manipulation of symbolic alignment with the to-

be-learned task. 

Another important difference lay in the fact that contingency of recognizing 

interchangeability depended upon the alignment of the concrete symbols involved. 

Employing Arabic numerals in a way that was misaligned with prior knowledge allowed 

learners to recognize this element of deep structure just as frequently as learning with 

abstract symbols first. It may have been that the misalignment in some way rendered the 

numerals somewhat more abstract. It may be that the misaligned numerals imposed a 

higher overall memory load due to conflict with preexisting schemas. This additional 

load due to misalignment may have provided some desirable difficulty for transfer, 

whereby the incongruence of the task with preexisting addition schemas triggers an 
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appreciation for the deep structure of the task (see also Bjork, 1994; Mannes & Kintsch, 

1987). At the same time, it may have reduced overall accuracy. 

The differential pattern between learning and transfer for abstract vs. misaligned 

symbols is also consistent with the Crowley, Shrager, & Siegler (1997) model of 

competitive negotiation between metacognitive and associative mechanisms in strategy 

discovery. On this model, the inadequacy of existing solution strategies tapped by 

associative mechanisms can lead to a more metacognitively guided search for new 

strategies. Although the prior addition schemas associated with numerals could help with 

learning in the aligned condition, the schemas were inapplicable in the misaligned case. 

This lack of a preexisting model for action may have lead to more careful analysis of the 

domain, producing a knowledge structure that was more in tune with deep structure.  

Whatever the mechanisms involved, there were clear differences in performance 

based upon alignment. These differences are striking because the aligned sets (0, 1, 2) 

and misaligned sets (2, 1, 0) were perceptually identical. If the effects of concrete versus 

abstract symbols could be accounted for by perceptual differences, then there should have 

been no differences between the aligned and misaligned symbols vis-à-vis abstract ones. 

Moreover, the manipulation of Experiment 3, which did not manipulate relevant 

concreteness, had no effects on performance. Unlike the situation with Arabic numerals, 

there was no difference in the effects of the concreteness manipulation with the droodles. 

This may have been because the conceptual knowledge associated with the droodles was 

irrelevant (i.e. neither aligned nor directly misaligned) to the learned task. The additional 

information associated with meaningful symbols may simply not have affected 

processing of the to-be-learned content.  
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There are two other possibilities, however, that make it difficult to ascertain the 

role of conceptual relevance to the null effects of Experiment 3. First, as discussed above, 

the method of introducing the rules of the system with droodles diverged significantly 

from the method used with other symbol types. It used a different syntax and a cover 

story that involved more perspective taking that may have complicated the task. These 

differences may have significantly impeded learning. Second, the knowledge attached to 

the droodles was not as tightly tied to the symbols as was the knowledge attached to 

Arabic numerals. The labels learned for the meaningful group were taught over a four-

minute span whereas the information attached to Arabic numerals are taught, re-taught, 

and practiced in institutionalized settings over the course of years. Whatever the reason 

may be, Experiment 3 sought to induce irrelevant concreteness in a short time frame 

using linguistic labels and this manipulation failed to have the same effects as the 

intrinsically relevant concreteness of Experiments 1 and 2.  

 

The effects of conceptual concreteness should be manipulable by interventions that affect 

the activation of information associated with the symbol. 

Experiment 2 found that the effects of conceptual concreteness could be 

significantly modulated with a brief warm-up activity. When given a four-minute 

addition warm-up to activate preexisting addition knowledge, a significant decrement 

emerged for initial learning accuracy on misaligned symbols relative to abstract and 

aligned symbols. By contrast, there was no such decrement following a font comparison 

task, which encouraged learners to focus on the perceptual attributes of the symbols 

instead of on the prior mathematical knowledge associated with the symbols. By 
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modulating activation of the prior conceptual knowledge hypothesized to render Arabic 

numerals as concrete, this manipulation underscored the fact that it was not the perceptual 

attributes of the symbols that were responsible for the effects found. Moreover the fact 

that these effects were manipulable at all implies that concreteness is not a static attribute 

of a symbol, but can be affected by contextual factors. Finally, viewed with an eye 

toward pedagogy, this is evidence that even subtle manipulations in context can affect the 

information that a chosen symbol communicates, with significant effects for the learning 

that the symbol supports. 

 

Key Limitations 

 Ceiling effects. Perhaps the single largest limitation of the present investigation 

was the restriction of range on the outcome measures. In Experiments 1 and 2, more than 

40% of the sample was at ceiling on the task following initial learning. The compressed 

variability due to these ceiling effects presents potentially serious problems for causal 

inference. In the present case, supplementary analyses were presented on low-performers, 

and those analyses were generally associated with stronger effects. Unfortunately, the 

smaller sample sizes for those supplemental analyses compromise confidence in the 

results of the statistical analysis. Future investigations that use the current assessments 

should establish inclusion criteria, anticipating the exclusion of those at ceiling. 

Consequently data should be collected on a much larger sample in order to ensure 

sufficient sample size after eliminating those who score above the inclusion threshold.  

A more elegant solution for dealing with this ceiling effect – albeit one that would 

require considerably more sophistication than using exclusion criteria – would be to 
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develop a scale that can account for a wider range of variability in participant abilities. 

The most pressing impediment for such a project is the need to develop a more coherent 

conception of the construct measured by the present assessment. As currently used, the 

assessment is good for measuring how manipulating dimensions of a variable affect task 

performance, but this performance is not directly conceived of in terms of a commonly 

measured theoretical construct (e.g. math ability, verbal ability, visuospatial ability, etc). 

Developing a more systematic conception of the construct would both allow better 

measurement and help lead to a theoretically based understanding of the variability 

exhibited in the population. 

Maintenance over time. The current research explores learning and transfer 

measured over a very short time span (around 1 hour). This is very different from real 

world situations in which learning usually occurs over a much longer time course. 

Although learning with abstract symbols first may better allow participants to acquire 

deep structure in a one-shot learning situation, the current experiments have no measure 

for whether or not such learning is maintained over time or quickly forgotten.  

If we take the proposition that concrete structure helps aid memory seriously, then 

learning based on such memories – even if less attentive to deep structure – may be 

maintained much longer over time. Further, some research has suggested that it may be 

possible to root initial learning in concrete symbols and to encourage later transfer by a 

process of concreteness fading (Goldstone & Son, 2005). Concreteness fading begins by 

representing to-be-learned content with concrete symbols and follows by representing the 

content with progressively more abstract symbols. It may be that such a paradigm could 

be used with the current task to provide more robust learning that can be maintained over 
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time (Nicole McNeil, personal communication, February 19, 2010). On any account, the 

design of the present experiments would be much improved if it were extended to include 

multiple time points. 

 

Implications for math education: Math without numbers? 

Perhaps the most interesting result of these studies from a pedagogical perspective 

is that the task – one governed by well-defined mathematical rules – was on the whole 

learned better when initially instantiated with abstract shapes than with numbers. This is 

an important point, because modular arithmetic is not some random experimental task 

with no relevance to the real world. Instead, it is a foundational concept in number 

theory. Although this concept was not taught in depth in this experiment, few 

mathematical concepts ever are taught in depth at first pass. Even the simplest of 

mathematical concepts are quite complex, and people require much time and practice to 

develop familiarity with them (see Baroody & Dowker, 2003; Becker & Varelas, 1993; 

Greeno, Riley & Gelman, 1984; Rittle-Johnson & Siegler, 2008). The fact remains that in 

this introduction to modular arithmetic, deep structure was learned better with abstract 

symbols than with numbers.  

One interesting proposition is that this may be a case in which prior knowledge of 

numbers are getting in the way of learning mathematics. Moreover, there may be more 

such cases. This should not be an entirely provocative statement. Other lines of research 

have shown that prior knowledge acquired in a mathematical domain can pose an 

impediment to developing more sophisticated knowledge in that domain. For instance, a 

long line of work has presented evidence that prior experience with arithmetic operations, 
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while solidifying children’s abilities to perform those operations, can lead to incorrect 

operational understanding of the equal sign (Knuth, Stephens, McNeil, & Alibali, 2006; 

McNeil & Alibali, 2005; Perry, 1991; Rittle-Johnson, Siegler & Alibali, 2001). It has also 

been shown that simple interventions that draw attention to the relations involved with 

the equal sign, as opposed to those that focus on numbers per se, can push the 

development of sophistication in the domain (Matthews & Rittle-Johnson, 2008; Rittle-

Johnson & Alibali, 1999).  

It is generally accepted that the acquisition of a robust sense of number is an 

essential first step on the road to mathematical competence (Landerl, Bevan & 

Butterworth, 2003; National Math Panel, 2008). The canonical ‘sense of number’ 

however, one associated with a number line that extends from zero to infinity in either 

direction, is not the beginning and end of mathematical understanding. Case in point, it is 

not exactly compatible with modular arithmetic, which is perhaps more accurately 

represented as a cyclical system than a linear one. Trying to build an understanding of 

modular arithmetic on top of a preexisting conception of linear magnitude is a tough 

enough proposition when we are self-consciously aware of what the undertaking 

involves. The insidious side of the problem, however, lies in the fact that we often use 

symbols without explicit awareness of how they compete with our intended aims (e.g. 

this may even bear on our difficulties in teaching children how to tell time, another 

system that is based on modular arithmetic). When choosing symbols for pedagogical 

purposes we should step back and ask a very important question: What do these symbols 

communicate, and might this information work at cross-purposes to our aims? It is not a 
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simple question to answer, but the first step is generating awareness that it needs to be 

asked in the first place.  

Implications for cognitive psychology: Concepts vis-à-vis percepts 

Several studies have implicated perceptual richness as a primary factor 

determining concreteness (e.g. Goldstone & Sakamoto; Schwartz, 1995; Sloutsky et. al., 

2005). One major purpose of the above series of experiments was to highlight another 

dimensions of symbols, beyond simple perceptual or sensory input, that might affect 

concreteness. Indeed, in this case, the conceptual knowledge tied to Arabic numerals led 

to effects on learning and transfer that paralleled those of perceptually concrete symbols. 

Highlighting the effects of the conceptual information contained in a symbol set such as 

Arabic numerals, however, is a far cry from completely separating those effects from the 

effects of perception. It has been argued before that that attempts to divorce concepts and 

percepts are largely in vain (Barsalou, 2008; Goldstone & Barsalou, 1998). The logic of 

the argument is rather powerful.  

For instance, I argued that the ‘perceptual’ information communicated by the 

iconic ants in Goldstone & Sakamoto (2003) might communicate conceptual information 

that was not communicated by the more idealized blob versions. In this case, it took the 

visual recognition of the icon as an ant in order to activate the conceptual information 

associated with the symbol. Just the same, the conceptual information communicated by 

the numerals is inherently linked to the tendency of participants to visually recognize the 

symbols as numbers. Hence, the activation of conceptual knowledge in this case begins 

with perception. The take home is that perception is neither purely sensory nor purely 

conceptual, and focusing on the sensory aspect at the expense of the conceptual side 
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impoverishes our abilities to appreciate what makes a symbol concrete in the first place.  

Indeed, the current definition of concreteness demands that we look at the ways 

that sensory and conceptual information are bridged, creating a state of affairs in which 

neither can be completely divorced from the other. This perspective is consistent with 

views of interactive specialization (see Schlaggar & McCandliss, 2007), which hold that 

neural circuits associated with different processes (e.g. visual and linguistic) change and 

form specific links with practice and development. In this way, an arbitrary symbol like 

the character ‘A’ comes to be both easily recognized by the visual system and easily 

recognized as standing for certain phonemes. In this way, the symbol unites the sensory 

and the conceptual side of things with practice.  

 This union between percepts and concepts may be especially true in the case of 

number. Some have argued that our conceptual knowledge of numbers is rooted in the 

approximate number system, a phylogenetically ancient perceptual system that allows us 

(and squirrels and lions, for that matter) to discriminate between numerosities of different 

cardinal values (Dehaene, 1999; Dehaene & Cohen, 2007). Others have begun to present 

evidence that training using linear external representations of number can help push 

children’s developing knowledge of number concepts (Ramani & Siegler, 2008; Siegler, 

2009). Hence, it may be that our concepts of numbers are fundamentally rooted in 

percepts. This has the interesting implication that activating number concepts may 

automatically activate a sort of perceptual information, and this perceptual information 

may account for some of the effects presented in the experiments above. 

 

Conclusion 
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 Even if number presents a somewhat special case, and I believe it does, the case 

for conceptual concreteness does not begin and end with number. Findings from Bassok 

et. al. (1998) suggest that semantic alignments in word problems affect solution strategies 

(e.g. when thinking of ‘apples’ and ‘baskets’, learners will divide apples into baskets, but 

not vice versa). Further, Son & Goldstone (2009) have recently found that several 

manipulations that affect a learner’s perspective taking can lead to differences in learning 

and transfer that mimic perceptual concreteness. Most recently, Novick, Catley & Funk 

(in preparation) have found that the conceptual information associated with well-known 

biological organisms can function in ways that parallel perceptual concreteness as well.  

This is all to say that the current project fits well alongside an emerging body of 

work suggest that concreteness is about more than what meets the eye. Taking a hard 

look at concreteness means taking a hard look at symbols and realizing that they bring 

much more to bear on our cognitive architecture than we casually appreciate. By 

attending to these issues, hopefully we can advance our understanding of this architecture 

and how best to build the knowledge structures that it supports. 
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CHAPTER VI  

 

GETTING SOLID ON CONCRETENESS 

 

For a word that is meant to connote something solid and definite, ‘concrete’ is 

pretty soft. Think for a minute about what might count as a concrete example: Is it 

something solid, that can be touched? Perhaps a visual depiction? An anecdote that one 

can easily relate to? Maybe just a simpler version of a formal equation? Each of these 

very different alternatives might be taken, in different contexts, to be concrete. Beyond 

vague appeals to intuition, we lack a clear picture of what the term concrete means 

precisely and what the construct offers. Yet the term persists, playing a role in many 

arguments about learning and cognition.  

Despite this lack of clarity, there is currently much theorizing about what concrete 

representations may or may not be good for. In the realm of education, many champion 

the use of concrete manipulatives as key tools for promoting learning, while others urge 

caution, citing the limits and occasional pitfalls of concrete examples (Ball, 1992; 

Clements & McMillen, 1996). Similar concerns occupy developmental and cognitive 

psychologists, who currently explore the merits and drawbacks of abstract versus 

concrete materials for learning and transfer more generally (Koedinger, Alibali & 

Nathan, 2008; Sloutsky, Kaminski & Heckler, 2005; Uttal, Scudder & DeLoache, 1992). 

Consideration of concrete examples, however, has a reach that extends far beyond the 

rather exclusive realm of academic research. The recommended usage of concrete 

examples is a mainstay of guides to good communication: for example, the College 
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Board advises all SAT takers to “use concrete examples and avoid generalities”.4 Such 

lay arguments hold that concrete examples both grab the audience’s attention and help 

provide a foothold upon which further understanding can be built. Unfortunately, few of 

the aforementioned researchers or lay advisers go so far as to explain what exactly 

constitutes a concrete example.  

The current theoretical discussion seeks to delimit the concept of concreteness 

and the role that it plays in symbolization. I will argue that although concreteness is often 

referred to in an off-hand way, the construct stands to add considerable leverage to our 

understanding of how symbols function. In giving concreteness its due attention, I seek to 

show that a rigorous treatment of concreteness may call for significant reassessment of 

our current theories of symbolization. Moreover, such revisions hold implications for our 

understanding of how our choices of symbols used for teaching can affect learning and 

transfer.  

First, I provide an overview of current thinking about symbols, arguing that 

concreteness is an overlooked but essential dimension of symbolic thought, and offer a 

working definition of symbolic concreteness. This definition explicates the construct, 

clarifying the stakes in various arguments about the benefits versus the drawbacks of 

concreteness. Then, I discuss the potential implications of concreteness for learning and 

educational science. This more nuanced understanding of concreteness should provide us 

with new tools for assessing ways that different pedagogical strategies may support or 

impede learning. Finally, I end with a discussion of what general leverage provided by an 

information-based view of concreteness.  

                                                
4 http://www.collegeboard.com/student/plan/boost-your-skills/122.html  
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Concreteness: A Key Component of Symbolism? 

The first step in delimiting concreteness is recognizing that the term concrete, as 

used in psychology and educational science, is fundamentally concerned with symbols or 

external representations. Although the details of the definition are often left implicit, 

concrete is almost always counterposed to the term abstract. Comparisons of concrete vs. 

abstract are concerned with alternative ways to represent or instantiate the same 

underlying concepts or principles. These various alternatives all stand for something – 

some specific referent (e.g. a particular object, a mathematical operation, familial 

relationship, etc). Thus, any discussion of concreteness is necessarily a discussion about 

symbols5. It follows that the concreteness with which this discussion is concerned is 

symbolic concreteness. With this in mind, I begin with a discussion of current theories 

about symbols to provide some context for the analysis of concreteness that follows. 

 

The basics of symbols and symbolism 

DeLoache (2002) provides a commonly accepted working definition of symbols: 

“A symbol is something that someone intends to represent something other than itself.” 

Although DeLoache goes on to list several key components for the understanding of 

symbolic relationships, we need only consider two in order to get the gist of symbolic 

relations. These are 1) the dual nature of symbols, and 2) the fact that this duality is 

established by a triadic relation in which human intention acts as the primary unifying 

force.  

                                                
5 External representations run the gamut from icons, which bear direct resemblance to their referents, to 
arbitrary symbols. When considered in pedagogical contexts, however, they are always used with the intent 
that they stand for a particular referent. In this sense, these external representations all fit the definition of 
symbol used throughout this discussion. 
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By duality, Deloache means that a symbol exists both in a primary sense as an 

object in its own right and in a secondary sense as a signifier or reference to some other 

object – its referent (see also Barthes, 1964; Peirce, 1995; Saussure, 1959). For the sake 

of simplicity, I primarily use the term ‘symbol’ instead of ‘signifier’ in what follows. 

Note that I sometimes use the term ‘object’ to refer to a given symbol, though it is clear 

that symbols need not be objects at all (e.g. spoken words are symbols).  

As for the role of intention, the link between signifier and referent exists because 

someone wills it to be so at some point in time. Often in the case of learning, that 

someone is a third party, be it a teacher, text book writer, or even some collective social 

consciousness, as is the case with assigning meanings to words in a language. Hence, the 

argument puts forth a symbolic triad of symbol, referent, and intention: symbolization is 

the process by which an intentional agent forges a relationship between one entity (a 

symbol) and another (its referent). From this theoretical vantage point, human intention is 

cast as the primary factor to be considered when theorizing about symbols (see Figure 

11). Note that I argue that while important, this focus on intention may obscure the 

central role that concreteness plays in symbolic relations.  

To be sure, much important developmental work makes the case for intention’s 

vital role in the understanding of symbols (Deacon, 1998; Huttenlocher & Higgins, 1978; 

Leslie, 1987; Tomasello & Rakoczy 2003;Vygotsky, 1986). DeLoache’s (1987) proposed 

dual representation hypothesis is one widely cited perspective in this line. The dual 

representation hypothesis argues that a major step in the development of symbolic ability 

lies in the understanding of symbol-referent relations; to think symbolically, one must be 
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Figure 11. The symbolic triad. Note that intention is often that of a third party. 

 

able to distinguish between symbol and referent. This ability demands that a perceiver be 

able to see a symbol not only as an object in its own right, but also as an intentional 

representation of some other referent (DeLoache, 2002).  

Experiments using search tasks with scale models have provided compelling 

evidence for the validity of the dual representation hypothesis (DeLoache, 1987; 

Deloache, Miller & Rosengren, 1997). In the tasks, a child is shown, using a miniature 

replica of a room, where a doll is hidden in the real room. Typically, 30-month-old 

children fail to use the model to discover the hiding place of the doll in the real room, 

whereas 36-month-old children succeed in doing so. The dual representation view holds 

that the children fail because they do not understand the model of the room as a symbol 

that is intended to stand for the room. Prior to developing this representational insight, 

there can be no true symbolization, and these children cannot establish the link that 
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imbues the model with the ability to serve as a proxy for the real room (DeLoache, 

DeMendoza & Anderson, 1999). The difference in performance between the age groups 

is attributed to the development of this ability. Using a particularly ingenious 

manipulation Deloache et. al. (1997) found that 30-month-old children successfully 

completed the task when tricked into believing that the scale model is actually the result 

of shrinking the real room. Because these children think the model is the room itself, they 

no longer have to deal with symbolic duality, so they can perform the task. Note that 

children experience such difficulties despite the fact that the scale model is an iconic 

replica. This provides a strong case for the importance of intention, even with iconic 

symbols. 

The long line of work spawned by this research on dual representation 

foregrounds the importance of understanding intention, at the same time, it demands that 

we pay closer attention to other aspects of the symbolic triad of symbol, referent, and 

intention (DeLoache, 2000; DeLoache, 2002; DeLoache, et. al., 1997; Marzolf & 

DeLoache,1994; Troseth, Bloom Pickard & Deloache, 2007; Troseth & DeLoache, 

1998). A significant part of the conversation concerns the idea that the choice of symbol 

might pose an obstacle to the establishment of the intended reference. Namely, any 

content or knowledge previously associated with a potential symbol might compete with 

its desired association with a new referent. For example, long ago Langer suggested that a 

peach would not make a good symbol because people care too much about peaches: 

A symbol which interests us also as an object is distracting. It does not convey its 
meaning without obstruction. For instance, if the word ‘plenty’ were replaced by a 
succulent, real, ripe peach, few people could attend to the mere content of the 
word…The more barren and indifferent the symbol, the greater its semantic 
power. Peaches are too good to act as words; we’re too much interested in 
peaches themselves. (as cited in Shore, 1989, p. 177) 
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Something about our prior conceptions of peaches – as objects in their own right – would 

interfere with our abilities to use then as symbols for some other referent. 

 This example gets at the crux of my treatment of concreteness: symbols often 

communicate things other than those intended. That is, many objects that we intend to use 

as symbols for specific referents are already involved in prior relationships. When 

choosing a symbol for an intended referent, we must consider that there may already be 

other words, meanings, and experiences – prior knowledge or other content – associated 

with these candidate symbols. These previous relationships may, in turn, adulterate their 

involvements in any new symbolic relationships we wish to form. Langer’s peach is but 

the simplest example. If I choose a stylized golden  to stand for slope in a ninth grade 

algebra class, it may already be associated with McDonald’s or even just the letter ‘m’ 

and its associated phoneme. Likewise, if I choose the letter ‘n’ in statistics class to 

represent a given probability, it may already be associated with the concept of sample 

size. The strength of these previous relationships may play a large part in determining 

how concrete a symbol is for a given observer. Thus, establishing an understanding of 

concreteness seems essential for proper understanding of symbols and symbolic thinking 

more generally. 

 

Searching for a solid view of concreteness 

A comprehensive survey of the literature reveals that ‘concrete’ and 

‘concreteness’ remain vaguely defined terms. Concrete has alternatively been taken to 

refer to: a) symbol’s physicality as opposed to the more mentalistic nature of a referent 

(Uttal et. al., 1997, McNeil & Jarvin, 2007), b) the high degree of iconicity of a given 



  

 80 

symbol in contrast with a more abstract alternative (Goldstone & Sakamoto, 2003), c) the 

degree of perceptual salience inherent in a given symbol relative to others (Sloutsky et. 

al., 2005), and d) the degree to which a symbol is embedded or situated within a 

particular context (Gentner & Medina, 1998; Goldstone & Son, 2005; Koedinger, Alibali 

& Nathan, 2007). These different conceptions of concreteness are not all given as explicit 

definitions but instead often lie implicit in the writings of various authors, with the 

operating definitions to be extracted from usage in context. These authors focus on how 

concrete objects or examples affect learning and transfer, sometimes arguing that 

concrete symbols can aid learning, and at other times arguing that concrete symbols 

impede learning and transfer. Interestingly, these authors rarely address the question of 

what concreteness is. Hence, the construct concrete, so frequently treated as an important 

variable influencing learning, often goes without explicit definition. As a consequence, 

problems of construct validity are endemic to discussions about the merits and demerits 

of symbolic concreteness.  

 One exception is the work of Kaminski (2006c), which offers a comprehensive 

definition of concreteness. She uses the term concrete not necessarily to imply tangible, 

physical objects, but rather as a way to describe something about the degree of 

contextualization of alternative representations of a given concept:  

Concrete versus abstract is not a dichotomy; it is a continuum where concrete 
instantiations provide the learner with more information than abstract 
instantiations. For a given concept, instantiation A is more concrete than 
instantiation B if A provides the learner with more information than B. Consider 
the increase in conveyed information as concreteness increases from a stick figure 
of a person to an elaborate drawing to a photograph to a real person. This 
conveyed information may be perceptual or conceptual in nature. (p. 4) 
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Kaminski’s information-based definition yields three implications that are critical to 

consideration of symbolic concreteness: 1) any object used in a symbolic relationship 

may have prior content that exists independently of that intended by any current 

intentional act of symbolization, 2) this content may be perceptual or conceptual in 

nature, and 3) this content may possibly either compete with or facilitate the intended 

symbolization process.  

Kaminski’s formulation makes an important contribution to the field by offering a 

clear definition of the construct – one that we can revise and build upon. The logic of this 

knowledge-based construal of concreteness suggests the need for a corrective to the 

commonly held notion that a symbol equals a signifier plus a referent bound by intent, as 

this view somewhat overestimates the role of intention. It is certainly true that symbols 

result from an intentional link between a symbol and a referent. Because the symbol 

reader has to interpret the meaning of a symbol, however, his or her prior knowledge and 

perceptual apparatus mediate the symbolic triad and are, therefore, part and parcel of the 

 

Figure 12. Concreteness as prior informational load on a symbol, represented in the cloud 
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symbol reading process (see Figure 12). We need a term that applies to the associated 

additional knowledge that inheres in – or perhaps more appropriately, adheres to – any 

would-be symbol for any given interpreter. I will argue that concreteness is that term.  

In what follows, I first quickly outline the major components of my definition of 

concreteness and then explore each of these components in greater depth. Concreteness 

refers to the knowledge or content associated with a potential symbol, independent of the 

intended reference of the moment. Moreover, this content can be perceptual or conceptual 

in nature.  

1. Concreteness refers to the information associated with an object and may be 

perceptual or conceptual in nature. It does not inhere in objects, but instead must 

be parameterized in terms of a) a particular symbol reader’s prior knowledge 

associated with those objects, and b) an individual’s perceptual expectancies and 

biases. Thus, it is not a constant term that can be quantified in absolute terms 

across individuals. 

2. Concreteness should be manipulable. This point follows from point #1 because 

we know that both prior knowledge and perceptual expectancies and biases can be 

affected by experience.  

3. The alignment of concreteness is of key importance. Because, concreteness about 

the prior content or knowledge that a given symbol brings to mind, the way this 

content aligns with or competes with the intended use of the symbol should play a 

major role in the way a given symbol affects thinking. This third point lays the 

foundation for the more practical part of my argument, which pertains to learning 

and transfer. 
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Component 1 – Concreteness refers to the information associated with an object and may 

be perceptual or conceptual in nature 

Concreteness, at root, concerns the content associated with symbols and the 

potential competition or facilitation that those associations can hold for establishing the 

intended meanings of those symbols. This content can be perceptual or conceptual in 

nature. Recent experiments have marshaled evidence in support of this view. 

Perceptually based concreteness. Much of Kaminski’s work illustrates the ways 

that perceptual content contributes to concreteness for adults. Her tasks usually involve 

manipulating a set of objects used to instantiate a commutative group6, a well-defined 

mathematical concept from abstract algebra that offers special qualities. Through a series 

of experiments with these tasks, she has built a convincing argument that perceptual 

attributes of a symbol do indeed contribute to concreteness for adults (Kaminski, 2006; 

Kaminski, Sloutsky, and Heckler, 2008; Sloutsky et. al., 2005). In particular, her 

experiments focus on how the perceptual salience of an object can import information 

that impedes learning and transfer in certain contexts.  

 For example, Sloutsky et. al. (2005) explored the effects of using sets of these 

artificially constructed groups with college undergraduates. The use of perceptually 

sparse 2-D symbols (i.e. the abstract group, ♦, ●, ) in contrast to perceptually richer 

screen images of novel 3-D symbols (i.e. the concrete group, ) served as a 

manipulation of relative concreteness. Participants were randomly assigned to one of two 

orders of symbol set presentation, either abstract-then-concrete or concrete-then-abstract. 

                                                
6 Mathematically speaking, a commutative group is a set on which a law of composition is defined, which 
is associative and has an identity element, and such that every element has an inverse (Artin, 1991). 
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They were trained on the rules of one symbol set and received a test phase immediately 

afterward. Next, they were trained and tested on the second symbol set. Experience with 

less concrete symbols transferred better to later performance with more concrete symbols 

(i.e. abstract-then-concrete) as opposed to vice versa. The authors performed a second 

experiment that helped confirm the operationalization of relevant concreteness, instead 

using the 3-D computer generated images from experiment 1 as abstract symbol set (i.e. 

) and using photographs of identifiable real objects for the concrete set 

(i.e. ). They observed a similar effect, except this time, experience with the 

3-D images facilitated performance with the identifiable real objects. Thus, both 

experiments demonstrated that training with relatively less concrete symbols in the first 

phase facilitated later performance with more concrete symbols in the second phase. 

Moreover, performance with the computer generated images provided a direct 

demonstration that a symbol considered to be concrete in one situation could be 

considered abstract in another, depending on what it was compared against. In a third 

experiment, the authors found that their participants generally fared better on the task 

when the perceptually sparse symbols were used than when the more perceptually salient 

ones were used. Altogether, they found that perceptually sparse abstract symbols led to 

superior learning and transfer relative to perceptually richer concrete symbols.  

The authors posited a few possible mechanisms for these results: It might be that 

perceptual salience imposes some sort of cognitive load, leaving fewer resources for 

deeper conceptual processing. Alternatively, it may be that irrelevant aspects of a 

concrete representation can erroneously be interpreted as part of to-be-learned knowledge 
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(see also Novick, 1988). Finally, they offered that concrete objects may have limited 

referential flexibility. That is, concrete objects may be ill suited for use as symbols 

because concrete objects are more likely to be interpreted as entities in themselves 

instead of as symbols.  

Here, we should note that variations of DeLoache’s scale-model experiment have 

provided evidence that somewhat parallels the findings of Sloutsky et al (2005). By 

manipulating relative size of the scale model, the similarity of furniture in the model or 

substituting photographs or maps of the room in place of the scale model, experimenters 

have manipulated the difficulty of the task, pushing the age of successful completion 

either backward or forward (see Marzolf & Deloache: Deloache, 2002). For instance, 

children can solve the scale model problem using photographs at a younger age (2.5 

years) than they can while using physical models (3 years). A series of manipulations 

suggests that the more realistic the representation of the model is, the more difficult the 

task becomes. This can be interpreted as support for the hypothesis that perceptual 

salience affects concreteness for children and adults in similar ways. 

Concreteness and conceptual knowledge. Kaminski (2006) suggested that 

conceptual information communicated by symbols might contribute to concreteness as 

well as their perceptual attributes, though no one has evaluated this possibility 

experimentally. If an object to be used as a symbol is already strongly associated with 

some particular knowledge, then this concreteness should compete with any newly 

intended referent that is not compatible with that knowledge. On the flipside, 

concreteness should make establishing a new intentional link easier to the extent that the 

intended referent easily maps onto the knowledge already associated with the object.  
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Recall that with Langer’s peach, the argument was that information already 

associated with the peach (i.e. the peach as peach) might be at odds with the intended use 

of the peach as a symbol for something else. This argument seemed compelling enough 

that Uttal et. al., (1997) wrote a theoretically motivated piece warning that we might need 

to think a bit more deeply about the way that different attributes of manipulatives might 

interfere with their abilities to serve as learning aids. If the physical peach-as-object 

strongly activates thoughts of ‘peaches’, ‘fruits’, or ‘edible things’, then it should be 

harder to establish a situation in which the physical peach-as-object activates thoughts of 

‘the number 1’ or ‘quantity’. From this viewpoint, we can see that the peach-as-object 

might also be expected to pose a problem for adults relative to less familiar or salient 

objects, because the information associated with the peach – our prior knowledge – may 

need to be continually suppressed in order to establish new associations.  

Of course, using it to represent the concept of ‘fruit’ should be much easier, as 

thoughts of fruit should already be activated. The concrete associations with physical 

peaches are much more aligned with the concept of fruit than with that of quantity, and 

this alignment should have different effects on the establishment of new referents. On a 

less conceptual note, a peach should more easily represent something that looks similar to 

a peach than something that does not (e.g. a nectarine versus an apple) independently of 

knowledge of peaches, due to pure perceptual similarities. The kernel of the argument is 

that knowledge associated with an object should affect the object’s symbolic potential. 

Only recently, however, have empirical studies been conducted that provide evidence that 

bears on this argument, and they offer some support for Langer’s thought experiment and 

a knowledge-based conception of concreteness. 
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Concreteness and the interface of conceptual knowledge and perception. From 

the outset, a holistic view of perception might predict that the concepts associated with a 

symbol can affect concreteness. If percepts are more than mere sensation (Gibson, 1929; 

Goldstone & Barsalou, 1998; Huttenlocher & Higgins, 1978; Kellman, Massey, Roth, 

Burke, Zucker, Saw, Aguero, & Wise, 2008), then we should expect that much of the 

prior knowledge that affects the perception of a symbol is more than mere sensation. 

Goldstone and Son (2005) provides a good experimental example of a situation in which 

the “perceptual” attributes seem to have contributed to the concreteness of selected 

symbols via the conceptual information they conveyed.  

 In this experiment, undergraduate students were trained on computer simulations 

using either concrete or abstract symbols to convey the same underlying principles of 

competitive specialization – a situation in which manipulating certain parameters of a 

system can lead to emergent equilibria.7 Both simulations used identical cover stories 

about ants foraging for food to introduce the system to be learned. Concrete simulations 

used realistic depictions of ants pursuing food in the form of apples and oranges, and 

abstract (“idealized”) simulations represented the ants as small black dots and represented 

food sources as solid, amorphous green patches. It is important to note that participants 

were given the exact same cover story with each simulation, only with different symbolic 

depictions.  

Students were split evenly into four conditions based on training sessions: 

consistently idealized, consistently concrete, idealized-then-concrete (concreteness 

introduction), and concrete-then-idealized (concreteness fading). In the concreteness 

                                                
7 Software demonstrating this phenomenon can be downloaded at 
http://cognitrn.psych.indiana.edu/rgoldsto/complex/ 
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fading condition, concrete versions of ants and food were used for the first 10 min of the 

simulation. Then participants received the message that, “We are now changing the 

appearances of the food and ants, but they still behave just as they did before,” and the 

abstract version was used for the final 10 minutes of training. In the concreteness 

introduction condition, the idealized version of ants and food was replaced by the 

concrete version after 10 min. 

After the training session, students were trained on a separate set of simulations, 

which involved pattern recognition instead of foraging ants. This isomorphic transfer 

condition was actually governed by the same rules of competitive specialization. The 

experimenters found that students trained with concrete simulations were more accurate 

at learning tasks but worse at transfer tasks compared to those trained with abstract 

simulations. Moreover, they found that concreteness fading – initially beginning with 

concrete symbols and transitioning to abstract ones during learning – produced the best 

overall learning and transfer. The experimenters interpreted these results in terms of 

concreteness due to differing perceptual properties of the alternative symbols used for 

learning.  

 Despite the authors’ framing of the problem as one of perception, analysis of 

participant interviews suggested that at least part of the effect of the manipulation could 

be explained by the way that prior conceptual knowledge associated with symbol choice 

affected student thought. Students in the concrete training condition were more likely to 

give domain-specific, anthropocentric interpretations of the ants’ behavior (e.g. “one ant 

scares the other away” or “the ants are tempted by both food piles” for the concrete group 

versus “animals move quickly to food they are close to” or “It helps to make an ant move 
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quickly at first and then more slowly” for the abstract group). These responses support 

the view that students were using conceptual information contained in the symbols 

(thinking in terms of little ant communities) when trained using concrete symbols as 

compared to when trained with abstract symbols. It appears that the perceptual 

information that counts in this case is the degree of similarity with real ants – which more 

strongly activates the ant concept and encourages participants to take the ants’ point of 

view – instead of some difference in raw sensory data.  

  Taken together, Goldstone’s and Sloutsky’s experiments support the contention 

that the prior content associated with a symbol does in fact affect its ability to convey the 

intended information. Moreover, this content may be either perceptual or conceptual in 

nature. 

 

Corollary to component 1 – Concreteness is in part a function of a perceiver’s prior 

Knowledge 

At this point, we should consider that what may activate prior knowledge and 

therefore communicate information for some, may not communicate similar information 

to others. In a philosophical piece, Willensky (1991) argued that, “concreteness is not a 

property of an object but rather a property of a person’s relationship to an object [his 

italics].” At first glance, this position seems consistent with the well-documented 

differences in perception of identical stimuli based on expertise (see Bransford, Brown & 

Cocking, 1999; Chi & Ceci,1987; c.f. Piaget, 1950). Moreover, it is consistent with 

literature linking perception to expectation (Bruner & Postman, 1949; Carmichael, Hogan 

& Walter, 1932; Gibson, 1929; Pick, 1992). Together, these works provide additional 
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leverage for theorizing about concreteness: it implies that concreteness should be 

characterized to some extent in terms of learners’ prior knowledge. That is, a given 

symbol’s concreteness is not absolute across persons, but must be evaluated on a case-by-

case basis. Thus, we should expect differences among individuals and among groups of 

individuals depending on differences in prior knowledge. Hence, sweeping discussions of 

concrete versus abstract representations can obscure the necessarily idiosyncratic nature 

of concreteness.  

Recent experimental evidence supports the view that concreteness depends upon 

learners’ prior knowledge. Petersen and McNeil (2008) tested 3-year-old children’s 

performance on a pair of counting tasks in a design that varied the type of objects being 

counted. Children were assigned to one of four objects types in a 2 (perceptually rich or 

not) x 2 (established knowledge or not) factorial design. The researchers found that 3-

year old children’s prior knowledge of the objects used for counting interacted with 

perceptual richness to determine performance. When objects were used for which 

children had established prior knowledge, perceptual richness hindered performance. 

However, when novel objects were used, perceptual richness aided performance.  

Why did perceptual richness seem to help performance with unfamiliar objects 

and to harm performance with familiar ones? The richness-by-familiarity interaction 

indicates that perceptual richness per se is not the issue here. Perceptual richness may 

have highlighted surface features of the familiar objects, causing students to treat 

irrelevant features as though they were part of the to-be-learned concept. Hence, the 

authors concluded, that perceptually rich objects for which children had prior knowledge 

simply ceased to function as symbols of mathematical concepts. This would accord with 
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prior work by Deloache and Marzolf (1992) showing children often fail to understand 

highly realistic objects to be symbols. By contrast, novel perceptually rich objects may 

have kept participants attention better than novel bland or perceptually sparse objects 

without communicating much extraneous information.  

Some research on representational grounding seems to further support the view 

that concreteness depends on prior knowledge. For instance, Koedinger, Alibali & 

Nathan (2007) suggest that it is an associated network of “redundant semantic 

elaborations” that renders a representation grounded instead of abstract. It seems 

reasonable to view such grounding as a special case of concreteness based on the prior 

knowledge associated with a given symbol. Here we should note that the authors 

explicitly describe grounding as rooted in experience with particular representations as 

opposed to inhering in the choice of representation itself. The current framework takes 

this as more evidence that concreteness can only be properly understood in terms of 

learners’ prior knowledge.  

 

Component 2 – Concreteness should be manipulable 

If concreteness depends on the strength of prior associations, then it follows that 

there should be an a priori expectation that it can be manipulated. Any experiences that 

either strengthen or weaken preexisting links between a given symbol and the content 

associated with it should alter concreteness. This particular view on the malleability of 

concreteness is novel, if only because the explicit characterization of concreteness as a 

function of prior knowledge is new. Therefore, there are no current experimental studies 
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that try to examine this possibility as such. These facts notwithstanding, multiple findings 

suggest that this view is reasonable.  

Research has repeatedly shown that specific forms of practice can help children 

overcome difficulties with using various objects as symbols of other referents (DeLoache, 

1987; DeLoache et. al., 1997; Liben & Downs, 1992; Triona & Klahr, 2005; Troseth & 

DeLoache, 1998; Uttal, 2000; Uttal et. al., 1997). Namy and Waxman (1998) presents a 

particularly interesting case from the developmental literature, which seems to illustrate 

the manipulability of concreteness. The experimenters introduced 18- and 26-month-olds 

to object categories using either novel words or novel gestures to name the objects. 

Although 18-month olds interpreted both novel words and gestures as symbols of the 

novel objects, 26-month olds did not initially recognize novel gestures as naming the 

novel objects. With training, however, the 26-month olds came to use the gestures as 

symbols for objects as well.  

The researchers’ interpretation of 26-month-olds’ initial failure is telling: 

“Twenty-six-month-olds may have acquired an expectation that words but not gestures 

are presented within a sentence context, whereas the 18-month-olds have not yet 

developed this expectation” (p. 301). Because their prior knowledge indicated that 

sentences contained only words as elements, 26-month-olds did not use gestures as parts 

of sentences. Younger children, however, experienced no such competition with the 

establishment of the intentional link, because they had less prior competing knowledge. 

That additional experience – natural exposure for 18-month olds and the experimental 

intervention for 26-month olds – could alter children’s performance with particular 

symbol types points toward the manipulability of symbolic concreteness.  
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Component 3 – The alignment of concreteness is of key importance 

In prior work, Kaminski has maintained that it is useful to observe the distinction 

between relevant and irrelevant concreteness (Kaminski, 2006; Sloutsky, Kaminski & 

Heckler, 2005). Relevant concreteness refers to content associated with a symbol that is 

relevant to the to-be-learned concept. On the other hand, irrelevant concreteness refers to 

any content associated with a symbol that is extraneous to the concept, such as perceptual 

richness. I propose to add an amendment to this taxonomy, breaking relevant 

concreteness into aligned and misaligned concreteness. Indeed, it seems one major factor 

determining the effects of relevant concreteness should be the degree to which relevant 

associated knowledge is aligned with the to-be-learned structure.  

For instance, the literature on analogy suggests that the concreteness of symbol 

can play a potentially large role both in the remindings that a symbol brings to mind 

during learning, and in aiding or hindering the structure mapping processes that are key 

for much of successful transfer (Gick & Holyoak, 1983; Novick, 1988; Sloutsky, 

Kaminski & heckler). To the degree that the information is aligned with structure, then it 

should facilitate learning. To the degree that such information is actually misaligned or 

directly contrary to the to-be-learned association, then there should be vigorous 

competition between the newly intended meaning and prior knowledge. In such a case, a 

symbol that brings to mind a misaligned schema may demand some sort of inhibition for 

proper use. On the other hand, irrelevant concreteness – content that is neither aligned nor 

misaligned – should not compete as directly with the newly intended use, but should still 
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demand additional processing resources, retarding learning relative to more abstract 

symbols.  

To review, concreteness refers to content – both perceptual and conceptual – that 

is already associated with a potential symbol. Moreover, concreteness must be 

understood in terms of an individual’s prior knowledge and/or perception. Because it 

depends on prior knowledge, it should be affected by learning and experience, and the 

way that concreteness is aligned with a symbol’s intended use should play a large part in 

determining the way a given symbol affects thinking. 

 

Implications for Pedagogy and Learning 

 This view of concreteness has many potential implications for education in 

particular. One of the most fundamental questions facing educators is how to teach so 

that students learn content on more than just a superficial level. As Goldstone and 

Sakamoto (2003) point out, biology teachers want their students to understand the genetic 

mechanisms underlying heredity, not simply how pea plants look. Similarly, physics 

teachers want to teach general rules of motion, not simply how one spring uncoils. These 

examples illustrate a general challenge that educators face: to represent a to-be-learned 

concept, we must choose a symbol set to stand for that concept. This is true whether we 

use deictic pointing to communicate shared intention, use objects to stand in for other 

objects or processes, or use words to describe some altogether intangible systems or 

ideas. It seems then that symbol use is intrinsic to most teaching. As argued above, 

concreteness plays a role in determining how well a given symbol can communicate the 

information we intend. Thus, our understanding of symbolic concreteness stands to 
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contribute significantly to our ability to choose symbols that will enhance teaching and 

best promote learning and transfer. 

Historically, some have argued that the best approach to teaching is to use 

concrete symbols as tools to help promote initial learning that can undergo subsequent 

abstraction. Such views are based upon the Piagetian notion that children’s thinking is 

inherently concrete, so can benefit most from a concrete scaffold (see Uttal et al, 1997). 

This has given rise to a situation in which, Ball (1992) lamented, 

Parents and teachers alike laud classrooms in which children use manipulatives, 
and Piaget is widely cited as having shown that young children need concrete 
experiences in order to learn. Some argue that all learning must proceed from the 
concrete to the abstract. Concrete is inherently good; abstract inherently not 
appropriate – at least in the beginning… (p. 16) 
 

Counter to this current, some researchers, as described above, have argued that concrete 

symbols may be ill-suited to serve as teaching aids when compared to abstract symbols 

because they are more likely to be interpreted as objects themselves instead of as symbols 

that stand for other things.  

Some have begun to gather experimental data on the ways that the concreteness of 

symbols we use to teach abstract principles affects the degree to which abstract principles 

are learned or transferred across contexts. The results of these investigations, however, 

have been mixed: Some findings suggest that abstract symbols tend to facilitate both 

learning and transfer better than concrete symbols do (Sloutsky et. al., 2005; see also 

Kaminski, Sloutsky & Heckler, 2008). Others suggest that more concrete symbols can 

speed initial learning, but that this concreteness can initially be an impediment to transfer 

(Goldstone & Son, 2005). Still others suggest that concrete symbols can speed learning 

for some learners while impeding it for others (Petersen & McNeil, 2008). Finally, some 
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evidence suggests that concrete symbols help promote some aspects of learning while 

impeding other aspects (McNeil, Uttal, Jarvin & Sternberg, 2009). This tension among 

the results of various studies makes it difficult to establish a basis from which we can 

make practical decisions about which types of symbols are most useful for pedagogical 

purposes. 

The information-based view of concreteness may help to settle some of these 

tensions and, by extension, ultimately contribute to informing practical pedagogical 

questions. The apparent divergence in results described above may be due in part to the 

lack of a well-defined construct of concreteness. Without a clearly defined 

conceptualization of the dimensions of concreteness, experimental manipulations cannot 

be properly compared. Indeed, it appears that different researchers have focused on 

different – perhaps independent – dimensions of concreteness. Kaminski et. al., (2008) 

focused on perceptual salience in terms of raw sensory information, whereas Goldstone 

& Son (2005) focused on perceptual similarity to some familiar object. Petersen and 

McNeil (2008, discussed above) began to try to disentangle the perceptual contributions 

to concreteness from the contributions of prior knowledge, but did not explicitly 

characterize perception and knowledge as components of concreteness. Moreover, none 

of the reviewed studies characterized concreteness in terms of alignment versus 

misalignment with prior knowledge. It may be that, with adequate elaboration, the 

theoretical implications of these various results may begin to converge.   

Taking the alignment of concreteness with to-be-learned content into 

consideration may be especially helpful in yielding such a convergence. For instance, 

although the prior content associated with a given symbol may be aligned with the to-be-
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learned content in some aspects, it may be misaligned or irrelevant in others. Hence, it 

may be that concrete examples can sometimes help speed learning by facilitating a map 

between prior knowledge and the to-be-learned content. Nevertheless, the same prior 

knowledge that can speed learning should be expected to impede transfer when it is 

misaligned with the deep structure of the to-be-learned content. In such cases, learning 

may appear accelerated, but may come at the expense of decreased transfer or even the 

importation of some misconceptions from prior knowledge. Future studies should 

examine the potential tradeoffs that result from selecting among these different 

dimensions of concreteness. 

For example, it is well known in the history of science that Rutherford used his 

prior knowledge of the solar system to make predictions about the structure and 

functioning of the atom (Gentner & Loewenstein, 2002). To the extent that the solar 

system schema was aligned with that of the atom (e.g. particles revolve around a nucleus, 

much as planets and other bodies revolve around the sun), predictions based on it should 

be expected to be correct, and they were. To the extent that the solar system schema was 

misaligned with the structure of the atom (e.g. bodies can revolve around the sun in orbits 

at whatever distance, but electrons can only exist in very discrete energy bands extending 

from the nucleus) those predictions should be expected to be in error, and indeed they 

were: The most salient example is the fact that Rutherford failed to predict discrete states 

for electrons. There was simply nothing in the solar system schema that would predict 

such a state of affairs, so Rutherford’s model fell short in those respects. The take-home 

message is this: the information-based definition of concreteness predicts that concrete 

examples may be aligned with to-be-learned knowledge in some respects and misaligned 
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in others, and we accordingly should expect differential learning for different aspects of 

the core underlying principles.  

In sum, much new experimental research confirms that the sorts of symbols we 

use to teach abstract concepts can indeed affect both the rate of initial learning and the 

degree to which learned knowledge can be transferred (Goldstone, Landy & Son 2008; 

Kaminski, et. al., 2008; McNeil et. al., 2009). What is not clear is how exactly these 

choices will exert their effects. By offering a clearly elaborated framework for analysis, I 

hope that the current model can provide a useful tool for explaining the implications of 

our choices of different symbols for teaching purposes. 

 

Conclusion 

 In closing, I would like to anticipate and attempt to answer a challenge to the 

information-based conception of concreteness. A colleague and friend asked rather 

pointedly what concrete offers that perceptual biases, analogies, and prior knowledge do 

not. She wanted to know why we should keep the term concrete at all. The answer to this 

question is as simple as it is important: I am neither the first nor the last to use the term 

concrete in the field of psychology. It has a long history and is here to stay. Concrete, and 

its counterpoint, abstract, pervade our thought and our writing. This is due in part to the 

enduring influence of Piaget and his conception of concrete operational thought as 

“thought concerning objects that can be manipulated or known through the senses” 

(Piaget, 1953, p.136). Additionally, the term often goes unanalyzed because it is part of 

an everyday vernacular that we feel clearly communicates what we intend. Wittgenstein 

taught us, however, that terms that are used with such confidence often go undefined and 
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can quite frequently lead to “bumps that the understanding has got by running its head up 

against the limits of language.” (Wittgenstein, 2001, p. 41) This hazard is all the more 

dangerous in science. 

 Currently, concrete is frequently used and rarely defined. This is so in cognitive 

psychology, in education research, and among everyday practitioners. The information-

based conception of concreteness seeks to operationalize concreteness and to make us 

self-consciously aware of its complexity. That it spans thought about perceptual biases, 

analogies, and prior knowledge is no more damning for concreteness than it is for other 

catch-all phrases like cognitive load. The value in these terms lies in the fact that they 

force us to take a critical gaze at how our stimuli affect perceivers and their abilities to 

perform or think about the tasks we have in mind.  

 The information based view of concreteness makes it clear that concrete is about 

much more than mere physicality. It helps us see that concreteness does not inhere in 

objects, but is largely a property of the interpreter or observer. It calls for us to reflect on 

the possibility that simple static marks on a page – like those that you are reading right 

now – may be as concrete as some physical objects in the information and meaning that 

they convey (see Kadosh & Walsh, in press, for a discussion of whether or not numbers 

are abstract). It invites us to ask why symbols that are very concrete for some are quite 

abstract for others and further invites us to examine the developmental pathways by 

which such concreteness is established, as in the Namy and Waxman (1998) case 

reviewed above. Moreover, it does this in a way that is in accord with both a) seminal 

works in psychology that have done much to inform the ways that we think about the role 

of concrete imagery in human thought (Paivio, 1965; Paivio, Clark & Khan, 1988) and b) 
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current thinking in cognitive psychology that problematizes the distinctions that we raise 

between the ways that humans represent physical things-in-the-world and more 

mentalistic concepts (see Barsalou, 1999 on perceptual symbol systems). Finally, it has 

practical implications for informing pedagogical questions about what exactly constitutes 

a concrete teaching or learning aid (see Clements & McMillen, 1996). By turning a 

critical eye toward the concrete, the information-based view suggests that we think hard 

about a term that we use everyday. It seeks to solidify a construct that is already prevalent 

– and its abstract cousin – and in so doing, to help us do more solid science.  
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Appendix A 

Screenshots from Abstract Symbol Training Phase 
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Appendix B 

Screenshots from Addition and Font Comparison Warm-Ups 
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Appendix C 

Screenshots from Aligned Concrete Symbol Training Phase 
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Appendix D 

Screenshots from Misaligned Concrete Symbol Training Phase 
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Appendix E 

Screenshots from Droodle Symbol Training Phase 
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Appendix F 

Paper and Pencil Follow-Up Questions 

 

Follow-up #1 

How did you come up with your answer to the previous question? 

 

Follow-up #2 

How did you come up with your answer to the previous question? 

 

Follow-up #3 

How did you come up with your answer to the previous question? 

 

Follow-up #4 

Did either task from the experiment remind you of anything you’ve learned 

in the past? If yes, please describe. 
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Follow-up #5 

To what extent do you agree with this statement (circle one)? 

The tasks in the experiment reminded me of arithmetic. 

Strongly Disagree  Somewhat Disagree  Somewhat Agree 

 Strongly Agree 

      1          2    3    4 

 

Follow-up #6 

Did any part of either task remind you of any rules/properties of arithmetic? 

If so, please name them or give examples. 

 

Follow-up #7 

Does the equation below make sense to you? If so, what does it mean? 

€ 

7mod4 + 3mod4 ≡  

 


