
 

SYSTEMS ENGINEERING DECISION PROCESS: OPTIONS ARE AVAILABLE 

By 

Steven Elliott Van Dyk 

 

Dissertation 

Submitted to the Faculty of the 

Graduate School of Vanderbilt University 

in partial fulfillment of the requirements 

for the degree of 

DOCTOR OF PHILOSOPHY 

in 

Interdisciplinary Studies: Management of Technology 

May, 2009 

Nashville, Tennessee 

 

Approved: 

Professor David M. Dilts, PhD MBA (Chair) 

Professor Sankaran Mahadevan, PhD 

Professor Kenneth R. Pence, PhD 

William R. Mahaffey, PhD



 ii

 

 

 

 

 

 

 

 

To Alfred Loomis who said in 1939 
 

“I appreciated then for the very first time the difference between the world of 
business, where a 20 percent decrease in cost is a major triumph, and the world of 
science, where nothing seems worth doing unless it promises an improvement by 
a factor of at least 10.” (Conant 2002) 

 



 iii

ACKNOWLEDGEMENTS 

 

This research could not have been completed without the support of my advisor, Dr. 

David M. Dilts, who provided many insights and recommendations to foster this work.  He 

pushed me to look at the world from a different perspective and always encouraged me during 

the many revisions. 

Special thanks to my committee also.  Dr. Sankaran Mahadevan made me think about the 

risk associated with any decision and how important it was to include it in the decision making 

process.  Dr. Bill Mahaffey encouraged me, taught me systems thinking from a wealth of real-

world experience.  I would not even be in a position to complete this work without him and his 

guidance.  Dr. Ken Pence was an inspiration to me and helped me to communicate my ideas so 

they were understandable and concise. 

No one has been more important to me in the pursuit of this work than the members of 

my family.  I would like to thank my mother, Margaret Van Dyk, whose love, guidance, and 

belief in me has sustained me in whatever I have pursued.  Most importantly, I wish to thank my 

loving and supportive wife, Elisabeth, for her never ending support and encouragement.  She 

never let me give up and was always there to listen and provide a heartening word.  Finally, I 

would like to thank Strategic Systems Programs, Department of the Navy, for giving me the time 

to complete this research. 

 

 

 

 



 

 iv

TABLE OF CONTENTS 

 

                                                                                                                                        Page 

DEDICATION .................................................................................................................... ii 

ACKNOWLEDGEMENTS ............................................................................................... iii 

LIST OF TABLES ............................................................................................................. vi 

LIST OF FIGURES ......................................................................................................... viii 

Chapter 

I. BACKGROUND ...........................................................................................................1 

 1.1 Three Primary System Objectives ...........................................................................3 
 1.2 System Attributes .....................................................................................................6 
 1.3 Assumptions of Systems Engineering .....................................................................8 
 1.4 Real Options Analysis and Structure of the Dissertation .......................................11 
 1.5 Contribution and Schedule of the Dissertation ......................................................13 
 
II. REAL OPTIONS ANALYSIS ....................................................................................15 

 2.1 Real Options...........................................................................................................17 
 2.2 Real Options and Systems Engineering .................................................................19 
 2.3 Variable Mapping: From Financial to SE domains ...............................................21 
 2.4 Net Present Value ..................................................................................................26 
 2.5 Deferral Option ......................................................................................................28 
 2.6 Compound Options – Sequential Options..............................................................38 
 2.7 Sensitivity Analysis ...............................................................................................46 
 2.8 Summary ................................................................................................................52 
 
III. TECHNOLOGY OPTIONS ANALYSIS....................................................................56 

 3.1 Technology Options Analysis ................................................................................58 
 3.2 Sensitivity Analysis ...............................................................................................67 
 3.3 Summary ................................................................................................................83 
 
IV. UNIFIED ALGORITHM ANALYSIS ........................................................................87 

 4.1 Technology Options and Real Options  
Analysis Combined ................................................................................................88 

 4.2 Real-life Example ..................................................................................................90 



 

 v

  4.2.1 Technology Options Analysis .......................................................................91 
  4.2.2 Net Present Value Analysis ..........................................................................99 
  4.2.3 Real Options Analysis.................................................................................100 
  4.2.4 The Technology Selection Decision 
      at the Cross-over Point ................................................................................106 
 4.3 Sensitivity Analysis .............................................................................................107 
  4.3.1 Technology Options Analysis .....................................................................107 
  4.3.2 Net Present Values Analysis .......................................................................112 
  4.3.3 Real Option Analysis ..................................................................................113 
 4.4 Unified Algorithm ................................................................................................118 
 4.5 Summary ..............................................................................................................123  
 
V. SYNOPSIS AND CONCLUSIONS ..........................................................................126 

 5.1 Sensitivity Analysis of the Unified Algorithm ....................................................128 
 5.2 Research Contributions ........................................................................................129 
 5.3 Limitations ...........................................................................................................130 
 5.4 Future Research ...................................................................................................131 
 5.5 Summary ..............................................................................................................132 
 
Appendix  

A. OPTION VALUATION OR DERIVATIVES ..........................................................133 

B DEFERRAL OPTION VALUE  
EXAMPLE CALCULATIONS .................................................................................138 

 

 B.1 Example where E=$1,600K .................................................................................138 
 B.2 Example where E=$2,400K .................................................................................139 
 B.3 Example with High Volatility and E=$1,600K ...................................................140 
 B.4 Example with Low Volatility and E=$1,600K ....................................................141 
 B.5 Example with High Volatility and E=$2,400K ...................................................142 
 B.6 Example with Low Volatility and E=$2,400K ....................................................143 

B7 Compound Options -  
Sequential Option Example Calculations ............................................................144 

 

REFERENCES ................................................................................................................150  

     



 

 vi

LIST OF TABLES 

 

Table                                                                                                                               Page 

2-1  Mapping Call Option Variables into a Capital  
Investment Opportunity and a Systems 
Engineering Project ................................................................................................23 

 
2-2  Net Present Value Variables and Meaning ............................................................26 

2-3  Deferral Option Variables ......................................................................................29 

2-4  Deferral Option Results .........................................................................................38 

2-5  Compound Option Variables .................................................................................39 

2-6  Possible Aircraft Values (S)...................................................................................41 

2-7  Compound Option Present Values .........................................................................44 

3-1  Technology Option Analysis Variables 
(with Definitions and Meanings) ...........................................................................66 

 
3-2  New Cross-over Points Base on Emerging  
  Technology Performance Information ...................................................................70 
 
3-3  New Projected Rate of Performance on Emerging  

Technology Performance Information ...................................................................71 
 
3-4  New Cross-over Points Based on Emerging  

Technology Performance Information ...................................................................75 
 
3-5  New Predicted Performance Based on Emerging  

Technology Performance Information ...................................................................75 
 
3-6  New Cross-over Points Based on Emerging  

Technology Performance Information ...................................................................78 
 
3-7  New Cross-over Points Based on  

New Information at Time 2 ....................................................................................81 
 
3-8  Updated rp and τcop based on New Information  

at Time 2 Compared to Time 5 ..............................................................................82 
 



 

 vii

4-1  Projected Read Times ............................................................................................93 
 
4-2  Projected Delta Performance .................................................................................95 
 
4-3  Sample Problem Quantities and Costs ...................................................................96 
 
4-4  Computation of Variable Values ...........................................................................98 
 
4-5  Compound Option Variables ...............................................................................101 
 
4-6  Possible Project Values (S) ..................................................................................102 
 
4-7  Present Values for Case 1 ....................................................................................104 
 
4-8  Present Values for Case 2 ....................................................................................105 
 
4-9  Projected Read Times ..........................................................................................108 
 
4-10 Changes in Cross-over and Delta Performance ...................................................111 
 
4-11 Calculated Cross-over Points ...............................................................................112 
 
4-12 Present Values for Doubling Every  

12 Months for Case 1 ...........................................................................................114 
 
4-13 Present Values for Doubling Every 
  12 Months for Case 2 ...........................................................................................115 
 
4-14 Present Values for Doubling Every 
  24 Months for Case 1 ...........................................................................................116 
 
4-15 Present Values for Doubling Every 
  24 Months for Case 2 ...........................................................................................117 
 
4-16 Net Option Value .................................................................................................118 
 
4-17 NOV Decision Table............................................................................................121 
 
B-1 Possible Aircraft Values (S).................................................................................145 
 
B-2 Systems Engineering Project’s Value with  

Flexibility using Compound Option Analysis .....................................................148 
 

 

 



 

 viii

LIST OF FIGURES 

 

Figure                                                                                                                              Page 

 
1-1  Commitment of life-cycle cost .................................................................................2 

2-1  The Sensitivity of Option Value to Variations in E ...............................................47 

2-2  The Sensitivity of Option Value to Variations  
  in the Risk Free Rate of Return..............................................................................49 
 
2-3  The Sensitivity of Option Value to Variations in S ...............................................50 

2-4  The Sensitivity of Option Value to a Constant E/S Ratio ......................................51 
 
3-1  Cross-over Point that Defines Optimum Time  
  to Make the Decision .............................................................................................60 
 
3-2  Identified Cross-over Point for the Time  
  to Make the Decision .............................................................................................62 
 
3-3  Performance Difference Between New Technology 
  and Existing Technology .......................................................................................63 
 
3-4  Comparison of Existing Technology and  
  New Technology Alternative .................................................................................64 
 
3-5  High Rate of Performance Change ........................................................................69 
 
3-6  Medium Rate of Performance Change ...................................................................69 
 
3-7  Low Rate of Performance Change .........................................................................70 
 
3-8  High Rate of Performance Change ........................................................................73 
 
3-9  Medium Rate of Performance Change ...................................................................73 
 
3-10 Low Rate of Performance Change .........................................................................74 
 
3-11 Performance Gain of 100% ....................................................................................77 
 
3-12 Performance Gain of 75% ......................................................................................77 
 



 

 ix

3-13 Performance Gain of 50% ......................................................................................78 
 
3-14 100% Increase in Performance  

with New Information at Time 2 ...........................................................................80 
 
3-15 75% Increase in Performance  

with New Information at Time 2 ...........................................................................80 
 
3-16 50% Increase in Performance  

with New Information at Time 2 ...........................................................................81 
 
3-17 50% Increase in Performance  

with New Information at Time 5 ...........................................................................82 
 
4-1  Cross-over Point for Projected Read Times ...........................................................93 

4-2  Cross-over Points for Various Performance  

Trajectories (1/2) ..................................................................................................108 

4-3  Cross-over Points for Various Performance  
Trajectories (2/2) ..................................................................................................109 

 
4-4  Process Flow Diagram of Unified Algorithm ......................................................122 
 
 



 

 1

CHAPTER I 

  

BACKGROUND 

 

The objective of my research is to investigate and develop tools and techniques such that 

systems engineering decision makers can make more effective financial and technology choice 

decisions.   Using ideas from the financial domain, particularly that of Real Options Analysis 

(ROA), this research shows how this advanced cost evaluation tool can be applied in a systems 

engineering context.  Next, the dissertation demonstrates how ROA ideas can be extended to 

technology alternatives leading to the development of a new advanced performance evaluation 

model called Technology Options Analysis (TOA).  Subsequently, these two views (performance 

and cost) are merged into a unified algorithm to sequentially evaluate cost and performance 

alternatives so that a decision maker can gain an overall view of the value of delaying a 

technology decision until the most appropriate times.  It is important to note that this research 

varies two (performance, cost) of the three (performance, cost, and schedule) primary objectives 

of a system; modifying the third is beyond the scope of this dissertation.  These techniques 

provide system engineering decision makers with significantly more and, most importantly, new 

information upon which to base their decisions when making technology choices.   

It is not uncommon for large complex systems to be expected to operate for decades and 

take years to design, develop and test before they enter the market place.  Consider, for example, 

the Boeing 787, Airbus A380, or the Joint-Strike-Fighter (JSF), all of which are requiring 

billions of dollars and decades of development work (Steidle 1997; Struth 2000; 2001; Mecham 

2005; Flight Level 350 2007).  These are complicated systems that utilize and integrate 
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Systems Engineering (SE) is “An interdisciplinary approach and means to enable the 

realization of successful systems” (Sage and Rouse 1999).  Systems Engineering is the 

integrative aspect of a system; it is the “glue” that assures that the diverse elements of a system 

can “bind” together to create a usable solution to the customer requirements over the total life of 

the project (Sabbagh 1996; Blanchard and Fabrycky 1998; Sage and Rouse 1999; Buede 2000; 

Fleeman 2001; Kerzner 2001; Blanchard 2004).  Customer requirements, or originating 

specifications, are inputs to the Systems Engineering process and are normally categorized into 

three primary system objectives: schedule, performance, and cost. 

 

1.1  Three Primary System Objectives 

Schedule objectives are, simply put; the date the customer wants or needs the system to 

be operational.  These objectives can be expressed in increments of capability or as the entire 

capability by a certain timeframe(s).  For example, the Joint Strike Fighter has several schedule 

objectives.  The 2001 System Design and Development contract required the delivery of 22 

development evaluation aircraft in 2006 (Steidle 1997; Struth 2000).  Other contract awards have 

required delivery of the first combat evaluation aircraft in 2008 and obtainment of initial 

operational capability (IOC) in 2011 (Steidle 1997; Struth 2000).  For the Boeing 777, the 

schedule objective was the delivery of the first aircraft to United Airlines in accordance with 

their contract (Sabbagh 1996).  This schedule objective was negotiated before the aircraft had 

been designed.  Meeting schedule objectives can be critical to the acceptance of the system and 

customer satisfaction, as can be seen with the delays in delivering the Airbus A380 (Michaels 

2006; Wall Street Journal 2006).  The schedule objective gives the systems engineer the when.  

The next objective, the performance objective, defines what the system must do. 
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Performance objectives consist of desires about the operation of the system, such as; 

speed - how fast or slow, range - how far, payload - how large a load, accuracy - how close to a 

target, crew size - how many people to operate, reliability – how dependable, availability – how 

often, etc.  Basically performance objectives are how the system is expected to operate in normal 

conditions. Such objectives are defined by a range of values usually with the minimum value 

designated as the threshold and the desired value described as the goal (Chambers 1986; Lake 

1992; Sabbagh 1996; Steidle 1997; Blanchard and Fabrycky 1998; Parth 1998; Buede 2000; 

Struth 2000; Blanchard 2004).  Nothing less than the threshold is acceptable and anything more 

than the goal is not necessary.  For example, the Boeing 777 had several performance objectives: 

the range goal was 5,500 nm with a threshold of 3,500 nm when fully loaded and the empty 

plane weight had a goal of 293,000 lbs and a threshold - 298,000 lbs (Sabbagh 1996).  Another 

example would be the FAA Wide-Area Augmentation System objective that during a precision 

landing it must warn a pilot of potentially hazardous misleading information within a goal of 5.2 

seconds and a threshold of 6 seconds with a reliability of one error in ten million landings (GAO 

2000).   Example objectives for the Air Force’s version of the Joint Strike Fighter are a combat 

threshold range of 450 miles with a goal of 600 miles and a maximum cruising speed threshold 

comparable to the F-16 (approximately mach 2 at altitude) (JIRD 1995).  By having a range of 

values for the performance parameters of a system, various technology alternatives can be 

explored and evaluated relative to the cost objectives. 

Cost objectives are the customer’s acceptable range of expenditure on development, 

production, operations, and maintenance for the system.  These objectives may include non-

reoccurring and reoccurring expenses or simply a single cost broken out for each cost category 

(Chambers 1986; Frosberg and Mooz 1992; Lake 1992; Blanchard and Fabrycky 1998; Parth 
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1998; Sage and Rouse 1999; Struth 2000; Kerzner 2001; Rouse 2003; Blanchard 2004).  They 

may be expressed on an annual basis, as a total life cycle cost or as a purchase cost (Chambers 

1986; Frosberg and Mooz 1992; Lake 1992; Blanchard and Fabrycky 1998; Parth 1998; Sage 

and Rouse 1999; Struth 2000; Kerzner 2001; Rouse 2003; Blanchard 2004).  Cost objectives are 

normally expressed in current year dollars and are articulated as thresholds and goals (Chambers 

1986; Frosberg and Mooz 1992; Lake 1992; Blanchard and Fabrycky 1998; Parth 1998; Sage 

and Rouse 1999; Struth 2000; Kerzner 2001; Rouse 2003; Blanchard 2004).  Unlike performance 

thresholds and goals, a cost threshold is the highest cost the customer is willing to pay and the 

goal is the desired cost.  For example the threshold cost for a new Boeing 777 was approximately 

$210 million with a goal of $195 million (Sabbagh 1996).  With the Joint Strike Fighter program, 

the cost focus of the program was affordability at all levels; development cost, production cost, 

and cost of ownership.  In this program, all requirement trade-offs were evaluated against not 

only their operational value but also using cost as a parameter in design using a model referred to 

as “cost as an independent variable” (CAIV) (Steidle 1997; Struth 2000; Brady 2001).  The goal 

for the Air Force’s version was a unit production cost of less than $28M with a threshold of 

$35M in government fiscal year 1994 dollars (Steidle 1997; Struth 2000).   

To complete an overall evaluation of the system, a systems engineer needs to assess how 

well each technological alternative performs against the various objectives of schedule, 

performance, and cost.  This is accomplished by assigning attributes to each alternative for each 

of the system objectives. 
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1.2  System Attributes 

The method utilized to determine the schedule, performance, and cost attributes is critical 

to the analysis that leads to selection of the alternatives that best meets the systems engineer’s 

goal of providing the customer with a system that performs the tasks desired, at a fair price, and 

delivered in the time frame requested (Blanchard and Fabrycky 1998; Sage and Rouse 1999; 

Buede 2000; Kerzner 2001; Blanchard 2004).  To do this, System Engineering (SE) takes a 

customer’s originating specifications and, by using a variety of processes, simulations, and 

models, conducts trade studies that output “optimal” system solutions (Buede 2000).  This 

“optimal” solution or “best value” alternative is chosen from the group of potential alternatives.  

The selection is based on weighting the schedule, performance, and cost attributes associated 

with each technology, such that the solution is the choice that achieves the overall objectives in 

the most effective way.  

The schedule attribute for an alternative is the probability that the technologies utilized 

by the alternative will be available when needed.  Because a significant amount of research has 

been completed in schedule alternatives (Frosberg and Mooz 1992; Blanchard and Fabrycky 

1998; Rochecouste 1999; Buede 2000; Kerzner 2001; Nicholas and Nicholas 2001; Rouse 2003; 

Allen and Sosa 2004; Cleland 2004; Roberts 2004; Rubenstein 2004), for the purpose of my 

dissertation, these will be considered as fixed or given.  

To determine if the alternative performs the desired tasks, performance characteristics for 

an alternative are derived based on technical evaluations using one or more of the following 

techniques: similarity, testing, or modeling and simulation (Blanchard and Fabrycky 1998; Sage 

and Rouse 1999; Buede 2000; Kerzner 2001; Blanchard 2004).  These technical evaluations 

provide information on potential solutions.  Each alternative’s performance characteristics are 
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compared to the customer-weighted performance objectives to investigate how well the 

alternative performs the desired task.  The output of this process is a single, aggregate 

performance value for each alternative.  From a performance perspective, delaying the 

technology choice decision until the last possible point in time maximizes the information 

available and, as decision makers prefer more to less information (Eisenhardt 1989), such a delay 

can be valuable in making the best technology choice.   

In order to compare the cost and financial impact of the various alternatives, a technique 

to summarize the monetary cost/value of each alternative is essential.  The most common theory 

used in SE to evaluate cost is the time value of money (Blanchard and Fabrycky 1998; Sage and 

Rouse 1999; Buede 2000; Kerzner 2001; Barringer 2003; Blanchard 2004).  Discounted cash 

flow (DCF) analysis is used to bring the total life cycle costs for each alternative to its current net 

present value (NPV).  Each alternative’s NPV is then evaluated, where alternatives with a 

negative NPV may be removed from the potential solution space, and the alternative with the 

highest NPV is selected.  

This cost summarization approach works well if the costs drivers associated with each 

alternative are well understood and characterized (Hayes and Abernathy 1980).  Consider the 

case when one alternative’s cost is dependent on a highly variable process and a second 

alternative’s cost is well known and stable.  This might be the case when one technology solution 

is state of the art and the other is mature, for example, the use of composite technology in aircraft 

frames versus the use of aluminum.  It is well known that normally highly variable cost driver 

stabilize once the new technology is more mature or a dominant design occurs (Christensen 

1993; Christensen and Bower 1996; Christensen, Suarez et al. 1998; Srinivasan, Lilien et al. 

2006), however, the NPV techniques do not have a mechanism for incorporating technology 
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variability or for valuing delaying a decision until more information is available.  Estimating 

when the variable technology will be available for use during the time frame of the project must 

be subjectively determined with little evidence.  For example, while the technology experts 

believed that technology for the JSF would be available, the United States General Accounting 

Office (GAO) reported in 2001 that the Joint Strike Fighter cost objective would not be achieved 

because technologies critical to meeting this objective where not available at the proper maturity 

level (GAO 2001).  There is also a difficulty on the opposite side of the technology curve: some 

alternatives may consist of technologies that are in the decline phase of the technology life cycle 

such that they will no longer be manufactured when the project starts production and the cost of 

reconstituting them is not captured.  For example, a system designed around a Pentium IV 

processor with a 5 ¼” floppy drive has such legacy issues. 

The NPV “optimal” solution process’s basic theoretical premise is that it is possible and 

necessary to forecast the future because the complexity of the system requires technology 

choices be selected or “locked down” as soon as possible (Buede 2000).  Such a premise holds if 

technology and cost forecasting is accurate and if no disruptive technologies (Christensen and 

Bower 1996) or radical innovation occur (Henderson and Clark 1990; Fine 1998).  However, 

because different technologies mature at different rates (Fine 1998), if a technology choice is 

locked down too early, potential future opportunities will be missed; if it is locked down too late 

performance, cost, and schedule may be negatively impacted.   

 

1.3  Assumptions of Systems Engineering 

Systems Engineering is a well documented, well known discipline (Chambers 1986; 

Frosberg and Mooz 1992; Lake 1992; Blanchard and Fabrycky 1998; Parth 1998; Rochecouste 
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1999; Sage and Rouse 1999; Buede 2000; Gansler 2000; Kerzner 2001; Rouse 2003; Allen and 

Sosa 2004; Blanchard 2004; Roberts 2004; Rubenstein 2004).  However, as with any discipline, 

it is based on certain assumptions.  A few of these assumptions will be presented and how they 

may not hold true in today’s environment will be discussed.  First, the technologies utilized in a 

chosen design alternative must be available for the system’s entire life.  This requires a 

reasonably accurate technology forecast.  However, it is not uncommon that the production 

phase of a system may occur 5 or more years after the initial technologies have been chosen.  

Such a system may be required to be maintained and repaired over the next 15 years or more 

(Lake 1992; Sabbagh 1996; Steidle 1997; Blanchard and Fabrycky 1998; Parth 1998; 

Rochecouste 1999; Buede 2000; Gansler 2000; Struth 2000; Rouse 2003; Blanchard 2004; 

Mecham 2005).  For this to be true, technology forecasting assumes that the technologies will 

evolve in an incremental fashion and that performance improvements will be linear or at least 

known to an acceptable level of certainty and centered around a reasonable mean (Christensen 

and Bower 1996).  This assumption is accurate for technologies that experience minor 

incremental innovations over many years and are therefore considered to have a slow clock 

speed (Henderson and Clark 1990; Fine 1998).  However, some technology improvements 

demonstrate completely different trajectories (Christensen 1993; Christensen and Bower 1996). 

Technology reality does not always fit neatly into such a well characterized box; 

exponential rates of improvement, disruptive technologies, and radical innovations shift markets 

or create new ones (Christensen 1993; Christensen and Bower 1996).  In one of the most famous 

technology projections, in 1965 Gordon E. Moore made an observation that has become known 

as Moore’s Law ‘the number of transistors that can be placed in an integrated circuit has 

increased exponentially, doubling approximately every 2 years’.  This defines an exponential 
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growth curve that shows little sign of slowing.  Just as technology improvements have grown at 

exponential rates, others have vanished altogether.  Bubble memory was a very promising 

technology in the 1970s, but flopped commercially when hard disks proliferated in the 1980s 

(Christensen 1993; Christensen and Bower 1996).  The mainframe computer which was once the 

only way to complete complicated mathematical problems has been replaced, first by the 

minicomputer and most recently by a grid of low cost personal computers.  These are but two 

examples of how dynamic the technology environment can be.  The problem becomes one of 

forecasting accuracy. For example, how likely is it that anyone will accurately forecast the 

availability and performance of all the technologies utilized in a newly designed aircraft, missile, 

or combine as it enters production in 2012?  

In addition to dynamic technology growth, customer expectations may change during the 

development of the system. Explicitly the SE process requires a customer’s requirements remain 

constant so alternatives can be compared and a solution found, yet is it known that customers 

continually reevaluate alternatives based on existing technologies, not on those technologies that 

existed at the time of their initial requirements specifications (Dilts and Pence 2004) . 

Both of these situations demonstrate the need that technology upgrades or pre-planned 

project improvements be part of the customer’s originating specifications so that they can be 

incorporated at the system design stage.  The customer may want the option to insert a 

technology with a non-linear trajectory into the project sometime in the future.  Hence a 

technique that allows for the option of delaying decisions is required.  The financial community 

has developed and utilized a technique for valuing such an option for years. 
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1.4  Real Options Analysis and Structure of the Dissertation 

When there is high uncertainty and decisions should be delayed until additional 

information is available, the finance community employs Real Options Analysis (ROA). The 

Black-Scholes-Merton method (Merton 1973) provides a methodology to value stock options.  

This research was extended into the realm of “real” items, i.e., physical, not financial, items, and 

became known as Real Options Analysis (ROA).  ROA deals with uncertainty by determining 

values for delaying decisions until additional information is available.  It is the ability of ROA to 

value the provision of more information at a later date than is typically available to the SE that 

makes extending ROA into the SE domain important.  There are four reasons why ROA is 

important to SE: 1) when there is high uncertainty, the current technique of NPV fails to 

correctly estimate the value of alternatives; 2) the decision to build something may be 

irreversible but the decision to delay building it is always reversible; 3) delaying a decision can 

have a significant effect on the SE technology decision; and 4) ROA provides a method to 

calculate the value of delaying a decision, which is not available using NPV. 

Chapter 2 extends this discussion of ROA and demonstrates that a Systems Engineering 

project is analogous to a real option such as a capital investment opportunity.  It translates and 

maps the five basic ROA variables into the SE domain.  Two ROA techniques, a deferral option 

and a compound option, are demonstrated for evaluating an example SE project.  The example 

case is the design, development, and procurement of a new aircraft.  A simple deferral option 

examines the value of waiting one year to make the decision to start the aircraft program until 

more information is available.  The Net Present Value for the project is determined and then 

compared against the results of the deferral option analysis.  Next, a more advanced ROA 

technique, compound option analysis, examines the situation where expenditures are required at 
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various times to commence the next phase in the program.  For this example, there are three 

expenditures, one each for design, development, and procurement.  This type of situation is 

similar to what occurs in practice during the development of a new aircraft.  The difference is in 

the amount and type of information that is available to the Systems Engineer from ROA versus 

NPV. I will demonstrate through example the value of ROA to the systems engineer.  ROA only 

address value in the financial sense and cost is only one variable that concerns the systems 

engineer; performance is another and it is this variable that will be discusses in Chapter 3. 

The premise of Chapter 3 is that technology selection occurs as the direct result of 

selecting a particular design alternative for a system and that when the technology selection is 

made, design dependent parameters are incorporated into the system’s configuration (Blanchard 

and Fabrycky 1998; Kerzner 2001).  It is these design dependent parameters that are either 

irreversible or reversible only with considerable penalty with regard to time, performance, or 

cost that make the technology selection especially sensitive to various the forms of risk, such as 

uncertainty over the technology’s future performance, its ability to meet required performance 

parameters, uncertainty over its maturity, and uncertainty over its potential future availability. 

Such risk is not adequately addressed by existing SE tools.  A new methodology, Technology 

Options Analysis (TOA), will be developed which will address this deficiency.  Chapter 3 starts 

by demonstrating that technology options exist and are similar, but not 100% comparable, to 

financial real options.  In the development of TOA, various system engineering and management 

of technology theories are utilized.  Some examples are the effects of technology S-curves 

(Christensen 1993) and clock speed (Fine 1998) of an industry on making the decision.  By 

understanding the current and future predicted performance of a currently available technology 

and a new technology Chapter 3 defines the five variables utilized in TOA and presents a 
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methodology that provides the decision maker with information about the optimum time to make 

the technology decision, defined as the cross-over point and the value of waiting until the 

performance uncertainty is resolved or nearly resolved.  One key finding from this chapter is the 

importance of this cross-over point because this aides the systems engineering decision maker in 

understanding that choices exists; 1) make the decision today or 2) to wait until the performance 

uncertainty with a new technology is resolved at the cross-over point.  

Since performance and cost are not independent, Chapter 4 combines these two 

dimensions into a unified algorithm to sequentially evaluate cost and performance alternatives so 

that a decision maker can gain an overall view of the value of delaying a decision until the most 

appropriate time.  Finally an example using actual data is presented that demonstrates the 

usefulness of this analysis technique.   

Chapter 5 summarizes the findings of the dissertation, discusses the limitations of the 

research, and presents potential future areas for research. 

 

1.5 Contribution of the Dissertation 

By extending Real Options Analysis to include the Net Option Value technique so that 

the expenditures required for the implementation of multiple technologies during the 

development cycle are included, a useful value of waiting to make the technology selection is 

provided to the systems engineering decision maker.  Based on this information the systems 

engineering decision maker should be able to make a more effective decision. 

Through the development of Technology Options Analysis, the systems engineering 

decision maker now has the ability to determine when a new technology will overtake an 

existing one, how much performance gain might be achieved, and the risk of the new technology 
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meeting its predicted future.  The system engineering decision maker now understands the 

optimum time to make the technology selection and should be able to make a more successful 

technology decision. 

The incorporation of Technology Options and Real Options Analysis into a unified 

algorithm provides simultaneous evaluation of performance and cost.  By understanding the 

optimum time to make the technology selection based on resolving a new technology’s future 

performance uncertainty and using that information to conduct the cost analysis a more insightful 

depiction of the value of waiting to make the technology selection is provided to the systems 

engineering decision maker.  This can assist the decision maker in making more effective 

technical and financial choices. 
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CHAPTER II 

  

REAL OPTIONS ANALYSIS 

 

Technology selection is key to the success or failure of a systems engineering (SE) 

project (Sabbagh 1996; GAO 2000; GAO 2001; Rouse 2003; Dilts and Pence 2004; Editorial 

2006; Michaels 2006; Flight Level 350 2007; Dilts and Pence IEEE-TEM under review).  To 

arrive at the technology decision, systems engineers need to assess how well each technological 

alternative performs against various schedule, performance, and cost objectives (Sabbagh 1996; 

Blanchard and Fabrycky 1998; Sage and Rouse 1999; Buede 2000; Fleeman 2001; Kerzner 

2001; Blanchard 2004).  In order to compare the cost and financial impact of the various 

alternatives, a technique to summarize the monetary cost/value of each alternative is necessary 

and essential.  The most common theory used in SE to evaluate cost is the time value of money 

(Blanchard and Fabrycky 1998; Sage and Rouse 1999; Buede 2000; Kerzner 2001; Barringer 

2003; Blanchard 2004) where discounted cash flow (DCF) analysis is used to bring the total life 

cycle costs for each alternative to their current net present value (NPV). 

Each alternative’s NPV is then evaluated, where alternatives with a negative NPV may be 

removed from the potential solution space, and the alternatives with the highest NPV selected.  It 

has been demonstrated that NPV works well when the cost drivers associated with each 

alternative are well understood and characterized (Hayes and Abernathy 1980).  This is not 

normally the case, however, this early in a SE project’s lifecycle (GAO 2001).  Technology 

selection determines and commits the majority of the total life cycle cost of the project based on 

these technology decisions (Buede 2000; Kerzner 2001; Blanchard 2004).  Drucker (2006) and 
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others have advocated that a decision of this magnitude should be made no later than necessary, 

but as late as possible as more time will normally provide the decision maker with additional 

information. 

NPV analysis has two primary difficulties. First, it has no mechanism to value delaying a 

decision. Second, it does not have the ability to differentiate between technologies whose 

associated costs have different volatilities.  Real Options Analysis (ROA) on the other hand 

provides an analysis tool that uses the cost volatility as part of the evaluation process and 

provides a quantitative value that can be used to evaluate whether delaying a decision has a value 

greater than making the decision today.  The use of ROA to evaluate SE projects, or alternatives 

within a project, has not been addressed in either the real options or SE literature and is the focus 

of this chapter.  In order for systems engineers to appreciate the power of ROA, a more detailed 

description and examples of ROA are necessary then were given in Chapter 1.  I begin by 

presenting the basic theories of ROA.  Next, the five basic ROA variables are translated and 

mapped into the SE domain and the specifics of two ROA techniques that calculate the value of 

delaying a decision are presented.  I then conduct sensitivity analysis on the ROA variables so 

the decision maker has an understanding of how variations in the variables could affect the 

decision and therefore the risk associated with those decisions.  These results will have important 

implications to the systems engineer for two reasons: 1) the volatility of a technology’s cost 

drivers are now part of the cost evaluation process and may impact the technology selection and 

2) a quantitative evaluation can be conducted to determine if delaying a decision until more 

information is available is of greater value to the project than making the decision today. 
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2.1 Real Options 

A real option is the right, but not the obligation, to take an action such as deferring, 

expanding, contracting, or abandoning a project at a predetermined cost called the exercise price, 

for a predetermined period of time or the life of the option (Quigg 1993; Kogut and Kulatilaka 

1994; Dixit and Pindyck 1995; Trigeorgis 1995; Abel, Dixit et al. 1996; Trigeorgis 1996; 

Luehrman 1997; McGrath 1997; Luehrman 1998; Luehrman 1998; Merton 1998; Amram and 

Kulatilaka 1999; Benaroch and Kauffman 1999; Bollen 1999; Gardner and Rogers 1999; Jarrow 

1999; Angelis 2000; Trigeorgis and Brennan 2000; Benaroch 2001; Copeland and Antikarov 

2001; Schwartz and Trigeorgis 2001; Benaroch 2002; Razgaitis 2003; Copeland and Tufano 

2004; van Putten 2004; Kauffman 2005).  While the underlying financial aspects of options were 

completed by Merton (1973) and Black and Scholes (1973), Myers (1977) was the first to 

discuss the idea of a real option.  Myers (1977) considered the idea that perhaps the cost of 

capital was being incorrectly specified in NPV and that the equilibrium capitalization rate used to 

calculate the hurdle rate was overestimated for firms that held valuable real options.  Recall that 

a hurdle rate is the required return on an investment that a firm requires a project to exceed 

before accepting the project as financially viable. He introduced the concept that the value of a 

firm as a going concern depended on its future investment strategy and that it was useful to think 

of the firm as being composed of two distinct asset types: (1) ‘real assets’, which have market 

values independent of the firm’s investment strategy, and (2) ‘real options’, which are 

opportunities to purchase real assets on possibly favorable terms.   

Myers and Turnbull (1977) extended this work by noting that growth opportunities are 

affected by the observed systemic risk and therefore the correct discount rate could not be 

inferred.  Myers acknowledged these shortcomings but continued to utilize the capital asset 
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pricing model (CAPM), weighted average cost of capital, and net present value (NPV) for capital 

budgeting.  However, the limitations of using traditional discounted cash flow (DCF) methods 

like NPV were starting to be recognized as they made it difficult to estimate the value of a firm’s 

real options when there are many potential strategic options or high uncertainty.   

McDonald and Siegel (1986) extended the work done by Myers in capital budgeting 

beyond the use of traditional DCF models.  The question asked by McDonald and Siegel was 

“What is the appropriate way to decide whether or not to build a facility?”  The decision to build 

a system was irreversible since once decided, the project would go forth until completion, but the 

decision to defer building was reversible, i.e., a decision maker could always decide to reverse 

the decision to wait by building the system.  It was this asymmetry that their article explored.  By 

assuming that the rate of growth in value for an irreversible project was similar to the growth rate 

of a stock they showed that the problem could be solved using geometric Brownian motion to 

determine the optimal time for a firm to invest (McDonald and Siegel 1986).  Their research 

suggested that, under certain conditions, the decision to defer an irreversible investment was 

more valuable than traditional DCF indicated. 

Pindyck (1991) followed this stream of research and he believed that capital investment 

behavior was poorly understood and that previous models ignored two important characteristics: 

irreversibility and investment delay.  He and others (Quigg 1993; Dixit and Pindyck 1994; Dixit 

and Pindyck 1995; Trigeorgis 1995; Abel, Dixit et al. 1996; Schwartz and Trigeorgis 2001) 

showed that the ability to delay an irreversible decision could have a large effect on the decision 

to invest.  This simple yet powerful fact undermined the theoretical foundation of the standard 

neoclassical investment models and invalidated the net present value rule utilized by the 

financial community.  Pindyck (1991) further demonstrated that an irreversible investment 
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opportunity was similar to a financial call option.  He accomplished this by showing that the 

same methods used by Merton to determine the value of a financial option could be used to value 

a real option.  This led to a wealth of research on applying Real Options Analysis in a wide 

variety of settings, including: research and development projects, capital investment projects, 

Information Technology projects, new product development and product life cycles, all in an 

attempt to more accurately value uncertainty and decision delay.  This research resulted in a 

number of special journal issues (Quarterly Review of Economics and Finance (1998) and 

Academy of Management Review (2004) to name two) and ROA research has appeared in the 

Harvard Business Review, IEEE Transactions on Engineering Management and numerous other 

journals and books.   

 

2.2 Real Options and Systems Engineering 

In order to fully understand a real option and its potential value to SE, we need to initially 

focus on the components that make up a real option.  In real options the action is about the 

making of a decision.   The decision can be to defer a project, to increase or reduce the scope of 

the project, or to cancel the project.  The cost (in financial terms, the exercise price) of a decision 

(action) is available to the systems engineer today and will remain valid for a set period of time 

(life of the option).  Like a financial option, a real option depends on five basic variables: 

1. S: the value of the underlying risky asset.  This is the present value of the project, 

investment, or acquisition. 

2. E: the exercise price.  The amount of money needed to buy the asset (call option) or the 

money that will be received to sell the asset (put option). 

3. τ : the time to expiration of the option.  The length of time the decision may be deferred. 
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4. σ2: the standard deviation of the value of the underlying risky asset.  The riskiness of the 

project assets. 

5. rf: the risk-free rate of interest over the life of the option, i.e., time value of money. 

 
There are four key points that systems engineers need to understand and appreciate.  

First, when options or alternatives coexist with uncertainty, it is well know that NPV fails to 

estimate the true value of the alternative (McDonald and Siegel 1986; Pindyck 1991; Dixit and 

Pindyck 1994; Kogut and Kulatilaka 1994; Dixit and Pindyck 1995; Trigeorgis 1995; Abel, Dixit 

et al. 1996; Kumar 1996; Trigeorgis 1996; Luehrman 1997; McGrath 1997; Luehrman 1998; 

Luehrman 1998; Merton 1998; Ahn, Boudoukh et al. 1999; Amram and Kulatilaka 1999; 

Benaroch and Kauffman 1999; Bollen 1999; Dong-Hyun, Boudoukh et al. 1999; Gardner and 

Rogers 1999; Angelis 2000; Benaroch and Kauffman 2000; Trigeorgis and Brennan 2000; 

Copeland and Antikarov 2001; Schwartz and Trigeorgis 2001; Benaroch 2002; Copeland and 

Tufano 2004; van Putten 2004).  Second, the decision to build or initiate a system is irreversible 

but the decision to delay building it is not.  Third, that delaying an irreversible decision can have 

a significant effect on the possible decision outcomes.  And finally, and most importantly, it is 

possible to calculate the value of delaying a decision using the five basic real options variables 

presented above. 

Within the SE process there exists a tension between desires and implementation.  A true 

but often unstated reality is that systems engineers like to make all major decisions as soon as 

possible because doing so makes it much easier to manage the system’s development.  But the 

changing nature of some technologies makes this infeasible to implement.  When Robert Merton 

(1998) looked back on the application of option-pricing theory he made the following 

observation: 
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Many … option-pricing applications do not involve financial instruments.  The 
family of such applications is called “real” options.  … The common element for 
using option-pricing here is the same … : the future is uncertain (if it were not, 
there would be no need to create options because we know now what we will do 
later) and in an uncertain environment, having the flexibility to decide what to do 
after some of that uncertainty is resolved definitely has value.  Option-pricing 
theory provides the means for assessing that value (1998:339). 
 
As it does with financial instruments, ROA allows the Systems Engineer to have the best 

of both worlds: the ability to make decisions currently while preserving flexibility for future 

decisions. 

 

2.3 Variable Mapping:  From Financial to SE Domains 

In order to demonstrate a SE project can be modeled using real options analysis three 

conditions must be satisfied: 1) demonstrate that a SE project is analogous to a type of real 

option; 2) translate the ROA variables into the SE domain; and 3) complete a realistic example 

problem to show the viability of the technique. With regard to the first condition, the analogy 

between financial options and corporate investments that create future opportunities has been 

well researched and documented (Pindyck 1991; Quigg 1993; Dixit and Pindyck 1994; 

Trigeorgis 1995; Abel, Dixit et al. 1996; Trigeorgis 1996; McGrath 1997; McGrath 1998; Ahn, 

Boudoukh et al. 1999; Amram and Kulatilaka 1999; Benaroch and Kauffman 1999; Bollen 1999; 

Dong-Hyun, Boudoukh et al. 1999; Gardner and Rogers 1999; McGrath 1999; Angelis 2000; 

Taudes, Feurstein et al. 2000; Trigeorgis and Brennan 2000; Copeland and Antikarov 2001; 

Schwartz and Trigeorgis 2001; Benaroch 2002; Razgaitis 2003; Kauffman 2005; Benaroch 

2006). The previous chapter and earlier sections of this chapter, conceptually discussed how SE 

projects are analogous to real options but this chapter will further pursue this by use of examples. 
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With regard to the second condition, a mapping of the variables is shown in Table 2-1.  

This requirement is accomplished by showing how financial call option variables are mapped 

onto a capital investment opportunity, and the recognition that a capital investment is analogous 

to a SE project. 
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Table 2-1.    Mapping Call Option Variables into a Capital Investment Opportunity and a Systems Engineering Project 

 

Variable Call Option Capital Investment 
Opportunity 

SE Project 

S Stock Price Present value of a project’s 
operating assets to be 
acquired 

Present value of the SE 
project if it existed today 

E Exercise Price Expenditure required to 
acquire the project asset 

Investments required to 
design, develop, build, and 
test the SE project 

τ Time to expiration Length of time the decision 
may be deferred 

Length of time the 
decision may be deferred 

rf Risk-free rate of return Risk-free rate of return Risk-free rate of return 
σ2 Variance of returns on 

stock 
Riskiness of the project’s 
assets 

Riskiness of the project 
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A capital investment opportunity involves expending resources to design and build 

something that accomplishes a set of objectives (Pindyck 1991; Dixit and Pindyck 1995; 

Trigeorgis 1995; Gardner and Rogers 1999).  One of the most common examples used in the real 

options literature for a capital investment is the building of a plant (Pindyck 1991; Gardner and 

Rogers 1999).  Bringing a plant online involves expending resources to design, build, and furnish 

a structure that meets the desires and needs of the owners and investors.  This is analogous to 

bringing a Boeing 777, or the Joint Strike Fighter, or the Federal Aviation Administration Wide-

Area Augmentation System into existence. 

The first variable of interest, S, for a capital investment opportunity, is the present value 

of the project’s operating assets to be acquired.  For an SE project this is similar to the present 

value of the SE project if it existed today.  The expenditure (E) required to acquire the capital 

investment’s asset is comparable to the investment necessary to design, develop, build, and test a 

SE project.  “τ” defines the length of time the decision to start or abandon the opportunity or 

project can be delayed.  The risk-free rate of return (rf) defines what would be earned if “E” was 

placed in a risk-free investment like a savings account.  Both “τ” and rf have the same meaning 

in the SE and ROA domains.  The uncertainty associated with a capital investment’s asset is 

captured as σ2.  From an SE perspective, this is the uncertainty associated with the cost of the 

project.  In order to more clearly demonstrate the porting of real options variables into the SE 

domain it is useful to utilize an example. 

Dixit and Pindyck (1994) give a simple example of a capital investment opportunity.  

Consider a decision that must be made today to either expend $1600K (E) in a capital investment 

such as a plant now, or to defer it until the end of the year (τ).  Once made, the investment is 

irreversible (e.g., the plant has no salvage value) and the risk-free rate of return (rf) over the life 
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of the option is 10%.  The present value of the plant’s operating assets to be acquired (S) are 

calculated based on a first year output of $200K with an equal (50%) chance of either going up 

to $300K or down to $100K per year.  This upward or downward change is the revenue volatility 

(σ2) and is equal to 50% or .5.  In either case, the change in output is assumed to be permanent.   

Now, instead of a plant consider a SE project such as building an aircraft where the 

decision is whether to invest $1600K (E) to bring an aircraft to market or to defer the decision 

one year (τ).  Once the decision is made it is irreversible and the risk-free rate of return (rf) over 

the life of the option is 10%.  The present value of the plane if it existed today (S) will be 

calculated based on its first year revenue of $200K.  After the first year there is an equal (50%) 

chance or risk (σ2) revenue will go up to $300K or decrease to $100K per year.  This upward or 

downward change is the revenue volatility (σ2) and is equal to 50% or .5.  In either case the 

change in revenue is assumed to be permanent.  

By way of these parallel examples, the two conditions considered necessary prior to modeling a 

SE project using real options analysis have been met: 1) demonstrate that a SE project is 

analogous to a type of real option, a capital investment opportunity and then; 2) translate the 

ROA variables into the SE domain. 

By translating the ROA variables into the SE domain, the third condition can now be 

evaluated.  Two ROA techniques will be used to demonstrate satisfying this condition.  First an 

example of a simple deferral option will be presented.  Next a compound sequential option 

problem will be developed that demonstrates how ROA can accommodate a phased SE 

development approach.  In both cases the information provided will be compared and contrasted 

with that of their corresponding NPV analyses. 
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2.4 Net Present Value 

Systems Engineers currently use traditional discounted cash flow (DCF) methods to 

assess a project by computing the project’s net present value (NPV) (Newman 1980; Blanchard 

and Fabrycky 1998; Buede 2000; Kerzner 2001; Blanchard 2004).  Simply stated, NPV is the 

difference between how much the assets (S) are worth (their present value) and how much they 

cost or the required expenditure (E).  Table 2.2 defines the variables used in calculating Net 

Present Value. 

 

Table 2-2.  Net Present Value Variables and Meaning 

Net Present 
Value Variables 

Meaning 

S Present value of the SE project if it existed today 

E Investment required to design, develop, build, and test the SE 
project 

rf Risk-free rate of return 

P Probability of the revenue increasing 

(1-p) Probability of the revenue decreasing 

Oh
 Value of the increased revenue (h=high or increasing) 

Ol Value of the decreased revenue (l=low or decreasing) 

 

 

Let us revisit our earlier example: consider a decision whether to invest $1600K to design 

a new aircraft today or wait a year.  The revenue generated by the aircraft today would be $200K 

for the first year and then either $300K or $100K for the second year on. Once the decision is 

made it is irreversible, that is, the airplane will be built. 
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The Net Present Value (NPV) formula is: 

 NPV = S – E 

In this example E equals $1600K and S needs to be determined. 

S is the sum of the annual revenues after being discounted to the present. The revenue 

generated at the end of the first year is $200K.  The potential revenue stream for year two 

onward is either $300K per year or $100K per year with an equal probability therefore: 

yearper 200K 50K50K1                                        
.5($100K).5($300K)

O*p)(1O*pYearTwoOnRevenueFor
                                                                  

lh

=+=
+=
−+=

 

Using this information, S can be determined by discounting the future revenues using the risk 

free rate of return: 
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Now that both S and E are know the NPV can be calculated. 

NPV = S – E 

K600$K600,1$K200,2$E-SNPV 1600$E =−===  

When the NPV is positive as in this example, the decision is to invest and the investment occurs 

immediately.   

In order to determine how sensitive this decision is to E, suppose the investment required 

for the aircraft increases by 50% to $2,400K. The NPV in this example is:  

 K200$K400,2$K200,2$E-SNPV $2400E −=−===  

With the NPV negative, the decision is not to invest and the project would never be started.   

These decisions are predicated on the assumption that no further information will become 

available. But what if more information will be available at the end of Year 1, and ROA can 
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utilize this information? Let us examine this by first looking at the simplest form of a ROA, that 

of a deferral option.   

 

2.5 Deferral Option 

Within real options analysis a deferral option, involves making a decision to 1) expend 

resources today to acquire a system, 2) to defer the expenditure for a finite period of time, or 3) 

to never acquire the system.  We can easily calculate the deferral option’s value for the above 

example since Cox, Ross, and Rubinstein (1979) utilized probability theory to develop a 

binomial lattice approach to option pricing that employs discrete mathematics to achieve 

isomorphic results which are equivalent to the calculus used by Black-Scholes (1973).  From a 

Systems Engineer’s point of view, the advantage is that discrete mathematics is algebraic in 

nature and simpler to understand than are stochastic differential equations.  A binomial decision 

tree or lattice approach is the most common way to solve these types of problems (Cox, Ross et 

al. 1979; Luehrman 1997; Copeland and Antikarov 2001; Copeland and Tufano 2004; van Putten 

2004).  Table 2.3 defines the variables used in calculating a Deferral Option. 
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Table 2-3.  Deferral Option Variables 

Deferral 
Option 

Variables 

Meaning 

Si,j Value of the SE project at point i,j 
i and j define the variable’s position in the lattice 

PVi,j Present Value of the SE project at point i,j 
 

E Investment required to design, develop, build, and test the SE project 

τ Length of time the decision may be deferred 

rf Risk-free rate of return 

p Probability of the next outcome increasing 

(1-p) Probability of the next outcome decreasing 

OV Option Value 

OC Option Cost 

NOV Net Option Value 

 

 

For this problem the lattice consists of three points defined by i and j such that: 1) i=j=0 

is the initial point or in this example year one; 2) i=1and j=0 is the point associated with the 

revenue going up to $300K; and 3) i=0 and j=1 is the point associated with revenue going down 

to $100K. 

The present value (PVi,j), for any point i,j in the lattice, is determined using one of two 

formulas; 

1) if  an expenditure is required in order to realize the project at a point i,j then, the expenditures 

(E) are subtracted from the value of the project (Si,j) associated with point i,j but in no case can 

PVi,j ever be less than zero.  This leads to the following formula: 
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 PVi,j = MAX[Si,j – E, 0] 

2) if no expenditures are required then PVi,j is a function of PVi+1,j and PVi,j+1 and depends on the 

probability of realizing either value such that: 

 PVi,j = (p * PVi+1,j) + ((1-p)*PVi,j+1) 

Using the following information from the NPV example: 

S0,0 = $200K, S1,0 = $300K, S0,1 = $100K 

E = $1,600K 

p = 50% = .5 

(1-p)  = 1 - .5 = .5 

rf = 10% = .1 

τ = 1 year 

Then, 
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The option value (OV) of deferring the decision is the difference between the present value at 

point 0,0 and the net present value calculation. For this example; 

OVE=1600 = PV0,0 – NPVE=1600 = $773K - $600K = $173K 
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Systems engineers realize that there may be a cost associated with deferring a decision 

and this cost is captured in the variable OC.  Assume the cost to wait for one year was 

determined to be $75K then the net option value (NOV) can be calculated by subtracting the 

option cost (OC) from the option value (OV) or  

 NOV E=1600 = OV E=1600 – OC E=1600 

 NOV E=1600 = $173K – 75K = $98K 

 

For this example the decision is to defer the decision one year.  The deferral option 

analysis provides the decision maker with five key pieces of information.  First, if the revenue 

changes at the end the first year to the high return ($300K per year), the present value at year one 

(PV1,0) is $1545K and, if the decision had been deferred, the decision would be to build the 

aircraft.  Second, if the revenue at the end of the first year changes to the low return ($100K per 

year), the present value at year one (PV0,1) would be zero and, if the decision was deferred, the 

decision would be to abandon.  This is important because it shows that if the decision is delayed 

until more information is available, e.g., the annual revenue after the first year is known, then 

two different outcomes should occur.  The third piece of information is that the present value 

today (PV0,0) of the deferral is $773K, which leads to the fourth piece of information the value of 

the option or the option value (OVE=1600) being equal to $173K, which is the difference between 

the ROA PV and the NPV value.  The fifth piece of information, the net option value (NOV), is 

perhaps the most important information available to the systems engineer because if the cost of 

the option (OC) is less than the value of the option (OV) the decision to defer is more valuable 

than starting the project today. 

Now consider the second NPV example where E=$2,400K, 
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K409$0$*)5.1(K818$*5.PV0,0 =−+=  

OVE=2400 = PV0,0 – NPVE=2400 = $409K - $0 = $409K 

 NOV = OV – OC = $409K - $75K = $334K 

In this example, the value of deferring is even more valuable than in the previous example as the 

deferral option analysis demonstrates. Because NOV > 0, the best decision is to defer the 

expenditure one year rather than to never start the system, as recommended by NPV analysis. 

Next we will consider examples where the volatility of the revenue varies.  In the third 

and fourth example the present value will be based on first year revenue of $200K that varies by 

±75%, that is, it has an equal likelihood of going up to $350K or down to $50K per year from 

year two onward.  The fifth and sixth examples will have the present value being based on first 

year revenue of $200K that varies by ±10% or has an equal chance of either going up to $220K 

or down to $180K per year from year two onward.   

In all examples the change is assumed to be permanent.  In order to calculate the NPV the future 

revenues must be determined: 

yearper 200K K25K175                                                           
.5($50K).5($350K)

O*p)(1O*pt75percentYearTwoOnARevenueFor
                                                                                                  

lh

=+=
+=
−+=

 

yearper 200K 0K90K11                                                           
.5($180K).5($220K)

O*p)(1O*pt10percentYearTwoOnARevenueFor
                                                                                                  

lh

=+=
+=
−+=

 

Of interest to the systems engineer should be that the value of the revenue for year two on 

does not change no matter how large a difference between the high and low variance values.  The 
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values for revenue for year two on are identical to the previous example when year 2 on varied 

by 50%.  This means that the value of S will not change and therefore the NPV remains the 

same.  In the example where the investment (E) is $1600K the NPV will still equal $600K in 

spite of the changes to the volatility of the future revenue.  However, with Real Options 

Analysis, the values for S1,0 and S0,1 are different and therefore the values of PV1,0, PV0,1, PV0,0, 

OV, and NOV need to be calculated for both examples. 

In the example where the volatility is +/- 75%: 

S0,0 = $200K, S1,0 = $350K, S0,1 = $50K 

E = $1,600K 

Then, 
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$1022K$0*.5)(1$2045K*.5PV
PV*)p1(PV*pPV

0,0

0,11,00,0

=−+=

−+=
 

OVσ=+/-75,E=1600 = PV0,0 – NPVE=1600 = $1022K - $600K = $422K 

 NOV σ=+/-75,E=1600 = OV σ=+/-75,E=1600 – OC E=1600 

 NOV σ=+/-75,E=1600 = $422K – 75K = $347K 

In summary, the decisions with E=1600 and high volatility (+/-75%) are: 

• At Year 1, if “up” occurs, invest (PV1,0 = $2045K)  
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• At Year 1, if “down” occurs, abandon the option (PV0,1 = $0) , 

• Today, Year 0, defer the decision one year (NOV σ=+/-75,E=1600 = $347K) 

Based on this information, the decision maker would be better off deciding today to defer the 

expenditure one year rather than to start today because the NOV > 0. 

In the example where the volatility is +/- 10%: 

S0,0 = $200K, S1,0 = $220K, S0,1 = $180K 

E = $1,600K 

Then, 
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OVσ=+/-10,E=1600 = PV0,0 – NPVE=1600 = $545K - $600K = -$55K 

 NOV σ=+/-10,E=1600 = OV σ=+/-10,E=1600 – OC E=1600 

 NOV σ=+/-10,E=1600 = -$55K – 75K = -$130K 

In summary, the decisions with E=1600 and low volatility (+/-10%) are: 

• At Year 1, if “up” occurs, invest (PV1,0 = $745K)  

• At Year 1, if “down” occurs, invest (PV0,1 = $345) , 
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• Today, year 0, do not defer the decision (NOV σ=+/-10,E=1600 = -$130K) and build the 

system (NPV>0) 

Based on this information, the decision maker would be better off deciding today not to defer the 

expenditure one year but rather starting it now because NOV < 0 and NPV > 0. 

In the example where the investment (E) is $2400K the NPV is still equal to -$200K but the 

values for S1,0 and S0,1 are different and therefore the values of PV1,0, PV0,1, PV0,0, OV, and NOV 

need to be calculated for both examples. 

In the example where the volatility is +/- 75%: 

S0,0 = $200K, S1,0 = $350K, S0,1 = $50K 

E = $2,400K 

Then, 
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OVσ=+/-75,E=2400 = PV0,0 – NPVE=2400 = $659K - $0 = $659K 
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 NOV σ=+/-75,E=2400 = OV σ=+/-75,E=2400 – OC E=2400 

 NOV σ=+/-75,E=2400 = $659K – 75K = $584K 

 

In summary, the decisions with E=2400 and high volatility (+/-75%) are: 

• At Year 1, if “up” occurs, invest (PV1,0 = $1318K)  

• At Year 1, if “down” occurs, abandon the option (PV0,1 = $0) , 

• Today, year 0, defer the decision 1 year (NOV σ=+/-75,E=2400 = $584K) 

Based on this information, the decision maker would be better off deciding today to defer the 

expenditure one year rather than not to start it at all because the NOV > 0. 

In the example where the volatility is +/- 10%: 

S0,0 = $200K, S1,0 = $220K, S0,1 = $180K 

E = $2,400K 

Then, 
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OVσ=+/-10,E=2400 = PV0,0 – NPVE=2400 = $9K - $0 = $9K 
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 NOV σ=+/-10,E=2400 = OV σ=+/-10,E=2400 – OC E=2400 

 NOV σ=+/-10,E=2400 = $9K – 75K = -$66K 

 

In summary, the decisions with E=2400 and low volatility (+/-10%) are: 

• At Year 1, if “up” occurs, invest (PV1,0 = $18K)  

• At Year 1, if “down” occurs, abandon (PV0,1 = $0) , 

• Today, year 0, do not defer (NOV σ=+/-10,E=2400 = -$66K) and do not build the system 

because the original net present value was negative (NPV<0) 

Based on this information, the decision maker would be better off deciding today 

not to defer the expenditure one year because NOV < 0 and never to start it because NPV <0. 

Table 2-4 presents the deferral option results based on the required expenditure (E) and the 

volatility (σ) of the revenue.
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Table 2-4.  Deferral Option Results 
Example 
# 

E = NPV NPV 
Decision NOV NOV Decision σ =  

3 
E=$1600K 

$600K Build $347K Defer 
σ=.75 

1 
E=$1600K 

$600K Build $98K Defer 
σ=.5 

4 
E=$1600K 

$600K Build -$130K 
Do not Defer  – 
Decision based on 
NPV σ=.1 

5 
E=$2400K 

-$200K Abandon $584K Defer 
σ=.75 

2 
E=$2400K 

-$200K Abandon $334K Defer 
σ=.5 

6 
E=$2400K 

-$200K Abandon -66K 
Do not Defer – 
Decision based on 
NPV 

σ=.10 

 

 

These simple examples show the power of Real Options Analysis.  The decision maker 

received five times the amount of information than was available using traditional NPV analysis 

and based on that information different decisions should be made.  These, of course, are simple 

examples and do not reflect the more complex aspects of SE.  There is an ROA technique that 

can be used for the more complex SE situations where the program employs a phased approach: 

compound options.   

 

2.6 Compound Options – Sequential Options 

In complex situations ROA makes use of compound options.  Compound options occur 

often and were recognized as an important problem by Black/Scholes (1973) and first solved by 

Geske (1977).  One of the most common compound option scenarios is when an option’s value 

depends on another option, for example the first option (chronologically) is the right to buy the 
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second option.  In this phased investment situation where one option’s value depends on another, 

sequential options analysis provides the decision maker with more information then is provided 

by NPV.  Table 2-5 defines the variables used in calculating a Compound Option. 

 

Table 2-5.  Compound Option Variables 
Compound 

Option 
Variable 

Meaning Comments 

Si,j 
Value of the SE project at point i,j i and j define the variable’s 

position in the lattice  

EN
y 

Investment required to design, 
develop, build, and test the SE project 

N designates different sequential 
investments over time, i.e., 1st, 
2nd, etc. 

y designates the year in which 
the investment actually takes 
place 

τ Length of time the decision may be 
deferred 

 

rf Risk-free rate of return  
σ Volatility of project Used to calculate the up and 

down factors 
U Up Factor u= τσe  
D Down Factor d= 1/u 
P Probability of the PVN

i,j,y increasing  
(1-p) Probability of PVN

i,j,y decreasing  

PVN
i,j,y 

Present Value of the SE project at 
point i,j evaluated using EN

y  if 
appropriate 

 

OV Option Value  
OC Option Cost  

NOV Net Option Value  
 

 

Consider the following example where an aircraft is constructed in phases.  The first 

phase, an initial design phase cost (E1
0) of $250K must be started immediately.  Following the 

design phase and at the end of the first year an expenditure (E2
1) of $750K is necessary to 

commence the detailed engineering phase.  Once the detailed engineering phase is complete an 
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expenditure (E3
2 or E3

3) of $1,500K will be required within two years to build the first aircraft.  

By using the SE approach to designing an aircraft in multiple phases, a compound option results 

where the $250K expenditure creates the right to expend $750K at the end of the first year, and 

the exercise of that choice creates the right to expend $1500K to purchase a new asset, an aircraft 

in either Year 2 or Year 3.   

The first step is estimating what the value of the aircraft would be if it existed today.  

This can be done using traditional DCF methods.  The second step is estimating how much this 

value is likely to move up or down during the period in question.  In the deferral examples we 

assumed that the change in value from Year 2 on would be permanent, in this compound option 

example this is not assumed.  Instead the distribution of possible aircraft values will be 

considered to be fairly standard and assumed to follow a log-normal distribution.  This will mean 

that the factor to apply for an up movement is given by the formula e to the power of σ (volatility 

or variance) times the square root of τ (time interval) and the factor for a down movement is 

given by the inverse of the up factor.  Other formulas can be used in cases where the distribution 

is not lognormal. 

Assuming a lognormal distribution centered at $200K with a variance of 50% the value 

of the aircraft if it existed today (S0,0) can be determined using a standard DCF method:  

 2200$
)11(
K200$0AveReturnueSalvageValS

00,0 =
+

+=+= ∑∞

=t t  

The distribution of the possible aircraft values is then a multiplicative process that starts at S0,0 

and moves up or down based on σ with the up factor given by τσe  and the down factor by 1/

τσe .  In this example the volatility (σ) is 50% or .5 and τ = 1 so the up factor u= τσe = 5.e = 

1.65 and the down factor d=1/u=1/1.65=0.61. 
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 S1,0 = u * S0,0 = 1.65 * $2200K = $3627K 

S0,1 = d * S0,0 = 0.61 * $2200K = $1334K 

Table 2-6 presents the Si,j values for the aircraft through Year 3.  The detailed calculations are 

presented in Appendix B. 

 

Table 2-6.  Possible Aircraft Values (S) 
 Today  Year 1  Year 2  Year 3 

      S3,0 = $9860K 
    S2,0 = $5980K   
  S1,0 = $3627K   S2,1 = $3627K 
S0,0 = $2200K   S1,1 = $2200K   

  S0,1 =  $1334K   S1,2 = $1334K 
    S0,2 = $809K   
      S0,3 = $491K 

 

 

The next step in sequential option analysis is to calculate and evaluate the present values 

(PVN
i,j,y) at the point time that the last investment takes place, Year 3 in this example.  The 

reason for starting the evaluation when the last investment takes place is because if all of the 

PVN
i,j,y values at those points are $0 then the project should be abandoned and no other analysis 

is required.  This is because the expenditures will always be more than the revenues the project 

can generate.  The same techniques demonstrated in the deferral options section are applied for 

sequential options. 

PVN
i,j,y =  MAX[Si,j - EN

y, 0]  

PV3
3,0,3 = MAX(S3,0 – E3

3, 0) = MAX($9860K – $1500K, $0) = MAX($8360K, $0) 

PV3
3,0,3 = $8860K 

PV3
2,1,3 = MAX($3627K – $1500K, $0) = MAX($2127K, $0) = $2127K 

PV3
1,2,3 = MAX($1334K – $1500K, $0) = MAX(- $166K, $0) = $0 

PV3
0,3,3 = MAX($491K – $1500K, $0) = MAX(- $1009K, $0) = $0 
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Two potential points are positive (PV3
3,0,3, PV3

2,1,3) therefore the sequential option analysis will 

continue. 

To find the PVN
i,j,y at Year 2, two alternatives will need to be examined and then 

compared in order to determine the maximum PVN
i,j,y.  This is because in this example the 

production of the aircraft could start in Year 2 or be deferred until Year 3.  The first set of 

calculations determines the project’s value when the decision is to build the aircraft in Year 2.  

PV3
2,0,2 = MAX(S2,0 – E3, 0) = MAX($5980K – $1500K, 0) = MAX($4480K, 0) 

PV3
2,0,2  = $4480K 

PV3
1,1,2 = MAX($2200K – $1500K, 0) =  $700K 

PV3
0,2,2 = MAX($809K – $1500K, 0) = $0 

 

The next set of calculations will determine the project’s value in Year 2 if the decision is 

to defer building the aircraft until Year 3.  In the deferral examples in the previous section the 

probability of high or low return was given.  For this example the probability (p) of high will 

have to be calculated and the probabilistic method developed by Cox, Ross, and Rubinstein 

(1979) will be utilized (a detailed derivation is provided in Appendix B); 

47.
04.1
49.

61.065.1
61.01.01

du
d1

p ==
−
−+

=
−

−+
= fr

 and 1- p = .53 

The same techniques demonstrated in the deferral option section are applied to determine 

PVN
i,j,y but in the generalized case. 

)0,
)1(

)PV*d*p)((1)PV*u*p(
(PV

N
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N
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)0,
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))$2127K*(0.53$8360K)*47.0(((PV3
2,0,3 +

+
= MAX  

)0,
1.1

)K1120$K3958($(PV 3
2,0,3
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)0,
1.1

K5078$(PV 3
2,0,3 MAX=  
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K4617$)0,K4617($PV3
2,0,3 == MAX  

 K916$)0,K916($PV3
1,1,3 == MAX  

0$)0,$0($PV3
0,2,3 == MAX  

 

The final step is to compare the two sets of results and select the maximum value 

(PVN
i,j,y) for Year 2. 

PV3
2,0,y = MAX(PV3

2,0,2, PV3
2,0,3) = MAX($4480K, $4617K) = $4617K= PV3

2,0,3 
PV3

 1,1,y = MAX($700K, $916K) = $916K= PV3
1,1,3 

PV3
 0,2,y = MAX($0, $0) = $0 =PV3

0,2,3 
 

In this example, the value of deferring the building of the aircraft until Year 3 was greater 

in all cases than the value of building it in Year 2.  The remaining PVN
i,j,y values for Years 1 and 

0 are now calculated. 

)0,K750$
)1.01(

))$916K*(0.53$4616K)*47.0(((PV2
1,0,1 −

+
+

= MAX  

)0,K750$
1.1

)K482$K2186($(PV 2
1,0,1 −

+
= MAX  

)0,K750$
1.1

K2668$(PV 2
1,0,1 −= MAX  

K1675$)0,K1675($)0,K750$K2425($PV2
1,0,1 ==−= MAXMAX  

0$)0,K356$()0,K750$K394($PV2
0,1,1 =−=−= MAXMAX  

)0,K250$
)1.01(

))$0*(0.527$1675K)*473.0(((PV1
0,0,0 −

+
+

= MAX  

K471$)0,K471($)0,K250$K721($PV1
0,0,0 ==−= MAXMAX  

 

Table 2-7 presents the PVN
i,j,y values for the aircraft and the decision associated with 

those values. 
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Table 2-7.  Compound Option Present Values 
 
 Today Year 1  Year 2  Year 3 

        

Expenditure E1
0=$250K  E2

1=$750K    
E3

3=$1500
K 

        

      
PV3

3,0

,3 = $8360K 

    
PV3

2,0,3 
= $4617K  

Procure 
Aircraft 

  
PV2

1,0,1 
= $1675K  

Defer 
Procurement 

PV3
2,1

,3 = $2127K 

PV1
0,0,0 = $471K  

Start Detailed 
Design 

PV3
1,1,3 

= $916K  
Procure 
Aircraft 

 

Start 
Preliminary 
Design 

PV2
0,1,1 

= $0  
Defer 
Procurement 

PV3
1,2

,3 = $0 

   
Abandon 
Project 

PV3
0,2,3 

= $0  
Abandon 
Project 

     
Abandon 
Project 

PV0,3 
= $0 

      
Abandon 
Project 
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In order to understand how much the value of this flexibility is worth, the NPV for the 

aircraft must be calculated.  In this example there are two potential NPVs because the 

expenditure to purchase the aircraft can occur in either Year 2 or Year 3 therefore both need to 

be calculated. 

 321 EEESNPV −−−=  

 K28$
)1.1(

K1500$
)1.1(
K750$K250$

)1.1(
K200$NPV 210

3
2 =−−−= ∑∞

=t t  

 K141$
)1.1(

$1500K
)1.1(

$750KK250$
)1.1(
K200$NPV 310

3
3 =−−−= ∑∞

=t t  

In both cases the NPV is positive but the NPV if the aircraft is built at Year 3 is greater.  

So the decision reached by today’s SE process would be to commence the project and build the 

aircraft at Year 3 based on a NPV3
3 of $141K.  The value of the option (OV) is the difference 

between the NPV3
3 and the project’s value with flexibility or  

OV = PV1
0,0,0 – NPV3

3 = $471K - $141K = $330K 

For this example, deferring the decision to build the aircraft will have a cost of $150K or a 20% 

increase during the detailed design phase. 

OC = $150K 

The net option value is: 

NOV = OV – OC = $330K - $150K = $180K 

The aircraft was designed around sequential reviews where the state of the project was 

determined at multiple decision points, 1) at the start of the initial design phase, 2) at the start of 

the engineering phase, and finally 3) when to purchase the aircraft.  The NPV analysis could only 

differentiate between when to purchase the aircraft and therefore only provided two real pieces 

of information -- start the program and wait until Year 3 to build the aircraft.  ROA provided 
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additional information and that information was available now for every future decision point 

using sequential options analysis.  There were 10 potential points that the program could arrive at 

over the three years and each point provided unique information to the decision maker about how 

to proceed.  Table 2-7 displays the information and the recommended decisions.  The value of 

this knowledge is that information is available today and key decision makers know what the 

decision will be at any point in time; this is the power of ROA.  Understanding how sensitive this 

knowledge is to variations in the ROA variables provides the decision maker with an 

understanding of the riskiness associated with these decisions.  

 

2.7 Sensitivity Analysis 

The baseline for the sensitivity analysis was the first NPV/deferral example: the building 

of an aircraft where the decision is whether to invest $1600K (E) to bring an aircraft to market or 

to defer the decision one year (τ); once the decision is made it is irreversible; the risk-free rate of 

return (rf) over the life of the option is 10%; the value (S) of the plane, if it existed today, will be 

calculated based on its first year revenue of $200K and after the first year there is an equal (50%) 

probability that the revenue will increase or decrease the second year, in either case the change in 

revenue is assumed to be permanent. 

Sensitivity analysis was then performed on four of the five ROA variables and on the 

ratio of E to S.  The fifth variable, time to expiration of the option (τ), was not varied since the 

decision could not be deferred beyond one year.  For this analysis, the future revenue uncertainty 

σ was considered to be an independent variable and was varied between 0 and 1.  The variables 

S, E, and rf were considered to be dependent variables and each was varied independently while 

all the others were held constant.  The first variable to be investigated is investment. 
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The investment (E) necessary to design, develop, build, and test the SE project was 

evaluated at $1600K ± 50%.  The effect on the option’s value for the various values of E was 

then plotted against the uncertainty in revenue cost and is shown in Figure 2-1.  What the 

sensitivity analysis reveals is: 1) as the cost (E) approaches the value of the project (S), the 

uncertainty of the future revenue makes the value of the option greater or the sooner it diverges 

from the NPV solution, and 2) the slope of the line varies as a function of the average annual 

return and it starts to diverge at the same value for all three cases.  This is what would be 

expected and it is the ability of ROA to account for the cost variance that is important to the 

decision maker.  The next variable investigated was the risk free rate of return.  

 

 

Figure 2-1.  The Sensitivity of Option Value to Variations in E 
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Sensitivity of the option value as a function of the risk free rate of return (rf ) was 

evaluated at a rate of  5%, 10%, and 15%.  Two significant events can be observed in Figure 2-2.  

First, when the interest rate was 5% the value of the option never exceeded the NPV solution so 

it never diverged from the NPV solution.  This implies that for a low risk free rate of return the 

value of waiting, even when there is great uncertainty, has little to no value.  The second event of 

interest was when the interest rate was 15%.  The NPV decision changed from a build decision to 

an abandon decision.  The impact of this decision reversal was the reason the option value never 

went to zero.  This would suggest that when the risk free rate of return is high the value of 

waiting is large even with little uncertainty.  The implication for the decision maker is that the 

risk free rate of return that is assumed can greatly impact the value of the option.  Fortunately 

this value is objective since it is based on what could be earned by placing the investment in a 

savings account or some other type of riskless investment.  Next the value of the revenue 

generated was varied. 

 



 

 49

 

Figure 2-2.  The Sensitivity of Option Value to Variations in the Risk Free Rate of Return 
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insight into when the option value starts to diverge from the NPV solution and thereby offer 

additional insight into when the use of ROA would be useful. 

 

 

Figure 2-3.  The Sensitivity of Option Value to Variations in S 
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Figure 2-4 clearly demonstrates that all three lines diverge from the NPV solution at the 

same point and follow the slope discussed above.  This may imply that the boundary conditions 

as to when to use NPV or ROA techniques are functions of the system’s cost to present value 

ratio (x intercept) and the systems annual revenue (slope).  It must be understood that this are 

simple examples and a different result might occur for more complex annual revenue equations.  

Investigation into this area will be left for future research.  Since a compound or sequential 

option is an extension of a deferral option, the variable sensitivity will be the same and therefore 

a specific example is not necessary.  Based on an understanding of the sensitivity of ROA 

variables the decision maker now has all the information necessary to evaluate the riskiness 

associated with a ROA evaluation and the decisions it provides. 

 

 

Figure 2-4.  The Sensitivity of Option Value  
to a Constant E/S Ratio 
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2.8 Summary 

It order to utilize ROA in SE it was necessary to demonstrated that an SE project is 

analogous to a real option and that the ROA variables could be translated into the SE domain.  If 

these objectives where meet it would allow ROA techniques to be utilized by SE.  Both of the 

objectives were met and two ROA techniques, a deferral option and a compound option, were 

presented. 

In the deferral option examples, the value of waiting to make a decision until more 

information was available was evaluated.  In the examples presented, NPV analysis failed to 

either acknowledge a potentially negative risk by recommending the investment or to recognize 

the potential of a positive opportunity and recommending the project not start.  ROA provided 

the decision maker with additional information and based on this information a different decision 

should have resulted, i.e., defer the decision. 

In the first example the decision to expend $1600K today would have been the result 

given the NPV analysis and there would have been a 50% chance of it being the wrong decision, 

meaning the project had the opportunity to lose money.  The opposite outcome would have been 

the result based on the NPV data in the second example since the decision maker would never 

have started the project and therefore would miss the opportunity to make money.  In both of 

these examples ROA indicated that a decision to defer one year would ensure only positive 

opportunities would result, revenue goes up - build, revenue goes down – abandon.  In the 

second set of examples it was demonstrated that NPV does not take into account the volatility 

associated with future revenue.  ROA demonstrated that when the volatility was large it was of 

even greater value to wait one year.  However, when the volatility was small, ROA reverted to 

NPV.  This is as would be expected since one of the premises NPV is based on is that the cost 
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drivers are well understood and characterized (Hayes and Abernathy 1980).  These were simple 

examples and do not necessarily reflect the complexity of the SE process.  In order to address 

this shortcoming, a compound option example was presented which would reflect a typical 

phased program used in SE. 

The compound option example was based on a sequential program in which there were 

three stages to building an aircraft; initial design phase, detailed engineering phase, and 

procurement phase.  Each one of the phases required an investment and occurred in different 

years.  This type of situation was evaluated using sequential option analysis.  A sequential option 

is one in which the first option chronologically is the right to buy the second option.  For this 

example executing the initial design phase results in the right to invest in the engineering phase 

and that in turn results in the right to procure the aircraft.  The only information NPV analysis 

provided for this example was whether to start the project or not and what year the aircraft 

should be procured.  NPV analysis indicated that the program should go forward and that the 

aircraft should be procured in year 3.  ROA showed that there were actually 10 decision points 

between the start of the program and the procurement of the aircraft.  At each of these points, one 

today, two at Year 1, three at Year 2, and four at Year 3, information was available today on 

whether to invest, defer, or abandon.  This information allows the Systems Engineer the ability, 

based on where the program is at any point in time, to know if the decision should be to execute, 

wait, or terminate a project now or in the future. 

It is the ability of ROA to value uncertainty until additional information is available that 

will benefit SE remember: 1) when there is uncertainty, the current technique of NPV fails to 

correctly estimate the value of alternatives; 2) the decision to build something may be 

irreversible but the decision to delay building it is always reversible; 3) delaying a decision can 
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have a significant effect on the SE technology decision; and 4) ROA provides a method to 

calculate the value of delaying a decision, which is not available using NPV.  The value of this 

knowledge is that information is available today and key decision makers know what the 

decision will be at any point in time.  Understanding how sensitive this knowledge is to 

variations in the ROA variables provides the decision maker with an understanding of the 

riskiness associated with these decisions. 

Sensitivity analysis was performed on four of the five ROA variables and on the ratio of 

E to S.  The fifth variable, time to expiration of the option (τ) was not varied since the decision 

could not be deferred beyond one year.  For the analysis, the future revenue uncertainty σ was 

considered to be an independent variable and was varied between 0 and 1.  The variables S, E, 

and rf were considered to be dependent variables and each was varied independently while all the 

others were held constant.  The results implied the following relationships between the variables 

and the value of the option: 1) when rf is low there is little to no value in waiting, or when rf is 

high the NPV solution may reverse and the value of waiting more valuable, 2) as the difference 

between the cost (E) and the value of the project (S) decreases, the uncertainty of future costs or 

revenue makes the value of the option greater, 3) the slope of the line once the value of the 

option starts to diverge from the NPV solution is a function of the annual revenue, the larger the 

annual revenue the greater the slope, and 4) the ratio of the system’s cost to its present value 

defines the point where the option’s value starts to diverge from the NPV solution (x intercept).  

These relationships suggest that it is possible for the system engineer to understand how 

dependent the ROA results are on any particular variable and therefore where the greatest risk to 

the project may exist. 
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The use of ROA will have important implications to the systems engineer for two 

reasons: 1) the volatility of a technology’s cost drivers are now part of the cost evaluation 

process and may impact the technology selection, and 2) a quantitative evaluation can be 

conducted to determine if delaying a decision until more information is available is of greater 

value to the project in spite of the perceived higher cost than making the decision today.  One 

should not forget the words of Robert Merton (1998) “the future is uncertain (if it were not, there 

would be no need to create options because we know now what we will do later)”.  ROA 

provides a quantitative answer to the question ‘How late in the process can the systems 

engineering decision be made?’  Real Options Analysis, however, only addresses value in a 

financial sense and cost is only one variable utilized by SE. 

Performance is another important variable in the analysis of various alternatives being 

considered by the Systems Engineer.  Chapter 3 will develop and present a new analytical 

method Technology Options Analysis that will model performance-using techniques similar to 

Real Options Analysis.  Technology Options and Real Options Analysis should allow the 

Systems Engineer and decision maker to evaluate performance and cost using analysis methods 

that provide information not currently available.  This information should help the Systems 

Engineer and decision maker answer this question: “Should the decision be made today or will 

more information become available that would make it worthwhile to wait?” 
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CHAPTER III 

 

TECHNOLOGY OPTION ANALYSIS 

 

Technology selection occurs as the direct result of selecting a particular design alternative 

for a system (Blanchard and Fabrycky 1998; Kerzner 2001).  Of interest for my research is how 

that decision is made and can better techniques be developed to aid the systems engineer in 

making technology decisions?  The basic steps in the design process are to define what the 

system must do, i.e., requirements (which can vary with time), and how well the system must do 

it, i.e., the system’s technical performance metrics.  Potential design solutions (alternatives) are 

then postulated, refined, and described based on various underlying technologies.  As potential 

design alternatives become available they are synthesized, analyzed, and evaluated against the 

various technical performance metrics.  Trade studies are conducted on the various design 

alternatives to determine which best meets the customer’s requirements.  With this process, the 

underlying technology becomes inherent in the system configuration (Blanchard and Fabrycky 

1998; Buede 2000; Rouse 2003). 

Despite the importance of technology selection in the Systems Engineering process, 

existing techniques have had limited success in predicting whether a technology’s future 

performance will be achieved or not and there is a lack of a clear understanding as to why 

projects succeed or fail (Dilts and Pence 2004) .  One problem with current methods is that they 

ignore two important characteristics of technology selection.  First, when the technology 

selection is made, design dependent parameters are incorporated into the system’s configuration 

and they become either irreversible or reversible with considerable penalty with regard to time, 
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performance, or cost. Examples of such irreversible technology decisions include: fly-by-wire 

versus hydraulic control for aircraft, disc brakes versus drum brakes, or the differences in voltage 

and current draw between electronic technologies.  Irreversibility makes technology selection 

especially sensitive to various forms of risk, such as uncertainty over the technology’s future 

performance, its ability to meet required performance parameters, uncertainty over its maturity, 

and uncertainty over its potential future availability.  It is for this reason System Engineering text 

books recommend that technology selection be locked down as soon as possible preferably at the 

projects preliminary design review (Blanchard and Fabrycky 1998; Buede 2000; Kerzner 2001; 

Rouse 2003). 

Second, the current methods utilized to analyze potential design alternatives do not have 

a mechanism for quantifying the future performance uncertainty associated with a technology.  

Consider two alternative technology cases. In the first, technology N (new) is advanced state-of-

the-art (e.g., it may only exist in the laboratory) but its projected future performance will 

dramatically exceed the customer’s requirements if it meets its expectations. Unfortunately, 

technology N’s future performance is uncertain.  In the second case, technology E (existing), the 

technology is mature, stable, and meets the system’s requirements now.   

There are only two choices available to the decision maker: they can ignore technology 

N’s potential, select technology E, and lose out if N reaches its future performance or they can 

select technology N and thereby accept the risk that it will not achieve its projected performance.  

The horizon for this decision is set by the project’s timeline.  What is needed is a third method, 

one that incorporates the future performance uncertainty associated with a technology into a 

decision support tool. 
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There are potential methods available that could be used to assist in understanding a 

technology’s future performance uncertainty.  One method would be for a knowledgeable and 

impartial individual to judge the uncertainty and assign a probability that the technology will 

reach its predicted future performance.  The first problem with this method is where do you find 

an impartial expert on an emerging technology and will one always be available? The second 

issue would be the qualitative nature of this assessment?  A second method would be to wait 

until more information about the new technology is available and make the decision based on the 

additional information.  This would provide a quantitative assessment of the new technology’s 

future performance.   

In situations where there is significant uncertainty about the future and the ability to wait 

exists, an extensive amount of literature from other research areas have demonstrated that the 

ability to delay an irreversible decision can profoundly affect the decision.  For example, with 

decisions of both high importance and high future uncertainty, Drucker (2006), Eisengardt 

(1989), and others advocate that a decision should be made no later than necessary, but as late as 

possible as more time will normally provide a decision maker with additional information to 

reduce uncertainty. This suggests that there is a utility for waiting.  But for how long should a 

decision like this be deferred?  The method that is developed in this chapter satisfies this need by 

providing to the decision maker the time the decision should be made. 

 

3.1 Technology Options Analysis 

Ashford uses the term Technology Options Analysis when he discusses ways to force 

innovation into regulated firms through government intervention (Ashford 1993; Finkel and 

Golding 1996; Ashford 2000).  The methods and scenarios discussed by both Ashford and Finkel  
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(Finkel and Golding 1996) have to do with reduction of risk in highly polluting industries and 

not similar to the scenario or methods presented in this chapter. 

The scenario of interest is one in which two technologies are being consider for the 

system.  One is mature and meets all the requirements today and into the future.  A new 

technology is being developed but it does not meet the requirements today but its future 

performance is projected to exceed the performance of the existing technology.  This scenario is 

of interest because it means that at some time in the future the new technology’s performance is 

predicted to exceed or cross-over the existing technology.  The cross-over point (Figure 3-1) 

defines the optimum time to make the decision because prior to the cross-over point there is still 

uncertainty about the new technology’s performance but after the cross-over point no additional 

information is required.  The cross-over point (τcop ) is determined by subtracting the new 

technology’s currently demonstrated performance (Pc) from the mature technology’s 

performance (Pf) and dividing by the new technology’s rate of performance change (rp): τcop = 

[(Pf) -  (Pc)] / rp.  It is at that point the decision maker has all the information needed to make an 

informed decision. 
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Figure 3-1.  Cross-over Point that Defines Optimum Time to make the Decision 

 

Based on the cross-over point information the decision maker has two choices, make the 

decision today or defer the decision until the cross-over point.  The cross-over point is 

independent of the project and only depends on the technologies being considered.  Suppose that 

the selection must take place by the system’s critical design review.  If the cross-over point does 

not occur prior to the critical design review the decision should be made today to use the existing 

technology.  However, if the cross-over point occurs prior to the critical design review, the 

decision maker should consider deferring the decision until the uncertainty associated with the 

new technology’s performance can be resolved.  In addition to knowing whether to defer or not, 

the decision maker also knows what decision should be made at the cross-over point, use the 

existing technology if the crossing did not occur or use the new technology if it did.  This 

method provides information to the decision maker today on when the decision should be made 

and what the outcomes should be.  This is very similar to the information that is provided to a 
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decision maker by a financial European call option or a simple real options deferral option.  

Determining the cross-over point does not require complicated mathematical techniques. 

The cross-over point can be determined with only four pieces of information, the current 

demonstrated performance of the new and existing technologies and the predicted performance 

of the new and existing technologies sometime in the future.  That information is available today 

from various sources; technology roadmaps, Delphi surveys, or the actual vendors.  Using these 

four data points, two lines can be drawn, one from the existing technology’s current performance 

to its future predicted performance and the second from the new technology’s current 

performance to its future predicted performance.  Each line represents a linear rate of change in 

performance, one for the existing technology and the other for the new technology.  Where the 

lines intersect is the cross-over point (Figure 3-2).  It is not necessary to know the actual shape of 

a technology’s rate change of performance only that the underlying shape remains the same.  If 

additional information about the predicted shape of the technology’s rate of change of 

performance is known it can be used instead to generate the intersection point.  The decision 

maker now knows when the decision can be made based on when the information will be 

available.  Enhancements to this very simple technique could be made that would make it more 

informative by providing additional information.  
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Figure 3-2.  Identified Cross-over Point  
for the Time to Make the Decision 

 

The first enhancement to the technique will be to provide the decision maker with 

information on how much greater the performance of the new technology might be when 

compared to the existing technology.  This performance difference (delta performance) between 

the new technology and the existing technology at a specified point in the future (Figure 3-3) is 

important because it provides the decision maker a quantitative appreciation of the value of 

deferring the decision.  The performance delta cross-over point (τcop ) is determined by 

subtracting the new technology’s future predicted performance (Pf) from the mature technology’s 

performance (Pf): Δp = (Pf) - (Pf).  The greater the delta in performance the more value in 

deferring the decision until more information is available.  Gaining an insight into the risk of the 

new technology reaching its predicted performance will be the next enhancement.  
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Figure 3-3.  Performance Difference between New Technology  
and Existing Technology 

 
 

The motivation behind the technique discussed above was to provide the decision maker 

with a riskless decision environment, i.e., wait until the information becomes available and then 

make the decision.  But what is the likelihood or the risk that the cross-over point will occur at 

the time the technique predicts.  Understanding that risk should be of benefit to the decision 

maker because if the risk is high a different decision may result even if the cross-over point and 

the performance delta indicate the decision should be deferred.  Figure 3-4 uses the technique 

presented above to determine the cross-over point for three new technologies and one existing 

technology.  It was constructed so that the cross-over point was the same for all three new 

technologies but with a different delta performance for each.  The delta performance increases 

from new technology 1 to new technology 3.  Suppose each new technology is evaluated one at a 

time against the existing technology using the techniques that have been presented so far.  In 

each case the decision maker would decide to defer until the cross-over point.  If the risk of 
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reaching the cross-over point at the predicted time was equal for all three technologies then the 

decision maker should decide to abandon technology 1 and 2 because their value would be less 

than technology 3.  Deciding to abandon technology 1 and 2 might be the right decision but it 

also may be the wrong decision if technology 3 fails to meet its predicted performance 

improvement.  One more piece of information is needed to be provided to the decision maker, 

the projected rate of improvement for each new technology.  The higher the projected rate of 

improvement the greater the risk the technology will not reach the cross-over point when 

predicted.  The projected rate of improvement for each of the new technologies in the example 

above is the slope of their line.  The risk of new technology 1 is less than new technology 2 

which is less than new technology 3 of reaching the cross-over point when predicted.  Having 

this additional information might result in a different decision being made.  To this point we 

have assumed that information was only available today and at the cross-over point. 

 

 

Figure 3-4.  Comparison of Existing Technology and  
New Technology Alternatives 

Existing Technology New Technology 1

New Technology 2 New Technology 3

Today Future
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There is no reason to assume that information would not be forth coming at various 

points in time before the predicted cross-over point.  When new performance information 

becomes available it can be used to refine and update the predicted cross-over point and 

performance difference calculations.  This information may cause a change in the decision 

timing and could allow for a decision to be made earlier than originally predicted.  In addition it 

should become clearer if the riskiness of the new technology in reaching the cross-over point is 

increasing or decreasing.  These enhancements to the original technique provide additional 

information to the decision maker today on how much performance improvement the new 

technology may provide, the risk associated with the rate of performance improvement of the 

technology, and the ability to reassess the timing of the cross-over point and when the decision 

should be made.  As a result of these improvements the method presented now makes available 

to the decision maker the same type of information provided by a financial American call option.  

The decision maker now knows when the decision can be made based on when the information 

will be available.  Table 3-1 presents the Technology Option Analysis variables, their definition 

and meaning. 
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Table 3-1.  Technology Option Analysis Variables 
(with definitions and Meanings) 

 

  

TOA 

Variable 

TOA Definition Meaning 

P Performance Performance of the Technology 

T Requirement Minimum performance required 

τcop Cross-over Point When the new technology’s 

performance intersects the existing 

technology’s performance 

Δp Delta Performance Difference between the existing 

technology’s and the new 

technology’s predicted performance 

rp
  Projected Rate of Performance Riskiness of the technology 
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Understanding how sensitive this knowledge is to variations in the TOA variables 

provides the decision maker with an understanding of the risk associated with these decisions. 

 
3.2 Sensitivity Analysis 

Sensitivity analysis was performed to see the effect new information about the 

performance of the emerging technology had on the cross-over point. For ease in demonstration, 

only one new technology will be evaluated. For this analysis, three situations were analyzed 

using high, medium, and low projected rates of performance.   All of the calculations were 

accomplished by manipulating the standard equation for a line, y = mx + b.  For Technology 

Options Analysis, y is the emerging technology’s predicted future performance (Pf), m is the 

projected rate of performance (rp), x is the time the predicted future performance will be 

achieved, and b is the emerging technology’s current performance (Pc), thereby giving Pf = rp * x 

+ Pc.  The projected rate of performance for the emerging technology was calculated by solving 

for the slope of a line given by rp = [(Pf) - (Pc)] / x.  The cross-over point (τcop) is then calculated 

by setting the emerging technology’s performance equal to existing technology’s performance 

and calculating when that would occur, such that τcop = [(Pf) -  (Pc)] / rp, where Pf is the existing 

technology’s performance.  For purposes of clarity the vertical axis scale was held constant so 

the difference in the slopes would be apparent. 

For the first series, the emerging technology’s delta performance (Δp) is predicted to be 

twice that of the existing technology in 8 time periods with an initial performance (Pc) of zero.  

The future predicted performance of the emerging technology (Pf) and the existing technology’s 

future predicted performance (Pf) were held constant.  A point half-way between today and the 

initial cross-over point (τcop) was chosen as the point when the new information would become 

available.  The new information consisted of varying the emerging technology’s performance 
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between +87% and -87% from the predicted performance at the evaluation point.  The reason +/- 

87% was chosen was because it would bound the potential future at the point being examined, 

i.e., the performance of the emerging technology had to be better than it is today but not as good 

as the existing technology.  This is because if the emerging technology’s performance was worse 

in the future the decision would be to use the existing technology and if the emerging technology 

was equal to the existing technology the decision would be to utilize the emerging technology. 

Figure 3-5 displays the results for the situation where a high rate of performance change 

(slope of 65 degrees) is predicted for the emerging technology.  Figures 3-6 displays the results 

for the situation where a medium rate of performance change (slope of 45 degrees) is expected 

out of the new technology.  Figures 3-7 displays the results for the situation where a low rate of 

performance change (slope of 27 degrees) is expected out of the new technology.  Table 3-2 

presents the changes to τcop based on the new information.  Two pieces of information can be 

extracted from the data.  First is that the change to the cross-over point is independent of the 

projected rate of performance for the emerging technology.  An increase or decrease in the 

demonstrated performance compared to the projected performance moves τcop the same amount.  

The second data point is that a change of at least 50% is required before the decision maker 

should consider changing the timing of the decision.  These observations may be unique to this 

example and will be investigated further. 
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Figure 3-5.  High Rate of Performance Change 

 

 

Figure 3-6.  Medium Rate of Performance Change 
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Figure 3-7.  Low Rate of Performance Change 

 

Table 3-2.  New Cross-over Points based on Emerging  
Technology Performance Information  

Change in 

Performance 

Figure 3-5 

New Cross-

over Point 

Figure 3-6 

New Cross-

over Point 

Figure 3-7 

New Cross-

over Point 

Delta to 

Original 

87.5% 2.4 2.4 2.4 41% 

75% 2.7 2.7 2.7 33% 

50% 3.2 3.2 3.2 20% 

25% 3.6 3.6 3.6 9% 

0 4.0 4.0 4.0 0 

-25% 4.3 4.3 4.3 -8% 

-50% 4.6 4.6 4.6 -14% 

-75% 4.8 4.8 4.8 -20% 

-87.5% 4.9 4.9 4.9 -23% 
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Table 3-3 presents the changes to rp based on the new information.  Two pieces of 

information can be extracted from the data.  First is that the percentage change to rp as a function 

of the original performance trajectory compared to the new performance trajectory is constant for 

these examples.  This might imply that as additional information about the emerging technology 

is received it is the variance to the predicted performance trajectory that describes the new risk to 

meeting the future projected performance.  These observations may be unique to this example 

and will be investigated further. 

 

Table 3-3. New Projected Rate of Performance on Emerging  
Technology Performance Information 

Change in 

Performance 

New rp for 

High 

Performance 

Technology 

New rp for 

Medium 

Performance 

Technology 

New rp for 

Low 

Performance 

Technology 

Percentage 

change from 

the original 

rp 

87.5% 1.4 0.7 0.4 71% 

75% 1.5 0.8 0.4 75% 

50% 1.7 0.8 0.4 83% 

25% 1.8 0.9 0.5 92% 

0 2.0 1.0 0.5 100% 

-25% 2.2 1.1 0.5 108% 

-50% 2.3 1.2 0.6 117% 

-75% 2.5 1.3 0.6 125% 

-87.5% 2.6 1.3 0.6 129% 

 

 

For the second series, the emerging technology’s delta performance (Δp) is predicted to 

be twice that of the existing technology in 8 time periods with an initial performance (Pc) of zero.  
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The existing technology’s future predicted performance (Pf) and the emerging technology’s 

projected rate of performance (rp) were held constant.  Holding rp constant will cause the future 

predicted performance of the emerging technology (Pf) to change as new information becomes 

available.  A point half-way between today and the initial cross-over point (τcop) was chosen as 

the point when the new information would become available.  The new information consisted of 

varying the emerging technology’s performance between +87% and -87% from the predicted 

performance at that point (Pc2). 

Figure 3-8 displays the results for the situation where a high rate of performance change 

(slope of 65 degrees) is predicted for the emerging technology.  Figures 3-9 displays the results 

for the situation where a medium rate of performance change (slope of 45 degrees) is expected 

out of the new technology.  Figures 3-10 displays the results for the situation where a low rate of 

performance change (slope of 27 degrees) is expected out of the new technology.  Table 3-7 

presents the changes to τcop and Table 3-8 presents the % change between the emerging 

technology’s originally predicted future performance and the updated predicted future 

performance based on the new information.  Two pieces of information can be extracted from the 

data.  First is that the change to the cross-over point and the percent change in predicted 

performance is independent of the projected rate of performance for the emerging technology.  

An increase or decrease in the demonstrated performance compared to the projected performance 

moves τcop and the future performance the same amount.  The second data point is that a change 

of at least 50% is required before the decision maker should consider changing the timing of the 

decision.  These observations may be unique to this example and will be investigated further.  
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Figure 3-8.  High Rate of Performance Change 

 

 

 

Figure 3-9.  Medium Rate of Performance Change 
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Figure 3-10.  Low Rate of Performance Change 
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Table 3-4. New Cross-over Points based on Emerging  
Technology Performance Information 

Change in 
Performance 

Figure 3-8 
New Cross-
over Point 

Figure 3-9 
New Cross-
over Point 

Figure 3-10 
New Cross-
over Point 

Delta to 
Original 

87.5% 2.3 2.3 2.3 44% 

75% 2.5 2.5 2.5 38% 

50% 3.0 3.0 3.0 25% 

25% 3.5 3.5 3.5 13% 

0 4.0 4.0 4.0 0 

-25% 4.5 4.5 4.5 -13% 

-50% 5.0 5.0 5.0 -25% 

-75% 5.5 5.5 5.5 -38% 

-87.5% 5.8 5.8 5.8 -44% 

 

 

Table 3-5.  New Predicted Performance based on Emerging 
Technology Performance Information 

Change in 
Performance 

Figure 3-8 
Improvement in 

Performance 

Figure 3-9 
Improvement in 

Performance 

Figure 3-10 
Improvement in 

Performance 

87.5% 22% 22% 22% 

75% 19% 19% 19% 

50% 13% 13% 13% 

25% 6% 6% 6% 

0 0 0 0 

-25% -6% -6% -6% 

-50% -13% -13% -13% 

-75% -19% -19% -19% 

-87.5% -22% -22% -22% 
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For the third series, the emerging technology’s performance will be held constant and the 

existing technology will be varied such that a 100%, 75%, and a 50% improvement will be 

projected over the existing technology in 8 time periods.  The initial performance of the 

emerging technology will be equal to 20% of its future predicted performance.  A point half-way 

between today and the initial cross-over point (τcop) was chosen as the point when the new 

information would become available.  The new information consisted of varying the emerging 

technology’s performance so it would not exceed the existing technology’s performance or be 

below it initial performance at point (Pc2). 

Figure 3-11 displays the results for the situation where the emerging technology doubles 

(100% increase) the performance of the existing technology.  Figures 3-12 displays the results 

for the situation where the emerging technology exceeds the performance of the existing 

technology by 75%.  Figures 3-13 displays the results for the situation where the emerging 

technology exceeds the performance of the existing technology by 50%.  Table 3-9 presents the 

changes to τcop based on the new information.  Two pieces of information can be extracted from 

the data.  First is that the percentage change to the cross-over point is independent of the existing 

technology’s performance when measured at a point halfway between the initial assessment 

point and the original cross-over point.  The second data point is that a change of at least 50% in 

the demonstrated performance of the emerging technology is required before the decision maker 

should consider changing the timing of the decision.  These observations may be unique to this 

example and will be investigated further. 
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Figure 3-11.  Performance gain of 100% 

 

 

Figure 3-12.  Performance gain of 75% 
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Figure 3-13.  Performance gain of 50% 
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For the fourth and final series, the emerging technology’s performance will be held 

constant and the existing technology will be varied such that a 100%, 75%, and a 50% 

improvement will be projected over the existing technology in 8 time periods.  The initial 

performance of the emerging technology will be equal to 20% of its future predicted 

performance.  A point 2 time periods into the future was chosen as the point when the new 

information would become available.  The new information consisted of varying the emerging 

technology’s performance so it would not exceed the existing technology’s performance or be 

below its initial performance at the evaluation point. 

Figure 3-14 displays the results for the situation where the emerging technology doubles 

(100% increase) the performance of the existing technology.  Figures 3-15 displays the results 

for the situation where the emerging technology exceeds the performance of the existing 

technology by 75%.  Figures 3-16 displays the results for the situation where the emerging 

technology exceeds the performance of the existing technology by 50%.  Table 3-7 presents the 

changes to τcop based on the new information.  Two pieces of information can be extracted from 

the data.  First it appears that the change to the cross-over point is dependent on the ratio of the 

time the information is received to the time the cross-over is predicted to occur.  In the case of 

improving performance the sooner the information is available the more effect the change has on 

moving the cross-over point.  The second piece of information is the smaller the performance 

gain (Δp) for a given rate of performance (rp) the further out in time the cross-over point (τcop) 

occurs.  In order to further explore these ideas an emerging technology with a 50% Δp will be 

analyzed at a point 5 times period into the future.  Figure 3-17 displays the results and Table 3-8 

compares the results with Figure 3-16.  
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Figure 3-14.  100% Increase in performance  
with new information at time 2 

 
 
 

 

Figure 3-15.  75% Increase in Performance  
with new information at time 2 
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Figure 3-16.  50% Increase in Performance  
with new information at Time 2 

 
 
 

Table 3-7.  New Cross-over Points Based on New Information at Time 2 
Movement 
of Cross-
over Point –  
Δp = 100% 

Figure 3-14 
New 
Cross-over 
Point 

Movement of 
Cross-over 
Point –   
Δp=75% 

Figure 3-15 
New Cross-
over Point 

Movement 
of Cross-
over Point 
– Δp=50% 

Figure 
3-16 
New 
Cross-
over 
Point 

28% 2.1 41% 2.4 56% 2.7 

24% 2.3 33% 2.7 33% 4.0 

15% 2.5 20% 3.2 17% 5.0 

7% 2.8 9% 3.6 7% 5.6 

0% 3.0 0% 4.0 0% 6.0 

-13% 3.4 -8% 4.3 -3% 6.2 

-24% 3.7 -14% 4.6 -5% 6.3 

-33% 4.0 -20% 4.8 -7% 6.4 

-38% 4.1 -23% 4.9 -8% 6.5 

 

 

 

0 1 2 3 4 5 6 7 8

Existing Technology

Emerging Technology

Series 1

Series 2

Series 3

Series 4

Series 6

Series 7

Series 8

Series 9



 

 82

 

Figure 3-17.  50% Increase in performance with new information at time 5 
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The data in Table 3-8 appears to validate the observation that the change to the cross-over 

point is dependent on the ratio of the time the information is received to the time the cross-over 

is predicted to occur.  In case 1, (Figure 3-16) the ratio is 2/6 and an improving performance 

would indicate the decision could be made sooner perhaps by as much as two to three time 

periods.  In case 2, (Figure 3-17) the ratio is 5/6 and the amount the decision can move is limited 

to less than one time period.  The other result of comparing figures 3-16 and 3-17 is that it 

clearly shows that the effect of not meeting the predicted performance has a larger effect and a 

greater rate of performance will be necessary to meet the predicted future performance.  For 

example, missing the predicted performance by 13% at time 2 results in a change to rp of 10% 

compared to a change of 65% at time 5.  This sensitivity analysis was conducted based on 

changes between the future predicted performance and new demonstrated data arriving sometime 

in the futures.  Additional sensitivity analysis should be conducted as part of future research to 

include forecasting variability, data uncertainty, and model uncertainty.   

 

3.3 Summary 

Technology selection can be a key to the success or failure of a project.  Yet the existing 

techniques have had limited success in predicting whether a technology’s future performance 

will be achieved or not.  One of the key issues with the current methods is that they ignore two 

important characteristics of technology selection.  First, when the selection is made design 

dependent parameters are incorporated into the system’s configuration and they become either 

irreversible or reversible with considerable penalty with regard to time, performance, or cost.  

Second, the current methods utilized to analyze potential design alternatives do not have a 

mechanism for quantifying the future performance uncertainty associated with a technology. 
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The decision maker only has two choices when a mature, well established technology that 

meets the requirements today is competing against an advanced state-of-the-art but still immature 

technology that does not meet the requirements today but is projected to exceed the currently 

available technologies.  They can ignore the new technology’s potential and lose out if it 

achieves it or they can select the new technology and accept the risk that it will not achieve its 

projected performance.  What should happen is the decision maker should delay the decision 

until more information about the new technology is available and the decision should be made 

based on that information.  Therefore a new method is needed that incorporates the future 

performance uncertainty associated with a technology into a decision support tool that provides a 

quantitative assessment of the new technology’s future performance, Technology Options 

Analysis. 

The scenario described above is of interest because it describes a situation where at some 

time in a new technology’s future it is predicted to exceed or cross-over the existing 

technology’s performance.  It is this cross-over point that defines the optimum time to make the 

decision because it is then when the uncertainty about the new technology’s performance is 

answered.  The cross-over point is independent of the project and only depends on the 

technologies being considered.  Once it has been determined it can be compared to the project’s 

time horizon and the decision to wait or not can be made.  In addition to knowing whether to 

defer or not, the decision maker also knows what the outcomes will be when the cross-over point 

is reached, if the new technology has not achieved its predicted performance chose the mature 

technology or if the new technology has achieve its predicted performance chose the new 

technology.  This sounds very similar to the results one would expect if they were considering 
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investing in a financial call option or evaluating a real options deferral option.  Enhancements 

were then considered that would provide additional information to the decision maker. 

Several enhancements were discussed, the first provided the decision maker with 

information on how much greater the performance of the new technology might be compared to 

the existing technology.  It was important because it provided the decision maker with a 

quantitative appreciation of the value of deferring the decision.  The greater the delta in 

performance, the more value in deferring until more information was available.  Understanding 

the risk of the new technology reaching its predicted performance was the next enhancement.  

This was represented as the projected rate of improvement for a technology.  In addition to a 

high rate of change having a higher risk it was demonstrated during the sensitivity analysis that 

this risk is also present as the demonstrated performance varies from its predicted performance. 

Sensitivity analysis was performed on the cross-over point, the emerging technology’s 

delta performance, and the technology’s projected rate of performance.  There were several key 

observations from the sensitivity analysis.  First was that the change to the cross-over point was 

independent of the projected rate of performance.  Instead it was correlated to the relative change 

between the demonstrated performance and the projected performance.  The magnitude was a 

function of the technology’s delta performance and the time until the cross-over point.  This was 

only true for cases where the delta performance was held constant, i.e., not allowed to change as 

new information is provided.  When the technology’s delta performance was allowed to change 

as new information was provided the change is correlated to the relative change between the 

demonstrated performance and the projected performance.  The projected rate of performance 

was sensitive to both the relative change between the demonstrated performance and the 

projected performance and the time until the cross-over point. 
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Decision about technology selection however cannot be made strictly on how well it 

meets a set of performance requirements.  Selection of a technology also involves the 

understanding of how much selecting that technology will cost.  It is the next chapter that will 

address the benefit of waiting from both a performance and cost perspective by using Real 

Options Analysis and Technology Options Analysis. 
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CHAPTER IV 

 

UNIFIED ALGORITHM ANALYSIS 

 

As discussed throughout this work, technology selection is a key to the success or failure 

of a Systems Engineering project.  Obviously no decision maker wants to make a decision that 

results in a project that is a failure; quite the opposite is true, but the decision maker can only 

make a decision based on the information available.  Therefore, what decision aid can better 

utilize the information available to the decision maker to take into account the future 

uncertainties associated with cost and performance especially when the technology decision 

results in an irreversible or nearly irreversible architecture? 

In the two previous chapters, the Systems Engineering decision tools were extended by 

developing new methods for evaluating systems engineering technology alternatives with respect 

to cost (Chapter 2) and performance (Chapter 3) using the framework of Real Options and 

Technology Options Analysis.  This chapter combines those two dimensions into a unified 

algorithm to simultaneously evaluate cost and performance alternatives so that a decision maker 

can gain an overall view of the value of delaying a decision until the most appropriate time. 

The algorithm is constructed based on a typical scenario faced by systems engineering decision 

makers. The scenario of interest is one in which two technologies are being consider for the new 

system.  One is mature (Technology A) and meets all the requirements today and into the future.  

A new technology (Technology B) is being developed but it does not meet the requirements 

today but its future performance is projected to exceed the performance of the existing 

technology.  This scenario is of interest because it means that at some time in the future the new 
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technology’s performance is predicted to exceed or cross-over the existing technology.  The 

dilemma for the systems engineer is this: if the mature technology is chosen it will be a good 

system if the new technology does not make it to market but if the new technology does mature 

sufficiently, the new system may be viewed as a mediocre product at best or a failure.  This is a 

similar result to that of Pence and Dilts (Dilts and Pence 2004) . If the systems engineer gambles 

on the new technology it most likely will be a great product but if the new technology fails the 

new system fails.  For this scenario then the question is “When in the decision process should the 

technology selection be made?” 

 

4.1 Technology Options and Real Options Analysis Combined 

The initial piece of data the decision maker requires is: should the emerging technology 

even be considered as a potential solution? Critical data for this decision is if the new 

technology’s performance improves beyond that of existing technology; this will occur at what is 

defined as a cross-over point.  Using TOA techniques the cross-over point (τcop) between the 

existing and the emerging technologies is calculated.  Assume that Technology A is the existing 

technology and Technology B is the challenger. The timing and uncertainty associated with the 

cross-over point is evaluated relative to the project’s time horizon.  There are only two potential 

outcomes from this initial evaluation:  

1) if the cross-over point occurs outside of the project’s time horizon, then select the 

existing technology and abandon the emerging technology or  

2) if the cross-over point occurs within the project’s time horizon, then continue evaluating 

the option using TOA techniques to determine the performance change (delta) that could 

be expected between the new and existing technologies.   
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Of particular importance is the realization that, if the outcome is to abandon the emerging 

technology, valuable resources do not have to be spent conducting further analysis.  If the 

outcome was to calculate the performance deltas, the results are provided to the decision maker.  

Based on this data, two outcomes can occur; 1) if the performance delta is insufficient, as 

determined by the decision maker, the emerging technology will be abandoned, 2) if the 

performance delta is sufficient, additional analysis using the techniques of NPV and ROA will be 

used to generate additional information that the decision maker will need to determine if the cost 

of performance flexibility is of sufficient value. 

TOA data is utilized to determine the expenditure profiles during both NPV and ROA 

analysis by computing the cost associated with continuing the development with both 

technologies until τcop.  This cost becomes the first expenditure (EAB
1) and additional 

expenditures will be based on one of two cases: 

1) Case 1: Technology B’s performance does not exceed Technology A’s, or  

2) Case 2: Technology B’s performance exceeds Technology A’s performance at τcop.   

The NPV for both cases is then calculated based on the new expenditure profile.  In the 

situation where the NPV for both cases is positive, no further analysis is required; as the decision 

is to carry both technologies until τcop because, regardless of the state of technology maturity of 

either technology at τcop the technology will be sufficient for the needs of the new system.  If 

however one or both of the NPV outcomes is 0, the analysis will continue using ROA 

techniques. 

In complex situations where there exists a phased investment situation, ROA makes use 

of compound sequential options analysis.  It utilizes the estimate of the value of the project if it 

existed today (S) obtained during the NPV analysis; future project values are calculated as a 
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function of S.  The next step is to calculate and evaluate the Present Value at each node starting 

at the nodes where the last expenditure takes place.  If all of the Present Values are zero at the 

time the last expenditure takes place stop the analysis and abandon the technology.  Otherwise, 

continue evaluating the remaining nodes working from the future to the present.  Whenever all of 

the Present Values within an evaluation time period are 0, stop the analysis and abandon the 

technology.  Once the Present Value analysis is completed, the final Present Value is used to 

determine the Net Option Value.  The Net Option Value is determined by subtracting the NPV 

from the final Present Value.  If in both cases the NOV is positive, carry both technologies until 

τcop because no matter what happens at τcop the technology will satisfy the system requirement. 

Chapter 2 described this compound sequential method in detail and it will be demonstrated as 

part of the example problem provided later in this chapter.   

 

4.2 Real-life Example 

In order to explain the method, a “real-life” example is utilized. There are two important 

initial notes: First, while the scenario is fictional, the cost and performance data used are actual 

information gathered from (BitMicro 2004; Kerekes 2005; Memtech 2006; TigerDirect 2006; 

Electonics 2007; Kerekes 2007; SanDisk 2007; SanDisk 2007; SuperTalent 2007; Tokar 2007; 

Kerekes 2008; Kerekes 2008; Mtron 2008; NewEgg 2008; NexTag 2008; RiData 2008; Samsung 

2008; Technology 2008; Tokar 2008; Tokar 2008; BitMicro 2009; Curry 2009; Kerekes 2009; 

NexTag 2009; NexTag 2009; Shopping 2009; Tom's Hardware 2009; Tom's Hardware 2009; 

Tom 2009; Tom 2009; NexTag 2099). Second, while the decisions are specific to the example, 

the algorithm is generalizable to multiple systems engineering settings and decision making 

situations. 
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For this example, assume that it is 2006, just before the preliminary design for a proposed 

new system.  The detailed design review will be conducted in 2008 and production will start in 

2009.  The technologies of interest are a hard disk drive (Technology A) and a solid state drive 

(Technology B).  Technology A is mature, well-known and primarily subject to incremental 

innovation while Technology B is a new, less well-known, and still immature technology.  

Technology A meets all the requirements today and is expected to be available during production 

period for the system.  Technology B does not meet the requirements today but is expected to 

exceed the requirements when the project goes into production in 2009.  The financial risk free 

rate of return is 10%. 

 

4.2.1 Technology Options Analysis 

An important question to the success or failure of a project cannot be answered by the 

conduct of NPV or Real Options Analysis.  That question is, when will Technology B’s 

performance be equal to or better than Technology A’s?  The reason that question is important to 

the decision maker is because once the new technology is better than the current technology it 

tends to always be better.  If the decision maker knew the answer to that question would a 

different decision result?  

For this example the performance attribute of greatest importance is the number of 

megabytes (MB) that can be read per second from the drive, called the drive memory.  This 

attribute is commonly benchmarked and referred to as a memory’s sustained read capability 

measured in MB/s.  For this project, assume the sustained read requirement is at least 70MB/s 

with a goal of 100MB/s. 
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Technology A is a hard disk drive (HDD) with a rotational speed of 10Krpm and an 8MB 

cache. Based on the rotational speed and cache size, its sustained read time performance 

trajectory is 72 MB/s.  Since the read time for a hard disk drive is a function of the speed of the 

drive and the cache size one or both must be increased to improve performance.  The technology 

roadmap provided by the company making this type of drive shows that its sustained read time is 

not expected to improve over the time frame of this development program (Curry 2009).  

Technology B is a solid state drive (SSD) and it has no moving parts.  Its sustained read time is a 

function of transistor size and the number of bits per cell.  In 2006 its predicted performance 

trajectory suggests that the performance of this SSD will double every 18 months (or so) 

(Kerekes 2005; Kerekes 2008) based on decreasing transistor size and the potential ability to 

store multiple bits in each cell.  The SSD’s demonstrated sustained read time performance in 

2006 was 45 MB/s and this speed does not meet the project’s requirement.  Table 4-1 provides 

the projected performance based on its technology roadmap from 2007 until 2009 versus the 

HDD’s performance.  It is this predicted future performance that is the reason the systems 

engineer is interested in the solid state drive approach. 
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Table 4-1. Projected Read Times 
Year Technology B 

SSD Sustained Read Time 
Predicted 

Technology A 
HDD Sustained Read Time 

Known 
2007 75 MB/s 72 MB/s 

2008 120 MB/s 72 MB/s 

2009 180 MB/s 72 MB/s 

 

 

The cross-over point for this example can be determined using the 2006 demonstrated 

sustained read performance and the predicted sustained read performance based Technology A 

and Technology B’s performance trajectories presented in Table 4-1.  Using these data points, 

lines are drawn, and where the lines intersect is the cross-over point τcop, see Figure 4-1. 

 

 

Figure 4-1.  Cross-over Point for Projected Read Times  
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Because the initial doubling of the predicted performance for Technology B is better than 

Technology A (72 MB/s), see Figure 4-1 and Table 4-1, it meant that within the area of interest 

the performance trajectory was linear and the calculations can be accomplished by manipulating 

the standard equation for a line, y = mx + b1.  Remember from Chapter 3 that for Technology 

Options Analysis, y is the emerging technology’s predicted future performance (Pf), m is the 

projected rate of performance (rp), x is the time the predicted future performance will be 

achieved, and b is the emerging technology’s current performance (Pc), thereby giving Pf = rp * x 

+ Pc.  The projected rate of performance for the emerging technology then can be calculated by 

solving for the slope of a line given by rp = [(Pf) - (Pc)] / x.  The cross-over point (τcop) is then 

calculated by setting the emerging technology’s performance equal to existing technology’s 

performance and calculating when that would occur, such that τcop = [(Pf) -  (Pc)] / rp, where Pf is 

the existing technology’s performance. 

The projected rate of performance is: 

rp = [90 MB/s – 45 MB/s]/18 months = 45 MB/s / 18 months = 2.5 MB/s /Month 

The cross-over point (τcop) is: 

τcop = [72 MB/s – 45 MB/s] / 2.500 MB/s / Month = 10.8 Months 

The cross-over point for Technology B is within the time horizon of the project and based 

on that the next step is to determine its delta performance.  The performance delta (Δp) between 

the new technology and the existing technology at a specified point in the future is calculated to 

provide the decision maker with a quantitative appreciation of the performance improvement 

based on deferring the decision.  The greater the delta in performance the more value in deferring 

the decision until more information is available. 

                                                 
1 It should be noted that the technology curves can follow other shapes.  For ease in demonstrating the algorithm, a 
linear trajectory is assumed. 
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The delta performance (Δp) values are presented in Table 4-2 and calculated for 2009 
below: 

Δps = 180 MB/s – 72 MB/s = 108 MB/s or a 150% improvement 

 

Table 4-2.  Projected Delta Performance 
Year Technology B 

SSD Predicted 
Sustained Read Time 

Technology A 
HDD Known 

Sustained Read Time 

Delta 
Performance 

% 
Improvement 

2007   75 MB/s 72 MB/s     3 MB/s   4% 

2008 120 MB/s 72 MB/s   48 MB/s 67% 

2009 180 MB/s 72 MB/s 108 MB/s 150% 

 

 

The decision maker now knows that Technology B is expected to cross-over during the 

time horizon of the project.  More specifically, the decision maker knows that delay the 

technology selection for approximately 11 months could produce a performance gain of 150%.  

Based on this information the systems engineer decides it would be of value to continue the 

analysis.  The decision maker also decides that based on the uncertainty associated with 

Technology B’s predicted performance that instead of using 10.8 as predicted by τcop the 

expenditure stream and the remaining analysis will be based on a value of 12 months or 1 year.2 

Table 4-3 presents the hardware costs for each technology based on cost estimates from 

various sources (NewEgg 2008; NexTag 2008; NexTag 2009; NexTag 2009; Shopping 2009; 

NexTag 2099), the number of units to be procured during each phase of project, and the labor 

costs during each phase of the project.  Labor costs are expected to be slightly different between 

Technology A and Technology B depending on whether Technology B’s future predicted 

                                                 
2 This is used for convenience in the example. It does not materially impact the computations or the results.  
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performance is achieved.  If Technology B reaches its full predicted performance a labor 

reduction of 20% will be realized and accounts for the difference between LA
2 and LB

2.   

 

Table 4-3.  Sample Problem Quantities and Costs 
Variable Meaning Quantity Cost 

X Number of Drives used in Preliminary Design 10  

$A
1 Cost of HDD during Preliminary Design  $190 

$B
1 Cost of SSD during Preliminary Design  $1000 

LA
1 Labor Cost for HDD during Preliminary Design  $10,000 

LB
1 Labor Cost for SSD during Preliminary Design  $10,000 

Y Number of Drives used in Detailed Design 25  

$A
2 Cost of HDD during Detailed  Design  $137.50 

$B
2 Cost of SSD during Detailed Design  $250 

LA
2 Labor Cost for HDD during Detailed Design  $10,000 

LB
2 Labor Cost for SSD during Detailed Design  $8,000 

Z Number of Drives procured for production 2500  
$A

3 Cost of HDD during Detailed  Design  $117.50 

$B
3 Cost of SSD during Detailed Design  $125 

 

 

The expenditures during each phase will vary between technologies and are further defined as 

follows and presented in Table 4-4: 

EA
1 is the expenditure required for incorporating the hard disk drive technology into the 

preliminary design and is equal to the cost ($A
1) of X hard disk drives plus a labor 

cost of LA
1 
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EB
1 is the expenditure required for incorporating the solid state drive technology into the 

preliminary design and is equal to the cost ($B
1) of X solid state drives plus a labor 

cost of LB
1 

EA
2 is the expenditure required for incorporating the hard disk drive technology into the 

detailed design and is equal to the cost ($A
2) of Y hard disk drives plus a labor cost of 

LA
2 

EB
2 is the expenditure required for incorporating the solid state drive technology into the 

detailed design and is equal to the cost ($B
2) of Y solid state drives plus a labor cost 

of LB
2 

EA
3 is the expenditure required for procuring ($A

3) Z hard disk drives 

EB
3 is the expenditure required for procuring ($B

3) Z solid state drives 

EAB
1 is the expenditure required for incorporating both the hard disk drive and solid state 

drive technology into the preliminary design and is equal to the cost ($A
1) of X hard 

disk drives plus ($B
1) of X solid state drives plus ½ the labor cost of LA

1 plus LB
1 

EA
2’ is the expenditure required for incorporating only the hard disk drive into the 

preliminary design if the solid state drive fails to meet its performance trajectory and 

is equal to ½ the labor cost of LA
1 

EB
2’ is the expenditure required for incorporating only the solid state drive into the 

preliminary design if the solid state drive meets its performance trajectory and is 

equal to ½ the labor cost of LB
1 

EA
3’ is the expenditure required for incorporating the hard disk drive technology into the 

detailed design if the solid state drive fails to meet its performance trajectory and is 

equal to the cost ($A
2) of Y hard disk drives plus a labor cost of LA

2 
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EB
3’ is the expenditure required for incorporating the solid state drive technology into the 

detailed design if the solid state drive meets its performance trajectory and is equal to 

the cost ($B
2) of Y solid state drives plus a labor cost of LB

2 

EA
4’ is the expenditure required for procuring ($A

3) Z hard disk drives if the solid state drive 

fails to meet its performance trajectory 

EB
4’ is the expenditure required for procuring ($B

3) Z solid state drives if the solid state drive 

meets its performance trajectory 

 

Table 4-4.  Computation of Variable Values 
Variable Equation Value Cost 

EA
1 = ($A

1 * X) + LA
1 = ($190*10)+$10000 = $  11,900 

EB
1 = ($B

1 * X) + LB
1 = ($1000*10)+$10000 = $  20,000 

EA
2  = ($A

2 * Y) + LA
2 = ($137.05*25)+$10000 = $  13,437 

EB
2 = ($B

2 * Y) + LB
2 = ($250*25)+$8000 = $  14,250 

EA
3 = $A

3 * Z = ($117.50*2500) = $293,750 

EB
3 = $B

3 * Z = ($125*2500) = $312,500 

EAB
1 = ($A

1 * X) + ($B
1 * X) + 

 (½ *( LA
1 + LB

1)) 

= ($190*10)+($1000*10)+ 

(½ * ($1000+$1000) 

= $  21,900 

EA
2’ = ½ * LA

1 = ½ * $10000 = $    5,000 

EB
2’ = ½ * LB

1 = ½ * $10000 = $    5,000 

EA
3’ = ($A

2 * Y) + LA
2 = ($137.05*25)+$10000 = $  13,437 

EB
3’  =($B

2 * Y) + LB
2 = ($250*25)+$8000 = $  14,250 

EA
4’ = $A

3 * Z = ($117.50*2500) = $293,750 

EB
4’ = $B

3 * Z = ($125*2500) = $312,500 
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4.2.2 Net Present Value Analysis 

NPV is the difference between how much the new system would be worth if it existed 

today (S) and how much the system will cost or all the required expenditures (E) to bring the 

project to reality. 

NPV = S - ΣE 

The current value for the project if it existed today (S) was determined by computing the 

average of the production costs and development costs, and adding them together and was equal 

to $245,000, the assumed risk free rate of return (rf) is 10%, and the expenditures are listed in 

Table 4-4.  This leads to the following equations: 

When using Technology A exclusively 

NPVA = S – EA
1 – EA

2 / (1+rf)2 – EA
3 / (1+rf)3 

NPVA = $245,000 - $11,900 – $13,437/(1.1)2 - $293,750/(1.1)3 

NPVA = $245,000 - $11,900 - $11,105 - $220,699 

NPVA = $1,296 

When using Technology B exclusively 

NPVB = S – EB
1 – EB

2 / (1+rf)2 – EB
3 / (1+rf)3 

NPVB = $245,000 - $20,000 – $14,250/(1.1)2 - $312,500/(1.1)3 

NPVB = $245,000 - $20,000 - $11,777 - $234,786 

NPVB = - $21,563 → 0 

When starting the preliminary design with both technologies and Technology B fails to meet its 

performance estimates 

NPVAB_A = S – EAB
1 – EA

2’/ (1+rf) – EA
3’/ (1+rf)2 – EA

4’/ (1+rf)3   

NPVAB_A = $245,000 - $21,900 - $5000/(1.1) - $13,437/(1.1)2 - $293,750/(1.1)3 

NPVAB_A = $245,000 - $21,900 - $4545 - $11,105 - $220,699 

NPVAB_A = - $13,249  → 0 
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When starting the preliminary design with both technologies and Technology B meets it 

performance estimates 

NPVAB_B = S – EAB
1 – EB

2’/ (1+rf) – EB
3’/ (1+rf)2 – EB

4’/ (1+rf)3 

NPVAB_B = $245,000 - $21,900 - $5000/(1.1) - $14,250/(1.1)2 - $312,500/(1.1)3 

NPVAB_B = $245,000 - $21,900 - $4545 - $11,777 - $234,786 

NPVAB_B = - $28,008  → 0 

The NPV analysis provides the decision maker with the following information: the 

decision maker now knows that only the NPVA is greater than zero.  More specifically, the 

decision maker knows that NPVA = $1,296 and NPVB NPVAB_A and NPVAB_B are all < 0.  Based 

on this information the decision maker should decide it would be of value to continue the 

analysis. 

 

4.2.3 Real Options Analysis 

 
Table 4-5 defines the variables used in calculating a Compound Sequential Option 

Analysis. 

The distribution of possible project values will be considered to be fairly standard and 

assumed to follow a lognormal distribution.  As discussed in Chapter 2, this means that the factor 

to apply for an up movement is given by the formula e to the power of σ (volatility or variance) 

times the square root of τ (time interval) and the factor for a down movement is given by the 

inverse of the up factor. 
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Table 4-5.  Compound Option Variables 

Compound 

Option 

Variable 

Definition Comments 

Si,j 
Value of the SE project at point i,j i and j define the variable’s position in 

the lattice  
 

Ey
N 

Investment required to design, 
develop, build, and test the SE project 

y designates the technology 
N designates different sequential 

investments over time, i.e., 1st, 2nd, etc. 
rf Risk-free rate of return  

σ Volatility of project Used to calculate the up and down 
factors 

 
u Up Factor u= τσe  

d Down Factor d= 1/u 

p Probability of the PVy
N

i,j increasing  

(1-p) Probability of PVy
N

i,j decreasing  

PVy
N

i,j
  

Present Value of the SE project at 
point i,j evaluated using Ey

N
  if 

appropriate 
 

 

NOV Net Option Value  

 

 

Assuming a lognormal distribution centered at the value for S ($245,000) utilized in the 

NPV analysis and based on the variance of the sums for the production and development costs a 

variance of 20%, the distribution of the possible project values is then a multiplicative process 

that starts at S0,0 and moves up or down based on σ with a up factor (u) and a down factor (d).  In  

this example the volatility (σ) is 20% or .2 and τ = 1 so the up factor u= τσe = 2.e = 1.22 and the 

down factor d=1/u=1/1.22=0.82.  Therefore, 

S1,0 = u * S0,0 = 1.22 * $245,000 = $299,244 
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S0,1 = d * S0,0 = 0.82 * $245,000 = $200,589 

Table 4-6 presents the Si,j values for the project through 2009. 

 

Table 4-6.  Possible Project Values (S) 

 2006  2007  2008  2009 
      S3,0 = $446,419 
    S2,0 = $365,497   

  S1,0 = $299,244   S2,1 = $299,244 
S0,0 = $245,000   S1,1 = $245,000   

  S0,1 =  $200,589   S1,2 = $200,589 
    S0,2 = $164,228   

      S0,3 = $134,459 
 

 

The next step in sequential option analysis is to calculate and evaluate the Present Values 

(PVy
N

i,j) at the point in time that the last investment takes place, 2009 in this example.  

Remember that the reason for starting the evaluation when the last investment takes place is 

because if all of the PVy
N

i,j values at those points are $0 then the project should be abandoned 

and no other analysis is required.  For the cases under consideration; case 1) is when starting the 

preliminary design with both technologies and Technology B fails to meet its performance 

estimates and case 2) is when starting the preliminary design with both technologies and 

Technology B meets it performance estimates, Table 4-4 lists all the potential expenditures for 

each year associated with the cases under consideration. 

As discussed in Chapter 2, the PVy
N

i,j for any point i,j in the lattice, is determined using 

one of two formulas; 
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1) when expenditure is required in order to realize the project at a point i,j then, the expenditures 

(E) are subtracted from the value of the project (Si,j) associated with point i,j but in no case can 

PVy
N

i,j ever be less than zero.  This leads to the following formula: 

PVy
N

i,j = MAX[Si,j – Ey
N, 0] 

2) when no expenditures are required then PVy
N

i,j is a function of PVy
N

i+1,j and PVy
N

i,j+1 and 

depends on the probability of realizing either value such that: 

PVy
N

i,j = (p * PVy
N

i+1,j) + ((1-p)* PVy
N

i,j+1) 

In the two cases under consideration based on this example an expenditure takes place 

every year so equation 2 is not used. The equations for Case 1 for the nodes at 2009 are:  

PVAB_A
4

3,0 = MAX(S3,0 – EA
4, 0)  

= MAX($446419–$293750, $0)  

= MAX($152669, $0) = $152669 

PVAB_A
4

2,1 = MAX(S2,1 – EA
4, 0) 

=MAX($299244–$293750, $0) 

=MAX($5494, $0) = $5494 

PVAB_A
4

1,2 = MAX(S1,2 – EA
4, 0) 

=MAX($200589–$293750, $0) 

=MAX(-$93161, $0) = $0 

PVAB_A
4

0,3 = MAX(S0,3 – EA
4, 0) 

=MAX($134459–$293750, $0) 

=MAX(-$159291, $0) = $0 

Using the same techniques the remaining PVy
N

i,j values were calculated and are presented 

in Table 4-7 for Case 1 and Table 4-8 for Case 2. 
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Table 4-7.  Present Values for Case 1

Year 2006  2007  2008  2009 
        
Expenditure $21,900  $5,000  $13,437  $293,750 
        
      PVAB_A

4
3,0 = $152,669 

    PVAB_A
3

2,0 = $85,015  Procure Technology A 

  PVAB_A
2

1,0 = $48,985  

Use 
Technology A 
in Detailed 
Design PVAB_A

4
2,1 = $5494 

PVAB_A
1

0,0 = $12,316  Use Technology A PVAB_A
3

2,1 = $0  Procure Technology A 

 

Use Both 
Technology 
A and B in 
Preliminary 
Design PVAB_A

2
0,1 = $0  Abandon PVAB_A

4
1,2 = $0 

   Abandon PVAB_A
3

0,2 = $0  Abandon 
     Abandon PVAB_A

4
0,3 = $0 

      Abandon 
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Table 4-8.  Present Values for Case 2

Year 2006  2007  2008  2009 
        
Expenditure $21,900  $5,000  $14,250  $312,500 
        
      PVAB_B

4
3,0 = $133,919 

    PVAB_B
3
2,0 = $70,789  Procure Technology B 

  PVAB_B
2
1,0 = $39,952  

Use 
Technology B 
in Detailed 
Design PVAB_B

4
2,1 = $0 

PVAB_B
1
0,0 = $6,007  Use Technology B PVAB_B

3
2,1 = $0  Abandon 

 

Use Both 
Technology 
A and B in 
Preliminary 
Design PVAB_B

2
0,1 = $0  Abandon PVAB_B

4
1,2 = $0 

   Abandon PVAB_B
3
0,2 = $0  Abandon 

     Abandon PVAB_B
4
0,3 = $0 

      Abandon 
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The value of the option to wait until the cross-over point to make the technology 

selection is the difference between the NPV and the project’s Present Value.  The Net Option 

Value (NOV) for Case1 and Case 2 are shown below: 

NOVAB_A = PVAB_A
1

0,0 – NPVA 

NOVAB_A = $12,316 - $1,296 

NOVAB_A = $11,020 

NOVAB_B = PVAB_B
1
0,0 – NPVA 

NOVAB_B = $6,007 - $1,296 

NOVAB_B = $4,711 

For this example both of the Net Option Values are greater than zero, so the decision is to 

carry both technologies until the cross-over point and make the technology selection then. In 

both cases the options are sufficiently valuable to maintain. 

 

4.2.4 The Technology Selection Decision at the Cross-over Point 

It is now 2007 and the cross-over point has been reached, new performance data is 

available on both HDD (Technology A) and SSD (Technology B).  Technology A is continuing 

to perform at 72MB/s for sustained reads and Technology B has crossed over Technology A’s 

performance and is demonstrating sustained read times of 75MB/s.  Cost information is also 

available for Technology A and Technology B, Technology A’s cost has only decreased from 

$190 to $180 which places it above its cost projection and Technology B’s cost is $550 which 

places it on its cost projection.  Based on this information the technology selection decision is to 

use the Technology B.  The next section investigates the sensitive of the variables used in this 

example. 
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4.3 Sensitivity Analysis 

The baseline for the sensitivity analysis was the example presented above.  Sensitivity of 

the algorithm to variations in an emerging technology’s performance trajectory are explored in 

this part of the chapter. 

 

 
4.3.1 Technology Options Analysis 

Technology B’s performance trajectory was based on a forecast that the performance 

would double every 18 months.  In order to understand how sensitive the algorithm is the 

baseline forecast was varied by +/- 6 months or approximately 33%.  Table 4-9 lists the 2006 

projected read times for performance trajectories of 12, 18, and 24 months for Technology B. 
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Table 4-9. Projected Read Times 
Year Technology B 

SSD Sustained Read Time 
Predicted 

Technology A 
HDD Sustained Read Time 

Known 
 12 Months     18Months     24 Months  

2006 45 MB/s        45 MB/s       45 MB/s 72 MB/s 

2007 90 MB/s        75 MB/s       68 MB/s 72 MB/s 

2008 180 MB/s      120 MB/s     90 MB/s 72 MB/s 

2009 360 MB/s      180 MB/s     135 MB/S 72 MB/s 

 

 

The cross-over points for the various performance trajectories from Table 4-9 are plotted 

in Figures 4-2 and 4-3. 

 

 

Figure 4-2.  Cross-over Points for Various  
Performance Trajectories (1/2) 
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Figure 4-3.  Cross-over Points for Various  
Performance Trajectories (2/2)  

 
 

Because the initial doubling of the predicted performance for Technology B is better than 

Technology A (72 MB/s) it is assumed that within the area of interest the performance trajectory 

is linear3 and the calculations can be accomplished by manipulating the standard equation for a 

line as was done before. 

The projected rate of performance for each performance trajectory: 

rp12months = [90 MB/s – 45 MB/s]/12 months =  3.75 MB/s /Month 

rp18months = [90 MB/s – 45 MB/s]/18 months = 2.5 MB/s /Month 

rp24months = [90 MB/s – 45 MB/s]/24 months = 1.875 MB/s /Month 

 

 

 

 

                                                 
3 As noted previously, the technology curves can follow other shapes.  For ease in demonstrating the algorithm, a 
linear trajectory is assumed. 
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The cross-over point (τcop) for each performance trajectory: 

τcop12months = [72 MB/s – 45 MB/s] / 3.75 MB/s / Month = 7.2 Months 

τcop18months = [72 MB/s – 45 MB/s] / 2.5 MB/s / Month = 10.8 Months 

τcop24months = [72 MB/s – 45 MB/s] / 1.875 MB/s / Month = 14.4 Months 

 

The cross-over points for all three performance trajectories are within the time horizon of 

the project and the next step is to determine their delta performance. 

The delta performance (Δp) for each performance trajectory in 2009 based on Table 4-9 is: 

Δp12months = 360 MB/s – 72 MB/s = 288 MB/s or a 400% improvement 

Δp18months = 180 MB/s – 72 MB/s = 108 MB/s or a 150% improvement 

Δp24months = 135 MB/s – 72 MB/s = 63 MB/s or a 88% improvement 

 

Table 4-10 presents the effect a 33% change on this particular performance trajectory had 

on the projected rate of performance, the cross-over point, and the delta performance.  The data 

would indicate that for this example the cross-over point and the change in trajectory are 

perfectly correlated.  This relationship is the same as was seen in the sensitivity analysis 

conducted in Chapter 3 and appears to apply when all potential trajectories start from the same 

demonstrated performance data point.  Since the performance trajectories are exponential in this 

example and the delta performance calculations are not part of the linear region of interest the 

delta performance is correlated as a function of the time the evaluation takes place.  
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Table 4-10.  Changes in Cross-Over and Delta Performance 
 Double every 12 Months Double every 18 Months Double every 24 Months

rp 3.75 MB/s/Month 2.5 MB/s/Month 1.875 MB/s/Month 

% Change 50% faster n/a 25% slower 

τcop 7.2 Months 10.8 Months 14.4 Months 

% Change 33% earlier n/a 33% later 

Δp 288 MB/s 108 MB/s 63 MB/s 

% Change 166% faster n/a 41% slower 

 

 

Based on all the cross-over points being within the time horizon of the project and the amount of 

potential performance gain the sensitivity analysis will continue using the steps called out in the 

algorithm. 

Using the data from Table 4-4 and the equations presented below, the new expenditure 

profiles based on each cross-over point was calculated and is presented in Table 4-11. 

EAB
1

12Months = (X*($A
1 + $B

1)) + [((LA
1 + LB

1)/24months)] * τcop12months 

EAB
1

18months = (X*($A
1 + $B

1)) + [((LA
1 + LB

1)/24)] * τcop18months 

EAB
1

24months = (X*($A
1 + $B

1)) + [((LA
1 + LB

1)/24)] * τcop24months 

EA
2’

12Months = (LA
1/24 months) * (24 months - τcop12months) 

EA
2’

18months = (LA
1/24 months) * (24 months - τcop18months) 

EA
2’

24months = (LA
1/24 months) * (24 months - τcop24months) 

EB
2’

12Months = (LB
1/24months) * (24 months - τcop12months) 

EB
2’

18months = (LB
1/24 months) * (24 months - τcop18months) 

EB
2’

24months = (LB
1/24 months) * (24 months - τcop24months) 
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The detailed design and production cost remain the same both in their timing and their value.  

 

Table 4-11.  Calculated Cross-over Points 
Variable Cost 

EAB
1

12Months = $17,900 

EAB
1

18months = $20,900 

EAB
1

24months = $23,900 

EA
2’

12Months = $  7,000 

EA
2’

18months = $  5,500 

EA
2’

24months = $  4,000 

EB
2’

12Months = $  7,000 

EB
2’

18months = $  5,500 

EB
2’

24months = $  4,000 

EA
3’ = $13,437 

EB
3’ = $14,250 

EA
4’ = $293,750 

EB
4’ = $312,500 

 

 

4.3.2 Net Present Value Analysis 

Using the same values for S ($245,000) and the risk free rate of return (10%) and the 

expenditure profiles as listed in Table 4-11, the NPV for all three performance trajectories were 

calculated and are presented below. 

NPVAB_A_12months = - $11,315 → 0 

NPVAB_A_18months = - $12,752 → 0 

NPVAB_A_24months = - $14,271 → 0 

NPVAB_B_12months = - $26,074 → 0 
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NPVAB_B_18months = - $27,511 → 0 

NPVAB_B_24months = - $29,030 → 0 

The NPV analysis information was not affected by the change to the performance trajectories. 

 
 
4.3.3 Real Option Analysis 

The present values (PVy
N

i,j) were calculated using Table 4-6 and Table 4-11 and are 

presented in Table 4-12, Table 4-13, Table 4-14, and Table 4-15. 
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Table 4-12.  Present Values for Doubling every 12 Month for Case 1 

Year 2006  2007  2008  2009 
        
Expenditure $17,900  $7,000  $13,437  $293,750 
        
      PVAB_A

4
3,0 = $152,699 

    PVAB_A
3

2,0 = $85,015  Procure Technology A 

  PVAB_A
2

1,0 = $44,965  

Use 
Technology A 
in Detailed 
Design PVAB_A

4
2,1 = $5494 

PVAB_A
1

0,0 = $13,509  Use Technology A PVAB_A
3

2,1 = $0  Procure Technology A 

 

Use Both 
Technology 
A and B in 
Preliminary 
Design PVAB_A

2
0,1 = $0  Abandon PVAB_A

4
1,2 = $0 

   Abandon PVAB_A
3

0,2 = $0  Abandon 
     Abandon PVAB_A

4
0,3 = $0 

      Abandon 
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Table 4-13.  Present Values for Doubling every 12 Month for Case 2 

Year 2006  2007  2008  2009 
        
Expenditure $17,900  $7,000  $14,250  $312,500 
        
      PVAB_B

4
3,0 = $133,919 

    PVAB_B
3
2,0 = $70,789  Procure Technology B 

  PVAB_B
2
1,0 = $36,270  

Use 
Technology B 
in Detailed 
Design PVAB_B

4
2,1 = $0 

PVAB_B
1
0,0 = $7,435  Use Technology B PVAB_B

3
2,1 = $0  Abandon 

 

Use Both 
Technology 
A and B in 
Preliminary 
Design PVAB_B

2
0,1 = $0  Abandon PVAB_B

4
1,2 = $0 

   Abandon PVAB_B
3
0,2 = $0  Abandon 

     Abandon PVAB_B
4
0,3 = $0 

      Abandon 
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Table 4-14.  Present Values for Doubling every 24 Month for Case 1 

Year 2006  2007  2008  2009 
        
Expenditure $23,900  $4,000  $13,437  $293,750 
        
      PVAB_A

4
3,0 = $152,699 

    PVAB_A
3

2,0 = $85,015  Procure Technology A 

  PVAB_A
2

1,0 = $51,024  

Use 
Technology A 
in Detailed 
Design PVAB_A

4
2,1 = $5494 

PVAB_A
1

0,0 = $11,740  Use Technology A PVAB_A
3

2,1 = $0  Procure Technology A 

 

Use Both 
Technology 
A and B in 
Preliminary 
Design PVAB_A

2
0,1 = $0  Abandon PVAB_A

4
1,2 = $0 

   Abandon PVAB_A
3

0,2 = $0  Abandon 
     Abandon PVAB_A

4
0,3 = $0 

      Abandon 
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Table 4-15.  Present Values for Doubling every 24 Month for Case 2 
Year 2006  2007  2008  2009 

        
Expenditure $23,900  $4,000  $14,250  $312,500 
        
      PVAB_B

4
3,0 = $133,919 

    PVAB_B
3
2,0 = $70,789  Procure Technology B 

  PVAB_B
2
1,0 = $41,817  

Use 
Technology B 
in Detailed 
Design PVAB_B

4
2,1 = $0 

PVAB_B
1
0,0 = $5,309  Use Technology B PVAB_B

3
2,1 = $0  Abandon 

 

Use Both 
Technology 
A and B in 
Preliminary 
Design PVAB_B

2
0,1 = $0  Abandon PVAB_B

4
1,2 = $0 

   Abandon PVAB_B
3
0,2 = $0  Abandon 

     Abandon PVAB_B
4
0,3 = $0 

      Abandon 
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The Net Option Value (NOV) for the three trajectories are presented in Table 4-16.shown below: 

 

Table 4-16.  Net Option Value 
 Double every 12 Months Double every 18 Months Double every 24 Months

NOVAB_A $12,213 $11,020 $10,444 

% Change 10% n/a 5% 

NOVAB_B $6,139 $4,711 $4,013 

% Change 30% n/a 10% 

 

 

For this example the Net Option Value’s sensitivity to a 33% change in the performance 

trajectory did not change the recommended outcome.  All of the Net Option Values are greater 

than zero, so the decision will still be to carry both technologies until the expected future cross-

over point and make the technology selection then.   In all cases the options are sufficiently 

valuable to maintain.  This may be unique to this example and it is recommended that sensitivity 

analysis be conducted whenever this algorithm is used because each case will be slightly 

different.  The sensitivity analysis conducted as part of Chapters 2 and 3 also hold when utilizing 

ROA and TOA techniques.  The next section takes the steps presented and constructs an 

algorithm for the decision maker to utilize 

 

4.4 Unified Algorithm 
 
Algorithm Steps 
 

1. Gather Data. 

a. Two Technologies with overlapping functionality 
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i. One existing technology 

1. Meets requirements today and into the future 

ii. One emerging technology 

1. Does not meet requirements today but will surpass the 

performance of the mature technology in the future 

b. Obtain current performance data for both 

c. Obtain future predicted performance estimate for both  

i. Web/roadmaps/trade journals 

d. Obtain both technologies predicted rate of change of performance if available.  If 

not available calculate using a linear approximation. 

2. Using the rate of change of performance for the new technology 

a. Compute the τcop for the two technology options: A- existing technology, B- 

emerging technology. 

i. If τcop occurs outside the project’s time horizon, then abandon the 

emerging technology B 

ii. If τcop occurs within the project time horizon, continue  

3. Compute the - Δp in performance between Technology B and Technology A. 

a. If, the Δp is: 

i. Not sufficiently high, abandon the emerging technology B 

ii. Otherwise, continue  

4. Compute the two expenditure profiles associated with continuing the development with 

both technologies until τcop 
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a. Case 1: Technology B’s performance does not exceed Technology A’s at τcop so 

Technology A will be selected and 

b. Case 2: Technology B’s performance does exceed Technology A’s at τcop so 

Technology B will be selected, continue  

5. Compute the NPV for Case 1, and Case2  

a. If the NPV is: 

i.  Positive for Case 1 and Case 2, then start the development with  both  and 

proceed to step 8  

ii. Otherwise, continue 

6. Calculate the Present Value for Case 1 and Case 2 using ROA compound sequential 

option techniques, continue 

7. Calculate the Net Option Value (NOV) for Case 1 and Case 2 

a. If: 

i. Both NOVs are < 0, abandon that emerging technology B 

ii. Both OVs are >0, then start the development with both  and continue 

Only two of the four potential outcomes associated with NOV are addressed as part of this 

dissertation.  For the cases where the NOV is <0 for one of the technology’s and >0 for 

the other it is believed that that decision will be based on the decision maker’s tolerance 

for risk.  Table 4-16 provides a potential starting point for future research. 

8. If new performance data on either technology arrives before the cross-over point then 

return to step 2, otherwise continue, 

9. When τcop is reached evaluate performance and cost data and make the following 

decision: 
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a. If Technology B’s performance is not greater than Technology A’s (Case 1), 

select the existing technology A 

If Technology B’s performance is greater than Technology A’s (Case 2), select the emerging 

technology B. Figure 4-4 presents the unified algorithm into a process flow chart.  

 

Table 4-17.  NOV Decision Table 
Mature New Risk Seeking Risk Avoiding 

NOV>0 NOV>0 Wait Wait 

NOV<0 NOV<0 Abandon Abandon 

NOV<0 NOV>0 Wait Wait 

NOV>0 NOV<0 Wait Abandon 
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Figure 4-4.  Process Flow Diagram of Unified Algorithm 
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4.5 Summary 

The technology selection decision must be based on how well the technology meets a set 

of performance requirements and how much selecting that technology will cost. Such technology 

selection is a key to the success or failure of a Systems Engineering project.  A decision aid 

therefore must be able to account for the uncertainties associated with cost and performance data, 

especially when the technology selection results in an irreversible or nearly irreversible 

architecture.  Such an aid must present the decision space available to the decision maker in a 

useable and understandable output.  In the two previous chapters, the Systems Engineering 

decision making process was extended by presenting and developing new methods for evaluating 

systems engineering technology alternatives with respect to cost (Chapter 2) and performance 

(Chapter 3) using the framework of Real Options and Technology Options Analysis.  This 

chapter combined those two dimensions into a unified algorithm to simultaneously evaluate cost 

and performance alternatives so that a decision maker can gain an overall view of the value of 

delaying a decision until the most appropriate time. 

The algorithm was constructed based on a common scenario faced by systems engineering 

decision makers. The scenario of interest was one in which two technologies are being consider 

for the system.  One is mature and met all the requirements today and into the future, and a new 

technology is being developed but it did not meet the requirements today but its future 

performance is projected to exceed the performance of the existing technology.  The algorithm 

starts by investigating wither a technology should even be considered. To do that it uses 

Technology Options Analysis and the techniques discussed in Chapter 3. 

If, sometime in a new technology’s future it is predicted to exceed or cross-over the 

existing technology’s performance, this cross-over point defines the optimum time to make the 
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decision because it is then when the uncertainty about the new technology’s performance is 

answered. The cross-over point is independent of the project and only depends on the 

technologies being considered.  Once it has been determined it can be compared to the project’s 

time horizon and, if it is outside the time horizon, the decision it to abandon, or, if it is within the 

time horizon, continue with the analysis.   

If the outcome is to continue the change (delta) in performance is determined next.  

Based on the magnitude of the gain in performance, the decision maker can either decide to start 

the cost analysis portion of the algorithm, or to abandon the new technology.  If the decision is to 

continue the analysis, an expenditure profile should be calculated that takes into account carrying 

both of the competing technologies until the cross-over point.  Once that is complete, the actual 

cost analysis begins using Net Present Value Analysis. 

The NPV information answers the question as to whether the project with both 

technologies should be started immediately or not.  If the NPV is positive for the cases where 

both technologies are carried until the cross-over point, no additional information is required.  In 

the case where one or more of the NPVs are zero, Real Options Analysis is completed. 

The compound sequential option from ROA is utilized because in most cases the SE 

project is based on a sequential program in which there multiple stages to building the project; 

initial design phase, detailed engineering phase, and procurement phase to name just a few.  At 

each of the phases, a decision is required as to wither the project should continue or be 

abandoned.  By using compound sequential option analysis the decision maker will be provided 

with an output that provides recommended decisions recommendation at all the key decision 

points in the future.  The final Present Value of the compound sequential option is used to 

determine the value of waiting or the Net Option Value.  It is the Net Option Value that provides 
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the final piece of information the decision maker needs in order to understand the performance 

and cost impacts associated with the technology selection decision. 

It is the ability of both TOA and ROA to value uncertainty until additional information is 

available that the algorithm takes advantage of and such information benefits the systems 

engineering decision maker when: 1) there is uncertainty in the future performance and cost of 

competing technologies, no current techniques are available to correctly estimate the 

cost/performance value of the alternatives; 2) the technology decision is or may be totally 

irreversible, but the decision to delay the technology decision is always reversible; and 3) 

delaying the technology selection can have a significant effect on the SE technology decision.  

The value of the algorithm developed in this chapter is that information is available today and it 

can be used to help key decision makers know what the decision should be at any point in time.  

Understanding how sensitive this knowledge was to variations a technology performance 

provides the decision maker with an understanding of the riskiness associated with these 

decisions. 
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CHAPTER V 

 

SYNOPSIS AND CONCLUSIONS 

 

The objective of my research was to investigate and develop tools and techniques such 

that systems engineering decision makers can make more effective financial and technology 

choice decisions.  These decisions are important because the technology selection determines the 

final performance of the project and commits the majority of the total life cycle cost.  This 

implies that technology selection is key to the success or failure of a systems engineering project.  

To arrive at the technology decision, a systems engineer needs to assess how well each 

technological alternative performs against various schedule, performance, and cost objectives.  

My research only investigated two (cost and performance) of the three (cost, performance, and 

schedule) primary objectives of a system; modifying the third (schedule) was beyond the scope 

of this dissertation.   My research question was “When in the decision process should the 

technology selection be made?”  

The most common method of evaluating the cost objective, Net Present Value, was 

presented and its inability to differentiate between technologies whose associated costs have 

different volatilities was demonstrated.  Then Real Options Analysis was introduced as an 

analysis tool because of its ability to differentiate between technologies that have different cost 

volatilities.  Specifically a compound sequential option was discussed in detail and an example 

of how this type of ROA analysis technique fit into the systems engineer process.  ROA also 

introduced the concept to the SE decision maker that information was available now for every 

future decision point or milestone as part of the systems engineering process and how this could 
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assist the decision maker in making more effective financial choices. The value of this 

information is that it is available today and the decision maker knows what the decision will be 

at any point in time (execute, wait, or terminate).  Technology selection also impacts a project’s 

final performance and its ultimate acceptance or rejection by the customer. 

Despite the importance of technology selection the existing techniques for evaluating 

performance have had limited success in predicting whether a technology’s future performance 

will be achieved or not.  This is important because once a technology is chosen the architecture 

can become irreversible or nearly irreversible.  The current methods available to analyze 

potential technology’s performance uncertainties where unable to quantitatively answer the 

research question.  A new analysis technique was needed that could take into account the 

uncertainty associated with a technology’s future predicted performance.  Technology Options 

Analysis (TOA) was developed using the idea that there can be value in waiting to make a 

decision until more performance information is available.  For this reason it is similar to ROA 

but only in concept, not in execution.  TOA methodology provides the decision maker with three 

key pieces of information; 1) the time a new emerging technology should cross-over the current 

technology, 2) the delta performance between the new and existing technology, and 3) an 

assessment of the risk associated with the new technology meeting its predicted performance.  

Based on this information the decision maker now can determine if there is value to delay the 

technology decision until the performance uncertainty with the new technology has been 

resolved and that should assist the decision maker in making more effective technical choices. 

While the individual techniques developed are for evaluating future cost and 

performance, frequently these two variables cannot be looked at in isolation.  The situation 

commonly faced by systems engineers is that the ROA and TOA analysis points may not occur 



 

128 

concurrently.  In order to solve this problem it was necessary to develop an algorithm that 

aligned the ROA analysis based on the TOA outputs.  This would be necessary in order to fully 

answer my research question. 

The algorithm is based on a scenario where at least two technologies are being considered 

for use in the system.  One is mature and meets all the requirements today and into the future.  A 

new technology is being developed but it does not meet all the requirements today but its future 

performance is projected to exceed the performance of the existing technology.  However, there 

exists uncertainty relative to the new technology’s performance and the new and existing 

technology’s future cost.  TOA analysis is performed first to determine if the new technology 

meets the project’s time horizon and is of sufficient increase in performance to warrant further 

analysis.  If the answer to both of these questions is yes than the analysis will continue utilizing 

the timing of the TOA cross-over point to perform NPV and ROA analysis.  The final output of 

the algorithm is the value of waiting until the performance uncertainty is resolved or the option 

value.  It is by using this algorithm that my research question, “When in the decision process 

should the technology selection be made?” is answered. 

 

5.1 Sensitivity Analysis of the Unified Algorithm 

When utilizing this algorithm the decision maker needs to be sensitive to the 

technology’s predicted performance information.  There are many potential sources for this 

information, technology or company roadmaps, surveys, or technical data surveys.  Based on the 

sensitivity analysis if the new technology fails to meet its’ near term performance predictions the 

risk of it meeting future performance predictions increase with the effect being more severe the 

later in the development time horizon that it is predicted to overtake the mature technology.  The 
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decision maker should also be sensitive to how the cost data is projected, like performance data it 

has many sources, some are more reliable than others.  The sensitivity results for ROA 

demonstrated that the smaller the difference between the value of the project if it existed today 

(S) and the cost to acquire the project (E) the larger the option value.  Variations in S and E will 

have an impact on the outcome of the algorithm.  By understanding the source of the data the 

decision maker can adjust the uncertainty factors within TOA and ROA to see the impact on the 

outcome.  For this reason it is recommended that when using this algorithm sensitivity analysis is 

performed by varying the performance trajectory and the cost data.  This can be accomplished by 

selecting different values for the projected rate of performance (rp) to generate a range of cross-

over points (τcop) and various delta performance (Δp) values to understand the sensitivity of the 

performance data and by varying the volatility of the project (σ) and the investments to 

understand the sensitivity of the selection to the cost information.  That way if there is sensitivity 

based on the data and the unique situation the decision maker will be aware of it 

 

5.2 Research Contributions 

By extending Real Options Analysis to include the Net Option Value technique so that 

the expenditures required for the implementation of multiple technologies during the 

development cycle are included, a more useful value of waiting to make the technology selection 

is provided to the systems engineering decision maker.  Based on this information, the systems 

engineer should be able to make a more effective technology decisions. 

Through the development of Technology Options Analysis, the systems engineering 

decision maker now has the ability to determine when a new technology will overtake an 

existing one (the cross-over point), how much performance gain might be achieved, and the risk 
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of the new technology meeting its predicted future.  The system engineer now understands the 

optimum time to make the technology selection and should be able to make a more informed 

technology decision. 

The incorporation of Technology Options and Real Options Analysis into a unified 

algorithm provides simultaneous evaluation of performance and cost.  By understanding the 

optimum time to make the technology selection based on resolving a new technology’s future 

performance uncertainty and using that information to conduct the cost analysis a more insightful 

depiction of the value of waiting to make the technology selection is provided to the systems 

engineering decision maker.  This should assist the decision maker in making more effective 

technical and financial choices and provides a rational and archiving of the decision process. 

 

5.3 Limitations 

As stated previously, this research only investigated two (cost and performance) of the 

three (cost, performance, and schedule) primary objectives of a system; modifying the third 

(schedule) was beyond its scope. This is a major limitation of the research that should be 

addressed by future research.   

Additionally, only two technology choices were analyzed in the algorithms created.  In 

many cases there are more than two choices, there this also is a natural extension of the research.  

In order to utilize the algorithms developed, the following criteria must be meet; 1) at 

least two potential technologies should be under consideration for implementation in the SE 

project, 2) one technology must meet the minimum level of performance today while the other 

technology does not, 3) the technology that does not meet the minimum level of performance 

today is predicted to outperform the technology that does sometime in the future, 4) all the 
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technologies must have a current demonstrated performance and as a minimum one predicted 

future performance value, and 5) all the technologies must have a future cost profile.  In addition 

to the limitations associated with the algorithm each of the analysis techniques have limitations. 

When using Real Options Analysis the choice of the value for the risk-free rate of return 

(rf) is often debated and argued.  Based on the sensitivity analysis conducted on rf choosing a 

low value (<5%) will make the option value worthless and choosing a high value (>15%) will 

make the option value very valuable regardless in both cases of the cost uncertainty.  The 

implication for the decision maker is that the rf that is assumed can greatly impact the value of 

the option. 

How the technology curves are defined will influence the outputs when conducting TOA.  

For the examples in this dissertation, a linear approximation was considered appropriate.  This 

will not always be the case since technology curves can follow other shapes.  Based on the 

sensitivity analysis, when using a linear approximation instead of the actual technology curve, 

the error associated with the cross-over point increase as a function of the demonstrated 

performance delta.  The implications for the decision maker is that the greater the performance 

delta today between the new and existing technologies the more important it is to understand the 

new technology’s performance profile.  

 

5.4 Future Research 

From an application perspective, any systems engineering project considering the use of 

technologies that fit this scenario should consider using the algorithm before making a 

technology selection.  For example, a project considering the use of organic light-emitting diodes 

(OLED) or photovoltaics might benefit from an understanding of when the new technology is 
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predicted to surpass the current technology and what impact that might have on the success of 

their project. 

From a research perspective, the algorithm should be further scrutinized and enhanced to: 

1) accommodate multiple technologies to include the evaluation of multiple cross-over points 

and performance deltas,2) accommodate nested performance requirements, 3) determine if a 

performance-to-cost-of-waiting metric would be of value to the decision maker when the NOVs 

are not identical, and 4) incorporate error bands and probability curves around the sensitivity 

analysis to account for forecasting variability, data uncertainty, and model uncertainty. 

 

5.5 Summary 

My research has answered the question: what is the value to a system engineer for 

waiting to make a technology decision? This question has been answered three different ways: 

from a cost perspective, from a technology perspective, and from the union of these two 

viewpoints. While this research can and should be extended, the resulting algorithms extend the 

toolbox available to systems engineers in making technology decisions.  These tools provide to 

the decision maker the value of waiting from both a performance and cost perspective and 

provide information on future decisions.  The value of this information is that it is available 

today and the decision maker knows what the decision should be at any point in time (execute, 

wait, or terminate).  Systems engineering decision makers no longer have to fear the future and 

worry about being second guessed by the development of new technologies, instead they can 

look forward to the future because they already understand the impact of technology on the 

outcome when the data does arrive, thus they are more likely to generate better solutions. 
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APPENDIX A 

 

OPTION VALUATION OR DERIVATIVES 

 

On 14 October 1997 the press release from the Royal Swedish Academy of Sciences said 

the Nobel Prize in economics was given “for a new method to determine the value of derivatives.  

Robert C. Merton and Myron S. Scholes have, in collaboration with the late Fischer Black, 

developed a pioneering formula for the valuation of stock options. Their methodology has paved 

the way for economic valuations in many areas. It has also generated new types of financial 

instruments and facilitated more efficient risk management in society.”  Why a Nobel Prize?  

Scientific theories can be elegant and challenging but not very practical or they can be practical 

but not very elegant or challenging.  As Robert Merton (1997) said, “Here we have both”. 

Traders and investors all over the world use the Black-Scholes formula every day to 

value stock options.  Their financial goal: maximize profits and minimize losses.  The more 

generalized method devised by Robert Merton has turned out to be relevant to a larger audience 

and has created areas of research inside and outside the domain of financial economics.  To 

appreciate the magnitude of their accomplishment however one has to understand what an option 

is, how an option works, and the state of the theory of option pricing or derivatives prior to their 

seminal work. 

Black and Scholes (1973) defined an “option” as a financial instrument/document that is 

tradable and shows evidence of ownership.  This instrument is commonly referred to as a 

security that gives the right, but not an obligation, to buy (call) or to sell (put) an asset, subject to 

certain conditions, within a specified period of time.  Assets as used in this definition are 
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considered to be a share of stock.  Options are also defined based on when they can be exercised.  

An “American Option” can be exercised at any time up to the date the option expires and a 

“European Option” can only be exercised on a specific date in the future.  The price paid for an 

asset when the option is exercised is called the “exercise price” or “striking price”.  The day on 

which the option must be exercised is called the “expiration date” or “maturity date”.  The 

simplest type of option, a “call option”, is one that gives the right to buy a single share of 

common stock at a preset price.   

The French mathematician Louis Bachelier’s dissertation on the theory of speculation 

deduced an option pricing formula based on the assumption that stock prices followed Brownian 

motion with zero drift (Merton 1973).  This work gave birth to continuous-time mathematics of 

stochastic processes and continuous-time economics of derivative security pricing and influenced 

both Ito’s (Black and Scholes 1973; Merton 1973)development of stochastic processes and 

Samuelson’s rational theory of warrant pricing (Black and Scholes 1973; Merton 1973; Merton, 

Simons et al. 1994; Jarrow 1999; Hull 2003).  Both of these works would become important in 

the development of the Black-Merton-Scholes approach and led to the development of their 

option-pricing theory.  Option pricing theory however sat dormant until the 1960s when 

subsequent researchers started to determine an option’s price using the maximizing conditions 

obtained from an investor’s optimal portfolio position.  These valuation formulas depended on 

the expected return on the stock.  But they all suffered from the same fundamental shortcoming 

in that risk premia was difficult to estimate and to use as risk shifts according to changing tastes 

and changing economic fundamentals. 

Risk premia is the difference between the expected return on a security or portfolio and 

the "risk less rate of interest" or “risk-free rate of return” (rf) (the certain return on a riskless 



 

135 

security) and is often termed its risk premium. Underlying the terminology is the notion that 

there should be a premium (higher expected return) for bearing risk.  This implies the value of an 

option to buy or sell a share depends on the uncertain development of the share price to the date 

of maturity.  It is therefore natural to suppose that the valuation of an option requires taking a 

stance on which risk premium to use (Black and Scholes 1972; Black and Scholes 1973; Merton, 

Simons et al. 1994; Jarrow 1999; Hull 2003). 

Prior to the Black-Scholes formula there were two difficulties that needed to be 

overcome.  First, there were no generally accepted empirical models to determine an asset’s risk 

premium that were consistent with the known regularities in the data.  Secondly and most 

importantly, none of the valuation formulas offered a sense of how to hedge an option using a 

portfolio of the underlying stock and riskless borrowing or lending. 

Black (1989) attempted to solve the problem by valuing the option in a continuous time 

setting using the capital asset pricing model (CAPM).  He was able to obtain an implicit solution 

for an option’s value that was described by a partial differential equation subject to boundary 

conditions but he was unable to find its general solution.  Working with Myron Scholes they 

solved the equation using economic intuition and asset pricing formulas.  In deriving their 

formula it was necessary to assume “ideal conditions” in the market for both the stock and the 

option.  Specifically (Black and Scholes 1973) assumed: 

a) The short term interest rate (r) is known and is constant through time 

b) The stock price follows a random walk in continuous time with a variance rate 

proportional to the square of the stock price.  Thus the distribution of possible stock 

prices at the end of any finite interval is log-normal.  The variance rate of the return on 

the stock is constant. 

c) The stock pays no dividends or other distributions. 

d) The option is “European,” that is, it can only be exercised at maturity. 
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e) There are no transaction costs in buying or selling the stock or the option 

f) It is possible to borrow any fraction of the price of a security to buy it or to hold it, at the 

short-term interest rate. 

g) There are no penalties to short selling.  A seller who does not own a security will simply 

accept the price of the security from a buyer, and will agree to settle with the buyer on 

some future date by paying him an amount equal to the price of the security on that date. 

Under these assumptions, the value of the option will depend only on the price of the stock and 

time and on variables that are taken to be known constants: 

 f(S, τ: E) = SΦ (d1) – Ee-rrΦ (d2), 

 d1 ≡ [log (S/E) + (r + ½ σ2) t]/σ √r, 

 d2 ≡ d1 - σ √rf 

where Φ is the cumulative normal distribution function, σ2 is the instantaneous variance of the 

return on the common stock, 

It was Merton (1973) who demonstrated a different way to derive their partial differential 

equation.  His derivation was not based on CAPM but on a continuous-time construction of a 

perfectly hedged portfolio where the option price H(S, P, τ; E) is a function of the stock price 

(S), the riskless bond price (P), and the length of time to expiration (τ).  A perfectly hedged 

portfolio consisted of common stock, the option, and riskless bonds with time to maturity equal 

to the expiration date of the option, such that the aggregate investment in the portfolio was zero.  

The price for any European option can be determined (Merton 1973) by, 

 (38) 

 

Consequently, for empirical testing or applications, one need only compute tables for the 

“standard” option price as a function of two variables, stock price and time to expiration, to be 

able to compute option prices in general (Merton 1973).  In the special case of a non-stochastic 

⎥⎦
⎤

⎢⎣
⎡= ∫

τ
ττ

0

2 )(V),S/EP()EP(E);P,H(S, dssyτ
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and constant interest rate (i.e., δ = 0, P = e-rr, and T ≡ σ2τ) Merton’s equation reduces to the 

Black-Scholes formula.  
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APPENDIX B 

 

DEFERRAL OPTION VALUE  
EXAMPLE CALCULATIONS 

 
 
 

B.1  Example where E=$1,600K 
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OVE=1600 = PV0,0 – NPV E=1600 = $773K - $600K = $173K 

NOV E=1600 = OV E=1600 – OC E=1600 = $173K - $75K = $98K 
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B.2  Example where E=$2400K, 
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OV E=2400  = PV0,0 – NPV E=2400  = $409K - $0K = $409K  

NOV E=2400 = OV E=2400 – OC E=2400 = $409K - $75K = $334K 



 

140 

B.3 Example with High Volatility and E=$1600K, 
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OV σ=+/-75,E=1600  = PV0,0 – NPV E=1600  = $1022K - $600K = $422K  

NOV σ=+/-75,E=1600 = OV σ=+/-75,E=1600 – OC E=1600 = $422K - $75K = $347K 
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B.4 Example with Low Volatility and E=$1600K, 
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OV σ=+/-10,E=1600  = PV0,0 – NPV E=1600  = $545K - $600K = -$55K  

NOV σ=+/-10,E=1600 = OV σ=+/-10,E=1600 – OC E=1600 = -$55K - $75K =- $130K 
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B.5  Example with High Volatility and E=$2400K, 

[ ]

K1318$PV

0,K1318$0,
1.1

K1450$0,
1.1

K400,2$K3850$PV

0,
11

K400,2$K5$PV

0,
1
E

1
S

PV

1,0

0,1

1,0

1,0
1,0

=

=⎥⎦
⎤

⎢⎣
⎡=⎥⎦

⎤
⎢⎣
⎡ −

=

⎥
⎦

⎤
⎢
⎣

⎡
+

−
1)+(1
03

=

⎥
⎦

⎤
⎢
⎣

⎡
+

−
)+(

=

∑

∑

∞

1=

∞

1=

MAXMAXMAX

MAX

rr
MAX

τ τ

τ τ

 

[ ]

0$PV

0,K1681$0,
1.1

K1850$0,
1.1

K400,2$K550$PV

0,
1.1
K400,2$

.
K50$PV

0,
1

E
1
S

PV

0,1

1,0

0,1

0,1
0,1

=

−=⎥⎦
⎤

⎢⎣
⎡−=⎥⎦

⎤
⎢⎣
⎡ −

=

⎥
⎦

⎤
⎢
⎣

⎡
+

−
1)+(1

=

⎥
⎦

⎤
⎢
⎣

⎡
+

−
)+(

=

∑

∑

∞

1=

∞

1=

MAXMAXMAX

MAX

rr
MAX

τ τ

τ τ

 

$659K0K659$PV
0$*)5.1(K1318$*5.PV

PV*)p1(PV*pPV

0,0

0,0

0,11,00,0

=+=

−+=

−+=

 

OV σ=+/-75,E=2400  = PV0,0 – NPV E=2400  = $659K - $0K = $659K  

NOV σ=+/-75,E=2400 = OV σ=+/-75,E=2400 – OC E=2400 = $659K - $75K = $584K 
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B.6 Example with Low Volatility and E=$2400K, 
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OV σ=+/-10,E=2400  = PV0,0 – NPV E=2400  = $9K - $0K = $9K  

NOV σ=+/-10,E=2400 = OV σ=+/-10,E=2400 – OC E=2400 = $9K - $75K = -$66K 
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B.7 Compound Options – Sequential Options Example Calculations 

Calculation of NPV:  

 

Calculation of NPV when production takes place in Year 

 

Calculation of NPV when production takes place in Year 3 

 

 

NPV used to evaluate ROA is the greater of NPV2 and NPV3. 

NPV2 < NPV3 so NPV = $141K 

Calculation of potential values of the SE project 

S0,0 = $2200K 

S1,0 = u * S0,0 = 1.65 * $2200K = $3627K 

S0,1 = d * S0,0 = 0.61 * $2200K = $1334K 

S2,0 = u *u* S0,0 = 1.65 *1.65 *  $2200K = $5980K 

S1,1 = u*d * S0,0 = 1.65 * 0.61 * $2200K = $2200K 

S0,2 = d*d* S0,0 = 0.61 * 0.61 *  $2200K = $809K 

S3,0 = u*u*u * S0,0 = 1.65 *1.65 *1.65 * $2200K = $9860K 

S2,1 = u *u*d* S0,0 = 1.65 * 1.65 * 0.61 * $2200K = $3627K 

S1,2 = u*d*d * S0,0 = 1.65 * 0.61 *  0.61 * $2200K = $1334K 

S0,3 = d*d*d * S0,0 = 0.61 * 0.61 * 0.61 *  $2200K = $491K 
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Table B-1. Possible Aircraft Values (S) 
 Today  Year 1  Year 2  Year 3 

      S3,0 = 9860 
    S2,0 = 5980   
  S1,0 = 3627   S2,1 = 3627 
S0,0 = 2200   S1,1 = 2200   

  S0,1 =  1334   S1,2 = 1334 
    S0,2 = 809   
      S0,3 = 491 

 

 

Calculation of Present Value (PV) at Year 3 

PV3,0 = MAX(S3,0 – E3, 0) = MAX($9860K – $1500K, 0) = MAX($8360K, 0) = $8360K 

PV2,1 = MAX(S2,1 – E3, 0) = MAX($3627K – $1500K, 0) = MAX($2127K, 0) = $2627K 

PV1,2 = MAX(S1,2 – E3, 0) = MAX($1334K – $1500K, 0) = MAX(-$166K, 0) = $0 

PV0,3 = MAX(S0,3 – E3, 0) = MAX($491K – $1500K, 0) = MAX(-$1009K,0) = $0 

Calculation of Present Value in Year 2 when the decision is to not wait until Year 3 to exercise 

the option: 

PV3
2,0,2 = MAX(S2,0 – E3, 0) = MAX($5980K – $1500K, 0) = MAX($4480K, 0) = $4480K 

PV3
1,1,2 = MAX(S1,1 – E3, 0) = MAX($2200K – $1500K, 0) = MAX($700K, 0) = $700K 

PV3
0,2,2 = MAX(S0,2 – E3, 0) = MAX($809K – $1500K, 0) = MAX(-$691K, 0) = $0 

Calculation of Present Value in Year 2 when the decision is to wait until Year 3 to exercise the 

option: 
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Calculation of Present Value (PV) at Year 1 
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Calculation of Present Value (PV) at Year 0 with flexibility 
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Table B-2. Systems Engineering Project’s Value with flexibility using Compound Option 
Analysis 

 Today  Year 1  Year 2  Year 3 
        
Expenditures E1

0=$250K  E2
1=$750K    E3

2OR3=$1500K 
        
      PV3

3,0,3=  8860 
    PV3

2,0,3= $4617K   
  PV2

1,0,1= $1675K   PV3
2,1,3= $2127K 

PV1
0,0,0 = $471K   PV3

1,1,3= $916K   
  PV2

0,1,1=  $0   PV3
1,2,3= $0 

    PV3
0,2,3= $0   

      PV3
0,3,3= $0 
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The value of this flexibility or the option value (OV) is  

OV = PV1
0,0,0 – NPV3 = $471K - $141K = $330K 

The cost of waiting one year to exercise the production option has an OC of $150K and the net 

option value (NOV) is 

NOV = $330K - $150K = $180K  
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