

HIGH PRECISION AUTOMATIC SCHEDULING OF TASK SETS FOR

MICROCONTROLLERS

By

Benjamin Ness

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

In partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Electrical Engineering

May, 2008

Nashville, Tennessee

Approved:

Professor Gabor Karsai

Professor Sandeep Neema

ii

ACKNOWLEDGEMENT

 This research was performed under the support of an NSF grant.

 I would like to thank my advisor, Dr. Gabor Karsai for his invaluable

support, advice, and instruction over the course of this project.

I also want to thank my wife, Hailey. Without her loving support and

encouragement, it would have been much more difficult. Finally, I’d like to thank

my parents. They never stopped encouraging me and inspiring me to perform to

the best of my abilities and to set my goals high.

iii

TABLE OF CONTENTS

Page

DEDICATION ..ii

LIST OF TABLES... v

LIST OF FIGURES...vi

LIST OF ABBREVIATIONS... vii

Chapter

I. INTRODUCTION... 1

Problem Statement .. 1

Requirements of a New Tool ... 3

Problem Statement .. 4

II. BACKGROUND.. 5

III. SOLUTION .. 11

Overview.. 11

Modeling Language ... 15

Scheduler... 18

Code Generator ... 19

Execution Kernel.. 21

IV. EVALUATION ... 21

Method... 21

Examples ... 22

V. CONCLUSION AND FUTURE WORK... 28

iv

Conclusion ... 28

Future Work... 29

Appendix

A. SOURCE CODE FOR EXECUTION KERNEL... 31

REFERENCES... 35

v

LIST OF TABLES

Table Page

1. Sample Task Set 2 Task Attributes .. 24

vi

LIST OF FIGURES

Figure Page

1. Task Metamodel .. 12

2. A Simple PrecedenceConstraint .. 13

3. A Wired “OR” PrecedenceConstraint... 14

4. PrecedenceConstraint using “AND” Block ... 14

5. Compound PrecedenceConstraint... 15

6. Technological Arts AD9S12EQ128M0 Development Board 22

7. Sample Task Set 1 Model.. 23

8. Sample Task Set 1 Schedule .. 24

9. Sample Task Set 1 Normal Execution ... 24

10. Sample Task Set 1 TaskA Overrun ... 25

11. Sample Task Set 2 model.. 26

12. Sample Task Set 2 Schedule .. 27

13. Sample Task Set 2 Normal Execution ... 28

14. Sample Task Set 2 ISR1 333 Hz ... 28

15. Sample Task Set 2 ISR1 500 Hz ... 29

vii

LIST OF ABBREVIATIONS

RTOS – Real Time Operating System

GME – Generic Modeling Environment

UDM – Universal Data Model

RM – Rate Monotonic

EDF – Earliest Deadline First

1

CHAPTER I

INTRODUCTION

Rapid development of applications for embedded systems is becoming

increasingly important as the number and complexity of embedded devices

increases. These applications vary widely in complexity, but typically have very

tight constraints on timing. Developing these applications can be an extremely

tedious task if performed by hand. This is especially true when the target

microcontroller lacks the speed or resources to run a commercially available real-

time operating system. In addition, there are few tools available to accelerate the

development process.

Problem Statement

 Designing applications for embedded systems presents a unique

challenge. Because embedded systems are tightly coupled with their

environment via sensors and actuators, precise timing is essential for proper

function. In addition, microcontrollers are typically resource constrained. For a

given application, it is not always possible to improve performance by upgrading

to a faster processor. Lack of memory can not always be addressed by simply

adding to the capacity. This is because there is not always a comparable

processor available. Adding external memory may be possible, but power and

2

space requirements may eliminate this option. Very small microcontrollers may

not even have enough input and output connections to address external

memory. And finally, power requirements can demand that the processor run in

an even lower performance state than what it is capable of.

 The combination of timing requirements and resource constraints may

prevent a commercial RTOS (Real-time Operating System) from being used to

schedule and manage the application. In addition, a RTOS may not be able to

guarantee the correctness of its schedule at design time. In safety critical

applications, such as the automotive or aerospace industry, guarantees of proper

application function are critical. These applications may also have non-

functional requirements, such as timing constraints. Often timing constraints are

essential to proper operation, and guarantees on timing are needed.

 When developing applications for embedded systems, the target

architecture also plays a primary role in the design. Different architectures have

different capabilities, and it is important to choose one that has the correct

hardware for the required task. However, this complicates the developer’s task.

As systems evolve and change, so do the requirements. Although increased

performance can be achieved through use of hardware level or assembly

programming, the resulting code is very difficult to move from one platform to

another. For this reason, it is essential that the code for the application remains

in a portable form, with hardware-specific details abstracted away.

3

Requirements of a New Tool

 One possible strategy is to design a completely new tool chain to expedite

the development of real-time applications for embedded systems. There are a

number of important elements to the usefulness and success of such a tool

chain. These include a simple, easy to use environment, a powerful and efficient

scheduler, and the ability to use for multiple target microcontrollers.

 As with any application intended for use by the end-user community, ease

of use and user friendliness are of high importance. A graphical interface

provides a very effective means of describing the tasks and the relationship

between tasks. This graphical representation is used to automatically generate a

schedule.

 The scheduler for the tool chain should be both powerful and efficient. It

must be able to handle an adequate number of tasks as well as find a feasible

schedule quickly. Because the tool’s usefulness is dependent, in part, on its

ability to offer guarantees about the correctness of its output, the accuracy of the

scheduler is very important.

 Finally, the output of the tool chain must be able to be used on any target

microcontroller platform. Changing requirements may require that the application

be moved to different target architectures. Making sure that the output of the

tool is portable to a variety of target platforms is crucial to the tool’s usefulness.

4

The Solution

Our objective was to develop a tool chain designed to expedite the

development of deadline driven, real-time applications for microcontrollers. The

input to the tool chain will be a set of real-time tasks supplied by the user. This

task set will be represented in a domain-specific modeling language. GME

(Generic Modeling Environment), a meta-programmable modeling toolkit [5], was

used to design the modeling language. GME provides a flexible, easy to use

graphical representation of the various elements of the modeling language. The

user can create and modify task sets using GME. The modeling language allows

the user to describe task sets composed of both periodic tasks as well as tasks

driven by interrupt subroutines. The difference between the two is substantial,

as interrupt driven tasks can not be controlled by the scheduling kernel. The

modeling language also allows users to describe complex precedence

relationships between periodic tasks. These constraints specify partial orders for

task execution rather than dictating the actual execution order.

With the task sets generated by the user, the scheduler performs analysis

on the input task set. This scheduler finds if a feasible schedule for the

execution of the task set exists. Any feasible schedule is guaranteed to execute

properly. Proper execution means several things. First, it means that no task

deadlines will ever be missed. Second, no interrupt driven task should ever

cause a periodic task to miss a deadline. These guarantees should hold so long

as the worst-case execution times for each task, as provided by the user, are

never exceeded.

5

Additionally, the tool chain also contains a simple, lightweight execution

kernel. This kernel uses the generated schedule to execute the task sets

correctly. The kernel allows the user to provide code for each task.

Once a feasible schedule for the task set has been determined, the kernel

executes every task on time – that is, no deadline is ever be missed. Correct

operation should be guaranteed so long as all the tasks stay within the bounds of

the WCET (Worse Case Execution Time) as specified by the user at design

time.

In the second chapter, we discuss the several different types of traditional

scheduling techniques. We also look at two different tools that perform similar

tasks. The third chapter details the specifics of the tool we designed. The fourth

chapter describes the techniques used to analyze and test the tool. The fifth

chapter summarizes the outcomes of the experiment. It also draws conclusions

from the data gathered and considerations for future work on the tool.

6

CHAPTER II

BACKGROUND

Many real-time systems can be described by sets of periodically executing

tasks. In real time systems, there are specific timing concerns that are related to

both the start and the completion of task execution, as well as to the rates at

which the tasks are to be executed. Additionally, there may be dependencies

between these tasks. Each task performs some function of the whole system. In

this thesis we assume that the worst-case execution time (WCET) of the tasks is

known and finite.

There are two broad categories of scheduling techniques: offline and

online [7]. Using offline scheduling techniques, the entire schedule is computed

ahead of time. Offline scheduling algorithms require full knowledge of the task

sets prior to execution. This is normally the case for embedded systems. Since

the schedule is already determined, guarantees about timing and deadlines can

be made. The same is not necessarily true for online scheduling algorithms. An

online scheduling algorithm will choose which tasks to execute at runtime.

Typically, online scheduling techniques introduce more computational overhead

than offline methods. Additionally, because the online scheduler has no

knowledge of how long tasks take to execute, or how frequently they need to

execute, precise scheduling becomes extremely difficult. For these reasons, the

scheduling method chosen for our tool chain is an offline algorithm.

7

Online scheduling algorithms are very flexible. Typically, they must make

a scheduling decision each time a task is released or completed. Online

scheduling algorithms are typically characterized by the method used to

determine which task is chosen next. One of the simplest methods for online

scheduling is the round robin method.

Under the round robin scheduling method, each task receives an equal

share of the processor time [7]. This method is very easy to implement and

works fairly well when the tasks have similar priority and required execution

times. However, when task periods and execution times vary widely, the round

robin scheduling method will often cause tasks to miss deadlines. This is

because all tasks receive the same share of processor time without regard for

how long those tasks actually take to execute.

Another online scheduling method is the rate monotonic (RM) method [7].

The simplest implementation of the RM scheduling method will always run the

released task with the shortest period. In other words, priority is given to tasks

that run at a higher rate. There are circumstances under which RM is an optimal

scheduling algorithm. However, this normally depends on the use of preemption

in scheduling. There is also an upper bound on the processor utilization for RM

to still be optimal. Because of these restrictions, RM was not a feasible

scheduling solution for our tool chain.

The Earliest Deadline First (EDF) online scheduling method is optimal

scheduling method [7]. If the tasks can be executed without missing deadlines,

EDF will schedule it correctly. EDF is only optimal on a preemptive, single

8

processor implementation. If preemption is not possible, EDF is no longer

optimal. In addition, task precedence constraints make it more difficult to issue

guarantees about behavior and deadlines. Because the ability to guarantee

accurate behavior and timing is essential for our application, neither RM nor EDF

scheduling was suitable.

One of the first offline scheduling algorithms used to schedule periodic

task sets on a single CPU is the cyclic executive [2]. A cyclic executive is

typically implemented as a loop that contains subroutine calls with an optional

delay at the end. Each subroutine call invokes a tasks’ code. A cyclic executive,

while simple, is completely deterministic in operation. That is, the tasks will

execute in the same order, start at the same time, and complete at the same

time for each execution of the loop. Any change to the task sets will require a

recalculation of the valid schedule. However, cyclic executive methods may

introduce excessive jitter in task release times and completion times. Each task

in the frame allowed to execute as soon as the task before it completes. Any

variance in the execution time of each task will introduce jitter in the following

tasks. For our tool, we chose to use a time-triggered architecture. The release

of each task is always related to a specific timing event rather than the tasks

before or after it. In this way, jitter is reduced compared to a cyclic executive

approach.

Xu and Parnas described a method for scheduling sets of real-time tasks

on a single processing unit [10]. They described an algorithm to find optimal

schedules for sets of real-time tasks with precedence and exclusion constraints

9

on those tasks. This is an improvement upon the cyclic executive model, as it

could be automated, while cyclic executives would typically be constructed by

hand. In addition, it provides a method for dealing with preemption as well as

precedence constraints. Each activity can be broken down into a set of

segments which must be executed in sequence. In addition, each segment must

be executed as a unit and cannot be preempted. The scheduling algorithm

proposed here is a modified version of the Xu and Parnas algorithm. However,

while the Xu and Parnas algorithm continue to explore the search space until it

finds the optimal solution, the scheduler we used accepts the first valid solution it

finds.

Giotto is a tool designed to bridge the gap between the actual control laws

used in real-time applications and the software components that implement them

[3]. Giotto is a coordination language. This means that it is used to describe the

way in which the various computational tasks should be coordinated. In uses the

concept of logical execution time, or LET. This allows each task to be executed

at a specific time regardless of when the tasks before it complete. The elements

of the Giotto language include tasks, ports, and modes. Giotto also includes the

concepts of sensors and actuators. These represent software drivers for the

hardware devices. It allows specific timing information to be added for each

component, ensuring that writes to actuators and reads from sensors are

performed at the correct time. Giotto compiles schedules for a single processor.

These schedules are in the form of a high level language which is executed on

the target platform. Our tool differs from Giotto in that sensors and actuators are

10

not explicitly defined – they can be modeled as another task that handles the

reads and writes. In addition, we allow the user to model tasks which are

interrupt-driven.

The Timing Definition Language, or TDL, is conceptually modeled after

Giotto [9]. TDL was designed to be a tool that could actually be used in the

industry by developers. It is implemented as a high level language. Users

specify the timing requirements for the various components of a time-triggered

application using a textual syntax. It introduces features such as the ability to

deploy onto multiple processors.

11

CHAPTER III

SOLUTION

Overview

This thesis presents a tool chain for deploying real-time applications onto

embedded systems. The chain consists of three major components: the

modeling language and its visual modeling tool, the scheduler / code generator,

and the execution kernel.

Modeling Language

The modeling language was designed and implemented using the

Generic Modeling Environment, GME [5] – a metaprogrammable visual modeling

environment. The modeling language allows the user to describe the application

in a natural, graphical way. This representation is independent of the platform on

which it will be deployed. In this modeling language, the application is

represented as a set of periodic real-time tasks, a set of interrupt driven tasks,

and a set of precedence constraints on the periodic tasks. The main part of the

metamodel for this language is shown in Figure 1. This metamodel, using the

UML class diagram notation [6]. It captures the abstract syntax of the visual

models of the language in a concise form.

12

A PeriodicTask represents any task that needs to be executed in a regular

fashion. The attributes of the task allow the user to specify its period and worst-

case execution time, both in microseconds. The deadline for each task is

assumed to be same as the period.

A PeriodicInterruptDrivenTask represents any interrupt handler used in

the application. These are assumed to be aperiodic, although an attribute is

provided for the worst-case period, i.e. for the smallest period with which this

task is invoked by the interrupt hardware. Again, a worst-case execution time

attribute is provided.

Figure 1 - Task Metamodel

Finally, PrecedenceConnections and And blocks are used to describe the

relationship between PeriodicTasks. A PrecedenceConnection constraint

13

between two PeriodicTasks implies that the source PeriodicTask must execute at

least one time between executions of the destination PeriodicTask. If more than

one PeriodicTask is connected using a precedence constraint, an OR

relationship is assumed. That is, at least one of the source PeriodicTasks must

be executed between each execution of the destination task. To describe an

AND relationship between tasks, an AND block is used. A

PrecedenceConstraint between two tasks can be described concisely in a

mathematical expression. If PeriodicTask A must precede PeriodicTask B, and

A(i) and B(i) are the start times of the ith job of PeriodicTasks A and B

respectively, then

)1()()1()(),(+<<−∃∀ jAjBiAstjBiA

A similar expression can be written for every combination of

PrecedenceContraints that can be drawn. All of the start times of every task that

satisfies the Boolean function represented by the PrecedenceConstraints must

fall between the start of a job and the start of the last job of the same task.

Figure 2 - A Simple PrecedenceConstraint

14

Figure 2 show a simple precedence constraint. In this example, TaskA

must be executed at least one time between executions of TaskZ.

Figure 3 shows precedence constraints used in an “OR” fashion. Here,

either TaskA or TaskB must execute at least once between executions of TaskZ.

Figure 3 – A wired “OR” PrecedenceConstraint

Figure 4 - "AND" PrecedenceConstraint

Figure 4 demonstrates the use of the AndBlock. In this figure, both TaskA

and TaskB must execute between each subsequent execution of TaskZ.

15

Figure 5 shows a more complex arrangement of task precedence.

Multiple AndBlocks and precedence constraints can be used to create

constraints of arbitrary complexity. Any Boolean function can be constructed

using the provided concepts. In this case, (TaskA AND TaskB) OR (TaskC AND

TaskD) must be satisfied before TaskZ can execute.

Scheduler

The scheduler analyzes the task set to find a feasible execution schedule.

The scheduler component is written as a GME interpreter using the UDM

framework in C++ [1]. From within the GME environment, a single click on the

toolbar will execute the scheduler component.

Figure 5 - Compound PrecedenceConstraint

16

For simplicity, the scheduling algorithm assumes non-preemption between

all PeriodicTasks. Preemption adds additional complexity to both the scheduling

algorithm and the execution kernel. Much more state information must be

recorded as tasks execute, resulting in a much larger overhead than a non-

preemptive method. However, there are some tasks sets which can be

scheduled under a preemptive method, but cannot be scheduled non-

preemptively.

In addition, it is assumed that any and all interrupt-driven tasks can and

will interrupt each task execution with their worst-case period. The worst-case

execution time of each task is adjusted upwards to correct for the effects of

interrupts. An iterative, fix-point calculation is used to determine the maximum

time that can be spent in interrupt routines during a task’s scheduled execution

time. This provides a safe, worst-case behavior prediction and helps ensure no

deadlines will be missed.

Pseudocode for Fix-Point Calculation of Task WCET

Function CalculateNewWCET (TaskWCET, OldIntWCET)

 NewIntWCET = 0

 For Each InterruptDrivenTask i

 NewIntWCET += ceiling((TaskWCET + OldIntWCET) / i .Period) * i.WCET

 If (NewIntWCET != OldIntWCET)

return CalculateNewWCET(BaseWCET, NewWCET)

else Return TaskWCET + NewIntWCET

17

To find a feasible schedule, an exhaustive depth-first search is performed

on the search space. At each step of the search, the scheduler will select the

next task to be executed. Because no task can be preempted (and all worst-

case execution times have been adjusted upwards for the interrupts), the

scheduler has only two options at any point in time: Run an already released

task, or wait for another one to be released. If any task misses a deadline, the

scheduler removes that branch of the tree and backs up, trying a different

decision. The process is repeated until a feasible schedule is found or the entire

tree has been pruned, i.e., no feasible schedule exists. If no schedule exists, the

user is informed and the scheduler exists. If a feasible schedule is found, the

code generator executes.

Psuedocode for scheduling algorithm

Because the scheduling algorithm is exponential in nature, there are

potential problems with scaling as the number of tasks increases. However,

typically, one of two scenarios is observed when executing the scheduler using

Sort remaining jobs by deadline (EDF)

For each remaining Task t, Job j

If (j meets deadline and j’s precedence constraints satisfied)

 Add j to end of schedule

 Schedule remaining jobs

 If (Scheduled successfully)

 Return Valid Schedule

If (No valid schedules found)

 Return No Schedule

18

real data. In the first, a solution is found very quickly. In the second, it takes a

much longer time to arrive at a solution. We would like to make sure that most

task sets fall into the first category, so that solutions are found very quickly.

There is a “phase-transition” region where certain conditions will cause the

solution to be exponential in nature. In our scheduler, some conditions identified

are:

1. Very high total utilization

2. Large number of total jobs

However, neither of these conditions guarantees transition into the

exponential region. Very high utilization task sets can still be scheduled

relatively quickly most of the time. A large number of total jobs can occur even

when the number of tasks is relatively low. If the periods of the tasks are not

multiples of one another, the major cycle must be the least common multiple of

the period of the tasks. This can cause the number of total jobs to be solved to

be much higher if the major cycle is very large. When this condition is combined

with a task set that is already difficult to schedule, the execution of the scheduler

component typically takes much longer.

Code Generator

The code generator receives the output from the scheduler and generates

a header file used by the execution kernel. This header file contains an array of

function pointers, several arrays of integers, and constants used by the

execution kernel.

19

The first part of the header is an array of function pointers. These point to

the actual task functions, which must have the same name as the periodic tasks

in the model (and consequently, must be valid C function names). This array is

used to connect the actual task functions with the schedule.

The schedule is an array of integers, where each integer represents a

task to be executed. This index is used to locate the task function within an

array of function pointers. The schedule is cyclic - once all the tasks have been

completed in order, the schedule starts again from the beginning.

The next array of integers is the start time for each task. The start times

are actually the counts of the scheduler routine “ticks” that have occurred since

the beginning of the current execution cycle.

The final array of integers contains the deadlines of each task. The

deadline for each task also corresponds with the start of the next task. Because

a feasible schedule is assumed, every task should complete before the next task

could start.

Execution Kernel

The execution kernel is a simple, lightweight code written in C. It contains

a main function and a scheduler function. The user must supply the code for

each individual task, preferably in another include file.

The main function is a loop. At the beginning of the loop, the processor

state is stored. This is used when a task runs past its deadline. Next, the

20

function for the current task is called using the array of function pointers. If the

processor is not currently scheduled to be executing a task, or when the function

returns, the processor enters a low-power wait state until the scheduler interrupt

occurs. After the interrupt, the loop restarts.

The scheduler routine is designed as a high-priority interrupt driven

function. Many microcontrollers have a “Real-Time Interrupt” built-in. It can

occur regularly and with high precision, both of which facilitate the function of the

scheduler task. The main constant set for the scheduler determines the period

at which the RTI fires. It can be between 1 microsecond and 1 millisecond,

depending on the task set used.

On each execution of the scheduler routine, the “time” (an integer counter)

is incremented. There are two cases that need to be analyzed: a task is

currently executing, or no task is executing.

If a task is executing, there are two possible situations: the time is before

the task’s deadline or the deadline has been passed. In the first case, the

scheduler simply returns. In the second, the scheduler will set the current task to

be the next task, load the saved processor state from the variables, and execute

a return from interrupt instruction to break out of the task function and back into

the main loop.

If no task is executing, the execution time of the next task is compared to

the time. If it is time for the next task to begin, the current task value is adjusted,

and the scheduler returns.

21

The code for the execution kernel was kept to a minimum in both space

and time complexity in order to maximize available time for tasks. The code for

the execution kernel can be found in Appendix A.

22

CHAPTER IV

EVALUATION

Method

Analysis of the scheduler was done using fairly simple task sets. The

output of each task set was checked to verify that it is indeed schedulable.

Figure 6 - Technological Arts AD9S12EQ128M0 Development Board

In order to analyze the generated code, the execution kernel was slightly

modified. Several outputs were added to indicate the currently executing task,

the “heartbeat” of the scheduler routine, and missed deadlines. Tasks were

simulated using loops that took approximately the worst case execution time.

The interrupt driven tasks were simulated using interrupts generated by the timer

modules of the microcontroller. The code was then flashed onto a Freescale

23

MC9S12E128 microcontroller [8]. The microcontroller is on a Technological Arts

AD9S12EQ128M0 development board, which has convenient output pins. A 34

channel Intronix LOGICPORT logic analyzer was connected to the outputs and

used to monitor the execution of tasks [4].

Several different task sets were analyzed, from easily scheduled (low

utilization) to barely schedulable (high utilization). It was verified that no tasks

missed deadlines under these circumstances.

Finally, the frequency of interrupt driven tasks was increased beyond the

given worst case values until tasks began to miss deadlines.

Example

To demonstrate how the tool works, we will walk through a few sample

task sets. These task sets will have various levels of complexity. The first task

set consists of two tasks. TaskA has a period of 10 ms and a WCET of 1 ms.

TaskB has a period of 5 ms and a WCET of 2ms. The total utilization of this task

set is 90%. There are no PrecedenceConstraints. The model for this task set is

shown in Figure 7.

Figure 7 - Sample Task Set 1 Model

24

Although the utilization is fairly high at 90%, the task set is easily

scheduled. The output of the scheduler is shown in Figure 8. Next, the header

file is generated. The code is compiled and flashed onto the test board. Using

the logic analyzer, a snapshot of the task set executing is obtained. One full

major cycle of the set’s execution is shown in Figure 9.

Figure 8 - Sample Task Set 1 Schedule

Figure 9 - Sample Task Set 1 Normal Execution

 Looking at the logic analyzer output, it is observed that the

“DeadlineMissed” output is never asserted. This means that the scheduler

subroutine never observed a task running past its deadline. This case

represents proper task execution. However, to demonstrate the flexibility of the

execution kernel, we will introduce some task overruns to see how they are

25

handled. For our first pass, we will cause TaskA to run longer than it should.

The resulting output is shown in Figure 10.

Figure 10 - Sample Task Set 1 TaskA Overrun

In this run, the only clue that anything happened differently is that the

“DeadlineMissed” output is asserted as the first job of TaskB releases. This

indicates that job of TaskA had not completed execution when TaskB was

scheduled to begin. Because of this, the scheduler used its routine to cancel the

execution of TaskA and start executing TaskB instead. The “canceled” job of

TaskA is considered failed and will not be allowed to complete execution at a

later time. This strategy allows subsequent tasks to be released promptly and

minimizes the chance that subsequent tasks will also miss their deadline.

The second task set consists of four tasks, precedence constraints on

those tasks, and a single PeriodicInterruptDriven task. The tasks and their

relevant parameters are shown in Table 1. The single interrupt has a worst-case

frequency of 250 Hz, or 4 ms. It also has a worst-case execution time of 1 ms.

The model, with precedence constraints, is shown in Figure 7.

26

Table 1 - Sample Task Set 2 Task Attributes

Task Name Period Worst-Case Execution Time

TaskA 6 ms 1 ms

TaskB 8 ms 1 ms

TaskC 12 ms 1 ms

TaskD 24 ms 2 ms

Once the model for the task set was created using GME, the scheduler

was invoked via the graphical tool.

Figure 11- Sample Task Set 2 Model

The scheduler analyzes the precedence constraints and attributes and

determines that this task set is indeed schedulable. The resulting schedule is

27

shown in Figure 8. Finally, it prompts the user for the file name and path where

the code generator should store the header file for the kernel.

Figure 12 – Sample Task Set 2 Schedule

The last step in the process is to compile the kernel with the new header

file and flash it onto the microcontroller. Once this is done, we can use the logic

analyzer’s software to take a sample of the outputs displaying the current system

state. One full hyperperiod of the schedule, 24 ms, is shown in Figure 9.

Because the scheduler interrupt will assert the “DeadlineMissed” output

whenever a task has run past its deadline, we can quickly check whether or not

deadline misses occurred. In this figure, the “DeadlineMissed” signal stays low

during the entire hyperperiod. A more careful check reveals that every task is

actually completed before its deadline.

28

Figure 13 – Sample Task Set 2 Normal Schedule Execution

We will now demonstrate what happens when ISR1 is allowed to execute faster

than the maximum rate under which the schedule was generated. Originally, it

was limited to a maximum 250 Hz rate. Increasing this maximum rate has the

potential of causing other tasks to miss their deadlines. Because the scheduler

algorithm has no control over the rate of incoming interrupts, increasing the

maximum frequency introduces the possibility that PeriodicTasks will miss their

deadlines. Figure 14 shows the resulting output when the worst case rate is

increased to 333 Hz.

Figure 14 - Sample Task Set 2 ISR1 333Hz

29

Even with ISR1 executing at a maximum rate of 333 Hz, no task misses a

deadline. Going back to the model and executing the scheduler reveals that this

change does not make the task set “unschedulable”. We will further increase the

maximum rate at which ISR1 fires to 500 Hz. The results are shown in Figure

15.

Figure 15 - Sample Set 2 ISR1 500Hz

With ISR1 firing at 500 Hz, TaskD begins to miss deadlines. However, all

other tasks continue to meet their deadlines. In this case, backing out of tasks

that fail to meet deadlines allows other tasks to still execute promptly.

30

CHAPTER V

CONCLUSION AND FUTURE WORK

Conclusion

The testing revealed that every task set for which the scheduler

component produced a valid schedule never missed a deadline, even when

subjected to the worst-case execution times for each task. As the interrupts

were added and increased to occur with their maximum frequency, it was

observed that deadlines were still met. Even task sets above 80% utilization still

executed as expected.

In addition, when tasks were allowed to run past their deadline, the next

tick of the scheduler task identifies the overrun and performs its routine to back

out of the past-due task. It then executes the next task in the schedule.

It was also observed that overhead of the scheduler task is approximately

15 microseconds per execution. For task sets requiring millisecond accuracy (up

to 1 kHz), the total overhead is less than two percent.

In this particular implementation, the scheduler period was selected as

1.024ms. The prescaler value for the real-time interrupt was chosen accordingly.

Analysis of the scheduler ticks shows a typical scheduler period of 1.0253ms, or

within .001% of nominal. Also, the release time jitter was evaluated. Tasks are

typically released within 0.1ms of the nominal release time per the schedule.

31

In conclusion, the tool chain developed greatly simplifies the process of

developing real-time applications. The front-end modeling language allows the

user to express a wide variety of task sets with strict timing and ordering

requirements. The scheduler processes the data from the model in an efficient

manner, finding a feasible schedule if one exists. The execution kernel provides

a lightweight, low overhead means of executing the tasks according to the

generated schedule. It has been experimentally shown to have very low jitter

between task release times.

Based on experimental data, these schedules can be executed with a

high degree of confidence that timing data is correct and that deadlines will not

be missed.

Future Work

Although the tool chain is useful in its current form, there are a lot of

improvements that could be made. Additions of such task attributes as relative

deadline or phases would make the modeling language much more flexible in the

applications it can describe. In addition, the scheduler could use optimizations to

find feasible schedules faster.

The scheduling algorithm, although exhaustive, settles on the first feasible

schedule it locates. A more useful schedule would be the ideal one, which

minimizes latency along the some path. It would be very desirable to minimize

latency along the worst-case path. The worst case path would be one with the

longest sequence of data dependencies or precedence constraints. The Task

priorities could also be used to enhance the scheduler.

32

 Finally, the execution kernel is currently platform dependent. A more

useful implementation could allow the user to implement the platform specific

functions in another file. In this way, the generated code could be used on a

wide range of microcontrollers rather than only the Freescale MC9S12E128.

33

APPENDIX A

SOURCE CODE FOR EXECUTION KERNEL

#include <stdio.h>

#include <string.h>

#include "mc9s12e_regs.h"

#include "tasks.h"

#include "myheader.h"

int main(void);

void scheduler(void) __attribute((interrupt));

volatile short int currenttask = 0;

short int n = 0;

unsigned short int taskstarttime = 0;

int statusSP = 0;

int statusD = 0;

int statusX = 0;

int statusY = 0;

int statusC = 0;

volatile int time = 0;

int counter = 0;

int main() {

 CTCTL.byte = 0x08; /* disable COP watchdog time r */

 RTICTL.byte = prescale;

 CRGFLG.byte |= RTIF;

 CRGINT.byte |= RTIE; //Enable RTI

//Configure timer module for interrupts

 TIM0.TIOS.byte |= IOS6; //Channel 6 used fo r Output Compare

 TIM0.TSCR2.byte |= 0x00; //Prescale factor o f 1

 TIM0.TIE.byte |= C6I; //Use interrupts fo r channel 6

34

 TIM0.TFLG1.byte |= C6F; //Clear interrupt fl ags for channel 6

 TIM0.TSCR1.byte |= TEN; //Enable Interrupt M odule

 while (1) {

 //Store register status

 asm("SEI"); //Disable Interrup ts

 asm("STD statusD"); //Store D

 asm("STX statusX"); //Store X

 asm("STY statusY"); //Store Y

 asm("PSHD");

 asm("TFR CCR, D");

 asm("STD statusC"); //Store CCR

 asm("TFR SP, D");

 asm("STD statusSP"); //Store SP

 asm("PULD");

 asm("CLI"); //Enable Interrupt s

 //Label to jump to if deadline missed

 asm("MainLoop:");

 if (currenttask >= 0) {

 //Call current task using array of fun ction pointers

 funcArray[currenttask]();

 //Task finished!

 currenttask = -1;

 n++;

 }

 //Wait for scheduler interrupt to fire

 asm("WAI");

 }

 return 0; /* not used */

}

35

void scheduler() {

 CRGFLG.byte |= RTIF; //Clear interrupt fl ag

 int jumpout = 0;

 time++;

 //3 Cases where action is needed:

 //1: End of hyperperiod,

 //2: No task is running and one needs to be re leased,

 //3: Task past deadline

 if (time >= hyperperiod) {

 time = 0;

 n = 0;

 if (currenttask != -1) jumpout = 1;

 currenttask = schedule[0];

 } else if (currenttask == -1) {

 if (time >= scheduletime[n]) currenttask = schedule[n];

 } else

 //Check for missed deadlines, back out of cur rent task

 if (time >= deadline[n]) {

 n++;

 if (time >= scheduletime[n]) currentta sk = schedule[n];

 jumpout = 1;

 }

 if (jumpout == 1) {

 /*When a deadline is missed, we want t o cancel the current

 task and return to the top of the task loop. This is done

 by zeroing the stack and performing an RTI back to the main

 loop. */

 asm("LDS statusSP");

 asm("LDD #MainLoop");

 asm("pshd");

 asm("LDD statusY");

 asm("pshd");

 asm("LDD statusX");

36

 asm("pshd");

 asm("LDD statusD");

 asm("pshd");

 asm("LDAA statusC");

 asm("psha");

 asm("RTI");

 }

}

37

REFERENCES

1. Agrawal A., Karsai G., Kalmar Z., Neema S., Shi F., Vizhanyo A.: The
Design of a Language for Model Transformations, Journal of Software
and System Modeling, 2005.

2. T. P. Baker, and A. Shaw, "The cyclic executive model and Ada," Journal
of Real- Time Systems, vol. 1, June 1989.

3. Henzinger, T.A., Horowitz, B. and, Kirsch, C.M. Giotto: a time-triggered
language for embedded programming. Proceedings of the IEEE. Volume
91, Issue 1, Jan. 2003 Page(s):84 – 99

4. Intronix LA1034 LogicPort PC-Based Logic Analyzer with USB Interface.
Retrieved March 21, 2008. Web site: http://www.pctestinstruments.com

5. Karsai,G.: “A Configurable Visual Programming Environment: A Tool for
Domain-Specific Programming”, IEEE Computer, V.28. pp. 36-44., March
1995.

6. Pilone, Dan. (2003) UML Pocket Reference. Sebastopol, CA: O’Reilly
Media Inc.

7. Shaw, Alan. (2001) Real-Time Systems and Software. Hoboken, NJ:
Wiley.

8. Technological Arts. Retrieved March 21, 2008. Web site:
http://www.technologicalarts.ca/catalog/index.php?cPath=50_52

9. Templ, J. TDL Specification and Report. Technical Report, University of
Salzburg, Austria. Mar 2004,
www.SoftwareResearch.net/site/publications/Co59.pdf

10. Xu, J. and Parnas, D.L. 1990 Scheduling Processes with release times,
deadlines, precedence and exclusion relations. IEEE Transactions on
Software Engineering, Volume 16, Issue 3. Page(s): 360-369

