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CHAPTER I  

 

INTRODUCTION 

 

1.1 Overview 

Safe-life design is a design approach that has traditionally been used in aircraft 

structures. This approach assumes no preexisting defects in components. Since all 

engineering materials and components contain flaws that may grow under cyclic loading 

even if they are very small and initially safe, it is necessary to study the behavior of 

preexisting flaws and cracks and to assess how such defects will affect the integrity of 

components. Damage tolerance design, which assumes the component has preexisting 

flaws and uses fracture mechanics to predict the fatigue life, has been adopted for fixed-

wing aircraft since the 1970’s. And it has begun to be studied for rotorcraft in addition to 

the safe-life approach [1]. 

Most previous damage tolerance analyses for aircraft and other structures employ 

fatigue crack growth analysis based on long crack behavior. However, due to the high 

damage accumulation rate, near threshold crack and small crack behavior is the major 

concern for the damage tolerance approach. Many helicopter components are subjected to 

high cycle, low stress, and high stress ratio stress fields. Analytical and experimental 

approaches to determine multiaxial small crack growth rates and crack growth threshold 

are not well established and remain an active research topic. In addition, material test data 

for threshold region is limited and exhibits significant scatter. The commonly used 

fatigue crack growth formulae in NASGRO and AFGROW codes have shown large 
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scatter in crack growth life prediction especially in the near threshold region [2]. Thus the 

fatigue crack growth behavior at near threshold regime is of significant importance and is 

a central focus of research interest at FAA [3]. 

It is well known that small crack behavior significantly differs from large crack 

behavior. Both the crack growth rate curve shape and underlying failure mechanism are 

quite different. Small fatigue cracks grow at stress intensity factors significantly below 

the large crack fatigue threshold and grow faster than large cracks at the same KΔ  level 

above threshold. Failure modes of small cracks relate to different material 

microstructures and damage accumulation at the microstructure level (i.e., slip bands and 

micro-void coalescence).  

The investigation of small fatigue crack behavior has been mostly focused on 

constant amplitude mode I loading in previous studies. However possible non-planar 

crack growth and complex external loading will result in mixed-mode fatigue crack 

growth of small cracks. Service loads on most fatigue-critical structures are usually with 

random amplitude, such as those experienced by fighter aircraft [4]. Previous work shows 

that prior loading history involving random loading or multiple overloads can influence 

fatigue crack growth thresholds [5-8]. The stochasticity in material properties, structural 

properties and external loadings need to be included in fatigue life prediction.  

This dissertation combines structural failure analysis and advanced finite element 

analysis to develop a methodology for the fatigue life assessment of metallic structures 

and components. Failure analysis focuses on developing fundamental mixed-mode near 

threshold and small fatigue crack propagation prediction models and implementing these 

models with finite element analysis.  
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1.2 Research objectives 

The study attempts to extend the current state-of-the-art methods and develop 

solutions for mixed-mode near threshold and small fatigue crack life prediction. The 

proposed objectives are: 

1. Develop analytical model for mixed-mode threshold stress intensity factor and 

crack growth rate prediction in smooth specimen. Based on the multiaxial 

fatigue limit criterion proposed earlier by Liu and Mahadevan [9], the method 

is developed using local stresses near the crack tip rather than remote stresses. 

It is applicable to both ductile and brittle materials and has the potential to be 

extended for notched specimen. The predicted fatigue crack growth rate is 

compared with the experimental data in the open literature or in-field 

observations. 

2. Develop analytical model for mixed-mode threshold stress intensity factor and 

crack growth rate prediction in notched specimen, which extends the life 

prediction capability from material/specimen level to component/structural 

level. Most engineering components have notch-like features, such as 

shoulders, keyways, oil holes, grooves and threads, which induce high local 

stresses and strains at notch roots. The local stresses near the notch tip and the 

Kitagawa-Takahashi diagram for notched specimen are combined with an 

earlier proposed multiaxial fatigue limit criterion to develop the equivalent 

stress intensity factor for crack growth rate prediction.  



 4

3. Develop analytical model for mixed-mode small fatigue crack growth. In this 

task, the local stress field is transformed onto the slip plane of crystal near 

small crack tip.  The contribution of shear stress on the slip plane, which has 

been considered as the only driving force of small crack growth in earlier 

studies, as well as normal stress and hydrostatic stress are taken into account 

for the life prediction of structures with small cracks.  

4. Develop a computational methodology for the life prediction of components 

under complex loading, such as the rolling contact fatigue simulation of 

railroad wheels, combining macro-micro level finite element analysis with the 

proposed mixed-mode fatigue crack growth model. Earlier Liu [10], predicted 

the fatigue life of railroad wheels with the assumption of initial crack size 

greater than 1 mm. In this study the failure analysis of railroad wheel starts 

with the initial crack size less than one grain diameter.  

 

1.3 Advantages of the proposed methodology 

Mixed-mode fatigue crack propagation prediction is a challenging problem and a 

wide variety of experimental and computational models have been proposed in the 

literature. The test-only based approach is very expensive and inadequate for large scale 

complex component/system level application. Inexpensive modeling and simulation-

based methods depend largely on the assumption for material, loading and environment 

and none of them have achieved universal acceptance. The study in this dissertation 

compared the existing methods and proposed some alternative to address the problem 

with less assumption and broader applicability.  
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The proposed methodology includes analytical models for mixed-mode stress 

intensity factor and crack growth rate prediction in both near threshold region and 

microstructually small crack region. The method is developed using local stresses near 

the crack/notch tip rather than remote stresses. The major advantages of the proposed 

methodology are: (i) The fatigue model can automatically adapt for tensile/shear failure 

mechanisms according to material properties and loading conditions; (ii) Local geometric 

effects and residual stress effects can be addressed easily, which makes it feasible for life 

prediction at the component/structural level; (iii) The effects of various microstructural 

factors on stage I fatigue crack growth are included; (iv) The semi-analytical formulas 

quantify equivalent mixed-mode stress intensity factors, which makes fatigue life 

prediction more easy, efficient and accurate. 

The proposed macro-micro level simulation models are applied for the rolling 

contact fatigue analysis in railroad wheels. The major advantages of the proposed models 

are: (i) The macro-level 3-D finite element model is versatile in representing complex 

wheel tread (or rail head) profiles, which is especially important when the contact 

conditions can not satisfy the Hertz assumptions; (ii) The micro-level 2-D finite element 

model considers material anisotropy, and randomness in both grain size and grain 

orientation. The effects of applied load, crack size, grain orientation and grain 

disorientation on the mixed mode equivalent stress intensity factor are investigated using 

the proposed model. 
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1.4 Organization of the dissertation 

The dissertation is organized as follows: In Chapter 2, after a brief review of 

current multiaxial fatigue models and mixed-mode fatigue growth models, new formulas 

for mixed-mode I+II/I+III/I+II+III threshold stress intensity factor and crack growth rate 

prediction in smooth specimens are derived based on a characteristic plane approach. The 

predictions of the proposed fatigue damage model under constant amplitude loading are 

compared with a wide range of experimental fatigue results in the literature. 

Chapter 3 extends the proposed model in Chapter 2 for notched specimens by 

including the notch tip radius within the local stress expressions, and the relationship 

between fatigue limit and threshold stress intensity factor.  

Chapter 4 applies the proposed mixed-mode threshold fatigue model to stage I 

fatigue crack growth. Various microstructural factors are taken into account. The 

relationship between fatigue limit and microscopic threshold stress intensity factor is 

used instead of the Kitagawa-Takahashi diagram [11], which is more suitable for long 

cracks. Material anisotropy is addressed instead of the isotropic assumption used in 

earlier studies.  

Chapter 5 combines macro-micro level finite element analysis with the proposed 

mixed-mode fatigue crack growth model for shattered rim failure analysis in railroad 

wheels. The non-proportional multiaxial stress state is analyzed using the macro-level 

model, and the equivalent tensile stress calculated by the former proposed multiaxial 

fatigue limit criterion [9] is applied to the micro-level model as the boundary condition. 

Voronoi tessellation and Monte Carlo simulation are used to address the randomness in 
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grain size and grain orientation. Parametric studies are carried out for the subsurface 

fatigue crack behavior within and beyond the grain boundary.  
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CHAPTER II  

 

MIXED-MODE NEAR THRESHOLD FATIGUE CRACK GROWTH IN 

SMOOTH SPECIMEN 

 

2.1 Overview 

 Fracture mechanics has been widely used to predict the fatigue crack growth of 

flawed structures under mode I loading condition. In many practical problems, either the 

crack is not perpendicular to the mode I loading direction, or the structure is subjected to 

multiaxial loadings, resulting in a mixed-mode stress field near crack tip. Under such 

mixed-mode loading conditions, the shear mode loading can accelerate crack growth and 

the crack may deviate from the original crack path.  

A number of multiaxial fatigue models [12-14] and mixed-mode fatigue crack 

growth models [15, 16] have been proposed in the literature. Among multiaxial fatigue 

models using the S–N ( or ε–N) curve approach, the critical plane-based models have 

been gaining in popularity due to their effectiveness and broad application range [13]. 

The main purpose in critical plane-based methods is to reduce the multiaxial stress state 

into an equivalent uniaxial one. The development of this approach is based on the 

observation that the fatigue crack nucleates along certain planes in the material. Such a 

plane is named “critical plane” and the stress (or strain) components on it are used for 

fatigue analysis [12]. The critical plane coincides with the maximum shear stress plane 

during the crack initiation period and coincides with the maximum normal stress plane 

during the crack propagation period. The dominance of shear vs. tensile type crack 
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depends on the ratio of shear stress/strain to normal stress/strain, material property and 

temperature. It has been found that existing models based on shear type failure 

mechanism perform poorly for tensile type cracks and vice versa [17-19]. Jiang [20] 

proposed an incremental critical plane-based model which is capable of dealing with 

tensile cracking, shear cracking, and mixed cracking behavior. Recent work by Jiang and 

Feng [21] and Feng et al. [22] has extended the application of the Jiang multiaxial fatigue 

criterion to predicting general crack growth. As the Jiang model used plastic strain energy 

as the major measure of the fatigue damage, the model is only applicable to ductile 

materials.  

In the case of mixed-mode fatigue crack growth models, a similar trend 

comparable with those of the multiaxial fatigue models can be found in the literature. A 

number of existing models assume that the tensile crack growth dominates during the 

fatigue crack propagation. The maximum tangential stress (MTS) criterion proposed by 

Erdogan and Sih [23] and the maximum tangential strain (MTSN) criterion proposed by 

Chambers et al. [24] are two typical models using the tensile failure mode assumption. 

Yan et al. [25] used an equivalent stress intensity factor defined on the maximum 

tangential stress plane, which also assumed the tensile failure mode. Many other models 

based on energy concepts, such as the energy release rate model [26], strain energy 

density model [27] and dilatational strain energy density model [28], can be also deemed 

as variations of a tensile failure-based model similar to the MTS criterion [29]. Compared 

with a large number of models based on the tensile failure mode, relatively few models 

based on the shear failure mode are available in the literature. Otsuka et al. [30] observed 

Mode II crack growth in ductile steels and stated that fatigue cracks can either grow 
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along the maximum tangential stress plane (mode I) or along the maximum shear stress 

plane (mode II). A similar approach for the crack growth under static loading has been 

proposed by Chao and Liu [29], in which the MTS criterion and the MSS (maximum 

shear stress) criterion are combined together to predict the crack growth. Socie et al. [31] 

proposed an equivalent strain intensity factor for the near threshold small crack growth, 

which is defined on the maximum shear strain plane. A similar approach was also 

proposed by Reddy and Fatemi [32]. 

 It is well known that models based on the tensile failure mode work well for 

brittle materials. For ductile materials, both mode I and mode II cracks could occur and 

the models based on a single failure mechanism cannot give a satisfactory prediction [15, 

29]. For mixed-mode fatigue crack growth, it has been reported that the crack could 

change the growth mode depending on the applied loading amplitude [33]. Gao et al. [33] 

observed that the near threshold crack growth is shear-mode and the crack branches to 

tensile-mode when the applied mixed-mode loading is gradually increased. This type of 

observation indicates that no single model based on a specific failure mechanism can be 

applied to the whole regime of the fatigue crack growth, i.e., from near-threshold crack 

growth to long crack growth, since the underlying failure mechanism could be different.  

A new model for mixed-mode threshold stress intensity factor and crack growth 

rate prediction is proposed in this study. The method is developed using local stresses 

near the crack tip rather than remote stresses. Two major advantages of the proposed 

model are that (1) it can automatically adapt for different failure mechanisms and (2) 

local geometric effects and residual stress effects near crack tip can be included in this 

local stress based model more easily than the remote stress approach, such as cracks 
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emanating from notches or holes by considering notch radius in the expressions of stress 

fields near notch tips.  

In the section 2.3, the derivation of the model is demonstrated using a smooth 

specimen with central crack under remote tension. A multiaxial fatigue limit criterion 

developed earlier by Liu and Mahadevan [9] is extended to develop a threshold stress 

intensity factor criterion using the Kitagawa-Takahashi diagram [11]. Following this, an 

equivalent stress intensity factor is proposed for the crack growth rate prediction. The 

predictions of the proposed fatigue damage model under constant amplitude loading are 

compared with a wide range of experimental fatigue results in the literature. 

 

2.2 Existing mixed-mode fatigue models 

(1)  Models using effective stress intensity factors 

Fatigue crack growth in metals is usually estimated by using Paris law [34], which 

is originally proposed for single mode deformation cases. If further crack propagation 

occurs in the direction of the existing crack, a modified Paris law for mixed-mode 

loading can be expressed using the effective stress intensity factor (SIF) range as follows: 

 
( )m

effKC
dN
da

Δ=
 (1) 

where C and m are material constants. This equation represents a linear relationship 

between )log( effKΔ  and )/log( dNda  which is used to describe the fatigue crack 

propagation behavior in region II. However the effect of mean stress, loading and 

specimen geometry are not included in this equation. 

For characterizing the effect of stress ratio R ( maxminmaxmin // σσ== KKR ), 
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Walker [35] proposed the following equation: 

( )

m
eff

R

K
C

dN
da

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−

Δ
= −γ11

 (2) 

where C is a constant and m is the slope on the log/log plot. Also, γ  is the material 

constant obtained from data at various R, while the closing values of 1=γ  imply the 

weaker effect of R. The constant γ  of the Walker equation for rail steel is 0.82, 

whereasγ of aluminum alloy and AISI 4340 steel are 0.64 and 0.42, respectively. 

Accordingly, the stress ratio was shown to affect fatigue crack growth behavior of rail 

steel less than that of these steels [36]. 

Eq.(2) does not account for the crack growth characteristics at both low and high 

levels of KΔ . At high KΔ values, as maxK approaches the critical level cK , an increase in 

crack growth rate is observed. For this case Forman et al. [37] proposed the relation 

 
( )

KKR
KC

dN
da

c

n

Δ−−
Δ

=
)1(

 (3) 

where C and n are material constants. The term ])1[( KKR c Δ−− will decreases with 

increasing stress ratio R and decreasing fracture toughness cK , both of which give rise to 

increasing crack growth rates at a given KΔ  level. For cKK =max , corresponding to 

instability, this equation predicts an unbounded value of da/dN. 

For low value of KΔ , Donahue et al. [38] suggested the relation 

 ( )m
thKKK

dN
da

Δ−Δ=  (4) 

where thKΔ denotes the threshold value of KΔ . 

Erdogan and Ratwani [39] have suggested a generalized fatigue crack growth law, 
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which can describe the sigmoid response. A relation of the form 

 
( )

KK
KKC

dN
da

c

n
th

m

Δ+−
Δ−Δ+

=
)1(

)1(
β

β
 (5) 

where C, m, n are empirical material constants and  

 
minmax

minmax

KK
KK

−
+

=β  (6) 

The factor )1( β+ has been introduced to account for the effect of the mean stress 

level on fatigue crack propagation, while the factor KKc Δ+− )1( β takes care of the 

experimental data at high stress levels and the factor ( )n
thKK Δ−Δ accounts for the 

experimental data at low stress levels. 

An advanced approach is the so-called NASGRO expression (also called Forman-

Newman-de Koning equation), which is now common in aerospace applications.  This 

equation describes all sections of the eff
da K
dN

− Δ  diagram. 

 ( ) q

Jc

p

effn
eff

K
K

K
K

KC
dN
da

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Δ
Δ

−

Δ=
max

0

1

1

 (7) 

where ( )n
effKC Δ  is fitted to the data in the so-called Paris range (range II), 

p

effK
K

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Δ
Δ

− 01 and 
q

JcK
K

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− max1  are used for describing range I and range III. 0KΔ  is the 

fatigue threshold, maxK  is the maximum stress intensity factor in a load cycle, JcK  is the 

crack resistance against fracture and p and q are empirical constants from curve fitting. 

Pook and Greenan [40] found that crack growth in all cases was at an angle of 
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roughly 70° with respect to the original crack line even though the applied stress field 

was mode II. Roberts and Kibler [41] suggest using the following equation for shear 

fatigue crack growth 

 
( ) ( )

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

Δ+Δ
=

1
2

max

2

max

2
2

1
1

cII

II

cI

I

n
II

n
I

K
K

K
K

KCKC
dN
da

 (8) 

(2) Newman’s crack closure model 

To consider crack closure during crack propagation we can use Newman’s crack 

closure model [42]: 

 ( ) HGKC
dN
da n

eff /Δ=  (9) 

where 

 
p

eff

o

K
K

G ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Δ
Δ

−= 1  (10)  

 
q

C
K

H ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

5

max1  (11) 

The cyclic fracture toughness, like the elastic fracture toughness, is a function of 

crack length, specimen width, and specimen type. 

(3) Chen and Keer’s model 

Based on Dugdale's model, the fatigue crack growth rate was related to the 

accumulated crack opening and sliding plastic displacements by Chen and Keer [43]. The 

following assumptions were made: (i) the crack closure and the crack branching effects 

can be neglected; (ii) the total accumulated plastic displacement is the vector sum of the 

accumulated crack opening and crack sliding displacements; and (iii) the tensile and 
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shear stresses in the yield zone satisfy the von Mises criterion. Based on these 

assumptions as well as the relationship between stress intensity factors and 

displacements, and the relationship between JΔ and displacements under small scale 

yielding condition, the following expressions were derived for mixed-mode I and II 

loadings: 

 2
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=  (12) 

where 
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In these equations, γ  is considered as the effective surface energy for fatigue crack 

growth, σR is the ratio of the applied shear stress to tensile stress range and ycσ  is the 

cyclic yield strength. Compared with experimental data, the results predicted by this 

model were thought to be reasonable by Chen and Keer [43].  

(4) Equations using strain energy density 

Sih and Barthelemy [27] thought the commonly used Paris law is not adequate for 

mixed-mode crack growth problems since loading parameters, say the stress amplitude 

and the mean stress level are not included in the equation and a crack does not grow in a 

self-similar manner under mixed-mode loads. They proposed to use the strain energy 

density factor concept to predict fatigue crack growth.  
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 ( ) sn
s SC

dN
da

Δ=  (15) 

SΔ is the strain energy density factor range, and sC and sn are material constants. 

By equating this equation with the Paris equation for mode I loading, the 

constants sC and sn  in Eq. (15) can be found. The material constants thus obtained from 

the Paris equation are assumed not to be sensitive to the modes of loading in the regime 

of linear elastic fracture mechanics[16]. 

The strain energy density factor can be written as: 

 2
333

2
2222112

2
111 2 kakakkakaS +++=  (16) 

where the coefficients ija  ( i , j = 1,2) are given by: 
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θθθκμ
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 (17) 

with υκ 43 −=  and ( ) ( )υυκ +−= 1/3  for plane strain and plane stress conditions. μ  is 

the shear modulus of elasticity. The angle θ  denotes the position of the radius vector and 

is measured from a line collinear with the crack. The k's are defined as: 

 ( )IIIIIIiKk ii ,,/ == π  (18) 

where iK  are stress intensity factors for modes I, II and III, respectively.  

From the definition of stress intensity factors in the linear elastic fracture 

mechanics, sΔ  can be expressed as 

 ⎥⎦
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⎡ Δ+Δ+⎟
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⎜
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−−−−−

3333222221121211112 kkakkakkkkakkaS  (19) 
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where minmax SSS −=Δ , ( ) ( ) jjj kkk minmax −=Δ  and ( ) ( )[ ]jjj kkk minmax2
1

+=
−

, 3,2,1=j  

Lam [44] found that the strain energy density factor range SΔ is not compatible 

with the concept of crack closure and proposed a modification of the existing concept of 

SΔ based on the contact stress intensity factor concept developed by Lam and Williams 

[45]. 

 
[ ]

( )[ ] ( )[ ] )(22)(11/)()(
)(1

RfRfRRRfRg
RgSSeff

+−++=

−Δ=Δ
 (20) 

where ( )Rf is a monotonic decreasing function with R. 

Theocaris and Andrianopoulos [46] argued that since S is a summation of 

distortional and dilatational strain energy densities, these two fundamentally different 

physical quantities should not be added together. Also, S is defined along the boundary of 

the so-called core region, which is assumed to be circular. This assumption has not been 

justified yet. Yan et al. [47] suggest that the Nadai elastic-plastic boundary, which 

considers the different yield strengths in tension and compression, should be used as the 

boundary of this core region, rather than the assumed circle. Wu [48] pointed out that S is 

constant under pure antiplane loading condition (mode III) and the S-criterion fails to 

yield a preferred direction for this case. Wong [49] suggested that more terms in the 

Westergaard expressions of the stress field around the crack tip should be included in the 

S expression. 

(5) Equations using CTD (crack tip displacement) or JΔ  

These equations are of the form similar to Paris law: 

 ( )mCTDC
dN
da

Δ=   (21) 
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EdN
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 (22) 

 ( )mJC
dN
da

Δ=  (23) 

A “Vector Crack Tip Displacement” (CTD) criterion was proposed by Li [50]. The J-

integral approach was suggested by Dowling and Begley [51]; Wuthrich [52]; Srivastava 

[53] and Chow and Lu [54]. This concept was extended to fatigue crack growth rate 

analyses of small cracks under mixed-mode loadings by Hoshide and Socie [55].  

 

There are various criteria proposed in the literature for the calculation of effective 

mixed-mode stress intensity factor; some of them are reviewed here.  

(1) Tanaka’s model 

This model is based on the assumption that a fatigue crack grows when the sum of 

the absolute values of the displacements in a plastic strip reaches a critical value. Under 

mixed-mode conditions, it is assumed that deformations due to mode I and mode II loads 

are not interactive. 

The following equation was proposed by Tanaka [56], who found the correlation 

obtained from the parameter expressed by this equation to provide the best fit for his 

experimental data.  

 ( ) 4/144 8 IIIeff KKK Δ+Δ=Δ  (24) 

(2) Tong & Yan’s model 

Tong et al. [47] suggested the following equation which was obtained by the 

maximum tangential stress criterion proposed by Erdogan and Sih [57].  
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where 0θ  is the crack growth direction obtained from the maximum tangential stress 

criterion. This model is a simple extension of the maximum tangential stress criterion to 

the case of mixed-mode fatigue crack growth. This model, however, lacks experimental 

verification. 

(3) Richard’s model 

Richard [58] proposed an empirical model for the effective stress intensity factor 

estimation as  
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where
IIC
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K
K

=ξ . 

 (4) Energy release rate model 1 [59] 

 This method calculates the effective stress intensity factor as 
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where ν  is the Poisson’s ratio. Consider a local coordinate system at the crack front such 

that the x-axis lies in the plane of the crack and is normal to the crack front. In this case 

total energy release rate can be decomposed into the energy release rates for each fracture 

mode. 

 IIIIII GGGG ++=  (29) 
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For linear elastic fracture mechanics, there exists a direct relationship between IG , IIG , 

IIIG  and the stress intensity factors IK , IIK , IIIK , which is given by 

 
⎪
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where effE  is an effective modulus depending on the stress state at the crack tip. 
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Then 

 )1/(2222 ν−++= IIIIIIeff KKKK  (34) 

Thus, effKΔ for mode I and II is 

 ( )2
1

22
IIIeff KKK Δ+Δ=Δ  (35) 

and effKΔ for mode I and III is 
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(5) Energy release rate model 2 [26] 

 This method calculates the effective stress intensity factor as 
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Note that Eq. (37) is obtained by substituting 0=ν  in Eq. (28). 

(6) Hänsel’s model 

Fatigue behavior of cold extrusion dies was studied by Hänsel et al, and the 

effective stress intensity factor was defined as 
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(7) Liu and Mahadevan’s model 

Liu and Mahadevan [60] developed a mixed-mode threshold stress intensity factor 

model using a characteristic plane based multiaxial fatigue theory and Kitagawa-

Takahashi diagram [11]. 

 B
K
kA

K
k

K
k

K
k

thI

H

thIIIthIIthI

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
2

,

2

,

3

2

,

2

2

,

1  (39) 

The effective stress intensity factor is defined by 
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The characteristic plane adjusts its orientation according to mode mixity, which is a 

function of the ratio of mode I to mode II stress intensity factor, and material ductility s , 

which is the ratio of the shear fatigue limit to tensile fatigue limit, which makes this 

model superior to the previous ones. It is applicable to both metallic and composite 

materials, either shear or tension dominated crack growth, even for nonproportional 

fatigue loading. However, since this model is based on remote stress rather than local 
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stress, it cannot capture the geometric details near crack tip, which makes it not 

applicable for notched specimens.  

 

2.3 Proposed mixed-mode I and II fatigue model 

2.3.1 Multiaxial fatigue limit criterion 

Liu and Mahadevan [9] proposed a characteristic-plane based model for 

multiaxial fatigue damage modeling and validated the model using bending-torsional 

fatigue experimental data. This model was combined with the Kitagawa-Takahashi 

diagram  [11] and used to calculate near threshold equivalent mixed-mode stress intensity 

factor [60]. Different from most existing critical plane-based models, this method does 

not rely on the cracking mechanism, such as the crack growth orientations [9]. The 

characteristic plane in this model is only a material plane on which the stress/strain 

components are used to analyze the fatigue damage of materials. It arises from the idea of 

mathematical dimensional reduction rather than physical cracking observations. The 

method can be applied even without knowing the cracking mechanism, thus to both 

metallic and composite materials, even through the cracking mechanism for the two 

materials are fundamentally different [61]. However, since the fatigue damage is 

evaluated using remote stresses acting on the cracked component, this method can not 

capture the geometric details and complex stress field near crack tip. In the proposed 

study a local stress based characteristic plane approach is used to predict mixed-mode I 

and II stress intensity factor and fatigue crack growth rate. 

The general fatigue limit criterion under multiaxial loading for mixed-mode I and 

II is expressed as 
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where cσ and cτ  are the normal stress amplitude and shear stress amplitude acting on the 

characteristic plane, respectively. Hσ  is the hydrostatic stress amplitude. A and B are 

material parameters which can be determined by tensional and torsional fatigue limits. A 

detailed derivation and explanation of the model can be found in Liu and Mahadevan [9]. 

2.3.2 Fatigue limit and threshold stress intensity factor 

The concept of fatigue limit is traditionally used within the fatigue resistance 

design approach, which defines a loading criterion under which no macroscopic crack 

will form. The concept of threshold stress intensity factor is often used within the damage 

tolerant design approach, which defines a loading criterion under which the cracks will 

not grow significantly [62]. A link between the fatigue limit and the threshold stress 

intensity factor was proposed by Kitagawa and Takahashi [11]. The fatigue limit against 

the crack size using Kitagawa-Takahashi diagram is shown in Figure 1. 

 

 

Figure 1. Kitagawa diagram for fatigue limits and threshold stress intensity factor 
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According to the well-known El Haddad model [63], the fatigue limit can be 

expressed using the threshold stress intensity factor and a fictional crack length a. The 

crack length a represents the intersection of the smooth specimen fatigue limit and the 

linear elastic fracture mechanics (LEFM) threshold stress intensity factor, i.e., 

a
K

t
a

K
f thIIthI

ππ
,

1
,

1 == −−  (42) 

where 1−f  and 1−t are normal and shear fatigue limit, respectively and thIK , and thIIK , are 

the threshold stress intensity factors for mode I and mode II, respectively. 

2.3.3 Mixed-mode I and II threshold stress intensity factor 

The multiaxial fatigue limit criterion can be extended to a mixed-mode threshold 

stress intensity factor criterion using Kitagawa-Takahashi diagram  [11], which links the 

fatigue behavior of cracked and noncracked material together. Consider an infinite plate 

under remote tensional and torsional loading as shown in Figure 2, there is a mixed-mode 

I and II stress field near crack tip, which can be expressed as: 
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Figure 2. Mixed-mode I and II stress fields near crack tip 

 

For plane stress condition, Eq. (41) can be rewritten as 
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For plane strain condition, Eq. (41) can be rewritten as 
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To unify the multiaxial fatigue limit criteria for both plane stress and plane strain 

condition, a new parameter *A  is introduced which is the same as A  under plane stress 

condition and equals to ( )21 υ+A under plane strain condition. Thus Eq. (41) can be 

expressed as 
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To determine the parameters *A and B , two extreme cases are considered below: 

Case 1: For a fully reversed pure tensional fatigue experiment, the ranges of mode I and 

mode II stress intensity factors are shown as 
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where cr is the characteristic or characteristic distance. From Eq. (43) the stress field near 

crack tip can be rewritten as 
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Assume 11 / −−= ftξ , Eq. (46) can be expressed as 
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Case 2: For a fully reversed pure torsion fatigue experiment, the ranges of mode I and 

mode II stress intensity factors are shown as 
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From Eq. (43) the stress field near crack tip can be rewritten as 
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Thus Eq. (46) can be expressed as 
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According to the maximum tangential stress criterion (MTS), the maximum 

tangential stress at cr  occurs at the angle of β , which satisfies 
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Thus for case 1, °= 0β and for case 2, °−= 529.70β . Solving for *A and B as 

2

2

2

2

*

3
3

3
4
39

ξ
ξ

ξ

ξ

−
=

−

⎟
⎠
⎞

⎜
⎝
⎛ −

=

B

A
 (54) 

Since *A is the contribution of damage caused by the hydrostatic stress, *A  and 

B should be non negative real number. The range of ξ  need to be  

32/3 <≤ ξ  (55) 

For most brittle materials, ξ  is greater than 1. Thus the characteristic plane 

orientation calculated by MTS criterion is only applicable to brittle material. 
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According to the maximum shear stress criterion (MSS), the maximum shear 

stress at cr  occurs at the angle β , which satisfies 
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Thus for case 1, °= 529.70β and for case 2, °= 0β . Solving for *A and B , 
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Since *A and B should be non negative real numbers, the range of ξ  needs to be 

19/2≥ξ  (58) 

Thus the characteristic plane orientation calculated by the MSS criterion has a 

wider application range than by the MTS criterion, and is applicable for both brittle and 

ductile materials. In these two extreme cases (case 1 and case 2) the characteristic plane 

orientations coincide with the crack orientations predicted by MSS.  Therefore the MSS 

criterion is used below to predict crack orientation β . 

The contribution of the hydrostatic stress is different for different materials if the 

characteristic plane is fixed for all materials. There are two materials: 2/3=ξ  by MTS 

criterion and 19/2=ξ  by MSS criterion, for which the contribution of hydrostatic 

stress is zero. It is also noticed that, if the characteristic plane is fixed, the range of 

applicable material parameters are limited. 

Instead of fixing the characteristic plane, the current model searches for the 

characteristic plane orientations on which the contribution of the hydrostatic stress is 

minimized to zero.  
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Figure 3. Orientation of characteristic plane and maximum shear stress (MSS) plane 

 

For an arbitrary material, the characteristic plane orientation is assumed to be α  

(as shown in Figure 3). Since the contribution of the hydrostatic stress is zero, Eq. (46) is 

rewritten as: 
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The objective is to find α and B for an arbitrary material, following the steps 

described for the first two cases, Eq. (49) and (52) can be rewritten as 
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where °= 529.701θ and °= 02θ . 
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It is difficult to obtain a closed form solution for Eqs. (60) and (61). Numerical 

solutions for γ  and B versus material property ξ  are shown in Figure 4 and Figure 5. 

For 2/3≤ξ , effects of hydrostatic stress can be reduced to zero by rotating the 

characteristic plane from the MSS plane by an angleγ . As ξ  increases from 19/2  

to 2/3 , material property changes from ductile to brittle, also the characteristic plane 

orientation changes from MSS plane to MTS plane. For 2/3>ξ , which indicate the 

extremely brittle materials, the contribution of hydrostatic stress cannot be minimized to 

zero and must be considered during the fatigue damage evaluation. In this case the 

characteristic plane has the same orientation as the MSS plane and the parameters 

*A and B  are calculated using Eq. (57). 
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Figure 4. γ .vs. ξ  for mixed-mode I+II Figure 5. B .vs. ξ  for mixed-mode I+II 

 

The mixed-mode I and II crack orientation β  can be solved from the MSS 

criterion using Eq. (56). The numerical solution is shown in Figure 6. 
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Figure 6. Mixed-mode I+II crack orientation β  using the MSS criterion 

 

Then the characteristic plane orientationα can be expressed as 

γβα +=  (62) 

In the proposed method, the characteristic plane depends on mode mixityφ , 

where φtan  equals to the ratio of stress intensity factor III KK / , and material ductilityξ . 

The parameter ξ  is related to two different material failure mechanisms. A larger value 

of ξ  ( 2/3≥ξ ) indicates tensional dominated failure and smaller ξ  ( 2/3<ξ ) 

indicates shear-dominated failure. If the value of ξ  is known (based on uniaxial and pure 

torsional fatigue tests), the proposed model can automatically adapt for different failure 

mechanism.  

2.3.4 Mixed-mode I and II fatigue crack growth 

Using the parameterα , Eq. (46) becomes 
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For prediction corresponding to a general crack growth rate dNda / , the threshold 

stress intensity factors ( thIK , and thIIK , ) may be replaced by the stress intensity 
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coefficients at the specific crack growth rate ( dNdaIK /,  and dNdaIIK /, ). In the proposed 

mixed-mode crack growth model, stress intensity coefficients at the specific crack growth 

rates are considered as equivalent stress intensity factor for mixed-mode case. The 

mixed-mode crack growth model is expressed as 
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where ⎟
⎠
⎞

⎜
⎝
⎛

dN
daf  is the crack growth curve obtained under mode I loading. There are no 

closed form solutions for Eq.(64). In practical calculation, a trial and error method can be 

used to find dNda / . For high cycle fatigue problem, KII,da/dN  and KI,da/dN take initial 

values as KII,th and KI,th, respectively. It is found that usually a few iterations are enough 

to make Nf converge.  

2.3.5 Experimental validation 

Seven sets of fatigue experimental data available in the literature are employed in 

this section and listed in Table 1. The predicted thresholds and the experimental 

observations are plotted in Figure 7 where the x-axis and the y-axis are the applied stress 

intensity ranges for mode I and mode II, respectively. All values are normalized using the 

mode I threshold stress intensity factor. For comparison, the predictions using remote 

stress condition [60], the maximum strain energy release rate [26], MTS [64] and the 

minimum strain energy density [27] are also plotted in Figure 7. As shown in Figure 7, 

the predicted values using the proposed method agree with experimental observations 

much better than the existing four models.  
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Table 1. Experimental threshold SIF data used for model validation 

Material name References Loading case KI,th ( mMpa ) ξ 

6061Al [65] I + II 3.90 0.55 

7075-T6 Aluminum alloy [66] I + II 1.60 0.64 

316 Stainless steel [33] I + II 5.81 0.70 

Aluminum alloy [67] I + II 2.75 0.83 

2017-T3 Aluminum alloy [66] I + II 1.60 0.90 

2024Al [68] I + II 3.90 1.46 

SiCp/2024Al composite [68] I + II 4.80 1.79 
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c) 316 Stainless steel (ξ  = 0.70) d) Aluminum alloy (ξ  = 0.83) 
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g) SiCp/2024 Al composite (ξ  = 1.79)  

Figure 7. Comparisons of predicted and experimental threshold stress intensity 
factors for mixed-mode I+II 
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Figure 8. Comparisons of predicted and experimental fatigue crack growth rates 

 

Two sets of fatigue experimental data are employed for the comparisons of 

fatigue crack growth rates, which are listed in Table 2. The predicted crack growth rates 

and experimental observations are plotted in Figure 8. In Figure 8, the x-axis is the 

equivalent applied stress intensity range (Eq.(64)) under mixed-mode loading. The y-axis 

is the fatigue crack growth rate. Different types of mixed-mode loading are represented 

using an angleφ , as listed in the legends for Figure 8 (a)–(d). The angle φ  is defined as  
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( )III KK /tan 1−=φ  (65) 

φ  is °90  for mode I loading and °0  for mode II loading. Predictions of the proposed 

model, shown as solid lines in Figure 8, correlate different types of mixed-mode crack 

growth rates using the mode I crack growth function.  

 

Table 2. Experimental crack growth rate data used for model validation 

Material name References Loading case Mode mixity φ (deg) 

Rail steel [36] I + II 0, 30, 60 

WC-Co cemented carbides [69] I + II 0, 40, 90 

 

2.4 Proposed mixed-mode I and III fatigue model 

2.4.1 Mixed-mode I and III threshold stress intensity factor 

Consider an infinite plate under remote normal and out of plane shear stress as 

shown in Figure 9. The mixed-mode I and III stress field near crack tip can be expressed 

as: 
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Figure 9. Mixed-mode I and III stress fields near crack tip 
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The general fatigue limit criterion under multiaxial loading for mixed-mode I and 

III is expressed as 

B
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where cσ and cτ  are the normal stress amplitude and out of plane shear stress amplitude 

acting on the characteristic plane, respectively. Hσ  is the hydrostatic stress 

amplitude. A and B are material parameters which can be determined by tensional and 

torsional fatigue limits. 

Experimental data shows that the failure surface under mixed mode I and III 

loading condition is typically non-planar. Assume coordinate ( )zr ,,θ  rotates β  around 

axis r to coordinate ( )',',' zr θ , the stress in the new coordinate can be expressed as 
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Under plane strain condition, Eq. (68) can be expressed as 
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Under plane stress condition, Eq. (68) can be expressed as 
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Thus for mixed mode I and III under both plane strain and plane stress condition, the 

fatigue limit criterion becomes 
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where πθπ ≤≤−  and 2/2/ πβπ ≤≤− . To determine the parameters A and B , two 

extreme cases are considered below: 
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Case 1: For a fully reversed pure tensional fatigue experiment 
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where cr is the characteristic distance. From Eq. (69), (70) and (72) the stress fields near 

crack tip can be rewritten as below 

Under plane strain condition: 
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Under plane stress condition: 
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Assuming 11 / −−= ftξ , Eq. (71) can be expressed as  
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Under plane strain condition: 
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Under plane stress condition: 
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Case 2: For a fully reversed pure torsion fatigue experiment 
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From Eq. (69), (70) and (77) the stress fields near crack tip can be rewritten as 
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Thus Eq. (71) can be expressed as 
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According to the maximum tangential stress criterion (MTS), the maximum 

tangential stress at cr  occurs at the angel ofθ , which satisfies 
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Thus in case 1 under plane strain condition, 0=β  and 0=θ  at 5.0<υ  and under plane 

stress condition, 0=β  and 0=θ . Then Eq. (75) for plane strain can be rewritten as: 

( ) BA =++ 21
9
41 υ  (81)

Eq. (76) for plane stress can be rewritten as: 

BA =+
9
41  (82)

In case 2, 4/πβ =  and 0=θ  for both plane strain and plane stress. Then Eq. (79) can 

be rewritten as 

B=ξ  (83)

Solving Eqs. (81) and (83) for A and B in plane strain condition, 
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Since A and B should be non negative real numbers, the range of ξ  needs to be 

1≥ξ  (85)

Solving Eqs. (82) and (83) for A and B in plane stress condition, 
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=

−=

B
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4
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 (86)

Since A and B should be non negative real numbers, the range of ξ  needs to be 

1≥ξ  (87)
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Thus the characteristic plane orientation calculated by the MTS criterion is only 

applicable to brittle material. 

According to the maximum shear stress criteria (MSS), the maximum shear stress 

at cr  occurs at the angel of θ , which satisfies 
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Thus in case 1 for plane strain, 4/πβ −=  and 0=θ  at 375.00 ≤< υ  (for most 

metals 37.029.0 ≤≤ υ ) and 4/πβ = and ( )3/2arccos2 υθ ±=  at 5.1375.0 << υ  and 

for plane stress condition, 4/πβ −=  and 0=θ . Then Eq. (75) for plane strain can be 

rewritten as: 
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Eq. (76) for plane stress can be rewritten as: 
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9
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4
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 (90)

In case 2 for both plane strain and plane stress condition, 0=θ and 0=β . Eq. (79) can 

be rewritten as 

B=1  (91)

Solve Eq. (89) and (91) for A and B in plane strain condition 
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and  
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Since A and B should be non-negative real numbers, the range of ξ  needs to be 
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Solve Eq. (90) and (91) for A and B in plane stress condition 
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Since A and B should be non-negative real numbers, the range of ξ  needs to be 

3/3≥ξ  (96)

Thus the characteristic plane orientation calculated by the MSS criterion is 

applicable for both brittle and ductile materials. In these two extreme cases (case 1 and 

case 2) the characteristic plane orientations coincide with the crack orientations predicted 

by MSS. Thus the MSS criterion is used to predict crack orientationθ  below. 

The contribution of the hydrostatic stress is different for different materials if the 

characteristic plane is fixed for all materials. There are two materials: 1=ξ  for case 1 

and 3/3=ξ  for case 2 (plane stress condition), for which the contribution of 

hydrostatic stress is zero. It is also noticed that, if the characteristic plane is fixed, the 

range of applicable material parameters is limited. 
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Instead of fixing the characteristic plane, the current model searches for the 

characteristic plane orientations on which the contribution of the hydrostatic stress is 

minimized to zero.  

For an arbitrary material, the characteristic plane orientation is assumed to be α  

(as shown in Figure 10). Since the contribution of the hydrostatic stress is zero, Eq. (71) 

is rewritten as: 
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Figure 10. Orientation of characteristic plane and maximum shear stress (MSS) plane for 
mixed-mode I+III 

 

The objective is to find α  and B  for an arbitrary material. Following the steps 

described for the first two cases, for plane strain condition Eq. (75) and (79) can be 

rewritten as 
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( )( )( ) ( )( )( ) B=+++ 2
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where 04/ 21 =−= βπβ . At 3.0=υ  solve Eqs. (98) and (99) 
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For plane stress condition Eqs. (76) and (79) can be rewritten as 
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where 04/ 21 =−= βπβ . Solve Eqs. (101) and (102)                          
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Figure 11. γ .vs. ξ  for mixed-mode I+III 
(plane stress) 

Figure 12. B .vs. ξ  for mixed-mode I+III 
(plane stress) 
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For a mixed-mode I and III crack, θ  and β  can be solved from the MSS criterion. 

Under plane strain condition: 
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Appling Eq. (88) to Eq. (104), 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −=

=

2
12tan

0

υβ

θ

III

I

K
K  (105)

Under plane stress condition: 

( ) ( )⎥⎦
⎤

⎢⎣
⎡ +−= ββ

π
τθ 2cos2sin

2
1

2
1

'' IIIIz KK
r

 (106)

Appling Eq. (88) to Eq. (106), 
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The relationships between β  and IIII KK /  are plotted in Figure 13. 
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Figure 13. Mixed-mode I and III crack orientation β  using MSS criterion ( 3.0=υ  in 
plane strain) 
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Then the characteristic plane angle α  can be calculated as 
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Eq. (97) becomes 
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2.4.2 Mixed-mode I and III fatigue crack growth  

For prediction corresponding to a general crack growth rate dNda / , the threshold 

stress intensity factors ( thIK , and thIIIK , ) may be replaced by the stress intensity 

coefficients at the specific crack growth rate ( dNdaIK /,  and dNdaIIIK /, ). In the proposed 

mixed mode crack growth model, stress intensity coefficients at the specific crack growth 

rates are considered as equivalent stress intensity factor for mixed mode case. The mixed 

mode crack growth model is expressed as 

For plane strain condition 
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For plane stress condition 
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(111)

where ⎟
⎠
⎞

⎜
⎝
⎛

dN
daf  is the crack growth curve obtained under mode I loading. There are no 

closed form solutions for Eqs. (110) and (111). In practical calculation, a trial and error 

method can be used to find dNda / . For a high cycle fatigue problem, KIII,da/dN  and 
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KI,da/dN take initial values as KIII,th and KI,th, respectively. Usually a few iterations are 

enough to make Nf converge.  

2.4.3 Experimental validation 

Seven sets of fatigue experimental data available in the literature are employed in 

this section and listed in Table 3. The predicted thresholds and the experimental 

observations are plotted in Figure 14. In Figure 14, the x-axis and the y-axis are the 

applied stress intensity ranges for mode I and mode III, respectively. All values are 

normalized using the mode I threshold stress intensity factor. For comparisons, the 

predictions using the mixed mode I and III threshold stress intensity factor criteria, such 

as the energy release rate, MTS, and Pook’s law [70] are also plotted. As shown in Figure 

14, the predicted values using the proposed method agree with experimental observations 

much better than the existing three models.  

 

Table 3. Experimental threshold data used for model validation 

Steel References KI,th ( mMpa ) ξ   

Ni%3/3 2/1  [70] 10.23 0.57 

3%Ni [70] 7.10 0.67 

NiCr%3 2/1 (low impact) [70] 8.35 0.68 

CrVa [70] 7.30 0.69 

NiCr%3 2/1 (normal impact) [70] 9.08 0.81 

NiCrMo [70] 9.18 0.82 

0.4%C [70] 6.05 0.91 
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g) 0.4%C (ξ  = 0.91)  

Figure 14. Comparisons of predicted and experimental threshold stress intensity 
factors for mixed-mode I+III 
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2.5 Proposed mixed-mode I, II and III fatigue model 

Consider an infinite plate under remote normal and out of plane shear stress as 

shown in Figure 15, there is a mixed-mode I, II and III stress field near crack tip, which 

can be expressed as: 
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Figure 15. Mixed-mode I, II and III stress fields near crack tip 
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Experimental data shows that the failure surface under mixed mode I, II and III 

loading condition is typically non-planar. Assume coordinate ( )zr ,,θ  rotates β  around 

axis r to coordinate ( )',',' zr θ , the stress in the new coordinate can be expressed as 
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Under plane strain condition, Eq. (68) can be expressed as 
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Under plane stress condition, Eq. (68) can be expressed as 
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Thus for mixed mode I, II and III under both plane strain and plane stress condition, the 

fatigue limit criterion becomes 
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where πθπ ≤≤−  and 2/2/ πβπ ≤≤− . To determine the parameters A  and B , two 

extreme cases are considered below: 

Case 1: Mixed mode I and II fatigue experiment as shown in Figure 2: 

In this case there is no contribution of IIIK . From Eqs. (69) and (70) the stress fields near 

crack tip can be rewritten as 

(a) Under plane strain condition: 
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(b) Under plane stress condition: 
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Case 2: Mixed mode I and III fatigue experiment as shown in Figure 9: 

In this case there is no contribution of IIK . From Eqs. (69) and (70) the stress fields near 

crack tip can be rewritten as 

(a) Under plane strain condition: 
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(b) Under plane stress condition: 
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According to the maximum shear stress criterion (MSS), the maximum shear 

stress at cr  occurs at the angle of θ , which satisfies 
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for mixed mode I and II, and  
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for mixed mode I and III.  

In case 1 for both plane strain and plane stress, the relationship between θ  and the ratio 

of IK  to IIK  is shown in Figure 16. 
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Figure 16. θ  vs. III KK /  

 

Then Eq. (116) for plane strain condition can be rewritten as: 
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For plane stress condition Eq. (116) can be expressed as 
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In case 2 for plane strain condition 

( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛= ββθυθ

π
τθ 2cos2sin

2
cos

2
1

2
cos

2
1 2

'' IIIIz KK
r

 (125)

where θ   and β can be solved from the MSS criterion using Eq. (88). Thus in mixed 

mode I and III for plane strain 
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In case 2 for plane stress condition 
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where θ   and β can be solved from MSS criteria using Eq. (88) .Thus in mixed mode I 

and III for plane stress 
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Then in case 2 under plane strain condition Eq. (116) can be rewritten as: 
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For plane stress condition Eq. (116) can be expresses as 
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Eqs.(129) and (130) can be simplified as: for plane strain condition 
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for plane stress condition 
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Solve Eqs. (123) and (131) for A and B in plane strain condition 
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Solve Eqs. (124) and (132) for A and B in plane stress condition 
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where A and B should be non negative real numbers. 

The characteristic plane orientation calculated by the MSS criterion is applicable 

for both brittle and ductile materials. In these two extreme cases (case 1 and case 2) the 

characteristic plane orientations coincide with the crack orientations θ  and β predicted 

by the MSS criterion. If the length of the structure is much greater than the other two 

dimensions, Eq. (133) for plane strain can be used. If one of the dimensions of the 

structure is much smaller than the other two, such as in a thin plate, Eq. (134) for plane 

stress can be applied.  
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2.6 Conclusion 

Three models for mixed-mode (I+II / I+III / I+II+III) threshold stress intensity 

factor and crack growth rate prediction are proposed in this chapter. The prediction based 

on the proposed criterion shows excellent agreement with the experimental threshold 

stress intensity factor data reported in the literature. The new threshold stress intensity 

factor criterion is then extended to develop a fatigue crack growth rate prediction model. 

A very good agreement is obtained between experimental and predicted fatigue crack 

growth rates.  

The proposed fatigue crack growth model is developed using the local stress 

components (near crack tip) and the characteristic plane concept. Most of the existing 

fatigue crack growth models can only be applied to individual failure modes, i.e., shear 

dominated failure or tension dominated failure. Their applicability generally depends on 

the material’s properties and loading conditions. In the proposed model, the characteristic 

plane changes its orientation corresponding to different material failure modes, thus 

helping the proposed model to have a wide range of applicability.  

The proposed models in this chapter are only applicable to smooth specimens. In 

reality, structural components contain holes or notches. To make the proposed criteria 

more realistic, notch effects need to be included in the local stress expressions. This is 

investigated in Chapter 3. 
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CHAPTER III  

 

MIXED-MODE NEAR THRESHOLD FATIGUE CRACK GROWTH FROM 

NOTCH 

 

3.1 Overview 

Whether deliberately created or inadvertently induced, notches and other 

geometrical irregularities invariably exist in engineering components which cause 

significant stress concentration and lead to the initiation of fatigue cracks.  

The crack initiation life of notched components is predicted using the classical 

stress/strain-based approach, and the stress concentration effect is addressed by a fatigue 

notch factor fK  instead of the elastic stress concentration factor tK . The most commonly 

accepted definition of fK  is the ratio of the unnotched bar endurance limit to that of a 

notched bar under the same experimental conditions and the same number of cycles [71]. 

itendurancebarnotched
itendurancebarunnotchedK f lim

lim
=  (135) 

The fatigue notch factor depends on many factors such as notch geometry, 

material properties, loading type and fatigue life. Though the most reliable way to 

determine fK  is from experiments, there are many empirical formulas proposed for 

engineering application, which can be found in previous review papers [72, 73]. The 

basic idea is to consider the stress at a specific location or averaged over a domain from 

the notch tip and to express the critical distance as a function of the tensile strength of the 

material. Due to the high localized stress/strain, the crack initiation life could decrease 
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significantly and 90% of the fatigue time may be spent on crack propagation time. So this 

approach is very useful when the stress levels below the fatigue limit, but could be 

dangerous in the finite life regime [74]. Since this approach does not take into account the 

fatigue crack near notch tip, it is not able to analyze the different modes and extensions of 

fatigue cracks.  

 To eliminate these deficiencies, fracture mechanics based approaches have been 

applied for the fatigue analysis at a notch. By neglecting the fatigue initiation period, the 

fatigue process is assumed to be a crack growth process, which is driven by stress 

intensity factor, J  integral or crack tip displacement [74, 75]. Some attempts have been 

made to unify the studies between notch and crack [76-78], which rely on some length 

scale parameters whose physical meaning hasn’t been fully understood.  

For simplification purposes, crack is usually regarded as a mathematical line and 

the crack tip is regarded as a mathematical singular point. For a blunt crack which can 

also be considered as a U-shaped notch, the stress near the crack or notch tip depends 

largely on the radius of curvature at the crack or notch tip. In this case, the effects of 

notch tip radius need to be included in the Kitagawa-Takahashi diagram and the local 

stress expressions. There are three typical notch configurations as shown in Figure 17. 

For the notch with rounded or elliptical notch tip (Figure 17 (a)), Creager and Paris [79] 

derived closed form solutions for the elastic stress field ahead of notch tip. For the other 

notch types, the stress field are shown in [80]. Several analytical models have been 

proposed to calculate the stress intensity factor. A brief review is given below. 

 



 62

   

a) Circular notch b) V-notch c) Radiused V-notch 

Figure 17. Typical notch configurations 

 

Smith and Miller [74] proposed the stress intensity factor of small cracks at the 

root of a notch as  

aDK πσρ/69.71+=  (136) 

where a  is the crack length, σ  is the applied stress, D  is the notch depth and ρ  is the 

notch tip radius. 

 Kujawski [81] applied the local stress distribution at a distance a  from the notch 

tip for the stress intensity factor calculation. The formula can be shown as 
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where tK  is the stress concentration factor, σΔ  is the applied stress range and fF  is the 

geometric factor. This approximation is quite accurate for uni-axial loading, but can yield 

significant errors for other loading states [82].  

 Lukas [83] proposed that stress intensity factor can be written as 
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aaK πσρ/5.41/12.1 +=  (138) 

Benthem and Koiter [84] proposed a formulae using stress gradient method which 

can be expressed as 

( ) aaxK x πσσ 0max |/683.012.1 =∂∂+=  (139) 

where maxσ is the maximum stress and x∂∂ /σ  is the stress gradient.  

Jones and Peng [82] proposed a simplified method to calculate the stress intensity 

factor at notch as 

( ) ( )[ ] aaK πσρα /exp2/112.12/1 ⋅−−−=  (140) 

where ( ) ( )[ ]2/13.0/3.00.18.0 ρρα aa +−=  for mode I, and 32.0=α if 3.1/ <ρa  and 

( )[ ]ρρα //3.1/5.00.132.0 aa −−=  if 3.1/ >ρa  for mode II.  

 Jones et al [85] proposed another equation for a semi-elliptical surface flaw as 
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where c2  is the surface length and a  is the depth of the surface flaw, φ  is the angle in 

the parametric equations of ellipse, ( )KE  is complete elliptic integral of the second kind, 

and F  is a correction factor considering the notch radius and boundary conditions which 

can be expressed as 

( ) ρ
αφ

a

ese eFFFF
−

−+=  (142) 

Gomez et al [86] used local strain energy to predict the static failure of U-notched 

plate under mixed-mode I and II loading. The mode I and II stress intensity factors are 

expressed as 
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This method has been applied for U-notched specimens with notch root radius ranging 

from 0.2 to 4.0 mm in materials exhibiting a brittle or quasi-brittle behavior  [86]. 

Compared with mode I loading, the problem is more complicated under mixed-

mode loading. There is no universally accepted model for fatigue crack growth from a 

notch under multiaxial fatigue loading and the experimental data for various materials 

and notch geometries are limited. 

The objective of this chapter is to extend the model proposed in Chapter 2 for 

mixed-mode threshold stress intensity factor and crack growth rate prediction from 

smooth specimen to notched specimen. The method is developed using local stresses near 

the U-notch tip rather than remote stresses. Two major advantages of the proposed model 

are that it can automatically adapt for different failure mechanism, and it is able to 

capture the influence of notch tip radius on fatigue failure. To predict the fatigue life of 

the components with blunt crack or U-notch, only the mode I fatigue crack growth data, 

the crack/notch tip radius, and some material properties are needed. 

In the following section, the derivation of the model is demonstrated using a U-

notched specimen under remote tension. A multiaxial fatigue limit criterion developed 

earlier by Liu and Mahadevan [9] is extended to develop a threshold stress intensity 

factor criterion using the modified Kitagawa-Takahashi diagram [87]. Following this, an 

equivalent stress intensity factor is proposed for the crack growth rate prediction.  
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3.2 Proposed mixed-mode I and II fatigue model for notched specimen 

3.2.1 Fatigue limit and threshold stress intensity factor for notched specimen 

Recently, while dealing with notch sensitivity and defect sensitivity, the 

Kitagawa-Takahashi diagram  [11] which is valid for cracks was extended by Atzori and 

Lazzarin [87] to notches to create a common equation in the analysis of small cracks, 

cracks, crack-like notches and common notches, which can be expressed as 
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a and α  is related to the notch tip radius. 

3.2.2 Mixed-mode I and II threshold stress intensity factor 

The multiaxial fatigue limit criterion as shown in Eq. (41) can be extended to a 

mixed-mode threshold stress intensity factor criterion using the Kitagawa-Takahashi 

diagram for notched specimens, which links the fatigue behavior of notched and 

unnotched material together. Consider an infinite plate under remote tension and torsional 

loading as shown in Figure 18. There is a mixed-mode I and II stress field near the U-

notch tip, which can be expressed as: 
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where 02R  is equal to the notch tip radius ρ . 
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Figure 18. Mixed-mode I and II stress fields near notch tip 

 

For plane stress condition, Eq. (41) can be rewritten as 
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For plane strain condition, Eq. (41) can be rewritten as 
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To unify the multiaxial fatigue limit criterion for both plane stress and plane strain 

conditions, a new parameter *A  is introduced which is the same as A  under plane stress 

condition and equals to ( )21 υ+A under plane strain condition. Thus Eq. (41) can be 

expressed as 
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To determine the parameters *A and B , two extreme cases are considered below: 

Case 1: For a fully reversed pure tension fatigue experiment 
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where cr is the characteristic or characteristic distance. From Eq. (145), the stress field 

near the crack tip can be rewritten as 
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Assume 11 / −−= ftξ , Eq. (148) can be expressed as 
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Case 2: For a fully reversed pure torsion fatigue experiment 
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From Eq. (145) the stress field near crack tip can be rewritten as 
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Thus Eq. (148)  can be expressed as 
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According to the maximum tangential stress criterion (MTS), the maximum 

tangential stress at cr  occurs at the angle ofθ , which satisfies 
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Thus for case 1, °= 0θ . Then Eq. (151) can be rewritten as 
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Solving Eq. (156) and (157) for *A and B , 
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Since *A is the contribution of damage caused by the hydrostatic stress, *A  and 

B should be non negative real numbers. The range of ξ  needs to be  
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Thus the characteristic plane orientation calculated by MTS criterion is only 

applicable to brittle material. 

According to the maximum shear stress criterion (MSS), the maximum shear 

stress at cr  occurs at the angle θ , which satisfies 
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Then Eq. (151) can be rewritten as 
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For case 2, 0=θ . Then Eq. (154) can be rewritten as 
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Solving Eqs. (161) and (162) for *A and B , 
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Since *A and B should be non negative real numbers, the range of ξ  needs to be 
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Thus the characteristic plane orientation calculated by the MSS criterion is 

applicable for both brittle and ductile materials. In these two extreme cases (case 1 and 

case 2) the characteristic plane orientations coincide with the crack orientations predicted 

by MSS. Therefore the MSS criterion is used below to predict crack orientation β . 

The contribution of the hydrostatic stress is different for different materials if the 

characteristic plane is fixed for all materials. There are two materials for which the 

contribution of hydrostatic stress is zero. It is also noticed that, if the characteristic plane 

is fixed, the range of applicable material parameters are limited. 

Instead of fixing the characteristic plane, the current model searches for the 

characteristic plane orientations on which the contribution of the hydrostatic stress is 

minimized to zero.  
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Figure 19. Orientation of characteristic plane and maximum shear stress (MSS) plane 

 

For an arbitrary material, the characteristic plane orientation is assumed to be α  

(as shown in Figure 19). Since the contribution of the hydrostatic stress is zero, Eq. (148) 

is rewritten as: 
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The objective is to find α and B for an arbitrary material. Following the steps 

described for the first two cases, Eq. (151) and (154) can be rewritten as 
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It is difficult to obtain a closed form solution for Eqs. (166) and (167). Numerical 

solutions for γ  and B  under different crR /0  versus material property ξ  are shown in 

Figure 20 and Figure 21.  

 

Figure 20. γ .vs. ξ  Figure 21. B .vs. ξ   

 

The mixed-mode I and II crack orientation θ  can be found using the MSS 

criterion in Eq. (160). The numerical solution is shown in Figure 22. 
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Figure 22. Mixed-mode I and II crack orientation θ  using MSS criterion 

 

Then the characteristic plane orientationα can be expressed as 
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γθα +=  (168) 

In the proposed method, the characteristic plane depends on mode mixity β , 

where βtan  is equal to the ratio of stress intensity factor III KK / , and material 

ductilityξ , where thIthII KKft ,,11 // == −−ξ . The parameter ξ  is related to two different 

material failure mechanism. A larger value of ξ  indicates tension dominated failure and 

smaller ξ  indicates shear-dominated failure. If the value of ξ  is known (based on 

uniaxial and pure torsional fatigue tests), the proposed model can automatically adapt for 

different failure mechanism.  

3.2.3 Mixed-mode I and II fatigue crack growth 

Using the parameterα , Eq. (148) becomes 
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(169)

For prediction corresponding to a general crack growth rate dNda / , the threshold 

stress intensity factors ( thIK , and thIIK , ) may be replaced by the stress intensity 

coefficients at the specific crack growth rate ( dNdaIK /,  and dNdaIIK /, ). In the proposed 

mixed-mode crack growth model, stress intensity coefficients at the specific crack growth 

rates are considered as equivalent stress intensity factor for mixed-mode case. The 

mixed-mode crack growth model is expressed as 
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where ⎟
⎠
⎞

⎜
⎝
⎛

dN
daf  is the crack growth curve obtained under mode I loading. There are no 

closed form solutions for Eq.(170). In practical calculation, a trial and error method can 

be used to find dNda / . For high cycle fatigue problem, KII,da/dN  and KI,da/dN take initial 

values as KII,th and KI,th, respectively.  

 

3.3 Proposed mixed-mode I and III fatigue model for notched specimen 

3.3.1 Mixed-mode I and III threshold stress intensity factor 

The procedure is similar to that for mixed-mode I and III fatigue model for 

smooth specimen in Chapter 2. Consider an infinite plate under remote tensional and 

torsional loading as shown in Figure 23, there is a mixed-mode I and III stress field near 

U notch tip, which can be expressed as: 
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where  02R  equals to the notch tip radius ρ . 
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Figure 23. Mixed-mode I and III stress fields near notch tip 

 

Experimental data shows that the failure surface under mixed mode I and III 

loading condition is typically non-planar. Assume coordinate ( )zr ,,θ  rotates β  around 

axis r to coordinate ( )',',' zr θ , the stress in the new coordinate can be expressed as 
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Under plane strain condition, Eq. (172) can be expressed as 
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Under plane stress condition, Eq. (172) can be expressed as 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛=

⎥
⎦

⎤
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛=

⎥
⎦

⎤
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛=

⎥
⎦

⎤
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛=

⎥
⎦

⎤
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛=

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛=

ββθθ
π

τ

ββθθ
π

τ

ββθθ
π

τ

ββθθ
π

σ

ββθθ
π

σ

θθ
π

σ

θ

θ

θθ

2cos2sin
2

cos
2
1

2
cos

2
1

cossin
2

cos
2

sin
2
1

sincos
2

cos
2

sin
2
1

2sinsin
2

cos
2

cos
2
1

2sincos
2

cos
2

cos
2
1

2
cos2

2
cos

2
1

02
''

02
''

02
''

202
''

202
''

02
''

IIIIz

IIIIzr

IIIIr

IIIIzz

IIII

Irr

K
r

RK
r

K
r

RK
r

K
r

RK
r

K
r

RK
r

K
r

RK
r

r
RK

r

 
(174)

Thus for mixed mode I and III under either plane strain or plane stress condition, the 

fatigue limit criterion becomes 
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where πθπ ≤≤−  and 2/2/ πβπ ≤≤− . To determine the parameters A and B , two 

extreme cases are considered below: 
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Case 1: For a fully reversed pure tensional fatigue experiment 
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where cr is the characteristic or characteristic distance. From Eqs.(173), (174) and (176) 

the stress field near crack tip can be rewritten as 

(a) Under plane strain condition: 
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(b) Under plane stress condition: 
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Assuming 11 / −−= ftξ , Eq. (175) can be expressed as 

(a) Under plane strain condition: 
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(b) Under plane stress condition: 
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Case 2: For a fully reversed pure torsion fatigue experiment 
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From Eqs.(173), (174) and (181) the stress field near crack tip for both plane strain and 

plane stress condition can be rewritten as 
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Thus Eq. (175) can be expressed as 
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According to the maximum tangential stress criterion (MTS), the maximum 

tangential stress at cr  occurs at the angle θ , which satisfies 
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Thus in case 1 under plane strain condition, 0=β  and 0=θ  at ( ) 2//5.0 0 rR+<υ  and 

under plane stress condition, 0=β and 0=θ . Then Eq. (179) for plane strain can be 

rewritten as: 
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Eq. (180) for plane stress can be rewritten as: 
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In case 2, 4/πβ =  and 0=θ  for both plane strain and plane stress. Then Eq. (183) can 

be rewritten as 

B=ξ  (187)

Solving Eqs. (185) and (187)  for A and B under plane strain condition, 
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Since A and B should be non-negative real numbers, the range of ξ  needs to be 

rR /1 0+≥ξ  (189)

Solving Eqs. (186) and (187)  for A and B in plane stress condition, 
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Since A and B should be non-negative real numbers, the range of ξ  needs to be 

rR /1 0+≥ξ  (191)

Thus the characteristic plane orientation calculated by MTS criterion is only applicable to 

brittle materials. 

According to the maximum shear stress criteria (MSS), the maximum shear stress 

at cr  occurs at the angel ofθ , which satisfies 
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Thus in case 1 for plane strain 4/πβ −= and 0=θ  at 
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For plane stress condition, 4/πβ −= and 0=θ . Then Eq. (179) for plane strain can be 

rewritten as: 

( )

( )

r
R

r
R

B
r
RA

r
R

r
R

r
R

r
R

r
R

r
R

r
R

r
RBA

r
R

r
R

00

02
3

0
2

0
2

000223
2

2
00

02
2

0
2

0

2
1

2
3

2
1

8
3@

3
1

3
21

9
4

27
1

9
2

27
6

9
4

27
18

9
2

27
41

3
1

3
4

3
1

3
2

2
1

8
30@1

9
41

2
111

2
1

+<<+

=⎟
⎠
⎞

⎜
⎝
⎛ −++

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛++−++⎟

⎠
⎞

⎜
⎝
⎛ +⎟

⎠
⎞

⎜
⎝
⎛ −

+≤<=++⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +−+⎥

⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ +

υ

υυυυυυυ
ξ

υυ

υυυ
ξ

υ  
(193)

Eq. (180) for plane stress can be rewritten as: 

BA
r

R
r

R
=+⎟

⎠

⎞
⎜
⎝

⎛ ++⎟
⎠

⎞
⎜
⎝

⎛ +
9
41

4
11

4
1

2
0

2

2
0

ξ
 (194)

In case 2 for both plane strain and plane stress condition: 0=θ and 0=β . Eq. (183) can 

be rewritten as  
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B=1  (195)

Solving Eqs. (193) and (195) for A and B in plane strain condition 
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Since A and B should be non negative real numbers, the range of ξ  needs to be 
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Solving Eqs. (194) and (195) for A and B in plane stress condition 
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Since A and B should be non negative real numbers, the range of ξ  needs to be 
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Thus the characteristic plane orientation calculated by MSS criterion is applicable 

for both brittle and ductile materials. In these two extreme cases (case 1 and case 2) the 
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characteristic plane orientations coincide with the crack orientations predicted by MSS. 

Therefore the MSS criterion is used below to predict crack orientationθ . 

Instead of fixing the characteristic plane, the current model searches for the 

characteristic plane orientations on which the contribution of the hydrostatic stress is 

minimized to zero.  

For an arbitrary material, the characteristic plane orientation is assumed to be α  

(as shown in Figure 24). Since the contribution of the hydrostatic stress is zero, Eq. (175) 

is rewritten as: 
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Figure 24. Orientation of characteristic plane and maximum shear stress (MSS) plane for 
mixed-mode I+III in notched specimens 

 

The objective is to find α  and B  for an arbitrary material. Following the steps 

described for the first two cases, for plane strain condition Eqs. (179) and (183) can be 

rewritten as 
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where 04/ 21 =−= βπβ . Solving Eqs. (202) and (203) 
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For plane stress condition Eqs. (180) and (183) can be rewritten as 
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where 04/ 21 =−= βπβ . Solving Eqs. (205) and (206)  
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For mixed mode I and III crack θ  and β  can be solved from MSS criteria 

Under plane strain condition 
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Apply Eq. (88) to Eq. (104) 
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Under plane stress condition 
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Apply Eq. (88) to Eq. (106) 
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The relationships between β  and IIII KK /  are plotted in Figure 25. 
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Figure 25. Mixed-mode I and III crack orientation β  using the MSS criterion ( 3.0=υ  in 
plane strain) 

 

Then the characteristic plane angle α  can be calculated as 
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γβα +=  (212)

3.3.2 Mixed-mode I and III fatigue crack growth 

Using the parameterα , Eq. (175) becomes 
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for plane strain condition and  

( ) ( ) ( ) ( )
B

K
KA

K

K
r
RK

K

K
r
RK

thI

I

thI

IIII

thI

IIII

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +−

+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ + 2

,

2

,

0
2

,

20

9
4

2cos2sin1
2
1

2sincos1

ξ

αααα  
(214) 

for plane stress condition. 

For prediction corresponding to a general crack growth rate dNda / , the threshold 

stress intensity factors ( thIK , and thIIIK , ) may be replaced by the stress intensity 

coefficients at the specific crack growth rate ( dNdaIK /,  and dNdaIIIK /, ). In the proposed 

mixed mode crack growth model, stress intensity coefficients at the specific crack growth 

rates are considered as equivalent stress intensity factor for mixed mode case. The mixed 

mode crack growth model is expressed as follows: 

For plane strain condition 
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For plane stress condition 
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where ⎟
⎠
⎞

⎜
⎝
⎛

dN
daf  is the crack growth curve obtained under mode I loading. There are no 

closed form solutions for Eqs . (215) and (216). In practical calculation, a trial and error 

method can be used to find dNda / . For high cycle fatigue problem, KIII,da/dN  and KI,da/dN 

take initial values as KIII,th and KI,th, respectively.  

 

3.4 Proposed mixed-mode I, II and III fatigue model for notched specimen 

3.4.1 Mixed-mode I, II and III threshold stress intensity factor 

Consider an infinite plate under remote normal and out of plane shear stress as 

shown in Figure 26, there is a mixed-mode I, II and III stress field near crack tip, which 

can be expressed as: 
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Figure 26. Mixed-mode I, II and III stress fields near notch tip 

 

Experimental data shows that the failure surface under mixed mode I, II and III 

loading condition is typically non-planar. Assume coordinate ( )zr ,,θ  rotates β  around 

axis r to coordinate ( )',',' zr θ , the stress in the new coordinate can be expressed as 
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Under plane strain condition, Eq. (217) can be expressed as 
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Under plane stress condition, Eq. (217) can be expressed as 
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Thus for mixed mode I, II and III under either plane strain or plane stress condition, the 

fatigue limit criterion becomes 
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where πθπ ≤≤−  and 2/2/ πβπ ≤≤− . To determine the parameters A  and B , two 

extreme cases are considered below: 

Case 1: Mixed mode I and II fatigue experiment as shown in Figure 18: 

In this case there is no contribution of IIIK . From Eqs. (219) and (220) the stress 

fields near crack tip can be rewritten as 

(a) Under plane strain condition: 
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(b) Under plane stress condition: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛=

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛−=

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛=

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛=

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛=

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛=

βθθβθθ
π

τ

βθθβθθ
π

τ

βθθβθθ
π

τ

βθθβθθ
π

σ

βθθβθθ
π

σ

θθθθ
π

σ

θ

θ

θθ

2sin
2

tan
2
1sin

4
32sin

2
1

2
cos

2
1

2
cos

2
1

sin
2

sin31
2

cossin
2

cos
2

sin
2
1

cos
2

sin31
2

coscos
2

cos
2

sin
2
1

sin
2

tansin
2
3sin

2
cos

2
cos

2
1

cos
2

tansin
2
3cos

2
cos

2
cos

2
1

2
sin31

2
sin

2
cos2

2
cos

2
1

002
''

0202
''

0202
''

20202
''

20202
''

0202
''

r
RK

r
RK

r

r
RK

r
RK

r

r
RK

r
RK

r

r
RK

r
RK

r

r
RK

r
RK

r

r
RK

r
RK

r

IIIz

IIIzr

IIIr

IIIzz

III

IIIrr

 
(223) 

Case 2: Mixed mode I and III fatigue experiment as shown in Figure 23: 

In this case there is no contribution of IIK . From Eqs. (219) and (220) the stress 

fields near crack tip can be rewritten as 

(a) Under plane strain condition: 
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(b) Under plane stress condition: 
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According to the maximum shear stress criterion (MSS), the maximum shear 

stress at cr  occurs at the angle of θ , which satisfies 
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for mixed mode I and II, and  
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for mixed mode I and III.  

In case 1 for both plane strain and plane stress, the relationship between θ  and the ratio 

of IK  to IIK  is shown in Figure 27. 
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Then Eq. (221) for plane strain condition can be rewritten as: 

( ) ( )
B

K

KK
A

K
r

R
K

r
R

K

K
r

R
K

r
R

K

thI

III

thII

III

thI

III

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−+

+

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

+

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

2

,

2

,

0202

2

,

002

3
2

tan12
2

sin31
2

cos
2

cos
2

sin
2

tansin
2
3

2
cos

2
cos θυ

ξ

θθθθθθθθ
 

(228)

For plane stress condition Eq. (221) can be expressed as 
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In case 2 for plane strain condition, 
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where θ  and β can be solved from the MSS criterion using Eq. (227). Thus in mixed 

mode I and III for plane strain 
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In case 2 for plane stress condition 
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where θ  and β can be solved from MSS criteria using Eq. (227). Thus in mixed mode I 

and III for plane stress 
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Then in case 2 under plane strain condition Eq. (221) can be rewritten as: 

( ) ( ) ( ) ( ) ( ) ( )
B

K
K

A
K

K
r

R
K

K

K
r

R
K

thI

I

thI

IIII

thI

IIII

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
+

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛
+⎟

⎠

⎞
⎜
⎝

⎛
−−

+

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠

⎞
⎜
⎝

⎛
+ 2

,

2

,

0

2

,

220

3
12

2cos2sin
2
1

2
12sinsin2cos1

υ
ξ

ββυββυβ  
(234) 

For plane stress condition Eq. (221) can be expressed as 
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Eqs. (234) and (235) can be simplified as follows: 

(a) for plane strain condition 
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(b) for plane stress condition 
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Solving Eqs. (228) and (236) for A  and B in plane strain condition 
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Solving Eqs. (229) and (237) for A  and B in plane stress condition 
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where A and B should be non negative real numbers. 

The characteristic plane orientation calculated by the MSS criterion is applicable for 

both brittle and ductile materials. In these two extreme cases (case 1 and case 2) the 

characteristic plane orientations coincide with the crack orientations θ  and β predicted 

by the MSS criterion. If the length of the structure is much greater than the other two 

dimensions, Eq. (238) for plane strain can be used. If one of the dimensions of the 

structure is much smaller than the other two, such as thin plate, Eq. (239) for plane stress 

can be applied.  
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3.5 Conclusion 

Three formulas for mixed-mode (I+II / I+III / I+II+III) threshold stress intensity 

factor and crack growth rate prediction of notched specimens are derived in this chapter. 

The proposed fatigue crack growth model is developed using the local stress components 

(near crack tip) and the characteristic plane concept. Two major advantages of the 

proposed model are that (1) it can automatically adapt for different failure mechanisms 

and (2) local geometric effects and residual stress effects near crack tip can be included in 

this local stress based model much easier than the remote stress approach, such as cracks 

emanating from notches or holes by considering notch radius in the expressions of stress 

fields near notch tips.  

The models proposed in Chapters 2 and 3 are only applicable to the fatigue crack 

prediction in the near threshold region and Paris’s region. However the fatigue life of 

many materials is primarily crack growth from small preexisting defects, such as 

inclusion particles, voids (pores) or slip-band formation, or may be an inadvertent result 

of careless transportation or handling. When failure originates from microdefects, the 

majority of the fatigue life will be spent as cracks smaller than the NDI detection limit, 

which is around 0.5-1.0mm. The mixed mode criteria for small crack growth prediction 

are investigated in Chapter 4. 
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CHAPTER IV 

 

MIXED-MODE SMALL FATIGUE CRACK GROWTH 

 

4.1 Introduction 

In this task, a new model for mixed-mode small fatigue crack growth rate 

prediction is proposed.  The method is also developed using local stresses near the crack 

tip rather than remote stresses. The local stress field is transformed onto the slip plane of 

crystal near small crack tip.  The contribution of shear stress on the slip plane, which has 

been considered as the only driving force of small crack growth in earlier studies, as well 

as normal stress and hydrostatic stress are taken into account for the life prediction of 

structures with small cracks. Under such small scale, isotropic material property 

assumption is no longer valid, and the effects of various microstructural factors on stage I 

fatigue crack growth are included in the proposed model. 

Some background on the anomalous propagation behavior of small cracks is 

given in section 4.2. Then a brief review of current small fatigue crack propagation 

models is shown in section 4.3. In the section 4.4, the derivation of the model is 

demonstrated using a smooth specimen with central crack under remote tension. The 

multiaxial fatigue limit criterion developed earlier by Liu and Mahadevan [9] is extended 

to develop a microscopic threshold stress intensity factor criterion using the Kitagawa-

Takahashi diagram. Following this, an equivalent stress intensity factor is proposed for 

the crack growth rate prediction.  
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4.2 Background 

In 1961, Forsyth [88] proposed a two-stage process theory (Figure 28 (a)) for 

fatigue crack growth from observations in push-pull tests. The initial Stage I growth 

(shear type) corresponds to the slip band formation and largely depends on microstructure 

details. Then it is followed by Stage II (tensile type) cracking, in which the general plane 

of the crack is normal to the direction of the maximum tensile stress and crack growth 

rates do not depend on microstructure. In sharply notched specimens, stage I growth may 

be completely absent, while in smooth specimens it may account for up to 90% of the 

total life [89]. Also in 1961, Paris [90] introduced stress intensity factors to quantify 

fatigue crack propagation rate in Stage II based on linear elastic fracture mechanics 

(LEFM). Later the crack growth rate for mode I cracks in metals is found to have a 

sigmoidal shape as shown in Figure 28 (b). In stage I, the crack growth rate goes 

asymptotically to zero as KΔ approaches a threshold value thKΔ  and there is no crack 

growth below this value. In this stage the crack path deviates from the pure stage II 

cracking. It is more sensitive to the microstructure of materials and the stress history on 

the structures. In stage II, crack growth follows linear growth pattern in log-log 

coordinate. In stage III crack growth exhibits a rapidly increasing growth rate towards 

“infinity”.  

Actually there are two commonly used types of fatigue threshold, fatigue crack 

propagation threshold thKΔ  and fatigue limit FLσΔ . Millers [91] and Kitagawa [11] tried 

to relate FLσΔ  to thKΔ as shown in Figure 29 and Figure 30. 
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Figure 29.  Threshold behavior by Miller 
[91] 

Figure 30.  Kitagawa-Takahashi diagram 
[11] 

 

In 1975, Pearson [93] observed that small cracks (0.006-0.5 mm) grow much 

faster than would be predicted from the large crack data on the basis of  linear elastic 

fracture mechanics. Since then anomalous small crack growth behavior (Figure 31), 

which is defined as fatigue cracks grow at stress intensity factors significantly below the 

large crack fatigue threshold and grow faster than large cracks at the same KΔ  level 
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above threshold, has been observed in steel [94-99], titanium alloys [100-102], aluminum 

alloys [5, 103-105] and nickel based alloys [106-108], etc. However, the mechanism of 

small crack growth and the basic causes of small crack anomalies are not fully 

understood. 
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Figure 31.  Small crack behavior [109] Figure 32.  Fatigue life fraction  [109] 
 

Now it is generally realized that the fatigue life of many materials is primarily 

crack growth from small preexisting defects, which may be formed as a result of material 

forming and fabrication techniques and related to microstructural features, such as 

inclusion particles, voids (pores) or slip-band formation, or may be an inadvertent result 

of careless transportation or handling. Figure 32 shows that when failure originates from 

microdefects, the majority of the fatigue life will be spent as cracks smaller than the NDI 

detection limit, which is around 0.5-1.0mm.                        

Generally fatigue crack propagation is influenced by a mixture of factors: (a) 

material (e.g., ductile and brittle); (b) mechanics (e.g., statics, dynamics, fatigue, creep); 

and (c) loading modes (e.g., tension, torsion, biaxial/multiaxial). Additionally mixed-
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mode crack propagation can be affected by many other factors such as (d) geometry (thin 

plates, thick shells, and the size, shape and orientation of the defect); (e) environmental 

effects (temperature, gaseous and liquid surroundings); (f) material state (crystallographic 

structure, heat treatment and route of manufacture) and (g) stress conditions (out-of –

phase and random loading effects) [91].  

Previous studies have proposed three main explanations for the “anomalous” 

propagation behavior: (a) plasticity effects (b) metallurgical effects and (c) crack closure.  

Details can be found in the review papers [110, 111]. All of these features challenge the 

use of LEFM and KΔ  concepts to explain small fatigue crack growth rates [112]. A brief 

review of the existing criteria is given below. 

 

4.3 Existing criteria 

A number of small fatigue crack propagation models have been proposed in the 

literature and a brief description is given below. 

(1) Models based on crack tip strain: 

Using the elastic plastic fracture mechanics (EPFM) approach, Tomkins [113] 

equated dNda / to crack tip decohesion and then to the bulk plastic strain field as shown 

in Eq.(240), where B  and m are material constants. 

( )m

p aBdNda πεΔ=/  (240) 

Chan and Lankford [114] modified the LEFM equation to consider the variation 

on the grain orientation and effects of the grain boundaries. The model was based on the 

assumption that near the threshold stress intensity for a long crack, the crack-tip opening 

displacement (CTOD) is larger for small/short crack than for a nominally equivalent long 
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through-crack, i.e the plastic strain range associated with a small crack is higher than that 

of a long crack. Considering the influence of the crystallographic orientations of the 

neighboring grains and the distance of the crack-tip from the nearest grain boundary, the 

plastic strain range at the crack tip was defined as: 

 ( )
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The crystallographic function ( )ΦK  in terms of resolved shear stress in the grain 

with small crack (grain A) and its neighboring grain (B) was defined as 

 ( )
A

BK
τ
τ

−=Φ 1  (242) 

In this approach, the local plastic strain range at the crack-tip was used as a 

measure of fatigue damage. Crack advance by the failure of a crack-tip element of size 

'XΔ  occurs when the accumulated local plastic strain exceeds a critical value *
pε . The 

number of cycles NΔ required for failure of crack-tip element was given by 
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And the crack growth rate was defined as 
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where 

 *

'

1 ε
CXC Δ

=  (245) 
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From a physics and mechanics point of view, Chan and Lankford's model is a 

gross approximation to reality. The model predicts little or no deceleration in growth rate 

in the case of similar orientation of grains.  

(2) Models based on modification of LEFM: 

Donahue et al. [38] proposed a formula for both near crack threshold and Paris 

type crack growth as  

 ( )m
thKKC

dN
da ΔΔ −=  (246) 

Another well known expression proposed for the entire regime of crack growth is 

the NASGRO expression [115] (also known as the Forman-Newman-de Koning 

equation), which is commonly used in aircraft applications.   
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This NASGRO equation [115] is used by AFGROW [116], NASGRO 3 [115] and 

NASGRO 4 [115] to calculate the crack growth rate. In Eq. (247), 
n
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fitted to the data in the Paris regime. The terms 
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⎛
−  are used to 

describe the crack growth behavior near threshold regime and rapid growth regime, 

respectively. maxK  is the maximum stress intensity factor in a load cycle. cK  is the crack 

resistance against fracture.  p and q are empirical constants from curve fitting. Since only 
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limited crack growth data is available for the threshold region, f is approximated using 

the Newman closure function [115] as 
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The coefficients are given by 
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where α  is the plane stress/strain constraint factor and 0max /σS is the ratio of maximum 

stress to the flow stress. 

The threshold stress intensity factor range is calculated by the following empirical 

equations 
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where 0KΔ is the threshold stress intensity factor range at 0=R , thC is an empirical 

constant, p
thC and m

thC are constants to control various R ratio ( 1.0=m
thC for negative R 

ratio), a is the crack length, 0a is an intrinsic crack length ( 0381.00 =a ). 
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Several researchers have proposed different correction factors to consider the 

stress ratio effect, such as Walker [37], and Erdogan and Ratwani [39].  

McEvily et al. [117] proposed a short crack analysis considering large-scale 

plasticity effects, crack closure and the fatigue crack growth threshold. This model is 

based on modification of elastic analysis in the presence of large-scale plasticity, and is 

expanded as  
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where A  is a material and environment sensitive constant, eρ  is the radius of the stress 

raise at crack tip, Y is a geometrical factor, a is the actual crack length, maxσ is the 

maximum stress applied, yσ  is the yield strength, σΔ  is the applied stress range, k is a 

material constant which reflects the rate of crack closure development with crack 

advance, maxopK is the maximum stress intensity factor at the opening level for a 

macroscopic crack, effthKΔ  is the effective range of the stress intensity factor at the 

threshold level.  

(3) Model based on strength of the slip band: 

de los Rios et al. [118] proposed that crack growth rate is proportional to the 

strength of the slip band, assuming that crack will initiate from slip band for a smooth 

specimen:  
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μ
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where 
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α  is orientation factor, appτ  is the applied shear stress, dn is the number of dislocation, 

b is the Burger vector and 0τ  is the internal friction stress, μ is the shear modulus, a is 

crack length and 1f  is the fraction of dislocation on the slip band.  

(4) Model based on energy release rate: 

de los Rios et al. [118] developed another model based on load and bulk energy 

considerations, assuming that the local energy, i.e. the energy at the slip band, should be 

equal to the crack extension energy for crack propagation. A second consideration of the 

model was the nature and strength of the barriers that should be overcome to propagate 

the crack into the next grain. The micro processes of crack growth need to be related to 

the mechanics of crack extension. The model is of the form 
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where 1f  and m  are material constants, a is crack length, D is the distance from barrier 

to barrier, Aτ  and Bτ  are the shear stress in the small grain A and its neighboring grain B, 

τ  is the shear stress applied on slip band and μ is the shear modulus. 

(5) Model using macro-micro approach: 

As we know the nucleation of fatigue cracks is a microscopic phenomenon which 

happens at the scale of one or a few grains. At this scale the material is neither 

homogeneous nor isotropic, and the local stresses and stains (σ  and ε ) can be very 

different from corresponding macroscopic quantities ( ∑  and E ). Dang Van [119] 
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proposed a multiaxial fatigue criterion using a macro to micro approach. The two scales 

are distinguished below: 

(a) The macroscopic scale is characterized by an elementary representative volume 

( )MV  surrounding the point M  where the fatigue analysis is done and representing, 

for instance, an element of a finite element mesh or corresponding to the dimension 

of a strain gauge. Mechanical macroscopic variables ( )tM ,∑  and ( )tME ,  are 

assumed to be homogeneous in ( )MV  at any time t . 

(b) The microscopic scale is the order of one or a few grain sizes corresponding to a 

subdivision of ( )MV . The microscopic quantities σ  and ε  are not homogeneous 

and differ from ∑  and E . Even if the mean value of σ  equals ∑ , the local stress 

σ  can fluctuate. 

The relationship of σ  and ∑ can be expressed as 

( ) ( ) ( ) ( )tmtMmMAtm ijhkijhkij ,,,, ρσ +∑=  (255) 

where ( )mMAijhk ,  is the elastic localization tensor and ( )tmij ,ρ  is the local residual stress 

field. In general case it is difficult to get the mathematical answer for this localization.  

An approximate solution is given by Dang Van  [119] to evaluate the local stress in the 

stabilized state, based on three hypotheses: 

(a) Only one slip system is activated. This system is defined by n  ,which is normal to 

the slip plane, and m , which is the slip direction. 

(b) Microscopic strains show isotropic hardening. 

(c) Micro element undergo the macroscopic deformation E , where ijij
e
ij Ep =+ε , 

since macroscopic plastic strain ijP  is negligible at the fatigue limit. 
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Thus Eq. (255) can be simplified as  

( ) ( ) 02 Ttt ijijij ασ −∑=  (256) 

where ( ) 2/jijiij nmmn +=α  and 0T  is the mean value of shear stresses in the plane 

where maximum shear amplitude occurs ( this plane is defined by n ). The failure 

criterion can be expressed as 

0=−+ bapτ  (257) 

where τ  is the local shear stress, p is the hydrostatic stress, and a and b are fitting 

parameters. 

Among the analytical models discussed above, Chan and Lankford's model and de 

los Rios et al.’s model focuses on metallurgical effects, McEvily et al.’s model includes 

both plasticity effects and crack closure effects, while NASGRO and AFGROW include 

plasticity effects and crack closure effects together with stress ratio effects. Dang Van’s 

model includes microstructural effects.  

The characteristics of microstructurally small cracks are as follows [120]: (i) slip 

deformation near the crack tip is on the slip plane ; (ii) the crack-tip slip deformation is 

blocked by grain or phase boundaries ; (iii) cracks may follow slip planes and are often 

accompanied with crack deflection ; (iv) mixed-mode stress field near the crack tip; (v) 

large scale yielding or elastic-plastic condition near the crack tip; and (vi) the amount of 

crack closure is small and varies with crack length.  

The effects of various microstructural factors on small-crack growth depend on 

the material and the applied stress levels. Experimental studies need to be carried out to 

determine the predominant factors in each specific situation. Meanwhile theoretical 
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modeling of microstructurally small crack growth is needed for quantitative prediction. 

The following sections pursue this objective. 

 

4.4 Proposed criterion 

Similar to the proposed mixed-mode near threshold fatigue crack growth criteria 

for smooth and notched specimens, the multiaxial fatigue limit criterion proposed earlier 

by Liu and Mahadevan [9] is extended to develop a mixed-mode near threshold fatigue 

crack growth criterion for small crack using the relationship between fatigue limit and 

microscopic threshold stress intensity factor. 

4.4.1 Fatigue limit and microscopic threshold stress intensity factor 

A link between the fatigue limit and the threshold stress intensity factor for long 

crack was proposed by Kitagawa and Takahashi [11] and can be expressed as the well-

known El Haddad model [63].  

For microstructually small crack, crack-tip plasticity is simplified by a model that 

considers rigid plastic yield strips expanding coplanar to the crack according to 

dislocation-based formulation of crack growth. The crack and yield strips are represented 

by an array of infinitesimal dislocations. Under monotonic or cyclic loading, the slip 

band will emanate from the crack-tip and expand against the frictional stress.  

Consider a crack of length 2a in an infinite plane under a remote tensile stress 0σ , 

as shown in Figure 33, the size of the slip band is abw −= 00 . The microscopic stress 

intensity factor mK0  at the tip of the slip band is expressed as  [121]: 
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where 0b is the effective crack length and frσ  is the frictional stress regarded as a material 

constant that is independent of the slip-band configuration. Considering Hall-Petch law 

[122, 123] as shown in Eq. (259) 

d

k y
fry += σσ  (259) 

where yσ  is the yield stress, yk  is a material constant and d is the grain diameter. Then 

frσ  can be calculated by 

d

k y
yfr −= σσ  (260) 

 

 

Figure 33. Coplanar slip band emanating from the tip of isolated crack [121] 
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For equilibrium slip band (ESB), dislocations slide only against frictional stress, 

the crack opening stress ESB
0σ  is obtained by letting mK0  equals to zero in Eq. (258).  
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The intrinsic threshold stress intensity factor ntri
thKΔ , which is the driving force for 

stable fatigue crack growth in a single grain, can be expressed as 

ESBESBntri
th aK πσ 0=Δ  (262) 

When slip bands reach grain boundary, they may get blocked by the grain boundary. The 

crack opening stress BSB
0σ  for a blocked slip band (BSB) can be expressed as  
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The corresponding intrinsic threshold stress intensity factor ntri
thKΔ  is expressed as 
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Substituting 0=a into Eq. (263), tensile fatigue limit 1−f  can be obtained as 
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Using the same approach, shear fatigue limit can be expressed as 
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where m
IK 0,  and m

IIK 0,  are material constants and m
thIK , and m

thIIK , are the microscopic 

threshold stress intensity factors for mode I and mode II, respectively. 
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4.4.2 Stress intensity factor in anisotropic material  

For microstructually small cracks in polycrystalline material, the assumption of 

isotropic material property is no longer valid. The method for mode I and mode II stress 

intensity factor calculation used in Ref. [115, 124-127] is based on finite element 

methodology, which is applicable to orthotropic materials where cracks are arbitrarily 

oriented with respect to the principle axes of material orthotropy as shown in Figure 34.  
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Figure 34. Coordinate system near crack tip 

 

 

Figure 35. The complex parameters in two coordinate systems 
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If the coordinate at the crack tip is at an angle β  with respect to the principal axes 

of the material as shown in Figure 35, the material compliance [ ]ija  in the coordinate at 

the crack tip can be calculated as 

[ ] [ ] [ ][ ]TaTa o
ij

T
ij =  (268) 

where 
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The relative displacements with respect to the crack tip in the ( )2,1=ixi  direction 

can be expressed as 
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The roots kμ are always complex or purely imaginary in conjugate pairs as 1μ , 1μ , 

2μ ,  2μ , of which 1μ  and 2μ  must be calculated at the location of a crack tip. 
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And kp and kq are given by 
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Thus the stress intensity factors at the crack tip are shown as 
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where u1,i−1, u1,i−2, u2,i−1, and u2,i−2 are the relative displacements with respect to the crack 

tip in the xi (i=1,2) direction at locations (i−1) and (i−2), r is the distance from the crack 

tip along the local x1 direction, and Δa is the characteristic length of the crack tip 

elements (see Figure 15). 

 

 

Figure 36. Crack tip elements 

 

and 
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4.4.3 Mixed mode I and II stress intensity factor 

The primary mechanism of small fatigue crack growth in metals and alloys is 

crack-tip dislocation emission followed by the glide of the emitted dislocation. Both 

dislocation emission and glide are the result of a relative shear displacement in the 

direction of slip between the atoms of two neighboring slip planes, which is mainly 

driven by the shear stress field in the slip plane in the slip direction [128]. The hydrostatic 

stress on the slip plane also contributes to the dislocation movement. 

To find the resolved normal and shear stresses of the slip system, a new 

coordinate is defined by three vectors, [ ]321 bbbb =  as 'x  axis, [ ]321 nnnn =  as 'y  

axis and [ ]321 llll =  as 'z  axis, where b  is the Burger’s vector, which is along the 

slip direction, n  is the normal vector of slip plane, and l  is the vector perpendicular to 

both b and n  and follows the right hand rule. 

There are three major types of crystal structure as shown in Figure 37, FCC (face 

centered cubic. i.e. Al, Cu, γ -Fe and Ni), HCP (Hexagonal close-packing, i.e. α -Ti, Mg, 

Zn and Cd), and BCC (body centered cubic, i.e. α -Fe, Mo and W), where FCC has 12 

slip systems, HCP has 3 and BCC has 48. For FCC structure with slip plane { }111  and 
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slip direction 011 − , the unit vectors 'n and 'b  under new coordinate ''' zyx can be 

expressed as 
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(a) FCC (b) HCP (c) BCC 

Figure 37. Crystal structures 

 

The micro-crack is assumed to propagate along the slip plane and has to 

overcome the grain boundary in order to continue to grow [129]. If we know vectors n  

and b , the multiaxial fatigue limit criterion can be extended to a mixed mode threshold 

stress intensity factor criterion using Eqs.(265) and (266), which links the fatigue 

behavior of cracked and noncracked material together. Consider an infinite plate under 

remote tensional and torsional loading as shown in Figure 38, where x  axis is along b  

and y  axis has the same direction as n . There is a mixed mode I and II stress field near 

crack tip. The stress components on this new coordinate system )( lnb can be expresses as 

MM Tσσ ='  (276) 

where M is the transformation matrix and shown as 
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Thus the normal stress and shear stress under new coordinate are 
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Figure 38. Mixed mode I and II stress fields near small crack tip 
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To unify the multiaxial fatigue limit criterion for both plane stress and plane strain 

condition, a new parameter *A  is introduced which is the same as A  under plane stress 

condition and equals to ( )21 υ+A under plane strain condition. Thus Eq. (41) can be 

expressed as 
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Following the same procedure in sections 2.3.3 and 2.3.4, parameters *A  and B in 

Eq. (280) can be calculated using the two extreme cases according to maximum shear 

stress criterion. The threshold condition can be expressed as 
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where γβα += . Parameters γ , β  and B are shown in Figure 4, Figure 6 and Figure 5. 

Then, the equivalent mixed-mode microscopic threshold stress intensity factor 

m
eqmixK ,  can be derived as 
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where ⎟
⎠
⎞

⎜
⎝
⎛

dN
daf  is the crack growth curve obtained under mode I loading. After this, Paris 

law is applied for the small fatigue crack growth rate prediction. 

 

4.5 Conclusion 

A new model for mixed-mode I and II microscopic threshold stress intensity 

factor and small fatigue crack growth rate prediction is proposed in this chapter. The 

proposed fatigue crack growth model is developed using the local stress components on 

the slip plane and the characteristic plane concept. The relationship between fatigue limit 

and microscopic threshold stress intensity factor is expressed using Eq. (264) for small 

cracks. The stress intensity factors near small crack tip are shown as Eq. (273). Then, the 

equivalent mixed-mode microscopic threshold stress intensity factor m
eqmixK ,  is calculated 

by Eq. (282).  

Three major advantages of the proposed model are that (1) it can automatically 

adapt for different failure mechanisms, as the models for near threshold cracks, (2) it 

considers anisotropic material properties and (3) it considers blocked slip band and the 

influence of various microstructural factors.  
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CHAPTER V  

 

APPLICATION TO RAILROAD WHEELS  

 

5.1 Overview 

Unlike the slow deterioration process of wear, wheel failure caused by 

propagating fatigue cracks is more abrupt and violent. A part of the wheel or the entire 

wheel breaks off, which results in the damage of rail, sleepers, train suspensions and, in 

some cases, serious derailment of the train [130]. 

There are three types of cracks caused by the rolling contact stresses between 

wheel and rail during the rolling motion: surface crack which is initiated by the severe 

plastic deformation induced by contact stresses, sub-surface crack which is facilitated by 

the presence of structural inhomogeneities such as inclusions or pores and driven by sub-

surface contact stresses, and deep defects which acts as cracks, and if large enough, 

propagate in low stress region far from the contact patch. A detailed overview of the 

rolling contact problem of railroad wheels is presented in references [131, 132]. The large 

subsurface cracks that propagate roughly parallel to the wheel tread surface [133, 134] 

result in shattered rim failure that can destroy the wheel’s integrity and leads to train 

derailments at high speed.  

Shattered rim cracks originate from inclusions in wrought wheels and pores in 

cast wheels [135]. Types of material defects detected using Scanning Electron 

Microscope (SEM) include non-metallic inclusions, such as manganese sulfide and 

silicon oxide, metallic inclusions, such as aluminum oxides, and pores in the wheel 
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material as shown in Figure 39. The effective size of defects varies between 1 mμ  and 31 

mμ , using the Murikami criterion [136].  

Several studies have been reported on shattered rim crack initiation from material 

defects [137-140]. Lunden [137] and Marais [139] estimated that a defect (pore or 

inclusion) of size 1 mm can initiate shattered rims. Stone and Dahlman [140] provided 

micrographic evidence that a shattered rim crack initiated from a void of size 0.64 mm. 

Baretta et al. [138] estimated the typical dimensions of aluminum oxide inclusions in 

wrought wheel for shattered rim initiation have a length of 1 to 5 mm and width of 0.3 to 

1 mm. Ekberg [130] modeled material defects as pores, which are considered to be worse 

than inclusions [141, 142],  using small circular holes. In all of the above studies, the 

material is assumed to be isotropic.  

The Scanning Electron Microscope pictures show that the microstructure of wheel 

steel can be characterized as a ferrite-pearlite structure [143] in which ferrite has a body-

centered cubic grain structure. The wheel material studied in this paper has an average 

grain size around 10 mμ . The material exhibits an anisotropic microstructure. In this 

paper, a micro-level 2-D finite element model considering elasticity anisotropy is used to 

represent the polycrystalline wheel steel. The grain structure is established using Voronoi 

tessellation. The initial material defects are modeled as center or edge cracks.  
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          (a) – Silicon (inclusion)                   (b) – Aluminum (inclusion) 

             

                     (c) – Pore                                 (d) – Pore 

Figure 39. Inclusions and pores in wheel material  

 

Most of the existing rolling contact fatigue models use a simplified stress 

calculation technique, such as Hertz analytical solution or simplified finite element 

analysis with applied Hertz contact pressure. Due to the complex geometry of the 

wheel/rail contact area, it is more appropriate to use a 3D finite element method to 

calculate stress response in the mechanical components. It has been shown that the Hertz 

contact theory is not appropriate when the contact area between wheel and rail is near the 

wheel flange [9]. It is also desirable to include other factors which cannot be included in 
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the simplified method, such as material nonlinearity, irregular surface conditions and 

hunting movement of the wheel. Liu et al [9] proposed a macro-level finite element 

computational methodology to calculate the complex 3D stress histories of wheel/rail 

contact. The equivalent stress history at the critical location calculated by the multiaxial 

fatigue theory [9] in the macro-level model is used for the fatigue crack propagation 

analysis in the present micro-level model.  

A general methodology for subsurface fatigue crack propagation analysis of 

railroad wheels is proposed in this paper. It combines a macro-micro finite element model 

for the wheel/rail contact analysis and a multiaxial fatigue limit criterion previously 

developed by Liu and Mahadevan [9]. The advantages of the proposed methodology are: 

(i) The fatigue model can automatically adapt for tensile/shear failure mechanisms 

according to material properties and loading conditions; (ii) The macro-level 3-D finite 

element model is versatile in representing complex wheel tread (or rail head) profiles, 

which is especially important when the contact conditions can not satisfy the Hertz 

assumptions; (iii) The micro-level 2-D finite element model considers material 

anisotropy, and randomness in both grain size and grain orientation.  The effects of 

applied load, crack size, grain orientation and grain disorientation on the mixed mode 

equivalent stress intensity factor are investigated using the proposed model. 

 

5.2 Finite element modeling of subsurface crack in wheel/rail contact  

Liu et al [9] proposed a finite element computational methodology for rolling 

contact analysis of railroad wheels. It has several advantages compared with previous 

analytical and numerical approaches. First, it is a realistic macro-level 3D finite element 
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model and can accurately calculate the 3D stress response in the contact region. Second, 

it includes both material and geometric nonlinearity. It can be used to simulate large and 

complex wheel motions, such as rotation, sliding, hunting movement and even dynamic 

impact response. Finally, through sub-modeling techniques, the proposed model is made 

efficient in computing and hardware requirements. After the macro-level rolling contact 

stress analysis, the equivalent stress amplitude at the critical location, which is calculated 

using the previously developed multiaxial fatigue limit criterion, is applied to a micro-

level 2-D finite element model with center or edge crack. A brief description of both 

macro-level and micro-level finite element computational methodology is given below. 

(1) Macro-level full model and submodel 

First, use the available profiles to build the geometry model of the wheel and a 

piece of rail. This model is called the full model as shown in Figure 40(a). The rail length 

equals the length between two sleepers. Fixed boundary conditions are applied to the two 

ends of the rail. Different 3D element sizes are used in the full model (SOLID 45 in 

ANSYS [144]). In the contact region, relatively finer mesh is used. At the wheel center, a 

pilot point is connected to the wheel using rigid link elements. All the external loading 

and boundary conditions of the wheel are applied on the pilot point. These loading and 

boundary conditions can be obtained through field measurements or from numerical 

simulation of the track system motion analysis. On the possible contact areas of the 

railhead and the wheel tread, area contact elements (CONTACT 174 and TARGET 170 

in ANSYS) are used corresponding to the geometry mesh of the wheel. The contact 

algorithm is augmented Lagrangian method [144]. Friction effect is included in the 

material properties of the contact element. A Coulomb friction model is used. Friction 
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coefficients can be calibrated using field measurement data. The material properties of 

the wheel and rail as described using a bilinear kinematic hardening model in ANSYS. 

No isotropic hardening is included in the current model.  

Next, quasi-static analysis is performed for the full model and the results for each 

step are stored. Then the geometry model of the contact region is cut out to create a sub-

model as shown in Figure 40(b). The size of the sub-model depends on the analysis 

objective and also on the wheel motion simulated. The same types of elements as those in 

the full-model analysis are used to mesh the sub-model. A very fine mesh is used in the 

contact area and to some depth under the contact surface. The results of the full-model 

are interpolated on the cutting edge of the sub-model corresponding to different 

calculation steps, and the interpolation results are applied as boundary conditions to the 

sub-model.  

(2) Micro-level FEM model 

A 2-D representative volume element (RVE) is generated using the Voronoi 

tessellation at the critical location as shown in Figure 40(c). The critical location is 

determined using the method shown in Section 2, which is consistent with the field 

observation of subsurface crack in railroad wheels. The coordinates of the vertices of the 

Voronoi diagram and the connection relationship of the vertices (generated in MATLAB) 

are input to the finite element analysis (using ANSYS). Each Voronoi cell represents one 

grain with a random grain orientation. The origin of each local coordinate system is 

located at the center of gravity of each grain and the x-axis lies in the direction of the 

]100[  direction of the crystal lattice in the grain. In the present simulation, the slip plane 

is assumed to be the )011(
−

plane which is at 45 o  to the grain orientation. The average 
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grain size is mμ10 . One RVE can consist of up to 100 grains, which represents an area of  

201.0 mm  of the real material. A center crack is built into the micro-level model along the 

slip plane. The center of the crack is located at the center of gravity of the specific grain. 

The micro-crack is assumed to propagate along the slip plane and has to overcome the 

grain boundary in order to continue to grow [129]. Friction effect is not included between 

the two crack surfaces. The FEM mesh for each grain is built with SOLID 183 element in 

ANSYS. A very fine mesh (average element length of about 0.1 mμ ) is applied near the 

crack tip.  

The finite element models of the macro-level full model, sub-model and micro-

level sub-model with the crack are shown in Figure 40. The wheel profile is chosen 

according to the AAR standard [145] wide flange contour. The wheel diameter is 0.914 

meter (36 inches). The subsurface crack is assumed to be located 5 mm below the wheel 

tread surface. The crack length a2  is mμ1 . The vertical load applied on the wheel is 

assumed to be the maximum design load, which is 146.2 KN (32,875 lb.). The material 

properties of the rail and wheel are assumed to be the same (yielding strength = 500 MPa; 

Young’s Modulus= 205 MPa; Poisson’s ratio = 0.3, Friction coefficient = 0.3). The rail 

length is 600mm, which is normally the length between two sleepers. In the current 

study, the initial contact point is assumed to occur at the railhead center and wheel tread 

center.  
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Figure 40. Finite element modeling of wheel/rail contact with subsurface crack 

 

The static load analysis of the wheel/rail contact is performed first. The results of 

the macro-level sub model are shown in Figure 41 and Figure 42. Figure 41 shows the 

Von Mises stresses from two different section views. Figure 42 shows two in-plane shear 

stresses ( xyτ  and yzτ )  from two different section views. From Figure 41, it is found that 

the maximum Von Mises stress occurs at some depth below the tread surface. The stress 

decreases quickly as the depth increases. The maximum Von Mises stress is computed 

around the crack tip, which is caused by the stress singularity near the crack tip. From 

Figure 42, a butterfly pattern of the shear stress yzτ  is observed. The maximum value 

occurs at the crack tip. Figure 41 and Figure 42 show that the high stress only occurs 

within a small region of the contact location. The stress in the other parts of the model is 
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almost zero. This indicates that only a small portion of the motion simulation is needed 

because the stress far away from the contact location is negligible.  

 

 

Figure 41. Von-Mises stress distribution of wheel/rail contact 

 

 

Figure 42. In-plane shear stress distribution of wheel/rail contact 

 

After performing the static analysis, we simulate the wheel rotation on the rail, 

which is the normal motion mode of the wheel. This is done by applying the proper 

boundary conditions on the pilot node in the full model. The stress histories of two points 

(one is 3 mm below the tread surface, the other is 10 mm below the tread surface) during 
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half a revolution of the wheel rotation are plotted in Figure 43. The x-axis does not 

indicate the real time and is the time step in FE analysis during the simulation of wheel 

rotating. Figure 43 shows that the stress history in the wheel when rolling contact loading 

is not proportional, which indicates that the maximum normal stress and maximum shear 

stress do not occur simultaneously. The normal stress amplitude decreases from a depth 

of 3 mm to 10 mm. The FEA results only show very small residual stresses at these two 

locations. They can be barely seen in Figure 43 and their effects are negligible in the 

current analysis. The critical location with maximum equivalent stress amplitude of 

200Mpa is found to be at 5 mm below the tread surface. This load is applied as a uniaxial 

tensile load to the top of the micro-level sub-model. 

 

     

Figure 43. Stress history at two locations in the wheel. 

 

4 Parametric study  

In this section, the influence of several factors on the crack tip mixed mode 

equivalent stress intensity factor is studied, using the developed methodology described 

above. These factors are applied load F , crack size a , grain orientation ]100[  gθ , and 
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grain disorientation gφ , as shown in Figure 44. The details about the parametric study are 

shown below. 

 

 

Figure 44. Parameters used in parametric study 

 

The applied load on the micro-level sub-model will affect the small fatigue crack 

propagation. 21 loading conditions are studied (from 100 Mpa to 300 Mpa with 

increment 10 Mpa).  The other parameters are fixed for all the simulations, which are 

crack size ( mμ3 ) and the grain orientation of the grain with crack ( o0 ). The mixed mode 

equivalent stress intensity factor, eqmixK ,Δ , for different load are plotted in Figure 45. It is 

seen that eqmixK ,Δ  increases as the applied load increases almost linearly.   
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The effects of different crack lengths (from mμ1  to mμ7  with increment mμ1 ) 

are plotted in Figure 46. The other parameters are fixed for all the simulations, which are 

the applied load (200 Mpa) and the grain orientation of the grain with crack ( o0 ). Similar 

to the parametric study for applied load, eqmixK ,Δ  increases as the crack length increases 

which is consistent with long crack propagation.   

The effects of different grain orientations (from o90−  to o90  at increments of o5 ) 

are plotted in Figure 47. The other parameters are fixed for all the simulations, which are 

crack size ( mμ3 ) and the applied load (200 Mpa). It is seen that as grain orientation 

approaches to o45− , which means the crack as well as the slip plane of the grain 

approaches to the plane perpendicular to the applied load, IKΔ  increases while IIKΔ  

decreases. The mixed mode equivalent stress intensity factor, eqmixK ,Δ , decreases. After 

that as crack approaches to the plane parallel to the applied load, IKΔ  decreases while 

IIKΔ  increases first and then decrease. As a result, eqmixK ,Δ  increase a little bit at first 

then keep decreasing to zero when the grain orientation is equal to o45 . As grain 

orientation increases from o45  to o90 , which means the crack is rotating from parallel to 

the applied load to at o45  deviation from the applied load, eqmixK ,Δ  increase. 

The effects of different grain disorientations (from o45−  to o45  with 

increment o5 ) are plotted in Figure 48. The other parameters are fixed for all the 

simulations, which are the kinked crack size ( mμ3 ) and the applied load (200 Mpa). The 

original crack is at o45  deviation from the applied load as shown in Figure 49 and the 

kinked crack rotate from perpendicular to the applied load to parallel to it. From Figure 
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12, eqmixK ,Δ  increases a little bit then decreases to the minimum where grain 

disorientation is equal to o45 . IKΔ  has maximum value while IIKΔ  is almost zero when 

the grain disorientation equals to o45− , which means the kinked crack is perpendicular 

to the applied load. As grain disorientation increases to o45 , IKΔ  approaches zero.  IIKΔ  

has the maximum value as the two neighboring grains have the same orientation. As the 

grain disorientation increases, IIKΔ  decreases. The FEM mesh and Von-Mises stress 

distribution near the crack tip are shown in Figure 49. 

 

Figure 45. eqmixK ,Δ vs. applied load Figure 46. eqmixK ,Δ vs. crack length (2a) 

  

  

Figure 47. eqmixK ,Δ vs. grain orientation          Figure 48. eqmixK ,Δ vs. grain disorientation 
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Figure 49. Mesh and Von-Mises stress distribution near crack tip 

 

 After obtaining the mixed-mode equivalent stress intensity factors for each 

parameter, eqKΔ  can be expressed as a function of the applied load F , crack size a , grain 

orientation gθ , and grain disorientation gφ  

( )ggeq aFfK φθ ,,,=Δ  (283) 

The general crack propagation function, which includes the stress ratio effect, is 

expressed as 
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where 
dN
da  is the crack growth rate, eqKΔ  is the equivalent stress intensity factor range 

for mixed-mode loading, R is the stress ratio, C, m and γ  are material parameters. 

 Substituting Eq. (283) into Eq. (284) and solve for fatigue life. 
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where )(aN  is the number of cycles to growth a crack from the initial length 0a  to the 

length fa . 

 

5.3 Conclusion 

A general subsurface fatigue crack propagation model under rolling contact 

conditions of railroad wheels is developed in this chapter, which combines a macro-micro 

finite element computational method and a previously developed multiaxial fatigue limit 

criterion. The macro-level finite element analysis is used for stress computation. The 

micro-level finite element analysis is used for the calculation of fracture parameter 

eqmixK ,Δ . The effects of four parameters, namely applied load, crack size, grain 

orientation and grain disorientation, on the mixed mode equivalent stress intensity factor 

are studied using the proposed model.  

Parametric study shows that both macro-structural parameters (applied load and 

crack size) and micro-structural parameters (grain orientation and grain disorientation) 

have significant effects on eqmixK ,Δ  of the subsurface crack. Since the initial defects in 

railroad wheels are comparable to grain size, the micro-level model which is capable of 

modeling material anisotropy is necessary for the initial defects analysis. 

This study focused on testing the effects of microstructures on the fracture 

parameters under rolling contact fatigue loading. The life prediction of railroad wheels 

with microstructually small fatigue cracks needs further study. Also, other effects 

influencing the shattered rim failure, such as manufacturing process parameters, residual 

stress, and brake thermal loading need to be investigated in the future. 
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CHAPTER VI  

 

CONCLUSION AND FUTURE WORK 

 

6.1 Summary of contribution 

Analytical and experimental approaches to determine mixed-mode fatigue crack 

growth threshold and growth rates are not well established and remain an active research 

topic. This study compared the existing methods and proposed some alternatives to 

address the problem with less assumptions and broader applicability. The proposed 

models are based on a characteristic plane methodology [9] and extend the stress/strain- 

based approach to fracture mechanics-based approach. Both shear-dominated failure and 

tension-dominated failure can be analyzed. The orientation of the characteristic plane 

changes according to the mode mixity, the ratio of shear fatigue limit over tensile fatigue 

limit, and the crack/notch tip radius for near threshold crack. It also depends on the grain 

orientation for microstructually small crack.  

The effect of microstructure on the propagation of small fatigue cracks under 

rolling contact fatigue loading is examined in this dissertation. The local stress history is 

calculated using a macro-level 3-D elasto-plastic finite element model. A sub-modelling 

technique is used to achieve both computational efficiency and accuracy. The macro-

level finite element model can accurately represent the contact stress of complex 

mechanical components and can consider the effect of loading non-proportionality. Then 

the equivalent stress amplitude at the critical location, which is calculated using a 

previously developed multiaxial fatigue limit criterion, is applied to a micro-level 2-D 
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finite element model with center or edge crack. The fatigue model can automatically 

adapt for tensile/shear failure mechanisms according to material properties and loading 

conditions. Elasticity anisotropy, and randomness in both grain size and grain orientation 

are considered in the micro-level model. The geometric patterns of the grains in the 

polycrystalline wheel steel are generated using a 2D voronoi tessellation. The effects of 

applied load, crack size, grain orientation and grain disorientation on the mixed mode 

equivalent stress intensity factor are investigated using the proposed model. 

 

6.2 Future work 

Since the proposed models in this dissertation use local stress near crack/notch 

tip, local geometry and manufacturing induced residual stress effects can be easily 

captured. The models in this dissertation are mainly for constant amplitude loading. The 

potential application for random amplitude multiaxial loading needs to be studied. Linear 

elastic fracture mechanics is assumed in this dissertation; the proposed approach needs be 

extended to include the crack/notch tip plasticity effects. Also this approach has the 

potential to be applied to anisotropic materials and functionally graded materials in 

future.  

In this dissertation analytical models are proposed for threshold fatigue crack 

growth prediction in U-notched specimen. Future work is needed to extend the proposed 

models to V-notch and radiused V-notched specimen, by simply replacing the local stress 

expression according to the notch configuration and follow the similar derivation for U-

notched specimen. 
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This study focused on testing the effects of microstructure on the fracture 

parameters under rolling contact fatigue loading. The life prediction of railroad wheels 

with microstructually small fatigue cracks needs further study. A more realistic 3D 

micro-model is needed to address the effects of inclusions and voids on fatigue life 

prediction. The micro structural parameters on crack rotation, twist and retardation need 

to be explored. Also, other effects influencing the failure of railroad wheels, such as 

manufacturing process parameters, residual stress, brake thermal loading, and wear and 

fatigue interaction, need to be investigated in the future. 
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