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CHAPTER I 

 

INTRODUCTION 

 

Rapid development of applications for embedded systems is becoming 

increasingly important as the number and complexity of embedded devices 

increases.  These applications vary widely in complexity, but typically have very 

tight constraints on timing.  Developing these applications can be an extremely 

tedious task if performed by hand.  This is especially true when the target 

microcontroller lacks the speed or resources to run a commercially available real-

time operating system. In addition, there are few tools available to accelerate the 

development process.   

 

Problem Statement 

 Designing applications for embedded systems presents a unique 

challenge.  Because embedded systems are tightly coupled with their 

environment via sensors and actuators, precise timing is essential for proper 

function.  In addition, microcontrollers are typically resource constrained.  For a 

given application, it is not always possible to improve performance by upgrading 

to a faster processor.  Lack of memory can not always be addressed by simply 

adding to the capacity.  This is because there is not always a comparable 

processor available.  Adding external memory may be possible, but power and 
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space requirements may eliminate this option.  Very small microcontrollers may 

not even have enough input and output connections to address external 

memory.  And finally, power requirements can demand that the processor run in 

an even lower performance state than what it is capable of. 

 The combination of timing requirements and resource constraints may 

prevent a commercial RTOS (Real-time Operating System) from being used to 

schedule and manage the application.  In addition, a RTOS may not be able to 

guarantee the correctness of its schedule at design time.  In safety critical 

applications, such as the automotive or aerospace industry, guarantees of proper 

application function are critical.  These applications may also have non-

functional requirements, such as timing constraints.  Often timing constraints are 

essential to proper operation, and guarantees on timing are needed.   

 When developing applications for embedded systems, the target 

architecture also plays a primary role in the design.  Different architectures have 

different capabilities, and it is important to choose one that has the correct 

hardware for the required task.  However, this complicates the developer’s task.  

As systems evolve and change, so do the requirements.  Although increased 

performance can be achieved through use of hardware level or assembly 

programming, the resulting code is very difficult to move from one platform to 

another.  For this reason, it is essential that the code for the application remains 

in a portable form, with hardware-specific details abstracted away.   
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Requirements of a New Tool 

 One possible strategy is to design a completely new tool chain to expedite 

the development of real-time applications for embedded systems.  There are a 

number of important elements to the usefulness and success of such a tool 

chain.  These include a simple, easy to use environment, a powerful and efficient 

scheduler, and the ability to use for multiple target microcontrollers. 

 As with any application intended for use by the end-user community, ease 

of use and user friendliness are of high importance.  A graphical interface 

provides a very effective means of describing the tasks and the relationship 

between tasks.  This graphical representation is used to automatically generate a 

schedule. 

 The scheduler for the tool chain should be both powerful and efficient.  It 

must be able to handle an adequate number of tasks as well as find a feasible 

schedule quickly.  Because the tool’s usefulness is dependent, in part, on its 

ability to offer guarantees about the correctness of its output, the accuracy of the 

scheduler is very important. 

 Finally, the output of the tool chain must be able to be used on any target 

microcontroller platform. Changing requirements may require that the application 

be moved to different target architectures.  Making sure that the output of the 

tool is portable to a variety of target platforms is crucial to the tool’s usefulness. 
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The Solution 

Our objective was to develop a tool chain designed to expedite the 

development of deadline driven, real-time applications for microcontrollers.  The 

input to the tool chain will be a set of real-time tasks supplied by the user.  This 

task set will be represented in a domain-specific modeling language.  GME 

(Generic Modeling Environment), a meta-programmable modeling toolkit [5], was 

used to design the modeling language.  GME provides a flexible, easy to use 

graphical representation of the various elements of the modeling language. The 

user can create and modify task sets using GME.  The modeling language allows 

the user to describe task sets composed of both periodic tasks as well as tasks 

driven by interrupt subroutines.  The difference between the two is substantial, 

as interrupt driven tasks can not be controlled by the scheduling kernel.  The 

modeling language also allows users to describe complex precedence 

relationships between periodic tasks.  These constraints specify partial orders for 

task execution rather than dictating the actual execution order. 

With the task sets generated by the user, the scheduler performs analysis 

on the input task set.  This scheduler finds if a feasible schedule for the 

execution of the task set exists. Any feasible schedule is guaranteed to execute 

properly.  Proper execution means several things.  First, it means that no task 

deadlines will ever be missed.  Second, no interrupt driven task should ever 

cause a periodic task to miss a deadline.  These guarantees should hold so long 

as the worst-case execution times for each task, as provided by the user, are 

never exceeded. 
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Additionally, the tool chain also contains a simple, lightweight execution 

kernel.  This kernel uses the generated schedule to execute the task sets 

correctly.  The kernel allows the user to provide code for each task. 

Once a feasible schedule for the task set has been determined, the kernel 

executes every task on time – that is, no deadline is ever be missed.  Correct 

operation should be guaranteed so long as all the tasks stay within the bounds of 

the WCET (Worse Case Execution Time) as specified by the user at design 

time. 

In the second chapter, we discuss the several different types of traditional 

scheduling techniques.  We also look at two different tools that perform similar 

tasks.  The third chapter details the specifics of the tool we designed.  The fourth 

chapter describes the techniques used to analyze and test the tool.  The fifth 

chapter summarizes the outcomes of the experiment.  It also draws conclusions 

from the data gathered and considerations for future work on the tool. 
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CHAPTER II 

 

BACKGROUND 

 

Many real-time systems can be described by sets of periodically executing 

tasks.  In real time systems, there are specific timing concerns that are related to 

both the start and the completion of task execution, as well as to the rates at 

which the tasks are to be executed. Additionally, there may be dependencies 

between these tasks. Each task performs some function of the whole system. In 

this thesis we assume that the worst-case execution time (WCET) of the tasks is 

known and finite. 

There are two broad categories of scheduling techniques:  offline and 

online [7].  Using offline scheduling techniques, the entire schedule is computed 

ahead of time.  Offline scheduling algorithms require full knowledge of the task 

sets prior to execution.  This is normally the case for embedded systems.  Since 

the schedule is already determined, guarantees about timing and deadlines can 

be made.  The same is not necessarily true for online scheduling algorithms.  An 

online scheduling algorithm will choose which tasks to execute at runtime.  

Typically, online scheduling techniques introduce more computational overhead 

than offline methods.  Additionally, because the online scheduler has no 

knowledge of how long tasks take to execute, or how frequently they need to 

execute, precise scheduling becomes extremely difficult.  For these reasons, the 

scheduling method chosen for our tool chain is an offline algorithm. 
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Online scheduling algorithms are very flexible.  Typically, they must make 

a scheduling decision each time a task is released or completed.  Online 

scheduling algorithms are typically characterized by the method used to 

determine which task is chosen next.  One of the simplest methods for online 

scheduling is the round robin method. 

Under the round robin scheduling method, each task receives an equal 

share of the processor time [7].  This method is very easy to implement and 

works fairly well when the tasks have similar priority and required execution 

times.  However, when task periods and execution times vary widely, the round 

robin scheduling method will often cause tasks to miss deadlines.  This is 

because all tasks receive the same share of processor time without regard for 

how long those tasks actually take to execute. 

Another online scheduling method is the rate monotonic (RM) method [7].  

The simplest implementation of the RM scheduling method will always run the 

released task with the shortest period.  In other words, priority is given to tasks 

that run at a higher rate.  There are circumstances under which RM is an optimal 

scheduling algorithm.  However, this normally depends on the use of preemption 

in scheduling.  There is also an upper bound on the processor utilization for RM 

to still be optimal.  Because of these restrictions, RM was not a feasible 

scheduling solution for our tool chain. 

The Earliest Deadline First (EDF) online scheduling method is optimal 

scheduling method [7].  If the tasks can be executed without missing deadlines, 

EDF will schedule it correctly.  EDF is only optimal on a preemptive, single 
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processor implementation.  If preemption is not possible, EDF is no longer 

optimal.  In addition, task precedence constraints make it more difficult to issue 

guarantees about behavior and deadlines.  Because the ability to guarantee 

accurate behavior and timing is essential for our application, neither RM nor EDF 

scheduling was suitable. 

One of the first offline scheduling algorithms used to schedule periodic 

task sets on a single CPU is the cyclic executive [2].  A cyclic executive is 

typically implemented as a loop that contains subroutine calls with an optional 

delay at the end. Each subroutine call invokes a tasks’ code. A cyclic executive, 

while simple, is completely deterministic in operation.  That is, the tasks will 

execute in the same order, start at the same time, and complete at the same 

time for each execution of the loop.  Any change to the task sets will require a 

recalculation of the valid schedule.  However, cyclic executive methods may 

introduce excessive jitter in task release times and completion times.  Each task 

in the frame allowed to execute as soon as the task before it completes.  Any 

variance in the execution time of each task will introduce jitter in the following 

tasks.  For our tool, we chose to use a time-triggered architecture.  The release 

of each task is always related to a specific timing event rather than the tasks 

before or after it.  In this way, jitter is reduced compared to a cyclic executive 

approach. 

Xu and Parnas described a method for scheduling sets of real-time tasks 

on a single processing unit [10].  They described an algorithm to find optimal 

schedules for sets of real-time tasks with precedence and exclusion constraints 
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on those tasks.  This is an improvement upon the cyclic executive model, as it 

could be automated, while cyclic executives would typically be constructed by 

hand.  In addition, it provides a method for dealing with preemption as well as 

precedence constraints.  Each activity can be broken down into a set of 

segments which must be executed in sequence.  In addition, each segment must 

be executed as a unit and cannot be preempted.  The scheduling algorithm 

proposed here is a modified version of the Xu and Parnas algorithm.  However, 

while the Xu and Parnas algorithm continue to explore the search space until it 

finds the optimal solution, the scheduler we used accepts the first valid solution it 

finds. 

Giotto is a tool designed to bridge the gap between the actual control laws 

used in real-time applications and the software components that implement them 

[3].  Giotto is a coordination language.  This means that it is used to describe the 

way in which the various computational tasks should be coordinated.  In uses the 

concept of logical execution time, or LET.  This allows each task to be executed 

at a specific time regardless of when the tasks before it complete.  The elements 

of the Giotto language include tasks, ports, and modes.  Giotto also includes the 

concepts of sensors and actuators.  These represent software drivers for the 

hardware devices.  It allows specific timing information to be added for each 

component, ensuring that writes to actuators and reads from sensors are 

performed at the correct time.  Giotto compiles schedules for a single processor.  

These schedules are in the form of a high level language which is executed on 

the target platform.  Our tool differs from Giotto in that sensors and actuators are 
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not explicitly defined – they can be modeled as another task that handles the 

reads and writes.  In addition, we allow the user to model tasks which are 

interrupt-driven. 

The Timing Definition Language, or TDL, is conceptually modeled after 

Giotto [9].  TDL was designed to be a tool that could actually be used in the 

industry by developers.  It is implemented as a high level language.  Users 

specify the timing requirements for the various components of a time-triggered 

application using a textual syntax.  It introduces features such as the ability to 

deploy onto multiple processors. 
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CHAPTER III 

 

SOLUTION 

 

Overview 

This thesis presents a tool chain for deploying real-time applications onto 

embedded systems.  The chain consists of three major components:  the 

modeling language and its visual modeling tool, the scheduler / code generator, 

and the execution kernel. 

 

Modeling Language 

The modeling language was designed and implemented using the 

Generic Modeling Environment, GME [5] – a metaprogrammable visual modeling 

environment.  The modeling language allows the user to describe the application 

in a natural, graphical way. This representation is independent of the platform on 

which it will be deployed.  In this modeling language, the application is 

represented as a set of periodic real-time tasks, a set of interrupt driven tasks, 

and a set of precedence constraints on the periodic tasks.  The main part of the 

metamodel for this language is shown in Figure 1. This metamodel, using the 

UML class diagram notation [6]. It captures the abstract syntax of the visual 

models of the language in a concise form.  
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A PeriodicTask represents any task that needs to be executed in a regular 

fashion.  The attributes of the task allow the user to specify its period and worst-

case execution time, both in microseconds.  The deadline for each task is 

assumed to be same as the period. 

A PeriodicInterruptDrivenTask represents any interrupt handler used in 

the application.  These are assumed to be aperiodic, although an attribute is 

provided for the worst-case period, i.e. for the smallest period with which this 

task is invoked by the interrupt hardware.  Again, a worst-case execution time 

attribute is provided. 

 

 

Figure 1 - Task Metamodel 

 

Finally, PrecedenceConnections and And blocks are used to describe the 

relationship between PeriodicTasks.  A PrecedenceConnection constraint 
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between two PeriodicTasks implies that the source PeriodicTask must execute at 

least one time between executions of the destination PeriodicTask.  If more than 

one PeriodicTask is connected using a precedence constraint, an OR 

relationship is assumed.  That is, at least one of the source PeriodicTasks must 

be executed between each execution of the destination task.  To describe an 

AND relationship between tasks, an AND block is used.  A  

PrecedenceConstraint between two tasks can be described concisely in a 

mathematical expression.  If PeriodicTask A must precede PeriodicTask B, and 

A(i) and B(i) are the start times of the ith job of PeriodicTasks A and B 

respectively, then 

)1()()1()(),( +<<−∃∀ jAjBiAstjBiA  

A similar expression can be written for every combination of 

PrecedenceContraints that can be drawn.  All of the start times of every task that 

satisfies the Boolean function represented by the PrecedenceConstraints must 

fall between the start of a job and the start of the last job of the same task. 

 

 

Figure 2 - A Simple PrecedenceConstraint 
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Figure 2 show a simple precedence constraint.  In this example, TaskA 

must be executed at least one time between executions of TaskZ. 

Figure 3 shows precedence constraints used in an “OR” fashion.  Here, 

either TaskA or TaskB must execute at least once between executions of TaskZ. 

 

 

Figure 3 – A wired “OR” PrecedenceConstraint 

 

 

Figure 4 - "AND" PrecedenceConstraint 

 

Figure 4 demonstrates the use of the AndBlock.  In this figure, both TaskA 

and TaskB must execute between each subsequent execution of TaskZ. 
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Figure 5 shows a more complex arrangement of task precedence.  

Multiple AndBlocks and precedence constraints can be used to create 

constraints of arbitrary complexity.  Any Boolean function can be constructed 

using the provided concepts. In this case, (TaskA AND TaskB) OR (TaskC AND 

TaskD) must be satisfied before TaskZ can execute. 

 

Scheduler 

The scheduler analyzes the task set to find a feasible execution schedule.  

The scheduler component is written as a GME interpreter using the UDM 

framework in C++ [1].  From within the GME environment, a single click on the 

toolbar will execute the scheduler component. 

 

 

Figure 5 - Compound PrecedenceConstraint 
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For simplicity, the scheduling algorithm assumes non-preemption between 

all PeriodicTasks. Preemption adds additional complexity to both the scheduling 

algorithm and the execution kernel.  Much more state information must be 

recorded as tasks execute, resulting in a much larger overhead than a non-

preemptive method.  However, there are some tasks sets which can be 

scheduled under a preemptive method, but cannot be scheduled non-

preemptively.   

In addition, it is assumed that any and all interrupt-driven tasks can and 

will interrupt each task execution with their worst-case period.  The worst-case 

execution time of each task is adjusted upwards to correct for the effects of 

interrupts.  An iterative, fix-point calculation is used to determine the maximum 

time that can be spent in interrupt routines during a task’s scheduled execution 

time.  This provides a safe, worst-case behavior prediction and helps ensure no 

deadlines will be missed.  

 

Pseudocode for Fix-Point Calculation of Task WCET 

 

Function CalculateNewWCET (TaskWCET, OldIntWCET) 

 NewIntWCET = 0 

 For Each InterruptDrivenTask i 

  NewIntWCET += ceiling((TaskWCET + OldIntWCET) / i .Period) * i.WCET 

 If (NewIntWCET != OldIntWCET) 

return CalculateNewWCET(BaseWCET, NewWCET) 

else Return TaskWCET + NewIntWCET 
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To find a feasible schedule, an exhaustive depth-first search is performed 

on the search space.  At each step of the search, the scheduler will select the 

next task to be executed.  Because no task can be preempted (and all worst-

case execution times have been adjusted upwards for the interrupts), the 

scheduler has only two options at any point in time:  Run an already released 

task, or wait for another one to be released.  If any task misses a deadline, the 

scheduler removes that branch of the tree and backs up, trying a different 

decision.  The process is repeated until a feasible schedule is found or the entire 

tree has been pruned, i.e., no feasible schedule exists. If no schedule exists, the 

user is informed and the scheduler exists.  If a feasible schedule is found, the 

code generator executes. 

 

Psuedocode for scheduling algorithm 

 

Because the scheduling algorithm is exponential in nature, there are 

potential problems with scaling as the number of tasks increases.  However, 

typically, one of two scenarios is observed when executing the scheduler using 

Sort remaining jobs by deadline (EDF)  

For each remaining Task t, Job j 

If (j meets deadline and j’s precedence constraints  satisfied) 

  Add j to end of schedule 

  Schedule remaining jobs 

   If (Scheduled successfully) 

    Return Valid Schedule 

If (No valid schedules found) 

  Return No Schedule 
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real data.  In the first, a solution is found very quickly.  In the second, it takes a 

much longer time to arrive at a solution.  We would like to make sure that most 

task sets fall into the first category, so that solutions are found very quickly.  

There is a “phase-transition” region where certain conditions will cause the 

solution to be exponential in nature.  In our scheduler, some conditions identified 

are: 

1. Very high total utilization 

2. Large number of total jobs 

However, neither of these conditions guarantees transition into the 

exponential region.  Very high utilization task sets can still be scheduled 

relatively quickly most of the time.  A large number of total jobs can occur even 

when the number of tasks is relatively low.  If the periods of the tasks are not 

multiples of one another, the major cycle must be the least common multiple of 

the period of the tasks.  This can cause the number of total jobs to be solved to 

be much higher if the major cycle is very large.  When this condition is combined 

with a task set that is already difficult to schedule, the execution of the scheduler 

component typically takes much longer. 

 

Code Generator 

The code generator receives the output from the scheduler and generates 

a header file used by the execution kernel.  This header file contains an array of 

function pointers, several arrays of integers, and constants used by the 

execution kernel. 
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The first part of the header is an array of function pointers.  These point to 

the actual task functions, which must have the same name as the periodic tasks 

in the model (and consequently, must be valid C function names).  This array is 

used to connect the actual task functions with the schedule. 

The schedule is an array of integers, where each integer represents a 

task to be executed.  This index is used to locate the task function within an 

array of function pointers. The schedule is cyclic - once all the tasks have been 

completed in order, the schedule starts again from the beginning. 

The next array of integers is the start time for each task. The start times 

are actually the counts of the scheduler routine “ticks” that have occurred since 

the beginning of the current execution cycle. 

The final array of integers contains the deadlines of each task.  The 

deadline for each task also corresponds with the start of the next task.  Because 

a feasible schedule is assumed, every task should complete before the next task 

could start. 

 

Execution Kernel 

The execution kernel is a simple, lightweight code written in C.  It contains 

a main function and a scheduler function.  The user must supply the code for 

each individual task, preferably in another include file. 

The main function is a loop.  At the beginning of the loop, the processor 

state is stored.  This is used when a task runs past its deadline.  Next, the 
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function for the current task is called using the array of function pointers. If the 

processor is not currently scheduled to be executing a task, or when the function 

returns, the processor enters a low-power wait state until the scheduler interrupt 

occurs.  After the interrupt, the loop restarts. 

The scheduler routine is designed as a high-priority interrupt driven 

function.  Many microcontrollers have a “Real-Time Interrupt” built-in.  It can 

occur regularly and with high precision, both of which facilitate the function of the 

scheduler task.  The main constant set for the scheduler determines the period 

at which the RTI fires.  It can be between 1 microsecond and 1 millisecond, 

depending on the task set used. 

On each execution of the scheduler routine, the “time” (an integer counter) 

is incremented.  There are two cases that need to be analyzed:  a task is 

currently executing, or no task is executing. 

If a task is executing, there are two possible situations: the time is before 

the task’s deadline or the deadline has been passed.  In the first case, the 

scheduler simply returns.  In the second, the scheduler will set the current task to 

be the next task, load the saved processor state from the variables, and execute 

a return from interrupt instruction to break out of the task function and back into 

the main loop. 

If no task is executing, the execution time of the next task is compared to 

the time.  If it is time for the next task to begin, the current task value is adjusted, 

and the scheduler returns. 
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The code for the execution kernel was kept to a minimum in both space 

and time complexity in order to maximize available time for tasks.  The code for 

the execution kernel can be found in Appendix A. 
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CHAPTER IV 

 

EVALUATION 

 

Method 

Analysis of the scheduler was done using fairly simple task sets.  The 

output of each task set was checked to verify that it is indeed schedulable. 

 

 

Figure 6 - Technological Arts AD9S12EQ128M0 Development Board 

 

In order to analyze the generated code, the execution kernel was slightly 

modified.  Several outputs were added to indicate the currently executing task, 

the “heartbeat” of the scheduler routine, and missed deadlines.  Tasks were 

simulated using loops that took approximately the worst case execution time.  

The interrupt driven tasks were simulated using interrupts generated by the timer 

modules of the microcontroller. The code was then flashed onto a Freescale 
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MC9S12E128 microcontroller [8].  The microcontroller is on a Technological Arts 

AD9S12EQ128M0 development board, which has convenient output pins.  A 34 

channel Intronix LOGICPORT logic analyzer was connected to the outputs and 

used to monitor the execution of tasks [4]. 

Several different task sets were analyzed, from easily scheduled (low 

utilization) to barely schedulable (high utilization).  It was verified that no tasks 

missed deadlines under these circumstances. 

Finally, the frequency of interrupt driven tasks was increased beyond the 

given worst case values until tasks began to miss deadlines. 

 

Example 

To demonstrate how the tool works, we will walk through a few sample 

task sets.  These task sets will have various levels of complexity.  The first task 

set consists of two tasks.  TaskA has a period of 10 ms and a WCET of 1 ms.  

TaskB has a period of 5 ms and a WCET of 2ms.  The total utilization of this task 

set is 90%.  There are no PrecedenceConstraints.  The model for this task set is 

shown in Figure 7. 

 

Figure 7 - Sample Task Set 1 Model 
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Although the utilization is fairly high at 90%, the task set is easily 

scheduled.  The output of the scheduler is shown in Figure 8.  Next, the header 

file is generated.  The code is compiled and flashed onto the test board.  Using 

the logic analyzer, a snapshot of the task set executing is obtained.  One full 

major cycle of the set’s execution is shown in Figure 9. 

 

 

Figure 8 - Sample Task Set 1 Schedule 

 

 

Figure 9 - Sample Task Set 1 Normal Execution 

 

 Looking at the logic analyzer output, it is observed that the 

“DeadlineMissed” output is never asserted.  This means that the scheduler 

subroutine never observed a task running past its deadline.  This case 

represents proper task execution.  However, to demonstrate the flexibility of the 

execution kernel, we will introduce some task overruns to see how they are 
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handled.  For our first pass, we will cause TaskA to run longer than it should.  

The resulting output is shown in Figure 10. 

 

 

Figure 10 - Sample Task Set 1 TaskA Overrun 

 

In this run, the only clue that anything happened differently is that the 

“DeadlineMissed” output is asserted as the first job of TaskB releases.  This 

indicates that job of TaskA had not completed execution when TaskB was 

scheduled to begin.  Because of this, the scheduler used its routine to cancel the 

execution of TaskA and start executing TaskB instead.  The “canceled” job of 

TaskA is considered failed and will not be allowed to complete execution at a 

later time.  This strategy allows subsequent tasks to be released promptly and 

minimizes the chance that subsequent tasks will also miss their deadline. 

The second task set consists of four tasks, precedence constraints on 

those tasks, and a single PeriodicInterruptDriven task.  The tasks and their 

relevant parameters are shown in Table 1. The single interrupt has a worst-case 

frequency of 250 Hz, or 4 ms.  It also has a worst-case execution time of 1 ms. 

The model, with precedence constraints, is shown in Figure 7. 
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Table 1 - Sample Task Set 2 Task Attributes 

Task Name Period Worst-Case Execution Time 

TaskA 6 ms 1 ms  

TaskB 8 ms 1 ms 

TaskC 12 ms 1 ms 

TaskD 24 ms 2 ms 

 

 

Once the model for the task set was created using GME, the scheduler 

was invoked via the graphical tool.   

 

 

Figure 11- Sample Task Set 2 Model 

 

The scheduler analyzes the precedence constraints and attributes and 

determines that this task set is indeed schedulable.  The resulting schedule is 
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shown in Figure 8.  Finally, it prompts the user for the file name and path where 

the code generator should store the header file for the kernel. 

 

 

Figure 12 – Sample Task Set 2 Schedule 

 

The last step in the process is to compile the kernel with the new header 

file and flash it onto the microcontroller.  Once this is done, we can use the logic 

analyzer’s software to take a sample of the outputs displaying the current system 

state.  One full hyperperiod of the schedule, 24 ms, is shown in Figure 9. 

Because the scheduler interrupt will assert the “DeadlineMissed” output 

whenever a task has run past its deadline, we can quickly check whether or not 

deadline misses occurred.  In this figure, the “DeadlineMissed” signal stays low 

during the entire hyperperiod.  A more careful check reveals that every task is 

actually completed before its deadline. 
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Figure 13 – Sample Task Set 2 Normal Schedule Execution 

 

We will now demonstrate what happens when ISR1 is allowed to execute faster 

than the maximum rate under which the schedule was generated.  Originally, it 

was limited to a maximum 250 Hz rate.  Increasing this maximum rate has the 

potential of causing other tasks to miss their deadlines.  Because the scheduler 

algorithm has no control over the rate of incoming interrupts, increasing the 

maximum frequency introduces the possibility that PeriodicTasks will miss their 

deadlines. Figure 14 shows the resulting output when the worst case rate is 

increased to 333 Hz. 

 

 

Figure 14 - Sample Task Set 2 ISR1 333Hz 
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Even with ISR1 executing at a maximum rate of 333 Hz, no task misses a 

deadline.  Going back to the model and executing the scheduler reveals that this 

change does not make the task set “unschedulable”.  We will further increase the 

maximum rate at which ISR1 fires to 500 Hz.  The results are shown in Figure 

15. 

 

 

Figure 15 - Sample Set 2 ISR1 500Hz 

 

With ISR1 firing at 500 Hz, TaskD begins to miss deadlines.  However, all 

other tasks continue to meet their deadlines.  In this case, backing out of tasks 

that fail to meet deadlines allows other tasks to still execute promptly. 
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CHAPTER V 

 

CONCLUSION AND FUTURE WORK 

 

Conclusion 

The testing revealed that every task set for which the scheduler 

component produced a valid schedule never missed a deadline, even when 

subjected to the worst-case execution times for each task.  As the interrupts 

were added and increased to occur with their maximum frequency, it was 

observed that deadlines were still met.  Even task sets above 80% utilization still 

executed as expected. 

In addition, when tasks were allowed to run past their deadline, the next 

tick of the scheduler task identifies the overrun and performs its routine to back 

out of the past-due task.  It then executes the next task in the schedule.  

It was also observed that overhead of the scheduler task is approximately 

15 microseconds per execution.  For task sets requiring millisecond accuracy (up 

to 1 kHz), the total overhead is less than two percent. 

In this particular implementation, the scheduler period was selected as 

1.024ms.  The prescaler value for the real-time interrupt was chosen accordingly.  

Analysis of the scheduler ticks shows a typical scheduler period of 1.0253ms, or 

within .001% of nominal.  Also, the release time jitter was evaluated.  Tasks are 

typically released within 0.1ms of the nominal release time per the schedule. 
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In conclusion, the tool chain developed greatly simplifies the process of 

developing real-time applications.  The front-end modeling language allows the 

user to express a wide variety of task sets with strict timing and ordering 

requirements.  The scheduler processes the data from the model in an efficient 

manner, finding a feasible schedule if one exists.  The execution kernel provides 

a lightweight, low overhead means of executing the tasks according to the 

generated schedule.  It has been experimentally shown to have very low jitter 

between task release times. 

Based on experimental data, these schedules can be executed with a 

high degree of confidence that timing data is correct and that deadlines will not 

be missed. 

Future Work 

Although the tool chain is useful in its current form, there are a lot of 

improvements that could be made.  Additions of such task attributes as relative 

deadline or phases would make the modeling language much more flexible in the 

applications it can describe.  In addition, the scheduler could use optimizations to 

find feasible schedules faster. 

The scheduling algorithm, although exhaustive, settles on the first feasible 

schedule it locates.  A more useful schedule would be the ideal one, which 

minimizes latency along the some path.  It would be very desirable to minimize 

latency along the worst-case path.  The worst case path would be one with the 

longest sequence of data dependencies or precedence constraints.  The Task 

priorities could also be used to enhance the scheduler. 
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 Finally, the execution kernel is currently platform dependent.  A more 

useful implementation could allow the user to implement the platform specific 

functions in another file.  In this way, the generated code could be used on a 

wide range of microcontrollers rather than only the Freescale MC9S12E128. 
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APPENDIX A 

 

SOURCE CODE FOR EXECUTION KERNEL 

#include <stdio.h> 

#include <string.h> 

 

#include "mc9s12e_regs.h" 

#include "tasks.h" 

#include "myheader.h" 

 

int main(void); 

 

void scheduler(void) __attribute((interrupt)); 

 

volatile short int currenttask = 0; 

short int n = 0; 

unsigned short int taskstarttime = 0; 

 

int statusSP = 0; 

int statusD = 0; 

int statusX = 0; 

int statusY = 0; 

int statusC = 0; 

 

 

volatile int time = 0; 

 

int counter = 0; 

 

int main() { 

    CTCTL.byte = 0x08; /* disable COP watchdog time r */ 

    RTICTL.byte = prescale; 

 

    CRGFLG.byte |= RTIF; 

    CRGINT.byte |= RTIE;  //Enable RTI 

 

//Configure timer module for interrupts 

 

    TIM0.TIOS.byte |= IOS6;     //Channel 6 used fo r Output Compare 

    TIM0.TSCR2.byte |= 0x00;    //Prescale factor o f 1 

    TIM0.TIE.byte |= C6I;       //Use interrupts fo r channel 6 
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    TIM0.TFLG1.byte |= C6F;    //Clear interrupt fl ags for channel 6 

 

    TIM0.TSCR1.byte |= TEN;    //Enable Interrupt M odule 

 

    while (1) { 

 

          //Store register status 

           

          asm("SEI");            //Disable Interrup ts 

           

          asm("STD statusD");    //Store D 

          asm("STX statusX");    //Store X 

          asm("STY statusY");    //Store Y 

 

          asm("PSHD"); 

          asm("TFR CCR, D"); 

          asm("STD statusC");    //Store CCR 

          asm("TFR SP, D"); 

          asm("STD statusSP");   //Store SP 

          asm("PULD"); 

 

          asm("CLI");            //Enable Interrupt s 

 

          //Label to jump to if deadline missed 

           

          asm("MainLoop:"); 

          if (currenttask >= 0) { 

             //Call current task using array of fun ction pointers 

             funcArray[currenttask](); 

 

             //Task finished! 

             currenttask = -1; 

             n++; 

          } 

           

          //Wait for scheduler interrupt to fire 

          asm("WAI"); 

    } 

 

    return 0; /* not used */ 

 

} 
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void scheduler() { 

     CRGFLG.byte |= RTIF;      //Clear interrupt fl ag 

 

     int jumpout = 0; 

     time++; 

 

     //3 Cases where action is needed: 

      

     //1: End of hyperperiod, 

     //2: No task is running and one needs to be re leased, 

     //3: Task past deadline 

 

     if (time >= hyperperiod) { 

        time = 0; 

        n = 0; 

        if (currenttask != -1) jumpout = 1; 

        currenttask = schedule[0]; 

     } else if (currenttask == -1) { 

         if (time >= scheduletime[n]) currenttask =  schedule[n]; 

     } else 

 

      //Check for missed deadlines, back out of cur rent task 

 

      if (time >= deadline[n]) { 

             n++; 

             if (time >= scheduletime[n]) currentta sk = schedule[n]; 

             jumpout = 1; 

      } 

 

     if (jumpout == 1) { 

             /*When a deadline is missed, we want t o cancel the current 

             task and return to the top of the task  loop. This is done 

             by zeroing the stack and performing an  RTI back to the main 

             loop. */ 

 

             asm("LDS statusSP"); 

 

             asm("LDD #MainLoop"); 

             asm("pshd"); 

 

             asm("LDD statusY"); 

             asm("pshd"); 

 

             asm("LDD statusX"); 
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             asm("pshd"); 

 

             asm("LDD statusD"); 

             asm("pshd"); 

 

             asm("LDAA statusC"); 

             asm("psha"); 

 

             asm("RTI"); 

     } 

 

} 
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