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CHAPTER I

INTRODUCTION

1.1 Motivation and Thesis Overview

Our current understanding of strong interactions of quarks and gluons is that

they are described by the non-Abelian gauge field theory Quantum Chromodynamics

(QCD) [1, 2, 3]. Even though QCD provides a theory of strong interactions, very

little is known about the physical states of the theory [4]. Until we can both predict

the properties of the physical states of the theory and confirm these predictions by

experiment we can hardly claim to understand QCD.

To a large extent our knowledge of hadron physics is based on phenomenological

models, in particular the quark model [5, 6]. Meson and baryon spectroscopy is

described well as composite objects made of constituent valence quarks. Particles that

can be described by valence quark configurations are referred to as “conventional.”

Most QCD-motivated models, however, predict other types of strongly interacting

particles with explicit glue degrees of freedom. These are glueballs, which have no

constituent quarks in them at all, and hybrids, which have both constituent quarks

and excited gluon degrees of freedom.

At present, the observed meson states exceed the number of states which can be

accommodated by the quark model. Models predict that the lowest mass glueball

states carry the same quantum numbers as scalar mesons. Controversy surrounds
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the classification of these extraneous states as well as the expected experimental

signatures of glueballs. My thesis focuses on modeling glueballs as tightly knotted or

linked tubes of color flux. The model predicts a spectrum of glueball states based on

the known spectrum of knots and links.

Chapter I provides an introduction to the theoretical foundations of QCD, the

Standard Model and glueballs. Chapter II introduces the model of glueballs as tightly

knotted or linked flux tubes and summarizes the most recent calculations and plots

associated with the model. The model presented in chapter II includes both ground

states and excited states, however for the purpose of calculating rotational energies

it assumes the tightly knotted or linked flux tubes are spherical rigid rotors to low-

est order. In order to more accurately determine the rotational energies, Chapter

III presents the exact calculation of the moment of inertia tensor for several geome-

tries. Chapter IV uses the bag model to estimate the radius of a knotted or linked

flux tube, discusses spherical, symmetric and asymmetric rigid rotors and explores

the relationship between the classification of a rigid rotor and its rotational energy.

Using the results of calculations in Chapters III and IV, Chapter V calculates the

rotational energy of the knots and links used in the model. In conclusion, Chapter VI

summarizes the results found and mentions possible future directions for the model.
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1.2 The Standard Model

1.2.1 Interactions

There are four fundamental interactions known in nature: strong, electromagnetic,

weak, and gravitational [9].

The classical theory of gravity is Newton’s law of universal gravitation. Its rela-

tivistic generalization is Einstein’s general theory of relativity. A successful quantum

theory of gravity has yet to emerge.

The physical theory describing electromagnetic interactions is called electrody-

namics. Maxwell formulated the classical theory of electrodynamics more than a

hundred years ago, and his theory is consistent with relativity. The quantum theory

of electrodynamics, or QED, emerged in the 1940s from work by Tomonaga, Feynman,

Schwinger and many others.

The theory of the weak interaction was given a relativistic quantum formulation

from the very beginning. The weak interaction is responsible for nuclear beta decay,

charged pion decay, muon decay, and the decay of many of the strange particles. The

first theory of the weak interaction was presented by Fermi in 1933; it was refined

by Lee and Yang, Feynman and Gell-Mann, and many others in the 1950s, and put

into its current form by Glashow, Weinberg, and Salam in the sixties. The theory

of electroweak interactions is referred to as Glashow-Weinberg-Salam (GWS) theory;

the GWS model actually treats weak and electromagnetic interactions as different

manifestations of a single electroweak force, therefore reducing the four forces to

three.
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The idea of the strong interaction began with Yukawa in 1935. Elements of the

theory of the strong interaction developed during the 1960s and 1970s. In 1973,

Fritzsch, Gell-Mann, and Leutwyler published a paper [1] that is frequently referred

to as the foundation for the relativistic quantized theory of strong interaction, known

as Quantum Chromodynamics (QCD).

In the quantum field theory description, each of these interactions is the result

of the exchange of a particle. The particles exchanges are called mediators and are

all bosons, which are particles with integer spin. The gravitational mediator is the

graviton; electromagnetic interactions are mediated by the photon, strong interactions

by the gluon, and weak interactions by the intermediate vector bosons, W± and Z.

In the late 1970s, the Standard Model emerged as a theory that describes all of

the known elementary particle interactions except gravity. The Standard Model is a

collection of related theories combining the GWS theory of weak processes and QCD.

Since 1978, it has satisfied the hypotheses of every experimental test1.

1.2.2 Quarks and Leptons

Leptons and quarks are the basic building blocks of matter [7]. These particles

carry spin 1
2
, in units of ~, so they are fermions. They are structureless at the smallest

distances currently probed by the highest-energy accelerators. Particles interact as a

result of the exchange of bosons.

Leptons are particles which if electrically charged, interact electromagnetically

1The Standard Model satisfies all experimental hypotheses when the model was extended to
include right handed neutrinos
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and weakly, and, if neutral, only weakly2 [8]. By contrast, quarks are ’strongly

interacting analogues’ of leptons, since they interact via strong, electromagnetic and

weak interactions. This is the basis for distinguishing between these two types of

fundamental matter, a distinction which will presumably disappear if it eventually

proves possible to unify all three types of forces.

Table 1.2.1 below lists charged and neutral leptons. All leptons and quarks have

their own antiparticles3. There are six leptons, classified according to their charge

(Q), electron number (Le), muon number (Lµ), and tau number (Lτ ). They fall

naturally into three families, or generations: Similarly, there are six types of quarks,

Table 1.2.1: Lepton Classification

Generation Lepton Q Le Lµ Lτ

1st e −1 1 0 0
1st νe 0 1 0 0
2nd µ −1 0 1 0
2nd νµ 0 0 1 0
3rd τ −1 0 0 1
3rd ντ 0 0 0 1

which are classified by electric charge and flavor: strange (S), charm (C), bottom (B),

and top (T). Additionally quarks carry a new type of charge, called color. There are

3 defined colors: red, blue, and green. Antiquarks have the complementary colors

anti-red, anti-blue and anti-green. With color, there are a total of 36 quarks and

antiquarks. The quarks also fall into three generations, as shown in Table 1.2.2.

2There are a couple of exceptions to this general statement.
3If we include νR
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Table 1.2.2: Quark Classification

Generation Quark Q I3 S C B T
1st d −1/3 −1/2 0 0 0 0
1st u 2/3 1/2 0 0 0 0
2nd s −1/3 0 −1 0 0 0
2nd c 2/3 0 0 1 0 0
3rd b −1/3 0 0 0 −1 0
3rd t 2/3 0 0 0 0 1

1.3 Theory

1.3.1 Fields

The passage from a classical field theory to the corresponding quantum field theory

does not involve modification of the Langrangian or the field equations, but rather a

reinterpretation of the field variables; the fields are “quantized,” and particles emerge

as quanta of the associated fields. Leptons and quarks are quanta of fermionic Dirac

fields; the photon is the quantum of the electrodynamic field, Aµ; the W± and Z

are quanta of the appropriate weak gauge fields; gluons are quanta of the eight QCD

gauge fields.

Each Lagrangian determines a particular set of Feynman rules. The Feynman

rules, along with Feynman diagrams, represent the possible interactions. The Lan-

grangian consists of two kinds of terms: the free Langrangian for each participating

field, plus various interaction terms (Lint). The former determines the propagator;

the latter-obtained by invoking local gauge invariance-determine the vertex factors.
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1.3.2 Gauge Theories

In the Standard Model, the theory of the electroweak and color interaction is a

gauge theory. Gauge theories are based on the application of the basic idea that the

form of a physical theory should not depend on how the coordinate frame is chosen

from point to point in space-time [10]. This is called the principle of local gauge

invariance. The form of physical laws should remain unchanged regardless of how the

local choice of axes is made.

The simplest application of local gauge invariance within the Standard Model

is to electromagnetism. All quantum theories in the Standard Model involve the

description of particles in terms of wavefunctions and involve internal spaces. In

electromagnetism, the internal space is one-dimensional. In quantum mechanics, the

absolute phase of the wavefunction of an electron, ψ, has no significance. When

ψ is changed to ψ exp(iαe), where e is its charge and α is an overall constant no

observable consequences occur. The probability that the electron is in a volume dV

is unaltered and so is the expectation value of the momentum operator. Therefore,

both the position and the motion of the electron are unaffected. This phase change

is called a global gauge transformation because it changes the phase in the same way

at all points in space-time. When we apply local gauge invariance, the phase change

α varies with position and time yielding the following wavefunction:

ψ → ψ exp[iα(x, t)e] (1.3.1)

Here α(x, t)e represents a rotation in a one-dimensional complex space. It is impor-

tant to note that the “rotation” corresponding to the U(1) symmetry is not in the
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four-dimensional space-time in which the electrons and photons move and live. The

rotations of the U(1) group are an internal rotation in an abstract space associated

with the field. This internal space, or ’charge’ space, is not related to space-time;

it is an abstract mathematical space where internal symmetries live. Local gauge

invariance applied to this charge space would require that the laws of physics do not

depend on the local choice of α. Unlike a global gauge transformation, a local gauge

transformation changes the derivatives of the fields.

The symmetry group of QED is the rotational group U(1); ’U ’ specifies a unitary

transformation in which the amplitude of ψ is not affected and ’1’ refers to the

dimensionality of the complex space. The family of phase transformations U(α) =

exp(iαe) forms a unitary Abelian group known as the U(1) group. Abelian just

records the property that the group multiplication is commutative:

U(α1)U(α2) = U(α2)U(α1) (1.3.2)

If all the group elements commute, as shown above, the group is called Abelian. If

the group elements do not commute, the group is called non-Abelian:

U(α1)U(α2) 6= U(α2)U(α1) (1.3.3)

Forcing the U(1) symmetry to become a local symmetry, and applying the gauge

principle, means that the “angle” of rotation appears in the transformation properties

of the single gauge field of QED, the photon.

The difference between global and local gauge transformations occurs when we

calculate the derivatives of the fields. Instead of a simple phase factor, we pick up an
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extra term. However, if we replace every partial derivative by the covariant derivative,

the extra term will cancel out. The covariant derivative has the form:

Dµ ≡ ∂µ − ieAµ . (1.3.4)

The only way that symmetry may be preserved under local changes in the phase of

an electron field is if a new field, Aµ, is introduced. Changes in this new field absorb

those contributions arising from the local phase change of the electron field that would

otherwise destroy the symmetry properties. This new field must be coupled to the

electron field and the strength of this coupling is expressed in the Lagrangian by a

coupling constant. This field is called a gauge field and it is actually the photon,

which is a “gauge boson,” an interaction-transmitting particle having integer spin

which emerges in U(1) gauge theory as the preserver of local gauge symmetry.

In order to enforce local phase symmetry and local charge conservation, a theory

of free electrons/positrons must introduce photons and an interaction with those

photons. The requirement of local gauge invariance generates the electromagnetic

field. The substitution of Dµ for ∂µ is a mechanism for converting a globally invariant

Lagrangian into a locally invariant one. The idea that the interactions of the theory

are determined by forcing it to respect local phase symmetry, or gauge symmetry, is

termed the gauge principle.

The link between symmetry and interactions is very powerful. Quantum field

theory gives the basic structure, but does not specify the phase of the quantum field.

An interaction automatically appears if the phase is allowed to assume different values

at different points of space/time as well as the imposed condition that the Lagrangian
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has a symmetry with respect to the phase change. Start with a quantum field theory

having no interactions, add symmetry via the phase, enforce the gauge principle, and

the result is a gauge theory with interactions. The interaction is mediated by a gauge

field that emerges to fulfill this role.

The successful application of local gauge invariance to electromagnetism suggests

applying it elsewhere to explain other forces. In 1954 Yang and Mills applied the

same strategy to the group SU(2). What would we expect in the general case when

the gauge principle is applied to an SU(n) internal space? There would be (n2 − 1)

gauge fields. Leptons and quarks would be expected to appear in multiplets with n

members. In order to recognize SU(n) symmetries in nature we can examine whether

the quarks and leptons are arranged in multiplets.

Both quarks and leptons feel the weak force and appear in doublets and singlets

so that SU(2) is presumably the symmetry underlying the weak force. The symmetry

group for color proposed by Greenberg was SU(3). Since quarks, which possess color,

feel the strong force while leptons do not suggests that the SU(3) of color is the

symmetry underlying the strong force4.

The quark wavefunction appears as:

ψ exp[iεα(x, t)λα] (1.3.5)

where εα is a rotation angle in color space and λα are the Gell-Mann matrices. These

matrices are the generators of rotation for the SU(3) symmetry. The SU(3) group is

non-Abelian because not all of the generators λα commute with each other. According

4Leptons are in SUc(3) singlets
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to the gauge principle the values of εα can be chosen arbitrarily at each point in space-

time without affecting the physics. The appropriate covariant derivative for quantum

chromodynamics is:

Dµ ≡ ∂µ − igAα
µλα (1.3.6)

where g is the coupling constant. Physically, Aα
µ, are the gluon fields that mediate

the strong interactions.

1.3.3 Quantum Chromodynamics

Quarks carry an extra charge, color, and interact via the exchange of gluons. Color

is triple valued; all objects directly observable in experiments are color-neutral. As a

result, quarks and gluons appear to be confined within colorless baryons and mesons;

this is known as confinement. Gluons carry one color and one anticolor in a color

octet configuration; the completely symmetric configuration 1/
√

3(rr̄ + bb̄ + gḡ) is

a color singlet and excluded, hence there exist 8 gluons. The 8 gluon states which

make up a ’color octet’ are given by: |1 >= (rb̄+br̄)
2

, |2 >= −i (rb̄−br̄)
2

, |3 >= (rr̄−bb̄)
2

,

|4 >= (rḡ+gr̄)
2

, |6 >= (bḡ+gb̄)
2

, |7 >= −i (bḡ−gb̄)
2

, and |8 >= (rr̄+bb̄−2gḡ)
6

.

Gluons are massless particles like photons that carry the same quantum numbers

as photons, JPC = 1−−. Photons don’t carry electric charge, however gluons carry

color charge. As a result gluon-gluon interactions are possible as well with three- and

four-point vertices, as shown in Figure 1. A theory of strong interactions based on the

exchange of colored gluons between colored quarks can be constructed in a fashion

similar to QED. The resulting theory, QCD, can be shown to be renormalizable. Like
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Figure 1: Quark-gluon and gluon-gluon interactions

in QED, some expressions give infinite contributions, but the renormalizable scheme

allows one to control all divergences. QCD is described by the Lagrangian [4]:

LQCD = q̄i (iDµγ
µ −mδij) qj −

1

4
F a

µνF
a µν , (1.3.7)

where

F µν
a = ∂µAν

a − ∂νAµ
a − gfabcA

µ
bA

ν
c . (1.3.8)

Aµ
a are the gluon fields with a = 1, ..., 8, qi are the quark fields with indices i = 1, 2, 3,

g is the bare coupling and m is the quark mass. The non-Abelian group structure of

SU(3) leads to nonlinear terms in the field strength F µν
a , which gives rise to trilinear

and quadratic vertices in the theory. This non-linearity makes the theory difficult to

solve, and leads to the confinement of color. A consequence of this behavior appears

to be the existence of new hadrons, particles that interact strongly, with gluonic

degrees of freedom known as glueballs and hybrids. The energy region most relevant

to our daily lives is where the QCD coupling constant is really strong. In this area

protons and neutrons and their excitations exist. Neither perturbative QCD nor chiral
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perturbation theory are able to describe interactions in this region. For momentum

scales given by typical hadron masses, around 1 GeV, not only αs changes but also

relevant degrees of freedom change from current quarks to constituent quarks.

The masses of quarks are difficult to determine. No free separated quark has even

been observed. Since quarks are never free, quark masses are only revealed through

their effect on some interaction [13]. Quark masses are not unique, but depend on

how they are defined. One way to estimate quark masses is to use a simple quark

model of hadrons that reproduces the pattern of hadron masses. As each quark lives

inside a hadron filled with interacting quarks and gluons, they behave as though they

have an effective mass that isn’t necessarily their “true” mass. This effective mass is

called the constituent mass. Roughly, the constituent masses of the u and d quarks

are about a third the mass of the proton (∼ 938 MeV), so they come out to around

300 MeV each. In theory, the quark masses enter into calculations as parameters

which can then be determined by comparison of the computational results with the

data [7]. In this case, we solve the equations of strong interactions and the resulting

quark masses are called current quark masses. The mean mass values are presented

in Table 1.3.1 [12]. Complications arise in the theory of strong interactions. The

Table 1.3.1: Constituent and current quark masses

LIGHT QUARKS HEAVY QUARKS
d u s c b t

current mass ∼ 6 ∼ 3 ∼ 115 MeV ∼ 1.3 ∼ 4.2 ∼ 174 GeV
constituent mass ∼ 330 ∼ 330 ∼ 510 MeV ∼ 1.5 ∼ 5.0 ∼ 174 GeV
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coupling constant, αs, increases dramatically with decreasing momentum transfer,

Q2, and consequently QCD predictions in the low-energy regime are difficult. At

high momentum transfer, αs is small and QCD can be successfully approached using

perturbation theory. At low energies, there is progress in numerically calculating

QCD quantities on a discrete space-time lattice.

For lower energies confinement becomes the most important aspect of strong in-

teractions. This is the realm of non-perturbative QCD or of strong QCD. At very

small energies, in the chiral limit, observables can be expanded in powers of masses

and momenta and chiral perturbation theory leads to reliable predictions. At very

large energies QCD can be treated perturbatively. The strong interaction constant αs

decreases and particles behave asymptotically as if they were free. In an extremely

hot and dense environment we expect quarks to become free; a phase transition to

the quark-gluon plasma is expected and may have been observed.

In short, experimentally it has been shown that the coupling constant in QCD

depends on energy. However, experiments have shown that for both QED and QCD

the strength of the interaction depends on energy [14]. Though both theories share a

similar mechanism for this energy-dependence, the two respond in opposite ways to

changes in energy. In QED, screening provides a simple physical picture of how the

coupling increases as the test particle is probed more closely. In contrast, for QCD

the coupling decreases. This is explained in terms of an anti-screening effect. The

virtual particle pairs surrounding a bare color charge actually make the color charge

on a quark appear stronger than it is, and when a probe quark penetrates through the
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layers of anti-screening, the core is revealed to be weaker, not stronger. An electron

induces a cloud of positive charge around itself, thereby diluting its negative charge.

By contrast, a quark appears to induce around it a color charge of the same type.

The root of the difference lies in the fact that the gluons themselves carry color. As

a result, the gluons that appear in the cloud of virtual particles around a bare quark

contribute directly, whereas the photons in the QED case do not.

The expression for the strong coupling parameter, αs, is one of the key results of

QCD. Much information can be gained by examining the following expression:

αs(Q
2) =

12π

(33 − 2nf) ln(Q2/Λ2)
(1.3.9)

The formula for the strong coupling constant is quite similar to that for QED. One

difference is an additional term in the factor in the denominator, 33− 2nf , where nf

is the number of flavors. The 33 comes from the gluons, and the fact that the color

group is SU(3): a different symmetry group would give a different number. The 2nf

comes from the quarks, and reflects the number of different virtual quark-antiquark

pair possibilities into which gluons may transform during the course of an interaction.

If this factor is negative, then, as in QED, the effective coupling increases at small

distances; if it is positive, the coupling decreases [9]. The number of flavors is related

to the strength of the strong force. In the Standard Model there are 6 flavors, so

that 33−2nf comes out positive and as a result the QCD coupling decreases at small

distances. Qualitatively, this is the origin of asymptotic freedom. In QCD, there is no

way to measure the strength of the color charge on an isolated quark. As a result, it

is difficult to determine the full spectrum for the strong coupling constant. All we can
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do is measure αs at some reasonable energy to fix the overall scale, just as knowing

the charge of an electron fixes the sliding scale of the electromagnetic coupling in

QED.

As a result, it is more convenient to relate the strong coupling and energy in

terms of some parameter, whose value is known just as soon as experimenters have

made a measurement of αs. This parameter, or equivalently the αs measured at

some specific energy, is the single fundamental constant in the theory. It must be

determined by experiment, whereas most other constants are derived from theory.

This new parameter is called Λ, and it has dimensions of mass. It is referred to as the

“ΛQCD,” or “QCD scale parameter.” Determining a definite value for Λ has proved

difficult. The accepted value of Λ is about 200 MeV.

The QCD Lagrangian knows nothing about the Λ parameter or an intrinsic mass

or length scale. The theory of QCD is scale invariant, it doesn’t distinguish between

the sizes of particles. However, this changes when the Lagrangian is quantized and

renormalized. Renormalization introduces a length scale - a momentum cutoff or a

renormalization scale. The fact that the physical content of the theory is invariant

with respect to this scale factor yields the change of the strong coupling with energy.

But to get an actual value for the strong coupling means including the renormaliza-

tion scale in the guise of the Λ parameter. The quantum theory of QCD therefore

acquires a scale-dependence in the form of the Λ parameter: the scale invariance of

the Lagrangian is sacrificed in the transition to a full quantum theory. The value of

200 MeV for Λ corresponds to a distance scale of around one fermi, a little smaller
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than the wavelength associated with a pion and roughly the size of a proton.

If the energy scale gets close to the value of Λ, then the strong coupling parameter

is large, and perturbation theory no longer holds. In other words, Λ dictates where

the usefulness of perturbation theory ends. These energy divisions are represented in

Figure 2. At low energies, below 1 GeV, one approach that has proved useful is lattice

Figure 2: QCD regions in terms of momentum transfer, Q2, and Λ2
QCD

QCD. Lattice QCD has approached the non-perturbative region of QCD using com-

puters to solve the equations of QCD. Within non-perturbative QCD lies confinement,

the antithesis of high-energy’s asymptotic freedom. When a quark and antiquark try

to separate, it becomes energetically favorable to create a quark-antiquark pair from

the vacuum. One way to visualize this scenario is to imagine the quark and antiquark

are connected by a gluon string. The quark and antiquark rotate about each other,

held a fixed distance apart by the string, their centrifugal motion keeping the string

17



rigid. Confinement implies that the force between a quark and an antiquark remains

constant as they are pulled apart, so as the string is stretched it does not weaken.

Instead, the energy added to the system by pulling the quark and antiquark apart is

converted into more string, and the string becomes longer. The string does not grow

Figure 3: The mechanism of quark confinement. As the quark and antiquark separate,
eventually it becomes energetically favorable to create a quark-antiquark pair from
the vacuum.

indefinitely; there is a point at which it is energetically favorable to break. The gluon

string breaks, and an antiquark and quark emerge. There are now two mesons, each

connected by string. Figure 3 illustrates this concept.

This “string” contains lines of color force. How do gluons fit into this picture?

The quark and antiquark behave as though they are relatively free when they are

close together. As more energy is put into separating the quark-antiquark pair, the

energy goes into creating more and more quark/antiquark pairs and gluons from the

vacuum. As the gluons grow in number they cause an attractive force between the

gluons mediating the quark-antiquark attraction, in effect pulling the gluon color
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force lines together. This is a direct consequence of the fact that gluons themselves

have color, and interact with each other. As the quark and antiquark are pulled

apart, more gluons are created therefore causing the lines of color linking the pair to

come together. The interaction strength grows, and is directed along a tube of force,

yielding the “string” connecting the quark and antiquark. The channeling of color

force into a tube yields a force that is roughly constant with increasing separation, and

is ultimately responsible for the pair’s confinement. The squared coupling constant

αs becomes very large for large distances, which leads to quark confinement. This

feature of QCD implies that neither single quarks nor gluons can be observed as

free particles. It is the large-distance behavior that is probed at low energies and it

cannot be described by a single coupling constant but is effectively depicted by meson

exchanges and their couplings to baryons.

1.4 Mesons

Mesons were first introduced by Yukawa [15] with pions acting as the exchange

bosons responsible for the strong interactions between nucleons [4]. The introduction

of high-energy accelerators led to a whole zoo of mesons and baryons, creating great

confusion. Eventually, when the various mesons and baryons were arranged into

multiplets based on their quantum numbers, patterns started to emerge. It was

recognized that hadrons of a given JPC arranged themselves into representations of

the group SU(3), although none of the observed states seemed to correspond to the

fundamental triplet representation. Zweig and Gell-Mann postulated that the mesons
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and baryons were actually composite objects, with mesons made of a quark-antiquark

pair and baryons made of three quarks.

1.4.1 Quantum Numbers

The quark model is a classification scheme for hadrons in terms of their valence

quarks, the quarks and antiquarks which give rise to the quantum numbers of the

hadrons [16]. There are two sets of quantum numbers used to identify hadrons. The

first set, JPC where J is the total angular momentum, P , the intrinsic parity, and C

the charge conjugation parity. The remainder are flavor quantum numbers such as

the isospin, I. When three flavors of quarks are taken into account, the quark model

is also known as the eightfold way, in reference to the meson octet.

Quarks have spin S = 1/2 and baryon number B = 1/3, antiquarks S = 1/2 and

B = −1/3. A quarks and an antiquark can form bound states with B = 0 and spin

S = 1 or S = 0. A conventional meson is defined as a qq̄ system and has the following

properties [7].

The parity of a meson due to the orbital angular momentum between quark and

antiquark is given by P = (−1)L. Quarks also have intrinsic parity which we define

to be P = 1; antiquarks have opposite parity P = −1. The total parity of a qq̄ meson

is hence given by

P = (−1)L+1 (1.4.1)

Parity is conserved in strong interactions.

Neutral mesons with no strangeness are eigenstates of the charge conjugation
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operator, sometimes called C-parity,

C = (−1)L+S (1.4.2)

where only neutral mesons are eigenstates of C.

Soon after the discovery of the neutron, Heisenberg observed that the mass of

the proton and the neutron were amazingly close. Heisenberg proposed that they

be regarded as two “states” of a single particle, the nucleon. This idea led to the

introduction of isospin, I. The nucleon carries isospin I = 1/2, and the third com-

ponent has eigenvalues +1/2 (the proton) and −1/2 (the neutron) [2]. The proton

and neutron are said to form an isospin doublet. The three pions have isospin I = 1,

they form an isospin triplet.

|I = 1, I3 = 1〉 = −|ud̄〉 = −|π+〉 (1.4.3)

|I = 1, I3 = 0〉 =
1√
2
(|uū〉 − |dd̄〉) = |π0〉 (1.4.4)

|I = 1, I3 = −1〉 = −|dū〉 = |π−〉 (1.4.5)

isospin is conserved in strong interactions. The C-parity only has a defined eigenvalue

for particles which are their own antiparticles. The action of C-parity on other states

leads to their antiparticles.

C|π0〉 = +|π0〉 ; C|π+〉 = |π−〉 ; C|π−〉 = |π+〉 (1.4.6)

C-parity is conserved in strong interactions.

C-parity becomes more useful when it is used in G-parity; G-parity is C-parity

followed by a rotation in isospin space by 180o degrees about the y-axis. The rotation
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by 180o about the y-axis in isospin space will carry I3 into −I3, converting, for instance

a π+ into a π−. The rotation is given by

eiπIy (1.4.7)

We can now define the G-parity as follows:

G = C · eiπIy (1.4.8)

G-parity is defined and has the same value for all members of a multiplet; it is

essentially the generalization of C-parity to multiplets of particles. Since it depends

on isospin, it is conserved in strong interaction. An example would be the following

G|π±,0〉 = ηG|π±,0〉 (1.4.9)

where ηG = ±1 are the eigenvalues of G-parity.

1.4.2 Meson Nonets

Mesons are characterized by their quantum numbers JPC and by their flavor

content. These are measured quantities. In the light quark domain we have SU(3)

symmetry which leads to a nonet of states, we expect an octet and a singlet. If the

flavor symmetry was exact, then all nine mesons would have the same mass. Table

1.3.1 shows that the light quarks are similar in mass. However, the s quark is heavier

than the u and d quarks. Since the three quarks are similar in mass, but not equal is

mass, the three pairs uū, dd̄ and ss̄ can therefore form mesons which are approximate

SU(3) eigenstates meaning they are mesons composed of linear combinations of uū,
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dd̄ and ss̄ pairs.

Mesons carry both orbital angular momentum, L, and spin, S. Mesons with J = 0

and positive parity are called scalar particles. Mesons with J = 0 and negative parity

are pseudoscalar particles. For example, a pseudoscalar particle is a particle with

quantum numbers JPC = 0−+.

From the three quarks u, d, s and their antiquarks, nine SU(3) eigenstates can be

constructed. The nine states are orthogonal; one of them is the singlet, the η1, which

is invariant under rotations in SU(3). Figure 4 shows the nonet representation of

the pseudoscalar mesons. The eightfold way classification is the result of a pattern

Figure 4: Pseudoscalar Meson Nonet

originating in arguments from group theory. The three states in the center of Figure

4, πo, η8, and η1, carry the same value for the S and I3 quantum numbers. How do

we distinguish between the states uū, dd̄, and ss̄ which all correspond to mesons with
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S = I3 = 0?

The state of a quantum system is defined by the wavefunction [17]. A funda-

mental postulate of quantum mechanics is the statement that the specification of the

wavefunction completely determines all the properties of the system in a given state.

A mixed state can be thought of as a superposition of pure states ψ(i). In our

case, the states uū, dd̄ and ss̄ are pure states with the same quantum numbers. But

the physical states are mixed states, which are linear combinations of the pure states,

and it is not possible to identify one quark-antiquark combination with one meson.

Since the two states η8 and η1 have identical quantum numbers, they can mix [7].

The eigenstates η8 and η1 correspond to the physical states η and η′; the degree of

mixing in these states is represented by the pseudoscalar mixing angle Θps:

|η〉 = cos ΘPS|η8〉 − sin ΘPS|η1〉 (1.4.10)

|η′〉 = sin ΘPS|η8〉 + cos ΘPS|η1〉 (1.4.11)

Minimal mixing occurs when sin ΘPS
∼= 0.6. Gluons do not carry flavor, which means

that they carry quantum numbers S = 0 and I3 = 0. As such, it is possible that

gluons, or a state composed solely of gluons known as a glueball, could potentially

contribute to the η and η′ wave functions. This additional component is referred to

as a glue component. To accommodate this new possibility, we extend the mixing

scheme to include a glue element.

|η〉 = Xη ·
1√
2
(uū+ dd̄) + Yη · (ss̄) + Zη · (glue) (1.4.12)

|η′〉 = Xη′ · 1√
2
(uū+ dd̄) + Yη′ · (ss̄) + Zη′ · (glue) (1.4.13)
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Currently there is no evidence to support glueball content in the η′ wavefunction;

nevertheless the η′ still appears to be produced preferentially in glue-rich processes.

A meson nonet is fully described by four types of particles. The lightest pseu-

doscalar nonet contains 3 pions, 4 kaons, the η and the η′. In Table 1.4.1 some

possible combinations of higher order nonets are shown. Currently, there are more

particles than places in the nonets; in particular the light mesons are still ambigu-

ously classified. The spectrum of scalar mesons is of interest since the lowest mass

Table 1.4.1: Possible light meson nonet combinations. The two K1A and K1B mix
to form the observed resonances K1(1280) and K1(1400). In some cases, mesons still
need to be identified. We have borrowed the spectroscopic notation n2s+1LJ = 11S0.
Here, s is the total spin of the two quarks.

L S J n I = 1 I = 1/2 I = 0 I = 0 JPC n2s+1LJ

0 0 0 1 π K η′ η 0−+ 11S0

0 1 1 1 ρ K∗ Φ ω 1−− 13S1

1 0 1 1 b1(1235) K1B h1(1380) h1(1170) 1+− 11P1

1 1 0 1 a0(????) K∗
0 (1430) f0(????) f0(????) 0++ 13P0

1 1 1 1 a1(1260) K1A f1(1510) f1(1285) 1++ 13P1

1 1 2 1 a2(1320) K∗
2 (1430) f2(1525) f2(1270) 2++ 13P2

2 0 2 1 π2(1670) K2(1770) η2(1645) η2(1870) 2−+ 11D2

2 1 1 1 ρ(1700) K∗(1680) ω(1650) Φ(????) 1−− 13D1

2 1 2 1 ρ2(????) K2(1820) ω2(????) Φ2(1870) 2−− 13D2

2 1 3 1 ρ3(1690) K∗
3 (1780) ω3(1670) Φ3(1850) 3−− 13D3

0 0 0 2 π(1370) K0(1460) η(????) η(1440) 0−+ 21S0

0 1 1 2 ρ(1450) K∗(1450) Φ(1680) ω(1420) 1−− 23S1

glueball is expected to have quantum numbers JPC = 0++. Little is known about the

scalar meson spectrum. Experiments have improved the situation, but there is still

much controversy surrounding particle states and how are they are classified. Figure

5 shows the nonet for the scalar mesons. There are a number of candidates that
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would satisfy the question marked states, but there is no general agreement on which

states should go where.

Figure 5: Scalar Meson Nonet

1.5 Glueballs

1.5.1 Definition

The self-coupling of gluons in QCD suggests that additional mesons made of bound

gluons, known as glueballs, may exist. Glueballs reflect new degrees of freedom

brought into hadron spectroscopy by QCD and are therefore of prime interest [7]. The

main motivation of current experiments on meson spectroscopy is the quest to search

for glueballs, to establish their non-qq̄ character and to determine their properties:

masses, total and partial widths, and their mixing with ordinary qq̄ states having the

same quantum numbers. There are strong candidates for glueballs. The number of
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scalar states with IG(JPC) = 0+0++ seems to be too large for the quark model to

accommodate. However, none of the states has decay properties as expected for a pure

glueball. Mixing scenarios have been proposed in which the pattern of observed states

is understood as quarkonia mixing with a pure glueball. The following discussions on

glueballs will focus on the scalar glueball candidates.

1.5.2 Glueball Masses

The most accepted predictions for the glueball mass spectrum are based on lattice

gauge calculations. The ground state is a scalar state, at about 1730 MeV; followed by

a tensor and pseudoscalar glueball with masses of 2300 and 2350 MeV, respectively.

The uncertainty of these calculations is estimated to be of the order of 100 MeV.

Figure 6 summarizes the lattice calculations. These mass predictions are supported

by other models, such as bag models, flux tubes models, or QCD sum rules. However,

some models, such as the bag model, predict lower glueball masses. In addition, the

lattice results are in the so-called quenched approximation, which neglect virtual qq̄

loops. The glueball mass prediction could be potentially lower when light quarks are

taken into account. All of these models agree that the lightest glueball has quantum

numbers JPC = 0++.

The low-lying glueballs all have quantum numbers which allow mixing with con-

ventional mesons. This mixing is difficult to establish, and even more difficult to rule

out.
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Figure 6: The predicted glueball spectrum from an anisotropic lattice study [19].

1.5.3 Glueball Production and Decay

The 2006 Particle Data Group [18] lists the naive signatures expected for glueballs

as (i) no place in qq̄ nonets, (ii) enhanced production in gluon-rich channels such

as central production and radiative J/ψ (1S) decay, (iii) decay branching fraction

incompatible with SU(3) predictions for qq̄ states, and (iv) reduced γγ coupling.

Since glueballs are expected to carry masses and quantum numbers similar to

ordinary mesons, glueballs are difficult to identify. One way to differentiate between

the two is to examine the dynamics of their production and decay. There are three

production mechanisms that are considered ideal for finding glueballs. The first is
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radiative decay J/ψ → γG, where the glueball, G, is formed from intermediate gluons.

The second is in central production, where glueballs are produced from pomerons.

Pomerons are thought to be particle-like objects made up of gluons. The third is

in proton-antiproton annihilation, where the destruction of quarks can lead to the

creation of glueballs. These three processes are sketched in Figure 7. Historically,

Figure 7: Diagrams potentially leading to the formation of glueballs: radiative J/ψ
decays, Pomeron-Pomeron scattering, and pp̄ annihilation.

J/ψ radiative decay was the first to present serious glueball candidates. In J/ψ decay

the cc̄ quarks annihilate into gluons before creating lighter quark pairs to form the

final state hadrons [20]. The J/ψ is narrow and has a mass of 3.1 GeV. The J/ψ

decays via three gluons or two gluons and a single photon. Two gluons or three

gluons can produce a color singlet. In most decays, the J/ψ gives 3 gluons which

then hadronize. In the case where the J/ψ decays into two gluons and a photon, the
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two gluons can self-interact and form a glueball [21]. It is possible to determine the

energy of the two-gluon system by changing the energy of the produced photon. If

there is a glueball, then there should be an enhanced production rate of hadrons at

that energy.

Central production is another process in which glueballs are thought to be pro-

duced abundantly. In central production two hadrons, such as two protons, pass

by each other ’nearly untouched.’ Each proton is a collection of quarks surrounded

by a cloud of gluons [20]. As they approach each other, a color singlet bit of glue

gets detached from one proton and is absorbed by the other. This is called Pomeron

exchange. Once in awhile, as the two protons approach color single glue from each

will be released and these bits may fuse to produce resonance states. These would

be preferentially gluonic in nature. The state would decay into hadrons. No valence

quarks are exchanged. The process is often called Pomeron-Pomeron scattering. The

absence of valence quarks in the production process makes central production a good

place to search for glueballs.

In pp̄ annihilation, some quarks in the initial proton and antiproton annihilate

completely, leaving only gluons, and this subsequently results in light hadrons.

Glueballs do not couple directly to photons and their production should be sup-

pressed in γγ-processes. Further information is provided by the coupling of the can-

didate state to γγ. Gluons can only couple to photons through the creation of an

intermediate quark-antiquark pair which is therefore suppressed relative to quark

model states.
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A pure glueball would not be seen in two photon reactions. This is the motivation

for a ratio called stickiness. Since a glueball should appear strongly in J/ψ radiative

decay, but very weakly in γγ reactions, the quantity stickiness for a hadron is the

ratio of its branching ratios for the production in J/ψ radiative decays to the decay

to γγ. Pure glueballs should then have large stickiness.

Further distinctive features can be derived from their decays, glueballs are flavor

singlets. However, these arguments have to be taken with a grain of salt: mixing of a

glueball with mesons having the same quantum numbers can occur and would dilute

any selection rule.

Glueball decays are expected to produce flavor symmetric coupling to final-state

hadrons [4]. This gives the characteristic flavor singlet branching fraction for pseu-

doscalar pairs

Γ(G→ ππ : KK̄ : ηη : ηη′ : η′η′) = 3 : 4 : 1 : 0 : 1 . (1.5.1)

The decay into ηη′ is forbidden: a singlet cannot decay into a singlet and an octet

meson. This selection rule holds even if the state is a mixture of a glueball and a

conventional meson: the two mesons η and η′ have orthogonal SU(3) flavor states

and a flavor singlet cannot decay into two states which are orthogonal.

1.5.4 Scalar Mesons and Scalar Glueballs

Below 2 GeV, there are 19 ’established’ scalar mesons [18] which are summarized

in Table 1.5.1. In addition to these established states, the PDG also lists further

states that require confirmation. For example, the f0(1200− 1600), if verified, would
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Table 1.5.1: Scalar Mesons

I = 1/2 I = 1 I = 0
f0(400 − 1200)

κ(800) a0(980) f0(980)
f0(1370)

K∗(1430) a0(1450) f0(1500)
f0(1710)

need to find a place among the scalar mesons. There is no agreement on how to

interpret the scalar spectrum. More experimental results are needed to clarify the

current situation. In the end, only nine states can be accounted for by the quark

model. Many models have been suggested to accommodate the remaining states. I

will briefly discuss the possible classifications for the above states.

Scalar mesons below 1000 MeV. The light scalar meson states fall below the lattice

predictions for the scalar glueball mass. As a result, there are two proposals for the

structure of light scalars mesons: a qq̄ structure and a qqq̄q̄ one. In the latter case

there are at least three possible configurations: a meson-meson molecule, a diquark-

diquark state and a compact qqq̄q̄ state (known as a tetraquark). In addition, there

is the possibility that these states contain a glueball component.

The following states, a0(980), f0(600), f0(980), κ(800), could form a nonet [7] . As

a nonet of ’normal’ qq̄ mesons, their mass seems to be too low. Instead, these states

could be a nonet composed of qqq̄q̄ states. Figure 8 sketches a possible tetraquark

nonet. Even if all four particles exist, there is no proof they form a nonet. Other

possibilities exist where the dynamical origin of the f0(600), κ(800) and of the a0(980)
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Figure 8: Classification of possible tetraquark mesons. Green denotes I = 0 states,
purple I = 1/2 and red I = 1. The vertical axis is mass.

and the f0(980) are different. The a0(980) and the f0(980) are sometimes considered

weakly bound states of K and K̄; the kaon has an approximate mass of 500 MeV.

In the literature, the above states are not currently discussed as potential glueball

candidates since the mass predictions for the lowest scalar glueball from lattice QCD

are in the 1500 − 1700 MeV mass range. However, their precise structure remains

controversial.

Scalar mesons above 1000 MeV. Most scalar meson models agree that theK∗(1430)

is predominantly the quark model sū or sd̄ state [18]. The a0(1450) state carries

isospin and is not likely a glueball candidate. The relative couplings to its final states

are close to SU(3)-flavor predictions for an ordinary qq̄ meson. Given this fact, it

most likely fits into the scalar meson nonet. The three candidates most discussed as

glueball candidates in this mass range fall within or near the mass range predicted by

lattice QCD. The three candidates are: the broad f0(1370), and the comparatively

narrow f0(1500) and f0(1710). I will briefly discuss how these states stand up to the

33



glueball signatures listed above. Table 1.5.1 clearly demonstrates the first signature:

too many potential candidates for the scalar nonet. If the states below 1000 MeV are

dismissed as scalar nonet candidates, as tetraquark states or bound states, then we

are left with ten particles for nine places. This is the most common scenario consid-

ered. In that case, one of the three states must be a glueball: f0(1370), f0(1500), and

f0(1710).

The second signature is concerned with the production of states in gluon-rich pro-

cesses. As listed above, the gluon-rich processes most discussed are: J/ψ radiative

decays, central production, and pp̄ annihilations. The f0(1370) is produced in pp̄

annihilations and central collisions. The f0(1500) has been observed in pp̄ annihila-

tions, in central collisions (enhanced production), and in J/ψ radiative decays. The

f0(1710) is seen in J/ψ radiative decays and central production; a large signal is

observed in J/ψ radiative decays.

The third signature is related to expected decay products for a glueball, which

is a flavor singlet. Table 1.5.2 below summarizes the branching ratios from the 2006

Particle Data Group and the Crystal Barrel experiment for the three states under

consideration. As discussed earlier, we expect a glueball candidate to decay with the

ratio, ππ : KK̄ : ηη : ηη′ : η′η′ of 3 : 4 : 1 : 0 : 1. Therefore, we expect decays to

ηη′ to be suppressed. For the three candidates under discussion, neither the f0(1370)

and f0(1710) decay to ηη′; however, the f0(1500) does.

From Table 1.5.2 it can be seen that none of the three states fits the expected decay

ratio. From the branching ratios Table 1.5.2, as well as the remainder listed by the
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Table 1.5.2: Partial decay widths for f0(1370), f0(1500), and f0(1710).

f0(1370) f0(1500) f0(1710)
Γtot ∼ 350 ∼ 109 ∼ 137
Γππ ∼ 90 ∼ 38 ∼ 5
ΓKK̄ ∼ 50 ∼ 9 ∼ 52
Γηη ∼ 1 ∼ 6 ∼ 25
Γηη′ ∼ 2
Γη′η′

Γγγ seen not seen

Particle Data Group [18], we find that the f0(1370) and f0(1500) decay mostly into

pions, while the f0(1710) decays mainly into KK̄ final states. Naively, this suggests

a uū+ dd̄ structure for the f0(1370) and f0(1500) and ss̄ for the f0(1710).

The last signature deals with couplings to photons. Since gluons do not carry

electric charge, we do not expect glueballs to be formed from photon collisions nor

do we expect a glueball candidate to decay into two photons. A f0(1710) signal

is observed in γγ collisions leading to two kaons. The f0(1500) is not observed in

γγ → KK̄ nor π+π−. The partial width listed for the f0(1370) to γγ is small. The

partial width for the f0(1500) is listed as not seen, and there is nothing listed for the

f0(1710) branching ratio to γγ.

Looking at the currently excepted members of the scalar nonet, we find an average

width of about 300 MeV. The f0(1370) would then seem like a good candidate for

the nonet, with a width of around 350 MeV.

Since none of the candidates in the lattice QCD mass range appear to have all

the ’correct’ glueball properties, mixing has been suggested as a way to resolve this

35



problem. The two scalar qq̄ states and the scalar glueball have the same quantum

numbers; they mix and form the three observed states. Several mixing scenarios

have been suggested and some of them are capable of reproducing the decay pattern.

However, alternative schemes exist in the literature. In particular, for a scalar glue-

ball, the two-gluon coupling to nn̄ appears to be suppressed by chiral symmetry and

therefore KK̄ decay could be enhanced. Ultimately, more data are needed to clarify

the spectrum of scalar mesons.

1.5.5 Meson-Glueball Mixing

Several authors have suggested scenarios in which a scalar glueball mixes with two

qq̄ states [7]. The mixing angles were partly determined from partial decay widths

of the scalar states. All mixing schemes agree that the scalar glueball shows itself in

the scalar meson sector and it has a mass, before mixing, of about 1600 MeV. SU(3)

symmetry in the decays of scalar meson states is imposed in the fits as well as flavor

blindness of the glueball. The mixing schemes do not agree on how the glueball is

distributed between the three experimentally observed states. Some of the models

assign large ss̄ components to the f0(1370) or f0(1500), however this is not compatible

with the data. Table 1.5.3 lists some of the meson-glueball mixing schemes.
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Table 1.5.3: Decomposition of the wave function of three scalar isoscalar states into their quarko-

nium and glueball contributions in various models.

Amsler and Close [22]

f0(1370) = 0.86 1
√

2
(uū + dd̄) + 0.13ss̄ − 0.50 glueball

f0(1500) = 0.43 1
√

2
(uū + dd̄) − 0.61ss̄ + 0.61 glueball

f0(1710) = 0.22 1
√

2
(uū + dd̄) − 0.76ss̄ + 0.60 glueball

Lee and Weingarten [23]
f0(1370) = 0.87 1

√

2
(uū + dd̄) + 0.25ss̄ − 0.43 glueball

f0(1500) = −0.36 1
√

2
(uū + dd̄) + 0.91ss̄ − 0.22 glueball

f0(1710) = 0.34 1
√

2
(uū + dd̄) + 0.33ss̄ + 0.88 glueball

De-Min Li et al. [24]
f0(1370) = −0.30 1

√

2
(uū + dd̄) − 0.82ss̄ + 0.49 glueball

f0(1500) = 0.72 1
√

2
(uū + dd̄) − 0.53ss̄ − 0.45 glueball

f0(1710) = 0.63 1
√

2
(uū + dd̄) + 0.22ss̄ + 0.75 glueball

Close and Kirk [25]
f0(1370) = −0.79 1

√

2
(uū + dd̄) − 0.13ss̄ + 0.60 glueball

f0(1500) = 0.62 1
√

2
(uū + dd̄) + 0.37ss̄ − 0.69 glueball

f0(1710) = 0.14 1
√

2
(uū + dd̄) + 0.91ss̄ + 0.39 glueball

Celenza et al. [26]
f0(1370) = 0.01 1

√

2
(uū + dd̄) − 1.00ss̄ − 0.00 glueball

f0(1500) = 0.99 1
√

2
(uū + dd̄) − 0.11ss̄ + 0.01 glueball

f0(1710) = 0.03 1
√

2
(uū + dd̄) + 0.09ss̄ + 0.99 glueball

M. Strohmeier-Presicek et al. [27]

f0(1370) = 0.94 1
√

2
(uū + dd̄) + 0.07ss̄ − 0.34 glueball

f0(1500) = 0.31 1
√

2
(uū + dd̄) − 0.58ss̄ + 0.75 glueball

f0(1710) = 0.15 1
√

2
(uū + dd̄) + 0.81ss̄ + 0.57 glueball
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CHAPTER II

GLUEBALLS AS TIGHTLY LINKED FLUX TUBES: A REVIEW

2.1 Introduction

The backbone of this thesis is the model of glueballs as tightly knotted or linked

flux tubes by Buniy and Kephart [28], which is introduced in this chapter. Each

chapter is in some way related to this model. This chapter starts by presenting the

model, followed by some additional calculations directly related to the model. The

end of the chapter incorporates these new calculations as well as new states and

updated state masses from the Particle Data Group into the existing model.

2.2 Knots and links

Before we delve into the model, we first begin with a brief introduction to knots

and links. We are all familiar with everyday knots - the kind that we use to tie up

parcels, shoelaces, and so on [29]. These knots can be untied, and retied in the same

or different ways. By manipulating the string, we can let the “knots” escape.

In mathematics, the term knot means something different than our daily experi-

ence. In order to study the properties of knots, the knotted part of the string must

be trapped. To visualize this, take a piece of string [30]. Tie a knot in it. Then glue

or tape the ends together. This is a mathematical knot. The last step, joining the

ends of the rope, is what distinguishes mathematical knots from everyday knots. The
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knots studied by mathematicians are always formed on a closed loop, i.e. there are

no loose ends.

A simple definition for a mathematical knot is: A knot, K, is a simple closed curve

in 3-dimensional space. When talking about knots, the first example is a circle - a

planar, round circle. This closed curve is the standard unknotted loop and is known

as the trivial knot or the unknot. The overhand knot commonly used to tie string is

called a trefoil. It comes in two mirror-image forms, different from each other, labeled

left-handed and right-handed, as shown in Figure 9 below. The trefoil, therefore, is

an example of a chiral knot. Other knots, such as the figure eight knot, are equivalent

Figure 9: Trefoil knot

to their mirror images; these knots are called achiral knots.

The study of knots and their properties is known as knot theory. Mathematically

knots are modeled on the physical variety, and we allow a knot to be deformed as if it

were made of a thin, flexible, elastic thread [29]. Two knots are considered equivalent

if one can be smoothly transformed into the other [31]. Cutting the knot or allowing

it to pass through itself is not allowed.

Knots have been cataloged in order of increasing complexity. Knots are classified
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by the minimum number of crossings it contains. For example, a circle has no crossings

and the trefoil has three crossings. It is possible to have more than one knot with the

same number of crossings [29]. In this case, a subscript is used to denote different

knots with the same number of crossings, such as the 51 and 52 knots in Figure 10.

Whereas there is only one knot with four crossings, 41, the figure eight knot. Knots

Figure 10: A few prime knots

such as the square knot, pictured left below, and the granny knot, pictured below

right, are usually excluded from knot tables because they can be constructed from

simpler knots [31]. Both the Square Knot and the Granny Knot can be deconstructed

into two trefoils. Knots that cannot be split into two or more simpler knots are known

as prime knots. The trefoil is a prime knot. A link, L, is a collection of knots; the

individual knots which make up a link are called the components of the link. The set

of links contains the set of knots. We shall restrict the term knot to mean a link of

only one component.

Links are also classified by the minimum number of crossings, but also by the

number of components it contains. For example, Figure 12 shows the simplest link
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Figure 11: Square Knot (left) and Granny Knot (right)

known as the Hopf link which has two components and two crossings. The notation

Figure 12: Hopf Link 22
1

for a link is nk
l , where n represents the number of crossings, k represents the number

of components and l is used to distinguish between links with the same number of

crossings and components. The Hopf link is described as 22
1.

2.2.1 Knots and Links in Physics

Knots and links have been of interest to physicists since 1867 when Lord Kelvin

proposed that atoms could be described as knotted vortex tubes in the ether [32]. Of

particular interest is a property called the ropelength of a knot, which is defined as the

quotient of the knot’s length and its radius [33]. There is a minimum ropelength for

each knot and link, and the ropelength of that curve is called the ropelength Rop(L)
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of the knot or link. These minimum ropelength curves are called tight knots. Most

ropelengths are found by employing numerical methods, however certain types can

be exactly calculated. The ropelength results we use for our model are considered

tentative upper bounds for knots and links, except for the few cases where the rope-

length can be calculated exactly. Comparisons of ropelengths that can be calculated

explicitly with numerical methods show a difference of 0.01 − 0.02%. For example,

the ropelength for a trefoil is computed to be: Rop(31) = 8π.

From a given ropelength one can calculate the so-called “knot energy,” which is a

topological invariant [34]. The knot energy is proportional to the ropelength, which

implies that the tightest knot configuration represents the ‘ground-state.’ The knot

energy is defined to be

ε(K) =
Rop(L)

2a
(2.2.1)

where a is the radius of the flux tube. More details about this relationship are given

in the next section. If the radius of a tight knot is set to 1, then the knot energy for

the trefoil would be given by: ε(31) = 4π.

2.3 The model

We discussed in Chapter I that experiments report more states than the current

quark model can support. The lightest glueball states are predicted to carry the

same quantum numbers as scalar mesons, JPC = 0++, which are defined by the

Particle Data Group as f0 states. Buniy and Kephart [28] modeled all f0 states as

knotted/linked chromoelectric QCD flux tubes.
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The first question to address is how could a glueball be related to a knot or a

link? The strong interaction is a result of gluons exchanged by quarks, and at large

distances this exchange can be thought of as a tube of colored flux. Imagine a quark

and an antiquark connected by a tube of flux. Imagine the quark and antiquark

annihilating, leaving behind a circular tube of color flux. If the flux tube crossed over

itself before the quark and antiquark annihilated, what remains could be a knotted

flux tube. The result would be a knotted lump of energy, or a knotted soliton. By

definition, a glueball is a flavorless meson (i.e. a boson) with no valence quarks. These

knotted solitons would be considered glueballs.

Knotted magnetic fields, treated as solitons, have been suggested as candidates

for a number of plasma phenomena in systems such as astrophysical, atmospheric,

and Bose-Einstein condensates. In plasma physics, tight knots and links correspond

to metastable minimum energy configurations.

Imagine a hadronic collision that creates a gluonic state in the form of a closed

QCD chromoelectric flux tube. The fields in the flux tube quickly relax to an equi-

librium configuration, which is topologically equivalent to the initial state. The field

relaxes to its minimum energy state. Flux conservation and energy minimization

dictate that the fields are homogeneous across the tube cross sections. This process

occurs by shrinking the tube length, resulting in a “tight” knot or link. The radial

scale is set by Λ−1
QCD. The energy of the final state depends only on the topology of

the initial state, and is estimated as follows. A knotted tube of radius a and length

l has a volume πa2l. Using conservation of flux ΨE , the energy can be written as
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proportional to l(trΨ2
E)/(2πa2). Setting the radius of the tube to be proportional

to Λ−1
QCD, the energy is found to be proportional to the length l. This yields the

dimensionless quantity defined as the knot energy, given by Equation 2.2.1.

Buniy and Kephart identified knotted and linked QCD flux tubes with glueballs.

The lightest candidate is the f0(600), which is identified with the shortest link, i.e.

the 22
1. Following this, the f0(980) is identified with the next shortest knot, the 31

trefoil knot. And so on.

2.4 Additional Exact Calculations of Knot/Link Energy

Originally, Buniy and Kephart calculated the energy of links 22
1, 43

1 and 64
1 exactly.

These calculations assumed one quanta of flux per tube. We can expand this calcu-

lation to include link configurations where one of the components carries two quanta

of flux. The following section goes through the details of these calculations.

2.4.1 Energy of link 22
1#22

1 where 01 carries double flux

We first consider the case of the link 22
1#22

1 where one 01 carries a single quanta of

flux, and the other 0′1 component carries two flux quanta. The radius of the flux tube

in 01 is designated as a. 0′1 carries double flux, the cross-sectional area is doubled and

we assume constant energy density such that πa2 → 2πa2 so that a→
√

2a. We will

designate the radius of 0′1 by b =
√

2a. We will call the ropelength of the flux tube

carrying two flux quanta l1. We will call the ropelength of the flux tube with a single

quanta which goes through the interior l2. And we will call the ropelength of the flux
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tube that wraps around the other two l3. Given these definitions we can write down

a relationship for the knot/link energy in terms of ropelength.

E =
(2l1 + l2 + l3)

2a
. (2.4.1)

The ropelength of l1 is found by calculating the circumference of a circle of radius

a+b, which yields l1 = 2π(a+b). Similarly, the ropelenth of l2 is found by calculating

the circumference of a circle of radius 2a, which yields l2 = 4πa.

The ropelength of l3 requires a little geometry; the ropelength can be divided

into three parts: two equal straight segments, one arclength from a cirle of radius 2a

(denoted as L1) and one arclength of radius a+ b (denoted as L2). The length of each

straight segment can be found using the Pythagorean theorem, where the hypotonuse

is a + b, and the short side of the triangle is b − a. The long side, which represents

the straight segment we are looking for, is calculated as (2a) 4
√

2. We will use this

triangle to find some angles needed to calculate the arclengths. The first arclength is

L1 = β(2a), where β = 2 cos−1( b−a
a+b

). The second arclength is L2 = α(a + b), where

α = π + 2 sin−1( b−a
a+b

). The total ropelength is l3 = (4a) 4
√

2 + (π + 2 sin−1( b−a
a+b

))(a +

b) + (2 cos−1( b−a
a+b

)(2a). Plugging this into equation 2.4.1 gives

E =
4π(a+ b) + 4πa+ 4a 4

√
2 + (π + 2 sin−1( b−a

a+b
))(a+ b) + (2cos−1( b−a

a+b
))2a

2a
.

(2.4.2)

Plugging in b =
√

2a, we get

E =
4πa(2 +

√
2) + 4a 4

√
2 + (π + 2 sin−1(

√
2−1

1+
√

2
))a(1 +

√
2) + (2 cos−1(

√
2−1

1+
√

2
))2a

2a
,

(2.4.3)
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which reduces to

E = 2π(2+
√

2)+2(
4
√

2)+
(π + 2 sin−1(

√
2−1

1+
√

2
))

2
(1+

√
2)+(2 cos−1(

√
2 − 1

1 +
√

2
)). (2.4.4)

Which numerically reduces to

E = 30.8 (2.4.5)

2.4.2 Energy of link 22
1#22

1 where the center loop carries double flux

Next we consider the case of the link 22
1#22

1 where the center component carries

two flux quanta, and the other two components carry single flux quanta. This con-

figuration is shown in Figure 13. The same definitions apply as above for the radii

Figure 13: Link 22
1#22

1 where the center loop carries double flux.

of the single and double flux tubes. We will call the ropelength of the flux tube with

two flux quanta l1. We will call the ropelength of the flux tubes with a single quanta

l2 and l3. Given these definitions we can write down a relationship for the knot/link
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energy in terms of ropelength.

E =
2l1 + l2 + l3

2a
. (2.4.6)

The ropelengths of l2 and l3 are equal. l2 = l3 = 2π(a+ b). l1 contains two semicircles

of radius (a+ b), and two straight segments of length 2a. Putting this together yields

l1 = 2π(a+ b) + 4a. Combining these we get

E =
4π(a+ b) + 8a+ 4π(a+ b)

2a
. (2.4.7)

Substituting in b =
√

2a we find

E =
4πa(1 +

√
2) + 8a+ 4πa(1 +

√
2)

2a
. (2.4.8)

E = 2π(1 +
√

2) + 4 + 2π(1 +
√

2). (2.4.9)

E = 4π(1 +
√

2) + 4. (2.4.10)

E = 34.3 (2.4.11)

2.5 Averages and Errors

In most cases, the average mass and width used is that stated by the PDG.

However, we used some data from the Further States section where experimental

data were listed but no average calculated. In this case, we applied the averaging

procedures as described in the PDG to the data ourselves.

We averaged the data using the weighted least-squares method. The measure-

ments of a given state are assumed uncoralated, and the weighted average and error
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is calculated as

m = x̄± δx̄ =

∑

i wixi
∑

i wi

± (
∑

i

wi)
−1/2, (2.5.1)

where

wi =
1

(δxi)2
. (2.5.2)

Here xi and δxi are the value ad error reported by the experiment, and the sums run

over the N experiments. We also calculate χ2 =
∑

iwi(x̄i − xi)
2 and compare it with

N − 1, which is the expectation value of χ2 if the measurements are from a Gaussian

distribution.

If χ2/(N − 1) is less than or equal to 1, and there are no known problems with

the data, we accept the results.

If χ2/(N−1) is greater than 1, but not greatly so, we average the data but increase

the quoted error with a scale factor. The scale factor, S, is defined as

S = [χ2/(N − 1)]1/2. (2.5.3)

The scaling procedure for errors does not affect the stated central values and the

unscaled error, δx̄, can be recovered by dividing the quoted error by S.

2.5.1 Averages and Errors Calculations

The f0(1200 − 1600) state is listed in the Further states section of the Meson

Particle Listings. It has been measured three times by two different experiments, and

the data is stated as 1323±8 MeV, 1480+100
−150 MeV and 1530+90

−250 MeV. We calculate the

average mass and the average mass error in Mathematica using the above relationship,
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which gives

m = 1325 ± 10 MeV. (2.5.4)

We compute χ2/(N − 1), to determine if we need to scale the mass.

χ2/(N − 1) = 5/2. (2.5.5)

Since this quantity is larger than 1, we scale the error by the scale factor, S, as defined

above. Our final value for f0(1200 − 1600) is given as

m = 1325 ± 15 MeV, (S = 1.5). (2.5.6)

The f3(2300) state is listed in the Further states section of the Meson Particle Listings.

It has been measured twice by different experimental groups, and the data is 2334±25

MeV and 2303±15 MeV. We calculate the average mass and the average mass error

in Mathematica using the above relationship, which gives

m = 2311 ± 13 MeV. (2.5.7)

We compute χ2/(N − 1) and find that we need to include a scale factor. The final

mass is then

m = 2311 ± 14 MeV, (S = 1.1). (2.5.8)

The f0(2330) state is listed in the Meson Particle Listings. It has been measured

twice by different experiments, and the data listed is 2314±25 MeV and 2337±14

MeV. We calculate the average mass and the average mass error in Mathematica,

which gives

m = 2332 ± 12 MeV. (2.5.9)
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We compute χ2/(N − 1) and find that we do not need a scale factor.

The f2(1910) state is listed in the Meson Particle Listings. It has been measured

three times by different experimental groups and from three different decay modes,

the data given is: 1903±9 MeV, 1934±16 MeV and 1941±18 MeV. We calculate the

average mass and the average mass error in Mathematica, finding

m = 1915 ± 7 MeV. (2.5.10)

We compute χ2/(N − 1) and find that a scale factor is necessary. The final mass is

then

m = 1915 ± 12 MeV, (S = 1.6). (2.5.11)

The f2(1430) state is listed in the Meson Particle Listings. It has been measured six

times by several different experimental groups and from three different decay modes,

the data listed is as follows: 1453±4 MeV, 1421±5 MeV, 1480±50 MeV, 1436+26
−16

MeV, 1412±3 MeV, and 1439+5
−6 MeV. We calculate the average mass and the average

mass error in Mathematica using the above relationship, which gives

m = 1428 ± 2 MeV. (2.5.12)

From χ2/(N − 1) we find it is necessary to include a scale factor. The final mass is

then

m = 1428 ± 17 MeV, (S = 8.4). (2.5.13)
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2.6 Results

Table 2.6.1: Comparison between the glueball mass spectrum and knot energies.

State State Mass (MeV) Knot/Link Estimated Knot energy (MeV) Link Image

f0(600) 400 − 1200 22
1 758

f0(980) 980 ± 10 31 988

f0(1200 − 1600) 1325 ± 15 22
1 1376

f0(1370) 1200 − 1500 31#22
1 1490

f0(1500) 1505 ± 6 52 1492

f0(1710) 1724 ± 7 62 1721

f0(2020) 1992 ± 16 92
49 1993

f0(2060) ≈ 2060 82
1 2066

f0(2100) 2103 ± 8 942 2100

f0(2200) 2189 ± 13 82
4 2190

f0(2330) 2332 ± 12 83
4 2348

In Table 2.6.1, the mass spectrum of the f0 states is compared with the identified

knot and link energies. Since errors for the knot energies were not reported, the error

is assumed to be 0.1% percent. A least squares fit to the data gives

E(G) = (−0.4 ± 15.0) + (60.4 ± 0.5)ε(K) [MeV] (2.6.1)

with χ2 = 19.2 or a reduced χ2 = 2.1. The data points used in this fit are the f0
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mass values listed in the PDG. Figure 14 shows the relationship between the mass

spectrum of the f0 states and the knot/link energies. We identify the ground state
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E
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M
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Figure 14: Relationship between the glueball spectrum E(G) and knot energies ε(K).
Each point in the figure represents a glueball identified with a knot or link.

f particles, f0, with a single knot or link. The excited f states, e.g. f1, f2, ..., are

identified with a single knot or link that is rotationally excited. The energy of the

ground state has already been discussed above; we approximate the excited states by

E(fJ) = E(f0) +
1

2
J(J + 1)δ. (2.6.2)

where we choose the energy step δ as a parameter fit to the data, that is approxi-

mately 4− 5 MeV. Each table lists the estimated energy for each state based on this

relationship, unless otherwise noted.

The data has been analyzed in three tiers, according to how the data is listed by

the PDG. We consider the most established states to be those listed in the Meson

Summary Table. We label this ‘Tier 1’, and there are a total of 13 states in it. ‘Tier 2’

is comprised of the Meson Particle Listings, which contains all the particles from the
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Meson Summary Table plus some less established states. There are 27 states in Tier

2. Lastly, ‘Tier 3’ includes states listed in the Further States section which features

states requiring further confirmation. There are 36 states in Tier 3. Plots of the fits

for each tier are giving in Figures 15, 16 and 17.

For some listed states in the Further States sections, we have used the technique

outlined by the PDG to establish an average when necessary. Additional error has

been included in the error estimates for excited states to account for uncertainty in

the model. The error scales with the reliability of the data used, we included higher

error for less established states. As the data becomes more substantiated, this error

will reduce. The additional error for Tier 1 data is ±3, the additional error for Tier

2 data is ±5, and for the Tier 3 data we added ±8. A few knot/state or link/state

identifications have been changed from Tier 1 to Tier 2 to Tier 3. We fit the data

using a least-squares fit and evaluate our fit with a Chi-squared test. Chi-squared is

a sum of squares with the general form

χ2 =
N
∑

1

(

observed value − expected value

standard deviation

)2

. (2.6.3)

More precisely, we define Chi-Squared as follows

χ2 =
N
∑

1

(

yi − f(xi)

σi

)2

. (2.6.4)

where yi is the experimentally measured particle mass, and f(xi) is the knot energy

where xi is the knot energy, εk. The uncertainties in both quantities are represented

in the standard deviation, σi. The standard deviation for each knot length is taken

as 10−3 ×Rop(K).
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We expect χ2 ≤ d, where d represents the degrees of freedom. In general, the

number of degrees of freedom d is defined as the number of observed data, n, minus

the number of parameters computed from the data and used in the calculation, c;

d = n−c. In our case, we have the number of particles minus the slope, the intercept,

and delta or d = n− 3. If χ2 >> d, then the measurements do not fit the model.

For the Tier 1 data, we approximate the energy step to be δ = 5.1 and the

χ2 = 10.2. We used 13 particles in the analysis, which would lead us to expect a

χ2 ≤ 10. Therefore, the data agrees well with the expected distribution. The slope

is 60.8 ± 0.6 and the intercept is −6.4 ± 14.8.

E1(G) = (60.8 ± 0.6)ε(K) + (−6.4 ± 14.8) [MeV]. (2.6.5)

For the Tier 2 data, we estimate the energy step as δ = 3.0 and χ2 = 23.5. We used

27 particles in the analysis, which would lead us to expect a χ2 ≤ 24. Therefore,

the data agrees well with the expected distribution. The slope is 60.5 ± 0.4 and the

intercept is 2.0 ± 10.1.

E2(G) = (60.5 ± 0.4)ε(K) + (2.0 ± 10.1) [MeV]. (2.6.6)

Tables 2.7.1 and 2.7.2 contain Tier 3 data.

We approximated the energy step as δ = 5.2 and χ2 = 33.6. We used 36 particles

in the analysis, which would lead us to expect a χ2 ≤ 33. Therefore, the data agrees

with the expected distribution. The slope is 59.9±0.4 and the intercept is 9.8±10.9.

E3(G) = (59.9 ± 0.4)ε(K) + (10.0 ± 11) [MeV]. (2.6.7)
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2.7 Conclusion

Where can this model go? What further predictions can we make? How can

it be expanded? The model makes some predictions that could be confirmed by

experimentalists. We predict more f0 states than are currently observed, each would

be associated with a knot or link. Some of the particular predictions from the model

are as follows. In addition to predicting a number of ground states, the model allows

for a large number of excited states as well. We predict a f0 particle with a mass of

≈ 1200 MeV with a width that is greater than about 100 MeV. We predict a ground

state f meson with a mass of ≈ 1260 MeV and a width of ≈ 185 MeV. We predict

a ground state f meson with a mass of ≈ 1271 MeV and a width of ≈ 24 MeV. We

predict a ground state f meson with a mass of ≈ 1424 MeV and a width of ≈ 55

MeV. We predict a ground state f meson with a mass of ≈ 1526 MeV and a width

of ≈ 134 MeV. We predict a ground state f meson with a mass of ≈ 1640 MeV and

a width of ≈ 99 MeV. We predict another f0 particle with a mass of ≈ 1500MeV

with a width that is wider - greater than 100 MeV - than the currently observed

f0(1500). We predict three particles with masses between ≈ 1674 − 1710 MeV with

widths greater than 100 MeV. We predict a particle with a narrow width, less than

100 MeV, of mass ≈ 1710MeV. In addition, the model can be expanded to include

the specific symmetry of each knot and link used. If not all of the knots and links

used in the model exhibit a spherical symmetry, the predictions for the rotational

states as well as the rotational spectrum of the model will change. These ideas are

explored in the following four chapters.
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Table 2.7.1: Tier 3 Particle Data. Comparison between the glueball mass spectrum and
knot energies.

State Mass Width Ka ε(K)b E(G)c

(MeV) (MeV) (MeV)

f0(600) 400 - 1200 600 - 1000 22
1 [4π] [763]

f0(980) 980 ± 10 40 - 100 31 16.4 991

42
1 20.0 1209

f2(1270) 1275.1 ± 1.2 185 ± 2.9 22
1#22

1 [6π + 2] [1260] + 3δ

f1(1285) 1281.8 ± 0.6 24.2 ± 1.1 41 21.0 1271 + δ

bf0(1200 − 1600)cd 1325 ± 15 237 ± 20 22
1

e 22.8 1374
f1(1420) 1426.3 ± 0.9 54.9 ± 2.6 51 23.6 1424 + δ

{f2(1430)}f 1428 ± 17 13 − 150 51 23.6 1424 + 3δ

f0(1370) 1200 − 1500 200 - 500 (31#22
1) (24.7) (1490)

f0(1500) 1505 ± 6 109 ± 7 52 24.7 1492
{f1(1510)} 1518 ± 5 73 ± 25 52 24.7 1492 + δ

f2(1525) 1525 ± 5 73+6

−5
52 24.7 1492 + 3δ

52
1 24.9 1502

{f2(1565)} 1562 ± 13 134 ± 8 63
3 25.3 1526 + 3δ

{f2(1640)} 1639 ± 6 99 ± 60 62
1 27.2 1640 + 3δ

72
7 27.8 1674

(22
1#22

1#22
1) g [8π + 3] [1696]

62
2 28.1 1709

61 28.4 1710
f0(1710) 1724 ± 7 137 ± 8 62 28.5 1719

72
8 28.9 1742

63
1 28.9 1743

bf2(1750)c 1755 ± 10 67 ± 12 63 28.9 1743 + 3δ

31#31∗ 28.9 1745
31#31 29.0 1746

63
2 29.0 1749

62
3 29.1 1751

22
1 ∗ 22

1 [8π + 4] [1756]

{f2(1810)} 1815 ± 12 197 ± 22 83
7 30.3 1826 + 3δ

819 30.5 1839
71 30.7 1850

22
1#22 e

1 [30.8g ] 1858
{f2(1910)} 1915 ± 12 163 ± 50 820 31.6 1901 + 3δ

72 31.9 1925
73 32.0 1926

f2(1950) 1944 ± 12 472 ± 18 72
1 32.1 1935 + 3δ

74 32.1 1936

82
15 32.2 1937

72
2 32.5 1959

83
8 32.5 1959

aNotation nl
k

means a link of l components with n crossings, and occurring in the standard table of links (see e.g.)

on the kth place. K#K ′ stands for the knot product (connected sum) of knots K and K ′ and K ∗ K ′ is the link of

the knots K and K ′.

bValues are from [33] except for our exact calculations in 22
1, 22

1 ∗ 01 and (22
1 ∗ 01) ∗ 01 in square brackets, our analytic

estimates given in parentheses.

cE(G) is obtained from ε(K) using the fit in Figure 17.

dStates in b c brackets are not in the Particle Data Group (PDG) summary tables; they are listed in the Further

States section of the Meson Particle listings.

eOne of the tubes in the link carries double flux.

f States in braces are not in the Particle Data Group (PDG) summary tables; they are listed in the Meson Particle

listings.

gThe exact expression for the knot energy is in Equation (2.4.4).
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Table 2.7.2: Tier 3 Particle Data. Comparison between the glueball mass spectrum and
knot energies. (continued)

State Mass Width Ka ε(K)b E(G)
(MeV) (MeV) (MeV)

72
4 32.5 1960

bf1(1970)c 1971 ± 15 240 ± 45 75 32.6 1966 + δ

f4(2050) 2018 ± 11 237 ± 18 75 32.6 1966 + 10δ

73
2 32.7 1969

821 32.8 1974
77 32.8 1976
76 32.9 1979

73
1 32.9 1982

bf2(2000)c 2001 ± 10 312 ± 32 92
49 33.0 1990 + 3δ

{f0(2020)} 1992 ± 16 442 ± 60 92
49 33.0 1990

f2(2010) 2011 ± 80 202 ± 60 72
5 33.1 1994 + 3δ

92
43 33.2 1997

72
6 33.2 1998

84
3 33.2 2000

bf3(2050)c 2048 ± 8 213 ± 34 82
16 33.4 2013 + 6δ

82
4 33.7 2031

92
53 34.0 2049

82
1 34.2 2062

bf0(2060)c ≈ 2060 50 − 120 946 34.3 2067

22
1#22 e

1 [34.3h] 2068

83
10 34.5 2077

92
50 34.7 2088

92
61 33.7 2089

942 33.8 2096
{f0(2100)} 2103 ± 8 209 ± 19 31#01 34.9 2102

92
47 35.0 2106

83
9 35.1 2113

92
51 35.3 2125

{f2(2150)} 2156 ± 11 167 ± 30 92
54 35.5 2138 + 3δ

bf2(2140)c 2141 ± 12 49 ± 28 81 35.5 2138 + 3δ

..................... .................... .................. .................. ............... ..............

{f0(2200)} 2189 ± 13 238 ± 50 93
19 36.3 2188

..................... .................... .................. .................. ............... ..............

{f4(2300)} 2320 ± 60 250 ± 80 84
1 37.6 2266 + 10δ

f2(2300) 2297 ± 28 149 ± 141 91 37.9 2279 + 3δ

bf3(2300)c 2311 ± 13 200 ± 20 91 37.9 2279 + 6δ

bf1(2310)c 2310 ± 60 255 ± 70 93
20 38.1 2293 + δ

f0(2330) 2332 ± 12 144 ± 20 83
4 38.9 2342

f2(2340) 2339 ± 60 319 ± 80 83
4 38.9 2342 + 3δ

{f6(2510)} 2465 ± 50 255 ± 40 94 39.2 2359 + 21δ

aNotation nl
k

means a link of l components with n crossings, and occurring in the standard table of links (see e.g.)

on the kth place. K#K ′ stands for the knot product (connected sum) of knots K and K ′ and K ∗ K ′ is the link of

the knots K and K ′.

cE(G) is obtained from ε(K) using the fit in Figure 2.4.4.

dStates in b c brackets are not in the Particle Data Group (PDG) summary tables; they are listed in the Further

States section of the Meson Particle listings.

eStates in braces are not in the Particle Data Group (PDG) summary tables; they are listed in the Meson Particle

listings.

hThe exact expression for the knot energy is in Equation (2.4.11).
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Figure 15: Relationship between the glueball spectrum E1(G) and knot energies ε(K). Each point represents a glueball

identified with a knot or link. The straight line is our model and is drawn for the fit E1(G)
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Figure 16: Relationship between the glueball spectrum E2(G) and knot energies ε(K). Each point represents a glueball

identified with a knot or link. The straight line is our model and is drawn for the fit E2(G)
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Figure 17: Relationship between the glueball spectrum E3(G) and knot energies ε(K). Each point represents a glueball

identified with a knot or link. The straight line is our model and is drawn for the fit E3(G).
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CHAPTER III

MOMENT OF INERTIA CALCULATIONS FOR SEVERAL GEOMETRIES

3.1 Introduction

In Chpater II we introducted the model of glueballs as tightly knotted or linked

flux tubes. A specific knot or link is identified with a glueball ground state, and the

excited states are modeled as rotational excitations. In Chapter II we estimated the

rotational energy on an approximate spherical symmetry. However, now we would like

to determine the actual symmetry of each individual knot and link used in the model.

There are a few cases of links where we can calculate the moment of inertia tensor

based on the geometry. This chapter details those calculations for several hollow and

solid link configurations, and then generalizes the solution for a chain of ‘n’ elements.

3.2 Exact Calculation of Moment of Inertia Tensor for several geometries

In order to calculate the rotational energy of the tightly knotted and linked flux

tubes in our model, we need to determine the inertia tensor of each configuration. We

begin with some links where we can use geometry to calculate the moment of inertia

tensor exactly. We will examine the remaining cases in Chapter 5. For these few

cases, we will look at the link as a composite body where the inertia tensor is found

by summing the inertia tensors of its parts, all relative to the same origin. Once we

have the moment of inertia tensor, we can calculate the rotational energy as well as

61



some other useful variables that will allow us to better describe the behavior of a

particular link.

3.2.1 Moment of Inertia Tensor

In order to calculate the energy of a rotating body, we need the moment of in-

ertia, which is the rotational equivalent of mass. Physically, the moment of inertia

represents how difficult it is to change the angular momentum of an object about a

particular axis. The moment of inertia has two forms, the scalar form which is used

when the axis of rotation is given, and the more general tensor form where the axis

of rotation does not need to be known [35].

Since our model considers the tight links to be chromoelectric flux tubes, we treat

all components of the link as solid. In the next section, we will consider an infinitely

thin shell link, and discuss its potential applications.

The mathematical definition [36] of the moment of inertia tensor of a solid body

with respect to a given axis is given by

I =

∫

V

ρ(x, y, z)r2
⊥dV (3.2.1)

where ρ = M
V

, is the density and r⊥ is the perpendicular distance from the axis of

rotation. If we break I into its constituents, we find

Iij =
∑

i

mi(r
2
i δij − xi,jxi,k) (3.2.2)

for a discrete mass distribution, where r2
i = x2

i + y2
i + z2

i is now the distance to a

point, δjk is the Kronecker delta and xi,1 = xi, xi,2 = yi and xi,3 = zi.
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For a continous mass distibution, which is the case for the links we will be exam-

ining more closely in this chapter, we can write Iij as

Iij =

∫

V

ρ(r)(r2δj − xjxk)dV (3.2.3)

We can expand Equation (3.2.3) by writing it out in Cartesian coordinates, which

gives us the following

I =

∫

V

ρ(x, y, z)Qdxdydz (3.2.4)

where Q is a 2nd rank tensor defined as follows

Q =

















y2 + x2 −xy −xz

−xy z2 + x2 −yz

−xz −yz z2 + x2

















(3.2.5)

From the above, it can be seen that the moment of inertia tensor is additive.

3.2.2 Moment of Inertia Tensor of a Solid Torus

All of the links we will consider contain at least one toroidal component, so we

begin by calculating the inertia tensor of a torus. To calculate the inertia tensor, we

parametrize the torus; we define the parametric equations [37] for a torus azimuthally

symmetric about the z-axis as

x = (c+ r cos ν) cosu

y = (c+ r cos ν) sin u

z = r sin ν (3.2.6)
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where ν and u run from 0 to 2π, c is the distance from the center of the hole to the

center of the torus tube and r goes from 0 to a, where a is the radius of the tube

[37]. Figure 18 shows a schematic of a torus with a and c. For a tight link, the radius

of the tube is related to c by c = 2a. We will express all results in terms of a. The

Figure 18: The variables a and c for a torus.

torus corresponding to Equation (3.2.6) is shown in Figure 19. Since the parametric

equations are expressed in terms of r, ν and u, we need to express the moment of

inertia tensor in terms of these new variables.

I torus = ρ

∫ 2π

0

∫ 2π

0

∫ a

0

Qr(2a+ r cos ν)drdudν (3.2.7)

where the factor r(2a + r cos ν) is the Jacobian. Because we assume the density in

the flux tube is constant, we can factor it out of the integral.

Using Equation (3.2.6) in Equation (3.2.7), we calculate the inertia tensor sym-
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metric about the z-axis to be
















21
2

0 0

0 21
2

0

0 0 19

















a5π2ρ. (3.2.8)

In our calculations, we will also need the inertia tensor of a torus azimuthally sym-

Figure 19: Torus azimuthally symmetric about the z-axis.

metric about the y-axis. The parametric equations are now

x = (c+ r cos ν) cosu

y = r sin ν

z = (c+ r cos ν) sin u (3.2.9)

Following the same method, we find
















21
2

0 0

0 19 0

0 0 21
2

















a5π2ρ. (3.2.10)
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3.2.3 Inertia Tensor for a Solid Hopf Link

The Hopf link consists of two tori linked together, as shown in Figure 20. We

can calculate the inertia tensor for the Hopf link using two different methods. We

can apply the parallel axis theorem, or we can alter the parametric equations, i.e.

Equations (3.2.6) and (3.2.9). We will go through both methods to show that both

yield the same results. In future calculations, we will most often employ the parallel

axis theorem since it greatly simplifies the calculation.

Figure 20: Hopf link in its center of mass system.

Parametric Equations

The Hopf link is composed of two tori. To calculate the inertia tensor of the Hopf

link, we will calculate the moment of inertia tensor of each torus and then add them
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together since the moment of inertia tensor is additive. We will call the center of mass

system of the Hopf link, S. The first torus, T1, is azimuthally symmetric about the

z-axis and its center of mass system, S1, is shifted in the +x direction by a distance

a from O. The second torus, T2, is azimuthally symmetric about the y-axis and its

center of mass system, S2, is shifted in the −x direction by a distance a from O.

Figures 21 and 22 illustrate T1, T2, S1 and I2. For T1, the torus is described by the

Figure 21: Torus, T1, centered at (a, 0, 0) in its center of mass system, S1.

following parametric equations

x = (2a+ r cos ν) cos u+ a

y = (2a+ r cos ν) sin u

z = r sin ν (3.2.11)
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Figure 22: Torus, T2, centered at (−a, 0, 0) in its center of mass system, S2.

We use Mathematica to solve the individual integrals and to calculate the eigenvalues

of the moment of inertia tensor. We find the following result for T1:

I1 =

















21
2

0 0

0 29
2

0

0 0 23

















a5π2ρ (3.2.12)

For T2, the parametric equations are

x = (2a+ r cos ν) cosu− a

y = r sin ν

z = (2a+ r cos ν) sin u (3.2.13)
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And we find the following result for T2:

I2 =

















21
2

0 0

0 23 0

0 0 29
2

















a5π2ρ (3.2.14)

We now add I1 to I2 to compute the moment of inertia of the Hopf link, Ihopf , in its

center of mass frame, S.

Ihopf =

















21 0 0

0 75
2

0

0 0 75
2

















a5π2ρ (3.2.15)

Parallel Axis Theorem

Alternately, we can use the parallel axis theorem to calculate the inertia tensor

for the Hopf link. We denote the origin of the x-, y-, z-axes as O, and the inertia

tensor for the link in this system as IO. For the individual tori that make up the Hopf

link, we start in their center of mass frame denoted by the x′-, y′-, z′-axes; the inertia

tensor for each tori in its center of mass frame is given by ICM . Figure 23 sketches

these two frames. The following describes the relationship between the inertia tensor,

IO, relative to an arbitrary origin, O, in terms of the inertia tensor, ICM , relative

to the center of mass. Let r and r′ be position vectors of any point P in the body

relative to O and the center of mass of the individual tori respectively, and let R be

the coordinate of the center of mass system relative to O,

r = r′ + R. (3.2.16)
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The relationship between IO and ICM is then defined as

IO = ICM +M(R21 − R ⊗R). (3.2.17)

Where 1 is the 3 × 3 identity matrix and R ⊗ R is their outer product which refers

to the tensor product of two vectors. In our case, we have already calculated ICM

Figure 23: The x-, y-, z-axes and the x′-, y′-, z′-axes for the Hopf link.

for both tori of the Hopf link; the inertia tensor in the center of mass for a torus

azimuthally symmetric about the z-axis is given by (3.2.8) and the inertia tensor in

the center of mass for a torus azimuthally symmetric about the y-axis is given by

(3.2.10). In order to use Equation (3.2.16), we need to determine the mass, M , of a

solid torus in terms of its density. M = ρV = 4π2a3ρ, where the volume of the torus

is computed to be V = 2π2a2c = 4π2a3 since c = 2a. We need to apply Equation

(3.2.17) to find the inertia tensor relative to the x-, y-, z-axes with origin at O.

The coordinates for the torus azimuthally symmetric about the z-axis in its center
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of mass system are (0, 0, 0), and the coordinates in the center of mass system of the

Hopf Link are (−a, 0, 0). As a result, we determine that R = −ai, where i is a unit

vector in the x direction. Given these values, we can determine Iztorus
O :

Iztorus
O = Iztorus +M((−a)21 − (−a)2ii) =

=

















21
2
a5 0 0

0 21
2
a5 + 4a3(−a)2 0

0 0 19a5 + 4a3(−a)2

















π2ρ (3.2.18)

which can be simplified to

Iztorus
O =

















21
2

0 0

0 29
2

0

0 0 23

















a5π2ρ (3.2.19)

The coordinates for the torus azimuthally symmetric about the y-axis in its center

of mass system are (0, 0, 0), and the coordinates in the center of mass system of

the Hopf Link are (a, 0, 0). As a result, we determine that R = ai. Again, we can

determine Iytorus
O to be

Iytorus
O = Iytorus +M(a21 − a2ii) =

=

















21
2
a5 0 0

0 19a5 + 4a3(a2) 0

0 0 21
2
a5 + 4a3(a2)

















π2ρ (3.2.20)
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or simplified to

Iytorus
O =

















21
2

0 0

0 23 0

0 0 29
2

















a5π2ρ (3.2.21)

Adding both tori together gives us the same result as (3.2.15), showing that both

methods yield the same inertia tensor.

Solid Hopf Link with Double Flux

In addition to the Hopf link described above, our model uses the particular case

of a Hopf link where one of the tori has double flux. We can also calculate the inertia

tensor for this configuration. The procedure is identical to the Hopf link; but the

distances by which the parametric equations are moved will be different. Assuming

both tubes have the same field density, the radius of the torus with double flux is

b =
√

2a. The value of c for both tori then becomes c = a + b = a +
√

2a. An image

of this configuration is shown in Figure 24. We will call the torus with double flux,

T double
1 , and its parametric equations are

x = (a+
√

2a+ r cos ν) cosu−
√

2a

y = (a+
√

2a+ r cos ν) sin u

z = r sin ν (3.2.22)

where, in this case, r goes from 0 to b. We input the parametric equations and solve

the individual integrals in Mathematica to find the final form for the moment of
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Figure 24: Hopf link where one torus has double flux.

inertia tensor. We find the following for a torus with double flux

Idouble
1 =

















1
4
(33 + 25

√
2) 0 0

0 1
2
(39 + 31

√
2) 0

0 0 1
4
(49 + 41

√
2)

















a5π2ρ (3.2.23)

The second torus, T double
2 , does not carry double flux. And, its parametric equations

are

x = (a+
√

2a+ r cos ν) cosu+ a

y = r sin ν

z = (a+
√

2a+ r cos ν) sin u (3.2.24)
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where r goes from 0 to a. We calculate the moment of inertia tensor to be

Idouble
2 =

















19 + 15
√

2 0 0

0 23 + 19
√

2 0

0 0 2(19 + 15
√

2)

















a5π2ρ (3.2.25)

The inertia tensors of both tori can be added, and we find the inertia tensor for the

Hopf link with double flux to be

Idouble =

















1
4
(109 + 85

√
2) 0 0

0 1
2
(85 + 69

√
2) 0

0 0 1
4
(201 + 161

√
2)

















a5π2ρ (3.2.26)

3.2.4 Inertia Tensor for a solid chain of 3, 4, 5, and 6 links

Our approach for the inertia tensor of a chain of links will be to calculate the two

repeating components of a chain, a torus and a stretched torus, rotate and shift the

appropriate components and then add up all of the individual chain link parts. We

calculate a few simple chains, and then we generalize the process for a chain of ‘n’

links.

The inertia tensor for a torus has already been calculated. In addition, we need

a stretched torus azimuthally symmetric about the y-axis which can be constructed

from two half tori and two cylinders as shown in Figure 25. We will compute the

inertia tensor for these individual parts, and then add them together to obtain the

inertia tensor of the stretched torus. Let’s examine the cylindrical components first.

Both cylinders are of length 2a and radius a. The parametric equations for a cylinder
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Figure 25: Stretched torus made up of two cylinders and two half tori.

are given by

x = x

y = r sin θ

z = r cos θ (3.2.27)

where θ goes from 0 to 2π, x goes from −a to a and r goes from 0 to a.

The form of the moment of inertia tensor is

Icyl = ρ

∫ a

−a

∫ 2π

0

∫ a

0

Qrdrdθdx (3.2.28)

Which gives an inertia tensor for the cylinder in its center of mass frame of

Icyl
CM =

















1 0 0

0 7
6

0

0 0 7
6

















a5πρ (3.2.29)
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This represents the inertia tensor for the cylinder in its center of mass coordinate

system. Now, we would like to find the inertia tensor about O. As before, we utilize

(3.2.17) to find the inertia tensor about O. We need to determine the mass, M , of a

solid cylinder in terms of its density. M = ρV = 2πa3ρ; the volume of the torus is

computed to be V = πR2h = 2πa3, where R is the radius of the cylinder and h is the

height of the cylinder. We have two cylindrical components, one at z = 2a and one

at z = −2a. The coordinate system needs to be shifted up and down, respectively, by

2a in the z-direction. Moving the coordinate system in the z-direction by a distance

of 2a gives us

Icyl
O =

















a5 + 2a3(2a)2 0 0

0 7
6
a5 + 2a3(2a)2 0

0 0 7
6
a5

















πρ (3.2.30)

which simplifies to

Icyl
O =

















9 0 0

0 55
6

0

0 0 7
6

















a5πρ (3.2.31)

Moving the coordinate system in the −z direction by a distance of 2a gives us the same

result as Equation (3.2.31). Next, we need to examine the two half tori components.

We first change the limits of the inertia integral of the torus defined in Equation

(3.2.7): the variable u now ranges from −π
2

to π
2

instead of from 0 to 2π. This change

will produce the right-hand half of the torus. In addition, we need to find its center

of mass. Due to symmetry, we know that the center of mass will be along the x-axis.
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We calculate the x-component of the center of mass as follows

XCM =
1

M

∫ 2π

0

∫ π
2

−π
2

∫ a

0

ρxr(2a + r cos ν)drdudν (3.2.32)

where x is as defined in (3.2.9) and M is the mass of half of a torus, which in terms

of the density can be written as M = 2π2a3ρ. We find the center of mass for the

right-hand half torus to be (-17a
4π

, 0, 0). Knowing the center of mass, we can now

define the parametric equations for the half-torus so that we can calculate its inertia

tensor in the center of mass frame. The parametric equations for the right-hand torus

are

x = (2a+ r cos ν) cosu− 17a

4π

y = (2a+ r cos ν) sin u

z = r sin ν (3.2.33)

In order to find the left-hand half of the torus, we make the following change x→ −x.

Due to symmetry, however, both halves yield the same inertia tensor.

I
1
2
torus

CM =

















21π2

4
0 0

0 1
8
(76π2 − 289) 0

0 0 1
8
(42π2 − 289)

















a5ρ (3.2.34)

Since the origin of the primed system is at x = a, we again use (3.2.17) to obtain the

inertia tensor about O, relative to x-, y-, z-axes with origin at O:

I
1
2
torus

O =

















21π
4

0 0

0 1
2
(23π + 34) 0

0 0 1
4
(29π + 68)

















a5πρ (3.2.35)
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We can now add the inertia tensors for the top and bottom cylinders and the right-

and left-hand half-tori, and we obtain

Iystretched
O =

















18 + 21π
2

0 0

0 1
3
(69π + 157) 0

0 0 1
6
(87π + 218)

















a5πρ (3.2.36)

This represents the inertia tensor of a stretched torus azimuthally symmetric about

the y-axis. We can rotate the coordinate system to obtain the inertia tensor of a

torus azimuthally symmetric about the z-axis, and we find

Izstretched
O =

















18 + 21π
2

0 0

0 1
6
(87π + 218) 0

0 0 1
3
(69π + 157)

















a5πρ (3.2.37)

Solid Link 22
1#22

1

We will calculate the link 22
1#22

1, a link used in our model for which we do not

have vertex points. 22
1#22

1 can be imagined as stretching one of the tori in the Hopf

link and putting another torus through it as shown in Figure 26. Our components

consist of two tori azimuthally symmetric about the z-axis centered at x = 3a and

x = −3a respectively, and one stretched torus azimuthally symmetric about the y-axis

centered at the origin. For left-hand torus, we need to shift the coordinate system

from x = −3a to x = 0 to find the inertia tensor of the torus relative to the x-, y-,
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Figure 26: Link 22
1#22

1

z-axes relative to O. Using Equation (3.2.17), we obtain

Iztorus
O =

















21
2

0 0

0 93
2

0

0 0 55

















a5π2ρ (3.2.38)

We obtain the same result for the right-hand torus, whose coordinate system is shifted

from x = 3a to x = 0. We can now add up the three separate components of the link,

I
22
1#22

1
O = Iystretched

O + 2(Iztorus
O ), to obtain the inertia tensor about O for 22

1#22
1

I
22
1#22

1
O =

















9
2
(4 + 7π) 0 0

0 1
3
(348π + 157) 0

0 0 1
6
(747π + 218)

















a5πρ (3.2.39)

Solid Link with 4 components

A link with four components centered with origin at O consists of a torus az-

imuthally symmetric about the y-axis centered at x = −5a, a torus azimuthally sym-
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metric about the z-axis centered at x = 5a, a stretched torus azimuthally symmetric

about the z-axis centered at x = −2a and a stretched torus azimuthally symmetric

about the y-axis centered at x = 2a. This link is shown in Figure 27. To find the in-

Figure 27: Link with four components.

ertia tensor about O, we go through the steps outlined previously. We summarize the

results. For the torus azimuthally symmetric about the z-axis centered at x = −5a,

we find

Iztorus
O =

















21
2

0 0

0 221
2

0

0 0 119

















a5π2ρ (3.2.40)

For the torus centered at x = 5a, we find

Iytorus
O =

















21
2

0 0

0 119 0

0 0 221
2

















a5π2ρ (3.2.41)
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For the stretched torus azimuthally symmetric about the z-axis centered at x = −2a,

we find

Izstretchedtorus
O =

















18 + 21π
2

0 0

0 1
6
(314 + 183π) 0

0 0 1
3
(205 + 117π)

















a5πρ (3.2.42)

And, for the stretched torus centered at x = 2a, we find

Iystretchedtorus
O =

















18 + 21π
2

0 0

0 1
3
(205 + 117π) 0

0 0 1
6
(314 + 183π)

















a5πρ (3.2.43)

The inertia tensors of all the components may be added, and for the 4-component

link we obtain

I4−link
O =

















6(6 + 7π) 0 0

0 1
3
(362 + 897π) 0

0 0 1
3
(362 + 897π)

















a5πρ (3.2.44)

Solid Link with 5 components

A link with five components centered at the origin, O, consists of a torus az-

imuthally symmetric about the y-axis centered at x = −7a and at x = 7a, a stretched

torus azimuthally symmetric about the y-axis centered at x = 0 and two stretched

tori azimuthally symmetric about the z-axis centered at x = −4a and x = 4a. The

link is shown in Figure 28. Following the same process as above, we just report the
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Figure 28: Link with five components.

resultant inertia tensor

I5−link
O =

















1
2
(108 + 105π) 0 0

0 1
2
(538 + 1203π) 0

0 0 (253 + 610π)

















a5πρ (3.2.45)

Solid Link with 6 components

A link with six components centered at the origin, O, consists of a torus az-

imuthally symmetric about the y-axis centered at x = −9a, a torus azimuthally

symmetric about the z-axis centered at x = 9a, two stretched torus azimuthally

symmetric about the y-axis centered at x = −2a and x = 6a, and two stretched tori

azimuthally symmetric about the z-axis centered at x = 2a and x = −6a. This link is

shown in Figure 29 Following the same process as above, we just report the resultant
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Figure 29: Chain link with six components.

inertia tensor

I6−link
O =

















9(8 + 7π) 0 0

0 1
6
(2984 + 6435π) 0

0 0 1
6
(2984 + 6435π)

















a5πρ (3.2.46)

3.2.5 Generalization of the Inertia Tensor for a solid chain of ‘n’ components

We would like to generalize the relationship for the inertia tensor of a chain with

‘n’ components. We define the generalized inertia tensor as follows

In−link
O =

















Ixx 0 0

0 Iyy 0

0 0 Izz

















a5πρ (3.2.47)

For a chain with an odd number of components, we notice that Ixx 6= Iyy 6= Izz.

Whereas, given a chain with even number of components, we find that Iyy = Izz. We

will divide our generalizations into odd and even ‘n’. For both even and odd n, the

Ixx component can be generalized as

Ixx = 21π + (n− 2)

(

18 +
21π

2

)

(3.2.48)
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For odd n, we define k = n−3
2

and Si
k = 4i where i is an index defined as i =

0, 1, 2, ..., k, and we find the following for the diagonal components Iyy and Izz

Iyy =
1

12
(−968 + 717π + n(532 − 927π + 384nπ)) + (8 + 8π)

k
∑

i=0

(Si
k)

2 (3.2.49)

Izz =
1

12
(−1120 + 819π + n(532 − 927π + 384nπ)) + (8 + 8π)

k
∑

i=0

(Si
k)

2 (3.2.50)

For even n, we define m = n
2
, and T j

m = 4j − 2 where j is an index defined as

j = 1, 2, ..., m− 1, and because of symmetry we find the same value for both Iyy and

Izz

Iyy = Izz = −266

3
+ 64π + n

(

133

3
− 309π

4
+ 32nπ

)

+ (8 + 8π)
m−1
∑

j=1

(T j
m)2 (3.2.51)

3.2.6 Exact Calculation of Moment of Inertia Tensor for a Solid Link with 4 tori

We will now consider two additional chain link configurations. The first inertia

tensor we will calculate is for a link shown in Figure 30. The link is composed of

three solid tori, and a solid stretched torus which can be broken into three toroidal

components and three cylindrical components. We want the moment of inertia tensor

about the origin of the coordinate system [38]. For each component of the link, we

will need to first calculate the moment of inertia, ICM in its center of mass frame,

which is denoted by the x′-, y′-, z′-axes. From the center of mass frame, we will

use the the Parallel Axis Theorem as defined in Section 1.1.2, as well as coordinate

transformations. We define the coordinate transformation from x′-, y′-, z′-axes to x-,
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Figure 30: Link with 4 tori (3 tori going through the center of the 4th torus).

y-, z-axes as

A =

















axx′ axy′ axz′

ayx′ ayy′ ayz′

azx′ azy′ azz′

















(3.2.52)

We first calculate the inertia tensors of the three unstretched tori going through the

center of the stretched torus. We start with the inertia tensor of a torus azimuthally

symmetric about the z-axis; so the inertia tensor, ICM , relative to its principal axes

x′, y′, z′ is given by Equation (3.2.8). The origin of the center of mass system of the

right-hand torus is at (6+2
√

3
3

a, 0, −1−
√

3
3

a), and the angle between the z-axis and the

z′-axis is 30◦. We first apply Equation (3.2.17) to obtain the inertia tensor about

O, relative to axes parallel to x′, y′, z′. Itorus
O(x′,y′,z′) is then the moment of inertia of a

torus whose principal axes are parallel to x, y, z. From the geometry, it can be shown
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that the origin of the primed system is moved by a distance 6+2
√

3
3

a in the negative

x′-direction.

I torus
O(x′,y′,z′) =

















21
2
a5 0 0

0 21
2
a5 + 4a3(−6−2

√
3

3
a)2 0

0 0 19a5 + 4a3(−6−2
√

3
3

a)2

















π2ρ (3.2.53)

or simplified to

I torus
O(x′,y′,z′) =

















21
2

0 0

0 191
6

+ 32√
3

0

0 0 121
3

+ 32√
3

















a5π2ρ (3.2.54)

The final step is the transformation from x′-, y′-, z′-axes to the x-, y-, z-axes. We use

an orthogonal transformation, which is defined as

I torus
O(x,y,z) = A · I torus

O(x′,y′,z′) · At (3.2.55)

For the right-hand torus, the transformation is given by

A =

















√
3

2
0 1

2

0 1 0

−1
2

0
√

3
2

















(3.2.56)

We can now carry out Equation (3.2.55) in two steps.

A · I torus
O(x′,y′,z′) =

















21
√

3
4

0 121
6

+ 16√
3

0 95
6

+ 32√
3

0

−21
4

0 16 + 121
2
√

3

















a5π2ρ (3.2.57)
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And, finally

I torus
O(x,y,z) = (A · I torus

O(x′,y′,z′)) · At =

=

















431
24

+ 8√
3

0 8 + 179
8
√

3

0 191
6

+ 32√
3

0

8 + 179
8
√

3
0 263

8
+ 8

√
3

















a5π2ρ (3.2.58)

We follow the same steps to calculate the inertia tensor for the left-hand torus. The

origin of the center of mass system of the left-hand torus is at (−6−2
√

3
3

a, 0, −1−
√

3
3

a),

and the angle between the z-axis and the z′-axis is 150◦. The transformation from

x′-, y′-, z′-axes to the x-, y-, z-axes is given by

A =

















−
√

3
2

0 1
2

0 1 0

−1
2

0 −
√

3
2

















(3.2.59)

And, its corresponding inertia tensor is

I torus
O(x,y,z) =

















431
24

+ 8√
3

0 −8 − 179
8
√

3

0 191
6

+ 32√
3

0

−8 − 179
8
√

3
0 263

8
+ 8

√
3

















a5π2ρ (3.2.60)

For the top torus the origin of the center of mass system is at (0, 0, −6−2
√

3
3

a), and

the angle between the z-axis and the z′-axis is 270◦. The transformation from x′-,

y′-, z′-axes to the x-, y-, z-axes is given by

A =

















0 0 −1

0 1 0

1 0 0

















(3.2.61)
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And, the final inertia tensor for this torus is

I torus
O(x,y,z) =

















121
3

+ 32√
3

0 0

0 191
6

+ 32√
3

0

0 0 21
2

















a5π2ρ (3.2.62)

The inertia tensors of the three tori may be added and we obtain

I3tori
O =

















305
4

+ 16
√

3 0 0

0 191
2

+ 32√
3

0

0 0 305
4

+ 16
√

3

















a5π2ρ (3.2.63)

Lastly, we look at the stretched torus component which we break it up into cylindrical

parts and toroidal parts. We begin with the inertia tensor of a cylinder described by

the following parametric equations

x = r cos θ

y = r sin θ

z = z (3.2.64)

where θ goes from 0 to 2π, z goes from −a to a and r goes from 0 to a. Which gives

an inertia tensor for the cylinder in its center of mass frame of

Icyl
CM =

















7
6

0 0

0 7
6

0

0 0 1

















a5πρ (3.2.65)

For the bottom cylinder, the origin of the center of mass system is at (0, 0, −
√

3
3
a −

2a), and the angle between the z-axis and the z′-axis is 90◦. We need to move the
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coordinate system by
√

3
3
a+2a in the -x′-direction to obtain its inertia tensor relative

to the origin at O.

Icyl
O(x′,y′,z′) =

















7
6

0 0

0 11
2

+ 4√
3

0

0 0 4
3
(4 +

√
3)

















a5πρ (3.2.66)

The transformation from x′-, y′-, z′-axes to x-, y-, z-axes is given by

A =

















0 0 1

0 1 0

−1 0 0

















(3.2.67)

And the final result is

Icyl
O(x,y,z) =

















4
3
(4 +

√
3) 0 0

0 11
2

+ 4√
3

0

0 0 7
6

















a5πρ (3.2.68)

For the right-hand cylinder, the origin of the center of mass system is at (
√

3
3
a+2a, 0,

√
3

6
a+a), and the angle between the z-axis and the z′-axis is 330◦. The transformation

from x′-, y′-, z′-axes to x-, y-, z-axes is

A =

















√
3

2
0 −1

2

0 1 0

1
2

0
√

3
2

















(3.2.69)

And, the result is

Icyl
O(x,y,z) =

















53
24

+ 1
3
√

3
0 −1 − 25

48
√

3

0 11
2

+ 4
√

3 0

−1 − 25
48

√
3

0 103
24

+
√

3

















a5πρ (3.2.70)
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For the left-hand cylinder, the origin of the center of mass system is at (−
√

3
3
a−2a, 0,

√
3

6
a+a), and the angle between the z-axis and the z′-axis is 30◦. The transformation

is given by Equation (3.2.56), and the inertia tensor is

Icyl
O(x,y,z) =

















53
24

+ 1
3
√

3
0 1 + 25

48
√

3

0 11
2

+ 4
√

3 0

1 + 25
48

√
3

0 103
24

+
√

3

















a5πρ (3.2.71)

The inertia tensors of the three cylindrical components may be added and we obtain

Icyl
O =

















39
4

+ 2
√

3 0 0

0 33
2

+ 4√
3

0

0 0 39
4

+ 2
√

3

















a5πρ (3.2.72)

For the right-hand 1
3
-torus, the origin of the center of mass system is at (2

√
3a

3
, 0,

−
√

3a
3

), and the angle between the z-axis and the z′-axis is 30◦. We need to move the

coordinate system by
√

3
3
a+2a in the -x′-direction to obtain its inertia tensor relative

to the origin at O. Lastly, we need the toroidal components of the stretched torus

azimuthally symmetric about the y-axis. First we need to find the center of mass

of a third of a torus, again using Equation (3.2.32). For a third of a torus that is

symmetric about the x-axis the center of mass is (-51
√

3a
16π

,0,0) and its inertia tensor is

I
1
3
torus

CM =

















A 0 0

0 C 0

0 0 D

















a5ρ (3.2.73)

where A = 1
8
π(−19

√
3+28π), C = −2601

64
+ 19π2

3
and D = 1

64
(−2601+152

√
3π+224π2).

For the right-hand 1
3
-torus, the origin of the center of mass system is at (2

√
3a

3
, 0, −

√
3a

3
),
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and the angle between the z-axis and the z′-axis is 30◦. To find the inertia tensor

about O, relative to axes parallel to x′, y′, z′, we first apply (3.2.17) to move the

origin of the center of mass system of the torus from (-51
√

3a
16π

,0,0) to (2
√

3a
3

,0,0). This

results in

I
1
3
torus

O(x′,y′,z′) =

















A 0 0

0 C 0

0 0 D

















a5πρ (3.2.74)

where A = 1
8
(−19

√
3+28π), C = 1

9
(153+73π) andD = 1

72
(1224+171

√
3+380π). The

transformation from x′-, y′-, z′-axes to x-, y-, z-axes is given by (3.2.56). Carrying

out the transformation yields

I
1
3
torus

O(xyz) =

















A 0 B

0 C 0

B 0 D

















a5πρ (3.2.75)

where A = 1
144

(612−171
√

3+568π), B = 1
144

(513+612
√

3+64
√

3π), C = 1
9
(153+73π)

and D = 1
48

(612+57
√

3+232π). For the left-hand 1
3
-torus, the origin of the center of

mass system is at (−2
√

3a
3

, 0, −
√

3a
3

), and the angle between the z-axis and the z′-axis

is 150◦. Similarly, for the left-hand 1
3
-torus we find

I
1
3
torus

O(xyz) =

















A 0 B

0 C 0

B 0 D

















a5πρ (3.2.76)

where A = 1
144

(612− 171
√

3+568π), B = − 1
144

(513+612
√

3+64
√

3π), C = 1
9
(153+

73π) and D = 1
48

(612 + 57
√

3 + 232π). For the left-hand 1
3
-torus, the origin of the
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center of mass system is at (0, 0, 2
√

3a
3

), and the angle between the z-axis and the

z′-axis is 90◦. For the top 1
3
-torus we calculate

I
1
3
torus

O(x′,y′,z′) =

















A 0 0

0 C 0

0 0 D

















a5πρ (3.2.77)

where A = 1
72

(1224 + 171
√

3 + 380π), C = 1
9
(153 + 73π) and D = 1

8
(−19

√
3 + 28π).

The inertia tensors of the fractional toroidal components may be added to give

I
1
3
torus

O =

















1
6
(153 + 79π) 0 0

0 1
3
(153 + 73π) 0

0 0 1
6
(153 + 79π)

















a5πρ (3.2.78)

Finally, we sum all of the inertia tensor components to determine the inertia tensor

of the link, Ilink
O = I

1
3
torus

O + Icyl
O + Itorus

O , and we find

I link
O =

















1
12

(A+Bπ) 0 0

0 1
6
(C +Dπ) 0

0 0 1
12

(A +Bπ)

















a5πρ (3.2.79)

where A = 423 + 24
√

3, B = 1073 + 192
√

3, C = 405 + 8
√

3 and D = 719 + 192
√

3.

3.2.7 Exact Calculation of Moment of Inertia Tensor for a Solid Link with 5 tori

The next link we will examine has 4 tori going through one stretched torus, and

is shown in Figure 31. Following the previous calculation, we begin with the Itorus
CM

as defined in Equation (3.2.8). For this geometry, the origin of the primed system is
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Figure 31: Link with 5 tori (4 tori going through the center of the 5th torus).

moved by a distance
√

2a + 2a in the negative x′-direction; this is true for all four

tori passing through the center of the stretched torus. Applying (3.2.17), we find

I torus
O(x′,y′,z′) =

















21
2

0 0

0 69
2

+ 16
√

2 0

0 0 43 + 16
√

2

















a5π2ρ (3.2.80)

The next step is to transform the system from x′-, y′-, z′-axes to x-, y-, z-axes. We

choose the right-hand top torus first, the transformation is given by

A =

















√
2

2
0 −

√
2

2

0 1 0

√
2

2
0

√
2

2

















(3.2.81)
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Applying (3.2.55), we obtain

I torus
O(x,y,z) = (A · I torus

O(x′,y′,z′)) · At =

=

















107
4

+ 8
√

2 0 −65
4
− 8

√
2

0 69
2

+ 16
√

2 0

−65
4
− 8

√
2 0 107

4
+ 8

√
2

















a5π2ρ (3.2.82)

The transformation for the bottom right-hand torus from x′-, y′-, z′-axes to x-, y-,

z-axes is given by

A =

















√
2

2
0

√
2

2

0 1 0

−
√

2
2

0
√

2
2

















(3.2.83)

Applying (3.2.55), for the bottom right-hand torus we obtain

I torus
O(x,y,z) = (A · I torus

O(x′,y′,z′)) ·At =

=

















107
4

+ 8
√

2 0 65
4

+ 8
√

2

0 69
2

+ 16
√

2 0

65
4

+ 8
√

2 0 107
4

+ 8
√

2

















a5π2ρ (3.2.84)

The transformation for the bottom left-hand torus from x′-, y′-, z′-axes to x-, y-,

z-axes is given by

A =

















−
√

2
2

0
√

2
2

0 1 0

−
√

2
2

0 −
√

2
2

















(3.2.85)

Applying Equation (3.2.17), for the bottom left-hand torus we obtain

I torus
O(x,y,z) = (A·torus

O(x′,y′,z′)) · At =
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=

















107
4

+ 8
√

2 0 −65
4
− 8

√
2

0 69
2

+ 16
√

2 0

−65
4
− 8

√
2 0 107

4
+ 8

√
2

















a5π2ρ (3.2.86)

The transformation for the top left-hand torus from x′, y′, z′-axes to x, y, z-axes is

given by

A =

















−
√

2
2

0 −
√

2
2

0 1 0

√
2

2
0 −

√
2

2

















(3.2.87)

Applying (3.2.17), for the top left-hand torus we obtain

I torus
O(x,y,z) = (A · I torus

O(x′,y′,z′)) ·At =

=

















107
4

+ 8
√

2 0 65
4

+ 8
√

2

0 69
2

+ 16
√

2 0

65
4

+ 8
√

2 0 107
4

+ 8
√

2

















a5π2ρ (3.2.88)

The inertia tensor of the four fractional tori may be added and we obtain

I torus
O =

















107 + 32
√

2 0 0

0 138 + 64
√

2 0

0 0 107 + 32
√

2

















a5π2ρ (3.2.89)

Now, we turn our attention to the stretched torus. We first look at the cylindrical

parts. The inertia tensor of the single cylinder about its center, relative to its principal

axes x′, y′, z′, is given by Equation (3.2.65).

For the right-hand cylinder, we only need to move the x′, y′, z′ coordinate system

by 3a in the negative x′-direction to obtain the inertia tensor relative to the origin at

95



O.

Icyl
O(xyz) =

















7
6

0 0

0 115
6

0

0 0 19

















a5πρ (3.2.90)

We obtain the same result for the left-hand cylinder.

For the top and bottom cylinders, we need to take the above result and rotate it

by 90◦ which is described by the transformation in Equation (3.2.67). For the top

and bottom cylinder, we find an inertia tensor of

Icyl
O(xyz) =

















19 0 0

0 115
6

0

0 0 7
6

















a5πρ (3.2.91)

The inertia tensors of the four cylindrical components can be added and we find

Icyl
O =

















121
3

0 0

0 230
3

0

0 0 121
3

















a5πρ (3.2.92)

The last parts we need are the toroidal components of the stretched torus. We begin

with a quarter of a torus. We need to find the center of mass for a quarter of a

torus; for a quarter of a torus that is symmetric about the x-axis the center of mass

is (- 17a
2
√

2π
,0,0). The inertia tensor for a quarter torus, relative to its principal axes x′,

y′, z′, in its center of mass is

I
1
4
torus

CM = ρ

∫ 2π

0

∫ π
4

−π
4

∫ a

0

Q[r(2a+ r cos ν)]drdudν (3.2.93)
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or

I
1
4
torus

CM =

















A 0 0

0 C 0

0 0 D

















a5ρ (3.2.94)

where A = 1
8
π(−38 + 21π), C = 1

8
(−289 + 38π2) and D = 1

8
(−289 + 38π + 21π2).

We then follow the same steps as outlined for the four full tori above. Each quarter-

torus is shifted from (- 17a
2
√

2π
,0,0) to (

√
2a,0,0) and the transformations are given by

Equations (3.2.81), (3.2.83), (3.2.85) and (3.2.87). We will summarize the results.

For the bottom right-hand quarter-torus and the top left-hand torus, we find

I
1
4
torus

O =

















1
8
(68 + 29π) 0 1

4
(53 + 4π)

0 1
4
(68 + 27π) 0

1
4
(53 + 4π) 0 1

8
(68 + 29π)

















a5πρ (3.2.95)

For the top right-hand quarter torus and the bottom left-hand torus, we find

I
1
4
torus

O =

















1
8
(68 + 29π) 0 −1

4
(53 + 4π)

0 1
4
(68 + 27π) 0

−1
4
(53 + 4π) 0 1

8
(68 + 29π)

















a5πρ (3.2.96)

Adding all four components together, we find the inertia tensor of the four quarter

pieces of a torus to be

I
1
4
torus

O =

















1
2
(68 + 29π) 0 0

0 1
2
(68 + 27π) 0

0 0 1
2
(68 + 29π)

















a5πρ (3.2.97)
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We can now add all of the inertia tensor components together to determine the inertia

tensor of the link, I link
O = I

1
4
tensor

O + Icyl
O + I torus

O :

I link
O =

















A 0 0

0 C 0

0 0 D

















a5πρ (3.2.98)

where A = 1
6
(446 + 3(243 + 64

√
2)π), C = 1

3
(434 + 3(165 + 64

√
2)π) and D =

1
6
(446 + 3(243 + 64

√
2)π).

3.3 Exact Calculation of Moment of Inertia Tensor for several hollow geometries

In addition to calculating the moment of inertia tensor of a solid link, we can

imagine the links composed of hollow tubes. This would be applicable, for example,

when considering nanotubes.

3.3.1 Inertia Tensor for a Hollow Torus

We again begin with our primary chain link component, the torus. In this case

we treat the torus, as well as subsequent parts of more complicated geometries, as

an infinitely thin shell. We will go through the calculation for the moment of inertia

tensor of an infinitely thin toroidal shell using two different methods: a surface integral

and a volume integral, and we will show that both produce the same result.

We first go through the calculation by redefining the moment of inertia tensor as

a surface integral, which is given by the following

I =

∫

S

σ(x, y, z)QdS (3.3.1)
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where σ is the surface density which is defined as σ = M
A

, A being the surface area of

the object. And Q is as defined in Equation (3.2.5).

The parametric equations for the torus defined in Equation (3.2.6) reduce to the

following

x = (c+ a cos ν) cos u

y = (c+ a cos ν) sin u

z = r sin ν (3.3.2)

Using the parametric equations, we calculate the inertia tensor to be

Iztorus = σ

∫ 2π

0

∫ 2π

0

Qa2(2 + cos ν)dudν (3.3.3)

or

Iztorus =

















26 0 0

0 26 0

0 0 44

















a4π2σ (3.3.4)

The second method for calculating the inertia tensor of a hollow torus follows Equa-

tions (3.2.4) - (3.2.6), and redefines the limits in Equation (3.2.7) to be the following

Iztorus = ρ

∫ 2π

0

∫ 2π

0

∫ a+ε

a

Qr(2a+ r cos ν)drdudν (3.3.5)

Calculating the integrals gives the following inertia tensor

Iztorus =

















A 0 0

0 C 0

0 0 D

















a(2a+ ε)π2ερ (3.3.6)
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where A = 1
2
(26a2 +10aε+5ε2), C = 1

2
(26a2 +10aε+5ε2) snd D = (22a2 +6aε+3ε2).

The thin shell has a surface density, not a volume density; the surface density is

σ = ερ. Since we want an infinitely thin shell, we take the limit as ε → 0. Replacing

the volume density by a surface density and taking the limit produces the same result

as Equation (3.3.4).

3.3.2 Inertia Tensor of a Hollow Hopf link

The process of calculating the inertia tensor of a hollow Hopf link is the same as

for a solid Hopf link. We will list the final result only

Ihopf =

















52 0 0

0 86 0

0 0 86

















a4π2σ (3.3.7)

3.3.3 Inertia Tensor for a Hollow Chain of 3, 4, 5, and 6 Links

We will follow the same process as for the inertia tensor for a solid chain link. First

we will calculate the stretched torus, then we will add the components together some-

times after necessary rotations or translations. Since the details have been worked

out previously, we will simply list the results.

Izstretched
O =

















2(20 + 13π) 0 0

0 2
3
(118 + 51π) 0

0 0 4
3
(83 + 39π)

















a4πσ (3.3.8)
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3.3.4 Hollow Link 22
1#22

1

The result for the link 22
1#22

1 composed of components that are thin shells is

I
22
1#22

1
O =

















2(20 + 39π) 0 0

0 4
3
(83 + 186π) 0

0 0 2
3
(118 + 399π)

















a4πσ (3.3.9)

3.3.5 Hollow Chain Link with 4 components

The result for a chain link with four components composed of thin shells is

I4−link
O =

















8(10 + 13π) 0 0

0 760
3

+ 620π 0

0 0 760
3

+ 620π

















a4πσ (3.3.10)

3.3.6 Hollow Chain link with 5 components

The result for a chain link with five components composed of thin shells is

I5−link
O =

















120 + 130π 0 0

0 556 + 1230π 0

0 0 524 + 1248π

















a4πσ (3.3.11)

3.3.7 Hollow Chain link with 6 components

The result for a chain link with five components composed of thin shells is

I6−link
O =

















4(40 + 39π) 0 0

0 3056
3

+ 2178π 0

0 0 3056
3

+ 2178π

















a4πσ (3.3.12)
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3.3.8 Generalization of Inertia Tensor for a hollow chain of ‘n’ components

We again note that a chain with an even number of components yields a symmetric

top, whereas a chain with an odd number of components produces an asymmetric

top. We will generalize the relationship for the inertia tensor of a chain with ‘n’

components, and we note that it follows the same form as for a solid chain but with

different coefficients.

In−link
O =

















Ixx 0 0

0 Iyy 0

0 0 Izz

















a4πσ (3.3.13)

For both even and odd n, the Ixx component can be generalized as

Ixx = −80 + n(40 + 26π) (3.3.14)

For odd n, we define k = n−3
2

and Si
k = 4i where i is an index defined as i =

0, 1, 2, ..., k, and we find the following for the diagonal components Iyy and Izz

Iyy = −319

3
+ 83π + n

(

217

3
− 137π + 64nπ

)

+ 2(8 + 8π)
k
∑

i=0

(Si
k)

2 (3.3.15)

Izz = 9(−13 + 15π) + n

(

185

3
− 137π + 64nπ

)

+ 2(8 + 8π)

k
∑

i=0

(Si
k)

2 (3.3.16)

For even n, we define m = n
2
, and T j

m = 4j − 2 where j is an index defined as

j = 1, 2, ..., m− 1, and because of symmetry we find the same value for both Iyy and

Izz

Iyy = Izz = −568

3
+
n

2
+ 64(−2 + n)(−1 + n)π + 2(8 + 8π)

m−1
∑

j=1

(T j
m)2 (3.3.17)

102



3.3.9 Exact Calculation of Inertia Tensor for a Hollow Link with 4 tori

We will go through the sames steps for the thin shell calculation of the inertia

tensor of 4 tori, where three go through the center of the fourth. We again start with

the inertia tensor of a torus azimuthally symmetric about the z-axis, which is given

by

Iytorus =

















26 0 0

0 44 0

0 0 26

















a4π2σ (3.3.18)

For the right-hand torus, we need to move the torus by a distance of 6+2
√

3
3

a in the

positive x′-direction.

I torus
O(x′,y′,z′) =

















26a4 0 0

0 44a4 + 8a2(6+2
√

3
3

a)2 0

0 0 26a5 + 8a2(6+2
√

3
3

a)2

















π2σ (3.3.19)

or simplified to

I torus
O(x′,y′,z′) =

















26 0 0

0 4
3
(65 + 16

√
3) 0

0 0 2
3
(103 + 32

√
3)

















a4π2σ (3.3.20)

And lastly, we need to transform the system from x′-, y′-, z′-axes to the x-, y-, z-axes,

using the transformation defined in Equations (3.2.55) - (3.2.56). The result is

I torus
O(x,y,z) = (A · I torus

O(x′,y′,z′)) ·At =
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=

















2
3
(55 + 8

√
3) 0 16

3
(3 + 2

√
3)

0 4
3
(65 + 16

√
3) 0

16
3
(3 + 2

√
3) 0 2(29 + 8

√
3)

















a4π2σ (3.3.21)

The inertia tensor of the left-hand torus is calculated to be

I torus
O(x,y,z) =

















2
3
(55 + 8

√
3) 0 −16

3
(3 + 2

√
3)

0 4
3
(65 + 16

√
3) 0

−16
3
(3 + 2

√
3) 0 2(29 + 8

√
3)

















a4π2σ (3.3.22)

The inertia tensor of top torus is given by

I torus
O(x,y,z) =

















2
3
(103 + 32

√
3) 0 0

0 4
3
(65 + 16

√
3) 0

0 0 26

















a4π2σ (3.3.23)

The inertia tensors of the three tori may be added and we obtain

I torus
O(x,y,z) =

















2(71 + 16
√

3) 0 0

0 4(65 + 16
√

3) 0

0 0 2(71 + 16
√

3)

















a4π2σ (3.3.24)

Next, we look at the fourth component of the link which is a stretched torus. As in

the previous section, we break it up into cylindrical parts and toroidal parts. We can

write the inertia tensor of the single cylinder about its center, relative to its principal

axes x′, y′, z′ as

Icyl
CM =

















10
3

0 0

0 10
3

0

0 0 4

















a4πσ (3.3.25)
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For the bottom cylinder, we first need to move the coordinate system by
√

3
3
a+ 2a in

the x′-direction to obtain its inertia tensor relative to the origin at O:

Icyl
O(x′,y′,z′) =

















10
3

0 0

0 2
3
(31 + 8

√
3) 0

0 0 16
3
(4 +

√
3)

















a4πσ (3.3.26)

The transformation from x′-, y′-, z′-axes to x, y, z-axes is given by Equation (3.2.61).

The result of the transformation is

Icyl
O(x,y,z) =

















16
3
(4 +

√
3) 0 0

0 2
3
(31 + 8

√
3) 0

0 0 10
3

















a4πσ (3.3.27)

The result for right-hand cylinder is

Icyl
O(x,y,z) =

















1
6
(47 + 8

√
3) 0 −1

2
(8 + 9

√
3)

0 2
3
(31 + 8

√
3) 0

−1
2
(8 + 9

√
3) 0 1

6
(101 + 24

√
3)

















a4πσ (3.3.28)

For the left-hand cylinder, we find

Icyl
O(x,y,z) =

















1
6
(47 + 8

√
3) 0 1

2
(8 + 9

√
3)

0 2
3
(31 + 8

√
3) 0

1
2
(8 + 9

√
3) 0 1

6
(101 + 24

√
3)

















a4πσ (3.3.29)

The inertia tensors of the three cylindrical components are summed giving

Icyl
O(x,y,z) =

















37 + 8
√

3 0 0

0 2(31 + 8
√

3) 0

0 0 37 + 8
√

3

















a4πσ (3.3.30)
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Lastly, we need the toroidal components of the stretched torus. For the right-hand

1
3
-torus, we calculate the inertia tensor at (2

√
3a

3
,0,0) to find the inertia tensor about

O, relative to axes parallel to x′, y′, z′:

I
1
3
torus

O(x′,y′,z′) =

















A 0 0

0 C 0

0 0 D

















a4πσ (3.3.31)

where A = 1
6
(−33

√
3 + 52π), C = 4

9
(81 + 41

√
3) and D = 1

18
(648 + 99

√
3 + 220π).

The transformation from x′-, y′-, z′-axes to x, y, z-axes is given by (3.2.55) - (3.2.56).

Carrying out the transformation yields

I
1
3
torus

O(x,y,z) =

















A 0 B

0 C 0

B 0 D

















a4πσ (3.3.32)

where A = 1
36

(324−99
√

3+344π), B = 1
36

(297+324
√

3+32
√

3π), C = 4
9
(81+41

√
3)

and D = 1
12

(324 + 33
√

3 + 136π). Similarly, for the left-hand 1
3
-torus we find

I
1
3
torus

O(x,y,z) =

















A 0 B

0 C 0

B 0 D

















a4πσ (3.3.33)

where A = 1
36

(324−99
√

3+344π), B = − 1
36

(297+324
√

3+32
√

3π), C = 4
9
(81+41

√
3),

and D = 1
12

(324 + 33
√

3 + 136π). For the top 1
3
-torus we calculate

I
1
3
torus

O(x,y,z) =

















A 0 0

0 C 0

0 0 D

















a4πσ (3.3.34)
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where A = 1
18

(648 + 99
√

3 + 220π), C = 4
9
(81 + 41

√
3) and D = 1

6
(−33

√
3 + 52π).

The inertia tensors of the fractional toroidal components may be added to give

I
1
3
torus

O =

















2
3
(81 + 47π) 0 0

0 4
3
(81 + 41

√
3) 0

0 0 2
3
(81 + 47π)

















a4πσ (3.3.35)

We now add all of the inertia tensor components together to determine the inertia

tensor of the link, Ilink
O = I

1
3
torus

O + Icyl
O + Itorus

O , and we find

I link
O =

















1
3
(G+Hπ) 0 0

0 2
3
(J +Kπ) 0

0 0 1
3
(G+Hπ)

















a4πσ (3.3.36)

where G = (273 + 24
√

3), H = 520 + 96
√

3, J = 255 + 24
√

3 and D = 472 + 96
√

3.

3.3.10 Exact Calculation of Moment of Inertia Tensor for a Hollow Link with 5 tori

The next link we will examine has 4 tori going through one stretched torus, and is

shown in Figure 31. For this geometry, the origin of the primed system is moved by

a distance
√

2a + 2a in the positive x′-direction; this is true for all four tori passing

through the center of the stretched torus. Applying (3.2.17), we find

I torus
O(x′,y′,z′) =

















26 0 0

0 4(23 + 8
√

2) 0

0 0 2(37 + 16
√

2)

















a4πσ (3.3.37)

The next step is to transform the system from x′-, y′-, z′-axes to x, y, z-axes. We

choose the right-hand top torus first, the transformation is given by Equation (3.2.81).
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Applying (3.2.55), we obtain

I torus
O(x,y,z) =

















2(26 + 8
√

2) 0 −8(3 + 2
√

2)

0 4(23 + 8
√

2) 0

−8(3 + 2
√

2) 0 2(25 + 8
√

2)

















a4πσ (3.3.38)

The transformation for the bottom right-hand torus from x′-, y′-, z′-axes to x, y,

z-axes is given by Equation (3.2.83). Applying (3.2.55), for the bottom right-hand

torus we obtain

I torus
O(x,y,z) =

















2(26 + 8
√

2) 0 8(3 + 2
√

2)

0 4(23 + 8
√

2) 0

8(3 + 2
√

2) 0 2(25 + 8
√

2)

















a4πσ (3.3.39)

The moment of inertia tensor for the top right-hand torus is the same as Equation

(3.3.38) and the inertia tensor for the top left-hand torus is the same as Equation

(3.3.39).

The inertia tensor of the four fractional tori may now be added to obtain the

following

I torus
O =

















8(26 + 8
√

2) 0 0

0 16(23 + 8
√

2) 0

0 0 8(25 + 8
√

2)

















a4πσ (3.3.40)

Next, we look at the inertia tensor for a cylinder, given in Equation (3.3.25). We begin

with the right-hand cylinder, where we only need to move the x′, y′, z′ coordinate

system by 3a in the x′-direction to obtain the inertia tensor relative to the origin at
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O.

Icyl
O(xyz) =

















10
3

0 0

0 118
3

0

0 0 40

















a4πσ (3.3.41)

We obtain the same result for the left-hand cylinder.

For the top and bottom cylinders, we need to take the above result and rotate it

by 90◦. For both top and bottom cylinders, we find an inertia tensor of

Icyl
O(xyz) =

















40 0 0

0 118
3

0

0 0 10
3

















a4πσ (3.3.42)

The inertia tensors of the four cylindrical components can be added and we find

Icyl
O =

















260
3

0 0

0 472
3

0

0 0 260
3

















a4πσ (3.3.43)

The last parts we need are the toroidal components of the stretched torus. We

follow the steps outlined in Equations (3.2.93) - (3.2.96). Adding all four components

together, we find the inertia tensor of the four quarter pieces of a torus to be

I
1
4
torus

O =

















2(36 + 17π) 0 0

0 12(12 + 5π) 0

0 0 2(36 + 17π)

















a4πσ (3.3.44)

We can now add all of the inertia tensor components together to determine the inertia
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tensor of the link, I link
O = I

1
4
tensor

O + Icyl
O + I torus

O :

I link
O =

















A 0 0

0 C 0

0 0 D

















2a4πσ

3
(3.3.45)

where A = (238 + (351 + 96
√

2π)), C = 2(226 + (321 + 96
√

2π)) and D = (238 +

(351 + 96
√

2π)).

3.4 Conclusion

In this chapter we made some progress towards our goal of determining the true

symmetry of the knots and links used in our model. We calculated the moment of

inertia tensor several hollow and solid link configurations based on geometry alone,

and generalized the solution for a chain of ‘n’ elements. The inertia tensors are given

in terms of the density of the link and radius of the flux tube ‘a’. We currently

do not know the physical scale of the radius of the flux tube, therefore we need to

estimate its value using the Bag Model as a guide. In addition, once we determine

numerical values for the eigenvalues of the inertia tensor, we need to understand how

to determine the symmetry of the link and how to caculate its rotational energy.

These topics are tackled in Chapter IV.
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CHAPTER IV

ROTATIONAL ENERGY

4.1 Introduction

In Chapter II, we established a hypothesis where glueball candidates are modeled

as tightly knotted or linked chromoelectric flux tubes. In the model an approximation

was made about how to treat the candidates in order to calculate the rotational ener-

gies. The glueball candidates were approximated as spherical rigid rotors. However,

if we calculate the moment of inertia tensor of knots/links identified with glueball

candidates, we find that only one of the candidates (link 63
2, the Borromean Rings) is

in fact a spherical rigid rotor. Therefore, it is worth examining all of the knots and

links used in the model in order to determine how they should be classified.

In Chapter III, we calculated the moment of inertia tensor for several links and our

results are expressed in terms of the radius of the flux tube, a. In order to calculate

a numerical value for the principal moments of inertia, we will need to determine the

radius of the flux tube. Since we cannot measure or compute from fundamentals the

radius of the flux tube, we will utilize the Bag Model to calculate the radius. We will

begin with an overview of the Bag Model.
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4.2 Bag Model

QCD as presented in the introduction provides of the strong interaction. The

strength of the strong interaction (as measured by the QCD potential) grows steadily

as the distance between strongly interacting particles increases. At small distances,

QCD has few problems; however at large distances there are many problems not easily

solved. Numerical calculations [39] show that the QCD potential grows linearly with

distance beyond 1 fm. As a result, in QCD there is a constant long-range force

between strongly interacting particles, compared to QED where the force between

charged particles decreases like the square of the distance. This leads to confinement,

which states that even though high energy experiments have provided evidence that

hadrons are composed of quarks and gluons we are not able to see free quarks and

gluons. Confinement presents the dilemma that in the regime where QCD is calculable

few experiments are so far available, whereas in the regime where much data exists

the theory admits few results [40].

In order to make sense of these results, it is necessary to consider phenomenological

approximations. There are several models of confinement, but for our particular

purpose, the most useful of these models are the “Bag Models” which postulate

that quarks and gluons are confined to a given volume V . At the heart of bag

phenomenology is the assumption that the vacuum can have more than one phase.

This phase of the vacuum can appear as localized regions within another; for example

bubbles in a liquid would be an analogy. Models based on a two-phase structure of the

non-Abelian vacuum form the basis for bag phenomenology. The two-phase structure
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refers to the idea that the vacuum inside the bag is different than the vacuum outside

of the bag. It should be noted that phenomenological models are at best effective

theories with only an underlying connection to the theory of QCD.

In QED the dielectric constant of the vacuum state is set as 1, i.e.

κQED
vac = 1. (4.2.1)

The relationship between the displacement vector D, the electric field E and the

polarization P is:

D = E + P. (4.2.2)

where D is the field created by the source charges and E is the total field including

charges from induced charges. As a result of the electric field, atoms will have a

polarization, P, in the same direction as E which creates a screening effect. The

dielectric constant is defined as

D = κQEDE, (4.2.3)

and for any physical medium the dielectric constant satisfies κQED
med ≥ 1.

Now, we would like to consider a medium that is antiscreening in order to model

the theory of QCD. We imagine a medium in which κQCD << 1. It can be shown

that a test charge immersed in this particular medium will dig a stable “hole” in the

medium and inside the hole surrounding the test charge the dielectric constant κQCD

is 1 but the medium outside of the hole is κQCD << 1 [42, 43]. This idea is shown

in Figure 32. This model is the basis of several models [42, 43, 44] which produce

confinement. Whenever particles carrying color changes, i.e. gluons and/or quarks,
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Figure 32: (a) Test charge q+ in an antiscreening medium. The induced charge on
the sphere is of the same sign as the test charge because medium antiscreens. (b)
Drawing of the spatial distribution of an effective charge in Abelian and non-Abelian
field theories [40].

are in the antiscreening QCD vacuum, from the model we would expect holes to

develop in the vacuum around the particles. These regions are called bags. Inside the

bags κQCD
in = 1, whereas outside the bag κQCD

∞ << 1 or more simply κQCD
∞ = 0. As a

result, if the total color inside the bag is not zero, the mass of the bag becomes infinite

at the boundary and if there is no net color inside the bag, the bag mass is finite as

κQCD
∞ → 0. Therefore, confinement is forced upon strongly interacting particles by

the assumption that their mass is small inside the bag volume, but becomes very

large outside of the bag.

Basic Bags

Our motivation for discussing bag models is to calculate the radius of the knotted

or linked chromoeletric flux tube used in our model. A physical value for the radius

is necessary in order to compute the rotational energies of a given knot or link. To

114



begin with, we can say that a glueball looks like a bubble immersed in a complex

medium that is the true QCD vacuum. We will assume the simplest model and say

that the inside and the outside of the bag are in two different phases, where the value

of the effective color dielectric constant defines these phases. We also assume that

the boundary between the phases is sharp. From these assumptions, the energy of

the bag can be written as [41]

Ebag = ETotal
QCD − uvacV (4.2.4)

where ETotal
QCD is the total energy of the system, uvac is the energy density of the normal

vacuum and V is the total volume of the system. If we let Vbag be the volume of the

bubble and E0 the energy of the fields inside the bubble, then we can write the total

energy of the system, ETotal
QCD , as

ETotal
QCD = E0 + uvac(V − Vbag) (4.2.5)

We can combine Equations (4.2.4) and (4.2.5) to obtain the energy of the bag as

Ebag = E0 − uvacVbag (4.2.6)

We can rewrite Equation (4.2.6) in terms of the bag constant, B, introduced by the

M.I.T. Bag model [44]. In the M.I.T. Bag model, the bag constant is defined as

B = −uvac (4.2.7)

Allowing us to rewrite Equation (4.2.6) as

Ebag = E0 +BVbag (4.2.8)
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To prevent the bubble from growing indefinitely, we want B ≥ 0. This requirement

implies that the energy density of the normal vacuum is lower than the bubble vac-

uum, which by convention is taken to be zero. Therefore, the energy required to make

a bubble in the vacuum is BVbag.

We note that the above calculation could also include a term which represents

the surface energy of the bag, however this term is typically small compared to the

volume energy (BVbag) and is frequently neglected.

4.3 Radius of Flux Tube Calculation

To calculate the radius of the tightly linked or knotted chromoelectric flux tubes

used in our model, we want to find the bag energy as defined in Equation (4.2.8).

Once we have an expression for the bag energy, we will minimize it to determine the

radius, a. We will need to define the volume of our bag, and then the fields inside the

bubble, E0. In our model, the bag is a knotted or linked flux tube, which if unknotted

or unlinked would be a torus or set of tori. The shape of our bag would then be a

cylinder, which is given by the following

Vbag = πa2l (4.3.1)

where l is the ropelength of the knot or link as defined in Chapter 2 and a is the

radius of the tube. The energy, EO, stored in the chromoelectric field E is defined as

E0 =
κQCD

2

∫

E2dV =
πκQCDa2lE2

2
(4.3.2)

where κQCD is the color dielectric constant and E2 = E · E.
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We can then write the energy of the bag, Ebag, as follows

Ebag = πr2lB +
πκQCDa2lE2

2
(4.3.3)

As discussed in Chapter II, for each knot or link there is a topological invariant defined

as εk which is called the knot or link energy. The knot or link energy is related to

the ropelength and the radius of the tube; εk = l
2a

is a constant for each tight knot

or link. We can use this relationship to eliminate l, since we know the value of εk for

each knot/link configuration. We obtain the following

Ebag = 2πa3εkB + πa3εkκ
QCDE2 (4.3.4)

The chromoelectric flux, Φ, of E through the tube is assumed to be constant according

to our model and we also assume that the tube carries a single quantum of flux, i.e.

Φ =

∫

E · dA = πa2E = 1 (4.3.5)

We can now write E as follows

E =
Φ

πa2
=

1

πa2
(4.3.6)

We can then rewrite the field energy as

E0 =
πa3εkκ

QCD

π2a4
=
εkκ

QCD

πa
(4.3.7)

Finally, we can write the bag energy as

Ebag = 2εk(πa
3B +

κQCD

2πa
) (4.3.8)
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The radius of the tube, a, is determined by minimizing the bag energy Ebag. From

−dEbag/da = 0, we find

−2εk(3πa
2B − κQCD

2πa2
) = 0 (4.3.9)

or

3Ba4 =
κQCD

2π2
(4.3.10)

From the previous discussion on bag models, the dielectric constant, κQCD, inside the

bag is 1. We will take the bag constant as a phenomenological parameter which is

fitted. If we set B = 13 MeV
fm3 we find one real, positive value for the radius a = 0.73

fm. If we plug this radius back into the equation for the bag energy with the value

of εk = 4π for the shortest link, we find Ebag = 744 MeV which corresponds to the

lowest glueball state identified with the shortest link, f0(600) = 400 − 1200 MeV.

4.4 Rotational Energy

We model glueball candidates as knotted and linked chromoelectric flux tubes.

The glueball ground state prediction is based on a relationship between the knot/link

length and the energy. In addition, we also predict excited states which are ro-

tationally excited knotted/linked chromoelectric flux tubes. In order to determine

the energy levels of the knotted/linked flux tubes, we will follow the already estab-

lished method used to determine the rotational spectra of molecules. We consider

the glueball candidates to be arbitrarily shaped rigid rotors, which are rigid bodies of

arbitrary shape with a fixed center of mass whose energy consists only of rotational

kinetic energy.
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4.4.1 Introduction to Rotational Spectra

We can classify rotational energy spectra by their principal moments of inertia

[45]. The principal moments of inertia calculated reflect the unique geometry of the

knot or link. We model glueballs as a collection of point masses fixed relative to each

other, but free to rotate as a whole. The moment of inertia tensor, I, was previously

defined in (3.2.1).

The moment of inertia tensor is real and symmetric, i.e. it is Hermitian, and it

can be diagonalized to give three possibly distinct eigenvalues. The eigenvalues are

referred to as the principal moments of inertia, and the eigenvectors corresponding to

the diagonalized coordinate system are the principal axes. The diagonalized moment

of inertia tensor has the form

I =

















Ia 0 0

0 Ib 0

0 0 Ic

















(4.4.1)

where Ia, Ib and Ic are the principal moments of inertia.

On can always find one axis, the c-axis, about which the moment of inertia has its

maximum value, and another axis, labeled the a-axis, about which I has its minimum

value. Conventionally, the principal axes are ordered in the following manner: Ia ≤

Ib ≤ Ic.

Rigid rotors are classified as follows: If all three principal moments of inertia

are equal, we have a spherical top. If two principal moments are equal, we have a

symmetric top. A prolate symmetric top has Ib = Ic and the a axis is the symmetry
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axis; an oblate symmetric top has Ia = Ib and the c axis is the symmetry axis. A

prolate top is cigar-shaped, whereas an oblate top is disc-shaped. If all three principal

moments are unequal, we have an asymmetric top.

If we use these principal axes, then the components of the rotational angular

momentum J along these axes are

Ja = Iaωa, (4.4.2)

Jb = Ibωb, (4.4.3)

Jc = Icωc. (4.4.4)

The kinetic energy for a rigid rotor [47] can then be written as

Trot =
J2

a

2Ia
+
J2

b

2Ib
+
J2

c

2Ic
(4.4.5)

4.4.2 Rotational Energy of a Spherically Symmetric Top

First, we will examine the case of a spherically symmetric top, where all three

principal components of the moment of inertia tensor are equal with Ia = Ib = Ic = I.

The quantum mechanical energy of rotation for a spherically symmetric top is

given by the Hamiltonian, which we find by replacing the angular momentum com-

ponents in Equation 4.4.5 with their respective operators and is given by

Hrot =
Ĵ2

a

2Ia
+
Ĵ2

b

2Ib
+
Ĵ2

c

2Ic
(4.4.6)

The total angular momentum operator has the following eigenvalue

Ĵ2ψ = J(J + 1)ψ, J = 0, 1, 2, 3, ... (4.4.7)
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Using the the fact that Ia = Ib = Ic = I, we can write the rotational energy levels as

Esphere
rot =

J(J + 1)

2I
, J = 0, 1, 2, 3, ... (4.4.8)

Most of the knots and links in our model do not possess spherical symmetry, as a

consequence they will not fall into this category.

4.4.3 Rotational Energy of a Symmetric Top

The next case we will consider is a symmetric top. There are two classes of

symmetric tops: oblate symmetric with Ia = Ib < Ic and prolate symmetric with

Ia < Ib = Ic.

For a prolate top, Ib = Ic, so we can rewrite the Equation 4.4.6 as

Hrot =
1

2
(
Ĵ2

a

Ia
+
Ĵ2

Ib
− Ĵ2

a

Ib
− Ĵ2

c

Ib
+
Ĵ2

c

Ic
) (4.4.9)

or

Hrot =
1

2
(
Ĵ2

a

Ia
+
Ĵ2

Ib
− Ĵ2

a

Ib
). (4.4.10)

We know that Ĵ2ψ = J(J + 1)ψ. Each of the components corresponding to angular

momentum along one of the principal axes is quantized in units of K, energy propor-

tional to K2, e.g. Ĵ2
aψ = K2ψ. For the symmetric top, K is a new (good) quantum

number that measures the component of angular momentum along the main axis [46].

Equal positive and negative values of K result in the same energy values. Thus, for

a prolate top we find the following

Ep
rot =

J(J + 1)

2Ib
+
K2

2
(

1

Ia
− 1

Ib
) (4.4.11)
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or

Ep
rot = BJ(J + 1) +K2(A− B). (4.4.12)

where the three rotational constants are defined as follows

A =
1

2Ia
, B =

1

2Ib
, C =

1

2Ic
(4.4.13)

For an oblate top, we find through similar steps the following

Eo
rot = BJ(J + 1) +K2(C − B). (4.4.14)

The quantum number K can take values K = 0,±1,±2, ...,±J where all levels for

K > 0 are doubly degenerate.

The energies depend on K via the relative values of the rotational constants, A,

B and C. The magnitude of K tells us how much of the angular momentum comes

from motion about the symmetry axis, and consequently how the energy depends on

the moment of inertia about that axis [54]. When K ≈ J , the top is rotating fast

around its symmetry axis and when K = 0 there is no rotation about the symmetry

axis.

4.4.4 Rotational Energy of an Asymmetric Top

Most of the knots/links we will consider are not symmetric tops, meaning they

fall into the category of asymmetric tops. In the case of an asymmetric top, all three

moments of inertia are different (Ia 6= Ib 6= Ic). Since all three principal moments

of inertia are unequal, we cannot easily determine the rotational energy from the

Hamiltonian as in the previous sections. The main difference between the case of an
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asymmetric top and a symmetric top is that the asymmetry removes the degeneracy

of the different K levels.[48]. There are several general expressions [49, 50] in the

literature to compute the energy levels of an asymmetric top, we have chosen the

expression derived by Wang [51].

Given the three rotational constants, an asymmetric rotor can be characterized

by its Ray’s asymmetry parameter

κ =
2B − A− C

A− C
, (4.4.15)

which becomes −1 for a prolate symmetric top (B = C) and 1 for an oblate symmetric

top (B = A), and the most asymmetric case has κ = 0. Note that the Ray’s asymmetry

parameter, κ, is not related to the dielectric constant, κ, referred to at the beginning

of the chapter. The energy levels of an asymmetric top are different from prolate and

oblate symmetric tops in that theK levels, which are always degenerate for symmetric

tops, are split in the asymmetric top [52]. For each level of J , the asymmetric top

has (2J + 1) distinct rotational sublevels; the symmetric rotor has (J + 1) distinct

sublevels for each J value. As the asymmetry increases, i.e. κ approaches 0, the “K

splitting” increases until there is no longer any close correspondence between the two

levels and the degenerate K levels of the symmetric top.

For the energy expression, we will need two more parameters, bp and bo, defined

as follows.

bp =
C − B

2A−B − C
=
κ+ 1

κ− 3
(4.4.16)

bp is zero for a prolate symmetric top, and increases in size as the top becomes more
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asymmetric. The analogous asymmetry parameter for an asymmetric oblate top is

bo =
A−B

2C −B −A
=
κ− 1

κ + 3
(4.4.17)

For an asymmetric top, the total angular momentum J and its projection MJ on an

axis fixed in space are constants of the motion and “good” quantum numbers which

can be used to specify the state of the rotor [53]. Note that both MJ and K are

projections of J , however MJ is the projection of J about the fixed laboratory z-axis

whereas K is the component of the angular momentum about the symmetry axis. In

both the classical motion and the quantum-mechanical solution the component of the

angular momentum is not constant along any direction in the rotating asymmetric

body. This means that the quantum number K is no longer a “good” quantum

number and cannot be used to specify the rotational state. In reality, there are no

convenient quantum numbers which can be used to specify the state and also have

physical meaning. We have chosen one particular approximation for the asymmetric

top, in which K has been replaced by a pseudo-quantum number that has no physical

meaning. We will use the pseudo-quantum number, w, to designate the energy levels.

If the knot or link is an asymmetric prolate top, the energy may be written in the

approximate form

Ep
rot =

B + C

2
J(J + 1) +

(

A− B + C

2

)

w (4.4.18)

This is very similar to the rotational energy of a symmetric prolate top. Exact

expressions for some of the various possible values of w are given in Table 4.4.1, and

the parameter b represents either bp or bo depending on the symmetry. Further values
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for w associated with higher J values can be found in [53]. For the oblate case, we

Table 4.4.1: Values of the parameter w in terms of the parameter b for an asymmetric
prolate or oblate top.

J w

0 0
1 1 - b
1 0
1 1 + b

2 2(1 -
√

1 + 3b2)
2 1 - 3b
2 4
2 1 + 3b

2 2(1 +
√

1 + 3b2)

3 2(1 -
√

1 + 15b2)

3 5 - 3b - 2
√

2
√

2 + 3b+ 3b2

3 5 + 3b - 2
√

2
√

2 − 3b+ 3b2

3 4

3 5 + 3b + 2
√

2
√

2 − 3b+ 3b2

3 5 - 3b + 2
√

2
√

2 + 3b+ 3b2

3 2(1 +
√

1 + 15b2)

find a similar formulas. The energy is

Eo
rot =

A +B

2
J(J + 1) +

(

C − A+B

2

)

w (4.4.19)

4.5 Conclusion

This chapter served primarily as an introduction to the theoretical background

essential to the following chapter. The chapter began with an introduction to the

Bag Model, which we subsequently used to estimate the physical size of the radius

of the tightly knotted or linked flux tubes modeled as glueball candidates in Chapter

II. The remainder of the chapter focused on the physics of the rotational energy of
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rigid rotors as well as presented how to classify rigid rotors based on their symmetry

properties. The calculations and definitions presented in this chapter allow us to

calculate the rotational energies for the knots and links used in the model outlined in

Chapter II.
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CHAPTER V

CALCULATION OF ROTATIONAL ENERGY

5.1 Introduction

In Chapters III and IV we performed calculations and discussed theory that will

now allow us to calculate rotational energies for the knots and links used in the glueball

model detailed in Chapter II. As stated earlier, the model assumes all knotted and

linked flux tubes to be spherical tops for the purpose of approximating the excitation

energy of a particular glueball candidate. In this chapter we will show that only

one of the knots or links used in the model is in a fact a spherical top, and we will

calculate classify the symmetry of the remainder. Based on their classifications, we

will calculate their rotational energies.

In chapter III we performed exact calculations of the moment of inertia for specific

link geometries, however for most knots and links exact calculations are not possible.

We will calculate the moment of inertia of these knots and links from a set of vertex

points, i.e. the set of numerically determined coordinates of each knot or link.

We begin the chapter with the calculation of the simplest link: the Hopf link. We

can calculate the rotational energy of the Hopf link based on the moment of inertia

tensor calculation from Chapter III. We can also calculate the rotational energy based

on a set of vertex coordinate points. We will compare both calculations, and use this

comparison as a way to approximate an error in the vertex coordinate points for
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symmetric tops.

After examining the Hopf link, we will go through several sample rotational energy

calculations that represent a wide variety of knots/links. At the end of the chapter,

the rotational energies of all knots and links will be tabulated.

5.2 Rotational Energy Calculations

5.2.1 Rotational Energy of Hopf link

In order to calculate the rotational energy of a particle modeled as two flux tubes

in a tight Hopf link configuration, we need the mass of the particle, the radius of

the flux tubes and the shape of the Hopf link. The Hopf link is associated with

the pseudoscaler meson f0(600). In an earlier calculation, we used the MIT bag

model approach to calculate the radius, a, of each knotted or linked flux tube used

in our model and we found it to be a = 0.71 fm. In (3.2.15), we found the principal

moments of inertia of the Hopf link to be Ia = π2a5ρ and Ib = Ic = 75
2
π2a5ρ. Plugging

in numerical values for the variables, we find

Ia = 21π2a5ρ = 21π2(0.71 fm)5

(

800 MeV

8π2(0.71 fm)3

)

= 1058.61 MeV fm2

Ib =
75

2
π2a5ρ =

75

2
π2(0.71 fm)5

(

800 MeV

8π2(0.71 fm)3

)

= 1890.38 MeV fm2

Ic =
75

2
π2a5ρ =

75

2
π2(0.71 fm)5

(

800 MeV

8π2(0.71 fm)3

)

= 1890.38 MeV fm2 (5.2.1)

We calculate the rotational constants, A, B and C previously defined in Equation

4.4.13, in order to determine the shape of the knot and ultimately the rotational
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energy. For the Hopf link, we find the following values for the rotational constants

A =
1

2Ia
= 4.72 × 10−4 MeV−1 fm−2

B = C =
1

2Ib
= 2.64 × 10−4 MeV−1 fm−2 (5.2.2)

As defined in Chapter IV, the rotational constants are used to calculate the Ray’s

Asymmetry parameter and ultimately the rotational energy relationship used. For

the Hopf link, κ = −1, meaning it is a prolate symmetric top. We are able to calculate

the rotational energy, using the rotational energy relationship defined for a prolate

symmetric top in Equation 4.4.12.

Lastly, before we calculate the rotational energy for the Hopf Link we need to

change the units of the rotational constants A and B so that the resultant energy is

in units of MeV; using 200 MeV fm ∼= 1 gives

A = 18.89 MeV

B = 10.58 MeV (5.2.3)

Finally, the energy depends on the quantum numbers J and K; Table 5.2.1 summa-

rizes the rotational energy results for the Hopf Link. From the rotational energies,

we can calculate the predicted rotational states for the f0(600) whose ground state

energy is listed by the Particle Data Group as 800 ± 400 MeV. The predictions are

summarized in Table 5.2.2, along with the published error associated with the f0(600).

However, given the short lifetime of the f0(600), (≈ 8×10−25 sec), these excited states

are unlikely to be seen experimentally.

129



Table 5.2.1: Hopf Link Excitation Energy

J K Erot(MeV)
1 0 21
1 1 29
2 0 63
2 1 72
2 2 97
3 0 127
3 1 135
3 2 160
3 3 202

Table 5.2.2: Predicted Excitation states of the f0(600)

J K EJ(MeV)
0 0 800 ± 400
1 0 821 ± 400
1 1 829 ± 400
2 0 863 ± 400
2 1 872 ± 400
2 2 897 ± 400
3 0 927 ± 400
3 1 935 ± 400
3 2 960 ± 400
3 3 1002 ± 400

5.2.2 Rotational Energy based on Vertex Points

Since we cannot calculate the moment of inertia tensor from geometry alone in

most cases, we use a set of vertex points unique to each knot and link. Based on the
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inertia tensor defined in Equation (3.2.2), its components Iij can be expanded into

I =

















∑

αmα(r2
α − x2

α) −
∑

αmαxαyα −
∑

α mαxαzα

−
∑

αmαyαxα

∑

αmα(r2
α − y2

α) −
∑

αmαyαzα

−∑αmαzαxα −∑αmαzαyα

∑

αmα(r2
α − z2

α)

















(5.2.4)

where (xα, yα, zα) are coordinates in the center-of-mass frame, mα is the mass asso-

ciated with each point used in the calculation and r2
α = x2

α + y2
α + z2

α.

5.2.3 Rotational Energy of Hopf link based on Vertex Points

The set of vertex points of the Hopf Link consists of 179 points [55]. The coor-

dinates of the vertex points do not carry any physical units. However, in Chapter

III we presented exact calculations for the inertia tensor of a Hopf link and we will

use this result to create a scale for the vertex points. We assume the mass of each

point is equal, so that mα is calculated for each knot depending on the mass of the

particle and the number of vertex points. The Hopf Link is associated with the

f0(600), whose ground state mass is listed in Table 5.2.2; the mass of each point is

then mα = (800/179) MeV or mα = 4.47 MeV.

We use Mathematica to diagonalize the moment of inertia tensor and determine

the principal moments of inertia, Ia, Ib and Ic. For the unscaled Hopf Link, we find the

following values for the principal moments of inertia: Ia = 1601.8 MeV, Ib = 3170.36

MeV and Ic = 3232.89 MeV. In order to normalize the vertex points, we impose the

condition that the trace of both inertia tensors be the same. In order for the trace of

the inertia tensor, calculated from the coordinates of the vertex points, to equal the
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trace from the exact calculation we need to multiply the coordinates of the vertex

points by a factor of 0.77752. We will use this result to define our scale factor by

defining the distance between adjacent vertex points as 0.77752 fm. Now that the

vertex points have an associated length scale, we can now determine the principal

moments of inertia with the proper units: Ia = 968.35 MeV fm2, Ib = 1916.61 MeV

fm2, and Ic = 1954.41 MeV fm2.

From these eigenvalues, we can calculate the rotational energies of the Hopf link

and compare them with the exact calculation. The results calculated from the vertex

points do not yield an exact symmetric top; the Ray’s asymmetry parameter is:

κvertex = −0.961263 compared to κexact = −1. However, since we know that it is

in fact an exact symmetric top, we will calculate the rotational energies based on

the relationship for a prolate symmetric top. Table 5.2.3 summarizes the rotational

energy results for the Hopf Link calculated from the vertex points, Evertex
rot and also

includes the results from Table 5.2.1 as a way of comparison with the exact results,

Erot. The percentage error is calculated from the following relationship

Error =

(
∣

∣Evertex
rot − Erot

∣

∣

Erot

)

∗ 100% (5.2.5)

We also include the percentage error for each rotational energy level for the Hopf

link. Since the Hopf link is the only case where we can calculate both the exact

rotational energy and the rotational energy from the vertex points, we use this case

to estimate the error in future vertex points calculations since we have no other way

to determine the error.
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Table 5.2.3: Hopf Link Excitation Energy

J K Evertex
rot (MeV ) Erot(MeV ) Error

1 0 21 21 1.37%
1 1 31 29 5.48%
2 0 63 63 1.37%
2 1 73 72 1.44%
2 2 103 97 6.98%
3 0 125 127 1.37%
3 1 135 135 0.12%
3 2 166 160 3.68%
3 3 217 202 7.64%

5.2.4 Rotational energy calculations for symmetric and asymmetric tops

For the Hopf Link, the Ray’s asymmetry parameter was calculated to be −1; or in

the case of the calculation based on the set of vertex coordinate points, very close to

−1, and we know that in reality it is exactly −1 making it easy to argue for its status

as a prolate symmetric top. However, most of the knots and links examined are not

so easily classified as either a prolate or oblate symmetric top, κ = −1 and κ = 1

respectively. In fact, the majority of the knots and links examined have an asymmetry

parameter of −1 < κ < 1. How do we determine what can be approximated as an

oblate or prolate symmetric top, and what should be classified as an asymmetric

top? Is there a large difference in rotational energies if we simply ignore the small

asymmetry and assume the knot or link is a symmetric top? In order to explore these

questions, we will go through a couple of rotational energy calculations in detail.

We first use the knot 52 as an example, which is shown in Figure 33. The knot 52

is identified with the meson f0(1500) = 1505 ± 6 MeV, as well as the excited states
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f1(1510) = 1518± 5 MeV and f2(1525) = 1525± 5 MeV. The energies and errors are

those listed by the Particle Data Group. The Ray’s asymmetry parameter for the

52 is κ = −0.678; which means it is asymmetric but closer to a prolate top than an

oblate top. Let’s first look at what rotational energy values we find if we simply

Figure 33: A tight configuration of knot 52, which in the model is identified with the
meson f0(1500) = 1505 ± 6 MeV, as well as the excited states f1(1510) = 1518 ± 5
MeV and f2(1525) = 1525 ± 5 MeV.

assume it is a prolate symmetric top. Then, we will calculate the energies using the

relationship for an asymmetric prolate top in order to see how much splitting occurs.

We will focus on the excited states with J = 1, 2 cases, since we can compare those

states with experimental data. The results, including the projected states calculated

from the ground state f0(1500) and Erot, are summarized in Table 5.2.4. Now, we will

assume that 52 is an asymmetric prolate top. The energy for an asymmetric prolate

top was defined in Equation 4.4.18, where the quantum number K has been replaced

by w as discussed in Section 4.4.5. The possible values of the parameter w are defined

in Table 4.4.1 and depend on the parameter bp, defined in Equation 4.4.16. For our

particular example of knot 52, bp = −0.0874538.

As a result of the asymmetry, we have the splitting of energy levels and conse-
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Table 5.2.4: 52 Excitation Energy and projected Excited States based on prolate
symmetric top

J K Erot (MeV) EJ(MeV)
1 0 6 1511
1 1 9 1514
2 0 19 1524
2 1 22 1527
2 2 29 1534

quently we have more excited levels than in the case of an exactly prolate symmetric

top. For J = 1, we have three excited states rather than two and for J = 2 we have

five states rather than three. Treating knot 52 as an asymmetric prolate top we find

the following rotational energies, summarized in Table 5.2.5. Examining tables 5.2.4

Table 5.2.5: 52 Excitation Energy based on an asymmetric prolate top

J w Erot (MeV) EJ (MeV)
1 0 7 1512
1 0.91 9 1514
1 1.09 9 1514
2 -0.02 20 1525
2 0.74 22 1527
2 1.26 23 1528
2 4.00 30 1535
2 4.02 30 1535

and 5.2.8, we find that for the knot 52 there is a small, but noticeable, difference

between assuming that the knot is a prolate symmetric top and assuming it is an

asymmetric top. Even though these splits may be small, we will include them in our
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model.

Next we will look at a link that is considered to be very asymmetric; where κ = 0

is generally considered to be the most asymmetric case. We will look at link 52
1, which

has a value of κ = −0.0611502 and in our model is not currently identified with any

known state. We predict that it is coupled to an f ground state with an approximate

mass of 1505 MeV. We will first assume that is a prolate symmetric top, which is

summarized in Table 5.2.6. And in Table 5.2.7, we summarize the results based on

Table 5.2.6: 52
1 Excitation Energy and projected Excited States based on prolate

symmetric top

J K Erot (MeV) EJ(MeV)
1 0 9 1514
1 1 9 1514
2 0 26 1531
2 1 27 1532
2 2 29 1534

the assumption that 52
1 an asymmetric top. Again, we examine tables 5.2.6 and 5.2.7

for the link 52
1 and we find a small, but noticeable, splitting of energy levels when we

assume the link is not a prolate symmetric top. And we notice that the splitting is

more noticeable than in the case of the knot 52, which is to be expected since it is less

asymmetric. We will approximate a knot or link as an oblate (or prolate) symmetric

top if its κ value is within the range 0.96 to 1 (or -1 to -0.96), which is based on the

comparison of the κ value of the exact calculation of the Hopf link, κ = −1, with that
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Table 5.2.7: 52
1 Excitation Energy based on a prolate asymmetric top

J w Erot (MeV) EJ (MeV)
1 0 8 1513
1 0.69 9 1514
1 1.31 9 1514
2 -0.26 24 1529
2 0.080 24 1529
2 1.92 26 1531
2 4.00 28 1533
2 4.26 28 15331

calculated from the vertex points, κ = −0.96. And, consequently, we will call a knot

or link an asymmetric oblate (or prolate) top if its Ray’s asymmetry value is within

the range −0.96 ≤ κ ≤ 0.96.

5.2.5 Additional Rotational Energy Calculations

Rotational Energy of the Hopf link with one double flux

Following the same steps as outlined in the previous section, we can calculate the

rotational energy of the Hopf link where one tube carries double flux. The difference

in our calculation will be the mass of the link; in our model, the Hopf link with one

double flux is paired with the f0(1200 − 1600) particle. We previously averaged the

mass of the f0(1200 − 1600) to be 1325 ± 12 MeV. The volume of the tube with

double flux is V1 = 8π2(1 +
√

2)a3 and the volume of the tube with single flux is

V2 = 2π2(1 +
√

2)a3, giving the link a total volume of V = 10π2(1 +
√

2)a3. For the
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principal moments of inertia, we then find

Ia =
1

4
(109 + 85

√
2)

(

(1325 MeVπ2)(0.71 fm)5

10π2(1 +
√

2)(0.71 fm)3

)

= 567.42 MeV fm2

Ib =
1

2
(85 + 69

√
2)

(

(1325 MeVπ2)(0.71 fm)5

10π2(1 +
√

2)(0.71 fm)3

)

= 903.98 MeV fm2

Ic =
1

4
(201 + 161

√
2)

(

(1325 MeVπ2)(0.71 fm)5

10π2(1 +
√

2)(0.71 fm)3

)

= 1061.24 MeV fm2 (5.2.6)

For the Hopf link with one double flux, we find the following values for the rotational

constants

A =
1

2Ia
= 8.83 × 10−4 MeV−1 fm−2 = 35.25 MeV

B =
1

2Ib
= 5.54 × 10−4 MeV−1 fm−2 = 22.12 MeV

C =
1

2Ib
= 4.72 × 10−4 MeV−1 fm−2 = 18.85 MeV (5.2.7)

The Ray’s asymmetry parameter is calculated to be κ = −0.600209. The Hopf link

with one double flux is an asymmetric prolate top. In this case, we use Equation

4.4.18 to calculate the rotational energies. Equation 4.4.18 depends on the parameter

w, whose values are listed in Table 4.4.1, which in turn depend on the parameter bp

given by Equation 4.4.16. For our particular geometry, bp = −0.111047.

As a result of the asymmetry, we have the splitting of energy levels. Treating

the Hopf link with one double flux as an asymmetric prolate top we find the follow-

ing rotational energies, summarized in Table 5.2.8. However, like the f0(600), the

f0(1200 − 1600) has a short lifetime of ≈ 5 × 10−25 sec; and the excited states are

unlikely to be measured experimentally.

138



Table 5.2.8: Hopf link with double flux Excitation Energy

J w Erot (MeV) EJ (MeV)
1 0 41 1366
1 0.89 54 1379
1 1.11 57 1382
2 -0.04 122 1447
2 0.67 133 1458
2 1.33 143 1468
2 4.00 182 1507
2 4.04 183 1508

Rotational Energy of Link 22
1#22

1

To determine the rotational energy for link 22
1 ∗ 01 we will follow the same steps

as outlined for the Hopf link. The Ray’s asymmetry parameter is calculated to be

κ = −0.98, making it very close to a prolate symmetric top. We will take it to be

prolate symmetric top for our calculation of the rotational energy. In our model,

the link 22
1 ∗ 01 is associated with the excited state f2(1270) whose mass is listed

as M = 1275.1 ± 1.2 MeV. Since all excited states are based on the ground state,

EJ = E0 +Erot, we need to calculate the ground state energy, E0. If we express Erot

in terms of E0 and set J = 2 and K = 0, we can solve for E0. We find E0 = 1215.06

MeV. The rotational energies and the predicted states are listed in Table 5.2.9.
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Table 5.2.9: Rotational Energy of Link 22
1 ∗ 01

J K Erot (MeV) EJ (MeV)
0 0 0 1215
1 0 20 1235
1 1 47 1262
2 0 60 1275
2 1 87 1302
2 2 166 1381

5.3 Tables

5.3.1 Rotational Energy of Spherical Top in Table 5.4.2

In Table 5.4.2 we present the one link that we know is a spherical top: the Bor-

romean rings, i.e. link 62
3. The principal moments of inertia were calculated from a set

of vertex coordinate points. Since this calculation does not produce an exact result,

we found that the moment of inertia eigenvalues were not all equal. However, since

we know they should be equal, we averaged all three values in order to calculate the

rotational energy using Equation 4.4.8. From our calculation, we found Ia = 5818.56

MeV fm2, Ib = 6115.27 MeV fm2 and Ic = 6125.04 MeV fm2. When averaged, we

find Iavg = 6019.62 MeV fm2

5.3.2 Rotational Energy of Prolate and Oblate Tops in Table 5.4.3.

Table 5.4.3 lists the rotational energies calculated for the few knots and links

that from their Ray’s asymmetry parameter can be classified as prolate or oblate

symmetric tops. The table lists the specific knot or link, the state identified with the
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knot or link in the model specified in Table 2.7.1 in Chapter II, the quantum numbers

J and K, the rotational energy, Erot in MeV, and the actual or projected state, EJ in

MeV. The energy of the state used to calculate the rotational energy, either directly

pulled from the Particle Data Group or based on predictions from our model detailed

in Chapter II, is listed in bold face to distinguish it from theoretical predictions.

The Hopf link is the first entry in the table, and the details are given at the

beginning of the chapter. Since the rotational energies were calculated from the exact

geometry of the Hopf link, the only associated error is related to the calculation of

the radius, a, which cannot be estimated. The predicted rotational energies, EJ , for

the Hopf link then include only the error associated the state f0(600), i.e. 400 MeV,

determined by the Particle Data Group.

The next entry is the trefoil, 31, which is paired with the f0(980). The rotational

energies are calculated from a set of vertex coordinate points, we expect some related

error. However, we do not know the error associated with the vertex coordinate

points. We conclude that the only way to estimate the error of the vertex points is

by a direct comparison, as we worked out for the Hopf link earlier in this chapter.

The Hopf link is the only case where we can calculate the rotational energy exactly

and from a set of vertex points, and the results of this comparison are listed in Table

5.2.3. Consequently, we use the errors calculated in Table 5.2.3 to estimate the errors

for calculations based on a set of vertex points in Table 5.4.3. We consider these

errors to be an overestimate, since the calculation of the Hopf link rotational energies

is based on 179 vertex coordinate points compared to 400 vertex coordinate points
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for knots 31 and 41 and 562 vertex coordinate points for link 62
2. We would expect

the errors to go down when more vertex coordinate points are used for a calculation,

and to go up with the length of the knot; however, we assume the errors from the

vertex coordinate points dominate. The predictions for the rotational energies, EJ , of

the trefoil then include the estimated error associated with vertex coordinate points

listed in the Erot (MeV) column in addition to the error associated with the particle

state f0(980), i.e. 10 MeV.

The error associated with the rotational energy of knot 41 was calculated simi-

larly. The particle state associated with link 62
2 is a predicted state based on the model

outlined in Chapter II and is listed in brackets to distinguish it from experimentally

observed states. As such, the error associated with this state is based on our calcula-

tions in Chapter II. The errors associated with the predicted rotational energies for

link 62
2 then include the error estimated from the vertex coordinate points in addition

to our estimated error for the predicted state. The rotational energy associated with

the link 22
1#01 was calculated exactly, so the only error included is that associated

with particle f2(1270). The details of the ground state calculation based on f2(1270)

are given earlier in this chapter.

5.3.3 Rotational Energy of asymmetric tops in Tables 5.4.4 - 5.4.14.

While table 5.4.3 represents knots and links classified as oblate or prolate sym-

metric tops, the Tables 5.4.4 - 5.4.14 list the rotational energies of knots and links

classified as prolate or oblate asymmetric tops. Instead of the quantum numbers J
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and K, we use J and w since K is no longer a good quantum number for an asymmet-

ric top as discussed in Chapter IV. The parameter w depends on κ and was defined

in Table 4.4.1.

In the previous table, we were able to estimate the error on the rotational energies.

However, since these rotational energies depend on J and w we have no calculation

upon which to base our errors. As such, we will not presume to add errors to these

excitation energies. We would assume them to be on the same order or less as those

calculated based on the Hopf link. We hope to be able to estimate the errors in

the future, when sets of vertex coordinate points for more complicated links become

available.

Since the number of knots and links increases dramatically with length, we have

chosen to calculate only the rotational energies for those states predicted by our model

(i.e. the particle states listed in brackets) up to 2 GeV. Therefore, we only include

the rotational energies for those observed states listed by the Particle Data Group.

In the future, if states above 2 GeV are observed it would be useful and beneficial to

then calculate beyond this artificially imposed energy limit.

5.3.4 Summary of Ray’s asymmetry parameter, κ in Tables 5.4.16 - 5.4.17.

Tables 5.4.16 - 5.4.17 contain the Ray’s asymmetry parameter calculated for the

knots and links used in our model.
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5.4 Discussion and Conclusions

After calculating the rotational energies of the knots and links identified with

glueball candidates, we can discuss how our results impact the model as outlined in

Chapter II. In Chapter II, we made an assumption that the knots and links used in

the model possessed a spherical symmetry. As we have shown in this chapter, the

assumption about spherical symmetry doesn’t hold in general for knots and links.

The only case where the spherical symmetry persisted was that of the Borromean

Rings, link 62
3. The remaining knots and links are classified as either prolate/oblate

symmetric or asymmetric tops.

In Chapter II, we used the relationship between the energy of a spherical top

and all available particle mass data to determine the excited energy spectrum. The

energy spectrum was based on Equation (2.6.2), where the energy depends only on

the value of J and a fitted parameter δ. The fitted parameter δ is the spherical

analog of the rotational constants A, B and C; with spherical symmetry only one

rotational constant value is needed. Consequently, the rotational energy prediction

calculated for each value of J is identical, i.e. if δ = 5 MeV for all J = 1 energy levels

the rotational energy is 5 MeV. In this chapter, we have determined the symmetry

of each individual knot/link used in the model. The rotational energy was based on

value of J and the symmetry of each individual knot. The rotational energies for each

knot/link are different, resulting in a much more complicated and richer spectrum.

The most dramatic result of this generalization are predictions for additional ex-

cited levels. With the loss of symmetry we find the splitting of previously degenerate
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energy levels. For example, if we compare the predictions for the knot 52 in Chapter

II with those calculated in Table 5.4.5 we find two additional J = 1 levels and four

additional J = 2 levels. Another consequence of this richer spectrum is that it is

easier to match excited energy levels with their identified knot or link. Using the

example of knot 52 again, the model identifies a ground state and two excited levelss

(a J = 1 and a J = 2) with this knot. In Chapter II, the rotational energy was based

on the spherically symmetric top which predicts one J = 1 level and one J = 2 level.

However, after determining that knot 52 is asymmetric, we now predict three J = 1

levels and five J = 2 levels. This richer spectrum allows for a better fit with the data,

in addition to predicting many more excited states. This comparison is summarized

in Table 5.4.1.

In conclusion, the results from this chapter provide the model with predictions

about the structure of the excited glueball spectrum. We predict a very rich glueball

spectrum of ground states, as well as excited levels. The rotational energy spectrum

contains many levels close together in energy which may be difficult to distinguish,

however many predictions are within experimental reach. Hopefully these predictions

can be tested.
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Table 5.4.1: Comparison of predicted rotational energy spectrum of knot 52 as a
spherical top vs. an asymmetric top.

Knot State Mass J Esphere
rot Esphere

J J w Easym
rot Easym

J

(MeV) (MeV) (MeV) (MeV) (MeV)
2 4.02 30 1535
2 4 30 1535
2 1.26 23 1528
2 0.74 22 1527

f2(1525) 1525 ± 5 2 15 1520 2 -0.02 20 1525
f1(1510) 1518 ± 5 1 5 1510 1 1.09 9 1514

1 0.91 9 1514
1 0 7 1512

52 f0(1500) 1505 ± 6 0 0 1505 0 0 0 1505

Table 5.4.2: Rotational Energies of spherical link: 63
2.

Knot/Link State J Erot (MeV) EJ (MeV)
63

2 [1749] 0 0 1749 ± 22

1 7 1756 ± 22
2 20 1769 ± 22
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Table 5.4.3: Rotational Energies of prolate and oblate knots/links: 22
1, 31, 22

1#22
1, 41

and 62
2.

Knot/Link κ State J K Erot (MeV) EJ (MeV)
22

1 -1.0 f0(600) 0 0 0 800 ± 400

1 0 21 821 ± 400
1 1 29 829 ± 400
2 0 63 863 ± 400
2 1 72 872 ± 400
2 2 97 897 ± 400

31 0.999341 f0(980) 0 0 0 980 ± 10

1 1 16 ± 1 996 ± 11
1 0 20 ± 0 1000 ± 10
2 2 44 ± 3 1024 ± 13
2 1 56 ± 1 1036 ± 11
2 0 60 ± 1 1040 ± 11

22
1#22

1 -0.98 0 0 0 1215.1 ± 1.2
1 0 20.0 1235.1 ± 1.2
1 1 46.6 1261.6 ± 1.2

f2(1270) 2 0 60.0 1275.1 ± 1.2

2 1 86.6 1301.7 ± 1.2
2 2 166.3 1381.4 ± 1.2

41 -0.997603 0 0 0 1271.2 ± 1.2
f1(1285) 1 0 10.6 ± 0.6 1281.8 ± 0.6

1 1 11.5 ± 0.6 1282.8 ± 1.2
2 0 31.8 ± 0.4 1303.0 ± 1.0
2 1 32.7 ± 0.5 1303.9 ± 1.1
2 2 35.6 ± 2.5 1306.8 ± 3.08

62
2 -0.998734 [1709] 0 0 0 1709 ± 22

1 0 5 ± 0 1714 ± 22
1 1 8 ± 0 1717 ± 22
2 0 14 ± 0 1723 ± 22
2 1 17 ± 0 1726 ± 22
2 2 26 ± 2 1735 ± 23
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Table 5.4.4: Rotational Energies of asymmetric prolate knots/links: 42
1, 22

1 (one com-
ponent of link 22

1 carries double flux), 51 and 52.

Knot/Link κ State J w Erot (MeV) EJ (MeV)
42

1 -0.115689 [1209] 0 0 0 1209 ± 19

1 0 10 1219 ± 19
1 0.72 12 1221 ± 19
1 1.28 14 1223 ± 19
2 -0.23 29 1238 ± 19
2 0.15 30 1239 ± 19
2 1.85 36 1245 ± 19
2 4 43 1252 ± 19
2 4.23 44 1253 ± 19

22
1 -0.600209 f0(1200 - 1600) 0 0 0 1325 ± 15

1 0 41 1366 ± 1
1 0.89 54 1379 ± 15
1 1.11 57 1382 ± 15
2 -0.04 122 1447 ± 15
2 0.67 133 1458 ± 15
2 1.33 143 1468 ± 15
2 4 182 1507 ± 15
2 4.04 183 1508 ± 15

51 -0.362301 0 0 0 1419.5 ± 0.9
f1(1420) 1 0 6.9 1426.4 ± 0.9

1 0.81 8.9 1428.3 ± 0.9
1 1.19 10.2 1429.7 ± 0.9

f2(1430) 2 -0.11 20.5 1440.0 ± 0.9
2 0.43 22.0 1441.5 ± 0.9
2 1.57 25.1 1444.6 ± 0.9
2 4 31.9 1451.4 ± 0.9
2 4.11 32.2 1451.7 ± 0.9

52 -0.678317 f0(1500) 0 0 0 1505 ± 6

1 0 7 1512 ± 6
1 0.91 9 1514 ± 6

f1(1510) 1 1.09 9 1514 ± 6
f2(1525) 2 -0.02 20 1525 ± 6

2 0.74 22 1527 ± 6
2 1.26 23 1528 ± 6
2 4 30 1535 ± 6
2 4.02 30 1535 ± 6
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Table 5.4.5: Rotational Energies of asymmetric prolate and oblate knots/links: 52
1,

63
3, 62

1, and 72
7.

Knot/Link κ State(s) J w Erot (MeV) EJ (MeV)
52

1 -0.0611502 [1502] 0 0 0 1502 ± 21

1 0 8 1510 ± 21
1 0.69 9 1511 ± 21
1 1.31 9 1511 ± 21
2 -0.26 24 1526 ± 21
2 0.08 24 1526 ± 21
2 1.92 26 1528 ± 21
2 4 28 1530 ± 21
2 4.26 28 1530 ± 21

63
3 -0.735524 0 0 0 1543 ± 12

1 0 6 1549 ± 12
1 0.93 8 1551 ± 12
1 1.07 9 1552 ± 12

f2(1565) 2 -0.01 19 1562 ± 12

2 0.79 21 1564 ± 12
2 1.2 22 1565 ± 12
2 4 27 1570 ± 12
2 4.01 27 1570 ± 12

62
1 0.0248771 0 0 0 1615 ± 6

1 1.32 6 1620 ± 6
1 0.68 7 1621 ± 6
1 0 8 1623 ± 6
2 4.29 17 1631 ± 6
2 4 17 1632 ± 6
2 1.97 21 1635 ±6
2 0.033 24 1638 ± 6

f2(1640) 2 -0.29 25 1639 ± 6

72
7 0.129734 [1674] 0 0 0 1674 ± 22

1 1.28 6 1680 ± 22
1 0.72 6 1680 ± 22
1 0 7 1681 ± 22
2 4.22 17 1691 ± 22
2 4 17 1691 ± 22
2 1.83 20 1694 ± 22
2 0.17 22 1696 ± 22
2 -0.22 22 1696 ± 22
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Table 5.4.6: Rotational Energies of asymmetric prolate and oblate knots/links: 61,
62, 72

8, and 63
1.

Knot/Link κ State(s) J w Erot (MeV) EJ (MeV)
61 -0.566748 [1710] 0 0 0 1710 ± 22

1 0 3 1713 ± 22
1 0.88 4 1714 ± 22
1 1.12 4 1714 ± 22
2 -0.04 9 1719 ± 22
2 0.64 10 1720 ± 22
2 1.36 11 1721 ± 22
2 4 14 1724 ± 22
2 4.04 14 1724 ±

62 -0.582995 f0(1710) 0 0 0 1724 ± 7

1 0 6 1730 ± 7
1 0.88 7 1731 ± 7
1 1.12 7 1731 ± 7
2 -0.04 17 1741 ± 7
2 0.65 18 1742 ± 7
2 1.35 19 1743 ± 7
2 4 22 1746 ± 7
2 4.04 22 1746 ± 7

72
8 0.81974 [1742] 0 0 0 1742 ± 22

1 1.05 6 1748 ± 22
1 0.95 6 1748 ± 22
1 0 7 1749 ± 22
2 4.01 17 1759 ± 22
2 4 17 1759 ± 22
2 1.14 19 1761 ± 22
2 0.86 19 1761 ± 22
2 -0.01 20 1762 ± 22

63
1 -0.891911 [1743] 0 0 0 1743 ± 22

1 0 6 1749 ± 22
1 0.97 7 1750 ± 22
1 1.03 7 1750 ± 22
2 -0.002 17 1760 ± 22
2 0.92 18 1761 ± 22
2 1.08 18 1761 ± 22
2 4 22 1765 ± 22
2 4.00 22 1765 ± 22
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Table 5.4.7: Rotational Energies of asymmetric prolate and oblate knots/links:63, 62
3,

83
7 and 819.

Knot/Link κ State(s) J w Erot (MeV) EJ (MeV)
63 -0.492805 0 0 0 1738 ± 10

1 0 6 1744 ± 10
1 0.85 7 1745 ± 10
1 1.15 7 1745 ± 10

f2(1750) 2 -0.06 17 1755 ± 10

2 0.56 18 1756 ± 10
2 1.44 19 1757 ± 10
2 4 22 1760 ± 10
2 4.06 22 1760 ± 10

62
3 -0.824825 [1751] 0 0 0 1751 ± 22

1 0 5 1756 ± 22
1 0.95 7 1758 ± 22
1 1.05 7 1758 ± 22
2 -0.01 16 1767 ± 22
2 0.86 18 1769 ± 22
2 1.14 18 1769 ± 22
2 4 23 1774 ± 22
2 4.01 23 1774 ± 22

83
7 0.291762 0 0 0 1796 ± 12

1 1.22 5 1801 ± 12
1 0.78 6 1801 ± 12
1 0 6 1802 ± 12
2 4.13 15 1811 ± 12
2 4 15 1811 ± 12
2 1.65 18 1813 ± 12
2 0.35 19 1815 ± 12

f2(1810) 2 -0.13 19 1815 ± 12

819 0.0235572 [1839] 0 0 0 1839 ± 23

1 1.32 5 1844 ± 23
1 0.68 6 1845 ± 23
1 0 6 1845 ± 23
2 4.29 15 1854 ± 23
2 4 15 1854 ± 23
2 1.97 17 1856 ± 23
2 0.03 19 1858 ± 23
2 -0.29 19 1858 ± 23
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Table 5.4.8: Rotational Energies of asymmetric prolate and oblate knots/links: 71,
820, 72 and 73.

Knot/Link κ State(s) J w Erot (MeV) EJ (MeV)
71 -0.126537 [1850] 0 0 0 1850 ± 23

1 0 4 1854 ± 23
1 0.72 5 1855 ± 23
1 1.28 6 1856 ± 23
2 -0.22 13 1863 ± 23
2 0.16 13 1863 ± 23
2 1.84 16 1866 ± 23
2 4 19 1869 ± 23
2 4.22 19 1869 ± 23

820 0.594679 0 0 0 1897 ± 12
1 0 5 1902 ± 12
1 0.89 5 1902 ± 12
1 1.11 6 1903 ± 12
2 4.04 14 1911 ± 12
2 4 14 1911 ± 12
2 1.34 16 1914 ± 12
2 0.66 17 1914 ± 12

f2(1910) 2 -0.04 18 1915 ± 12

72 -0.762128 [1925] 0 0 0 1925 ± 24

1 0 4 1929 ± 24
1 0.94 6 1931 ± 24
1 1.06 6 1931 ± 24
2 -0.01 11 1936 ± 24
2 0.81 13 1938 ± 24
2 1.19 14 1939 ± 24
2 4 20 1945 ± 24
2 4.01 20 1945 ± 24

73 -0.869755 [1926] 0 0 0 1926 ± 24

1 0 4 1930 ± 24
1 0.97 6 1932 ± 24
1 1.03 6 1932 ± 24
2 -0.003 11 1937 ± 24
2 0.90 13 1939 ± 24
2 1.10 14 1940 ± 24
2 4 20 1946 ± 24
2 4.00 20 1946 ± 24
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Table 5.4.9: Rotational Energies of asymmetric prolate knots/links: 72
1, 74, 82

15 and
72

2.

Knot/Link κ State(s) J w Erot (MeV) EJ (MeV)
72

1 -0.790578 0 0 0 1932 ± 12
1 0 4 1936 ± 12
1 0.94 6 1937 ± 12
1 1.06 6 1938 ± 12

f2(1950) 2 -0.01 12 1944 ± 12

2 0.83 14 1946 ± 12
2 1.17 14 1946 ± 12
2 4 20 1951 ± 12
2 4.01 20 1951 ± 12

74 -0.814452 [1936] 0 0 0 1936 ± 24

1 0 4 1940 ± 24
1 0.95 6 1942 ± 24
1 1.05 6 1942 ± 24
2 -0.01 13 1949 ± 24
2 0.85 14 1950 ± 24
2 1.15 14 1950 ± 24
2 4 19 1955 ± 24
2 4.01 19 1955 ± 24

82
15 -0.943571 [1937] 0 0 0 1937 ± 24

1 0 4 1941 ± 24
1 0.99 6 1943 ± 24
1 1.01 6 1943 ± 24
2 -0.0006 13 1950 ± 24
2 0.96 14 1951 ± 24
2 1.04 14 1951 ± 24
2 4 19 1956 ± 24
2 4.00 19 1956 ± 24

72
2 -0.735572 [1959] 0 0 0 1959 ± 24

1 0 4 1963 ± 24
1 0.93 6 1965 ± 24
1 1.07 6 1965 ± 24
2 -0.01 13 1972 ± 24
2 0.79 14 1973 ± 24
2 1.21 15 1974 ± 24
2 4 19 1978 ± 24
2 4.01 19 1978 ± 24
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Table 5.4.10: Rotational Energies of asymmetric prolate and oblate knots/links: 83
8,

72
4, 75 and 72

3.

Knot/Link κ State(s) J w Erot (MeV) EJ (MeV)
83

8 0.169353 [1959] 0 0 0 1959 ± 24

1 1.26 4 1963 ± 24
1 0.74 5 1964 ± 24
1 0 6 1965 ± 24
2 4.20 13 1972 ± 24
2 4 13 1972 ± 24
2 1.79 15 1974 ± 24
2 0.21 17 1976 ± 24
2 -0.20 17 1976 ± 24

72
4 -0.763933 [1960] 0 0 0 1960 ± 24

1 0 4 1964 ± 24
1 0.94 5 1965 ± 24
1 1.06 6 1966 ± 24
2 -0.01 13 1973 ± 24
2 0.81 14 1974 ± 24
2 1.19 14 1974 ± 24
2 4 18 1978 ± 24
2 4.01 18 1978 ± 24

75 -0.909101 0 0 0 1971 ± 11
f1(1970) 1 0 4 1975 ± 11

1 0.98 6 1977 ± 11
1 1.02 6 1977 ± 11
2 -0.002 12 1983 ± 11
2 0.93 13 1985 ± 11
2 1.07 14 1985 ± 11
2 4.00 20 1991 ± 11
2 4.00 20 1991 ± 11

f4(2050) 4 4.02 47 2018 ± 11

72
3 -0.592062 [1969] 0 0 0 1969 ± 24

1 0 4 1973 ± 24
1 0.89 5 1974 ± 24
1 1.11 5 1975 ± 24
2 -0.04 13 1982 ± 24
2 0.66 14 1983 ± 24
2 1.34 14 1983 ± 24
2 4 17 1986 ± 24
2 4.04 17 1986 ± 24
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Table 5.4.11: Rotational Energies of asymmetric prolate and oblate knots/links: 821,
77, 76 and 73

1.

Knot/Link κ State(s) J w Erot (MeV) EJ (MeV)
821 0.346069 [1974] 0 0 0 1974 ± 24

1 1.20 4 1978 ± 24
1 0.80 5 1979 ± 24
1 0 6 1980 ± 24
2 4.11 13 1987 ± 24
2 4 13 1987 ± 24
2 1.59 15 1989 ± 24
2 0.41 17 1991 ± 24
2 -0.11 17 1991 ± 24

77 -0.900145 [1976] 0 0 0 1976 ± 24

1 0 5 1981 ± 24
1 0.97 6 1982 ± 24
1 1.03 6 1982 ± 24
2 -0.002 14 1990 ± 24
2 0.92 15 1991 ± 24
2 1.08 15 1991 ± 24
2 4 18 1994 ± 24
2 4.00 18 1994 ± 24

76 0.183698 [1979] 0 0 0 1979 ± 24

1 1.26 5 1984 ± 24
1 0.74 5 1984 ± 24
1 0 6 1985 ± 24
2 4.19 14 1993 ± 24
2 4 14 1993 ± 24
2 1.77 16 1995 ± 24
2 0.23 17 1996 ± 24
2 -0.19 17 1996 ± 24

73
1 -0.83397 [1982] 0 0 0 1982 ± 24

1 0 4 1986 ± 24
1 0.96 6 1988 ± 24
1 1.04 6 1988 ± 24
2 -0.006 12 1994 ± 24
2 0.87 14 1996 ± 24
2 1.13 14 1996 ± 24
2 4 19 2001 ± 24
2 4.01 19 2001 ± 24
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Table 5.4.12: Rotational Energies of asymmetric prolate and oblate knots/links: 92
49,

72
5, 92

43 and 72
6.

Knot/Link κ State(s) J w Erot (MeV) EJ (MeV)
92

49 -0.354835 f0(2020) 0 0 0 1992 ± 16

1 0 4 1996 ± 16
1 0.81 5 1997 ± 16
1 1.19 6 1998 ± 16

f2(2000) 2 -0.11 12 2004 ± 16
2 0.42 12 2004 ± 16
2 1.58 14 2006 ± 16
2 4 17 2009 ± 16
2 4.11 17 2009 ± 16

72
5 0.187861 0 0 0 2001 ± 80

1 1.25 3 2004 ± 80
1 0.75 3 2004 ± 80
1 0 3 2004 ± 80
2 4.11 8 2009 ± 80
2 4 8 2009 ± 80
2 1.76 9 2010 ± 80
2 0.24 10 2011 ± 80

f2(2010) 2 -0.11 10 2011 ± 80

92
43 0.0132954 [1997] 0 0 0 1997 ± 24

1 1.33 4 2001 ± 24
1 0.67 5 2002 ± 24
1 0 6 2003 ± 24
2 4.30 12 2009 ± 24
2 4 13 2010 ± 24
2 1.98 15 2112 ± 24
2 0.018 17 2014 ± 24
2 -0.30 17 2014 ± 24

72
6 -0.566859 [1998] 0 0 0 1998 ± 24

1 0 5 2003 ± 24
1 0. 5 2003 ± 24
1 1.12 6 2004 ± 24
2 -0.04 14 2012 ± 24
2 0.64 14 2012 ± 24
2 1.36 15 2013 ± 24
2 4 17 2015 ± 24
2 4.04 17 2015 ± 24
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Table 5.4.13: Rotational Energies of asymmetric prolate and oblate knots/links: 84
3,

82
16, 946 and 92

54.

Knot/Link κ State(s) J w Erot (MeV) EJ (MeV)
84

3 -0.822918 [2000] 0 0 0 2000 ± 24

1 0 3 2003 ± 24
1 0.95 6 2006 ± 24
1 1.05 6 2006 ± 24
2 -0.006 10 2010 ± 24
2 0.86 12 2012 ± 24
2 1.14 13 2013 ± 24
2 4 20 2020 ± 24
2 4.01 20 2020 ± 24

82
16 -0.268727 0 0 0 2023 ± 8

1 0 4 2027 ± 8
1 0.78 5 2029 ± 8
1 1.22 5 2028 ± 8
2 -0.14 13 2036 ± 8
2 0.33 13 2036 ± 8
2 1.67 14 2037 ± 8
2 4 16 2039 ± 8
2 4.14 16 2039 ± 8

f3(2050) 3 -0.42 25 2048 ± 8

946 -0.619507 f0(2060) 0 0 0 2055 ± 25

1 0 4 2059 ± 25
1 0.89 5 2060 ± 25
1 1.11 5 2060 ± 25
2 -0.03 11 2066 ± 25
2 0.68 12 2067 ± 25
2 1.32 13 2068 ± 25
2 4 16 2071 ± 25
2 4.03 16 2071 ± 25

92
54 0.120131 0 0 0 2141 ± 11

1 1.28 4 2145 ± 11
1 0.72 4 2145 ± 11
1 0 5 2146 ± 11
2 4.23 11 2152 ± 11
2 4 11 2152 ± 11
2 1.85 13 2154 ± 11
2 0.15 15 2156 ± 11

f2(2150) 2 -0.23 15 2156 ± 11
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Table 5.4.14: Rotational Energies of asymmetric prolate and oblate knots/links: 81,
93

19, 84
1 and 91.

Knot/Link κ State(s) J w Erot (MeV) EJ (MeV)
81 0.55492 0 0 0 2127 ± 12

1 1.13 4 2131 ± 12
1 0.87 4 2131 ± 12
1 0 5 2132 ± 12
2 4.05 11 2138 ± 12
2 4 11 2138 ± 12
2 1.38 13 2140 ± 12
2 0.62 14 2141 ± 12

f2(2140) 2 -0.05 14 2141 ± 12

93
19 -0.521485 f0(2200) 0 0 0 2189 ± 13

1 0 4 2193 ± 13
1 0.86 4 2193 ± 13
1 1.14 5 2194 ± 13
2 -0.05 11 2200 ± 13
2 0.59 12 2201 ± 13
2 1.41 12 2201 ± 13
2 4 14 2203 ± 13
2 4.05 14 2203 ± 13

84
1 -0.591888 0 0 0 2287 ± 60

1 0 3 2291 ± 60
1 0.89 4 2292 ± 60
1 1.11 4 2292 ± 60
2 -0.04 10 2297 ± 60
2 0.66 11 2298 ± 60
2 1.34 12 2299 ± 60
2 4 14 2301 ± 60
2 4.04 14 2301 ± 60

f4(2300) 4 -0.52 33 2320 ± 60

91 -0.480279 0 0 0 2289 ± 28
1 0 3 2292 ± 28
1 0.85 4 2292 ± 28
1 1.15 4 2293 ± 28

f2(2300) 2 -0.07 8 2297 ± 28

2 0.55 9 2298 ± 28
2 1.45 10 2299 ± 28
2 4 13 2301 ± 28
2 4.07 13 2302 ± 28

f3(2300) 3 4 21 2310 ± 28
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Table 5.4.15: Rotational Energies of asymmetric prolate knots/links: 93
20, 83

4 and 94.

Knot/Link κ State(s) J w Erot (MeV) EJ (MeV)
93

20 -0.361546 0 0 0 2306 ± 60
f1(2310) 1 0 4 2310 ± 60

1 0.81 4 2310 ± 60
1 1.19 5 2311 ± 60
2 -0.11 11 2317 ± 60
2 0.43 11 2317 ± 60
2 1.57 12 2318 ± 60
2 4 14 2320 ± 60
2 4.11 14 2320 ± 60

83
4 -0.104949 f0(2330) 0 0 0 2332 ± 12

1 0 3 2335 ± 12
1 0.71 4 2336 ± 12
1 1.29 4 2336 ± 12

f2(2340) 2 -0.24 9 2341 ± 12
2 0.14 10 2342 ± 12
2 1.86 11 2343 ± 12
2 4 13 2345 ± 12
2 4.24 13 2345 ± 12

94 -0.860882 0 0 0 2406 ± 50
1 0 3 2409 ± 50
1 0.96 4 2410 ± 50
1 1.04 4 2410 ± 50
2 -0.004 8 2415 ± 50
2 0.89 9 2415 ± 50
2 1.11 10 2416 ± 50
2 4 12 2419 ± 50
2 4.00 12 2419 ± 50

f6(2510) 6 -0.26 59 2465 ± 50
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Table 5.4.16: Ray’s Asymmetry parameter, κ, for knots and links

knot/link κ knot/link κ knot/link κ
22

1 -1 85 -0.74254 83
4 -0.10495

31 0.99934 86 -0.69770 83
5 -0.17866

41 -0.99760 87 -0.79458 83
6 -0.50713

42
1 -0.11570 88 -0.87001 83

7 0.29176
51 -0.36230 89 -0.47946 83

8 0.16935
52 -0.67832 810 -0.18616 83

9 -0.61604
52

1 -0.06115 811 -0.18447 83
10 -0.83702

61 -0.56675 812 -0.91929 84
1 -0.59189

62 -0.58290 813 -0.88039 84
2 0.15205

63 -0.49281 814 -0.63535 84
3 -0.82292

62
1 0.02488 815 0.19420 91 -0.48028

62
2 -0.99873 816 -0.07157 92 -0.28559

62
3 -0.82483 817 -0.78187 93 -0.57386

63
1 -0.89191 818 0.87697 94 -0.86089

63
2 -0.93933 819 0.02356 95 -0.09275

63
3 -0.73552 820 0.59468 96 -0.49863

71 -0.12654 821 0.34607 97 -0.91853
72 -0.76213 82

1 0.86957 98 -0.32943
73 -0.86976 82

2 -0.93844 99 -0.82345
74 -0.81445 82

3 -0.30483 910 0.16125
75 -0.90910 82

4 -0.56401 911 -0.67311
76 0.18370 82

5 -0.80332 912 -0.95588
77 -0.90014 82

6 -0.50713 913 -0.41682
72

1 -0.79058 82
7 -0.70889 914 -0.77489

72
2 -0.73557 82

8 -0.21279 915 -0.70289
72

3 -0.59206 82
9 -0.08055 916 -0.93549

72
4 -0.76393 82

10 -0.90815 917 -0.01058
72

5 0.18786 82
11 -0.89167 918 0.25760

72
6 -0.56685 82

12 -0.97396 919 -0.55263
72

7 0.12973 82
13 -0.74926 920 -0.57267

72
8 0.81974 82

14 0.91365 921 -0.87253
73

1 -0.83397 82
15 -0.94357 922 -0.68598

81 0.55492 82
16 -0.26873 923 -0.70768

82 -0.22096 83
1 -0.56167 924 -0.90788

83 -0.95159 83
2 -0.82812 925 -0.55097

84 -0.44435 83
3 -0.61555 926 -0.92977
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Table 5.4.17: Ray’s Asymmetry parameter, κ, for knots and links (continued)

knot/link κ knot/link κ knot/link κ
927 0.67353 92

14 -0.13991 92
50 -0.04067

928 -0.86412 92
15 -0.41981 92

51 0.04437
929 -0.42098 92

16 -0.28730 92
52 -0.33148

930 0.74076 92
17 -0.09530 92

53 -0.66014
931 -0.32014 92

18 -0.53738 92
54 0.12013

932 -0.88272 92
19 -0.38657 92

55 0.52853
933 0.54535 92

20 -0.85746 92
56 -0.59524

934 -0.03530 92
21 -0.76536 92

57 -0.85628
935 0.80730 92

22 -0.85416 92
58 0.59533

936 -0.47180 92
23 -0.54695 92

59 -0.40847
937 0.18740 92

24 0.14303 92
60 -0.77067

938 -0.34157 92
25 -0.02367 92

61 -0.40945
939 -0.14130 92

26 -0.47284 93
1 -0.32886

940 -0.98910 92
27 -0.86520 93

2 -0.88428
941 -0.79778 92

28 -0.97037 93
3 -0.87086

942 -0.78263 92
29 -0.61928 93

4 0.06788
943 -0.43643 92

30 0.61483 93
5 -0.63883

944 0.07417 92
31 -0.68762 93

6 -0.19745
945 -0.84192 92

32 -0.82369 93
7 -0.78247

946 -0.61951 92
33 -0.62500 93

8 -0.94881
947 -0.75642 92

34 -0.53180 93
9 -0.37496

948 0.19643 92
35 -0.60789 93

10 -0.53638
949 -0.68391 92

36 -0.17180 93
11 0.71309

92
1 -0.42476 92

37 -0.13063 93
12 0.13210

92
2 -0.79040 92

38 -0.60899 93
13 -0.66384

92
3 -0.06142 92

39 -0.68668 93
14 -0.62307

92
4 -0.87387 92

40 -0.55968 93
15 0.89491

92
5 -0.67751 92

41 0.15076 93
16 -0.03241

92
6 -0.55077 92

42 0.16344 93
17 -0.76086

92
7 -0.76855 92

43 0.01330 93
18 0.13750

92
8 -0.90686 92

44 -0.56475 93
19 -0.52149

92
9 -0.63351 92

45 -0.75428 93
20 -0.36155

92
10 -0.04110 92

46 -0.89634 93
21 0.21866

92
11 -0.07023 92

47 -0.40419 94
1 -0.85286

92
12 -0.10581 92

48 -0.17761
92

13 -0.27755 92
49 -0.35484
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CHAPTER VI

CONCLUSIONS

6.1 Summary

In Chapter II, we established a hypothesis where glueball candidates are modeled

as tightly knotted or linked chromoelectric flux tubes. A specific knot or link is iden-

tified with a glueball ground state, and the excited states are modeled as rotational

excitations. We first updated the model with the newest data available from the

Particle Data Group, which included a few new f states as well as some particle mass

changes. With the additional states and mass changes, the model still produces a

very good fit. The reduced χ2 for the fit from Chapter II which includes all available

particles is χ2 = 1.0, compared to χ2 = 0.84 in the original model.

In order to estimate the rotational energy in the model, we assumed the knots and

links had an approximate spherical symmetry. We used the relationship between the

energy of a spherical top and all available particle mass data to determine the excited

energy spectrum. The energy spectrum was based on Equation (2.6.2), where the

energy depends only on the value of J and a fitted parameter δ. The fitted parameter

δ is the spherical analog of the rotational constants A, B and C; with spherical

symmetry only one rotational constant value is needed. Consequently, the rotational

energy prediction calculated for each value of J is identical, i.e. if δ = 5 MeV for

all J = 1 energy levels the rotational energy is 5 MeV. Based on the assumption of
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spherical symmetry for all of the knots/links in the model, we generated a predicted

spectrum of glueball states.

However, when we calculated the moment of inertia tensor of knots/links identified

with glueball candidates to determine their symmetry, we found that only one of the

candidates (link 63
2, the Borromean Rings) is in fact a spherical rigid rotor. From this

result, we decided to expand the model to include the specific symmetry (symmetric

oblate, symmetric prolate, or asymmetric) of each knot or link used and calculate a

new rotational energy spectrum.

In chapter III we performed exact calculations of the moment of inertia for a few

specific link geometries, specifically: the Hopf link, the Hopf link where one loop

carries double flux, link 22
1#22

1, a link with 4-elements, a link with 5-elements, a link

with 6-elements, a link with 4-tori (3 tori going through the center of the 4th torus)

and a link with 5-tori (4 tori going through the center of the 5th torus). The chapter

detailed those calculations for several hollow and solid link configurations, and then

generalized the solution for a chain with n elements. The inertia tensor results are

expressed in terms of the radius of the flux tube, a. Therefore, in order to calculate

a numerical value for the principal moments of inertia, we needed to determine the

radius of the flux tube. In Chapter IV, we used the Bag Model as a guide to calculate

the radius. We also introduced the rigid rotor classification scheme as well as the

rotational energy relationships based on symmetry properties.

In Chapter V, we drew on the results from Chapters III and IV which allowed us to

calculate rotational energies for the knots and links used in the glueball model detailed
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in Chapter II. For each knot or link, we calculated the moment of inertia tensor either

from its geometry or from a set of vertex coordinate points. From the eigenvalues of

the inertia tensor, we were able to determine specifically the symmetry of each knot or

link. We used κ, known as Ray’s asymmetry parameter, to classify the knots and links

as a prolate symmetric top, an oblate symmetric top or an asymmetric top. Once

classified, we calculated and tabulated all rotational energies. This generalization

introduced a number of energy level splittings which created an excitation energy

spectrum much denser and more complex than that presented in Chapter II.

6.2 Model Predictions

The model makes a number of predictions that could be confirmed by experiment.

We predict more ground states than are currently observed, each of which would be

associated with a knot or link. Some of the particular predictions from the model are

summarized in Table 6.2.1.

Table 6.2.1: Some ground state f0 particle predictions from the Model.

Knot Mass (MeV) Width (MeV)
42

1 1208 ≥ 100
22

1#22
1 1215 185

41 1271 24
51 1420 55
52

1 1502 ≥ 100
63

3 1543 134
62

1 1615 99
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In addition to new ground states, the results of Chapter V predict additional

excited levels. When the assumption of spherical symmetry is relaxed, we find the

splitting of previously degenerate energy levels. For example, if we compare the

predictions for the knot 52 in Chapter II with those calculated in Table 5.4.5 we find

two additional J = 1 levels and four additional J = 2 levels. Another consequence

of this richer spectrum is that it is easier to match excited energy levels with their

identified knot or link. Using the example of knot 52 again, the model identifies a

ground state and two excited levels (a J = 1 and a J = 2) with this knot. In Chapter

II, the rotational energy was based on the spherically symmetric top which predicts

one J = 1 level and one J = 2 level. However, after determining that knot 52 is

asymmetric, we now predict three J = 1 levels and five J = 2 levels. This richer

spectrum allows for a better fit with the data, in addition to predicting many more

excited states. This comparison is summarized in Table 5.4.1.

We predict a very rich glueball spectrum of ground states, as well as excited levels.

The rotational energy spectrum contains many levels close together in energy which

may be difficult to distinguish, however many predictions are within experimental

reach. Hopefully these predictions can be tested.

6.3 Further Research

We have consulted with Dr. Jason Cantarella of the University of Georgia about

computing a set of vertex coordinate points for the link 22
1#22

1. Since we have an exact

moment of inertia tensor calculation for this link, we could do a comparison with the
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set of vertex coordinate points to estimate their error. With this error estimate, we

could better evaluate the error associated with rotational energy calculations based

on a set of vertex coordinate points.

Additionally, one could explore the possibility of chiral partners for the states listed

in the table. We looked at the η states, which are similar to f states (JPC = 0++) but

have negative parity conjugation, i.e. JPC = 0−+. The chirality of the knot or link

associated with a given f state was examined to determine if there should be an η

state associated with the f state. As presented in the introduction, if a knot changes

to a left handed or right handed knot under a mirror reflection, it is considered chiral.

If the knot remains unchanged under mirror reflection it is considered to be achiral.

The symmetry transformation associated with chirality is parity. An achiral knot only

allows a positive parity transformation, whereas a chiral knot yields both a positive

and a negative parity transformation. Therefore, in principle for every chiral knot

associated with an f state there should be another state with negative parity: the η

states. Therefore, the model could be expanded to include chiral partners.
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