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CHAPTER I 

 

INTRODUCTION 

 

Thesis Objective 

 The objective of this research was to quantify the material properties as well as 

the forces unique to immersed friction stir welding (IFSW) as compared to conventional 

friction stir welding (FSW) performed in air of AA6061. These results were compared by 

using ultimate tensile strength (UTS) and weld root properties such as joint line remnant 

length at the interface between the welded aluminum alloy which allows crack initiation. 

Metallurgic cross sections of the AA6061 welds were prepared and the weld nugget 

hardness between the two welding techniques was compared as well. 

 In order for the IFSW technique to be viable as a means to not only improve 

nugget hardness and reduce the grain size in the recrystallized zone or nugget, but to 

improve weld strength. Experiments such as this one and others quantifying the forces 

and process parameters must be performed. The immersed friction stir welding process 

should be thought of as a beneficial in-situ heat treatment. A steady state model of 

temperature distribution has been put forward and is shown to accurately predict trends in 

heat input using heat generation equations from Schmidt et al. [Schmidt et al., 2004] 

[Schmidt and Hattel, 2005]. Temperature distribution was measured and correlated to 

data by use of Micron Thermal Imaging camera. 
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Overview of the FSW Process 

 Friction stir welding was invented and patented by a research team led by Wayne 

M. Thomas [Thomas et al., 1991] [Thomas et al., 1995] of the Welding Institute in 

England. FSW is defined by Threadgill of TWI as “…a method for joining two or more 

work pieces where a tool, moving in a cyclic manner relative to the work pieces, enters 

the joint region, locally plasticizes it and moves along the interface thus causing a solid 

state joint between the work pieces” [Threadgill, 2007]. A schematic of the friction stir 

welding process is shown below in figure 1. It can be observed that that, due to the 

rotation of the tool, friction stir welding is an asymmetric process with respect to the joint 

line.  

 

 
Figure 1: Schematic of the Friction Stir Welding Process [Mishra and Ma, 2005] 

 

 

Applications and Advantages 

 Friction Stir Welding is primarily used to bond aluminum alloys and light weight 

non-ferrous alloys such as magnesium. FSW has an advantage over conventional arc 

welding by bonding the joint in the solid state. Arc welding processes melt the weld pool 
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producing large grained brittle joints as the nugget recrystallizes from liquid to solid. 

Additional post processing techniques such as heat treatment are sometimes required to 

anneal the metal to reduce the high residual stresses and distortions produced by a 

multiphase joining process. 

 NASA uses FSW on Al-Li 2195 for the production of external fuel tanks for the 

shuttle as well as the Aries launch vehicle for space exploration [Prater, 2008]. Other 

industries using friction stir welding for joining include the aerospace, railway, 

automotive, shipbuilding/marine, and construction industries. 
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CHAPTER II 

 

LITERATURE REVIEW 

 

Friction Stir Welding Terminology 

 TWI has set standards for referring to the various processes and parameters used 

in friction stir welding [Threadgill, 2007].   

 The tool is defined as the rotating piece designed to generate heat, plastically 

deforming the weld material in order to form the bond. This definition is generalized as 

various tools exist with a floating, fixed, or stationary shoulder geometry thus generating 

no heat for the purposes of welding. The probe is the part of the tool which is plunged 

below the surface of the work piece being welded. It may or may not be “pin-shaped” and 

may or may not exist depending on the application. The shoulder of the tool rests on the 

surface of the material being welded and may be plunged slightly into it. The shoulder is 

always of a smaller diameter than the probe. 

 The leading and trailing edge terminology used as an analog to airfoils, Threadgill 

points out, is misleading due to the fact that most tools are cylindrical and therefore due 

not have edges. The terms leading face and trailing face will be used to distinguish 

between the front and rear limb of the tool as the front is described as the direction of 

travel. In the event that the tool is tilted away from the direction of travel and the 

shoulder is plunged into the material, the portion of the shoulder under the material is 

called the heel and the angle of the tool with respect to the vertical is known as the tilt 

angle or travel angle. The amount the tool shoulder is plunged into the work piece is 
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known as the heel plunge depth. Tool features such as scrolls, flats, thread, etc. have been 

defined, says Threadgill, adequately though alternative use and thus continued usage of 

these terms is permissible. 

 

Process Parameters 

 Processing parameters for friction stir welding including rates of travel, rotation, 

and forces will be explained here. Threadgill uses welding speed as an alternative to 

traversing rate or traversing speed. Similarly, the rotational velocity of the tool is known 

as the tool rotation speed. Its direction of rotation, clockwise or counter-clockwise, is 

described when observing the tool from above.  

 The force parallel to the rotational axis (or Z axis) is known as the down force or 

axial force. The force parallel to the travel axis is known as the traversing force and lies 

in the X direction. The force in the same plane and orthogonal to the traversing force is 

known as the side or lateral force. 

 

Weld Zone Regions 

 The advancing side and retreating side are important to point out in the cross 

section, or plan view, of a weld. This is due to the fact that friction stir welding is 

inherently an asymmetric process because of the rotational velocity and features of the 

tool. The advancing side is the side of the weld which the rotational velocity component 

and traversing velocity component are constructive or additive. The retreating side is the 

side of the weld which the rotational velocity component and traversing velocity 

component are destructive or subtractive. 
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 Weld features and zones will be identified using the plan view illustrated in figure 

2. The four main zones are listed below and are labeled A, B, C, and D. These are the 

primary zones for describing the amount or lack of thermoplastic heating and mixing of 

the weld joint. The descriptions of the zones A-D are defined below. 

 

 
Figure 2: Plane View of FSW zones 

 

 

 The zone labeled ‘A’ in the above figure is known as the parent material. This is 

the region farthest from the joint center line and has not been affected by heat or 

deformation. Area ‘B’ is affected only by heat and no plastic deformation is visible. This 

zone is known as the HAZ or heat affected zone which parallels fusion welding 

terminology. Zone ‘C’ is affected by both heating and thermoplastic deformation. It is 

referred to as the TMAZ or thermo-mechanically affected zone. It generally corresponds 

to the region of the weld under the shoulder on the top to the pin radius on the bottom of 

the weld. The recrystallized structure is found in the fourth major zone ‘D’ called the 

nugget. As a minimum the nugget is the region of heaviest mixing and therefore is found 

within a pin radius at least from the `joint line of the weld. The TMAZ and nugget are 
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both subjected to mixing and therefore can be difficult to separate in plane view sections. 

This is especially true in soft metals such as aluminum alloys which are used in the work.  

 

Weld Imperfections, Flaws, and Defects 

 Various imperfections were observed in the FSW and IFSW of aluminum alloys 

used in this study. Voids are caused by lack of material flow and can appear at the weld 

surface or below it and are detectable by microscopy. Porosity can be found in immersed 

friction stir welds as the gas bubbles create voids in the nugget and TMAZ. This is 

analogous the fusion welding done in inert gases in which the weld pool dissolves gas 

into it inducing porosity during resolidification. Generally speaking in FSW there is no 

porosity at low rotation and travel speeds due to the solid state process. An example of 

the void defect from Threadgill can be found below in figure 3. 

 

 
Figure 3: Typical void defect in FSW 

 

 

 The flash defect is found on the surface of the weld most commonly on the 

retreating side. It is found on the edge of the shoulder footprint and is caused by excess 

heating of the weld surface leading to inadequate forging of weld metal at the heel of the 

shoulder. Flash was found to be easily contained by the IFSW process due to its ability to 
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quench aluminum quickly. An example of flash is found in figure 4. The retreating side 

of the weld is on top as is the flash defect. 

 

 
Figure 4: Flash occurring on the retreating side of a friction stir weld 

 

 

 Defects can occur when the joint line is not properly mixed resulting in the joint 

line remnant. The remnant is a traceable joint line that has been deformed, but not mixed 

leaving a section of unbonded material observable on weld plan views. It is very common 

in single pass FSW since the probe does not mechanically mix the root of the joint line. 

This can be alleviated by proper tool position, force control, and geometry of the 

experimental setup. Joint line remnants can be found within the weld nugget as well and 

are generally not as weak as root joint line remnants. Examples of both types of joint line 

remnants can be found in figures 5 and 6. 
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Figure 5: Joint line remnant at the root of the joint line 

 

 
Figure 6: Joint line remnant found in the weld nugget 

 

 

 

Friction Stir Welding Tool Contributions 

 Tools used for FSW usually are composed of two main parts: a cylindrical 

shoulder and probe of an always lesser radius. Experiments determining heat generation 

and forces during FSW were run to determine various contributions of the tool features 

[Dubourg and Dacheux, 2006]. Frictional deformation by the tool raises the temperature 
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of the aluminum to a state which is plastic-like yet still in the solidus regime. Advantages 

of the friction stir welding process due to advances in tool design and process parameter 

optimization were also observed [Mishra and Ma, 2005]. Advantages over arc welding 

include the joining of aluminum alloys such as the 2XXX and 7XXX series alloys. These 

aluminum alloys are considered “unweldable” by fusion welding. The metallurgic, 

environmental, and energy benefits of FSW are listed in Table 1 [Mishra and Ma, 2005] 

[Fleming, 2009]. 

 

 

Table 1: Advantages of friction stir welding 

 

 

 The heat input in FSW observed by Mishra and Ma, Fleming, and Dubourg and 

Dacheux was comparable in magnitude to fusion or arc welding techniques. However, in 

FSW the heat input is distributed over a larger area of the joint. This produces a joint with 

low residual stress and distortion due to the low temperature gradients and welding 

temperatures. Fusion welding has high thermal gradients and welding temperatures since 

it melts the weld joint to make the bond. 

 Pin contributions have been analyzed by a number of researchers and the 

optimization of the tool is found to have great variance in the tool pin force contributions 
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and weld quality during welding [Elangovan and Balasubramanian, 2008]. Estimations 

on the contribution to axial forces during welding have ranged from 2-51% depending on 

the literature [Dubourg and Dacheux, 2006]. Most authors observe or model a pin 

influence of less than 5% on heat input and power [Schmidt et al., 2004]. The optimal 

probe shape as observed by Elangovan and Balasubramanian is the square probe. This 

was found to be the most optimal over a wide parameter matrix using various tools 

including smooth probe, triangular, square, threaded among others. Figure 7 shows the 

various tools used in that study including the geometries used to determine optimal probe 

shape. 

 

 
Figure 7: Tool geometries from Elangovan and Balasubramanian 

 

 

 Flow around the tool is described as the superposition of 3 separate flow regimes 

[Schneider et al., 2006]. The illustration of the various regimes as generated by a rotating 

cylinder can be shown in figure 8. 
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Figure 8: Different flow regimes in FSW (Schneider et al., 2006) 

 

 

 It can be shown that the three incompressible flow fields exist forming a rotating 

plug of material during the welding of Al-Li 2195 observed by Schneider et al. Lead 

tracer material was placed in the joint line. The path of the tracer particles was analyzed 

by x-raying the specimen after welding. This flow is found to be driven by the threads or 

other features on the pin. The vertical flow contribution is easily observed by welding 

using the same threaded tool in both directions during successive runs and observing 

material flow up the pin and appears as flash at the surface. This also serves to generate a 

void visible by simple inspection through the entire weld nugget in the material as 

observed by Paul Sinclair and others at Vanderbilt University Welding Automation 

Laboratory.  
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Weld Pitch 

 Weld pitch, WP, is often used to characterize a welding envelope and determine 

defect trends due to hot or cold welding [Crawford, 2005]. It can be misleading however 

to solely use weld pitch to classify a matrix. WP is simply the ratio of the rotational speed 

to the travel speed and has units of rev/inch (rev/mm). The first experimental matrix 

given later uses a range of weld pitch from 1000/14 = 71.4 rev/inch to 2000/5 = 400 

rev/inch (rpi). The weld pitch can give a general trend for the expected quality of the 

friction stir weld. A low weld pitch indicates that the travel speed is relatively high in 

comparison to the rotational speed. This leads to a weld with a low heat input and poor 

mixing. Such welds can be expected to form worm holes at the base of the pin where 

temperatures are lowest and mixing is poor. The high end of the weld pitch spectrum 

indicates that the travel speed is relatively low compared to the rotational speed. This can 

lead to discontinuities discussed by W. Arbegast related to the overheating of the weld 

zone such as excess flash, expulsion, or surface galling [Arbegast et al., 2006] [Arbegast, 

2008]. 

 An optimum weld pitch is not universal. It is dependent on many factors including 

the welded alloy, welding tool, and other parameters. Variation in heat dissipation due 

only to a change in welding machine can alter the optimum pitch parameters. Also, a 

weld pitch may not be deterministic of weld quality in its matrix. This is to say that 

similar weld pitches with differing parameters may not lead to optimal welds. For 

example, a weld at 2000 rpm and 10 inches per minute (ipm) may have produced a good 

weld, however, a weld at 3000 rpm and 15 inches per minute produced a worm hole even 

though the weld pitch for both are 200 rev/inch. It can not be stressed enough that the 
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weld pitch parameter is for general envelope trends and should not be used to predict 

specific weld characteristics. 

 

 

Porosity 

 Experiments were conducted to determine the effect of water depth on the 

porosity of Ferro-alloys (iron based alloys) welded by traditional arc processes [Suga and 

Hasui, 1986] [Rowe et al., 2008]. Porosity was found to be highly dependent on the water 

depth. This is commonly attributed to hydrogen gas as well as iron oxidation at high 

pressure. Water pressure increases at a rate of 1 atmosphere for every 10m (33ft). In arc 

welding processes porosity is mitigated by the introduction of coatings which lower 

oxidation such as calcium carbonate or titanium which is a strong deoxidant. Porosity is 

seen to increase dramatically as a function of depth for arc welding. Similar studies must 

be investigated to define porosity trends in friction stir welding. Porosity in Ferro-alloys 

was previously observed to exceed 5% in conventional arc wet welds performed at 

greater than 15ft of water [Suga and Hasui, 1986]. AWS standards for wet welds (D3.6 

Class B) specify a maximum allowable porosity as seen by metallographic cross section 

is 5%. Although no such standard exists yet for friction stir welding one can infer from 

the advantages of FSW that low porosity can be expected [Mishra and Ma, 2005].  

 Porosity is assumed to be the product of the oxidation of the fresh weld material 

as it is drawn to the surface by the mixing process. The pure aluminum quickly bonds to 

oxygen drawn from water molecules and hydrogen gas left over from the dissociation of 

the water creates porosity in the aluminum oxide. Due to the solid state nature of FSW it 
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is expected that the porosity dependence on depth would be mitigated although future 

research is needed in this area to quantify characteristics and process standards. Pressure 

at a depth of water would allow high porosity to develop more prevalently when the weld 

is in liquid phase. This is related to the intermolecular forces between the weld alloy 

molecules themselves. A higher temperature seen during arc welding leads to weaker 

bonds between alloy molecules which makes them more susceptible to oxidation than the 

lower temperature solid state process. 

 

Submerged Friction Stir Processing 

 Two separate studies by Hofmann and Vecchio show that ultra-fine grains can be 

produced by processing the aluminum under a high quench rate fluid such as water 

[Hofmann and Vecchio, 2005]. The study follows the investigation by Mahoney and 

Lynch at DARPA which showed that friction stir processing can create much stronger 

bulk materials than the parent. The strength of cast nickel-aluminum-bronze was doubled 

by this technique. In friction stir processing (FSP) the procedure is very similar to friction 

stir welding with the only difference in that no material is welded, it is only thermo-

plastically heated and stirred, and however, no joint is produced in FSP.  

 In submerged friction stir processing the entire bulk sample is friction stir 

processed underwater [Hofmann and Vecchio, 2005]. The grain structure in the weld 

zone, or nugget, was found to be finer in studies done on rotary friction welded pipe as 

well [Sakurada et al., 2002]. The study rotary friction welded AA6061 rods underwater 

proving that frictional heating was enough to join non-ferrous alloys in a high quench rate 

environment. When the aluminum cooled in the submerged environment, the nugget had 
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less time to recrystallize large grains as it was being quenched by the water. The 

Sakurada et al. study was able to produce welds with a stronger parent to weld strength 

ratio. The conventionally friction welded metal failed at 82% of the parent strength while 

the submerged welds failed at 86%, an increase of 4% when compared to the unwelded, 

or parent, ultimate tensile strength (UTS).  

 Using these studies Hofmann and Vecchio observed the ultra-fine grains in SFSP 

of AA6061. The properties of aluminum alloy, AA6061, will be important to the rest of 

this study and future chapters so its properties are listed in table 2.  

 

Table 2: Composition and properties of AA6061-T6 

 

 

 Their study was performed on a modified mechanical mill capable of spindle 

speeds from 60-3300 rpm. The traverse and lateral motors traveled from 0-14.8 mm/s (0-

35 inches per minute, ipm). A diagram describing the processing apparatus is shown 

below in figure 9. 

 



 17 

 
Figure 9: Experimental setup from Hofmann and Vecchio for SFSP 

 

 

 The study also imbedded thermocouples to measure the temperature at the weld as 

well as the temperature rise of the water to determine weld heat input as a measure of 

enthalpy from the high quench rate process. They used 3.2 mm (1/8 inch) thick samples 

of AA6061 for processing. The initial grain size for the samples was found to be ~50 

microns. Two tools were used and varied in shoulder size from 12.7 to 19.1 mm (1/2 to 

3/4 in). The probe diameter length were kept constant at 3.18 mm and 2.79 mm (1/8 and 

.11 in) respectively. The process used by the study was to plunge the tool into the sample 

in air and process the sample underwater. This was done in order to keep the heat input 

into the weld as low as possible. Another processing technique was to eliminate the 

plunge altogether. This was accomplished by pre-drilling a recess into the parent material 

at the surface to accommodate the pin so that no heat was built up into the weld prior to 

traversing the metal. 

 Temperature profiles indicated by the embedded thermocouples showed that the 

heat input into the processed zone is similar to FSP done in air. The study hypothesizes 
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that this is due to the local vaporization of the water around the tool. This leaves the weld 

dry for a brief time until the tool progresses down the joint line and the joint is quenched 

by water. Temperature distribution was shown to be much more localized due to the 

quench rate of the underwater process. Temperature readings from successive passages of 

the SFSP tool show the steep gradients near the tool shoulder. These can be seen in figure 

10. 

 

 
Figure 10: Thermocouple data from multiple passes of SFSP in AA6061 

 

 

 Temperature rise was also used to determine various characteristics such as 

change in water temperature, temperature input, and total heat input. The heat input 

equation used in the study was simply an enthalpy rise of the water assuming constant 

volume and temperature rise. Total heat input is equal to the mass, m, of the water times 

the specific heat capacity, Cp, times the temperature rise, ∆ T.  

 

     TmCH p∆=∆      (1) 
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Table 3 tabulates the weld parameters and heat input information gathered by Hofmann 

and Vecchio from their initial study on SFSP of AA6061. 

 

Table 3: Data gathered by Hofmann and Vecchio 

 

 

 It is important to note that work did not produce any welded joints in aluminum 

and only reported on the grain size reduction. This was due to the fact that their study was 

only to improve bulk sample grain refinement in friction stir processed aluminum, not 

welded. Further study in the later chapters will discuss the increased nugget zone 

hardness and its relationship with grain size reduction. Hofmann and Vecchio’s initial 

study observed that the quenching of the water during processing reduced grain size in 

the nugget by an order of magnitude, from microns to nanometer scale. These ultra fine 

grains observed were on the order of 200 nm while the parent metal grain sizes were on 

average 50 microns. Further, more traditional FSP done in air found the grain size 

reduced to 5 microns or less. The order of magnitude reduction is with respect to the 
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grain size reduction between FSP and SFSP. The TEM micrographs of the “in air” 

processed nuggets and the underwater processed nuggets can be observed below in figure 

11. Future work involved using a super cooled fluid to theoretically reduce grain size to 

less than 100 nm. 

 

 
Figure 11: L) Grain structure in FSP (approx. 2 microns) R) Grain structure in SFSP (approx. 0.2 

microns) 

 

 

Underwater Friction Stir and Rotary Friction Welding 

 Previous work at Brigham Young University by Clark indicates that corrosion 

resistance of stainless steel can be improved by underwater friction stir welding as 

compared to fusion or arc welding [Clark, 2005]. Stainless steels are often used in 

applications where corrosion is a concern. Thus testing by Clark includes exposing the 

welded steel coupon to a boiling NaCl, saltwater, solution. This test is considered by 

Clark to be one of the best indicators of corrosion resistance due to the rigorous  nature of 

the test. The test coupons are held in the U-bend configuration under tension when 

exposed to the solution leading to a worst case corrosion scenario and a good test for 

underwater friction stir welding as a means to improve weld characteristics by virtue of 
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the advantages laid out by Mishra and Ma. U-bend samples can be seen in figure 12. The 

tension is kept by the bolt between the two ends of the coupon. 

 

 
Figure 12: U-bend test samples prior to NaCl testing from Clark 

 

 

 Results from Clark show that the advantages of underwater friction stir welding 

over fusion welding are obvious in the area of corrosion resistance. Fusion welds showed 

signs of root crack initiation after the solution test while UW-FSW’s did not show an 

initiation pattern of crack propagation in the weld zone. Evidence of this advancement is 

shown in below in figure 13. 
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Figure 13: Crack growth in the parent material in UWFSWed 304L SS (Clark, 2005) 

 

 

 Cracks are much more readily observed for the fusion welds after the NaCl 

testing. Cracks did not simply initiate in one location, but were observed by Clark in 

many locations in the weld nugget. Pitting of the weld is also observed in the arc welded 

bend test. As Clark points out additional holes or discontinuities would only exacerbate 

the severity of the pitting in arc welds. Figure 14 shows the etched arc weld in the U-bend 

configuration after the boiling saltwater test for corrosion resistance. 
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Figure 14: Multiple crack initiation sites in the nugget from FSWed 304L SS (Clark, 2005) 

 

 

 Sakurada et al. rotary friction welded AA6061 rods in ambient air and 

underwater. The study does a good job to illustrate best the mechanism for reduction of 

grain size in the current literature. Rotary friction welding involved rotating a metal rod 

at high speed and plunging it into another rod generating the heat proper to weld the two 

rods together. Parameters for SFW include rotation speed, shielding gas if welding ferric 

alloys, and plunge time before the rod is brought to a halt. The study observed many 

phenomena discussed in later chapters including the steep temperature gradients in 

submerged friction welding, SFW, as well as the increase in hardness of the weld zone 

which is coupled to the reduction of grain growth. As the maximum welding temperature 

is reduced, the hardness and subsequently the grain size of the nugget tend to drop 

linearly as seen below in figure 15 by Sakurada et al. Further observations included the 
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increase in UTS by the SFW’s over the conventional friction welds performed in ambient 

conditions. These can be seen in figure 16 which show an increase in rotary friction 

welded pipe ultimate tensile strength of approximately 4% when welded underwater. 

 

 
Figure 15: Minimum hardness (HV) vs. Maximum T (K) for friction welded AA6061 (Sakurada et 

al., 2002) 

 

 

 It can be seen that both processes seem to indicate a linear decrease in hardness 

with maximum weld temperature rise. Welding processes, in air and underwater, increase 

nugget hardness with a lower maximum weld temperature, but the underwater welds 

generally outperform ambient welds for any constant temperature. 
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Figure 16: Joint efficiency (%) vs. welding time (s) for L) welds in air and R) underwater welds 

 

 Finally the study by Sakurada concludes by plotting the trend that the joint 

efficiency increases directly proportional as the hardness in the nugget increases in both 

ambient and underwater testing. This plot showed that a hardness increase in AA6061 

from 60 to 90 HV (Vickers hardness) can lead to a joint efficiency increase of nearly 33% 

in rotary friction welds and is observable in figure 17. 

 

 
Figure 17: Joint efficiency (%) vs. Lowest hardness (HV) for underwater and atmospheric welds 

(Sakurada et al,. 2005) 
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CHAPTER III 

 

EXPERIMENTAL PROCEDURE 

 

 All ambient air and underwater friction stir welding experiments were conducted 

using a Milwaukee #2K Universal Milling Machine modified with a Kearney and Treker 

Heavy Duty Vertical Head Attachment at Vanderbilt’s Welding Automation Laboratory. 

The milling machine was modified in order to automate the welding process. This 

involved selecting pulley ratios suitable for welding at speeds or torques different than 

the initial configuration allowed. The experimental friction stir welding machine used at 

VUWAL is shown in figure 18. 

 

 
Figure 18: FSW machine at VUWAL (Photo courtesy of Paul Sinclair) 
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 The axial, or spindle, motor used in the Trivex probe experiment was a Baldor 20 

hp 3-phase AC motor. The pulley ratio used in this study was 4:3 and was set in order to 

under drive the spindle to lower speeds and higher torque. The maximum speed allowed 

by the motor was approximately 2300 rpm at 60 Hz input. The pulley ratio for the 

threaded probe experiment was 3:4 allowing a maximum spindle speed of 4500 rpm. The 

lateral and traversal motors were both U.S. Electric 1 hp motors with an in-line gear box 

ratio of 6.02:1. This leads to a reduction in maximum speed from 1750 to 280 rpm at 60 

Hz, but an increase in maximum torque. The traversal motor had an additional 11:2 

pulley ratio added to under drive the motor to a maximum allowable traverse speed of 16 

ipm. Welding coupons were 1/4” thick, 8” long by 3” wide full penetration butt joints. 

The tool in both experiments used a shoulder to pin diameter ratio of 2.5. Exact 

dimensions of the tool are shown in figure 19. 

 

 
Figure 19: Tool dimensions in inches for both experiments (Probe not featured) 
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 The probe used for the first experiment was a Trivex™ design by TWI 

[Colegrove and Shercliff, 2003] noted for its decrease in welding forces with a static tool 

pin diameter of ¼” (6.35 mm). The second experiment used a threaded pin design with 

¼” diameter and 20 threads per inch (tpi). The pin cross-section for the Trivex probe was 

developed by TWI as an equilateral triangle with sides given a specified convex radius. 

The configuration used gives the tool probe static area to swept area ratio of 

approximately 68%. This corresponds to the “a / Ra” ratio of 1, in which the center of the 

radius of the curvature is at a vertex of the triangle. The plot showing the Trivex area 

ratio as a function of the radius the side is below in figure 20. 

 

 
Figure 20: Trivex parameters vs. area ratio (tool used has a ratio of .68) 

 

 

 Experimental results by TWI show that the Trivex tool welds were comparable to 

those of the more complex Triflute or Triflute-MX designs [Colegrove and Shercliff, 

2003]. Tool profiles for Trivex and Triflute tools are given in figure 21. The shoulder 

diameter was 5/8” (15.875 mm) and featureless. The tool and probe for both experiments 

were machined from 01 tool steel and heat treated. 
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Figure 21: a) Triflute b) Triflute – MX c) Trivex probes from TWI (Colegrove and Shercliff, 2003) 

 

 

 During either experiment no visible wear or deformity was observed on the tool 

pin or shoulder. The tool angle and plunge depth was held constant in the Trivex probe 

experiment at 1º and .009” respectively. The angle and depth used for the threaded 

experiment was 2
o
 and .004” respectively. These plunges were used so that there is an 

80% shoulder contact condition desirable for welding. 

 A Kistler rotating cutting force dynamometer (RCD) Type 9123C was used to 

measure traversal force (Fx), lateral force (Fy), axial force (Fz), and tool moment (Mz). 

The dynamometer was rated to measure up to 20kN of axial force and 200 Nm of torque. 

Experimental force measurements for both IFSW and FSW were found to be well below 

the limits. The welding machine was fitted for position control using string 

potentiometers for translational and lateral location tracking. 

 Small changes in vertical position cause significant changes in weld quality as 

well as excess flash or wormholes [Crawford et al., 2006]. The vertical axis was 

instrumented with a magnetic position transducer with quadrature output leading to 

position resolution on the order of < .0005” (.0127 mm).  
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Thermocouple Implantation 

 Welds in the Trivex tool probe study were implanted with type K, Al – OH, 

thermocouples to determine characteristic temperatures and quench rates into the medium 

whether it was air or water. It has been previously observed that the welding temperature 

at a lateral location was not greatly affected by the traversal distance [Hofmann and 

Vecchio, 2005] [Mitchell, 2002] [Elangovan and Balasubramanian, 2008]. Multiple 

thermocouples were imbedded to ensure an accurate temperature reading. Four equally 

spaced thermocouples were placed into each weld at a thickness of 1/8”, or half the 

thickness of the ¼” coupons, and a depth of 1.1875”. This corresponded to the lateral 

position of the shoulder edge during welding. The diameter of the thermocouple hole was 

.1 inches or the nominal thickness of the thermocouple itself. The hole was filled with a 

generous amount of colloidal silver thermal paste from SPI supplies in order to ensure 

contact and maximum conductivity. This layout is shown in figure 22. 

 

 
Figure 22: Thermocouple hole dimensions (all units in inches) 

 

 

 Heat input into the water was important to verify certain process trends. It also 

served to quantify the power increase required to successfully produce IFSWs. A lower 
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limit for heat input was computed using the change in water temperature before and after 

welding. Heat input was measured for IFSW using the equation for single state enthalpy 

change.  

 

     TmcH p ∆=∆      (1) 

 

 Heat input is simply the change in enthalpy of a substance in a constant state 

where “m” is the mass of water, “Cp” is the specific heat at constant pressure, and “ ∆ T” 

is the change in water temperature before and after welding. This approach was applied 

to the SFSP conducted by Hofmann and Vecchio. This was ideal since the variation in 

water temperature was relative and not absolute and thus the water did not need to return 

to room temperature prior to welding again. Water for the experiment was initially room 

temperature (~298K) and kept at a constant volume of 3 L for all immersed welds. It 

should be noted that the enthalpy method does not assume a loss of heat due to 

conduction through the backing plate or convection into the air at the surface. All that is 

measured is the amount of heat input into the water through the heating due to welding. 

 An additional heat input equation is given by Nunes [Schneider et al., 2006] 

which gives the heat input during FSW. The heat input, ∆ H, in energy per unit distance 

traveled is given as: 

 

     vPH /=∆         (3) 

 

Where ‘v’ is the travel speed (m/s) and ‘P’ is the power (J/s). 
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     ωZMP =      (4) 

 

 Where ‘Mz‘ is the torque required to weld in Newton-meters and ‘ω ’ is the 

rotational speed in Hertz (1/s). This heat input and power equation predicted accurate 

trends. The power estimation predicted an approximately constant power output for a 

range of spindle speeds. This was modeled and experimentally verified by Crawford et al. 

where for a substantial increase in rotational speed a substantial decrease in torque 

followed [Crawford, 2006]. 

 

Experimental setup for threaded cylinder 

 The second setup for IFSW involved a different tool pin configuration and 

modified weld matrix. Runs were performed on the same welding machine and 

dynamometer. This was due to the expectation of similar forces and comparable 

parameter matrices as the prior setup. The tooling used was a more conventional threaded 

cylinder and flat, featureless shoulder. Its advantages include imposing a strong 

downward flow which is complimentary to the rotary flow around the pin [Schneider et 

al., 2006]. Together the two flows increase stirring, leading to a further breakdown of the 

oxide layer and greater root fill and mixing producing good welds. The tool pin and 

shoulder diameters were .25” and .625” respectively with a thread pitch of 20 threads per 

inch. The pin length of the non-consumable heat-treated 01 steel tool was .235”. 

Properties of 0-1 heat treated tool steel are shown in Table 4. 
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Table 4: Composition of 0-1 oil hardened tool steel 

0-1 tool 

steel 

Carbon, 

C 

Chromium, 

Cr 

Iron, Fe Manganese, 

Mn 

Tungsten, 

W 

Vanadium, 

V 

% 0.90 0.50 97.0 1.0 0.50 0.15 

 

 

 Disadvantages of the threaded cylinder tool design include the lack of a 

significant dynamic volume greater than that of the static tool volume during welding 

which decreases mixing when compared to the Trivex profile. Secondly, the threaded 

cylinder produces higher traverse, moment, and forge (Fx, Fz, Mz) forces compared to 

the Trivex experiment’s tool. The Trivex design was made for this purpose by Colegrove 

and the threaded cylinder’s increased forces lead to a larger work envelope and fewer 

defects than a similar Trivex matrix. The work envelope for this experiment included 

rotation speeds (RS) of 2000-3000 rpm and travel speeds of 10-16 ipm (inches per 

minute). Tool tilt angle and plunge depth where kept constant for the all experimental 

welds at 2
o
 and .004”. 
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Tank Construction 

 The backing plate, or backing anvil, was modified to contain approximately three 

liters of water for both experiments (see figure 23). The sides of the tank are ¼” clear 

acrylic and are mounted and sealed along the outside of the mobile backing anvil. The 

submergible anvil is placed on top of the standard FSW anvil on the welding machine. 

The dimensions for the containment tank were 12 inches by 29.75 inches. Water was 

placed in the tank to a level of ½” deep using a graduated cylinder. This gave a total 

volume of approximately 178.5 cubic inches or 2.925L. 

 

 
Figure 23: Tank containing water used for SFSW 
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CHAPTER IV 

 

EXPERIMENTAL RESULTS AND CONCLUSIONS FOR THE THREADED PROBE 

TOOL 

 

 The test bed travel motor was set up to deliver between 0 – 16 ipm and the 

rotation speed was from 0 – 4500 rpm. This was accomplished by changing the gear 

pulley ratio. The threaded probe tool produced good welds in a range in spindle and 

travel speeds. The increases in force were the result of the vertical flow theorized by 

Schneider et al. which was increased by the threads on the probe. The Trivex’s advantage 

of mixing laterally, while advantageous, did not create defect free welds at most weld 

speeds as the threaded probe does. 

 Optimal welds were run under ambient conditions from previous research by 

Crawford et al. Optimal ‘dry’ welding conditions were found to be 2000 rpm at 16 ipm. 

These welds were found to have minimal joint line defects and high ultimate tensile 

strength (UTS). Optimal welds for immersed conditions were determined by running a 

matrix which included rotational speeds of 2000, 2200, and 3000 rpm as well as travel 

speeds of 10, 15, and 16 ipm. Three tensile test coupons were cut from each weld to 

ensure the precision of the data. Test coupons were made to ASM specifications for 

tensile testing of a butt weld specimen. The geometry of the test coupon is shown in 

figure 24. 
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Figure 24: Tensile coupon schematic 

 

 

 

 The optimal welding conditions for IFSW were found to be 2000 rpm at 10 ipm. 

This corresponded to the greatest weld tensile strength of either underwater or in air 

FSW. The weld pitch of the optimal weld was found to be 200 revolutions per inch (rpi) 

for this matrix. The worm hole defect was discovered by tensile testing and occurred on 

the advancing side of the submerged weld 3000 rpm at 15 ipm, also at a weld pitch of 

200 rpi. This is a verification of the weld pitch section made in chapter II. The same weld 

pitch using different parameters gave bad weld quality in one of the two runs. All other 

welds were found satisfactory. They fractured outside of the weld nugget and TMAZ in 

the weld heat affected zone (HAZ), an area of lower hardness than both the nugget and 

parent material due to the lack of mixing and dynamic recrystallization. Welds from the 

threaded pin matrix are shown in figure 25. All specimens that are not labeled as FSW in 

the figure are IFSW runs. 
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Figure 25: Tensile specimens from the threaded probe matrix 

 

 

 Even with the void defect present at 3000 rpm and 15 ipm the tensile strength was 

60% of the parent material UTS. This is good in comparison to ambient friction stir welds 

where weld quality is deteriorated by voids to below 50% or worse in fusion welding. 

Data from the weld matrix run using the threaded probe is shown in table 5. It can be 

seen that the best underwater welds (designated WC#) performed as well as or better than 

control ambient air welds (designated BW#). Percent UTS of the parent material was 

found to be approximately 5% higher for IFSW than ambient FSW. 
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Table 5: Force and data from the threaded probe experiment 

 

 

 Improvement of weld properties comes at a cost of increased torque and power. 

The torque for FSW is approximately 16 Nm while IFSW torque values are 18.5 Nm, this 

is an increase of less than 25%. This form of weld in-situ heat treatment by quenching the 

weld was beneficial to weld quality and the cost in power input is low. Weld pitch 

increases illustrate the power increase. The more revolutions the tool makes in an inch 

increased the power , or heat input, into the joint. The optimal ambient run was found to 

be at 125 rpi while the immersed run was found to be at 200 rpi. The power increase was 

small when compared to the 2.5 Nm required torque increase to achieve improved weld 

quality. 
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CHAPTER V 

 

EXPERIMENTAL RESULTS AND CONCLUSIONS FOR THE TRIVEX PROBE 

TOOL 

 

 The Trivex probe used rotational speeds between 1000 - 2000 rpm. This was due 

to the lower forces created by the Trivex tool as identified by previous experimental and 

simulation based studies by Colegrove and others [Colegrove and Shercliff, 2004] 

[Maziarz, 2006]. Travel speeds were from 5 – 14 inches per minute leading to a weld 

pitch from 71.4 - 200 rpi. The weld matrix for the following experiment is in table 6. 

 

Table 6: Weld matrix used for Trivex tool experiment 

 1000 rpm 1500 rpm 2000 rpm 

5 ipm X X X 

8 ipm X X X 

11 ipm X X X 

14 ipm X X X 
 

Axial Force 

 

 Axial force was measured using a Kistler Rotating Cutting Force Dynamometer. 

Welding was position controlled, not force controlled. Thus force trends were 

experimentally verified to determine how they depend on process parameters. Data for 

ambient friction stir welding as well as IFSW using the Trivex pin tool showed expected 

trends in which an increased rotation speed/decreased force relation was evident. This 

trend was also observed by previous research and was further validated for both 

processes, FSW and IFSW [Crawford et al., 2006] [Bloodworth et al., 2008]. Axial force 

was expected to behave inversely proportional to weld pitch. IFSW and ambient FSW 
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runs show that axial force was independent of either process. This is evident in figures 

26a – 26c. The experimental setup at Vanderbilt Welding Automation Laboratory is 

currently set to maintain greater than 12kN (2698 lbf) of axial force. Force plots for 1000 

rpm and 1500 rpm illustrate trends indicating an identical axial force value exists for 

either process at the same rotation or travel speed.  

 

 
Figure 26a: Axial force (N) vs. Travel Speed (ipm) at 2000 RPM 
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Figure 26b: Axial force (N) vs. Travel Speed (ipm) at 1500 RPM 

 

 
Figure 26c: Axial force (N) vs. Travel Speed (ipm) at 1000 RPM 

 

 . The axial force was found to be independent of the process at all parameter 

values for this data set. It has been observed that axial force is a quality indicator for 
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friction stir welds. An insufficient axial force indicates a lack of shoulder pressure and 

can indicate a lack of containment of the surface flash and/or voids. 

 

Torque 

 Torque values were recorded to quantify the power requirements for IFSW over 

conventional FSW. It was expected that the torque would increase as some of the 

frictional heating would go into heating the water. Torque values recorded for 1500 rpm 

and 2000 rpm are given for both processes in figures 27a – 27b. 

 

 
Figure 27a: Moment (Nm) vs. Travel Speed (ipm) at 1500 RPM 
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Figure 27b: Moment (Nm) vs. Travel Speed (ipm) at 2000 RPM 

 

 An increase in torque was visible from 5-14 IPM for IFSW over FSW. An 

increase of 2-5 Nm (1.5 - 3.7 lb-ft) was required and was found to be a highly parameter 

independent change in torque. This was in agreement with previous experiments using 

the threaded probe tool. The increased weld pitch/decreased torque relationship was 

observed for both processes [Crawford, 2006] [Bloodworth et al., 2008]. This trend had 

been observed in even greater weld pitches and the limit to this trend has not yet been 

identified. The torque increase requirement was less than 25%. This shows the same 

increase observed using the threaded probe tool. 

 

Power 

 The increase in power was proportional to the increase in torque and rotational 

speed. Power increased linearly as a function of travel speed. This indicates a travel speed 

to moment relationship observed by other authors. From figure 28 it can be observed that 
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the welding machine outputs between 1-5 kW for FSW and IFSW. The observed increase 

in power by the IFSW process is approximately .5kW or 15-20%. Power is determined by 

the equation: 

 

     ωZMP =      (4) 

Where ‘Mz’ is the torque in Nm and ‘w’ is the rotation speed of the tool in Hz. 

 

 
Figure 28: Power (kW) vs. travel speed (IPM) at 2000 RPM 

 

 

 Optimal parameters were determined by two factors. These include weld joint line 

remnants and tensile strength. The heat input into the water was used to observe process 

trends. It also quantified the power increase required to IFSW AA6061. A lower limit for 

heat input was computed using the change in water temperature before and after welding.  

  

 

 



 46 

Heat Input as a Function of Welding Process 

 Heat input was measured by implanting thermocouples. In figures 29 and 30, as 

travel speed is increased or spindle speed is decreased the heat input into the weld drops. 

The increase of thermal energy in the water is a lower bound to the heat input as energy is 

also input into plastically working the weld material as loses due to conduction and 

convection.  
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Figure 29: Heat Input vs IPM for IFSW 
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Heat input vs RPM
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Figure 30: Heat Input vs RPM for IFSW 

 

Materials Testing 

 Materials testing included micro-hardness analysis, cross-sectioning, and tensile 

testing of all welded specimens. Some parameters were not run for the immersed matrix 

since was determined that the rotational speed was not enough to produce welds at 14 

IPM with the exception of 2000 rpm. The wormhole defect was prevalent in welds below 

2000 rpm. Further welds were not run as it was assumed that the wormhole would only 

increase in size.   

 Tensile testing was performed on welds in order to determine optimal parameters. 

Optimal runs were then used to compare micro-hardness using the weld cross section. 

Hoffman and Vecchio observed an order of magnitude decrease in the weld nugget grain 

size over conventional friction stir processing (FSP) [Hofmann and Vecchio, 2005]. 

Micro-hardness tests performed on IFSW’s show an increase in local weld hardness over 

standard FSW. Microscopy indicated that optimal conditions retained the same root 
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properties.  Although porosity was observed in optical microscopy of the weld zone, 

tensile properties matched or exceeded those of conventional friction stir welds.  

 

 
Figure 31: Hardness (HV) vs. Weld Nugget Location (mm) 

 

 The increase in quench rate due to IFSW causes the grains to quench and solidify 

from its plastic state without excessive grain grown leading to a harder weld nugget. 

Hardness testing indicated an approximately 10% increase in weld zone hardness. Weld 

zone hardness test results for this experiment showed an average weld nugget hardness of 

73 for conventional FSW and 81 for IFSW (see figure 31). Hardness tests were 

performed only on the highest tensile test welds for either process. These included welds 

which when cross sectioned showed no evidence of defects including worm holes or 

excess flash. 

 Cross sections were polished and etched using Boss’s reagent at 10:1 ratio of 

water to hydrofluoric acid (HF) for 15-20 seconds. Weld zone cross sections showed a 

smaller heat affected zone and joint line remnant for IFSW when compared to 

conventional FSW. Figure 32 shows the porosity generated in the IFSW (right) is evident 

when compared to standard FSW (left). 
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Figure 32: L) Conventional FSW root flaw (10x) R) Immersed FSW root flaw (50x) 

 

 Tensile tests were run to determine the optimum weld parameters for both FSW 

and IFSW. Tests were conducted according to the ASM standard for materials testing. 

Ultimate tensile strength (UTS) was the criterion for rating weld quality. Optimal welds 

had welded to parent material UTS ratio was greater than 75%. For the matrix given 

above, the optimal weld conditions for FSW were 2000 rpm at 11 ipm while the IFSW 

required 2000 rpm at 8 ipm, a decrease of 3 ipm. Variations in parameters from the 

threaded probe experiment were due to the probe changing to Trivex. This leads to an 

increase in power to show the same forces. The solution to the force decrease was a 

decrease in travel speed to improve mixing and vertical flow. 

 This is due to the power increase to form the bond. Heat flows into the water 

raising its temperature. Water has a heat capacity four times that of room temperature air. 

It requires four times the heat input to heat an equal mass of water than that of air. It is 

observed that a decrease in travel speed is required to increase the heat input into IFSW’s. 

 For a constant travel speed (TS) it was observed that the weld quality increased 

with rotational speed (RS). This was observed mostly in FSW while IFSW seem to 

indicate a logarithmic trend with respect to RS for the matrix run. For each TS run (5, 8, 
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11 ipm) in the IFSW matrix the trend for tensile strength vs. RS remained a logarithmic 

function of RS. Figure 33 illustrates the logarithmic relationship between weld UTS vs. 

RS at a constant TS. Results for a constant rotational speed showed independent UTS 

with increased TS. 

 The primary failure mode outside the optimal parameter envelope was the 

wormhole defect. This is caused by a “cold” weld without sufficient heating of the joint 

and therefore a lack of mixing causes a tunneling defect near the root of the weld. The 

threaded cylinder pin, as opposed to the Trivex™ tool used in this study, created greater 

downward flow and higher forces leading to a larger envelope for IFSW. Improvements 

in weld quality are made by IFSW of the joint. In-situ heat treatment in the form of 

quenching gives the joint a better UTS and weld nugget hardness. 

 

 

 
Figure 33: UTS (MPa) vs. RS at a constant TS (IFSW); WA = 1000rpm, WB = 1500rpm, WC = 

2000rpm 
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CHAPTER VI 

 

FINITE ELEMENT MODEL OF STEADY STATE WELDING TEMPERATURE 

BASED ON FORCE DATA 

 

 

 

 In order for the wide spread application of FSW to be instituted, an overall 

understanding must be made as to the complex thermal and mechanical properties 

inherent and unique to this technique. Presented in this chapter is a steady state thermal 

model of a conventional FSW tool and tool pin. A steady state model is presented using 

Patran and Nastran along with a comparison to experimental runs run by the Vanderbilt 

University Welding Automation Laboratory (VUWAL). The results are discussed and 

compared to the experimental data gathered using a Mikron Thermal imaging Camera. 

The purpose of the study is to understand the temperature distribution as a function of 

welding parameters. The verification of the model experimentally captured the 

temperature distribution up the tool accurately. The influence of the shoulder and tool 

shank leading to serve as a heat sink is also discussed. 

 The welded material during FSW is brought to a temperature approximately 60-

80% of its melting point [Ulysse, 2007]. This increase in welding temperature decreases 

the yield strength of the material dramatically. The temperature dependent yield strength 

curve for AA6061-T6 used in the experimental stage is given in figure 34. 
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Yield strength vs. Temperature
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Figure 34: Temperature dependent yield strength of welded AA6061 

 

 

 It is critical that the welding tool can support these kinds of temperatures without 

plastic deformation itself. Arthur Nunes of Marshall Space Flight Center has concluded 

that the yield strength of the welding tool at maximum temperature should have three 

times the yield strength of the welded material to be considered semi-infinite or non-

consumable. A simulation which would accurately predict the heat generation due to the 

frictional interface between the tool shoulder and pin with the work piece is needed to 

develop an operational window for tools. Heat generation for the simple FSW tool and 

pin was presented by Schmidt et al. as an analytical model [Schmidt et al., 2004]. This 

model will be implemented in a three dimensional steady state thermal analysis of the 

welding process. 

 

Background 

 Schmidt et al. developed an analytical model for the friction stir welding tool 

using a number of assumptions on the contact boundary condition. The simplest 

boundary condition to implement is a no-slip condition; this means that there is no 

movement of the weld material to the tool at the tool-weld interface. The heat generation 
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for the shoulder bottom, tool pin sides, and tool pin bottom are found using geometric 

sums of infinitesimal areas. The heat generation for the sticking condition used in the 

simulations of this work can be seen in equations 8-10. 
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 Where tc is the contact stress in Pa and w is the rotational speed in Hz. Rsh and 

Rpin are the shoulder and pin radius in meters respectively and a is the angle of the 

shoulder in radians. Upon further inspection one can see that the primary heat generation 

component is the shoulder, followed by the pin sides and bottom. Heat due to the 

shoulder contributes approximately ¾ of the total heat generated by the tool. Another 1/5 

is due to the sides of the pin, and the remainder is due to the pin bottom’s frictional 

interface. The yield strength, sy, of AA6061-T6 at 300K is 241E6 Pa [N/m
2
]. The 

dimensions for the FSW tool simulated and experimentally used are seen in figure 35.  
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Figure 35: Tool used in steady state model and experiment 

 

 The experimental tool had a so-called non-profiled shoulder with 0
0
 included 

angles (a). The tool used in the experimental setup is H13 tool steel hardened to a 

Rockwell C-scale hardness of 48-50. Composition of H13 tool steel is shown the table 7. 

 

Table 7: Elemental composition of H13 tool steel 

H13 tool 

steel 

Carbon, 

C 

Silicon, 

Si 

Manganese, 

MN 

Chromium, 

Cr 

Molybdenum, 

MO 

Vanadium, 

V 

% 0.40 1.10 0.40 5.30 1.40 1.00 

 

 

Description of the Model 

 The finite element package Patran was used for the preprocessing of the data and 

Nastran was the solver used to find steady state solutions to the thermal model [Patran 

and Nastran, 2005]. The model consisted of 18360 3D elements (15260 CHEXA and 

3100 CPENTA) and 18711 nodes. The solids were meshed using Hexagonal and 

Pentagonal isometric meshing schemes (isomesh). The model used a total of 3 solids and 

7 surfaces including the “donut” surface of the shoulder visible to the weld material. This 
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was created by breaking the original circle into two surfaces at the interface of the pin 

and shoulder. This surface was critical as only the visible shoulder contributes to heat 

generation, not the shoulder “covered” by the pin. An isometric view of the finite element 

mesh is seen in figure 36. A verification of the mesh and further details are in the 

appendix. 

 

 
Figure 36: Isometric view of finite element mesh 

 

The thermal conductivity of the tool was set to 202 W/ (m*K) corresponding to H13 

properties. Boundary conditions matched observed conditions for experimental runs. The 

tool shank was set to a constant 298K ambient air temperature at the top surface of the 3 

inch tool. This includes the outer surface from 1 inch and above. This models the solid 

interface between the tool and the vertical head which serves as a large heat sink. For 

simplicity all units in figure 35 are converted to meters in the finite element model. The 

boundary conditions on the tool shank are displayed in figure 37.  
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Figure 37: Boundary conditions for the tool used in the FEA 

 

 

 

 Heat generation (W/m
2
) from the tool shoulder, pin sides, and pin bottom are 

solved used the above analytical model, multiplied by the respective areas of influence to 

create a total load. The loads are then applied to their respective surfaces. A sample 

loading can be seen in figure 38.  

 

 
Figure 38: Load values for a FE simulation for steady state heat generation 
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 The values used for heat generation, Q, are available in appendix C. Rotational 

speeds for the spindle are traditionally given in literature as revolutions per minute 

(RPM), however, the rotational frequency in the heat generation terms require Hertz 

(radians/sec). Rotational speeds of 1500-4000 rpm’s were experimentally run and used to 

validate the simulations. The main variable parameter, rotational speed, of 1500-4000 

rpm’s corresponds to 157-419 Hz (rpm*2p/60=Hz), a unit necessary for the analytical 

model by Schmidt et al.  

 

Results and Comparisons 

 Simulations were run on a Toshiba Satellite Laptop with Intel Centrino Duo 

processor working at 1.66 GHz and 1 GB RAM. Run time for the Nastran solver took 

~.31 seconds dependent on the parameters used. As expected from the analytic model, 

tool motion across the weld line is not modeled (i.e. translational speed). This leads to an 

axisymmetric model. An axisymmetric model should give identical results to the 3D 

analysis although findings are not submitted here. The welding tool as seen in the Trivex 

study and other posed in the literature does not greatly increase the welding temperature 

as it traverses the weld [Hofmann and Vecchio, 2006] [Mitchell, 2002]. Thermocouples 

tend to read the same temperature at any distance along the weld path at a specified 

distance from the centerline. Temperature isotherms for w = 1500 and 3500 rpm’s can be 

seen in figure 39. The welding temperature, Tw, is defined as the maximum temperature 

along the primary contact surfaces (i.e. shoulder and pin side). Simulations run at w = 

1500 give a welding temperature of 564K (291
0
C). For the 3500 rpm simulation Tw = 

742K (469
0
C). Additional temperature graphs are available in the appendix. 
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Figure 39: Temperature Isotherms for L) 1500 rpm and R) 3500 rpm 

 

 

 Experimental data was collected by the VUWAL from the summer in 2006 as part 

of the dissertation of Reginald Crawford [Crawford, 2006]; this data was used to validate 

the model. The Mikron Thermal Imaging Camera was used to determine experimental 

welding temperatures. Data was collected at 60 Hz. The translational speeds for the welds 

were 30 inches per minute (ipm). Temperature data was collected for the duration of a 

run and then run through a smoothing filter. The steady state temperature is time 

averaged neglecting the plunge time and extraction transient conditions. The maximum 

temperature of the weld pin is noted as it is important to the discussion of validation. 

Figure 40 shows the maximum welding temperature per frame of view for the duration of 

the weld run. 
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Figure 40: Maximum Temperature (C) vs. frame (60 Hz) for 1500 rpm at 30 ipm 

 

 The average steady state temperature is calculated for the plot and can be seen in 

the appendix as 260
0
C. The maximum temperature in the experimental run was 303

0
C. 

The temperature curve for 3500 rpm at 30 ipm is seen in Figure 41. 
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Figure 41: Maximum Temperature (C) vs. frame (60 Hz) for 3500 rpm at 30 ipm 
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 The average temperature calculated for the welding steady state is found to be 

394.8
0
C. The maximum temperature for the weld was 445

0
C. 

 

Discussion and Conclusions 

 The simulated temperature is consistently higher than the experimental 

temperature for the welds using rotational speeds from 1500-3500 rpm. Experimental 

welds had temperatures averaging 260
0
C for w = 1500 rpm and 394.8

0
C for w = 3500 

rpm. The simulated results show a welding temperature of 291
0
C and 469

0
C for 1500 and 

3500 rpm respectively. It is important to note that the true welding temperature can not be 

thermally imaged by the camera accurately since the pin is below the surface of the 

aluminum. The maximum temperature imaged by the camera is seen the second the pin 

clears the weld material and extracts on the far side of the weld. This welding 

temperature, not the average would be a better indicator for simulation comparisons. The 

maximum temperatures recorded were 303
0
C and 445

0
C for 1500 and 3500 rpm 

respectively. These temperatures match well with the simulation results. The finite 

element results differ from the experimental maxima by ~ 4.5%. 

 

           100*%
actual

simulatedactual
error

−
=    (11) 

%96.3100*
303

291303
%1500 =

−
=rpm  

%39.5100*
445

469445
%3500 =

−
=rpm  
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 The temperatures experimentally established can be made more precise by 

including thermocouples into the pin and/or weld line in the future. The simulated 

temperatures match fairly well with the data and provide an accurate predictor for future 

experiments using various process parameters. The temperature gradients near the tool 

pin was seen to be much steeper when subject to the higher rotational speeds and fixed 

boundary condition (e.g. welding machine). This proves an important mechanism for 

quenching of the weld near the interface. Heat is drawn more quickly from the zone in 

underwater runs and showed the same trend as well (see figure 40). This steep gradient is 

visible in the figure below in which there is a steep change in temperature gradient at the 

tool shank leading to the welding machine’s fixed temperature condition. No convection 

from the tool was imposed and may be implemented in future simulations. These 

boundary condition’s were not included as the primary heat sink was the large iron cast 

vertical head assembly to which the tool is set into. The no-slip contact condition has 

been incorporated well using a 3 dimensional model of the welding tool.  
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Figure 42: Temperature as a function of distance from pin bottom 

 

 

 

 Future simulations should incorporate a more coupled model in which the 

mechanical and thermal properties can be solved for simultaneously. The fluid dynamic 

aspect of FSW may be further exploited using a basis in this simple thermal model. The 

model accurately portrays much of the physics inherent to the welding process including 

quench rate leading to steep gradients. These gradients directly correlate with greater 

grain refinement, increased hardness, and subsequently greater ultimate tensile strength 

and weld properties.



 63 

APPENDIX A 

 

Control Welds 

 

1000 RPM  

 
FSW Forces 5 ipm 

 

 
FSW Moment 5 ipm 
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FSW Forces 8 ipm 

 

 

 

  
FSW Moment 8 ipm 
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FSW Forces 11 ipm 

 

 

 

  
FSW Moment 11 ipm 
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FSW Forces 14 ipm 

 

 

 

 
FSW Moment 14 ipm 
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1500 RPM 

 

 
FSW Forces 5 ipm 

 

 

 

 
FSW Moment 5 ipm 
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FSW Forces 8 ipm 

 

 

 

 
FSW Moment 8 ipm 
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FSW Forces 11 ipm 

 

 

 

 
FSW Moment 11 ipm 
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FSW Forces 14 ipm 

 

 

 

 
FSW Moment 14 ipm 
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2000 RPM 

 

 
FSW Forces 5 ipm 

 

 

 

 
FSW Moment 5 ipm 
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FSW Forces 8 ipm 

 

 

 

 
FSW Moment 8 ipm 
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FSW Forces 11 ipm 

 

 

 

 
FSW Moment 11 ipm 
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FSW Forces 14 ipm 

 

 

 

 
FSW Moment 14 ipm 
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APPENDIX B 

 

 

 

Immersed Welds 

 

 

 

1000 RPM 

 

 
IFSW Forces 5 ipm 

 

 

 

 
IFSW Moment 5 ipm 
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IFSW Forces 8 ipm 

 

 

 

 
IFSW Moment 8 ipm 
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IFSW Forces 11 ipm 

 

 

 

 
IFSW Moment 11 ipm 
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1500 RPM 

 

 
IFSW Forces 5 ipm 

 

 

 

 
IFSW Moment 5 ipm 
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IFSW Forces 8 ipm 

 

 

 

 
IFSW Moment 8 ipm 
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IFSW Forces 11 ipm 

 

 

 

 
IFSW Moment 11 ipm 
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2000 RPM 
 

 
IFSW Forces 5 ipm 

 

 

 

 
IFSW Moment 5 ipm 
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IFSW Forces 8 ipm 

 

 

 

 
IFSW Moment 8 ipm 
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IFSW Forces 10 ipm 

 

 

 

 
IFSW Moment 10 ipm 
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IFSW Forces 12 ipm 

 

 

 

 
IFSW Moment 12 ipm 
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IFSW Forces 14 ipm 

 

 

 

 
IFSW Moment 14 ipm 
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APPENDIX C 

 

 

 

RAW DATA USED IN THE FINITE ELEMENT ANALYSIS 

 

 

 

 
Verification of the Finite Element Mesh (CHEXA) 

 

 
XY Graph of Temperature vs. Center Distance from pin bottom (wwww = 1500 rpm) 
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XY Graph of Temperature vs. Center Distance from pin bottom (wwww = 3500 rpm) 

 

 
Data used for simulations and discussion 

wwww (rpm) 1500  2500  3500  4000 

wwww (rad/sec) 157.079633  261.799388  314.15927  418.879021 

sy (Pa) 241000000  241000000  241000000  241000000 

        

Rp (m) 0.002413  0.002413  0.002413  0.002413 

Rsh (m) 0.00635  0.00635  0.00635  0.00635 

H (m) 0.003556  0.003556  0.003556  0.003556 

        

As (m
2
) 5.3914E-05  5.3914E-05  5.391E-05  5.3914E-05 

Ab (m
2
) 1.8292E-05  1.8292E-05  1.829E-05  1.8292E-05 

Ash (m
2
) 0.00010838  0.00010838  0.0001084  0.00010838 

        

Qs (W/m
2
) 2843.36463  4738.94105  5686.7293  7582.30568 
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Qb (W/m
2
) 643.142  1071.90333  1286.284  1715.04533 

Qsh (W/m
2
) 11077.6263  18462.7106  22155.253  29540.3369 

        

Qs (W) 0.15329624  0.25549373  0.3065925  0.40878997 

Qb (W) 0.01176444  0.01960741  0.0235289  0.03137185 

Qsh (W) 1.20064554  2.00107589  2.4012911  3.20172143 

        

 % shoulder % sides % bottom total %    

 76.061008 19.5230615 4.41593057 100    

 

 

 It can be seen clearly that the pin bottom, which is the only part of the pin 

influencing axial force due to heat input, imparts a contribution of less than 5% as 

observed by other literature discussed in chapter II. This contribution matches the 

literature’s consensus and the error determined previously by analyzing thermal camera 

and thermocouple implantation data is small enough to lead one to believe that the model 

has been empirically and experimentally verified. 
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