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CHAPTER I

INTRODUCTION

Research in systems engineering has focused on dependability for more than three

decades. Due to industry standards and maturing productionprocesses, hardware has be-

come increasingly more reliable. Therefore software dependability has become the most

crucial element for overall system dependability.

The goal of dependability research is to provide means for software development that

not only ensure correct function but also reliability, security and availability [1]. As systems

increase in complexity, the challenges of making a system dependable and especially fault-

tolerant concurrently increase.

This is particularly true for distributed real-time and embedded (DRE) systems, such as

traffic control systems, weather observation systems, total shipboard computing or highly

automated assembly lines. These systems are characterizedby limited resources, including

space, energy consumption, memory size, CPU capacity and network bandwidth. Since

they always include physical elements and require timely interaction with physical pro-

cesses, they require diverse quality of service (QoS) guarantees, such as timely delivery of

data, limited usage of processing resources or high availability. Fault-tolerance is one as-

pect of QoS requirements that gains more importance as DRE systems are used in mission

critical scenarios with high dependability requirements.

A recent position paper [13] makes clear that despite many efforts in research, the

main reasons for system crashes and downtime are problems related to dependability and

fault-tolerance mechanisms fail to work correctly. The keyto comprehensive system de-

pendability lies in moving from point solutions for specificscenarios towards dependability

engineering that integrates all aspects through well understood models, metrics, develop-

ment processes and tools.
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This thesis proposes the use of component-based software development techniques

to improve fault-tolerance in DRE systems. Two frameworks are presented that capture

different aspects of fault-tolerance. Components with HEterogeneous State Synchroniza-

tion (CHESS), applies the strategy pattern to provide automated synchronization mech-

anisms for internal component state. CHESS integrates withthe second framework that

provides replication and failover capabilities on the abstraction level of components and

groups of components. This framework is called COmponent Replication based on Failover

Units (CORFU) and allows for standardized approach to fault-tolerance with a high level

of transparency to the component developer.

The remainder of this thesis is organized as follows. Chapter ?? gives an overview

of the background on research in fault-tolerance middleware. A summary of the basic

principles for our work in chapterIII . Based on this chapterIV presents the concepts

and architecture of CHESS. CORFU as the main contribution ofthis thesis is motivated

and described in chapterV. ChapterVI evaluates our proposed solutions qualitatively and

quantitatively. Concluding remarks in chapterVII summarize the accomplished results and

point out future work.
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CHAPTER II

BACKGROUND

Dependability and fault-tolerance have been the focus of extensive research in applica-

tion and system development. This section gives an overviewof the efforts in three areas

that are closely related to the work of this thesis. These areas are

1. dependency analysis for fault correlation

2. frameworks for fault-tolerance

3. modeling dependability aspects

II.1 Dependency Analysis for Fault Correlation

A major challenge for effective failure handling is to gain comprehensive knowledge

about which parts of a system are affected by a system fault. Faults cannot detected directly

but only through the resulting errors they cause. Pinpointing the causing fault allow rea-

soning about system parts that are affected by the original fault. This allows fast reaction

to errors before they can cause subsequent errors in other parts of the system.

Gaining knowledge about error propagation dependencies between system elements is

therefore crucial for dependable systems. This information can be used to determine which

system parts will eventually be compromised. This enables comprehensive failure handling

as opposed to reactive approaches that only monitoring for the basic elements of the system.

Research on fault dependencies has taken different paths togather and apply such

knowledge. These approaches can be categorized into staticapproaches and observation

based approaches.

Viera et al present an approach [15] that automates dependency analysis in component-

based systems. TheComponent Based Dependency Modelallows the incorporation of

3



diverse types of dependencies that are categorized into intra-component dependencies that

define execution and error propagation paths within one component implementation and

external dependencies that defined dependencies to other component or hardware and soft-

ware infrastructure elements. The strength of this approach is that it includes different

sources of information about the system, such as deploymentinformation, additional com-

ponent meta-data and meta-data about component connection. This approach is static in its

nature since it builds its dependency information based on meta-data. It therefore cannot

react on unforeseen failures or error propagation paths.

The static approach can be applied to various domains of component models. Another

example of this is event correlation [7] in the domain of event based systems, where depen-

dencies between different event sources are used to identify the original fault.

To address the limitations of static dependency information theAutomatic Failure-Path

Inference[5] approach relies on system behavior analysis at run-time. It focuses on com-

ponent based web applications implemented in Java and assumes that errors that express

themselves as exceptions. Fault dependencies are capturedas a directed graph, called

failure-propagation map. This graph is populated through direct interaction with the sys-

tem. Fault injection and monitoring of resulting componentcrashes is used to built up an

initial graph for a system. Later this graph is corrected based on non-intrusive monitoring

of the system under nominal operation. While this approach is very flexible in adopting the

dependency information to the system it is limited in its support of different fault types due

to its focus on exceptions and the Java programming language.

This work on dependency analysis relates to our research as it provides methodologies

to define groups of depended components. These groups serve as input for the algorithms

and mechanisms as described in chapterV.
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II.2 Frameworks for Fault-Tolerance

In general a framework for tault-tolerance integrates different aspects of dependability.

The role of frameworks mainly is to enable tault-tolerance,which includes error detec-

tion, fault diagnosis, fault isolation, error recovery andsystem reconfiguration. However

other means of dependability, such as fault-prevention fault removal and fault forecasting

benefit from frameworks as well. The coverage of different tault-tolerance means by dif-

ferent frameworks as well as their domain scope vary widely.To outline different existing

approaches they are compare and contrasted with our solution approach here. The consid-

ered frameworks are Adaptive Quality of Service for Availability (AQuA) and JBoss with

Application-Generic Recovery (JAGR).

AQuA [12], an adaptive architecture for dependable distributed objects focuses on

providing redundancy for distributed objects. AQuA objects are contained in replication

groups that provide a variety of replication schemes realized by a message based group

communication mechanism. AQuA uses CORBA to define and implement objects, but

maps them to the underlying group communication mechanism.The mapping layer in-

cludes mechanisms for error detection and failover. The Fault model includes process fail-

ures, detected through heartbeat messages and data value failures. A central dependability

manager coordinates groups and manages the fault toleranceinfrastructure.

AQuA supports tault-tolerance on the granularity of objects, while component-based

systems often need additional levels of granularity. Components themselves can be com-

prised of objects and dependencies between components can result in their need to failover

together. component-based frameworks go beyond the general framework approach by

also defining a component life-cycle and development process that allows to formalize as-

pects of other dependability means like fault prevention through offline analysis or defined

methodologies for fault removal and system validation.

JAGR [4] builds on a component-based infrastructure for the domainof three tier web
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applications with permanent data storage. JAGR focuses on intelligent failover mechanisms

based on dependency information gained through automatic failure path interference as

described earlier. Its main components are a modular monitoring structure that allows to

plug in different monitors for different error types. An intelligent recovery manager gathers

this information and applies micro-reboots to restart parts of the system that are affected.

Based on the result it can escalate the reboot scope from single components to the whole

system.

In distributed real-time and embedded systems however, persistent data storage and

stateless components cannot be applied in all cases due to limited storage and processing

resources. Our approach will therefore take into account state replication of groups of

replicated components and therefore provide failover mechanisms as a major mean for

fault tolerance instead of micro-reboots.

II.3 Modeling Dependability Aspects

A component-based framework that targets DRE systems is Cadena [8]. Cadena fo-

cuses on the modeling of component behavior early in the design process based on property

specifications capture high-level component information.This includes inter-dependencies

to ports of other components and intra-dependencies that capture relationships between

ports of the same component. Properties also capture behavioral specifications that allow

reasoning of temporal behavior and control-flows within components. Based on this infor-

mation, interface definitions and assembly descriptions, asystem model can be constructed

to allow reason on various system aspects, such as event rateassignment, traffic optimized

component distribution and schedulability analysis. Cadena not only encompasses a run-

time framework, but also a domain specific modeling tool suite for system modeling and a

simulation environment for model verification.

MDDPro[14] focuses on modeling dependability QoS requirements more explicitly. It

is designed to be a domain specific modeling language that provides an orthogonal view to
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the deployment structure of a system and allows the annotation of tault-tolerance attributes

to components. It introduces three concepts to explicitly model component replication:

1. Failover units annotate that a group of system entities fails if any one element of it

fails. Different parameters can be defined on the group that characterize the kind of

failure recovery strategy used (e.g. number of replicas, heartbeat frequency, etc.).

2. Replication groups allow to formally declare, which components replicate the same

logical object. Replication groups allow to configure statesynchronization policies.

3. Shared risk groups are a way to model how likely it is that a failure propagates from

one processing node to other nodes. This is realized as a treewhere edges represent

neighboring nodes and distances in number of edges serve as ameasure for how

likely a failure is to propagate.

MDDPro provides placement algorithms that automatically add component replicas

based on those entities above and provides model interpreters for generative programming

of deployment meta-data in XML format.

Our work on run-time support for component dependability iscomplementary to both

of the approaches of Cadena and MDDPro since it provides run-time support for the mod-

eling concepts. ChapterV describes CORFU, a framework for failover behavior for groups

of components and chapterIV describes CHESS, a framework for automated state syn-

chronization within replication groups.
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CHAPTER III

BASIC DESIGN CONCEPTS

III.1 Fault Model

The underlying fault model for the work presented here includes detection of host fail-

ures and process failures. A host is a physical unit of processing that is connected to the

system through a network and has an operating system. A process is located on a spe-

cific host and performs system functionality in a separate address space. It is furthermore

assumed that hosts as well as processes show fail-stop behavior. This means that any occur-

ring error leads to immediate shutdown of the entity. Due to the resource constraints posed

by DRE systems only passive replication is considered, where only one primary replica is

actively processing requests, while backup replicas are activated in the case of a failover as

opposed to active replication that consumes more processing and networking resources.

III.2 Architectural Foundations

The prototype for a dependable component framework is basedon the OMG lightweight

CORBA component model specification. However the design structure of the services and

mechanisms described can be easily implemented on any othercomponent framework with

mightiness. We will therefore first give an overview of the central concepts of CCM.

For the proposed architecture we furthermore take a layeredapproach: As CCM builds

on the CORBA specification that provides object level abstraction in a distributed system,

we leverage the capabilities of earlier research on fault tolerance on CORBA objects with

real time requirements. Thus the second part of this sectiondescribes the capabilities of

FLARE, a Fault-tolerant Lightweight Adaptive Real-time Middleware for Distributed Real-

time and Embedded Systems [3]. Based on these concepts we then develop the architecture

of a component based fault tolerance mechanism.
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III.2.1 The FLARe Real-Time Fault-Tolerance Framework

FLARe provides “lightweight fault tolerance” for CORBA objects. It combines several

concepts and services to allow the definition of replicationgroups per object, a mechanism

for failure detection and means to allow backup replica to seamlessly take over request

processing of failed objects.

FLARes design also minimizes direct coupling with application code, so that its mech-

anisms provide fault tolerance as transparently as possible. FLARE entities can be cate-

gorized by their location within a system. We distinguish client side entities, server side

entities and middleware services.

Theserver side entities enable the grouping of replica objects on different machines or

processes to be treated as one logical entity. FLARE provides replication on the granularity

of objects but detects process level failures since it is very unlikely that an object within a

project crashes without affecting the complete process andtaking it down with it. To deter-

mine process crashes, each server side application includes a separatemonitor threadthat

uses a TCP/IP socket to allow a monitoring service to observethe liveliness of the process.

The server also includes registration functionality for the monitoring service and a central

ReplicationManager, which both are described later. FLAREalso provides a generic state

synchronization mechanism, that requires application to provide callback methods that can

insert and extract their internal state into and from a CORBAAny type. A state synchro-

nization agentin the server process is responsible for retrieving and distributing the server

object state. This is done by one agent for all the objects hosted in one process. To associate

hosted objects with a replicated group of objects, a server side interceptor adds a tagged

component with the name of the replica object group to each IOR that belongs to a locally

hosted servant.

Theclient side entities allow seamless failover and failure detection. Using CORBAs

interoperable interceptor framework, aninterceptor for exceptionsis used to detect com-

munication failures. If an exception is detected, the interceptor consults the second entity
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deployed on the client side: Theforwarding agentkeeps an up-to-date list of all the rele-

vant object groups of a system and can therefore pass an object reference of the next replica

for the failed object. The information about the object group, the failed reference belongs

to is extracted from the IOR of the object as described in the server side mechanisms of

FLARE. The client interceptor then uses the CORBA LOCATION_FORWARD exception

mechanism to transparently redirect the clients request toa working backup replica.

The FLAREmiddleware services include areplication manager(RM) andhost mon-

itors. Both services are have an IDL interface and are implementedas CORBA Object

Services. The host monitors responsibility is to detect process level failures. For this

purpose one host monitor service is deployed on each networknode that hosts server pro-

cesses. Each server process needs to register itself with the host monitor and open a socket

connection that can be monitored. All host monitors register themselves with the RM and

send periodic updates about the host machine status to the replication. These update mes-

sages also serve as heartbeats to allow the RM to detect if a host is unreachable. The RM

itself is the central entity that keeps all the information about active replicas and their lo-

cation as well as the status of all host machines. It periodically builds up-to-date lists (so

called RankLists) of object references belonging to one replica group and their failover

order. These lists are then sent to every client forwarding agent and every server state

synchronization agent to provide them with the necessary information for failover or state

synchronization respectively. The RM itself can be replicated using the same mechanism

as any other server object to avoid it being a single point of failure.

FLARE allows very time efficient failovers since every client has a local copy of failover

targets and can use built-in ORB features to perform failovers transparently to the appli-

cation logic. The second strength of FLARE is its ability to react to changes in system

performance by implementing algorithms within the RM that sort the rank lists according

to available system resource at the time of failure detection. This allows to choose backup

replicas on the least loaded host to take over and therefore avoid performance overloads
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due to failures. By providing an abstraction for a group of replicated objects FLARE lends

itself as a basis for higher-level abstractions of fault tolerance as we will describe in the

following section.

III.2.2 The CORBA Component Model

The CORBA Component Model (CCM) provides a framework for software compo-

nents that are reusable in different contexts, without the need to recompile or adapt them

due to changes of the infrastructure or other aspects unrelated to application logic.

CCM components and ports. CCM extends the CORBA Interface Definition Lan-

guage (IDL) to support the definition of components. CORBA Components can expose

services through so calledportsthat are defined in IDL. Ports provide a structured way for

components to interact. Ports can either provide services or indicate that the component

uses the service of another component. Different port typesallow for either synchronous

or asynchronous communication.

The CCM container model. The process of developing CCM components is sup-

ported by code generation tools. The structure of componentimplementations and facto-

ries for component creation, called homes, are defined by theComponent Implementation

Definition Language (CIDL). A CIDL compiler generates code that integrates executor

code written by component developers into the CCM run-time middleware. The actual

implementation of a component is called executor and accesses the run-time through spe-

cial interface. At the heart of this integration is the CCMcontainer. A container provides

the run-time environment for one or more component implementations and consists of the

following two parts:

• Obligations that component developers must implement, such as life-cycle methods

(e.g.,ccm_activate(), ccm_passivate(), and ccm_remove()), sup-

port for provided ports (i.e., facets and event sinks), and configuration through at-

tribute setter and getter methods.
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• Obligations that must be implemented by the CCM middleware, such as context

information that component developers can use to access middleware services, such

as persistence, event notification, and fault-tolerance. Likewise, all required ports

(i.e., receptacles and event sources) can be accessed here.

Component servers. Components implementations are compiled into libraries and

then packaged together with meta-data. On system deployment, components are loaded

into a processes that provides the container interface. Allcustomization to the specific

run-time is done by configuration attributes and by selecting the appropriate component

implementation. The process that hosts components iscalled component server. Compo-

nent servers are started by started by deployment tools thatare described in the following

section.

III.2.3 The OMG Deployment and Configuration Specification

In addition to the specification for CORBA components, the OMG also specified the

Deployment and Configuration (D&C) specification [9] that standardizes data structures

and interfaces for component meta-data and component deployment functionality. Al-

though it can be used to deploy CORBA components it is designed to be independent

of any concrete component model and can be used to deploy other types of components.

The D&C specification is segmented, containing data models,run-time interfaces and

tool specifications for the three phases of component software development, target system

definition and execution of a component system.

We will focus on the data and management model for system execution.

Data Model: The central model for how a system is structured is the deployment plan.

It contains information about which componentimplementationsand correspondingarti-

factsare used and which componentinstancesare present in the system. Each of these

entities can also contain configuration properties that allows tailoring of components to the
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specific deployment. The target infrastructure is represented in form ofnodes, that repre-

sent server machines that a component instance will run on. Each instance is associated

with a node to run on. As mentioned earlier components interact with each other through

ports. The deployment plan captures component interdependecies throughconnections.

Each connection contains two references to component ports, where one reference is point

to a port that provides a service and the other reference points to a port that requires a ser-

vice. Connections to interfaces outside of the current deployment plan are realized through

external referencesthat allow to specify a CORBA object reference URL to identify the

provided or used service.

Management Model: All management entities are defined by their interfaces which

contain methods and attributes. The central entity is theExecutionManagerwhich is re-

sponsible for instantiatingDomainApplications defined as deployment plans. Every node

is represented by aNodeManagerin the management layer. For each deployment plan it

will create aDomainApplicationManagerthat is the administration interface to start and

stop the application. It will split a deployment plan into partial deployment plans and each

NodeManager will process these plans. Each node deploymentplan will be represented by

a NodeApplicationManagerthat acts on the local level as the DomainApplicationManager

on the global level and allows to start and stopNodeApplications.

Figure III.1: Component Based Mission Control System
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Figure III.1 shows the interaction patterns between management entities. ThePlan-

Launcherdoes not belong to the management model but is a deployment tool used to read

in a deployment plan, pass it to the execution manager and guide the system start-up pro-

cess.
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CHAPTER IV

COMPONENTS WITH HETEROGENEOUS STATE SYNCHRONIZATION

IV.1 Problem Statement

Passive replication schemes depend on backup replicas thatcan take over processing

quickly when a failure occurs. This includes deployment of backup instances of the same

application and then failover when an error is detected. In addition to that replicas need to

be synchronized frequently when they are not stateless. Applications in general and com-

ponent instances in particular contain internal state. This state can change through client

invocations. It is also possible that other elements in the system, such as time triggered

events can modify internal state.

Active replication schemes do not necessarily need to keep replicas synchronized since

all replicas process the same incoming requests and change their state accordingly. How-

ever even active replication only can ensure this in deterministic applications, where a

certain input results in the same internal state every time.It also cannot be applied if state

can change due to external events that are not captured by thefault-tolerance mechanism,

e.g. process mutexes or shared memory as described in [11, section 3.5].

CHESS focuses on passive replication schemes. Due to changing internal state compo-

nent replicas need to exchange information about their state to preserve consistency. State

consistency is required for replicas to take over immediately on error occurrence. A com-

mon technique for state synchronization is the check-pointing approach: all relevant state

information of an application is gathered and captured in form of a snapshot (i.e. struc-

tured data or memory dumps). There are different approachesfor the timing on snapshots:

While a time triggered approaches define an interval after which a new snapshot is taken,

event triggered approaches take snapshots based on notifications from the application of

system infrastructure that state changes have occurred. Depending on the replication style
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snapshots are directly distributed to all replicas throughdedicated communication mecha-

nisms like multicast messages (warm passive) or they are stored in a central repository and

transferred to the replica only prior to a fail-over (cold passive).

Providing a generic mechanism for state replication is a challenging task due to the wide

range of differences in how application state can look like.To design such a mechanism

means therefore to trade-off different characteristics ofinternal application state. This state

can be categorized across different dimensions that will serve as criteria to evaluate the

state synchronization mechanism of CHESS.

1. TheLocation of state in relation to the component implementation is a crucial as-

pect and limitation for application generic approaches to state replication. The most

common case is stateinternal to the application, being captured in local variables,

members of classes that implement the component or component attributes. How-

ever in complex DRE systems it is possible that components access system resources

or middleware infrastructures (e.g. a database persistency layer) which isexternal

state. A special case of external state issharedstate where several components use a

system resource (e.g. shared memory) together. Simply including external and espe-

cially shared state into the snapshot would lead to duplicates and merging conflicts

in the replicas and has therefore been given careful design consideration.

2. TheSizeof the internal application state can vary greatly. On the one side of the

spectrum there arestatelessapplications that have no state that needs to be preserved

from invocation to invocation. Other components keep stateinformation that is com-

paratively small (e.g. configuration values or counters). In other application domains

state data includes large amounts of data (e.g. received streaming data, multimedia

content, in-memory databases).

3. Complexity and Distribution are two tightly coupled properties of application state

information. The term distribution tries to capture the fact that the application can
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contain very different types of state that are not stored within a single data structure

but rather are distributed throughout the application structure. The greater the degree

of distribution the harder and more time consuming it is to create a snapshot or to

restore state from a snapshot. This also applies for complexity: On the one hand

there are very simple data structures like basic types that are very easily copied to

or extracted from a snapshot. As the complexity increases for sequential containers

like errors or lists of items, these operations get more timeconsuming. Associative

containers and structures with arbitrary member data typesand big hierarchical depth

have even higher performance costs for snapshot creation.

4. Dynamics of Changes: Not only the form of state differs greatly from applicationto

application, but also the frequency by which state is altered and needs to be check-

pointed. Some applications alter and store their state onlyonce at initialization. Other

applications undergo many state changes in their lifetime.These changes can occur

due to external input or internal mechanisms like time-triggered events. Many ap-

plications change their state based on incoming requests. Depending on the system

characteristics this can happen very rarely (e.g. in applications only used for main-

tenance) or with a high rate of invocations in the range of microseconds (e.g. for

streaming of satellite telemetry data). A generic replication mechanism like CHESS,

therefore needs to offer the flexibility to specify at which timing characteristics need

to be ensured for state synchronization.

We present the architecture of CHESS by presenting three design challenges that origin

from the diversity of state characteristics. These challenges are:

1. providing a common interface for exchanging diverse state snapshots

2. satisfying varying timing requirements

3. support for different protocols for state dissemination
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i n t e r f a c e R e p l i c a t e d A p p l i c a t i o n
{

vo id s e t _ s t a t e ( i n any s t a t e _ v a l u e ) ;

any g e t _ s t a t e ( ) ;
} ;

Figure IV.1: Callback interface for state replication

IV.2 Providing a Common Interface for Exchanging Diverse State Snapshots

Challenge: As described earlier the structure and complexity of state snapshots varies

greatly and in general is tightly coupled to an applications’ implementation. It is therefore

impossible to design an interface through which state snapshots are passed as strongly typed

parameters. First generation distributed systems tended to solve this problem by passing

simple byte streams and leaving the complex challenges of marshaling and demarshaling

as well as type checking and alignment adaptions to the application developer.

Solution: Pass state snapshot as CORBA Any. To achieve platform and language

neutrality for the state extraction mechanism and integration the necessary interfaces are

declared in CORBAs interface definition language (IDL). IDLdefines a special basic type

any that allows dynamic insertion of any data type and still preserves type-safety through

type code annotation and support for type checking, marshaling and demarshaling.

This allows to separate different obligations in the process of state distribution: The

application itself has to perform the insertion operation of its internal state into an any

object and also the extraction operation to retrieve new state instances from an any value.

The middleware can then distribute the Any value transparently without needing to have

additional knowledge about the internal structure of the snapshot. CORBA Anys can only

contain data defined in IDL.The application developer is responsible for declaration of an

IDL data type that represents the complete state, so that it can be inserted into an any

data-type.

FigureIV.1 shows the obligations of an application to make its internalstate available

18



to the state synchronization mechanism. An application hasto implement these methods

to interact with the state synchronization mechanism. If the framework needs to extract

state from an application that is a primary replica, it will call get_state(). All backup

replicas will receive state updates through theset_state() method.

Evaluation: This approaches’ main strength is that it addresses the dimension of com-

plexity and distribution by allowing the separation of concerns. It shields the generic mech-

anism from the internal structure of the application state but also supports the application

developer by using the CORBA Any data type that provides extraction and insertion op-

erators and therefore simplifies the gathering and composition of a state snapshot. The

dimension of size has a strong influence on the performance ofthis approach: Transmitting

any data has a certain overhead since type information has tobe embedded on the sender

side and extracted on the receiver side. Dealing with the location dimension of state is left

to the application developer who has to solve the problem howto deal with shared state

without any framework support. This particular aspect of the solution does not address the

dimension of the dynamics of changes.

IV.3 Satisfying varying Timing Requirements

Challenge: Applications may have very different requirements forwhensnapshots

shall be distributed from the primary replica to backup replicas. There are two main types

of timing behavior: (1) cyclic timing where state is updatedbased on a given time interval

and (2) acyclic timing where specific events like a client request trigger state synchroniza-

tion. Middleware mechanisms can automatically determine when to disseminate state for

cyclic timing behavior and therefore use theget_state() andset_state()methods

as callback methods to automate the process. However since the timing cannot be predicted

in the second case it needs active involvement of applications to disseminate state at the

right time. Combining both cases into a general framework mechanism is needed to ease

the burden of the application developer without restricting timing schemes.
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Figure IV.2: State transmission sequence based on a common interface

Solution: Separation of concerns between triggering state synchronization and state

retrieval allows to treat both cases in a uniform way. This approach includes several steps of

interaction between an application and a StateSynchronizationAgent which is a middleware

agent for state synchronization. Each process containing CHESS object replicas also hosts

a StateSynchronizationAgent that is responsible for all replication related functionality and

therefore removes this obligation from the application developer.

The sequence of interactions as described in figureIV.2 provides a mechanism for flex-

ible and generic state dissemination.

1. Registration of componentswith the StateSynchronizationAgent through a unique

application id allows the manager to retrieve state from theapplication when needed.

The registration needs to be done during the start-up phase of the component.

2. The StateSynchronizationAgent exposes the interface method state_changed

(in string id) that allows the component to indicate a change of its internal

state has. This thentriggers state synchronization. The id parameter is needed by the

agent to identify the component amongst all locally deployed components managed

by this agent.
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3. It is the agents responsibility to react on the notification about a state change and

retrieve the component statefrom the component that issued the notification. This is

done by calling back theget_state() method described earlier.

4. As the final step the StateSynchronizationAgent will thendistribute component state

to backup replicasin form of a CORBA Any instance.

Evaluation: This solution mainly addresses the dimension of dynamics ofchanges.

CHESS makes triggering of state synchronization the responsibility of the application de-

veloper. The trade-off for this approach is additional effort for the developer to issue the

change notifications whenever they are necessary. On the other hand this gives great flex-

ibility in controlling which application state changes really require state synchronization.

This allows for the most efficient usage of resources, since updates are only performed if

they are necessary. Through the separation of concerns between state change notification

and the actual execution of the state dissemination the effort for the developer is greatly re-

duced. CHESS shields the replica implementation from the actual distribution of snapshot

data to backup replicas.

IV.4 Support for Different Protocols for State Dissemination

Challenge: There is no one-size-fits-all communication mechanism to disseminate

state. Depending on size and timing requirements and the scheme of state dissemination,

different communication mechanisms are needed to provide optimal performance. Small

snapshots of applications with high reliability requirements need to be transferred through

synchronous peer-to-peer protocols with error correctioncapabilities. Larger snapshots, es-

pecially when transmitted to a large number of replicas needefficient protocols like group

communication protocols and multicast messages. In systems with cold passive semantics

where replicas only need to update their state in a failure case a central persistent stor-

age solution for state storage and retrieval is more adequate. Directly encoding the type of
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communication mechanism into the applications’ implementation results in a tight coupling

between business logic and transport mechanism and therefore complicates development

and adaption of the application.

Solution: Applying the Strategy pattern. CHESS uses the strategy pattern [6, pp.315f]

to allow applications a flexible choice of the used protocol at run-time. The state dissemina-

tion mechanism is represented by an object interface that provides a generic way to access

all variants of state dissemination in the same way. This pattern can be applied to shield

the component developer from the concrete protocol for state dissemination. In this way

the functionality can be integrated into the StateSynchronizationAgent. On replica regis-

tration the application can set a policy to determine which mechanism will be used by the

agent. The agent then will instantiate the appropriate concrete strategy object instance and

associate it with the application to use with every dissemination of state information.

FigureIV.3 shows how the strategy pattern was applied in CHESS to support two differ-

ent communication mechanisms. These are synchronous CORBAcalls and multicast com-

munication based on OMGs Data Distribution Service (DDS). The design of CHESS easily

allows to extend the framework by additional communicationprotocols, e.g. message-

based mechanisms or database storage. The abstract strategy interface benefits from the

earlier design decision to use the CORBA Any data type to represent snapshots. This re-

duces the complexity of the interface methods. However is also creates the necessity to

extract the data from the any object and transform it into theappropriate form in each

concrete strategy class. One example for this is shown in case of DDS communication.

The design above allows for choosing a communication mechanism choice for each

replica within the process. At registration time the StateSynchronizationAgent will create

the appropriate concrete strategy based on a registration parameter. When the application

later notifies it about state changes the agent will pass the state to the appropriate object

using the ReplicationStrategy interface.

Evaluation: CHESS flexible mechanism for heterogeneous protocols addresses the
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Figure IV.3: The strategy pattern applied to state synchronization

dimensions of size, complexity and change dynamics. It allows to transparently apply pro-

tocols suited for particular state characteristics. This flexibility enables trade-offs between

the following aspects:

1. Short delivery timesneed to be ensured for components with high update rates where

the dimension of change dynamics is important. However withgrowing size and

complexity of state snapshots it is harder to provide short delivery times. Connection

oriented protocols are well suited for fast delivery of small amounts of data.

2. High network throughputis necessary for snapshots with large sizes. However timely

delivery can suffer from protocols that maximize throughput. Group communication

mechanisms are well suited for sending large state to several receivers.

3. Reliable deliveryis needed in systems were state consistency has to be guaranteed

under all circumstances. This usually is done through errorcorrection codes and

retransmission of lost packets. Therefore trade-offs haveto be made between efficient

and reliable delivery protocols.
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The strategy pattern allows to make these trade-offs on a percomponent basis and

therefore accounts for heterogeneous environments and systems with highly diverse state

characteristics per component.
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CHAPTER V

COMPONENT REPLICATION BASED ON FAILOVER UNITS

Conventional middleware solutions provide fault tolerance through replication and re-

covery on the granularity level of single objects, processes and servers. Component mid-

dleware requires failover mechanisms at a higher level of granularity. The compositional

nature of component applications often results in dependencies between components that

require a coordinated failover mechanism for groups of components distributed across

several servers and processes. This chapter presents CORFU, a middleware architec-

ture for component-based fault-tolerance that includes support for single-component fault-

tolerance and uses it as a base for providing fault-tolerance on the level of groups of com-

ponents.

V.1 Case Study

The domain of space systems is one that has especially strongrequirements for real-

timeliness as well as for dependability. To illustrate the challenges that arise from component-

based DRE systems we describe the structure of a possible Mission Control System (MCS)

as used by the European Space Agency [10].

The purpose of an MCS is to control one or multiple satellitesthat perform a mission

in space that is dedicated to a specific task, such as earth observation or deep-space ex-

ploration. A MCS processes data gathered by the satellites and controls satellites. It is

deployed in a central control station and communicates witha network of ground stations

that provide communication links to the satellites.

FigureV.1 shows the structure of a component-based MCS. As time windows for active

connections to satellites can be very short due to their orbit and visibility to ground stations,
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Figure V.1: Component-Based Mission Control System

availability of the MCS during such phases is crucial. All MCS are therefore laid out re-

dundantly in hardware as well as in software functionality.Each of the entities is deployed

twice and some are grouped into chains of functionality thatare groups of components

working closely together.

The Network Interface System (NIS) serves as a gateway from the ground stations to

the MCS through a wide area network. Using a special protocol, the space link extension

protocol, it processes and transmits all mission relevant data to and from the MCS. This

includes sending telecommand data that controls the satellites and receiving telemetry data

from the satellites. The NIS itself is not part of a MCS chain,but is laid out redundantly.

Hardware and software of a NIS are tightly coupled and therefore replicated together. In

case of NIS failure a chain can switch from the active NIS A to NIS B in a warm passive

failover.
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The telemetry server analyses telemetry data and preprocesses it for the mission oper-

ators. The archive stores telemetry data permanently and isfed by the Telemetry server.

The telecommand server is responsible for creating and sending new commands issued by

the mission operators. A MCS needs to be tailored to specific missions and reconfigured

for different mission phases. The Mission Planning System is responsible for configuring

and observing the other system entities based on the missionspecific characteristics. These

four entities form a MCS chain that provides the main MCS functionality. To avoid single

points of failure this chain is replicated. As shown in the diagram a primary chain is active

during normal operation. In case of an error within the primary chain the complete chain

is passivated and a backup chain takes over operation through a warm passive failover. All

components of the backup chain are already deployed to take over operation as quickly as

possible. Only one chain at a time is allowed to send data through the NIS to the ground

stations.

The MCS is accessed by clients that allow mission operators to interact with the system

through a graphical user interface. Clients are always connected to one specific chain,

usually the primary MCS chain. In case of a failure the clientalso needs to failover to the

backup chain to ensure high availability for mission operators. Clients themselves are not

replicated and can be simply restarted.

In our case study three levels of replication granularity can be found:

1. no replication as in the case of the client components

2. replication of single components as for the NIS

3. replication of groups of components as in case of the MCS chains

CORFU incorporates techniques to achieve single componentreplications and based

on this component group replication.
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V.2 Requirements for Component Group Failover

Providing a replication and recovery mechanism operating on component groups in-

cludes several requirements that need to be fulfilled. Theserequirements are (1) fault iso-

lation, (2) ensure fail-stop behavior of failed groups and (3) server recovery.

V.2.1 Requirement 1: Fault Isolation

Since faults are not recognizable directly they can only be isolated through detecting

occurring errors and reasoning about their cause. This thenenables to predict which other

parts of the system will be affected by the same fault withouthaving to wait for other errors

occurring. For component-based systems this includes determining if a failed component

or a group of components within a failed process have external dependencies that allow

the failure to propagate to other components. To provide fault isolation the fault tolerance

mechanism needs to determine which components are affectedby a failure so that actions

can be taken to shield the system from this failure. This is hard since affected components

are possibly deployed across several server nodes. Component dependencies exist in many

forms, some being harder to detect and capture than others. They emanate from various

causes, such as shared operating system infrastructure, shared use of network resources,

middleware services and business logic dependencies.

Application in the MCS scenario: In the MCS scenario the reach of failure depen-

dencies differs among components. A client component has nofailure dependencies and

can simply be restarted without affecting other system components. The NIS components

will not require other components to restart when they crashbut the telecommand server

needs to be reconnected to the backup NIS. The components within one chain however are

dependent on each other. It is explicitly required that a failure occurring in one of these

Crash of the TM Server needs to result in marking all Chain A servers as failed. These

three cases need to be treated by middleware in different ways.
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V.2.2 Requirement 2: Ensure Fail-Stop Behavior

After a fault has been isolated by determining affected components it is necessary to

regard these components as containing inconsistent state.This is a threat to system consis-

tency since they possibly carry transient faults. As a consequence all affected components

need to be stopped as soon as possible. The time from error detection to the complete

stop of all affected components needs to be minimized. This is hard due to two factors:

(1) The time needed between detection of the first error and the effective shutdown of af-

fected components and (2) the need to synchronize the shutdowns between components in

a distributed environment.

Application in the MCS scenario: If a failure has been detected in the telemetry server

this could affect the other components in the chain and lead to inconsistency. The archive

might store data that is not correct and the telecommand server might issue commands

based on telemetry data that is no longer valid. Since the different components run on

different hosts, the shutdown process cannot happen instantaneously but will be affected

by the reaction time of the system algorithms and the communication capabilities of the

network.

V.2.3 Requirement 3 : Server Recovery

To achieve successful failover after a group of components has stopped it is necessary

to synchronize the activation of backup components. In a passive replication scheme this

mainly involves to coordinate which backup replicas becomeactive. This is hard since

failover is done on a per component basis and each component possibly has several backup

replicas. To ensure consistent system state after failoverit has to be made sure that all

backups that become active belong to the same failover group. Otherwise non-functional

requirements might not be met since two components that werenot intended to work to-

gether are accidentally activated simultaneously.
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Application in the MCS scenario: When components of the primary chain fail and

get deactivated all components in the backup chain need to become active and take over the

role of the primary chain. In the presented scenario this is not likely, since there is only one

backup replica per component, namely telecommand server B,telemetry server B, mission

planning system B and archive B. However if a second backup chain C would be added

things become more complex. The system could end up having some components fail over

to replicas in chain C while others fail over to replicas in chain B. Components might be

deployed in a way that leads to resource overuse in case of unintended failover orderings.

The archive for example might need a reliable connection implemented as a real-time bus

system, that is only available within nodes of one chain and not between the telemetry

server node of chain B and the archive server node of chain C.

V.3 The CORFU Architecture

As motivated in the caste-study, component-based systems need fault-tolerance on a

higher level of abstraction than single distributed objects. CORFU therefore introduces

the concept of afailover unit (FOU) for component-based systems. The related modeling

concept of a failover unit is described in the context of the MDDPro modeling tool [14].

We use this concept and transfer it to component middleware.

A failover unit contains a set of components that are interdependent on each other with

respect to failure dependencies. This means that if one of the components fails, all compo-

nents of the unit need to fail as well. It thus enables fail-stop behavior for a whole unit.

CORFUs FOU concept is based on passive replication. One unitis declared to be the

primary unit. A primary unit actively processes requests and is madeup of component

instances that are all primary replicas within their component replication group.Backup

FOUs are structurally identical to their corresponding primary FOU. This means that they

consist of component instances that have the same interfaces and connection structure as

their counterparts in the primary FOU. All component instances in the replica FOU are

30



backup replicas within their component replication groups. Backup units are not necessar-

ily deployed on the same node constellation as the primary unit. It is possible to deploy all

backup unit elements on one server node even if the primary FOU is deployed on a set of

nodes.

Failover units can be described as a set of component instances that share a common

task and role. Their role is either to be a primary or a backup unit. Since it is possible to

have more than one backup for each FOU, each backup unit has a rank to determine the

order of failovers (e.g. the primary will fail over to backupFOU number one. If FOU one

fails afterwards, FOU two will become active and so on).

CORFU is implemented using the CORBA Component model as described in chap-

ter III.2.2. CORFUs architecture consists of several aspects that are presented here in

relation to the design challenges they address. Each challenge is presented together with

CORFUs design decisions to overcome it. The challenges presented are (1) single com-

ponent fault-tolerance, (2) integration into the deployment and configuration infrastructure

and (3) failover ordering of replicas.

V.3.1 Challenge 1 - Single Component Fault-Tolerance

Problem: Providing passive replication for components requires means to (1) group

components and treat them as replicas of one logical component instance, (2) a failover

mechanism to activate a backup replica in the case of an errorand (3) a fault detection

mechanism that observes and reports when a system does not behave as expected.

In addition to this the nature of components add additional requirements for replica-

tion: (1) a component implementation can consist of severalimplementation artifacts that

need to be replicated, (2) components also have connectionsto other components that need

to be preserved during failover and (3) components are deployed in form of libraries that
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are dynamically loaded into the process space of some generic container. Component ini-

tialization and fault-tolerance configuration therefore needs to be done through dedicated

APIs.

Solution - Integrating FLARe through a fault-tolerant comp onent server.FLARe

provides object level fault-tolerance and can be adapted tosupport component-based pas-

sive replication. As described in sectionIII.2.1 process level fault detection is done trough

monitoring based on TCP/IP sockets. A failover mechanism based on ORB interceptors is

provided to groups replicas based on so called RankLists containing an ordered list of ob-

ject references. These references are associated with an object_id that identifies the logical

object the replicas are part of.

In addition to FLARes base functionality several adjustments have to be made to ad-

dress the additional requirements of component replication. This includes

1. Enhancing the notion of a Replication Group to Components

2. Preservation of Component Connections

3. Providing a Fault-Tolerant Component Server

V.3.1.1 Enhancing the notion of a Replication Group to Components

As described in sectionIII.2.1 a replication group in FLARE is realized through a rank

list, that associates a group name with an ordered list of references. This list is cyclically

distributed to all clients that then use it to contact backupreplicas for failovers. This so-

lution works on the level of single objects, since it uses object references within the rank

list.

Components however often consist of several objects. One servant represents the com-

ponent itself and each facet port and event sink are implemented by an additional servant.

For components to be replicated it is therefore necessary tocreate associations between

objects that form one component implementation.
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The most seamless approach here is to register each of the components implementa-

tion objects at component start-up using a specific naming scheme for replication groups.

The name of each object implementing a component aspect starts with the component in-

stances name followed by the actual name of the port name the object represents. Let’s

assume the MCS archive component has a port named “data” for data retrieval and a port

“mgnt” for administrative purposes. The replica group nameof the main component object

would be “Archive”, and the port names for the two ports wouldbe “Archive.data” and

“Archive.mgnt”. These names are used to register the objects with the component server

POA that has a USER_ID id assignment policy and it is added to each interoperable object

reference (IOR) of the objects through a server side portable interceptor. The same name

is also used to register the replicas with the ReplicationManager and the StateSynchroniza-

tionAgent.

V.3.1.2 Preservation of Component Connections

Component connections within the CORBA Component Model arerealized by storing

object references to facet interfaces. These are registered with the context of each compo-

nent that uses the facet. A similar mechanism is used for event ports.

FLARe already provides functionality to distribute failover RankLists to clients that

then can perform failover functions. Since all facet objects are included in this list, connec-

tions are automatically kept valid: When a component tries to use a receptacle connected

to a facet object that is no longer accessible, it will automatically fail over to an appropriate

replica.

V.3.1.3 Providing a Fault-Tolerant Component Server

A component server is a generic process in the DAnCE infrastructure that hosts com-

ponent instances. The library containing the component implementation is loaded into the

process space of a component server by a DAnCE NodeApplication instance. A Container
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Figure V.2: Structural Overview of a Fault-Tolerant Component Server

is the run-time infrastructure within the component serverthat provides a component with

APIs to interact with this run-time. Based on XML meta-data the container will instantiate,

configure and start components.

To allow support for component-based fault-tolerance in CORFU, a fault-tolerant com-

ponent server has been developed. It includes all common functionality of a component

server and contains additional fault-tolerance functionality. Figure V.2 gives a structural

overview of the adjustments have been made to host fault-tolerant component replicas.

These can be summarized as follows:

1. Per-process initialization tasks, such as registrationwith the HostMonitor, initializa-

tion of the StateSynchronizationAgent and the ForwardingAgent and registration of

those with the ReplicationManager.

2. A fault-tolerant session container is instantiated thatallows per component registra-

tion functionality such as POA registration, using the replica group id, embedding

of this id into each replica object reference and registering the component with the

ReplicationManager.
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V.3.2 Challenge 2 - Integration into the Deployment and Configuration Infrastruc-
ture

Problem: The interfaces of the OMG Deployment and Configuration (D&C)Specifica-

tion as described in sectionIII.2.3 are not providing fault-tolerance functionality. However

provisioning of fault-tolerance on groups of components requires to integrate into the sys-

tem model of the D&C infrastructure. CORFU needs to be standard compliant and yet

minimize performance overhead at run-time. This challengeincludes the mapping of the

component deployment hierarchy to the FLARe system model hierarchy. While the D&C

model consists ofnodesandcomponents, FLARe uses a model that containsobjectsresid-

ing in processesthat run onhosts. The second part of the challenge is integrate failover unit

related fault-tolerance properties into standard D&C deployment plans that do not have any

notion of replication.

The following partial solutions address this challenge:

1. Deployment Plan Preparation

2. Design of a FaultCorrelationManager

3. Mapping for FLARe and D&C System Models

V.3.2.1 Deployment Plan Preparation

For CORFU to be standard conform failover units need to be expressed through the

means available in the deployment plan specification of the OMG. A deployment plan is

static in nature. All component instances will be started together and are expected to op-

erate throughout the active phase of a deployment. Adding orremoving particular compo-

nent instances during system lifetime is not supported by standard D&C interfaces. Since

Failover units need to be shut down prior to the shutdown of the whole system, CORFU

requires to split deployment plans into several sub-deployment plans based on failover in-

formation.
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CORFU provides the algorithm SPLIT-FOU (algorithm1) that performs such deploy-

ment plan splits. The algorithm has to fulfill the following post conditions to achieve a

correct split.

1. Each failover unit needs to be represented by a separate deployment plan.

2. All component instances of the original plan must be contained within one of the sub

deployment plans.

3. Connections between component instances residing in different sub plans need to

be maintained by inserting external references and creating new connections among

them.

The algorithm has two input data structures: A deployment plan containing all compo-

nent instances and connections within a system and a failover unit specification that asso-

ciates instances in the deployment plan with failover units. By separating the declaration

of the failover units from the plan, these two aspects are made orthogonal. This allows to

define different fault-tolerance scenarios for one deployment plan and without modifying

the plan itself.

A deployment planD is defined as< n,u, r, I ,C >, wheren is the string id of the plan,

u is the name of the failover unit, this plan represents,r is the rank for the failover order

of this plan,I is a list of all component instances in the deployment andC is a list of all

connections between two components within the deployment.Each instanceIi is defined

as< n,m>, wheren is the name of the instance andm the name of the node an instance

is deployed on. Each connectionCi is an ordered pair of endpoints. Endpoints exist in

two forms: External endpointsei refer to a connection outside of the current deployment

through a stringified path of the form<deployment id>/<instance id>/<port

id>. The other form are internal endpointspi that refer to a component instance within the

current deployment through a path of the form<instance id>/<port id>. The first

element in the pair represents a component port thatusesa service from another component,
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while the second entryprovidesthe service. The failover unit declarationF is defined as

< n,u, r,J > wheren is the concrete name of the failover unit,u is the group name of

failover units that are replicas of each other,r is the rank of the unit within its group and

J is the set of instance names from the deployment plan that arecontained in this failover

unit.

The algorithm operates in two phases. The first phase will create a new deployment

plan for each failover unit and will will populate them with the correct instances. All com-

ponents that are not members of any failover unit are copied into an additional deployment

plan. In the second phase each connection is analysed. If both instances are still in the same

plan, it is simply copied into this sub-plan. Otherwise a connection to an external endpoint

referencing the correct component port is added to each of the two sub-plans that contain

these components now.

Algorithm 1 has a relatively high time complexity ofO(n2log(n))+O(m∗n), wheren

is the number of instances per plan andm the number of connections per plan. Since this is

an offline algorithm that is run before system deployment it does not need to be especially

optimized.

V.3.2.2 Design of a FaultCorrelationManager

CORFU introduces the FaultCorrelationManager (FCM) to manage fault-tolerance func-

tionality for failover units.

To integrate the FCM into the existing D&C infrastructure, the Decorator Pattern [6,

p.175] is applied. As shown in figureV.3 the FaultCorrelationManager implements the

ExecutionManager interface and can therefore be accessed by any service that uses the

ExecutionManager interface. The PlanLauncher that is responsible for passing deployment

plans to the ExecutionManager can now use this functionality.

In the context of the Decorator pattern, the FCM plays the role of a ConcreteDecorator

and the ExecutionManager is a ConcreteComponent. The Decorator Role in this case is
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Figure V.3: Application of the Decorator Pattern for the FaultCorrelationManager
design

not implemented as a class, but represented through the CORBA run-time that allows to

access the manager interface through an IOR. For the client it is transparent whether this

reference is pointing to a standard ExecutionManager or to aFaultCorrelationManager.

The FCM enhances the three methods of the interface with additional functionality.

Within these method implementations the calls are forwarded to the ExecutionManager.

The main tasks are performed at component deployment through thepreparePlan

() method. This includes creating an internal representationof the complete system as

described in sectionV.3.2.3 and functionality to order per-component replica groups as

described in sectionV.3.3.

The algorithmSPLIT−FOU is not part of the functionality of the FCM. This is due

to the fact that the ExecutionManager interface allows access to each DomainApplication-

Manager and the user therefore needs to have complete knowledge about which deployment

plans are running. Creating deployment plans automatically would break this transparency.

However, it is envisioned to implement SPLIT-FOU in the context of a domain specific

modeling tool.
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Figure V.4: Structure of a Fault-Tolerant Component System

V.3.2.3 Mapping for FLARe and D&C System Models

In figureV.4 the structure of a deployed system is summarized. The ReplicationMan-

ager receives information about process failures from HostMonitors that are deployed on

each server. A HostMonitor observes all fault-tolerant processes of a system and reports the

process id to the ReplicationManager if a process crashes. The Replication system model

therefore contains hosts and processes running on these hosts. It also associates single ob-

jects with the process they are running on, which results in athree layer hierarchy including

hosts, processes and objects. A deployment plan has a two layer system model, with nodes

and components that are deployed on those nodes.

The ReplicationManager needs to report failures to the FCM.The FCM then determines

which other components to stop based on the failure. To achieve this, a mapping between

both hierarchies is needed so that the FCM can process failure information sent by the

ReplicationManager in the most efficient way.

The proposed mapping is structured as follows: As a basic design decision we chose
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to identify node names with host names. Every server in the system that is observed by

a HostMonitor will also represent exactly one node named after the network name of the

server machine. We furthermore annotate components in the deployment plan with a prop-

erty that identifies the replication group of component. This name is then passed to the

ReplicationManager on registration as object_id. Since anobject_id represents a group of

replicated objects, it is still not guaranteed that a component is uniquely identified by tuple

of host name and object_id. Since it is not advisable to host several backup replicas of

the same object_id on the same physical host due to risk of loosing both replicas through a

crash of this server, it is appropriate to restrict the number of replicas per host and object_id

to one. This results in unique identification of components within one host.

Based on these decisions the following callback interface is implemented by the FCM

and registered with the ReplicationManager to receive notifications about process crashes.

typedef sequence<string> ApplicationList;

interface FaultNotification {

void app_failure (in string host,

in ApplicationList applications);

};

The ReplicationManager passes the host name of the crashed process as host parameter

and the FCM interprets it as node name. The applications parameter contains a list of

object_ids that were hosted in the crashed process. Note that the FCM does not need to

know in which processes a component is hosted in.

During deployment the FCM analyses the deployment plans to populate the following

data structures that help it to react on failure notifications:

1. A hash mapI associates componentinstancenames as keys with the id of the de-

ployment plan they are hosted in.

2. For each node a mapO is maintained that uses the object_id as a key to find the

component instance name that is a local replica for this object_id on the node. These
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node maps themselves are stored within a hash mapN that allows to find them by

using the node name as a key.

3. Each created DomainApplicationManager is stored in a mapM with its deployment

plan id as key.

Based on these data structures reaction time on failure notifications is optimized since

all access times to these maps are small.

The algorithm2 operates on these maps to process fault notifications duringsystem

run-time. The processing is done in two phases. In phase one,all affected failover units,

represented as deployment plans are determined based on thefailure information. This

phase uses the internal maps. The second phase uses exiting D&C infrastructure, namely

the DomainApplicationManagers to stop all component applications that belong to these

deployment plans.

V.3.3 Challenge 3 - Failover Ordering of Replicas

Problem: FLARe uses passive replication on a per-component basis. This means that

a backup replica takes over processing when the primary replica of a component fails.

For this purpose the ReplicationManager maintains a so called RankList for each fault-

tolerant object. The references within this list are sortedin the order in which they will

become active, starting with the first backup replica. Sincethe ReplicationManager has

no understanding of component groups it is hard to coordinate failovers across several

individual components. It has to be guaranteed that the failure of a primary failover leads

to the activation of all backup replicas in the next backup failover unit. It needs to be

prevented that component replicas from more than one backupfailover unit are active at

the same time.

Solution - Failover Constraints. Our solution approach is to modify the Replication-

Managers algorithm such that it can process constraints. The per object order determined
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typedef sequence<string> HostList;

struct RankListConstraint
{

string object_id;
HostList hosts;

};

typedef sequence<RankListConstraint> RankListConstraints;

Figure V.5: IDL Declaration of RankList Constraints

by such constraints needs to be maintained. As shown in figureV.5, constraints are defined

as sequences of host-names associated with a replica objectid. The first host list entry

indicates, where the primary is hosted and the following hosts contain backup component

replicas. Since every host only has one replica of the same group the constraint contains

enough information for the ReplicationManager to uniquelyidentify a replica.

The FaultCorrelationManager creates constraints based oninformation from the de-

ployment plan. Each deployment plan, representing a failover unit needs to be assigned a

rank within its group of failover unit replicas. The FOU-ORDERING algorithm for failover

unit based replica ordering is described in algorithm3. All components within a unit will

be assigned the units rank. The constraints are updated using this algorithm whenever the

deployment changes. This happens if new deployment plans are loaded or when failures

occur and deployments are removed.
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Algorithm 1 SPLIT-FOU (D)

Data: A deployment planD
Data: A failover unit definitionF
Output : A set of deployment plansS

for each Fi ∈ F do
create new deployment plans∈ S;
setu of s to ui ;
set namen of s to name(D)+name(Fi);
set rankr of s to r i of Fi;
for each Jk ∈ Fi do

find Il ∈ I | name(Il) = Jk;
copyIl to s;
mark Il as processed;

end
end
create new deployment plans∈ S;
for each unmarked component instance Ii ∈ D do

copyIi to s;
end
for each Ci ∈ D do

p1 = first endpoint ofCi ;
i1 = instance_id(p1);
find plans1 ∈ S| i1 ∈ s1;
n1 = name(s1);
p2 = second endpoint ofCi ;
i2 = instance_id(p2);
find plans2 ∈ S| i2 ∈ s2;
n2 = name(s2);
if n1 = n2 then

copyCi to s1;
else

create external endpointe1 with pathn2+ p2;
add connection< p1,e1 > to s1;
create external endpointe2 with pathn1+ p1;
add connection< e2, p2 > to s2;

end
end

43



Algorithm 2 FAILURE-REACTION (h,F)

Input : host nameh
Input : list of failed object idsF
Data: Component Instance MapI
Data: Node MapN
Data: DomainApplicationManager MapM

look up object_id mapO with keyh in N;
create empty setP of deployment plan names;
for each Fi ∈ F do

look up instance namei with keyFi in O;
look up plan namep with key i in I ;
if p is not in Pthen

addp to P;
end

end
for each p∈ P do

look up DomainApplicatonManagerm with key p in M;
retrieve list of ApplicationManagersA throughm.getApplications ();
for each NodeApplication a∈ A do

call m.destroyApplication (a);
end

end

Algorithm 3 FOU-ORDERING

Data: List of deployment plansD
Output : A constraint listL
partially sort plans inD by their ranks;
for each plan d∈ D do

for each instance i∈ d do
get object_ido property fromi;
get node namen property fromi;
appendn to list entry ofL with object_ido;

end
end
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CHAPTER VI

RESULTS

CORFU provides advanced fault-tolerance capabilities forDRE systems. We evaluate

this claim using two different approaches. First, we do a conceptual analysis of the devel-

opment effort by comparing object-based development of fault-tolerant applications with

development using the CORFU infrastructure. Second, we present measurements of COR-

FUs’ timing behavior. These include measurements of client-side failover latency and of

the round-trip latency of failover unit fail-stop events.

VI.1 Benefits of Component-based Fault-Tolerance comparedto Object Level
Fault-Tolerance

Developing applications that support distributed object-oriented fault-tolerance as pro-

vided by FLARe involves additional effort with respect to application development. This

evaluation qualifies those efforts and contrasts them with the component based fault-tolerance

approach CORFU provides.

Development obligations of object-oriented fault-tolerance: FLARe requires differ-

ent means to implement fault-tolerance on the server side, where the object to be replicated

resides, and on the client side, which uses replicated services. We will therefore separately

consider the obligations for server applications and client applications. We furthermore

distinguish between (1) object implementation obligations that each CORBA servant needs

to implement to integrate into the fault-tolerance infrastructure, (2) initialization obliga-

tions an application needs to perform to use FLARe functionality and (3) configuration

obligations at start-up that configure fault-tolerant aspects of the application.

Figure VI.1 gives an overview of all obligations related to server side development.

Each object implementation needs to provide callback interfaces to allow CHESS to do
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Figure VI.1: Development Obligations for Server-Side Fault-Tolerance

state synchronization. State synchronization additionally requires notification of the StateSyn-

chronizationAgent about state changes as discussed in chapter IV. Getter and setter meth-

ods have to be provided to give access to the supported replication object name and needed

agent references.

The main effort on the server side apart from object implementation is related to initial-

ization of the FLARe infrastructure. The server application developer needs to program-

matically perform the following tasks: An IOR interceptor has to be instantiated to allow

the annotation of exposed server object references with object id information. For the Host-

Monitor to observe a server application, a local thread has to be initialized. The application

then has to be registered with the monitor. The same procedure is necessary for a process

wide state synchronization agent. The agent needs to be instantiated and registered with the

ReplicationManager to receive information about other present object replicas. In addition

to these process wide initialization steps each object exposed by a server application needs

to be registered with the state synchronization agent and the ReplicationManager.

While the previously described steps need to be done programmatically, some aspects

need to be configured at application start-up time. This includes passing of the references to
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Figure VI.2: Development Obligations for Client-Side Fault-Tolerance

the ReplicationManager and the HostMonitor as well as the configuration of fault-tolerance

properties of the server objects, such as their role and the id of the logical object they

represent. This is either done through command line parameters or a proprietary file format

that is read by the application.

FigureVI.2 summarizes the obligations on the client side. Since FLAResarchitecture

provides a failover mechanism that is transparent to the client application as possible this

does not involve as many steps as server implementation. However there are still several

obligations that need to be performed correctly.

A client request interceptor needs to be initialized in order to transparently detect fail-

ures and forward requests to backup replicas. To inform the request interceptor about

available failover targets, a ForwardingAgent needs to be set up and registered with the

ReplicationManager. At start-up a client then must be configured with the object reference

of the ReplicationManager via command-line parameters or other means.

Consequences for application development:All the necessary obligations presented

here result in considerable accidental complexities in application and system development.

Being required to manually implement all initialization steps in clients and servers in-

creases the risk of accidentally omitting or confusing steps. This is even more problematic

since debugging of fault-tolerance aspects is hard due to its distributed nature.

In addition to these threats for quality and correctness, this approach also limits the

flexibility of system implementation. The number and type ofobject replicas per server
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process are determined by manually written code. This meansthat any change in position-

ing of replicas in the system is limited. Either each object needs to be reside in a separate

application to allow flexible positioning on replicas on according hosts. This however in-

curs additional resource consumption related to FLARes’ infrastructure. The alternative is

to collocate several objects which requires the adaption ofapplication code. This increases

the time needed to adapt a system to new requirements and thuscomplicates system evolu-

tion.

Benefits of CORFUs’ component-based approach:By integrating FLARe function-

ality into a fault-tolerant component server, CORFU overcomes many of these limitations

of traditional object-oriented fault-tolerance approaches. Server and client side capabil-

ities are available within the same component server. SinceCORBA objects often play

both roles of server and client at the same time this is a suitable architectural decision. We

present the benefits of the component server approach by relating them to the three different

types of obligations as presented earlier.

1. Object Implementation: Component executors, being the concrete implementation

artifact of a component interfaces technically are CORBA servants. They therefore

have to fulfill the same obligations as in the object-oriented case. However CCM

provides code generation functionality in the form of the IDL and CIDL compilers

that automatically can create necessary code artifacts.

2. Initialization: Most of the steps of client and server initialization can be done au-

tomatically. Instantiation of the state synchronization agent, the ForwardingAgent

and the HostMonitor thread are not related to hosted objects. The fault-tolerant com-

ponent server, therefore, hides the complexity of initializing these entities from the

component developer. The registration of individual components with the framework

also can be done automatically by a fault-tolerance aware session container. The nec-

essary information, such as the role and object id of a component can be submitted

using configuration attributes provided in the deployment plan specifications.

48



3. Configuration: Instead of using proprietary mechanisms on a per-application level

the component server approach enables the use of standardized configuration mecha-

nism provided by the D&C specification. Special fault-tolerant component attributes

can be defined and initialized within the deployment plan through so called con-

figuration properties. This still leaves the obligation to configure these properties.

But instead of doing this in scripts in the form of command line parameters or us-

ing proprietary solutions that might even vary from application to application, this

standardized approach uses existing infrastructure to actually instantiate the system.

Conclusion: CORFU increases the transparency of using fault-tolerancemechanisms

for server development as well as for client development. This allows for the application

developer to focus on business logic implementation while fault tolerance aspects can be

added and configured orthogonally. It is possible to collocate fault-tolerant components

without changing their implementation code. CORFU therefore also substantially improves

the flexibility of system deployment and system evolution. In addition to that there are

fewer possibilities of accidental faults in application development, since the initialization

is done in a well tested and stable way by the component server.

VI.2 Experimental Results

This section presents experiments that evaluate the timingbehavior of CORFU. These

experiments allow a better understanding of latencies involved in the failover mechanisms

and clarifies for which timing requirements CORFU is sufficient. The first experiment

evaluates failover latency as experienced by a client application. The second one focuses

on timing latency of the coordinated shutdown of a failover unit.
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Figure VI.3: Experiment Setup for Failover Latency Measurement

VI.2.1 Testbed

All experiments have been conducted on ISISLab1, a LAN virtualization environment

with identical blades connected through 4 Gbps switches that allow for dedicated links

per experiment. The blades each have two 2.8GHz Xeon CPUs and1 gigabyte RAM.

The Fedora Core 6 Linux distribution rt11 real-time kernel patches is used as operating

system. The enhancements to FLARe and the CORFU implementation are based on TAO

version 1.6.8 a real-time CORBA implementation and CIAO version 0.6.8, which is an

implementation of the CORBA component model. CORFU and all testing applications

have been built using the GNU compiler collection gcc version 3.4.6.

VI.2.2 Failover Latency

Experiment Setup: This experiment compares the failover latency a client experiences

for CORBA 2.x applications and component-based applications.

FigureVI.3 shows the basic setup of the experiments. A client application periodically

calls a server application that is replicated. The period is200 milliseconds and the execu-

tion time of each task is 20 milliseconds. We used a CPU workercomponent of the system

execution modeling tool CUTS[2] that allows to simulate a defined processing time in mil-

lisecond accuracy. With each call the server sends back the actual time from the beginning

1http://www.isislab.vanderbilt.edu
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of processing the request to the end of processing. This can be more than the 20 millisec-

onds since the process might be preempted by other processeson the same host. The client

also measures the time from issuing the request on the serveruntil it receives a response.

By subtracting the server side processing time from the measured response time, the time

for communication can be calculated.

After a defined number of calls the server will simulate a fault by shutting down. This

causes the client to fail over to the backup replica of the server. At this moment the response

time in the client is expected to increase due to the fact thatthe connection error has to be

detected and a new connection to the backup replica is established.

All primary servers are hosted on one host, the backup servers are hosted on a separate

host. The clients also a deployed together on a dedicated host and all CORFU infrastructure

entities, such as the ReplicationManager and the D&C run-time are hosted separately to not

interfere with the timing measurements.

This setup has been implemented in two variants. Variant 1 isobject-oriented and

consists of a client and a server executable that directly use FLARe functionality. Variant

two is component-based and uses CORFUs’ fault-tolerant component server. Each variant

is used in three different experiment configurations. Configuration one runs one group

of client, primary replica and backup replace, configuration two runs two such groups in

parallel and configuration three has four applications thatoperate at the same time. Each

measurement configuration is repeated 100 times and the average is used for the evaluation.

Measurement Results:An example for a single measurement for failover latency is

given in figureVI.4 (1), which represents the component-based case with one application

set running. The ten invocations before and after a failure event are recorded. The first

10 invocations show a communication overhead between zero and one milliseconds, which

represents failure free communication with the primary server. On the clients attempt to

contact the server at invocation eleven the failover occurssince the server shut down after

ten invocations. In this case the latency increases to four milliseconds due to the processing
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time within the ORB to detect the CORBA exception indicatingthe servers unresponsive-

ness and the forwarding of the request to the backup replica.

Figure VI.4: Failover Latency Measurements

FigureVI.4 (2) shows the average latencies as measured in all six configurations. The

three CORBA 2.x based object-oriented experiment with one application shows a commu-

nication overhead of three three milliseconds, while the corresponding component-based

experiment has a latency of four milliseconds. This shows that the extra cost for the

component-based fault-tolerance with 25 percent additional overhead is relatively small.

Looking at the configurations with two and four applicationswe can see that the component-

based experiments stay constant around four milliseconds of latency, while the object-

oriented examples have growing response times. This is not directly related to the failover-

mechanism but reflects the implicit differences between theexperiment variants, since the

executables start processing right away while a component is first loaded into the container

and then triggered later on to start processing. Nevertheless the results show that there is

no unreasonably high overhead for component based fault-tolerance.

VI.2.3 Failover Unit Shutdown Latency

Experiment Setup: The second experiment is designed to give insight into the latency
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involved in the process of shutting down a failover unit. This latency is due to several

factors:

1. Error detection and notification delay from the failure ofa component to the start of

processing its notification by the FCM

2. Reaction delay within the FCM to determine which components are affected and

which deployments therefore need to be shut down

3. Shutdown time using the D&C services, namely the DomainApplicationManager and

it’s node application interfaces to destroy the affected node applications.

The structure of the experiment and its logical sequence of events is shown in figureVI.5.

The setup includes six processing nodes of which one node is dedicated for the CORFU

management entities, such as the ReplicationManager, the FCM, the ExecutionManager

and other elements of the D&C run-time. The other five nodes have a HostMonitor de-

ployed to observer the system state per node. Each node hostsone component for each of

five deployed failover unit. There is one primary failover unit that includes one component

per node, namedA0 to E0. This failover unit is replicated four times through the backup

failover units one through four. Each of the backup units contains replica componentsAn

to En of each component in the primary unit. The failover order of the units corresponds to

their number. The experiment will inject failures in the currently active component, leading

to a failover sequence of primary FOU, backup FOU 1, backup FOU 2, backup FOU 3 and

finally backup FOU 4. Each experiment run therefore allows usto measure four failover

latencies.

Due to the need for consistent time, all measurements are taken on node-1 in the Repli-

cationManager and the FaultCorrelationManager. This prevents the need for synchronized

clocks. The measurements are done in the following sequence:

1. A failure is provoked in componentAn of the active FOU.
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Figure VI.5: Experiment Setup for Failover Unit Shutdown Latency Measurement

2. The failure is detected by the HostMonitor and reported tothe ReplicationManager.

3. The ReplicationManager takes a time-stamp at timet1 when it receives the failure

notification and notifies the FCM about the occurred failure.The FCM takes a times

tamp at timet2 when it is notified about a failure.

4. The FCM does look-up operations in its internal maps to determine which FOU

deployment plans need to be shut down and takes a time-stampt3 after finishing

this look-up.

5. The FCM will then access the DomainApplicationManager toretrieve all node appli-

cations for the corresponding deployment plans and then will iterate through them to

shut them down. After the last call is returning, a time-stamp att4 is taken to indicate

the finishing of the shutdown request.
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6. The ReplicationManager will be notified about all the shutdowns of the affected com-

ponents by the HostMonitors. On reception of the last shutdown notification, a time-

stamp fort5 is taken that represents the time when the FOU is completely shut down

and a client would failover to a backup replica no matter which component in the

FOU it tries to access.

Measurement Results:The measured times allow us to determine the following la-

tency times:

Round-trip Time tround-trip= t5− t1 (VI.1)

The round-trip time is the sum of all latencies involved in the shutdown of a failover unit.

This includes failure detection, reaction time within the FCM and shutdown time by the

D&C run-time.

Reaction Time treaction= t3− t2 (VI.2)

The reaction time is the time spent within the FCM between thefailure notification and the

start of the shutdown process. This basically is the time needed to perform the FAILURE-

REACTION algorithm2 and to serialize incoming notifications into a thread-safe queue to

ensure correct processing of parallely detected errors.

Shutdown Time tshutdown= t4− t3 (VI.3)

The shutdown time as measured by the FCM allows us to get an understanding which

proportion oftround-trip is not related to the D&C shutdown mechanism which cannot be

changed without breaking the standard.

FigureVI.6 shows minimum, maximum and average round-trip and shutdownlaten-

cies for fail-stop measurements. Reaction latencies have not been displayed since they are

negligible compared to the other types of latency.
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Figure VI.6: Measurement results for fail-stop latencies

As we can see from the graph, CORFU has the following latency characteristics:

Average Latency Timētround-trip= 70.59ms (VI.4)

of which the shutdown time represents a huge proportion although it does not fluctuate as

much.

Average Shutdown Timētshutdown= 56.04ms (VI.5)

For the internal reaction time of the FCM, experiments show that is no crucial factor in

timing behavior:

Average Reaction Timētreaction= 0.24ms (VI.6)

VI.2.4 Discussion

Based on the experiments we performed several characteristics of CORFU are exposed.

Using a client-side failover mechanism allows for short failover latencies, since communi-

cation with the central replication manager in the instant of a failure is avoided. This would

be a bottleneck in performance of large-scale systems. As shown by the first experiment,

this client side failover latency is relatively small, being three milliseconds for the object
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variant. Having evaluated the benefits for CORFU concerningapplication development and

system deployment we also needed to ensure that this does notdrastically degrade perfor-

mance and therefore render the solution unusable for DRE applications. As our experiment

shows, client failover in CORFU is comparable in performance and occurs only minimal

overhead, having an average response time of four milliseconds.

Compared to the client failover latency the failover unit shutdown latency with 70 mil-

liseconds in average is relatively high. The reason for thisis partly to be found in the

iterative way a deployment has to be shutdown based on the domain application and node

application interfaces. Another source of long response times is the communication time

between the different entities, such as the HostMonitors, the ReplicationManager and the

FCM. The internal reaction time of the FCM to determine deployments that are affected

by faults is already optimized through the use of hash maps with close to constant access

times. With an average beneath 0.25 milliseconds it does notsubstantially contribute to the

overall processing time.

Based on these sources of overhead, we envision three approaches to reduce the round-

trip latency for failover unit shutdown:

Parallelized Shutdown To reduce the shutdown latency the calls initializing shutdowns

for affected node applications can be parallelized insteadof being done in sequential

order. A suitable mechanism to do so is Asynchronous Method Invocation as defined

in the CORBA standard. This allows the FCM as a client to issueall shutdown

requests without having to wait for their response in between. This would lead to

significant reduction of the shutdown time, especially in large deployments.

Collocation of Management Entities Some communication paths, especially between Repli-

cationManager, FCM and ExecutionManager can be optimized by collocating these

entities into the same process space. This greatly reduces communication times since

the network stack can be avoided and in process communication mechanisms are

used instead.

57



RTCORBA For the communication paths that need to go through the network, commu-

nication can be made more reliable and deterministic by using RTCORBA features,

such as the real-time scheduling service, private connections, pre-allocation of con-

nections and end-to-end priorities.

Although there still is potential for performance improvement, the measurements show

that CORFU is suitable for DRE systems and offers comparableperformance to distributed

object-oriented fault-tolerance.
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CHAPTER VII

CONCLUDING REMARKS

Research on fault-tolerant DRE systems often has focused onsolutions that simply

focus on the fault tolerance related aspects of a system. Application development effort

and system evolution often is not taken into account. Existing frameworks mostly use an

object-oriented paradigm to provide fault-tolerance.

Our work shows that applying the component-based development paradigm can im-

prove transparency of fault tolerance aspects in the application development process and

therefore fosters more flexible system structures and better support for system evolution.

We showed how this approach also increases the speed and quality of application develop-

ment. Through measurements of the CORFU infrastructure we showed that component-

based fault-tolerance can be provided within required performance limits.

VII.1 Lessons Learned

Through our work on component-based fault-tolerance for distributed real-time and

embedded systems we gained a better understanding of the domain, which is summarized

in the following lessons learned:

1. Fault Tolerance affects all aspects of a system and introduces a new dimension of

complexity. It is therefore hard to capture all fault tolerance aspects in a comprehen-

sive middleware framework. Application characteristics differ greatly even within

the DRE domain, which affects used protocols, architectural concepts applied and

technologies chosen. Each of these choices might require different approaches to

fault-tolerance.
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2. Development of fault tolerant systems can benefit greatlyfrom integration into mid-

dleware. Although there is no one-size-fits-all solution central fault-tolerance aspects

can be captured in frameworks through intelligent design approaches. CHESS is an

example that uses design patterns to separate application specific concerns from com-

mon fault-tolerance mechanisms and thus increases the level of automation of replica

state synchronization.

3. Component-based Middleware allows for greater fault-tolerance transparency. As

demonstrated by CORFUs’ fault-tolerant component server,the component-based

development paradigm and lightweight fault-tolerance integrate very well, allowing

the hiding of much complexity that exists in this domain.

4. Layering and separation of concerns fosters flexible and architectures. This becomes

clear in the design of the fault correlation manager. By building the failover units on

top of the existing object based approach and separating concerns through failover

constraints, the fault correlation manager design and implementation could be kept

small and focused on its main task to analyze the system infrastructure and react

on failures using other existing software, namely the deployment and configuration

infrastructure.

5. Performance of Fault Tolerance is hard to measure due to singular nature of failures,

non-determinism in network, operating system and middleware. Since faults are no

periodical events in systems expecting fail-stop behaviorthe setup of experiments

is complex. Each measurement can only measure a very limitednumber of faults

before the complete system has to be restarted. Additionally the nature of distributed

systems makes it hard to gather reliable timing informationdue to network jitter,

operating system scheduling and other sources of non-determinism. Experiments

and testing scripts need to be highly automated to allow a sufficient number of single

measurements.
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VII.2 Future Work

The work on CORFU touched on many aspects of fault-tolerancein the context of com-

ponent based system. Future work in this area needs to be doneto achieve a comprehensive

solution that integrates all aspects of fault-tolerance and component-based software devel-

opment.

• Optimization of Group Failover in the Fault Correlation Man ager and DAnCE:

As discussed in the experimental results section, failoverlatency of failover units

needs to be optimized.

• Transactions within and across Failover Units for advancedstate consistency

guarantees: So far, CHESS provides consistency mechanisms on the level of sin-

gle components. Certain applications require consistencyguarantees for groups of

components, such as failover units. Transactional semantics need to be introduced to

enforce stronger guarantees of consistency.

• Extending the Fault Model to Network Failures: DRE systems might need to

operate in environments with highly unreliable communication channels. In such

scenarios fault models need to include network failures as well as host and process

failures. Further research has to be done to enhance FLARe and CORFU to deal

with partitioning in networks and reconciliation of state and failover information

after reestablishment of connectivity.

• Integration of CORFU with Domain Specific Modeling tools, such as MDDPro [14]:

CORFU provides a run-time solution for groups of componentswith fault dependen-

cies. To integrate these concepts into a domain specific modeling language allows

for a comprehensive engineering approach to fault-tolerance. The SPLIT-FOU algo-

rithm in particular integrates well into a modeling environment and eases the burden

of the system deployment planner.

61



• Additional Fault Tolerance Aspects for Component Deployment Infrastructures:

To avoid single points of failure, all entities in a component based run-time system

need to be fault-tolerant. Further research needs to be doneto apply object-based

fault-tolerance to entities such as the execution manager,the node managers and

other D&C entities as well as to the fault correlation manager itself.
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