COMPONENT-BASED FAULT TOLERANCE FOR DISTRIBUTED REAL-TIE AND
EMBEDDED SYSTEMS

By

Friedhelm Wolf
Thesis
Submitted to the Faculty of the
Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Computer Science

May, 2009

Nashville, Tennessee

Approved:
Dr. Douglas C. Schmidt

Dr. Aniruddha Gokhale

To Jesus Christ,
who not only laid the foundations of western civilizatiordaasearch
through revealing the nature of God the father,
but also made me the person | am.

ACKNOWLEDGMENTS

I’'m indebted to the GI department at the European Space GpesaCentre and espe-
cially to Dr. James Eggleston, who not only greatly influehttee direction of my research
but also was very supportive during my internship there andhfe mission control system
case-study.

| want to thank my adviser Dr. Douglas C. Schmidt for his emagement to embark on
graduate studies and his commitment to push my programrkilig @nd critical thinking
towards perfection. He is the reason | pursued my Mastersedeand I'm thankful for
these two years where | learned a lot, and even quite a bit @boyputer science.

| am grateful for all present and past members of the DOC gtougreate a pleasant
working atmosphere through their openness in answeringubstions of a newcomer.

My special thanks goes to Jaiganesh Balasubramanian, asibiis and Will Otte for
all the productive and fun work on the projects we did togethe

As a student from a foreign country | am very thankful for tle®ple that reached out
to me and cared for me. | especially want to thank my colledgeeHoffert and his family
for inviting me to church and for supper and caring for my. sTtaime also wouldn’t have
been the same without the amazing hospitality of familyriawifthat adopted me instead
of just giving me a room.

The people that made all this possible, however, are my fsmkéarianne and Gerhard,
who not only brought me up to persevere in hard work by beingiag example but also

by letting me go and giving me their blessing on this path fgead me far away from home.

TABLE OF CONTENTS

Page
DEDICATION e e il
ACKNOWLEDGMENTS e e e e ii
LISTOFFIGURES e e Vi
Chapter
l. Introduction. 1
Il. Background 3
II.1. Dependency Analysis for Fault Correlation 3
Il.2. Frameworks for Fault-Tolerance 5
I1.3. Modeling Dependability Aspects 6
[1. BasicDesignConcepts e 8
.1. FaultModel 8
[ll.2. Architectural Foundations 8
[11.2.1. The FLARe Real-Time Fault-Tolerance Framework . 9
[11.2.2. The CORBA ComponentModel 11
[11.2.3. The OMG Deployment and Configuration Specificatioh?2
IV. Components with Heterogeneous State Synchronization. 15
IV.1. Problem Statement 15
IV.2. Providing a Common Interface for Exchanging Divergat&
Snapshots. L 18
IV.3. Satisfying varying Timing Requirements 19
IV.4. Support for Different Protocols for State Dissemioat 21
V. Component Replication based on FailoverUnits 25
V1. CaseStudy 25
V.2. Requirements for Component Group Failover 28
V.2.1. Requirement 1: FaultIsolation. 28
V.2.2. Requirement 2: Ensure Fail-Stop Behavior 29
V.2.3. Requirement 3: Server Recovery 29
V.3. The CORFU Architecture 30

V.3.1. Challenge 1 - Single Component Fault-Tolerance . . 31
V.3.2. Challenge 2 - Integration into the Deployment and-Con
figuration Infrastructure 35

VI. Results e 45
VI.1. Benefits of Component-based Fault-Tolerance contper®b-

ject Level Fault-Tolerance 45

VI.2. ExperimentalResults 49

VI.2.1. Testbed 50

VI.2.2. FailoverLatency 50

VI.2.3. Failover Unit Shutdown Latency 52

VI.2.4. Discussion e 56

VII. ConcludingRemarks 59

Vil.1.LessonsLearned, 59

VIL.2.FutureWork 61

REFERENCES e e e 63

LIST OF FIGURES

Figure Page
[l1.1. Component Based Mission Control System 13
IV.1. Callback interface for state replication 18
IV.2. State transmission sequence based on a common ogerfa. 20
IV.3. The strategy pattern applied to state synchronipatio. 23
V.1. Component-Based Mission Control System 26
V.2. Structural Overview of a Fault-Tolerant Component@er. 34

V.3. Application of the Decorator Pattern for the Fault@mtionManager

design 38
V.4. Structure of a Fault-Tolerant Component System 39
V.5. IDL Declaration of RankList Constraints 42
VI.1. Development Obligations for Server-Side Fault-Talee 46
VI.2. Development Obligations for Client-Side Fault-T@ece 47
VI.3. Experiment Setup for Failover Latency Measurement..... 50
VI.4. Failover Latency Measurements 52

VI.5. Experiment Setup for Failover Unit Shutdown Latencgddurement . .54

VI.6. Measurement results for fail-stop latencies 56

Vi

CHAPTER |

INTRODUCTION

Research in systems engineering has focused on depenhdéiilimore than three
decades. Due to industry standards and maturing produstaesses, hardware has be-
come increasingly more reliable. Therefore software ddabitity has become the most
crucial element for overall system dependability.

The goal of dependability research is to provide means ftiwaoe development that
not only ensure correct function but also reliability, sg&tgtand availability fl]. As systems
increase in complexity, the challenges of making a systgmeii@able and especially fault-
tolerant concurrently increase.

This is particularly true for distributed real-time and esdbded (DRE) systems, such as
traffic control systems, weather observation systems|, sbipboard computing or highly
automated assembly lines. These systems are characteyifiedted resources, including
space, energy consumption, memory size, CPU capacity amerkebandwidth. Since
they always include physical elements and require timeigraction with physical pro-
cesses, they require diverse quality of service (QoS) gteesa, such as timely delivery of
data, limited usage of processing resources or high avigyal-ault-tolerance is one as-
pect of QoS requirements that gains more importance as DREmg are used in mission
critical scenarios with high dependability requirements.

A recent position paperlB] makes clear that despite many efforts in research, the
main reasons for system crashes and downtime are probldswed¢o dependability and
fault-tolerance mechanisms fail to work correctly. The keyomprehensive system de-
pendability lies in moving from point solutions for spec#icenarios towards dependability
engineering that integrates all aspects through well wwtded models, metrics, develop-

ment processes and tools.

This thesis proposes the use of component-based softwaetodenent techniques
to improve fault-tolerance in DRE systems. Two framewornes @resented that capture
different aspects of fault-tolerance. Components withéf@eneous State Synchroniza-
tion (CHESS), applies the strategy pattern to provide aateth synchronization mech-
anisms for internal component state. CHESS integrates thilsecond framework that
provides replication and failover capabilities on the edxgton level of components and
groups of components. This framework is called COmponepli&ion based on Failover
Units (CORFU) and allows for standardized approach to fenlétrance with a high level
of transparency to the component developer.

The remainder of this thesis is organized as follows. Chap?ggives an overview
of the background on research in fault-tolerance middlewak summary of the basic
principles for our work in chaptelll. Based on this chaptd¥ presents the concepts
and architecture of CHESS. CORFU as the main contributiothisfthesis is motivated
and described in chapt®t. ChapteVl evaluates our proposed solutions qualitatively and
guantitatively. Concluding remarks in chaptdt summarize the accomplished results and

point out future work.

CHAPTER I

BACKGROUND

Dependability and fault-tolerance have been the focus @nsive research in applica-
tion and system development. This section gives an overgfale efforts in three areas

that are closely related to the work of this thesis. Thesasaaee
1. dependency analysis for fault correlation
2. frameworks for fault-tolerance

3. modeling dependability aspects

.1 Dependency Analysis for Fault Correlation

A major challenge for effective failure handling is to gamngprehensive knowledge
about which parts of a system are affected by a system faauitd=cannot detected directly
but only through the resulting errors they cause. Pinpognthe causing fault allow rea-
soning about system parts that are affected by the origindd. fThis allows fast reaction
to errors before they can cause subsequent errors in otriergbahe system.

Gaining knowledge about error propagation dependenciggela system elements is
therefore crucial for dependable systems. This infornmaten be used to determine which
system parts will eventually be compromised. This enaldegrehensive failure handling
as opposed to reactive approaches that only monitoringpédnasic elements of the system.

Research on fault dependencies has taken different patbath@r and apply such
knowledge. These approaches can be categorized into gpgiioaches and observation
based approaches.

Viera et al present an approad¥] that automates dependency analysis in component-

based systems. Theomponent Based Dependency Modikbws the incorporation of

diverse types of dependencies that are categorized im@omponent dependencies that
define execution and error propagation paths within one compt implementation and
external dependencies that defined dependencies to oth@ooc@nt or hardware and soft-
ware infrastructure elements. The strength of this appraacthat it includes different
sources of information about the system, such as deploymi@nmation, additional com-
ponent meta-data and meta-data about component connethismpproach is static in its
nature since it builds its dependency information based etardata. It therefore cannot
react on unforeseen failures or error propagation paths.

The static approach can be applied to various domains of cnerg models. Another
example of this is event correlatio][in the domain of event based systems, where depen-
dencies between different event sources are used to igémtiforiginal fault.

To address the limitations of static dependency infornmatti@ Automatic Failure-Path
Inference[5] approach relies on system behavior analysis at run-titi@cuses on com-
ponent based web applications implemented in Java and assinak errors that express
themselves as exceptions. Fault dependencies are cagtsiraddirected graph, called
failure-propagation map. This graph is populated througéct interaction with the sys-
tem. Fault injection and monitoring of resulting componerashes is used to built up an
initial graph for a system. Later this graph is correctededdasn non-intrusive monitoring
of the system under nominal operation. While this approasfery flexible in adopting the
dependency information to the system it is limited in itsyso of different fault types due
to its focus on exceptions and the Java programming language

This work on dependency analysis relates to our researdlpesvides methodologies
to define groups of depended components. These groups seiryeua for the algorithms

and mechanisms as described in chapter

1.2 Frameworks for Fault-Tolerance

In general a framework for tault-tolerance integratesedéht aspects of dependability.
The role of frameworks mainly is to enable tault-toleranwljch includes error detec-
tion, fault diagnosis, fault isolation, error recovery ay$tem reconfiguration. However
other means of dependability, such as fault-preventiolt famoval and fault forecasting
benefit from frameworks as well. The coverage of differenttttolerance means by dif-
ferent frameworks as well as their domain scope vary widBdyoutline different existing
approaches they are compare and contrasted with our solpjoroach here. The consid-
ered frameworks are Adaptive Quality of Service for Availigyo(AQuUA) and JBoss with
Application-Generic Recovery (JAGR).

AQUA [12], an adaptive architecture for dependable distributecaibjfocuses on
providing redundancy for distributed objects. AQUA obgeate contained in replication
groups that provide a variety of replication schemes redlilzy a message based group
communication mechanism. AQUA uses CORBA to define and imefe objects, but
maps them to the underlying group communication mechanishe mapping layer in-
cludes mechanisms for error detection and failover. Thédt Raadel includes process fail-
ures, detected through heartbeat messages and data vhltesfaA central dependability
manager coordinates groups and manages the fault tolardracsgtructure.

AQUA supports tault-tolerance on the granularity of olgeethile component-based
systems often need additional levels of granularity. Comgpds themselves can be com-
prised of objects and dependencies between componentsstdhin their need to failover
together. component-based frameworks go beyond the denemeework approach by
also defining a component life-cycle and development psotiest allows to formalize as-
pects of other dependability means like fault preventiosaulgh offline analysis or defined

methodologies for fault removal and system validation.

JAGR [4] builds on a component-based infrastructure for the dorokthree tier web

applications with permanent data storage. JAGR focusaseltigent failover mechanisms
based on dependency information gained through autonsticd path interference as
described earlier. Its main components are a modular nmamitstructure that allows to
plug in different monitors for different error types. Andétligent recovery manager gathers
this information and applies micro-reboots to restartpaftthe system that are affected.
Based on the result it can escalate the reboot scope frorfe singiponents to the whole
system.

In distributed real-time and embedded systems howevesjgpent data storage and
stateless components cannot be applied in all cases dusitedistorage and processing
resources. Our approach will therefore take into accouwate seplication of groups of
replicated components and therefore provide failover meidms as a major mean for

fault tolerance instead of micro-reboots.

1.3 Modeling Dependability Aspects

A component-based framework that targets DRE systems isr@aHl]. Cadena fo-
cuses on the modeling of component behavior early in thgydgsbcess based on property
specifications capture high-level component informatifims includes inter-dependencies
to ports of other components and intra-dependencies tipdtirearelationships between
ports of the same component. Properties also capture lmehbspecifications that allow
reasoning of temporal behavior and control-flows within poments. Based on this infor-
mation, interface definitions and assembly descriptiosgséem model can be constructed
to allow reason on various system aspects, such as eveissaggment, traffic optimized
component distribution and schedulability analysis. @adeot only encompasses a run-
time framework, but also a domain specific modeling toolestat system modeling and a
simulation environment for model verification.

MDDPro[14] focuses on modeling dependability QoS requirements mxqukogly. It

is designed to be a domain specific modeling language thatd@®an orthogonal view to

the deployment structure of a system and allows the anoatefitault-tolerance attributes

to components. It introduces three concepts to explicitiglel component replication:

1. Failover units annotate that a group of system entitigs ifaany one element of it
fails. Different parameters can be defined on the group thertacterize the kind of

failure recovery strategy used (e.g. number of replicaartheat frequency, etc.).

2. Replication groups allow to formally declare, which campnts replicate the same

logical object. Replication groups allow to configure s&tachronization policies.

3. Shared risk groups are a way to model how likely it is thatilfe propagates from
one processing node to other nodes. This is realized as wire®e edges represent
neighboring nodes and distances in number of edges servereasure for how

likely a failure is to propagate.

MDDPro provides placement algorithms that automaticatld @omponent replicas
based on those entities above and provides model interpfetegenerative programming
of deployment meta-data in XML format.

Our work on run-time support for component dependabilitygdmplementary to both
of the approaches of Cadena and MDDPro since it providesimmsupport for the mod-
eling concepts. Chapt& describes CORFU, a framework for failover behavior for greu
of components and chapt&r describes CHESS, a framework for automated state syn-

chronization within replication groups.

CHAPTER IlI

BASIC DESIGN CONCEPTS

1.1 Fault Model

The underlying fault model for the work presented here idekidetection of host fail-
ures and process failures. A host is a physical unit of pgingghat is connected to the
system through a network and has an operating system. Agwsasdocated on a spe-
cific host and performs system functionality in a separattess space. It is furthermore
assumed that hosts as well as processes show fail-stopibefavs means that any occur-
ring error leads to immediate shutdown of the entity. Dudgoresource constraints posed
by DRE systems only passive replication is considered, &baly one primary replica is
actively processing requests, while backup replicas anesded in the case of a failover as

opposed to active replication that consumes more proagasith networking resources.

I11.2 Architectural Foundations

The prototype for a dependable component framework is basdte OMG lightweight
CORBA component model specification. However the desigresire of the services and
mechanisms described can be easily implemented on anyaatiigronent framework with
mightiness. We will therefore first give an overview of thatal concepts of CCM.

For the proposed architecture we furthermore take a laysggptbach: As CCM builds
on the CORBA specification that provides object level alasiva in a distributed system,
we leverage the capabilities of earlier research on faldtance on CORBA objects with
real time requirements. Thus the second part of this sediéseribes the capabilities of
FLARE, a Fault-tolerant Lightweight Adaptive Real-timeddieware for Distributed Real-
time and Embedded Systen®}.[Based on these concepts we then develop the architecture

of a component based fault tolerance mechanism.

[11.2.1 The FLARe Real-Time Fault-Tolerance Framework

FLARe provides “lightweight fault tolerance” for CORBA dgjts. It combines several
concepts and services to allow the definition of replicatjoyups per object, a mechanism
for failure detection and means to allow backup replica tandessly take over request
processing of failed objects.

FLARes design also minimizes direct coupling with appli@atode, so that its mech-
anisms provide fault tolerance as transparently as pessHLARE entities can be cate-
gorized by their location within a system. We distinguisiet side entities, server side
entities and middleware services.

Theserver side entities enable the grouping of replica objects on differeachines or
processes to be treated as one logical entity. FLARE prsvigdication on the granularity
of objects but detects process level failures since it ig uetikely that an object within a
project crashes without affecting the complete processaiidg it down with it. To deter-
mine process crashes, each server side application irccludeparatmonitor threadthat
uses a TCP/IP socket to allow a monitoring service to obsbevéveliness of the process.
The server also includes registration functionality fag thonitoring service and a central
ReplicationManager, which both are described later. FLARIS provides a generic state
synchronization mechanism, that requires applicatiomawigde callback methods that can
insert and extract their internal state into and from a CORB¥ type. Astate synchro-
nization agentn the server process is responsible for retrieving andidiging the server
object state. This is done by one agent for all the objectteldas one process. To associate
hosted objects with a replicated group of objects, a selderiaterceptor adds a tagged
component with the name of the replica object group to eaéhtt@t belongs to a locally
hosted servant.

Theclient side entities allow seamless failover and failure detectioningg CORBAs
interoperable interceptor framework, amerceptor for exceptions used to detect com-

munication failures. If an exception is detected, the weptor consults the second entity

deployed on the client side: THerwarding agentkeeps an up-to-date list of all the rele-
vant object groups of a system and can therefore pass art odfi@ence of the next replica
for the failed object. The information about the object grothe failed reference belongs
to is extracted from the IOR of the object as described in drees side mechanisms of
FLARE. The client interceptor then uses the CORBA LOCATIGMDRWARD exception
mechanism to transparently redirect the clients requestttorking backup replica.

The FLARE middleware services include areplication manage{RM) andhost mon-
itors. Both services are have an IDL interface and are implemeseG@ORBA Object
Services. The host monitors responsibility is to detectess level failures. For this
purpose one host monitor service is deployed on each netamt& that hosts server pro-
cesses. Each server process needs to register itself witftot monitor and open a socket
connection that can be monitored. All host monitors regigftemselves with the RM and
send periodic updates about the host machine status togheaten. These update mes-
sages also serve as heartbeats to allow the RM to detect gtashaonreachable. The RM
itself is the central entity that keeps all the informatidioat active replicas and their lo-
cation as well as the status of all host machines. It peradigibuilds up-to-date lists (so
called RankLists) of object references belonging to ondia@mroup and their failover
order. These lists are then sent to every client forwardiggnaand every server state
synchronization agent to provide them with the necessdoyrmation for failover or state
synchronization respectively. The RM itself can be repédausing the same mechanism
as any other server object to avoid it being a single poinaibdrfe.

FLARE allows very time efficient failovers since every cliéas a local copy of failover
targets and can use built-in ORB features to perform fai®wansparently to the appli-
cation logic. The second strength of FLARE is its ability &act to changes in system
performance by implementing algorithms within the RM thatt $he rank lists according
to available system resource at the time of failure detacfidis allows to choose backup

replicas on the least loaded host to take over and therefmid performance overloads

10

due to failures. By providing an abstraction for a group @licated objects FLARE lends
itself as a basis for higher-level abstractions of fauletahce as we will describe in the

following section.

l11.2.2 The CORBA Component Model

The CORBA Component Model (CCM) provides a framework fortwafe compo-
nents that are reusable in different contexts, without #edrio recompile or adapt them
due to changes of the infrastructure or other aspects tedeia application logic.

CCM components and ports. CCM extends the CORBA Interface Definition Lan-
guage (IDL) to support the definition of components. CORBAMponents can expose
services through so callgmbrtsthat are defined in IDL. Ports provide a structured way for
components to interact. Ports can either provide servic@sdicate that the component
uses the service of another component. Different port tgfless for either synchronous
or asynchronous communication.

The CCM container model. The process of developing CCM components is sup-
ported by code generation tools. The structure of companguiementations and facto-
ries for component creation, called homes, are defined bZtmeponent Implementation
Definition Language (CIDL). A CIDL compiler generates cothattintegrates executor
code written by component developers into the CCM run-timedheware. The actual
implementation of a component is called executor and aesdbg run-time through spe-
cial interface. At the heart of this integration is the C@bhtainer A container provides
the run-time environment for one or more component impleéatems and consists of the

following two parts:

» Obligations that component developers must implemet) as life-cycle methods
(e.g,ccm activate(), ccm passivate(), and ccm.renove()),sup-
port for provided portsi(e., facets and event sinks), and configuration through at-

tribute setter and getter methods.

11

» Obligations that must be implemented by the CCM middlewareh as context
information that component developers can use to acces#iemidre services, such
as persistence, event notification, and fault-tolerand&ewviise, all required ports

(i.e. receptacles and event sources) can be accessed here.

Component servers. Components implementations are compiled into librarie$ an
then packaged together with meta-data. On system depldyiw@mponents are loaded
into a processes that provides the container interface.cddtomization to the specific
run-time is done by configuration attributes and by selgctive appropriate component
implementation. The process that hosts componertslisd component servefCompo-
nent servers are started by started by deployment toolsataatescribed in the following

section.

[11.2.3 The OMG Deployment and Configuration Specification

In addition to the specification for CORBA components, the @klso specified the
Deployment and Configuration (D&C) specificatiod] fhat standardizes data structures
and interfaces for component meta-data and componentydepltd functionality. Al-
though it can be used to deploy CORBA components it is dedigoebe independent
of any concrete component model and can be used to deploytgfies of components.

The D&C specification is segmented, containing data modetstime interfaces and
tool specifications for the three phases of component saoft@avelopment, target system
definition and execution of a component system.

We will focus on the data and management model for systenuérec

Data Model: The central model for how a system is structured is the depéoy plan.

It contains information about which componemplementationgnd correspondingrti-
factsare used and which compondnstancesare present in the system. Each of these

entities can also contain configuration properties thataltailoring of components to the

12

specific deployment. The target infrastructure is reprieskeim form ofnodes that repre-
sent server machines that a component instance will run aech Estance is associated
with a node to run on. As mentioned earlier components intevih each other through
ports. The deployment plan captures component interdegogesl throughconnections
Each connection contains two references to component, pdrese one reference is point
to a port that provides a service and the other referencdstuira port that requires a ser-
vice. Connections to interfaces outside of the currentaepént plan are realized through
external referencethat allow to specify a CORBA object reference URL to idgnttie
provided or used service.

Management Model: All management entities are defined by their interfaces whic
contain methods and attributes. The central entity isBkecutionManagewhich is re-
sponsible for instantiatinomainApplicatios defined as deployment plans. Every node
is represented by BodeManagein the management layer. For each deployment plan it
will create aDomainApplicationManagethat is the administration interface to start and
stop the application. It will split a deployment plan intafi@ deployment plans and each
NodeManager will process these plans. Each node deployptentvill be represented by
aNodeApplicationManagehat acts on the local level as the DomainApplicationManage

on the global level and allows to start and stégpdeApplications

Execution create Do.mal.n Ii Node create N.Ode.
» Application > » Application
Manager Manager
Manager Manager
h
start start
. Deployment Plan
Y ¥
Domain Node
Plan _— o
Launcher Application Application
\Node)

Figure lll.1: Component Based Mission Control System

13

Figurelll.1 shows the interaction patterns between management entifiee Plan-
Launcherdoes not belong to the management model but is a deploymaniged to read
in a deployment plan, pass it to the execution manager arttedbe system start-up pro-

cess.

14

CHAPTER IV

COMPONENTS WITH HETEROGENEOUS STATE SYNCHRONIZATION

IV.1 Problem Statement

Passive replication schemes depend on backup replicasahdtke over processing
quickly when a failure occurs. This includes deploymentathup instances of the same
application and then failover when an error is detected dbfiteon to that replicas need to
be synchronized frequently when they are not statelessliggions in general and com-
ponent instances in particular contain internal states Fhate can change through client
invocations. It is also possible that other elements in trstesn, such as time triggered
events can modify internal state.

Active replication schemes do not necessarily need to ke@cas synchronized since
all replicas process the same incoming requests and chhaeigestate accordingly. How-
ever even active replication only can ensure this in det@stic applications, where a
certain input results in the same internal state every titrelso cannot be applied if state
can change due to external events that are not captured ligutti¢olerance mechanism,
e.g. process mutexes or shared memory as describéd,isdction 3.5].

CHESS focuses on passive replication schemes. Due to cltimgernal state compo-
nent replicas need to exchange information about theie stgpreserve consistency. State
consistency is required for replicas to take over immedtliair error occurrence. A com-
mon technique for state synchronization is the check-pwrdpproach: all relevant state
information of an application is gathered and captured imfof a snapshoti.g. struc-
tured data or memory dumps). There are different approdohdise timing on snapshots:
While a time triggered approaches define an interval aftéclwvla new snapshot is taken,
event triggered approaches take snapshots based on niotifscccom the application of

system infrastructure that state changes have occurrgeeridéeng on the replication style

15

snapshots are directly distributed to all replicas throdgticated communication mecha-
nisms like multicast messages (warm passive) or they aredsto a central repository and
transferred to the replica only prior to a fail-over (coldpae).

Providing a generic mechanism for state replication is d&hging task due to the wide
range of differences in how application state can look like.design such a mechanism
means therefore to trade-off different characteristiaatafrnal application state. This state
can be categorized across different dimensions that wilesas criteria to evaluate the

state synchronization mechanism of CHESS.

1. ThelLocation of state in relation to the component implementation is @iatlas-
pect and limitation for application generic approachegdtesreplication. The most
common case is stataternal to the application, being captured in local variables,
members of classes that implement the component or compattabutes. How-
ever in complex DRE systems it is possible that componemssacsystem resources
or middleware infrastructures (e.g. a database persigiager) which isexternal
state. A special case of external stateharedstate where several components use a
system resource (e.g. shared memory) together. Simplydimgl external and espe-
cially shared state into the snapshot would lead to duggcahd merging conflicts

in the replicas and has therefore been given careful desigsiaderation.

2. TheSizeof the internal application state can vary greatly. On the side of the
spectrum there atatelesapplications that have no state that needs to be preserved
from invocation to invocation. Other components keep stdtemation that is com-
paratively small (e.g. configuration values or counterspther application domains
state data includes large amounts of data (e.g. receiveansing data, multimedia

content, in-memory databases).

3. Complexity and Distribution are two tightly coupled properties of application state

information. The term distribution tries to capture thetfémat the application can

16

contain very different types of state that are not storethiwia single data structure
but rather are distributed throughout the applicationcstne. The greater the degree
of distribution the harder and more time consuming it is teate a snapshot or to
restore state from a snapshot. This also applies for contple®n the one hand
there are very simple data structures like basic types tleatery easily copied to
or extracted from a snapshot. As the complexity increasesefguential containers
like errors or lists of items, these operations get more toresuming. Associative
containers and structures with arbitrary member data tggpdbig hierarchical depth

have even higher performance costs for snapshot creation.

4. Dynamics of ChangesNot only the form of state differs greatly from applicatitin
application, but also the frequency by which state is altened needs to be check-
pointed. Some applications alter and store their stateamtyg at initialization. Other
applications undergo many state changes in their lifetinteese changes can occur
due to external input or internal mechanisms like timegteiggd events. Many ap-
plications change their state based on incoming requesgemling on the system
characteristics this can happen very rarely (e.g. in apgtins only used for main-
tenance) or with a high rate of invocations in the range ofrasieconds (e.g. for
streaming of satellite telemetry data). A generic repiazatnechanism like CHESS,
therefore needs to offer the flexibility to specify at whighihg characteristics need

to be ensured for state synchronization.

We present the architecture of CHESS by presenting thregrdelsallenges that origin

from the diversity of state characteristics. These chgksrare:
1. providing a common interface for exchanging diverseestaapshots
2. satisfying varying timing requirements

3. support for different protocols for state dissemination

17

interface ReplicatedApplication
{

void set state (in any state_value);

any get_state ();
1

Figure IV.1: Callback interface for state replication

IV.2 Providing a Common Interface for Exchanging Diverse Sate Snapshots

Challenge: As described earlier the structure and complexity of stagégshots varies
greatly and in general is tightly coupled to an applicatiomplementation. It is therefore
impossible to design an interface through which state $rapsire passed as strongly typed
parameters. First generation distributed systems teraedlve this problem by passing
simple byte streams and leaving the complex challenges ofhraling and demarshaling
as well as type checking and alignment adaptions to theagifan developer.

Solution: Pass state snapshot as CORBA Any. To achieve platform and language
neutrality for the state extraction mechanism and intégmathe necessary interfaces are
declared in CORBAs interface definition language (IDL). IDé&fines a special basic type
any that allows dynamic insertion of any data type and still press type-safety through
type code annotation and support for type checking, mamghahd demarshaling.

This allows to separate different obligations in the precekstate distribution: The
application itself has to perform the insertion operatidnt® internal state into an any
object and also the extraction operation to retrieve nete ststances from an any value.
The middleware can then distribute the Any value transpbravithout needing to have
additional knowledge about the internal structure of thegpshot. CORBA Anys can only
contain data defined in IDL.The application developer ipoesible for declaration of an
IDL data type that represents the complete state, so thanitbe inserted into an any
data-type.

FigurelV.1 shows the obligations of an application to make its integtaie available

18

to the state synchronization mechanism. An applicationtbasplement these methods
to interact with the state synchronization mechanism. éffilamework needs to extract
state from an application that is a primary replica, it wadllget _st at e() . All backup
replicas will receive state updates throughsted st at e() method.

Evaluation: This approaches’ main strength is that it addresses thengiime of com-
plexity and distribution by allowing the separation of cents. It shields the generic mech-
anism from the internal structure of the application statediso supports the application
developer by using the CORBA Any data type that providesaexivn and insertion op-
erators and therefore simplifies the gathering and conipositf a state snapshot. The
dimension of size has a strong influence on the performanitessdipproach: Transmitting
any data has a certain overhead since type information has émnbedded on the sender
side and extracted on the receiver side. Dealing with thatioc dimension of state is left
to the application developer who has to solve the problem toodeal with shared state
without any framework support. This particular aspect ef$blution does not address the

dimension of the dynamics of changes.

IV.3 Satisfying varying Timing Requirements

Challenge: Applications may have very different requirements fanen snapshots
shall be distributed from the primary replica to backup iegsd. There are two main types
of timing behavior: (1) cyclic timing where state is updabesed on a given time interval
and (2) acyclic timing where specific events like a clientues} trigger state synchroniza-
tion. Middleware mechanisms can automatically determihemto disseminate state for
cyclic timing behavior and therefore use tiet _st at e() andset _st at e() methods
as callback methods to automate the process. However siatieting cannot be predicted
in the second case it needs active involvement of applicatio disseminate state at the
right time. Combining both cases into a general frameworkhaaism is needed to ease

the burden of the application developer without restrgtiming schemes.

19

Component : A StateSynchronizationAgent | ‘ Communication Mechanism ‘ \-]J:LI]
Replica

register_application (*A”) o

state_changed ("A") __LH

get_state ()

: state

L set_state (state)
L set_state (state

Figure IV.2: State transmission sequence based on a common interface

Solution: Separation of concerns between triggering state synchronization and state
retrieval allows to treat both cases in a uniform way. This approadudes several steps of
interaction between an application and a StateSynchroomzggent which is a middleware
agent for state synchronization. Each process containitigSS object replicas also hosts
a StateSynchronizationAgent that is responsible for plication related functionality and
therefore removes this obligation from the applicationaleper.

The sequence of interactions as described in figM&provides a mechanism for flex-

ible and generic state dissemination.

1. Registration of componentsith the StateSynchronizationAgent through a unique
application id allows the manager to retrieve state fromaihi@ication when needed.

The registration needs to be done during the start-up ptidee component.

2. The StateSynchronizationAgent exposes the interfadhodest at e_changed
(in string id) that allows the component to indicate a change of its interna
state has. This themiggers state synchronizatioif he id parameter is needed by the
agent to identify the component amongst all locally deptbyemponents managed

by this agent.

20

3. It is the agents responsibility to react on the notificatidout a state change and
retrieve the component stafi®m the component that issued the notification. This is

done by calling back thget _st at e() method described earlier.

4. As the final step the StateSynchronizationAgent will tlestribute component state

to backup replicasn form of a CORBA Any instance.

Evaluation: This solution mainly addresses the dimension of dynamicshahges.
CHESS makes triggering of state synchronization the respiity of the application de-
veloper. The trade-off for this approach is additional gffor the developer to issue the
change notifications whenever they are necessary. On tiee lndind this gives great flex-
ibility in controlling which application state changes ltgaequire state synchronization.
This allows for the most efficient usage of resources, simpaates are only performed if
they are necessary. Through the separation of concerngéetstate change notification
and the actual execution of the state dissemination thet éfficthe developer is greatly re-
duced. CHESS shields the replica implementation from th@shdistribution of snapshot

data to backup replicas.

IV.4 Support for Different Protocols for State Dissemination

Challenge: There is no one-size-fits-all communication mechanism ssafhinate
state. Depending on size and timing requirements and thenselof state dissemination,
different communication mechanisms are needed to proyidienal performance. Small
shapshots of applications with high reliability requirerteeneed to be transferred through
synchronous peer-to-peer protocols with error correatapabilities. Larger snapshots, es-
pecially when transmitted to a large number of replicas redcient protocols like group
communication protocols and multicast messages. In systéth cold passive semantics
where replicas only need to update their state in a failuse @central persistent stor-

age solution for state storage and retrieval is more adeqatectly encoding the type of

21

communication mechanism into the applications’ impleragah results in a tight coupling
between business logic and transport mechanism and theredmplicates development
and adaption of the application.

Solution: Applying the Strategy pattern. CHESS uses the strategy patteBngp.315f]
to allow applications a flexible choice of the used prototolia-time. The state dissemina-
tion mechanism is represented by an object interface tloaiges a generic way to access
all variants of state dissemination in the same way. Thitepattan be applied to shield
the component developer from the concrete protocol foestesemination. In this way
the functionality can be integrated into the StateSyndzedionAgent. On replica regis-
tration the application can set a policy to determine whi@thanism will be used by the
agent. The agent then will instantiate the appropriate ®actrategy object instance and
associate it with the application to use with every dissetiom of state information.

FigurelV.3 shows how the strategy pattern was applied in CHESS to stiypmdiffer-
ent communication mechanisms. These are synchronous C@RIBAand multicast com-
munication based on OMGs Data Distribution Service (DD$&g dlesign of CHESS easily
allows to extend the framework by additional communicatiwatocols, e.g. message-
based mechanisms or database storage. The abstractystraeztpce benefits from the
earlier design decision to use the CORBA Any data type toasgt snapshots. This re-
duces the complexity of the interface methods. Howeverds ateates the necessity to
extract the data from the any object and transform it intoappropriate form in each
concrete strategy class. One example for this is shown m@a®DS communication.

The design above allows for choosing a communication mesimanhoice for each
replica within the process. At registration time the Stgte®ronizationAgent will create
the appropriate concrete strategy based on a registragi@meter. When the application
later notifies it about state changes the agent will passtttie ® the appropriate object
using the ReplicationStrategy interface.

Evaluation: CHESS flexible mechanism for heterogeneous protocols asielsethe

22

ReplicationStrategy

+ set_state (state_value : Any) : void

Q

CORBAReplicationStrategy DDSReplicationStrategy
+ set_state (state_value : Any) : void + set_state (state_value : Any) : void
- backup_replica : CORBA::Object - datawriter : DDS::DataWriter

StateType state =

backup replica-> extract (state value);

set state (state value); i i

write (state);

Figure IV.3: The strategy pattern applied to state synchronization

dimensions of size, complexity and change dynamics. Ihallo transparently apply pro-
tocols suited for particular state characteristics. Tleisifflility enables trade-offs between

the following aspects:

1. Short delivery timeseed to be ensured for components with high update rategwher
the dimension of change dynamics is important. However gittwing size and
complexity of state snapshots it is harder to provide shelivery times. Connection

oriented protocols are well suited for fast delivery of sraatounts of data.

2. High network throughpus necessary for snapshots with large sizes. However timely
delivery can suffer from protocols that maximize throughg&roup communication

mechanisms are well suited for sending large state to deeesivers.

3. Reliable deliveryis needed in systems were state consistency has to be geedant
under all circumstances. This usually is done through eroorection codes and
retransmission of lost packets. Therefore trade-offs lalse made between efficient

and reliable delivery protocols.

23

The strategy pattern allows to make these trade-offs on a@aponent basis and
therefore accounts for heterogeneous environments amehsysvith highly diverse state

characteristics per component.

24

CHAPTER V

COMPONENT REPLICATION BASED ON FAILOVER UNITS

Conventional middleware solutions provide fault tolemtiarough replication and re-
covery on the granularity level of single objects, process®d servers. Component mid-
dleware requires failover mechanisms at a higher level afigiarity. The compositional
nature of component applications often results in deperidsrbetween components that
require a coordinated failover mechanism for groups of comepts distributed across
several servers and processes. This chapter presents GGRFitldleware architec-
ture for component-based fault-tolerance that includegast for single-component fault-
tolerance and uses it as a base for providing fault-toleramncthe level of groups of com-

ponents.

V.1 Case Study

The domain of space systems is one that has especially stegugements for real-
timeliness as well as for dependability. To illustrate thaltenges that arise from component-
based DRE systems we describe the structure of a possibéoMi€ontrol System (MCS)
as used by the European Space Ageri®y.[

The purpose of an MCS is to control one or multiple satelliteg perform a mission
in space that is dedicated to a specific task, such as earénvalisn or deep-space ex-
ploration. A MCS processes data gathered by the satellitdscantrols satellites. It is
deployed in a central control station and communicates avitletwork of ground stations
that provide communication links to the satellites.

FigureV.1 shows the structure of a component-based MCS. As time wiadiomactive

connections to satellites can be very short due to theit anai visibility to ground stations,

25

Telemetry

eryer A
Mission
Planning

Telecommand
Seryer A

Primary Chain

Client
Backup Chain

i
i

|

|

|

; 1

|

|

'

|

|

e

! Telecommand
HLL] .

{ Server B

|

|

|

|

|

NIS B
| Telemetry
Server B

= Server Node = Component

Figure V.1: Component-Based Mission Control System

availability of the MCS during such phases is crucial. All Bl@re therefore laid out re-
dundantly in hardware as well as in software functionaligch of the entities is deployed
twice and some are grouped into chains of functionality #rat groups of components
working closely together.

The Network Interface System (NIS) serves as a gateway fhengtound stations to
the MCS through a wide area network. Using a special protaleelspace link extension
protocol, it processes and transmits all mission relevatd tb and from the MCS. This
includes sending telecommand data that controls the isasedind receiving telemetry data
from the satellites. The NIS itself is not part of a MCS chduat is laid out redundantly.
Hardware and software of a NIS are tightly coupled and tloeeefeplicated together. In

case of NIS failure a chain can switch from the active NIS A 188 in a warm passive

failover.

26

The telemetry server analyses telemetry data and preesdsor the mission oper-
ators. The archive stores telemetry data permanently afedliby the Telemetry server.
The telecommand server is responsible for creating andrsgndw commands issued by
the mission operators. A MCS needs to be tailored to specifisions and reconfigured
for different mission phases. The Mission Planning Systenesponsible for configuring
and observing the other system entities based on the misgemific characteristics. These
four entities form a MCS chain that provides the main MCS fiomality. To avoid single
points of failure this chain is replicated. As shown in thagtam a primary chain is active
during normal operation. In case of an error within the prynzhain the complete chain
is passivated and a backup chain takes over operation th@ugrm passive failover. All
components of the backup chain are already deployed to takeoperation as quickly as
possible. Only one chain at a time is allowed to send dataifirehe NIS to the ground
stations.

The MCS is accessed by clients that allow mission operatargeract with the system
through a graphical user interface. Clients are always ecied to one specific chain,
usually the primary MCS chain. In case of a failure the cli@sb needs to failover to the
backup chain to ensure high availability for mission opanmst Clients themselves are not
replicated and can be simply restarted.

In our case study three levels of replication granularity lsa found:
1. no replication as in the case of the client components

2. replication of single components as for the NIS

3. replication of groups of components as in case of the MGsh

CORFU incorporates techniques to achieve single compaeetitations and based

on this component group replication.

27

V.2 Requirements for Component Group Failover

Providing a replication and recovery mechanism operatmga@mponent groups in-
cludes several requirements that need to be fulfilled. Thexp@rements are (1) fault iso-

lation, (2) ensure fail-stop behavior of failed groups aBdserver recovery.

V.2.1 Requirement 1: Fault Isolation

Since faults are not recognizable directly they can onlysoéated through detecting
occurring errors and reasoning about their cause. Thisaghahles to predict which other
parts of the system will be affected by the same fault with@aving to wait for other errors
occurring. For component-based systems this includesndetieg if a failed component
or a group of components within a failed process have extele@endencies that allow
the failure to propagate to other components. To providk fsmiation the fault tolerance
mechanism needs to determine which components are affegtadailure so that actions
can be taken to shield the system from this failure. This ¢l kance affected components
are possibly deployed across several server nodes. Comjbggendencies exist in many
forms, some being harder to detect and capture than othéiesy @manate from various
causes, such as shared operating system infrastructanedshse of network resources,

middleware services and business logic dependencies.

Application in the MCS scenario: In the MCS scenario the reach of failure depen-
dencies differs among components. A client component hdailuwe dependencies and
can simply be restarted without affecting other system aomepts. The NIS components
will not require other components to restart when they ctagithe telecommand server
needs to be reconnected to the backup NIS. The componehis wite chain however are
dependent on each other. It is explicitly required that ufaioccurring in one of these
Crash of the TM Server needs to result in marking all Chain wvexs as failed. These

three cases need to be treated by middleware in differerg.way

28

V.2.2 Requirement 2: Ensure Fail-Stop Behavior

After a fault has been isolated by determining affected comepts it is necessary to
regard these components as containing inconsistent $taiteis a threat to system consis-
tency since they possibly carry transient faults. As a cqusece all affected components
need to be stopped as soon as possible. The time from ermectidet to the complete
stop of all affected components needs to be minimized. Ehiward due to two factors:
(1) The time needed between detection of the first error ameétiective shutdown of af-
fected components and (2) the need to synchronize the shosdzetween components in

a distributed environment.

Application in the MCS scenario: If a failure has been detected in the telemetry server
this could affect the other components in the chain and leagcbnsistency. The archive
might store data that is not correct and the telecommandesenight issue commands
based on telemetry data that is no longer valid. Since tHerdiit components run on
different hosts, the shutdown process cannot happen tasiously but will be affected
by the reaction time of the system algorithms and the comaatioin capabilities of the

network.

V.2.3 Requirement 3 : Server Recovery

To achieve successful failover after a group of componesssstopped it is necessary
to synchronize the activation of backup components. In gipaseplication scheme this
mainly involves to coordinate which backup replicas beca@ugve. This is hard since
failover is done on a per component basis and each compoossibty has several backup
replicas. To ensure consistent system state after failibveas to be made sure that all
backups that become active belong to the same failover grotiperwise non-functional
requirements might not be met since two components that n@rentended to work to-

gether are accidentally activated simultaneously.

29

Application in the MCS scenario: When components of the primary chain fail and
get deactivated all components in the backup chain neecctieactive and take over the
role of the primary chain. In the presented scenario thisidikely, since there is only one
backup replica per component, namely telecommand servetéBnetry server B, mission
planning system B and archive B. However if a second backamoB would be added
things become more complex. The system could end up having somponents fail over
to replicas in chain C while others fail over to replicas irathB. Components might be
deployed in a way that leads to resource overuse in case tfemaded failover orderings.
The archive for example might need a reliable connectiolempnted as a real-time bus
system, that is only available within nodes of one chain aodbetween the telemetry

server node of chain B and the archive server node of chain C.

V.3 The CORFU Architecture

As motivated in the caste-study, component-based systeets fault-tolerance on a
higher level of abstraction than single distributed ol§ecCORFU therefore introduces
the concept of dailover unit(FOU) for component-based systems. The related modeling
concept of a failover unit is described in the context of thBDPro modeling tool 14].
We use this concept and transfer it to component middleware.

A failover unit contains a set of components that are inteedeent on each other with
respect to failure dependencies. This means that if oneeatdmponents fails, all compo-
nents of the unit need to fail as well. It thus enables faipgtehavior for a whole unit.

CORFUs FOU concept is based on passive replication. Onasutéclared to be the
primary unit. A primary unit actively processes requests and is mgref component
instances that are all primary replicas within their congrdrreplication groupBackup
FOUs are structurally identical to their correspondingraiy FOU. This means that they
consist of component instances that have the same interéaxkeconnection structure as

their counterparts in the primary FOU. All component ins&sin the replica FOU are

30

backup replicas within their component replication groupackup units are not necessar-
ily deployed on the same node constellation as the primaity liis possible to deploy all
backup unit elements on one server node even if the primaty is@eployed on a set of
nodes.

Failover units can be described as a set of component iregghat share a common
task and role. Their role is either to be a primary or a backup &bince it is possible to
have more than one backup for each FOU, each backup unit s da determine the
order of failovers (e.g. the primary will fail over to back&@®U number one. If FOU one
fails afterwards, FOU two will become active and so on).

CORFU is implemented using the CORBA Component model asritbescin chap-
ter 111.2.2. CORFUs architecture consists of several aspects thatrasemed here in
relation to the design challenges they address. Each ofgallis presented together with
CORFUs design decisions to overcome it. The challengeepted are (1) single com-
ponent fault-tolerance, (2) integration into the deploptend configuration infrastructure

and (3) failover ordering of replicas.

V.3.1 Challenge 1 - Single Component Fault-Tolerance

Problem: Providing passive replication for components requiresmada (1) group
components and treat them as replicas of one logical conmpangtance, (2) a failover
mechanism to activate a backup replica in the case of an an@r(3) a fault detection
mechanism that observes and reports when a system doeshawelas expected.

In addition to this the nature of components add additioeguirements for replica-
tion: (1) a component implementation can consist of seuerplementation artifacts that
need to be replicated, (2) components also have connettiatiser components that need

to be preserved during failover and (3) components are gleglon form of libraries that

31

are dynamically loaded into the process space of some getmtainer. Component ini-
tialization and fault-tolerance configuration therefoezds to be done through dedicated
APIs.

Solution - Integrating FLARe through a fault-tolerant comp onent server. FLARe
provides object level fault-tolerance and can be adaptasdpport component-based pas-
sive replication. As described in sectith2.1 process level fault detection is done trough
monitoring based on TCP/IP sockets. A failover mechanissetian ORB interceptors is
provided to groups replicas based on so called RankListsong an ordered list of ob-
ject references. These references are associated witheot ab that identifies the logical
object the replicas are part of.

In addition to FLARes base functionality several adjusttadrave to be made to ad-

dress the additional requirements of component replioaiidis includes
1. Enhancing the notion of a Replication Group to Components
2. Preservation of Component Connections

3. Providing a Fault-Tolerant Component Server

V.3.1.1 Enhancing the notion of a Replication Group to Compaoents

As described in sectioltl.2.1 a replication group in FLARE is realized through a rank
list, that associates a group name with an ordered list efeetes. This list is cyclically
distributed to all clients that then use it to contact backeglicas for failovers. This so-
lution works on the level of single objects, since it usesobjeferences within the rank
list.

Components however often consist of several objects. Onardgerepresents the com-
ponent itself and each facet port and event sink are implesddyy an additional servant.
For components to be replicated it is therefore necessacyetite associations between

objects that form one component implementation.

32

The most seamless approach here is to register each of th@ooemts implementa-
tion objects at component start-up using a specific namihgrae for replication groups.
The name of each object implementing a component aspets stiin the component in-
stances name followed by the actual name of the port namebjeetaepresents. Let's
assume the MCS archive component has a port named “dataafaretrieval and a port
“mgnt” for administrative purposes. The replica group nasfitne main component object
would be “Archive”, and the port names for the two ports wohl “Archive.data” and
“Archive.mgnt”. These names are used to register the abjeith the component server
POA that has a USER_ID id assignment policy and it is addedd¢b eteroperable object
reference (IOR) of the objects through a server side pataiperceptor. The same name
is also used to register the replicas with the Replicatiomddger and the StateSynchroniza-

tionAgent.

V.3.1.2 Preservation of Component Connections

Component connections within the CORBA Component Modeteaézed by storing
object references to facet interfaces. These are registéti the context of each compo-
nent that uses the facet. A similar mechanism is used fort @ats.

FLARe already provides functionality to distribute failvRankLists to clients that
then can perform failover functions. Since all facet olgese included in this list, connec-
tions are automatically kept valid: When a component triegse a receptacle connected
to a facet object that is no longer accessible, it will autboadly fail over to an appropriate

replica.

V.3.1.3 Providing a Fault-Tolerant Component Server

A component server is a generic process in the DAnCE infraiire that hosts com-
ponent instances. The library containing the componenkimentation is loaded into the

process space of a component server by a DANCE NodeApplicatstance. A Container

33

Replication
-7 | Manager

C] Hos-—-' ik

¢ ‘ AU
fForwarding N
Agent J {SSA}—»
Request -
Interceptor Container
‘ IOR
* thread Interceptor

Component Server

Figure V.2: Structural Overview of a Fault-Tolerant Component Server

is the run-time infrastructure within the component sethat provides a component with
APIs to interact with this run-time. Based on XML meta-ddta tontainer will instantiate,
configure and start components.

To allow support for component-based fault-tolerance irREO, a fault-tolerant com-
ponent server has been developed. It includes all commatifunality of a component
server and contains additional fault-tolerance functibypaFigure V.2 gives a structural
overview of the adjustments have been made to host fa@teot component replicas.

These can be summarized as follows:

1. Per-process initialization tasks, such as registratitimthe HostMonitor, initializa-
tion of the StateSynchronizationAgent and the Forwardog# and registration of

those with the ReplicationManager.

2. A fault-tolerant session container is instantiated #ilaivs per component registra-
tion functionality such as POA registration, using the ieplgroup id, embedding
of this id into each replica object reference and registetite component with the

ReplicationManager.

34

V.3.2 Challenge 2 - Integration into the Deployment and Cong§uration Infrastruc-
ture

Problem: The interfaces of the OMG Deployment and Configuration (D&pgcifica-
tion as described in sectidh.2.3 are not providing fault-tolerance functionality. However
provisioning of fault-tolerance on groups of componentgiress to integrate into the sys-
tem model of the D&C infrastructure. CORFU needs to be stahdampliant and yet
minimize performance overhead at run-time. This challangkides the mapping of the
component deployment hierarchy to the FLARe system modealchy. While the D&C
model consists afiodesandcomponentsFLARe uses a model that contaioigjectsresid-
ing in processethat run orhosts The second part of the challenge is integrate failover unit
related fault-tolerance properties into standard D&C dgmient plans that do not have any
notion of replication.

The following partial solutions address this challenge:
1. Deployment Plan Preparation
2. Design of a FaultCorrelationManager

3. Mapping for FLARe and D&C System Models

V.3.2.1 Deployment Plan Preparation

For CORFU to be standard conform failover units need to beesged through the
means available in the deployment plan specification of tN&5OA deployment plan is
static in nature. All component instances will be startegetber and are expected to op-
erate throughout the active phase of a deployment. Addimgrooving particular compo-
nent instances during system lifetime is not supported &ydstrd D&C interfaces. Since
Failover units need to be shut down prior to the shutdown efwhole system, CORFU
requires to split deployment plans into several sub-depbayt plans based on failover in-

formation.

35

CORFU provides the algorithm SPLIT-FOU (algoritHinthat performs such deploy-
ment plan splits. The algorithm has to fulfill the followinggi conditions to achieve a

correct split.
1. Each failover unit needs to be represented by a separnali@ydeent plan.

2. All component instances of the original plan must be doethwithin one of the sub

deployment plans.

3. Connections between component instances residing fierelit sub plans need to
be maintained by inserting external references and ciggagw connections among

them.

The algorithm has two input data structures: A deploymean pbntaining all compo-
nent instances and connections within a system and a failonespecification that asso-
ciates instances in the deployment plan with failover uritg separating the declaration
of the failover units from the plan, these two aspects areenmathogonal. This allows to
define different fault-tolerance scenarios for one depleytplan and without modifying
the plan itself.

A deployment plarD is defined as< n,u,r,1,C >, wheren is the string id of the plan,

u is the name of the failover unit, this plan represents, the rank for the failover order
of this plan,l is a list of all component instances in the deployment @nsd a list of all
connections between two components within the deploymeath instancé is defined
as< n,m>, wheren is the name of the instance andthe name of the node an instance
is deployed on. Each connecti@his an ordered pair of endpoints. Endpoints exist in
two forms: External endpointg refer to a connection outside of the current deployment
through a stringified path of the foredepl oynent i d>/ <i nstance i d>/ <port

i d>. The other form are internal endpoirgsthat refer to a component instance within the
current deployment through a path of the forhmst ance i d>/ <port i d>. The first

elementin the pair represents a component poruteda service from another component,

36

while the second entrgrovidesthe service. The failover unit declaratiénis defined as

< n,u,r,J > wheren is the concrete name of the failover unit,js the group name of
failover units that are replicas of each others the rank of the unit within its group and
J is the set of instance names from the deployment plan thatained in this failover

unit.

The algorithm operates in two phases. The first phase wititera new deployment
plan for each failover unit and will will populate them withe correct instances. All com-
ponents that are not members of any failover unit are copitdain additional deployment
plan. In the second phase each connection is analysedhlfrigiainces are still in the same
plan, it is simply copied into this sub-plan. Otherwise armection to an external endpoint
referencing the correct component port is added to eacheafth sub-plans that contain
these components now.

Algorithm 1 has a relatively high time complexity @f(n?log(n)) + & (mxn), wheren
is the number of instances per plan anthe number of connections per plan. Since this is
an offline algorithm that is run before system deploymenbésinot need to be especially

optimized.

V.3.2.2 Design of a FaultCorrelationManager

CORFU introduces the FaultCorrelationManager (FCM) to agefault-tolerance func-
tionality for failover units.

To integrate the FCM into the existing D&C infrastructuree tDecorator Patterr6]
p.175] is applied. As shown in figurd3 the FaultCorrelationManager implements the
ExecutionManager interface and can therefore be accegsadybservice that uses the
ExecutionManager interface. The PlanLauncher that isoresiple for passing deployment
plans to the ExecutionManager can now use this functignalit

In the context of the Decorator pattern, the FCM plays the obla ConcreteDecorator

and the ExecutionManager is a ConcreteComponent. The Biecdrole in this case is

37

« interface »

ExecutionManager

+ preparePlan (plan: DeploymentPlan)
: DomainApplicationManager
+ getManagers ()
: DomainApplicationManagers
+ destroyManager (
manager: DomainApplicationManager)

: void

« interface »

FaultCorrelationManager

\ 4

preparePlan (plan)
+ preparePlan (plan: DeploymentPlan) {
: DomainApplicationManager ~ - __ /7.
+ getManagers () b T - DomainApplicationManager dam =
—O : DomainApplicationManagers h exec mgr->PreparePlan (plan);
+ destroyManager (72 B
manager: DomainApplicationManager) return dam;
: void
}

- exec_mgr: ExecutionManager

Figure V.3: Application of the Decorator Pattern for the FaultCorrelationManager
design

not implemented as a class, but represented through the BO&RBtime that allows to
access the manager interface through an IOR. For the ctiemtransparent whether this
reference is pointing to a standard ExecutionManager olRaudtCorrelationManager.

The FCM enhances the three methods of the interface withtiaddi functionality.
Within these method implementations the calls are forwéitdehe ExecutionManager.

The main tasks are performed at component deployment thrihepr epar ePl an
() method. This includes creating an internal representaifahe complete system as
described in sectioVv.3.2.3 and functionality to order per-component replica groups as
described in sectioW.3.3.

The algorithmSPLIT— FOU is not part of the functionality of the FCM. This is due
to the fact that the ExecutionManager interface allows sste each DomainApplication-
Manager and the user therefore needs to have complete kohgswddout which deployment
plans are running. Creating deployment plans automatieailld break this transparency.
However, it is envisioned to implement SPLIT-FOU in the etof a domain specific

modeling tool.

38

e
=

-

I]
[) T
Host Host: IR = ==

Monlto | monitor| ¢ [:|

TeL NN
b=

T A
FLARe Domain |
Replication Application
U”"%‘F‘;”?"‘| Vanager Mmj
k=]

A y

h

! Y
| Fault

Plan i : = Execution
LAlRenar (- Correlation ()}

Manager Manager

Figure V.4: Structure of a Fault-Tolerant Component System

V.3.2.3 Mapping for FLARe and D&C System Models

In figure V.4 the structure of a deployed system is summarized. The Rejolidvian-
ager receives information about process failures from Mosttors that are deployed on
each server. A HostMonitor observes all fault-tolerantpsses of a system and reports the
process id to the ReplicationManager if a process crashes REplication system model
therefore contains hosts and processes running on thetse li@so associates single ob-
jects with the process they are running on, which resultglimee layer hierarchy including
hosts, processes and objects. A deployment plan has a telodggtem model, with nodes
and components that are deployed on those nodes.

The ReplicationManager needs to report failures to the FOM.FCM then determines
which other components to stop based on the failure. To aelies, a mapping between
both hierarchies is needed so that the FCM can processdadiformation sent by the
ReplicationManager in the most efficient way.

The proposed mapping is structured as follows: As a basiguaecision we chose

39

to identify node names with host names. Every server in tiséegy that is observed by
a HostMonitor will also represent exactly one node nameer dlfte network name of the
server machine. We furthermore annotate components irgipleyiment plan with a prop-
erty that identifies the replication group of component. sTime is then passed to the
ReplicationManager on registration as object_id. Sincelgact_id represents a group of
replicated objects, it is still not guaranteed that a congpors uniquely identified by tuple
of host name and object_id. Since it is not advisable to hegtral backup replicas of
the same object_id on the same physical host due to risk siigdooth replicas through a
crash of this server, it is appropriate to restrict the nunolbeeplicas per host and object _id
to one. This results in unique identification of componentsiw one host.

Based on these decisions the following callback interfagenplemented by the FCM

and registered with the ReplicationManager to receiveinations about process crashes.

typedef sequence<string> ApplicationList;

interface FaultNotification {
void app_failure (in string host,

in ApplicationList applications);

The ReplicationManager passes the host name of the crasbh@sekp as host parameter
and the FCM interprets it as node name. The applicationgrpea contains a list of
object_ids that were hosted in the crashed process. Naté¢hehd& CM does not need to
know in which processes a component is hosted in.

During deployment the FCM analyses the deployment planspalate the following

data structures that help it to react on failure notificagion

1. A hash mag associates componeimstancenames as keys with the id of the de-

ployment plan they are hosted in.

2. For each node a map is maintained that uses the object_id as a key to find the

component instance name that is a local replica for thisabbig on the node. These

40

node maps themselves are stored within a hash khépat allows to find them by

using the node name as a key.

3. Each created DomainApplicationManager is stored in a Magyth its deployment

planid as key.

Based on these data structures reaction time on failuréaations is optimized since
all access times to these maps are small.

The algorithm2 operates on these maps to process fault notifications dsyistgm
run-time. The processing is done in two phases. In phaseatireffected failover units,
represented as deployment plans are determined based dailtine information. This
phase uses the internal maps. The second phase uses eXhgqDastructure, namely
the DomainApplicationManagers to stop all component apgilbns that belong to these

deployment plans.

V.3.3 Challenge 3 - Failover Ordering of Replicas

Problem: FLARe uses passive replication on a per-component basis.m&ans that
a backup replica takes over processing when the primaryceepf a component fails.
For this purpose the ReplicationManager maintains a seddlankList for each fault-
tolerant object. The references within this list are sortethe order in which they will
become active, starting with the first backup replica. SitheeReplicationManager has
no understanding of component groups it is hard to coordif@tovers across several
individual components. It has to be guaranteed that ther&abf a primary failover leads
to the activation of all backup replicas in the next backufo¥&r unit. It needs to be
prevented that component replicas from more than one bafekoper unit are active at
the same time.

Solution - Failover Constraints. Our solution approach is to modify the Replication-

Managers algorithm such that it can process constraints.p€h object order determined

41

typedef sequence<string> HostLi st;

struct RankLi st Constrai nt
{

string object_id;
Host Li st hosts;
H

typedef sequence<RankLi st Constrai nt > RankLi st Constraints;

Figure V.5: IDL Declaration of RankList Constraints

by such constraints needs to be maintained. As shown in fidGreonstraints are defined
as sequences of host-names associated with a replica athjeThe first host list entry
indicates, where the primary is hosted and the following$osntain backup component
replicas. Since every host only has one replica of the samgpghe constraint contains
enough information for the ReplicationManager to uniquentify a replica.

The FaultCorrelationManager creates constraints basddformation from the de-
ployment plan. Each deployment plan, representing a failowit needs to be assigned a
rank within its group of failover unit replicas. The FOU-OERING algorithm for failover
unit based replica ordering is described in algoritBimAll components within a unit will
be assigned the units rank. The constraints are updateg tmssnalgorithm whenever the
deployment changes. This happens if new deployment plan®aded or when failures

occur and deployments are removed.

42

Algorithm 1 SPLIT-FOU Q)

Data: A deployment plarb

Data: A failover unit definitionF
Output: A set of deployment planS

for each Fe F do
create new deployment pla€ S,
setu of sto u;;
set namean of sto nanme(D) +nane(F) ;
set rankr of stor; of F;
for each 4 € F do
findl; €l | name(l)) =J
copyl, tos,
markl, as processed,;

end
end

create new deployment plaE S,
for each unmarked component instance D do
copyljtos;
end
for eachGe D do
p1 = first endpoint ofC;;
l1=1instance_i d(pi);
find plans; € S|i1 € s;
Ny = nane(sy) ;
p2 = second endpoint d3;;
lp=1instance_id(p2);
find plans; € S|z € 5;
nz =nanme(sy) ;
if Ny = ny then
copyC; to sq;
else
create external endpoiet with pathn, + po;
add connectior< p1,e; > to sq;
create external endpoigt with pathn; + ps;

add connectior< e, p2 > t0 S;

end
end

43

Algorithm 2 FAILURE-REACTION (h,F)

Input: host naméh

Input: list of failed object ids=

Data: Component Instance Mdp

Data: Node MapN

Data: DomainApplicationManager Mahl

look up object_id ma® with keyhin N;
create empty sd® of deployment plan names;
for each Fe F do
look up instance namiewith key F; in O;
look up plan name with keyi in I;
if pis notin Pthen
addptoP;

end
end

for each pe P do
look up DomainApplicatonManagen with key p in M;
retrieve list of ApplicationManages throughm get Appl i cati ons ();
for each NodeApplicationa A do
callm destroyApplication (a);

end
end

Algorithm 3 FOU-ORDERING

Data: List of deployment plan®
Output: A constraint listL
partially sort plans irD by their ranks;
for each plan de D do
for each instance & d do
get object_idb property fromi;
get node nama property fromi;
appencdh to list entry ofL with object_ido;

end
end

44

CHAPTER VI

RESULTS

CORFU provides advanced fault-tolerance capabilitieDiRE systems. We evaluate
this claim using two different approaches. First, we do acepitual analysis of the devel-
opment effort by comparing object-based development df-falerant applications with
development using the CORFU infrastructure. Second, weeptaneasurements of COR-
FUs’ timing behavior. These include measurements of ckde failover latency and of

the round-trip latency of failover unit fail-stop events.

VI.1 Benefits of Component-based Fault-Tolerance comparetb Object Level
Fault-Tolerance

Developing applications that support distributed obiented fault-tolerance as pro-
vided by FLARe involves additional effort with respect tgpéipation development. This
evaluation qualifies those efforts and contrasts them Weéltomponent based fault-tolerance
approach CORFU provides.

Development obligations of object-oriented fault-tolerace: FLARe requires differ-
ent means to implement fault-tolerance on the server sideravhe object to be replicated
resides, and on the client side, which uses replicatedcg=viVe will therefore separately
consider the obligations for server applications and tlapplications. We furthermore
distinguish between (1) object implementation obligaditrat each CORBA servant needs
to implement to integrate into the fault-tolerance infrasture, (2) initialization obliga-
tions an application needs to perform to use FLARe functighand (3) configuration
obligations at start-up that configure fault-tolerant aspef the application.

FigureVI.1 gives an overview of all obligations related to server sidgatbpment.

Each object implementation needs to provide callback faates to allow CHESS to do

45

CORBA 2.x Server Obligations

Object e , .
) : Initialization Configuration
Implementation
1. Implementation of . Registration of IORInterceptor 1. ReplicationManag
get_state/set_state . HostMonitor thread instantiation er reference

methods . Registration of thread with HostMonitor 2. HostMonitor

W N =

2. Trlggerlng stgte . StateSynchronizationAgent instantiation reference
synchronization through)) o 3. Replication object
state_changed calls . Registration of State Synchronization Agent id

3. Getter & setter methods with Replication Manager 4. Replica role

6. Registration with State Synchronization Agent

for object id & state) (Primary/Backup)
synchronization agent for each object
attributes 7. Registration with Replication Manager for each

object

Figure VI.1: Development Obligations for Server-Side Fault-Tolerance

state synchronization. State synchronization additigmedjuires notification of the StateSyn-
chronizationAgent about state changes as discussed itechdp Getter and setter meth-
ods have to be provided to give access to the supportedagphwbject name and needed
agent references.

The main effort on the server side apart from object impleiat@m is related to initial-
ization of the FLARe infrastructure. The server applicatdeveloper needs to program-
matically perform the following tasks: An IOR interceptasto be instantiated to allow
the annotation of exposed server object references witktolg information. For the Host-
Monitor to observe a server application, a local thread batinitialized. The application
then has to be registered with the monitor. The same proeadunecessary for a process
wide state synchronization agent. The agent needs to laniresed and registered with the
ReplicationManager to receive information about othesent object replicas. In addition
to these process wide initialization steps each objectsegbby a server application needs
to be registered with the state synchronization agent am&#éplicationManager.

While the previously described steps need to be done progeditally, some aspects

need to be configured at application start-up time. Thisighe$ passing of the references to

46

CORBA 2.x Client Obligations

Initialization Configuration
1. Registration of Client Request 1. ReplicationManager
Interceptor reference

2. ForwardingAgent instantiation
3. Registration of ForwardingAgent with
ReplicationManager

Figure VI.2: Development Obligations for Client-Side Fault-Tolerance

the ReplicationManager and the HostMonitor as well as tidéigoration of fault-tolerance
properties of the server objects, such as their role anddh# the logical object they
represent. This is either done through command line passet a proprietary file format
that is read by the application.

FigureVI.2 summarizes the obligations on the client side. Since FLAReRitecture
provides a failover mechanism that is transparent to tlenthpplication as possible this
does not involve as many steps as server implementation.etAawhere are still several
obligations that need to be performed correctly.

A client request interceptor needs to be initialized in otderansparently detect fail-
ures and forward requests to backup replicas. To inform ¢a@est interceptor about
available failover targets, a ForwardingAgent needs todiaup and registered with the
ReplicationManager. At start-up a client then must be coméd with the object reference
of the ReplicationManager via command-line parametergferoneans.

Consequences for application developmentAll the necessary obligations presented
here result in considerable accidental complexities ilieg@ion and system development.
Being required to manually implement all initializatioreps in clients and servers in-
creases the risk of accidentally omitting or confusing stdhis is even more problematic
since debugging of fault-tolerance aspects is hard dus thstributed nature.

In addition to these threats for quality and correctness, dpproach also limits the

flexibility of system implementation. The number and typeobfect replicas per server

a7

process are determined by manually written code. This migatsny change in position-
ing of replicas in the system is limited. Either each objestds to be reside in a separate
application to allow flexible positioning on replicas on aating hosts. This however in-
curs additional resource consumption related to FLARdgagtructure. The alternative is
to collocate several objects which requires the adapti@ppfication code. This increases
the time needed to adapt a system to new requirements andamdicates system evolu-
tion.

Benefits of CORFUs’ component-based approachBy integrating FLARe function-
ality into a fault-tolerant component server, CORFU overes many of these limitations
of traditional object-oriented fault-tolerance appraageh Server and client side capabil-
ities are available within the same component server. SEGORBA objects often play
both roles of server and client at the same time this is aldeitrchitectural decision. We
present the benefits of the component server approach liyngetlaem to the three different

types of obligations as presented earlier.

1. Object Implementation: Component executors, being the concrete implementation
artifact of a component interfaces technically are CORBA/@ats. They therefore
have to fulfill the same obligations as in the object-oridntase. However CCM
provides code generation functionality in the form of the_l&d CIDL compilers

that automatically can create necessary code artifacts.

2. Initialization: Most of the steps of client and server initialization can bealau-
tomatically. Instantiation of the state synchronizatigert, the ForwardingAgent
and the HostMonitor thread are not related to hosted objé&bis fault-tolerant com-
ponent server, therefore, hides the complexity of iniialy these entities from the
component developer. The registration of individual congds with the framework
also can be done automatically by a fault-tolerance awas@®container. The nec-
essary information, such as the role and object id of a comoran be submitted

using configuration attributes provided in the deployméai gpecifications.

48

3. Configuration: Instead of using proprietary mechanisms on a per-apphicagvel
the component server approach enables the use of starethodiafiguration mecha-
nism provided by the D&C specification. Special fault-talercomponent attributes
can be defined and initialized within the deployment plamulgh so called con-
figuration properties. This still leaves the obligation timfigure these properties.
But instead of doing this in scripts in the form of commancelparameters or us-
ing proprietary solutions that might even vary from apgima to application, this

standardized approach uses existing infrastructure t@tginstantiate the system.

Conclusion: CORFU increases the transparency of using fault-toleramaehanisms
for server development as well as for client developmenis @Hows for the application
developer to focus on business logic implementation wiaildtftolerance aspects can be
added and configured orthogonally. It is possible to cot®dault-tolerant components
without changing theirimplementation code. CORFU thene&dso substantially improves
the flexibility of system deployment and system evolution.atdition to that there are
fewer possibilities of accidental faults in applicatiornvd®pment, since the initialization

is done in a well tested and stable way by the component server

VI.2 Experimental Results
This section presents experiments that evaluate the tibehgvior of CORFU. These
experiments allow a better understanding of latenciedweebin the failover mechanisms
and clarifies for which timing requirements CORFU is suffitie The first experiment
evaluates failover latency as experienced by a client egjpdin. The second one focuses

on timing latency of the coordinated shutdown of a failoveit.u

49

server
primary

\4

client

server
backup

Communication Overhead t =t - t,

Figure VI.3: Experiment Setup for Failover Latency Measurement

VI.2.1 Testbed

All experiments have been conducted on ISISLabLAN virtualization environment
with identical blades connected through 4 Gbps switchesahaw for dedicated links
per experiment. The blades each have two 2.8GHz Xeon CPU4 gnghbyte RAM.
The Fedora Core 6 Linux distribution rt11l real-time kernatghes is used as operating
system. The enhancements to FLARe and the CORFU implenantat based on TAO
version 1.6.8 a real-time CORBA implementation and CIAOsiat 0.6.8, which is an
implementation of the CORBA component model. CORFU andeaiting applications

have been built using the GNU compiler collection gcc varsal.6.

VI.2.2 Failover Latency

Experiment Setup: This experiment compares the failover latency a client egpees
for CORBA 2.x applications and component-based applioatio

FigureVI1.3 shows the basic setup of the experiments. A client apptingieriodically
calls a server application that is replicated. The perid2Di@ milliseconds and the execu-
tion time of each task is 20 milliseconds. We used a CPU waréerponent of the system
execution modeling tool CUTZ] that allows to simulate a defined processing time in mil-

lisecond accuracy. With each call the server sends baclkcthaldime from the beginning

http://ww. i sislab. vanderbilt.edu

50

http://www.isislab.vanderbilt.edu

of processing the request to the end of processing. Thiseandoe than the 20 millisec-
onds since the process might be preempted by other proaassies same host. The client
also measures the time from issuing the request on the s@ntikit receives a response.
By subtracting the server side processing time from the aredsesponse time, the time
for communication can be calculated.

After a defined number of calls the server will simulate atfaylshutting down. This
causes the client to fail over to the backup replica of theeseAt this moment the response
time in the client is expected to increase due to the factttreatonnection error has to be
detected and a new connection to the backup replica is establ

All primary servers are hosted on one host, the backup searerhosted on a separate
host. The clients also a deployed together on a dedicate@hdsll CORFU infrastructure
entities, such as the ReplicationManager and the D&C mme-tire hosted separately to not
interfere with the timing measurements.

This setup has been implemented in two variants. Variant dbjsct-oriented and
consists of a client and a server executable that direcyFl#\Re functionality. Variant
two is component-based and uses CORFUSs’ fault-toleranpoolent server. Each variant
is used in three different experiment configurations. Caméijon one runs one group
of client, primary replica and backup replace, configuratwo runs two such groups in
parallel and configuration three has four applications tipetrate at the same time. Each
measurement configuration is repeated 100 times and thaege/erused for the evaluation.

Measurement Results:An example for a single measurement for failover latency is
given in figureV1.4 (1), which represents the component-based case with orieatpm
set running. The ten invocations before and after a failuenteare recorded. The first
10 invocations show a communication overhead between perorge milliseconds, which
represents failure free communication with the primaryaerOn the clients attempt to
contact the server at invocation eleven the failover ocsumrse the server shut down after

ten invocations. In this case the latency increases to faliseconds due to the processing

51

time within the ORB to detect the CORBA exception indicatihg servers unresponsive-

ness and the forwarding of the request to the backup replica.

Failover Latency - Example Measurement Load Related Average Failover Latencies

el

IS

w

Failover after 10 —
invocations

Time (ms)
~

N w

°

2 3 4 5 6

1 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Invocation #

°

Experiment

Object 1 App I Object 2 App W Object 4 App
Z¢Component 1 App N Component 2 App i Component 4 App

Figure VI.4: Failover Latency Measurements

FigureVI.4 (2) shows the average latencies as measured in all six coafiigs. The
three CORBA 2.x based object-oriented experiment with @pdieation shows a commu-
nication overhead of three three milliseconds, while theesponding component-based
experiment has a latency of four milliseconds. This shoved the extra cost for the
component-based fault-tolerance with 25 percent additiomerhead is relatively small.
Looking at the configurations with two and four applicatiorescan see that the component-
based experiments stay constant around four millisecohdstency, while the object-
oriented examples have growing response times. This isiretly related to the failover-
mechanism but reflects the implicit differences betweerettperiment variants, since the
executables start processing right away while a composdinst loaded into the container
and then triggered later on to start processing. Nevedhelee results show that there is

no unreasonably high overhead for component based fdatate.

VI.2.3 Failover Unit Shutdown Latency

Experiment Setup: The second experiment is designed to give insight into ties &y

52

involved in the process of shutting down a failover unit. sTtatency is due to several

factors:

1. Error detection and notification delay from the failureaafomponent to the start of

processing its notification by the FCM

2. Reaction delay within the FCM to determine which compdseme affected and

which deployments therefore need to be shut down

3. Shutdown time using the D&C services, namely the DomapiisptionManager and

it's node application interfaces to destroy the affectedenapplications.

The structure of the experiment and its logical sequenceaits is shown in figur®1.5.
The setup includes six processing nodes of which one nodedated for the CORFU
management entities, such as the ReplicationManager,@h Ehe ExecutionManager
and other elements of the D&C run-time. The other five node® lraHostMonitor de-
ployed to observer the system state per node. Each nodedmestomponent for each of
five deployed failover unit. There is one primary failovertuhat includes one component
per node, name#y to Eg. This failover unit is replicated four times through the kag
failover units one through four. Each of the backup unitstams replica components,
to E, of each component in the primary unit. The failover ordethef tinits corresponds to
their number. The experiment will inject failures in themntly active component, leading
to a failover sequence of primary FOU, backup FOU 1, backup BECbackup FOU 3 and
finally backup FOU 4. Each experiment run therefore allowsoumeasure four failover
latencies.

Due to the need for consistent time, all measurements aee @knode-1 in the Repli-
cationManager and the FaultCorrelationManager. Thisgrethe need for synchronized

clocks. The measurements are done in the following sequence

1. Afailure is provoked in compone#, of the active FOU.

53

Primary Backup Backup Backup Backup
FOU FOU1 FOU2 FOU3 FOU4

RM ——+- FCM - DAM || EM

Node 1

Figure VI.5: Experiment Setup for Failover Unit Shutdown Latency Measurement

2. The failure is detected by the HostMonitor and reporteitiéoReplicationManager.

3. The ReplicationManager takes a time-stamp at tim&hen it receives the failure
notification and notifies the FCM about the occurred failliee FCM takes a times

tamp at timd, when it is notified about a failure.

4. The FCM does look-up operations in its internal maps temene which FOU
deployment plans need to be shut down and takes a time-staaffer finishing

this look-up.

5. The FCM will then access the DomainApplicationManageetdeve all node appli-
cations for the corresponding deployment plans and thdrteriate through them to
shut them down. After the last call is returning, a time-gtatt, is taken to indicate

the finishing of the shutdown request.

54

6. The ReplicationManager will be notified about all the slowins of the affected com-
ponents by the HostMonitors. On reception of the last shwitdwotification, a time-
stamp fortg is taken that represents the time when the FOU is compléeteiydown
and a client would failover to a backup replica no matter Wwhgomponent in the

FOU it tries to access.

Measurement Results: The measured times allow us to determine the following la-
tency times:

Round-trip Timebund-trip= ts — 11 (VI.1)

The round-trip time is the sum of all latencies involved ie ghutdown of a failover unit.
This includes failure detection, reaction time within théNd and shutdown time by the
D&C run-time.

Reaction Time¢action=t3 —t2 (V1.2)

The reaction time is the time spent within the FCM betweerfdhere notification and the
start of the shutdown process. This basically is the timeleé¢o perform the FAILURE-
REACTION algorithm2 and to serialize incoming notifications into a thread-safewsp to

ensure correct processing of parallely detected errors.

The shutdown time as measured by the FCM allows us to get aerstattding which
proportion oft,oynd-trip IS NOt related to the D&C shutdown mechanism which cannot be
changed without breaking the standard.

FigureVI.6 shows minimum, maximum and average round-trip and shutdatem-
cies for fail-stop measurements. Reaction latencies havbaen displayed since they are

negligible compared to the other types of latency.

55

Failover Unit Timing

300000

250000

200000

150000

Time (ps)

100000

- l
0 IIIIII

min max avg

Shutdown Time M Roundtrip Time

Figure VI.6: Measurement results for fail-stop latencies

As we can see from the graph, CORFU has the following latehayacteristics:

Average Latency Timtgung-rip= 70.59ms (V1.4)

of which the shutdown time represents a huge proportiomagh it does not fluctuate as

much.

Average Shutdown Timgutdown= 56.04ms (VL.5)

For the internal reaction time of the FCM, experiments shioat ts no crucial factor in
timing behavior:

Average Reaction TimMgaction= 0.24ms (V1.6)

VI.2.4 Discussion

Based on the experiments we performed several charame$lCORFU are exposed.
Using a client-side failover mechanism allows for shoriofer latencies, since communi-
cation with the central replication manager in the instdiatfailure is avoided. This would
be a bottleneck in performance of large-scale systems. é&wrshy the first experiment,

this client side failover latency is relatively small, bgithree milliseconds for the object

56

variant. Having evaluated the benefits for CORFU concerappiication development and
system deployment we also needed to ensure that this dodsasbically degrade perfor-
mance and therefore render the solution unusable for DREcapipns. As our experiment
shows, client failover in CORFU is comparable in performe@aaad occurs only minimal
overhead, having an average response time of four milliso

Compared to the client failover latency the failover unistown latency with 70 mil-
liseconds in average is relatively high. The reason for igigartly to be found in the
iterative way a deployment has to be shutdown based on thaidapplication and node
application interfaces. Another source of long responsediis the communication time
between the different entities, such as the HostMonitties ReplicationManager and the
FCM. The internal reaction time of the FCM to determine dgplents that are affected
by faults is already optimized through the use of hash mafis eldse to constant access
times. With an average beneath 0.25 milliseconds it doesutastantially contribute to the
overall processing time.

Based on these sources of overhead, we envision three appsot reduce the round-

trip latency for failover unit shutdown:

Parallelized Shutdown To reduce the shutdown latency the calls initializing sbutds
for affected node applications can be parallelized instédxting done in sequential
order. A suitable mechanism to do so is Asynchronous Metheakiation as defined
in the CORBA standard. This allows the FCM as a client to isslishutdown
requests without having to wait for their response in betweghis would lead to

significant reduction of the shutdown time, especially ngéadeployments.

Collocation of Management Entities Some communication paths, especially between Repli-

cationManager, FCM and ExecutionManager can be optimigembbocating these
entities into the same process space. This greatly redoc@sianication times since
the network stack can be avoided and in process communicatechanisms are

used instead.

57

RTCORBA For the communication paths that need to go through the mefwommu-
nication can be made more reliable and deterministic byguRIRCORBA features,
such as the real-time scheduling service, private cormestpre-allocation of con-

nections and end-to-end priorities.

Although there still is potential for performance improvem, the measurements show
that CORFU is suitable for DRE systems and offers compaygadsfe@rmance to distributed

object-oriented fault-tolerance.

58

CHAPTER VII

CONCLUDING REMARKS

Research on fault-tolerant DRE systems often has focusesbloions that simply
focus on the fault tolerance related aspects of a systemlidgpipn development effort
and system evolution often is not taken into account. Exgstiameworks mostly use an
object-oriented paradigm to provide fault-tolerance.

Our work shows that applying the component-based developpeadigm can im-
prove transparency of fault tolerance aspects in the agpic development process and
therefore fosters more flexible system structures and ro&tfgoort for system evolution.
We showed how this approach also increases the speed aiiiy qéiapplication develop-
ment. Through measurements of the CORFU infrastructureho@/ed that component-

based fault-tolerance can be provided within requiredguarénce limits.

VIl.1 Lessons Learned

Through our work on component-based fault-tolerance fetrithuted real-time and
embedded systems we gained a better understanding of theirdomhich is summarized

in the following lessons learned:

1. Fault Tolerance affects all aspects of a system and intesxla new dimension of
complexity. It is therefore hard to capture all fault toleca aspects in a comprehen-
sive middleware framework. Application characteristided greatly even within
the DRE domain, which affects used protocols, architetwosacepts applied and
technologies chosen. Each of these choices might requferatit approaches to

fault-tolerance.

59

2. Development of fault tolerant systems can benefit grdadliy integration into mid-
dleware. Although there is no one-size-fits-all solutiontcal fault-tolerance aspects
can be captured in frameworks through intelligent desigor@gches. CHESS is an
example that uses design patterns to separate applicpgoifis concerns from com-
mon fault-tolerance mechanisms and thus increases thefeugtomation of replica

state synchronization.

3. Component-based Middleware allows for greater faudrémce transparency. As
demonstrated by CORFUs’ fault-tolerant component seiher,component-based
development paradigm and lightweight fault-tolerancegnate very well, allowing

the hiding of much complexity that exists in this domain.

4. Layering and separation of concerns fosters flexible artdtactures. This becomes
clear in the design of the fault correlation manager. Bydiod the failover units on
top of the existing object based approach and separatingeoas through failover
constraints, the fault correlation manager design andamphtation could be kept
small and focused on its main task to analyze the systemsinficture and react
on failures using other existing software, namely the dgplent and configuration

infrastructure.

5. Performance of Fault Tolerance is hard to measure duedalsir nature of failures,
non-determinism in network, operating system and middiew&ince faults are no
periodical events in systems expecting fail-stop behathersetup of experiments
is complex. Each measurement can only measure a very limitetber of faults
before the complete system has to be restarted. AdditiotiaInature of distributed
systems makes it hard to gather reliable timing informatioe to network jitter,
operating system scheduling and other sources of nonrdigtiem. Experiments
and testing scripts need to be highly automated to allowfecgrit number of single

measurements.

60

VIl.2 Future Work

The work on CORFU touched on many aspects of fault-tolerantte context of com-
ponent based system. Future work in this area needs to beaa@ankieve a comprehensive
solution that integrates all aspects of fault-toleranat @mponent-based software devel-

opment.

» Optimization of Group Failover in the Fault Correlation Man ager and DANCE:
As discussed in the experimental results section, failtatency of failover units

needs to be optimized.

» Transactions within and across Failover Units for advancedstate consistency
guarantees: So far, CHESS provides consistency mechanisms on the |&s#h-0
gle components. Certain applications require consistgueyantees for groups of
components, such as failover units. Transactional seosamgied to be introduced to

enforce stronger guarantees of consistency.

» Extending the Fault Model to Network Failures: DRE systems might need to
operate in environments with highly unreliable communaraichannels. In such
scenarios fault models need to include network failures elsag host and process
failures. Further research has to be done to enhance FLARE&RFU to deal
with partitioning in networks and reconciliation of statedafailover information

after reestablishment of connectivity.

* Integration of CORFU with Domain Specific Modeling tools, sich as MDDPro [14]:
CORFU provides a run-time solution for groups of componeuritis fault dependen-
cies. To integrate these concepts into a domain specific ingdanguage allows
for a comprehensive engineering approach to fault-tosramhe SPLIT-FOU algo-
rithm in particular integrates well into a modeling envinoent and eases the burden

of the system deployment planner.

61

» Additional Fault Tolerance Aspects for Component Deploymat Infrastructures:
To avoid single points of failure, all entities in a compohbkbased run-time system
need to be fault-tolerant. Further research needs to be toapply object-based
fault-tolerance to entities such as the execution mandgernode managers and

other D&C entities as well as to the fault correlation mamaigelf.

62

REFERENCES

[1] A. Avizienis, J. Laprie, and B. Randell. Fundamental cepts of dependability. Tech-

nical Report 01145, LAAS-CNRS, Toulouse, France, 2001.

[2] J. Hill J.M. Slaby S. Baker and D.C. Schmidt. Applying 8m execution modeling

tools to enterprise distributed real-time and embeddeteBys|0s. InProceedings
of the 12th IEEE International Conference on Embedded arad-Rene Computing
Systems and ApplicationSydney, Australia, August 2006.

[3] Jaiganesh Balasubramanian, Sumant Tambe, AniruddhédndB® Chenyang Lu,

[4]

[5]

[6]

[7]

Christopher Gill, and Douglas C. Schmidt. FLARe: a Fauletant Lightweight
Adaptive Real-time Middleware for Distributed Real-timedaEmbedded Systems.
Technical Report I1SIS-07-812, Institute for Software grsged Systems, Vanderbilt
University, Nashville, TN, May 2007.

G. Candea, E. Kiciman, S. Zhang, P. Keyani, and A. Foxr:Jag autonomous self-
recovering application serverAutonomic Computing Workshop, 20(Gsages 168—
177, June 2003.

George Candea, Mauricio Delgado, Michael Chen, and AwtoaFox. Automatic
failure-path inference: A generic introspection techeidpr internet applications. In
WIAPP '03: Proceedings of the The Third IEEE Workshop onriv@eApplications
page 132, Washington, DC, USA, 2003. IEEE Computer Sodi®&BN 0-7695-1972-
5.

Erich Gamma, Richard Helm, Ralph Johnson, and John iMkss Design Patterns:
Elements of Reusable Object-Oriented Softwafedison-Wesley, Reading, MA,
1995.

Boris Gruschke. A new approach for event correlationelolasn dependency graphs.
In In 5th Workshop of the OpenView University Associati398.

[8] John Hatcliff, Xinghua Deng, Matthew B. Dwyer, Georg guand Venkatesh Prasad

[9]

[10]

Ranganath. Cadena: An integrated development, analygisyexification environ-
ment for component-based syster8sftware Engineering, International Conference
on, 0:160, 2003. ISSN 0270-5257.

Deployment and Configuration of Component-based Disteitb#pplications, v4.0
OMG, Document formal/2006-04-02 edition, April 2006.

R.V. Osorio, J.P. Lemos, T.W. Beech, G.G. Julian, aftl Chaumon. Scos-2000

release 4.0 : Multi-mission/multi-domain capabilitiesésa scos-2000 mcs kernel.

Aerospace Conference, 2006 IERkages 1-17, 2006. doi: 10.1109/AERO.2006.
1656141.

63

[11] Pascal Felber and Priya Narasimhan. Experiences,oqgpes and Challenges in
building Fault-tolerant CORBA SystemBransactions of ComputersS4(5):497-511,
May 2004.

[12] Yansong (Jennifer) Ren, David E. Bakken, Tod Courtiighel Cukier, David A.
Karr, Paul Rubel, Chetan Sabnis, William H. Sanders, RatEaSchantz, and Mouna
Seri. Aqua: An adaptive architecture that provides depleleddistributed objects.
IEEE Transactions on Computefs2(1):31-50, 2003. ISSN 0018-9340.

[13] Alexander Romanovsky. A looming fault tolerance sa@te/crisis?SIGSOFT Softw.
Eng. Notes 32(2):1-4, 2007. ISSN 0163-5948. doi: http://doi.aciyb0.1145/
1234741.1234767.

[14] Sumant Tambe, Jaiganesh Balasubramanian, Aniruddkbdke, and Thomas Dami-
ano. MDDPro: Model-Driven Dependability Provisioning imtérprise Distributed
Real-Time and Embedded SystemsPhoceedings of the International Service Avail-
ability Symposium (ISASpurham, New Hampshire, USA, 2007.

[15] M. Vieira and D. Richardson. Analyzing dependenciedaige component-based
systemsAutomated Software Engineering, 2002. Proceedings. ASE.20th IEEE
International Conference qipages 241-244, 2002. ISSN 1527-1366.

64

	Dedication
	Acknowledgments
	LIST OF FIGURES
	Introduction
	Background
	Dependency Analysis for Fault Correlation
	Frameworks for Fault-Tolerance
	Modeling Dependability Aspects

	Basic Design Concepts
	Fault Model
	Architectural Foundations
	The FLARe Real-Time Fault-Tolerance Framework
	The CORBA Component Model
	The OMG Deployment and Configuration Specification

	Components with Heterogeneous State Synchronization
	Problem Statement
	Providing a Common Interface for Exchanging Diverse State Snapshots
	Satisfying varying Timing Requirements
	Support for Different Protocols for State Dissemination

	Component Replication based on Failover Units
	Case Study
	Requirements for Component Group Failover
	Requirement 1: Fault Isolation
	Requirement 2: Ensure Fail-Stop Behavior
	Requirement 3 : Server Recovery

	The CORFU Architecture
	Challenge 1 - Single Component Fault-Tolerance
	Challenge 2 - Integration into the Deployment and Configuration Infrastructure
	Challenge 3 - Failover Ordering of Replicas

	Results
	Benefits of Component-based Fault-Tolerance compared to Object Level Fault-Tolerance
	Experimental Results
	Testbed
	Failover Latency
	Failover Unit Shutdown Latency
	Discussion

	Concluding Remarks
	Lessons Learned
	Future Work

	REFERENCES

