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CHAPTER I 

INTRODUCTION 

 

When learning a new domain, the learner often begins as a novice. The goal of learning is 

to transition out of the novice state and into a more knowledgeable and competent state. Within 

problem solving domains, one well-established way of fostering learning in novices is through 

the use of worked examples (e.g. Atkinson, Derry, Renkl, & Wortham, 2000; Sweller, 2006).  

However, simply viewing worked examples is not enough to foster meaningful learning. 

Contemporary educational theory places a high value on the learner engaging in active cognitive 

processing during learning (Mayer, 2009). However, what the learner should focus their 

processing on to maximize learning outcomes is currently underspecified. This project compares 

two levels of processing demands when studying worked examples to support the transition from 

novice to more advanced learner within introductory statistics. 

Worked Examples Support Learning in Novices 

One proven way to support novice learning in problem-solving domains is through the 

use of worked examples. Worked examples are instructional devices that include a problem 

statement and an expert procedure for solving the problem. They have often been used within 

domains such as mathematics, physics, and computer programming (Berthold & Renkl, 2009; 

Catrambone & Yuasa, 2006; Hilbert, Renkl, Kessler, & Reiss, 2008; Moreno, 2006). Typically, 

there are three components: the problem statement, the solution steps undertaken, and the 

solution (Atkinson et al., 2000; Renkl, Stark, Gruber, & Mandl, 1998). When initially learning in 

a new domain, studying a worked example can be an effective way to help novices learn to solve 

problems (Sweller, 2006). Nearly 20 years of research has consistently shown that worked 

examples not only represent a highly-valued source of instruction by learners (e.g., LeFevre & 
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Dixon, 1986; Pirolli & Anderson, 1985; Recker & Pirolli, 1995) but an effective one as well (for 

an overview see Atkinson et al., 2000). Worked examples are particularly effective for novice 

learners who have low prior knowledge of the domain (Kalyuga, Ayres, Chandler, & Sweller, 

2003; Kalyuga, Chandler, & Sweller, 2000; Kalyuga, Chandler, Tuovinen, & Sweller, 2001). 

Compared to solving problems on one’s own, studying worked examples leads to greater 

learning among novices in many domains: in third grade arithmetic (Mwangi & Sweller, 1998), 

in high school and university algebra (Carroll, 1994; Sweller & Cooper, 1985); high school 

geometry (Paas & van Merriënboer, 1994; Tarmizi & Sweller, 1988); university statistics word 

problems (Quilici & Mayer, 1996); and university-level engineering courses, such as series and 

parallel electrical circuit analysis (Reisslein, Atkinson, Seeling, & Reisslein, 2006); geometric 

optics and kinematics (Ward & Sweller, 1990); and electrical circuits troubleshooting (van Gog, 

Paas, & van Merriënboer, 2006). Overall, learning from worked examples is more effective for 

problem-solving skill acquisition by novices than simply engaging in problem-solving alone. 

This benefit has been formalized by Sweller, Merrienboer, & Paas (1998) as the worked example 

effect. 

Learning from worked examples has been shown to be especially important and effective 

during initial skill acquisition within well structured domains (e.g. physics, mathematics, 

programming) (Atkinson et al., 2000; Moreno, 2006). Worked examples can be useful because 

novice learners often attempt to solve problems by analogy. They use problems they already 

know how to solve as examples, find relationships and similarities between the known and new 

problems, and apply problem-solving strategies from the known examples to solve new 

problems. Overall, worked examples provide students with an example to use as an analog when 

solving a new problem type. This then frees working-memory and attentional resources to 

process structural aspects of the problem instead (Van Lehn, 1998). Carefully designed worked 
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examples can help learners go from a novice state, support the acquisition of the structural 

foundations and problem solving procedures of the domain, and bootstrap the learner into a more 

advanced knowledge state (Anderson et al., 1997).  

Focused Processing of Worked Examples 

Although studying worked examples is beneficial for learning (Atkinson et al., 2000; 

Sweller, 2006), these benefits are even greater when there are built-in requirements for direct 

student input and engagement, or focused processing (Atkinson & Renkl, 2007). Researchers 

who advocate for focused processing assume that knowledge cannot be imparted on learners but 

instead must be actively constructed via information processing in working memory (Berthold & 

Renkl, 2010; Robins & Mayer, 1993). If they are not explicitly instructed to do so, some novice 

learners will engage with examples in a passive or superficial manner (Renkl, 1997). It is not 

common for novices to spontaneously engage in focused cognitive processing of examples, such 

as engaging in elaboration or comparison (Chi, Bassok, Lewis, Reimann, & Glaser, 1989; 

Gerjets, Scheiter, & Catrambone, 2006; Renkl, 1997). They may not be able to identify the most 

important information in the example and instead attend to irrelevant features (Ross, 1989). 

Novice learners also may succumb to an illusion of understanding, falsely believing that they 

understand the example (Renkl, 1999). For these reasons, novices benefit from scaffolds that 

support focused processing of worked examples.  

Several studies have explored ways to scaffold focused processing when learning from 

worked examples (Atkinson et al., 2000; Moreno, 2006; Paas & van Gog, 2006; Renkl, 2002). I 

define focused processing as instructional scaffolds that focuses the learners’ attention and 

encourages them to process relevant information. For example, prompting learners to generate 

explanations (i.e. self-explain) while studying worked examples facilitates greater learning of a 

computer programming language than studying the same examples with the answers to the 
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explanation prompts provided (Catrambone & Yuasa, 2006). Other focused processing scaffolds 

include finishing incomplete worked examples with missing solution steps (Reisslein et al., 

2006; Stark, 1999), labeling problem solving step subgoals (Catrambone, 1996, 1998), and 

explicitly linking and mapping different representations within the example (such as labeling a 

geometry diagram with the related algebraic formula) (Berthold & Renkl, 2009; Tarmizi & 

Sweller, 1988; Ward & Sweller, 1990; see also: Catrambone & Yuasa, 2006; Große & Renkl, 

2006; van Gog et al., 2006). Prompting students to engage with and process relevant features of 

worked examples is a key facet of the worked example effect. 

In an effort to highlight what relevant aspects the learners should be encouraged to 

process, Renkl & Atkinson (2007) proposed a focused processing stance that specifies that 

learners should focus their processing on the central concepts to be learned (e.g., mathematical 

theorems, physics laws) (Berthold & Renkl, 2010; Wittwer & Renkl, 2008). For example, 

learners should focus their processing on understanding geometric principles, not on identifying 

which phase of the proving process the example is in (Hilbert et al., 2008).  

When prompts focus learners’ processing on the central concepts, learning outcomes are 

improved. For example, when high school students learning about probability theory completed 

focused processing prompts in the form of “why” questions about concepts within provided 

instructional explanations, conceptual knowledge and transfer ability was greater at posttest 

relative to students learning without the focused processing prompts (Berthold & Renkl, 2008).  

However, this line of research has revealed limitations to focusing processing on 

concepts alone. Berthold, Röder, Knörzer, Kessler, & Renkl (2011) had novice university tax law 

students work through an e-learning module with focused processing prompts on underlying 

concepts (i.e. prompts to generate conceptually-oriented explanation) and a control group that 

did not have these prompts. Inclusion of focused processing prompts lead to a positive effect for 
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conceptual knowledge, as hypothesized. Importantly, there was a simultaneous negative effect 

for knowledge of problem solving procedures. The students who did not receive the focused 

processing prompts had significantly higher procedural knowledge scores at posttest. This same 

pattern of results was also found in a similar study by Berthold & Renkl (2009). Focused 

processing of concepts, though beneficial for learning these concepts, actually detracted from 

learning problem solving procedures. This is problematic, as learning both concepts and 

procedures are necessary for complete understanding. This highlights an important limitation of 

Renkl & Atkinson’s (2007) focused processing stance.  

Focused Processing of Concepts and Procedures 

The goal of specifying what learners should focus their processing on is important. 

However, the focused processing stance of Renkl & Atkinson (2007) needs to be refined. I 

propose to widen the scope of critical features of the domain beyond concepts to combat the 

negative effects on procedural knowledge. In particular, I propose that processing should also be 

focused on assigning meaning to values within problem solving procedures. 

Focusing attention on the meaning behind procedures entails understanding the goals of 

the steps in the procedure and how the specific operators (e.g. addition or subtraction) within the 

procedure accomplish these goals. This combination between the goals and the operators that are 

necessary to accomplish these goals has been formalized as goal-operator combinations. 

Understanding the link between the goal and the operators is key. Goal-operator combinations 

are "a way by which a learner can assign meaning to operators by identifying the subgoals 

achieved by those operators” (Renkl, 2011). For example, in a probability problem, the goal-

operator elaboration might be: By subtracting (an operator) the probability of red items from 1, 

we get the probability of non-red items (the goal). Considering goal-operator combinations 

fosters the representation of goals (and sub-goals) to be achieved, including how the steps and 
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operations within the procedure achieve these goals. Several studies suggest that elaborations on 

goal-operator combinations in worked examples foster transfer to novel problems (Catrambone, 

1996; Chi et al., 1989; Conati & Van Lehn, 2000; Renkl et al., 1998; Renkl, 1997). For example, 

elaborations on goal-operator combinations during learning (e.g. “Through this multiplication we 

get the probability of tiles with color and form faults”) was positively correlated with post-test 

performance, particularly for transfer (Renkl, 1997).  

One way to foster processing of goal-operator combinations is to require leaners to 

determine missing problem-solving steps within incomplete worked examples. With this 

requirement, learners must reflect on what the goal of the problem-solving step is, and how the 

values and operators accomplish the goal. Indeed, having learners to fill in missing problem-

solving steps improves learning and transfer relative to studying complete worked examples 

(Reisslein et al., 2006; Stark, 1999).  

Unfortunately, novices often fail to attend to goal-operator combinations when studying 

worked examples. They often do not gain a deep understanding of how the solution steps relate 

to and achieve the problem solving goals (Chi et al., 1989; Renkl, 1997). Thus, prompting 

novices to focus on goal-operator combinations should foster deeper knowledge of procedures 

and how they link to the concepts of the domain.  

To address the limitations present in the focused processing stance of Renkl & Atkinson 

(2007), I propose a Modified Focused Processing Stance. To maximize learning outcomes, 

learners should be scaffolded to process both the primary concepts to be learned, as well as goal-

operator combinations within problem solving procedures. Processing that focuses on concepts 

involves recalling relevant concepts from the text and/or prior knowledge, and connecting them 

to the current material. Processing that focuses on goal-operator combinations involves assigning 

meaning to problem-solving steps by identifying how the operators achieve the relevant goals 
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(Catrambone & Yuasa, 2006; Renkl, 1997). The quality of focused processing a learning activity 

elicits can vary as a function how much or how deeply a learner engages with the concepts and 

goal-operator combinations.   

If focused processing is an effective conceptualization, then instructional materials that 

elicit more or less of it (i.e. manipulate the quality of focused processing) should result in 

correspondingly higher and lower quality learning outcomes. Overall, this Modified Focused 

Processing Stance contains more breadth than either a focus on concepts or goal-operator 

combinations alone. It is hypothesized to overcome the limitations of the focused processing 

stance of Renkl & Atkinson (2007).  

The current study will investigate two different types of focused processing 

modifications, each designed to elicit higher and lower quality focused processing. The study 

focuses on improving worked examples for helping novices learn introductory statistics. 

However, this framework could be applied more widely to other instructional domains.   

Quality of focused processing could be varied in many ways. Two considerations are 

whether or not learners generate information, as opposed to reading it, and if the generated 

information requires inferences beyond the given information or is simply a summary without 

inference. Do learners generate explanations of underlying concepts or read explanations 

provided by others? Do learners generate missing information that requires an understanding of 

goal-operator combinations, that are central to understanding; or do they generate more shallow 

missing information that can be discerned locally, without assigning meaning or linking to goals 

and concepts? The higher quality information the learner generates, the greater his/her focused 

processing. This study uses two methods to varying the quality of focused processing. Each 

method is considered in turn.  
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Method 1: Reading Instructional Explanations With or Without Prior Self-Explanation 

Including or inducing explanations of underlying concepts is one effective way to 

improve learning from worked examples (see Atkinson & Renkl, 2007 for a review; Berthold & 

Renkl, 2010; Wittwer & Renkl, 2010). Indeed, explanations are considered a critical feature of 

effective learning from worked examples (Atkinson & Renkl, 2007; Renkl, 2011). 

Since worked examples explicitly lay out procedural problem solving steps, they are at 

times augmented with instructional explanations that justify the steps or provide conceptual 

information supporting those steps (Atkinson et al., 2000; Bielaczyc, Pirolli, & Brown, 1995; 

Paas & van Gog, 2006). Instructional explanations can be thought of as an attempt to give 

answers to questions that are implicitly or explicitly posed by learners or teachers, and are 

designed for the purpose of teaching (Duffy, Roehler, Meloth, & Vavrus, 1986; Leinhardt & 

Steele, 2005; Leinhardt, 2001; Treagust & Harrison, 1999).  

Indeed, providing novices with explanatory information might be necessary for high-

quality learning. Novices have insufficient prior knowledge to gain a high quality understanding 

from worked examples alone (Kirschner, Sweller, & Clark, 2006; Renkl, 2002; Wittwer & 

Renkl, 2008). Instructional explanations may help contextualize the problem solving steps into 

the larger learning domain and enhance understanding of solution procedures. That is, they 

enhance understanding of why solution steps are effective and/or of when they should be 

applied. Several studies have shown that the integration of instructional explanations into worked 

examples benefits learning compared to worked examples without instructional explanations 

(Catrambone, 1998; Gerjets et al., 2006; Schworm & Renkl, 2006; Stark, Mandl, Gruber, & 

Renkl, 2002). In a recent meta-analysis, providing instructional explanations in addition to 

worked examples is particularly effective for supporting knowledge of concepts compared to 

worked examples alone (Cohen's d = 0.36; Wittwer & Renkl, 2010). 
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However, instructional explanations can be ineffective when focused processing of them 

is not supported. Processing the instructional explanation seems to be key. For example, solving 

a follow-up question using the information in an instructional explanation was the strongest 

predictor of learning outcomes in a study on group mathematics learning in an elementary 

classroom (Webb & Farivar, 1999). Several studies have found instructional explanations to have 

no positive effects on learning outcomes (e.g. Chi, 2000; GroBe & Renkl, 2006; Hausmann & 

VanLehn, 2007; VanLehn, Siler, Murray, Yamauchi, & Baggett, 2003; Webb 1989). In a review 

of 21 studies of instructional explanations embedded within worked examples, Wittwer & Renkl 

(2010) noted large variability in whether the provision of instructional explanations aided 

learning across studies. There are several proposed reasons they may sometime be ineffective. 

One reason may be because novice learners often read them in a passive way, resulting in 

superficial processing (Berthold & Renkl, 2010). Instructional explanations may even lead to 

inhibition of other focused processing activities. For example, Schworm & Renkl (2006) found 

that the provision of instructional explanations decreased the amount of self-explanation activity 

(i.e., generating explanations to oneself in an attempt to make sense of new and known to be 

correct information (Chi, 2000)).  Further, instructional explanations may cause an illusion of 

understanding, in which learners falsely believe they understand the material better than they 

actually do (Atkinson et al., 2000). This may reflect the "double curse of incompetence", where 

novice learners not only lack the to-be-learned information, but also lacks the metacognitive 

awareness of this deficiency (Dunning, Johnson, Ehrlinger, & Kruger, 2003). Wittwer & Renkl 

(2008) emphasized that instructional explanations should not replace learners' active or focused 

processing activities.  

Instead of reading provided instructional explanations, learners can be prompted to 

generate their own explanations. This process is called self-explanation, and it often increases 
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learning and transfer relative to not generating explanations (Chi, Leeuw, Chiu, & Lavancher, 

1994; Fonseca & Chi, 2011; Rittle-Johnson, 2006). Self-explanation has been demonstrated as an 

effective learning technique in young children playing checkers (Calin-Jageman & Ratner, 

2005), school-aged children learning mathematics (Matthews & Rittle-Johnson, 2009; 

McEldoon, Durkin, & Rittle-Johnson, 2013; Siegler & Lin, 2010; Wong, Lawson, & Keeves, 

2002), high school and university students learning physics and probability (Große & Renkl, 

2004; Hilbert et al., 2008), and student teachers learning how to design effective lessons (Große 

& Renkl, 2006).  

Self-explanations vary in quality. Explanations that contain inferences about concepts, 

goal-operator combinations, or that anticipate upcoming problem-solving steps were related to 

greater learning outcomes (e.g. Chi et al. 1989; Renkl, 1997). However, generating such high-

quality explanations can be difficult during initial skill acquisition. Novice learners may not have 

sufficient prior knowledge to produce these types of explanations. Often, novice learners produce 

vague or incorrect self-explanations, and this can impede or even harm learning (Berthold & 

Renkl, 2009; Conati & Van Lehn, 1999; Renkl et al., 1998). For example, when fourth-graders 

engaged in the challenging task of identifying causal effects by investigating a database, prompts 

to self-explain were actually detrimental to casual inference performance (Kuhn & Katz, 2009). 

This result is likely due to the students having insufficient prior knowledge to make productive 

use of the prompts to self-explain. 

In sum, both instructional- and self-explanations both have their benefits and drawbacks. 

Combining self- and instructional-explanations may be one way to harness the benefits of both 

and promote more focused processing of worked examples. 

Indeed, engagement with instructional explanations increases when used in combination 

with self-explanation prompts. For example, in a study on probability learning in high school 
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students, worked examples and instructional explanations were provided with and without 

additional self-explanation prompts. Answering the self-explanation prompts required integration 

of the instructional explanations with the learners’ prior knowledge and the learning 

environment. The combination of instructional- and self-explanations resulted in an increased 

discussion of domain principles and conceptual knowledge relative to optional note-taking and to 

no self-explanation prompts (Berthold & Renkl, 2010). If instructional explanations are used in 

tandem with self-explanations to increase focused processing by learner, they can be more 

effective as an instructional tool than unguided note-taking (Berthold & Renkl, 2010; Wittwer & 

Renkl, 2008). The roles can be reversed, and instructional explanations can augment self-

explanations as well. In a study with high school students learning with a geometry cognitive 

tutor, if a student’s self-explanation was incorrect, they were provided with instructional 

explanations, or hints, that became successively more directive if the student continued to 

struggle. This combination of self- and instructional explanations was more effective for correct 

problem solving, reasoning, and judgments about problem types than no explanation prompts at 

all (Aleven & Koedinger, 2002).   

This study contrasts instructional explanations with and without prior self-explanation 

prompts. Is it best to provide a novice with instructional explanations immediately? Or is it best to 

prompt them to self-explain first, even though they may generate poor quality explanations, and then be 

presented with the instructional explanation so that they can revise their initial ideas? The learners in both 

cases ultimately receive the same instructional explanation. However, the second scenario entails a higher 

quality of focused processing, as the student generates an explanation. When students are asked to 

generate an explanation, they activate their prior knowledge and build an initial problem representation. 

When they are then given the instructional explanation and asked to self-correct their explanations, they 

are able to update their representation and correct their misconceptions. Overall, having learners generate 

their own explanations (i.e., prompts to self-explain) before receiving an instructional explanation should 
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increase the quality of focused processing and subsequent learning than receiving instructional 

explanations immediately. 

Method 2: Incomplete Worked Examples with Gaps in Goal-Operator Combinations vs. 
Computations 

In addition to focusing on underlying concepts, novices need to focus on important 

aspects of the problem solving procedure, such as goal-operator combinations. One way to focus 

attention on goal-operator combinations is to omit key values from the worked example, and 

require the learner to fill them in (e.g., incomplete worked examples) (Paas, 1992; Stark, 1999; 

van Merriënboer & De Croock, 1992; van Merriënboer, 1990). In general, completing missing 

information in worked examples has been shown to increase learning and transfer in novices 

relative to studying complete worked examples (Otieno, Freiburg, Schwonke, & Renkl, 2011; 

Renkl, Atkinson, & Große, 2004; Renkl, Atkinson, Maier, & Staley, 2002; Renkl, 2002; 

Schwonke et al., 2009; Schwonke, Renkl, Salden, & Aleven, 2011; Schworm & Renkl, 2006). 

Studies vary in what information is left incomplete for learner to fill in. These completion 

requirements encourage the learner to process the material in a more focused and meaningful 

way.  

One promising approach is to leave incomplete information that must be inferred from 

other parts of the worked example. The learner must engage in mapping and integrating 

information across different parts of the worked example in order to complete the missing 

information (Atkinson, Renkl, & Merrill, 2003; Hilbert et al., 2008; Renkl et al., 2004; Renkl, 

2002; Stark, 1999). These incomplete aspects (i.e., gaps) require the learner to search across the 

other representational features of the worked example (ranging from other solution steps, the 

problem statement, diagrams, or databanks), interpret their meaning, and map this meaning onto 

the current step in the problem solving process. In other words, they must infer the goal of the 

operators in the current step. Thus, incomplete worked examples can facilitate links between the 
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goals that the operators within the procedural problem-solving steps accomplish.  

Despite these benefits, incomplete worked examples are not always more effective than 

fully worked examples. This is likely true because in these studies, the incomplete information 

was not focused on the central idea of integrating knowledge of goal-operator combinations 

(Hilbert et al., 2008; Schwonke et al., 2011). For example, gaps that focused on what stage of the 

proving process a geometry proof was in actually hindered learning relative to study of the same 

worked example without these gaps (Hilbert et al., 2008). One explanation for these results is 

that identifying the phase of the proving process is not central to the learning domain of proof 

generation.  

The effectiveness of incomplete worked examples should depend on what is incomplete, 

although past research has not tested this directly. I propose that gaps should direct the learner to 

focus on aspects of the worked example that are central, not peripheral, to understanding. 

Specifically, gaps should foster an understanding the goal of the problem-solving step, and how 

the values and operators within it achieve this goal.  

The current study contrasts incomplete worked examples with two different types of 

incomplete information. In one condition, the incomplete information focuses the learner on the 

goal-operator combinations of particular problem-solving steps; ideas that are central to learning. 

These gaps can be completed by integrating information across several aspects of the worked 

example, such as the dataset, supplemental definitions, or other worked example steps. This is 

accomplished through missing intermediate values within problem-solving steps. In the other 

condition, the gaps require the processing of information that can be considered peripheral to 

learning. The incomplete information can be readily determined by looking only within the 

immediate problem-solving step, and the goal need not be clear to the learner to be successfully 

completed. This is accomplished through missing final values within problem-solving steps. I 
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hypothesize that completing intermediate gaps within worked examples will lead to stronger 

learning outcomes than completing final gaps that do not facilitate processing of goal-operator 

combinations.  

The Current Study 

The guiding idea of the current study is that instructional scaffolds that elicit a higher 

quality of focused processing on concepts and procedures when studying worked examples 

should elicit more effective learning outcomes. This study contrasts the learning benefits of 

instructional materials that scaffold more and less focused processing. The current study 

modified the level of focused processing by manipulating (a) whether students receive prompts 

to self-explain before receiving instructional explanations or are prompted to simply copying or 

paraphrase the instructional explanations and (b) whether the missing values within problem-

solving steps are intermediate or final values that do and do not focus on goal-operator 

combinations, respectively.  

Learning Context 

The learning domain for this study was analysis of variance. Understanding analysis of 

variance is often the summative lesson within introductory statistics, and provides a strong 

foundation to understanding and interpreting statistics in general. It is often reported as one of 

the most challenging topics to teach to introductory statistics students (Gelman, 2005). For this 

reason, analysis of variance is an exemplary domain for investigating improvements in 

instructional practice.  

Analysis of variance was also an ideal topic for the current study in regard to the 

students’ knowledge level. At this point in the course the students had sufficient conceptual 

background knowledge of inferential statistics, and had sufficient procedural skills to calculate 

and understand all the subcomponents of an ANOVA calculation. However, the high-level idea 
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of partitioning variance and using it to infer effects was a new idea, as were the specific 

computational procedures for doing so. The first lesson topic was one-way ANOVA, and the 

second lesson topic was two-way ANOVA. The learning materials were worked examples for 

calculating an ANOVA from raw data.  

This research was conducted in a classroom context, and the manipulation was a part of 

normal course activities. Many of the ideas and theories this study is based on are a result of 

laboratory work. However, research within classrooms is important as well. Models for practical 

problem-solving in real-world contexts could not be developed "without reiterative cycles of 

both laboratory and non-laboratory based studies" (pp. 37, Scribner, 1984).  

Experimental Conditions 

 In both conditions, students worked through a worked example of how to calculate an 

ANOVA. The example was broken down by sub-goal, with intermittent self-explanation prompts 

that pertained to the calculations that were just preformed. 

More Focused Processing Condition. In the More Focused Processing Condition 

(moreFP), students were required to a) determine missing intermediate values within problem-

solving steps that linked goals and operators, and b) generate self-explanations before receiving 

instructional explanations.  

In this condition, intermediate values within the problem-solving steps were blank. For 

example, in the worked solution steps for the mean square among groups, they have to fill in 

MSag = _____ / _____ = 15.125. In order to complete this, the learner has to refer to other 

aspects of the worked example, such as the generic algebraic formula for MSag (SSag/dfag), the 

dataset (e.g. to find the correct value of the dfag), the definition bank (e.g. what the mean square 

among groups represents), and the previous worked solution steps (e.g. the resulting value for 

SSag). In doing so, the learner determines and assigns semantically meaningful values to the gaps 
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in the solution step that relate the operators (i.e., what values are the numerator and denominator 

in this particular solution step) and the goals (i.e., what these values represent, and how the 

operation of division relates to the meaning of the resulting MSag value) of the particular step.  

After determining the intermediate values for a few sub-goals, the students respond to a 

set of self-explanation prompts that pertain to the problem-solving steps they just completed. 

When they complete working through the worked example and all the self-explanation prompts, 

they are given the complete worked example and instructional explanations (i.e. the 'answers' to 

the gaps and explanation prompts). Students are then asked to go back and correct their original 

gap values, and correct, edit, or modify their self-explanations so that they are correct and 

contain all relevant information contained within the instructional explanations. 

Less Focused Processing Condition. In the Less Focused Processing Condition (lessFP), 

students are required to determine missing final values within problem-solving steps that did not 

link goals and operators, and receive instructional explanations and then copy or paraphrase 

them.  

In this condition, final (rather than intermediate) values of the worked example steps are 

blank. For example, in the worked solution steps for the mean square among groups, they have to 

fill in MSag = 48.4 / 3.2 = ____. In order to complete this, the leaner can focus on the other 

values within the specific step of the worked example to calculate the final value. While 

processing is occurring, it does not require the learner to assign meaning to the values or process 

the relationship between the procedural operators and the goal each problem-solving step 

achieves.  

After determining the final values for a few sub-goals, the students read a set of 

instructional explanations that pertain to the problem-solving steps they just completed. When 

they complete working through the worked example and read all the instructional explanations, 
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they are asked to correct their final values within the worked example and copy or paraphrase the 

instructional explanations to foster processing the content of the instructional explanations. This 

provides a rigorous control condition.   

Hypotheses 

I hypothesize that the More Focused Processing (moreFP) learning activities will support 

greater learning gains in both knowledge of procedures and concepts than the Less Focused 

Processing (lessFP) learning activities. These learning gains should be evident at both 

immediately and several days later.  
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CHAPTER II 

METHOD 

 

Participants 

Participants were 74 undergraduate students enrolled in an Introductory Statistics course 

in psychology at Vanderbilt University. This was most students' first exposure to statistics, so 

students could reasonably be considered novices. Because this was a part of normal classroom 

practice, securing participant consent was not needed. Instead, IRB exempt-status approval was 

secured.  

Students were randomly assigned to condition. There were 36 students in the moreFP 

condition (28 female, 8 male), and 38 students in the lessFP condition (28 female, 10 male). 

Students were assigned to the same condition for the entire study. There was an equal 

distribution of students in each class year between conditions (moreFP: 15 first year, 13 

sophomore, 4 junior, 4 senior; lessFP: 14 first year, 14 sophomore, 7 junior, 3 senior). The 

students had similar performance prior to the occurrence of the manipulation on both exam one 

(moreFP: M = 153.2 (sd = 15.8) vs. lessFP: M = 145.3 (sd = 32.0), F(1,72) = 1.732, p = .192) 

and exam two (moreFP: M = 190.6 (sd = 48.1) vs. lessFP: M = 188.8 (sd = 50.3), F(1,72) = 

0.026, p = .872).  

All students participated in the study, as it was a part of regular classroom activities. Due 

to this, there were some absences and consequently some participants were dropped from some 

analyses due to missing data. There were no differences in exam one and two scores between 

participants who completed all activities (N=63; lessFP = 31, moreFP = 32) and those who did 

not (N = 11) (F(1,72) = 0.19, p = .665; F(1,72) = 0.004, p = .947).  



 

 19 

Sample Size & Power 

An a priori power analysis was conducted to determine the ideal sample size. Assuming a 

moderate effect size of Cohen’s D = 0.45, an alpha level of 0.05, a power level of 0.80, and a 

correlation between repeated measures of 0.5, a sample of 120 participants would be required to 

detect a condition difference. Assuming a large effect size of Cohen’s D = 1.13 (as found in 

Fonesca & Chi, 2009), a sample of 22 participants would be required. Thus, the current sample is 

large enough to detect a large effect but is underpowered to detect a moderate effect.  

Research Design 

Students participated in a pretest, intervention, immediate posttest, and delayed retention 

test for two different topics. During the intervention, all students worked through packets that 

contained worked examples and instructional explanations. Students were randomly assigned to 

one of two conditions: (a) Less Focused Processing (lessFP, N = 38) received incomplete 

worked examples that had missing final values (do not focus on goal-operator combinations) and 

were asked to copy or paraphrase instructional explanations, and (b) More Focused Processing 

(moreFP, N = 36) received incomplete worked examples that had missing intermediate values 

(do focus on goal-operator combinations) and self-explained before they received instructional 

explanations. All activities occurred during 2 weekly discussion sessions of the course. 

Materials 

The topic for week one was one-way ANOVA, and for week two was two-way ANOVA. 

For each topic, intervention worksheets and assessments were developed, including a pretest, 

immediate posttest, auxiliary surveys, and retention test. All materials can be found in Appendix 

A.    
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 Intervention Materials 

 Intervention worksheets were based on the existing instructor-created worksheets already 

planned for that week. The existing worksheets were incomplete worked examples. The worked 

examples guided students through calculating an ANOVA from raw data. First they calculated 

the sum of squares, then the mean squares, then the appropriate F-values, and were brought 

through the interpretation process. Missing values in the calculations needed to be filled in by 

students. In collaboration with the instructor, I wrote accompanying instructional explanations to 

help facilitate understanding of the worked examples, which were given to students in both 

conditions. 

The worksheets were modified into an less focused processing version that required the 

learners to complete final values within the worked examples and to read and copy instructional 

explanations, and a more focused processing version that required the learners to complete 

intermediate values within the worked examples and to first generate self-explanation and then 

correct their explanations using the instructional explanations. 
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Figure 1. Worked Example Layout from MoreFP Condition 

	
  

Worked Examples. Many features of the worked examples were the same across 

conditions. The worked example consisted of several parts. There was a problem statement, a 

data set, worked example steps presented by sub-goal, the actual worked example steps with 

values from the problem statement, and a summary table to collect the final values (see Figure 

1). The definition sections had blanks that all learners were asked to fill in. These were very 

simple blanks to ensure the learner attended to and could reproduce the information contained 

within the definition (e.g. The abbreviation for the mean square within groups is: __[MSwg]__). 

The worked examples had subgoals grouped together, such as sum of squares total, sum of 

squares among group, and sum of squares within group. Subgoal grouping has been shown to be 
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effective in supporting novice learning (Atkinson et al., 2000; Catrambone, 1998).  

All aspects of the worked example were the same across conditions, with the exception of 

which values were missing within the problem-solving steps in the calculations section.  

LessFP Worked Examples. The gaps within the worked example required the learner to 

calculate the resulting final value for particular steps within the worked example. All the 

information necessary to correctly complete the gap was contained locally within that particular 

problem-solving step. In part two these correct values were filled in. 

MoreFP Worked Examples. These worked examples also contained gaps, but these gaps 

were of intermediate values within the solution step. In order to correctly fill in these gaps, the 

learner would have to gather and integrate information from various sources within the worked 

example in the service of combining goals and operators. In part two these correct values were 

filled in. 

 

 

Figure 2. An Instructional Explanation 

 

Instructional Explanations. After each grouping of subgoals of the worked example, 

there were supplemental instructional explanations. The instructional explanations were framed 

as 'thought questions’ (explanation prompts) and ‘answers' (either instructional- or self- 
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explanations). See Figure 2. They provided information about the goal of the particular 

operations (Gerjets et al., 2006) and concepts, which are rationales underlying specific problems 

(van Gog et al., 2006; Wittwer & Renkl, 2010) (e.g. "How does the F-ratio quantify the 

treatment effect? The F-ratio divides the MSAG by the MSWG. The MSWG contains the variability 

due to the treatment effect and noise..." and "What main idea are these Sums of Squares 

capturing? The main idea is that we are capturing the amount of variability in the data..."). Both 

types of instructional explanations have been used effectively in prior research, with meta-

analytic effect sizes of 0.92 and 0.17, respectively (Wittwer & Renkl, 2010). In both conditions, 

participants studied the same instructional explanations. However, the way in which the 

instructional explanations were presented was manipulated between conditions.   

 Intervention Worksheet Answer Keys. At the end of each intervention session, both parts 

one and two were collected for analyses. Students were given an answer key for the worksheet 

they completed during the intervention. These were for them to study from, as was in line with 

typical class practice.    

Assessments 

The assessments were designed to tap the students’ understanding of both procedural and 

conceptual aspects of analysis of variance. An understanding of procedures entails knowing the 

formulas and values needed to successfully execute action sequences for problem solving 

(Anderson, 1993; Rittle-Johnson & Alibali, 1999). An understanding of concepts entails an 

understanding of principles governing a domain and the interrelations between units of 

knowledge (Bisanz & LeFevre, 1992; Greeno, Riley, & Gelman, 1984; Rittle-Johnson, Siegler, 

& Alibali, 2001). These materials were designed in collaboration with the course instructor and 

content-area experts. The instructor, two fifth-year Quantitative Psychology PhD students, and 

three undergraduate research assistants who have already completed the course provided input to 
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develop and refine these materials.  

 Pretest. The pretest items captured the amount of pre-existing knowledge the student had 

of the topic, and was designed to take fewer than 5 minutes to complete. The items asked: 1) At a 

high level, how does an one–way ANOVA determine if there are differences between groups? 2) 

Briefly list the steps needed calculate an one–way ANOVA; and 3) How do the steps involved in 

an one–way ANOVA answer the question we are trying to test? The pretest items for week two 

were the same but one-way ANOVA was replaced with two-way ANOVA.  

 Posttest Items. The immediate posttest contained items that were adapted from the course 

textbook, other textbook series and assessment resource books. They tapped an understanding of 

the concepts and procedures that underlie ANOVA that were outlined in the intervention activity. 

Items that focused on knowledge of procedures required various modifications of the procedure 

(e.g. determining the SSWG by subtracting SSAG from SSTOT instead of calculating it from the raw 

data). All posttest procedural items therefore could be considered procedural transfer items. The 

conceptual knowledge items tapped participants' ability to explain the principles that underlie the 

example they just studied (Wittwer & Renkl, 2010), (e.g. When the amount of variability within 

groups increases, but the amount of variability among groups stays the same, the value of the F-

ratio (increases/decreases). Why?). Items required that the learner make a conceptual inference, 

provide justifications, or apply or adapt a problem solving procedure. Response formats included 

short answer, multiple choice, or numeric answers. See Appendix A for the complete assessment. 

The week one posttest contained 15 items and the week two posttest contained 28 items. 

Retention Test Items. The retention items were similar to those on the posttest, but not 

identical. The week one retention contained 20 items, and the week two retention contained 25 

items. 
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Auxiliary Survey Measures 

The learners were presented with Likert-scale rating items that assessed self-reported 

cognitive load, depth of processing, and perceived helpfulness. These measures were designed as 

manipulation checks. 

Cognitive Load Scale. Cognitive load refers to any demands on working memory storage 

and processing of information (Schnotz & Kürschner, 2007). These items tapped the amount of 

cognitive load the learner experiences during learning. This was used as a metric of learners' 

cognitive processing activity. Seven items were adapted from the subjective rating of mental 

effort and of task difficulty by (Paas, 1992), such as "In solving or studying the preceding 

problem I invested: (very low to very high) mental effort." A total cognitive load score was 

calculated by determining the average rating for each participant, and then comparing these 

scores between conditions. The moreFP condition was expected to report higher cognitive load. 

Active and Constructive Activity Scale. These self-report items were used to identify level 

of 'active' and 'constructive' activity undertaken by the learner, following the definitions set forth 

by Chi (2009). An active activity requires the learner to select or manipulate the learning 

materials. A constructive activity requires the learner generate new information beyond what is 

provided in the learning materials. It is hypothesized that constructive learning activities result in 

superior learning gains than active activities. These items were adapted with permission from 

Bujak (2010). This framework posits that activities included in the moreFP condition require 

more constructive activities than those in the lessFP condition (who utilize primarily active 

activities) (Chi, 2009). As such, these items were used as a measure of amount and type of 

cognitive processing undertaken by the participants. Statements about active or constructive 

cognitive processing were presented, such as “I identified the most important ideas” (active) or 

“I connected the text to ideas I already know” (constructive). Participants were asked to rate the 
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frequency with which they engaged in each of these activities either overtly or covertly on a 5-

point Likert scale. There were 6 constructive items and 5 active items, and separate scores on the 

two scales (constructive and active) were calculated by determining the average rating on each 

scale for each participant. These scores were then compared between conditions. The conditions 

were expected to have equal levels of ‘active’ processing, and the moreFP condition was 

expected to have higher levels of ‘constructive’ processing. 

Perceived Usefulness Scale. These 6 items tapped the amount of perceived usefulness of 

the worked examples and instructional explanations. These were included because often learners 

perceive instructional explanations to be very helpful, even if they are not as useful for 

increasing knowledge as self-explanation prompts (Schworm & Renkl, 2006). These items 

concern the perceived usefulness of the learning environment and the subjective learning 

outcomes. The items were answered on a Likert scale from 1 (does not apply at all) to 6 (totally 

applies), as in Schworm & Renkl (2006). The items included statements such as 'These 

calculations helped me to understand ANOVA'. Other items tapped subjective usefulness of the 

materials such as 'I will think of these thought-questions when solving ANOVA problems in the 

future'. These items achieved good reliability in prior work. Students in the two conditions 

provided similar ratings in week one. Due to time constraints, these items were omitted from 

week two materials. As the conditions did not differ in their week one ratings, this scale will not 

be discussed further. 

Procedure 

This study took place during the last third of the course and was primarily carried out 

during 2 lab sections. Students attended professor-led lectures twice a week, and met in smaller 

teaching assistant-led lab sections of about 12 students once a week. The three teaching 

assistants were advanced graduate students in psychology, including myself. During the lab 
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sections, the students worked through worksheets and assessment problems on a different topic 

each week. On each 50 minute lab section day of the study, students completed a pretest, the 

intervention activity, the immediate posttest and auxiliary surveys. A retention test was 

administered in class 4 days later. The first and second lab sections occurred 3 weeks apart due 

to a university-wide holiday break. 

Instructions were written on the board, along with timeline guides for each section. A 

large digital clock was displayed on a computer monitor for the students, and all students were 

asked to note the time when they began and finished each part of the study materials. In line with 

the activities that took place during the normal course lab sections, work was not graded but 

students were told to do their best. All students brought and used calculators. See Appendix B for 

intervention day teaching assistant scripts. 

Students completed the pretest, turned it in, and then began on the part one worksheet. In 

part one, students were asked to complete the missing values within the worked example and 

read instructional explanations.  

LessFP. In part one, lessFP participants were asked to complete the fill-in-the-blanks in 

the definitions and calculate the final value of each step of the worked example. They also 

received instructional explanations in part one and were asked to read them carefully. When a 

student completed part One, they were given part two and a purple pen. They students were 

asked to use the purple pen for all their work from then on, because correcting or modifying their 

work on part one would be required and this distinction was important for analyses. In part two, 

the instructional explanations were blank, and the students were asked to copy or paraphrase the 

instructional explanations from part one into part two. This ensured the student attended to and 

processed the content of the instructional explanations.  

MoreFP. In part one, only the thought questions were presented, and students were 
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prompted to generate self-explanations as ‘answers’ to the thought questions. When a student 

completed part One, they were given part two and a purple pen. They students were asked to use 

the purple pen for all their work from then on, because correcting or modifying their work on 

part one would be required and this distinction was important for analyses. Part two contained 

the instructional explanations, which were answers to the 'thought questions' (see Figure 2). The 

students were asked to read the instructional explanations and then go back and edit, modify or 

improve their original explanation responses with the provided purple pen so that it contained all 

the main ideas presented within the instructional explanations.  

 Once the student completed and turned in both parts one and two, the students then 

completed the immediate posttest and auxiliary surveys. The next day of class, four days after 

the intervention activity, the students were given a retention test. The students were told this was 

to see how much they learned and remembered from the intervention day, and that their 

responses would not be graded. Administration took about 12 minutes.  

Missing Data 

Due to the real-world nature of this study and typical absences, not all participants were 

present for all aspects of the study. Only participants who completed the intervention and the 

retention test were included in the analyses. The pattern of findings was the same when analyses 

on the immediate posttest included all participants. See Table 1 for participant completion 

information.   
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Component N  LessFP MoreFP 
Week One 

   
 

Intervention 72 36 36 

 
Retention 62 31 31 

Week Two 
   

 
Intervention 64 31 34 

  Retention 62 30 32 
 

Table 1. Participant Completion Counts 

Coding 

Intervention Materials. Participant work on the intervention items was coded for worked 

example accuracy and explanation accuracy and quality.  

Worked example accuracy was coded. All blank aspects of each worked example were 

coded for a correct numeric response. The percentages of correctly filled-in missing values 

within the worked examples were calculated. Part one worked example accuracy was the 

percentage of initially correct filled-in values. This was determined by dividing the original 

number of correctly completed values by the number of total missing values. Part two worked 

example accuracy was the percentage of corrections the participants made after receiving the 

answer key in part two. This value was determined by dividing the number of values the 

participant corrected while checking their work by the number of total missing values. Final 

worked example accuracy was the overall percent of correct values after correction. This was 

determined by dividing the number of correctly filled in values across both parts of the 

intervention activity by the number of total missing values. For example, if a participant had a 

part one worked example accuracy score of 50%, a part two worked example correct score of 

25%, their final worked example accuracy score would be 75%. Recall that the lessFP 

participants completed missing final values, whereas the moreFP participants completed missing 

intermediate values.  
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The intervention explanation responses were evaluated. Each participant’s percent overall 

explanation quality score was calculated. All codes were assigned according to a criterion-based 

rubric. Percent valid explanation responses were determined by coding the participants’ 

responses as either invalid (0), valid (1), or high quality (2). To be considered high quality, the 

response had to include the one or two central idea contained within the correct explanation 

response, and at least 75% of all other supporting points. The percentage overall explanation 

quality score was the sum of the explanation scores divided by the maximum possible score. For 

the lessFP condition, the copied or paraphrased explanations at part two were coded. For the 

moreFP condition, explanations were coded at part one (self-explanations) and part two 

(corrected self-explanations).  

Completion & Time. Metrics of amount of time spent and subjective level of completion 

were collected for each aspect of the intervention activity. On each section of the intervention, 

students were asked to list their start and stop times. Students were also asked if they finished the 

activity, and if they would have wanted more time. Completion times in minutes and seconds 

and self-report completion rates are reported in Figure 7.  

Assessment Items. Assessment items were coded as either valid or invalid according to a 

criterion-based coding scheme. Items that had a single numeric answer were coded as valid if the 

number was correct. The 8 short answer items that required more subjective coding were coded 

using a 2 point scale– 0 if invalid, 1 point if valid but low quality, and 2 points if valid and high 

quality. This 2-point coding scheme was used to increase measurement sensitivity to the range of 

response qualities. Scores on each assessment were calculated by summing all the earned points 

on an assessment and dividing it by the possible number of points, resulting in a percent correct 

score. Total number of possible points are as follows: week one posttest and retention had 15 and 

20 points, respectively, and week two had 25 and 19, respectively. 
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Inter-rater Reliability. A reliability analysis was performed on the short-response 

assessment items because they required subjective coding. A subsample of 20% of the 

participants had their responses to these items double-coded by another researcher. Kappa 

coefficients ranged from .617 (substantial) to .944 (almost perfect; (Landis & Koch, 1977)), with 

one exception. One conceptual item on the week two posttest had only slight agreement due to 

the varied and often vague nature of student responses. This item was dropped from further 

analyses. 

Instrument Screening 

Item Analyses. Item-level analyses were preformed to evaluate the informativeness and fit 

of each item. Analyses were completed using all participants using both classical test theory and 

item response theory measures. Items were analyzed within the context of its assessment; for 

example, week one pretest items were evaluated relative to all week one pretest items as a whole. 

The items that utilized a two-point coding scheme had two entries for this analysis (one point if it 

was valid, and another point if it was high quality), as binary data was required. See Appendix C 

for item metrics and flagged items. 

The item-level analysis was used to flag items that may be uninformative or problematic. 

The following criteria were used to evaluate poor item fit: (a) if the item-total correlation was 

low (< 0.1) or negative, (b) if the item had poor outfit metrics (>2 or <.5, (c) if the item had poor 

infit metrics (>1.5) or (d) if it had a low mean score (<.10) . Items that had been flagged by 

multiple indices were considered for removal from the scales. Final exclusion decisions were 

based on an evaluation of individual item’s fit scores, with more weight given to the more 

informative indices (a) and (b). Dropped items in week one were 1 conceptual posttest item and 

6 procedural retention test items. Items dropped from week two were 3 conceptual posttest items 

and all 4 conceptual retention test items. All outcome analyses were conducted with these items 
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dropped. 

Final assessment items for week one were 3 pretest items, 15 posttest items (7 conceptual 

and 8 procedural), and 20 retention test items (5 conceptual and 15 procedural). For Week 2, 

there were 3 pretest items, 25 posttest items (11 conceptual and 14 procedural), and 19 retention 

test items (0 conceptual and 19 procedural).  

Instrument Reliability. Instrument reliability, after items with poor fit were dropped, was 

evaluated using Cronbach’s alpha. Analyses were done by assessment time point, and also by 

subscale. The items that utilized a two-point coding scheme had two entries for this analysis, as 

binary data was required. A Cronbach’s alpha value of 0.7 or above is acceptable. Only the week 

one pretest had an alpha value below 0.7, and most were above 0.8 (see Table 2).  

 

Assessment Component N Scale 
Alpha 

Week One   
 Pretest 6 0.624 
 Posttest 20 0.862 
  Conceptual 12 0.766 
  Procedural 8 0.887 
 Retention 22 0.931 
  Conceptual 7 0.820 
  Procedural 15 0.913 
Week Two   
 Pretest 6 0.767 
 Posttest 27 0.934 
  Conceptual 13 0.844 
  Procedural 14 0.934 
 Retention 21 0.950 
  Conceptual 0 na 
    Procedural 21 0.950 

 

Table 2. Assessment Reliability. 
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CHAPTER III 

RESULTS 

 

First, information about the pre-existing measures about the participants by condition is 

presented. Second, information about intervention performance is presented, including 

intervention compliance, accuracy, and cognitive engagement levels. Finally, analysis of the 

outcome assessments performance is presented. All analyses include only the participants who 

completed the respective week’s intervention activity and retention test.  

Pretest Knowledge 

As shown in Table 7, there were no differences between conditions in pre-existing 

knowledge of the week one intervention topic, according to week one pretest scores, (F(1, 72) = 

1.696, p = .197). However, there were differences between conditions on the week two pretest, 

with the moreFP condition scoring significantly higher (F(1, 63) = 4.425, p = .039, η2
p  = .066). 

This suggests that differential learning between conditions may have occurred during week one 

that influenced performance on week two.  

Additionally, scores on the week two pretest were significantly higher than week one 

(F(1,122) = 4.681, p = .032, η2
p = .037), suggesting that learning the week one material 

benefitted performance at week two. This makes sense, considering that the topics of One- and 

Two-Way ANOVA build on highly similar concepts and procedures.  

Intervention Activities 

Level of intervention compliance was evaluated through the participants’ accuracy within 

the worked examples, their explanation response quality, their completion self-report, and their 

level of cognitive activity self-report. The following analyses were done using an ANOVA 
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model with dependent variable being the intervention activity in question, and with condition as 

the independent variable. Analyses were conducted separately by week, with separate results for 

week one and then for week two. This was then followed by a between-week analysis with 

condition collapsed, the intervention activity in question as the dependent variable, and week as 

the dependent variable. The between-condition analyses include only the participants who 

completed the respective week’s intervention activity, and the between-week analyses include 

only the participants who completed both weeks’ intervention activities. 

Worked Example Accuracy  

Worked example accuracy was examined between conditions. Part one worked example 

accuracy did not differ between conditions at week one or at week two. Part two worked 

example correction scores were significantly higher in the moreFP condition in week one 

(F(1,122) = 4.039, p = .047, η2
p = .032), but not week two. Because of this, final worked 

example accuracy was higher in the moreFP condition than the lessFP condition in week one 

(93% vs. 82%, F(1,70) = 5.103, p = .027, η2
p = .068), but not week two.  See Table 3. 

The level of worked example accuracy varied between weeks when condition was 

collapsed. Part one worked example accuracy was significantly higher at week one than week 

two (79% vs. 67%; F(1,122) = 8.310, p = .005, η2
p = .064). Part two worked example accuracy 

did not differ between weeks. Final worked example accuracy was higher at week one than week 

two (89% to 78%, F(1,122) = 13.452, p = .000, η2
p = .099). 

To summarize, between conditions, the moreFP condition was more successful in 

completing the gaps in the worked example than the lessFP condition at week one, but not at 

week two. Between weeks, the part one and final worked example accuracy scores were higher 

in week one than in week two, suggesting that the participants may have invested less effort in 

completing the worked examples in week two. 
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Explanation Quality 

The participants’ explanation responses were evaluated as an additional metric of 

intervention compliance. All analyses were performed using participants’ part two explanation 

quality score, which was the lessFP participants’ copied or paraphrased instructional 

explanations and the moreFP participants’ corrected self explanations. See Table 3.  

 

Intervention Compliance Scores 

   
LessFP sd MoreFP sd 

Week One 
     

 
Part One Expln Quality 

  
45% 20% 

  
Worked Ex Acc 76% 24% 80% 27% 

 
Part Two Expln Quality 75% 26% 76% 20% 

  
Worked Ex Acc 6% 12% 13% 20% 

Week Two 
     

 
Part One Expln Quality 

  31% 21% 

  
Worked Ex Acc 70% 18% 66% 25% 

 
Part Two Expln Quality 67% 25% 63% 27% 

    Worked Ex Acc 7% 11% 13% 18% 

 

Table 3. Intervention Compliance Scores 

 

Participants’ explanation quality was examined between conditions. When considering 

part two explanation quality, both conditions had equal scores at both weeks one and two (see 

Table 3).  

Explanation quality was compared between weeks, with condition collapsed. Both 

conditions’ part two explanation quality scores were higher in week one than week two (76% to 

64%; F(1,122) = 7.68, p = .006, η2
p = .059). When considering part one explanation quality, 

which only concerns the moreFP condition, their scores were much higher in week one when 

compared to week two (47%, sd = 19% to 30%, sd = 20.2; F(1,64) = 11.822, p = .001, η2
p = 
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.156). Generally, explanation quality was higher at week one than week two. 

Additionally, the moreFP participant’s explanation quality was also examined between 

part one and part two. There were differences between the moreFP’s initial generated self-

explanations at part one and their corrected versions at part two, indicating that learning from the 

instructional explanations occurred. Descriptively, explanation quality improved from part one to 

part two at week one (45% to 76%), and week two (31% to 63%). Being presented with 

instructional explanations and having the opportunity to correct original self-explanation 

responses improved explanation quality.  

In sum, there were no differences in part two explanation quality between conditions. 

When contrasting between week one and week two, explanation quality was higher at week one, 

as were the moreFP participants’ part one explanations. Additionally, the moreFP students 

explanations were significantly improved from part one to part two in both weeks, suggesting 

that learning from the instructional explanations occurred. Taken together, this suggests that 

participants expended more effort in their explanations in week one.  

Intervention times and self-reported completion 

Completion time for each aspect of the intervention was collected. Both conditions took 

the same overall amount of time for the pretest, the intervention, and the posttest quiz on both 

weeks. However, the conditions differed in completion time between intervention part one and 

part two. Completion times were analyzed between conditions with an ANOVA model 

separately for each week. At week one, the moreFP condition used more time to complete part 

one (F(1,70) = 35.286, p = .000, η2
p = .335); and the lessFP condition used more time to 

complete part two (F(1,62) = 52.289, p = .000, η2
p = .458). The same pattern held at week two, 

with the moreFP condition using more time for part one (F(1,55) = 7.414, p = .009, η2
p = .119), 

and the lessFP condition using more time for part two (F(1,48) = 11.930, p = .001, η2
p = .199). 
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This difference, however, was by design, and the total amounts of time to complete both parts of 

the intervention were equal between conditions. See Table 4.  

 

Completion Times by Condition in Minutes 

Component LessFP MoreFP Average 
Week 1 

   
 

Pretest 03:59 03:40 03:49 

 
Part One 11:16 15:52 13:34 

 
Part Two 10:53 07:04 09:02 

 
Posttest 13:25 12:51 13:08 

Week 2 
   

 
Pretest 03:14 03:11 03:12 

 
Part One 20:14 23:02 21:49 

 
Part Two 08:50 05:31 07:01 

  Posttest 13:09 12:50 12:59 
 

Table 4. Study Completion Times  

 

Participants were asked to self-report their completion level of the intervention. At the 

end of intervention part two, participants were asked 1) “Did you finish? Yes/No” and 2) “Would 

you have wanted more time? Yes/No”. See Figure 3. Notice that a sizable portion of all 

participants reported that they did not finish the activities to their satisfaction and would have 

wanted more time. In week one, significantly more students in the lessFP condition reported 

being incomplete (F(1,61) = 4.969, p = .029, η2
p = .075), and wanting more time (F(1,70) = 

10.449, p = .002, η2
p = .130). There were no significant differences in week two.  

Completion self-reports were compared across weeks. There were no significant 

differences in self-report of finishing the intervention, nor in wanting more time to complete it 

between weeks one and two when condition was collapsed. 
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Figure 3. Intervention Completion Self-Report 

	
  

Manipulation Check – Auxiliary Survey Items 

Participants completed surveys after they completed the intervention worksheets and 

before the immediate posttest. These items tapped participants’ subjective cognitive load and 

levels of active and constructive activity. Between condition differences were evaluated by 

comparing the average scores for each survey by condition using the same ANOVA models 

described previously. See Table 5.  

 

Auxiliary Survey Likert Scores 

  LessFP MoreFP 
Week One   
 Cognitive Load 3.47 3.74 

 Active 3.31 3.22 

 Constructive 2.15 2.96 
Week Two   
 Cognitive Load 3.52 4.00 

 Active 2.97 3.11 

 Constructive 2.50 3.30 

Table 5. Auxiliary Survey Rating Scores by Condition 
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Cognitive Load Scales. In both week one and week two, the moreFP condition reported 

higher levels of cognitive load than the lessFP condition (week one, F(1,61) = 3.99, p = .050, η2
p 

=.061; week two, F(1,45) = 6.716, p = .013, η2
p = .130). There were no differences in amount of 

reported cognitive load between week one and week two when condition was collapsed.  

Levels of Active and Constructive Activity. These self-report items were used to identify 

level of 'active' and 'constructive' activity undertaken by the learner. Both conditions reported 

engaging in the same amount of ‘active’ cognitive processes at both weeks. As hypothesized, the 

students in the moreFP condition reported engaging in more ‘constructive’ cognitive processes at 

both weeks (week one: F(1,72) = 7.26, p = .009, η2
p = .092; week two: F(1,43) = 9.926, p = .003, 

η2
p = .188). Between weeks, participants across both conditions reported engaging in ‘active’ 

learning activities more in week two than in week one (F(1,93) = 4.609, p = .034, η2
p = .010). 

There were no differences in reported ‘constructive’ activities between weeks.  

 Assessment Outcomes 

Student performance on both the immediate posttest and delayed retention test was 

investigated. Results are presented by week. All raw scores and standard deviations for only 

those who completed their respective week’s intervention activity are presented in Table 6.  
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Table 6. Assessment Proportion Correct by Condition 

 

Analyses and Covariates. The effect of condition on assessment outcomes was analyzed 

with a repeated measured ANCOVA model. Each week’s post and retention test scores were 

used as the dependent variables. Supplementary analyses were preformed to test effects of 

condition on knowledge of concepts and of procedures separately.  

Pretest for a given week was included as a covariate to control for differences in prior 

knowledge. Metrics of intervention compliance were also tested for their predictive value. 

Overall worked example accuracy and final explanation quality were included in exploratory 

Assessment Proportion Correct by Condition 

   
LessFP MoreFP 

   
N Mean SD N Mean SD 

Week 1 
      

 
Pretest 37 .414 .274 35 .498 .267 

  
Conceptual 37 .297 .323 35 .368 .308 

  
Procedural 37 .649 .388 35 .757 .335 

 
Posttest 37 .555 .253 35 .671 .201 

  
Conceptual 37 .527 .259 35 .612 .189 

  
Procedural 37 .529 .326 35 .670 .259 

 
Retention 30 .472 .279 30 .592 .249 

  
Conceptual 30 .479 .283 30 .575 .296 

  
Procedural 30 .433 .291 30 .560 .327 

Week 2       

 
Pretest 31 .519 .325 34 .662 .217 

  
Conceptual 31 .440 .373 34 .585 .246 

  
Procedural 31 .677 .355 34 .816 .284 

 
Posttest 31 .574 .233 34 .620 .247 

  
Conceptual 31 .695 .185 34 .690 .220 

  
Procedural 31 .403 .329 34 .500 .351 

 
Retention 27 .394 .317 30 .440 .331 

  
Conceptual 27 .111 .212 30 .150 .233 

  
Procedural 27 .404 .315 30 .447 .331 



 

 41 

models. Overall worked example accuracy predicted some outcomes, but not others. Final 

explanation quality always predicted outcomes. Thus, overall explanation quality was included 

as a covariate because intervention compliance was an important factor in how effective the 

intervention was. 

Week One Outcomes 

At week one, the moreFP condition had significantly higher outcome scores (F(1,56) = 

6.685, p = .012, η2
p = .107). See Figure 4. There was a significant effect of test time, with scores 

at posttest being higher than those at retention (F(1,56) = 4.953, p = .030, η2
p = .081). There was 

no significant condition by test time interaction. In week one, pretest scores did not impact 

outcomes (F < 1, p = .388), but explanation quality did (F = 12.495, p = .001, η2
p = .182). Follow 

up analyses indicated that the benefit of the moreFP condition was significant for knowledge of 

procedures (F(1,56) = 7.664, p = .008 , η2
p = .120) (Figure 5), and was marginal for knowledge 

of concepts (F(1,56) = 3.176, p = .080 , η2
p = .054) (Figure 6).  

 

 

Figure 4. Week One Outcome Scores by Condition 
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Figure 5. Week One Procedural Knowledge Outcome Scores by Condition 

 

 

Figure 6. Week One Conceptual Knowledge Outcome Scores by Condition 
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Week Two Outcomes  

At week two, there was no effect of condition (F(1,53) < .01, p = .989 , η2
p < .001). There 

was a significant effect of test time, with scores at the posttest being higher than those at 

retention (F(1,53) = 7.076, p = .010, η2
p = .118). There was no significant condition by test time 

interaction. See Figure 7. Week two pretest was predictive of outcomes (F(1,53) = 8.102, p = 

.006 , η2
p = .133), whereas the final explanation quality was not (F(1,53) = 2.4, p = .127, η2

p = 

.043). Follow-up analyses indicated that the conditions performed equally well for knowledge of 

concepts (F(1,53) = 0.008, p = .927 , η2
p < .001); and of procedures (F(1,53) = 0.02, p = .888 , 

η2
p < .001). See Table 6. 

 

 

Figure 7. Week Two Outcome Scores by Condition 

 

Summary of Results 

There were no pre-existing differences in pretest knowledge at week one. However, the 

moreFP condition had higher pretest scores at week two. In terms of intervention compliance, 
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worked example accuracy was higher for the moreFP participants at week one, although there 

were no conditions differences at week two. The worked example accuracy scores across both 

conditions were higher at week one than at week two. There were no differences in explanation 

quality between conditions. When contrasting between week one and week two, explanation 

quality was higher at week one. Self-reported intervention completion rates were lower for the 

lessFP participants at week one only. Self-reported cognitive load was higher for the moreFP 

condition at both weeks one and two. The moreFP condition also self-reported higher levels of 

constructive activity at both weeks. At posttest and retention tests, there was a benefit of the 

moreFP condition in week one. However at week two, there were no differences between 

conditions.  
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CHAPTER IV 

DISCUSSION 

 

This study suggests that the modified focused processing stance can benefit learning 

when students engage with materials appropriately. When learners are encouraged to process 

both concepts and procedural goal-operator combinations in a productive way, learning 

outcomes were often greater than engaging with the same materials in a less focused way in 

week one. In particular, I demonstrated that a combination of explanation prompts and 

incomplete worked examples that focus on goal-operator combinations with an explicit 

correction process can be an effective method to increase focused processing. However, student 

engagement in the desired activities may be difficult to sustain, as the effect of condition was no 

longer present in week two. 

My modified focused processing stance elaborates on the focused processing stance put 

forth by Renkl & Atkinson (2007). Their stance states that the interactive features of a learning 

environment should not only elicit active processing of learning materials, but also focus 

attention on the primary concepts of the domain. However, there can be a cost to focusing 

attention primarily on concepts. In particular, Berthold et al. (2011) and Berthold and Renkl 

(2009) found that when explanation prompts focused on concepts, knowledge of concepts 

improved relative to not receiving explanation prompts. However, there was a simultaneous 

detrimental effect of the learning of procedures. They suggest this detriment may have been the 

result of the learning environment requiring too much cognitive load. Therefore the learners 

could not adequately process all of the learning material, so had to neglect the procedural aspects 

of it to fully engage with the conceptually-oriented prompts.  

The modified focused processing stance overcomes these limitations by scaffolding the 
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learner to focus on concepts and procedures. This suggests that too much cognitive load is not 

the reason why the prior conceptualization of focused processing failed. By their reasoning, the 

current manipulation should have elicited even greater amounts of cognitive load, thus leading to 

even lower learning outcomes. However, the current study found learning benefits of both types 

of knowledge in week one.  

My modified focused processing stance overcomes the former limitations on knowledge 

of procedures. This modified focused processing stance is important, as an understanding of both 

concepts and procedures is necessary for a full understanding of many domains. Additionally, I 

more clearly specify what the learner should focus on to maximize learning outcomes.  

Following is a discussion of potential processes that may have contributed to the superior 

learning outcomes of the more focused processing condition at week one. These potential 

processes include explanation generation and correction, as well as those behind linking problem 

solving step operations with the goals they accomplish. The relationship of the current findings 

to other learning frameworks is then presented. This is followed by a brief discussion of the 

possible reasons for no differential effect at week two, and a discussion of limitations and future 

directions.  

Focus on Explanation Generation & Correction 

A learner can increase their focused processing by first generating a self-explanation 

response. This generation process may activate several potential cognitive processes that benefit 

learning, such as activating prior knowledge, assimilating and integrating new information, 

increasing memory trace strength via the generation and recall process, and making new 

inferences (Fonseca & Chi, 2011). For example, self-explanation generation has been found to 

increase the memory trace of correct problem solving procedures, as well as decrease those of 

incorrect procedures (Siegler & Lin, 2010). The generation process may also better prepare 
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learners for future learning from the instructional explanations that follow (Schwartz & 

Bransford, 1998; Schwartz & Martin, 2004). In the current study, after learners self-explained, 

they received a correct explanation and engaged in an explicit correction process. This ensured 

that the learner not only received the correct information, but also processed and integrated this 

correct information into their own understanding. Indeed, learners self-corrected nearly 40% of 

their explanations. This correction process seems to contribute to greater learning and 

understanding relative to viewing the same correct instructional explanation first, and then 

processing it via copying or paraphrasing. Indeed, previous research indicates that generating 

ideas prior to instructional explanations leads to greater learning than reproducing ideas after the 

same instruction (DeCaro & Rittle-Johnson, 2012; Schwartz, Chase, Oppezzo, & Chin, 2011). 

The generation and correction process in the current study likely contributed to enhanced 

learning.   

This specification of generating and then correcting is important. Multiple studies have 

tried to find the optimal combination of self- and instructional-explanations, and there has not 

been a consensus of what this might be (Wittwer & Renkl, 2010). Several studies have failed to 

find a benefit for providing instructional explanations in combination with prompts to self-

explain. For example, a study on effective design of learning materials with student teachers 

found that it was not beneficial to include instructional explanations before prompts to self-

explain compared to self-explanation prompts without any prior instructional explanations 

(Hilbert, Schworm, & Renkl, 2004). Contrast this with a similar study on probability with 

undergraduates that provided instructional explanations first and found no benefit of follow-up 

self-explanation prompts compared to no follow-up self explanation prompts (Gerjets et al., 

2006). Yet another study, also on effective design of learning materials with student teachers, 

found that self-explanation prompts alone resulted in the highest learning outcomes when 



 

 48 

compared to a combination of self- and instructional-explanations, which were in turn better than 

just instructional explanations (Schworm & Renkl, 2006). Other studies document the benefits of 

learner-dependent approaches, such as providing instructional explanations adaptively, only 

when the learner requests them (Merrill, Reiser, Merrill, & Landes, 1995; Renkl, 2002; Sánchez, 

García-Rodicio, & Acuña, 2008; Wittwer, Nückles, & Renkl, 2010). While this adaptive on-

demand design may be effective, the technological resources it requires currently limit its wide 

application. Determining what information to provide for the learner and what to require them to 

generate, such as with instructional- and self-explanations, is a fundamental open problem in 

instructional science (Koedinger & Aleven, 2007). The current study presents a method of 

integrating self- and instructional-explanations that may be able to provide some resolution to 

these mixed findings. 

The generation and correction process seems to harnesses the benefits of both types of 

explanations. In this process, learners generate a self-explanation, read an instructional 

explanation, and then correction their own explanation. Prompted self-explanations often are not 

of high quality, indicating that it is difficult for learners to optimally engage in self-explanation 

(Chi et al., 1989; McEldoon et al., 2012; Renkl, 2002; Roy & Chi, 2005). This limitation can be 

overcome when self-explanations are followed by instructional explanations. In a one-on-one 

tutoring contexts, the sequencing of explanations supports reflection and comparison (Roy & 

Chi, 2005). Building an explicit correction process into the learning activity can foster the 

noticing of discrepancies between the learner’s own possibly incomplete or incorrect self-

explanation and the correct instructional explanation. Once a discrepancy is noticed, the learner 

can repair their original representation, resulting in learning (Chi, 2000). Noticing these points of 

mismatch have been shown to be especially effective for driving learning (Van Lehn, 1998). 

Overall, a correction process integrates the correct instructional explanation into the learner’s 
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ongoing knowledge construction activities (Berthold & Renkl, 2010). This integration is 

especially important, as simply receiving correct information does not ensure understanding. The 

current study provides evidence that a generation and correction process, when enacted 

appropriately, may support greater learning.  

Focus on Goal-Operator Combinations  

Another way a learner can increase their focused processing is through an understanding 

the goal of the problem-solving step, and how the values and operators within it achieve this 

goal. My focused processing stance specifies not only that the learner should focus on 

procedures, but specifically that they should focus on goal-operator combinations. One way to 

achieve this is to include gaps within a worked example that require the learner to assign 

meaning to values within the problem-solving steps. This study contrasted incomplete worked 

examples with gaps that do and do not focus the learner on goal-operator combinations. When 

students completed learning activities that included completing gaps that focus on goal-

operators, there was a week one benefit relative to other learning activities that included 

processing the same worked example in a less focused way. This finding aligns with other recent 

findings on incomplete worked examples, although this study is the first to the author’s 

knowledge that directly tests for the benefit of gaps that focus on goal-operator combinations.  

The current study directly tested the benefit of the nature of incomplete worked 

examples. Both conditions had gaps-to-be-filled, but tested the effects of what should be 

incomplete. Students either filled in gaps that facilitated the integration of operators and goals 

and required a search across multiple sources of information within the worked example or filled 

in gaps that could be completed by merely attending to the immediate step itself. This study 

provides evidence that increasing the focused processing of a problem solving procedure through 

scaffolding the learners’ attention on goal-operator combinations can be an effective way to 
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increase knowledge transfer. That a learner “not only knows the procedural steps for problem-

solving tasks, but also understands when to deploy them and why they work” (Gott, Glaser, Hall, 

Dibble, & Pokorny, 1996), is considered essential. This ability to recognize and flexibly apply 

the relevant parts of a previously learned procedure to solve novel problems (i.e. transfer) is an 

important goal of learning (e.g. Catrambone, 1996; Gott et al., 1996; Paas & van Gog, 2006).  

There are several ways in which a focus on goal-operator combinations could increase 

learning. Incomplete worked examples that direct the learners’ attention to goal-operator 

combinations can be thought of as modeling an expert's attentional focus. It is well demonstrated 

that experts focus on deep relational features of a problem, whereas novices tend of focus on 

surface features (Chase & Simon, 1973; Chi, Feltovich, & Glaser, 1981; Gentner & Toupin, 

1986; Kotovsky & Gentner, 1996; Larkin, 1983; Simon & Simon, 1978; Sloutsky & Yarlas, 

2000; Yarlas & Sloutsky, 1999). Filling in intermediate gaps that require a consideration of goal-

operator combinations can explicitly direct the novices' attention to aspects of the problem that 

an expert would process and encode. This process could also direct them away from dwelling on 

less important surface features.  

Another way a focus on goal-operator combinations is thought to increase the quality of 

focused processing is through integrating information. The process of assigning meaning to 

values often requires mapping and integrating between multiple sources of information (Renkl, 

2011; Seufert & Brünken, 2004). For example, in order to determine a goal-operator combination 

such as ‘You can calculate this arc of a circle [goal] by subtracting 33" from 360" [operators]’, 

a hypothetical learner might have to interpret and then map together information from a diagram 

of a circle, a geometry theorem, the problem statement with the particular values, and perhaps 

some instructional explanations about calculating arcs. A full understanding of the relationship 

or link between goals and operations often requires drawing information together from disparate 
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sources. Other ways this integration has been facilitated is through the use of animated agents 

who use gaze and gesture to direct the learners’ attention, and color coding and flashing within 

an interactive learning environment (Atkinson, 2002; Berthold & Renkl, 2009). In contrast, when 

incomplete worked examples do not sufficiently scaffold the assignment of meaning to the 

problem-solving steps, they are not as effective (e.g. Schwonke et al., 2011). A learner’s ability 

to articulate such links when learning from worked examples has been correlated with both 

procedural and conceptual knowledge and ability to solve related but novel problems (Schwonke 

et al., 2009). Therefore, well-designed worked examples that focus on goal-operator 

combinations may facilitate learning when they require the learner to actively link the operators 

within a problem solving procedure with the goal it is intended to accomplish by integrating 

information.  

Overall, a deeper understanding of the learning domain can be enhanced when the learner 

is scaffolded to linking the operators with the respective goals, and thereby developing their 

current understanding of the domains concepts and procedures. 

In sum, this study supports my modified focused processing stance that more clearly 

specifies two important aspects learners should process in order to achieve learning gains. 

Alignment with Other Learning Frameworks 

 The findings of this study also supports hypotheses put forth in two other areas of 

cognition research. Generally, the finding that more focused processing supports greater learning 

is aligned with the levels of processing framework from the memory literature. The depth of 

processing a stimulus undergoes during learning has been shown to correspond with the strength 

of its later memory trace, or how well it is learned (Craik & Lockhart, 1972; Craik, 2002). 

"Deeper" refers to the analysis of meaning, inference, and implication. For example, when shown 

a list of words, participants who were asked to judge if the word starts with a capital letter (i.e., 
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shallow processing) did not remember the word list after a delay as well as those who made a 

semantic judgment about the word (e.g. Is this an animal?; deeper processing). A recent meta-

analysis initially identified 221 studies that dealt with levels of processing, and 7 that met strict 

inclusion criteria (e.g. measures of processing during task performance and a distinction between 

processing and performance) did indeed demonstrate a relationship between depth of processing 

and learning outcomes (average effect size, b = 0.25; median = 0.35) (Dinsmore & Alexander, 

2012). As "deeper" refers to the analysis of meaning, inference, and implication, the moreFP 

condition engaged in deeper processing than the lessFP condition (Craik, 2002). 

Echos of this general cognitive learning principle can be heard in contemporary 

educational and psychological thinking. Engaging learners in actively or deeply processing and 

constructing their own knowledge or mental models has long been put forth as an effective way 

of inducing learning (Bruner, 1961; Mayer, 2009; Piaget, 1970). There are many constructivist 

theories of learning (e.g. Piaget, 1964; Steffe & Kieren, 1994, etc.), but the particular cognitive 

perspective put forth by Mayer (2009) is most relevant. In this view, constructivism is a theory of 

learning in which the learner builds knowledge structures in working memory by engaging in 

active cognitive processing during learning (Bransford, Brown, & Cocking, 1999; Chi, 2009; 

Mayer, 2009). 

 Recently, the general idea of cognitive constructivism has been formulated into a 

hierarchy of learning activities by Chi (2009). She posits four hierarchical levels of processing 

activities in instructional contexts; passive, active, constructive, and interactive. Each type of 

learning activity is predicted to result in greater learning gains than the one before it. Active 

learning requires some selection process or physical activity while learning, such as underlining, 

pointing, copying problem steps, or manipulating or selecting aspects of the problem. The 

cognitive processes involved in active activities may include activating, assimilating, encoding, 
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storing, or searching existing knowledge. The idea is that if the learner is engaged in the 

specified overt activities, presumably the linked cognitive processes are also taking place. 

Contrast this with constructive learning activities, which require that the learner is generative and 

produces outputs that contain ideas that go beyond the information presented. Some constructive 

activities could be explaining, justifying, connecting, reflecting, planning or predicting. These 

activities are thought to utilize the cognitive processes of inferring new knowledge, integrating 

new and excising information, organizing knowledge for coherence, or repairing faulty 

knowledge. There is much evidence to support the idea that the more constructively the learner 

engages with the material and builds their own knowledge, the greater their learning is (see 

Fonseca & Chi, 2009 for a review).  

The lessFP and moreFP conditions are representative of active and constructive levels, 

respectively. The lessFP condition engaged in copying instructional explanations and 

manipulating aspects on the worked example problem solving steps by calculating the final 

value. The moreFP condition engaged in explanation generation and worked example 

completion that required generating connections. Indeed, the auxiliary survey included self-

report items that tapped student engagement in these specific processes. Participants in both 

conditions reported equal levels of ‘active’ activities, whereas the moreFP condition reported 

higher levels of ‘constructive’ activities. The findings of this study support this framework’s 

claim that engaging in activities that can be considered constructive can result in greater learning 

gains than those that are considered active. Past research has often contrasted the benefit of 

incomplete worked examples or self-explanations against a ‘passive’ activity, according to this 

framework. The current study used a more rigorous control group.  

The results of this study converge with prior work that has also found a benefit of 

learning activities that may be considered ‘constructive’ over those that are ‘active’. For 
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example, following Chi’s (2009) operationalizations of these levels, the constructive activities of 

taking notes (Trafton & Trickett, 2001), asking questions (Graesser & Person, 1994), posing 

problems (Mestre, 2001), comparing and contrasting cases (Schwartz & Bransford, 1998), and 

generating predictions (Klahr & Nigam, 2004), have all been shown to be more beneficial for 

learning than active control tasks.  

Absence of Effect at Week Two  

The lack of effect at week two provides a cautionary tale. The pattern of results at week 

two may be due to a few potential reasons. One reason may have been reduction in student 

engagement with the learning materials. An important aspect of effective instructional designs is 

how appropriately the learners engage with them. There is clear evidence of lower levels of 

student instructional compliance in week two relative to week one in the current study. In week 

one, the moreFP condition correctly completed more of the worked example than the less FP 

condition. Across weeks, the moreFP condition had significantly higher original part one 

explanation quality as well as higher correct worked example accuracy in week one than they did 

in week two. Levels of compliance were the same in both conditions in week two. Also, the 

moreFP participants’ intervention compliance in week one was greater than in week two, where 

there were no differences compared to the lessFP condition in week two. The data suggest that 

the moreFP participants put more effort into their initial explanation generation and worked 

example accuracy in week one compared to the lessFP students at week one. Therefore, the 

moreFP students’s greater intervention compliance at week one may be a contributing factor to 

the resulting learning gains. This could be a potential reason for the benefit of the moreFP 

materials on learning outcomes in week one, but not at week two.  

The quality of the participants’ work dropped from week one to week two. This could be 

due to either the week two work being more challenging, or participant effort being lower. If the 
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materials in week two were simply more difficult, one would expect a higher number of 

corrections to their part one worked examples once they received the correct values in part two. 

However, this was not the case. Instead, the number of corrections was constant between weeks. 

It seems plausible that reduced performance in week two could be due to time constraints, but 

self-reported levels of being complete and wanting more time were the same as week one. Taken 

together, this evidence suggests that the students did not put in as much effort into the week two 

activities as they did in week one. Therefore, lower levels student effort may have been a 

contributing factor to the lack of effect in week two.  

Anecdotal evidence support this conclusion. At week two, a few participants reported that 

they knew the answers would be coming in the part two packet, so did not try as hard to 

complete the worked example and explanation prompts on part one as they did in week one. 

Also, many participants asked if their work would be graded, and when they were told it would 

not be, they did not seem to put in as much effort into their work. 

Other differences that could possibly account for the lack of condition differences in 

week two. The learning activity and assessments may not have been well designed. For example, 

all the knowledge of concepts items had to be dropped on the week two assessment due to poor 

psychometric qualities. This likely lessened the sensitivity of the week two measures. Future 

research should use better developed and validated assessments.  

Another potential explanation is that by week two, the learners were no longer 

sufficiently novice for the condition manipulation to have as strong of a benefit. Recall that the 

topic for week one was one-way ANOVA, and for week two it was a two-way ANOVA. These 

topics share many of the same foundational concepts and computational procedures. At week 

one, the participant’s pretest knowledge of ANOVA was low (score average 46%). However, the 

week two pretest scores on two-way ANOVA were significantly higher than week one (average 
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score 59%). It is possible that this level of prior knowledge lessened the impact of the condition 

manipulation. Recall that worked examples are particularly effective for novices. Indeed, worked 

examples lose their effectiveness once a learner gains a sufficient amount of domain knowledge 

(Kalyuga et al., 2003, 2000, 2001). The scaffolding and support that a worked example provides 

is no longer necessary and become redundant and ineffective. It is plausible that the students 

were no longer sufficiently novice to benefit as much from the extra supports in the more 

focused processing condition.  

Limitations & Future Directions 

The primary finding of this study is that if learners engage in more focused processing, 

learning outcomes can increase. The key to this is ensuring that the learners engage 

appropriately. The learners in the study did so at week one, but week two compliance levels were 

significantly lower. Fortunately, one straightforward way to remedy this limitation in the future 

is to hold students accountable for the more focused processing activities by assigning grades to 

their initial work, or to provide some other incentive. Another factor that may have contributed 

to the lower levels of compliance in week two is lack of time. Many students reported wanting 

more time to complete the activities across both weeks. Allowing ample time for the participants 

to engage with the learning materials may result in stronger effects. Another possibility is that 

the intervention activity in week two may not have been as well designed, and thus did not foster 

as much learning as the week one activity.  

The current study was completed within the context of learning statistics at a university 

with high-achieving students. The generalization of these findings to other domains and other 

students groups should be investigated further.  

Future studies should be designed to specifically test for knowledge of goal-operator 

combinations as well as of specific principles. An understanding of these combinations and 
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principles were built into the current assessments, but more insight could be gained if these 

specific types of knowledge could be measured and analyzed independently. 

Similarly, the benefits of incomplete worked examples that focus on goal-operator 

combinations and focused processing of principles through explanation generation and correction 

are currently conflated in the current study. Future studies should examine the role of these 

focused processing methods independently, and determine the nature of the relationship between 

these two factors. Additionally, there may be other and possibly more effective ways to foster 

focused processing. This study provides some support for the importance of focused processing 

on both concepts and procedures via explanation generation and correction and incomplete 

worked examples that highlight goal-operator combinations. Further refinement of the focused 

processing stance should continue to expand instructional activities that support these processes.  
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APPENDIX B 

TA Instructions 

Time is TIGHT so please keep things moving briskly! 

-­‐ Before class, write on board: 
o Can get started now – No more than 3 mins on Part 1 
o Write on name on each packet 
o Follow Directions Carefully 
o Legible handwriting 
o Write Start and Stop Times 
o Raise hand for next packet 

 
o Section Times: 

§ Pretest: 3 minutes 
§ Part 1 & 2: 25 minutes 
§ Quiz: 20 minutes (till end of class) 

• Rank Items: 3 minutes 
• Quiz Items: 17 minutes 

 
-­‐ Put Clock up on computer in room for students to record their time:  

o http://www.online-stopwatch.com/large-digital-clock/ 
-­‐ Have Pretests already passed out on desks, or have students pick on up on their way in. 

As students come in, determine what color Part one they need to get. Do NOT allow 
students to look at Part one while they are working on the pretest. 

-­‐ As people are getting settled in, they can be working. Since almost everyone will have do 
this last time, there’s no need for big directions to the class. However, do announce: 

 

Announce to Class (once everyone is here): 

“Since there are only two sections before this exam, we want the Friday activities to 
really help you learn and understand the material. We are trying out some different versions of 
the worksheets to figure out what is most useful for you guys, but don’t worry- they both have 
the exact same content.  

These are going to be more challenging than what you’re used to. Really try to do your 
best. Don’t worry about grading, we know these are harder so we’ll adjust our grading 
accordingly. The most important thing is to put in a good effort.  

Time will be tight so it’s really important to stay focused. There are a bunch of different 
sections, and we have time limits on each section. This is just so we’re sure to get through all the 
material, and to be sure to give you enough time for the quiz.  

There will be a pretest, two parts and then the quiz. I’ve noted the amount of time you 
have for each part on the board. If you finish early, you can go ahead to the next section after 
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checking with me. Keep your eye on the time and try to pace yourself so you get through 
everything, but if you can’t get to everything, that’s totally fine. I’d rather have you do half of it 
well than all of it rushed.  

 

-­‐ In front of your is the pretst and Part 1. Work through the pretest when I say ‘start’.  
-­‐ When you are done, raise your hand. I’ll collect the pretest, and then you can get started 

on Part 1 
-­‐ When you are done with Part 1, raise your hand and I will give you Part 2 
-­‐ When you are done with Part 2, hand in Parts 1 and 2 to me, and I will give you the quiz. 

 

The first part of the quiz has some questions that ask about how much effort you put in on the 
worksheet. That part is not for a grade, so please be honest. It’s important for us to know exactly 
how you were thinking about the material (even if it’s not very much!) so we can figure out how 
to make the worksheets more useful for you.  

The quiz items might be challenging. Just do your best.  

 

A couple things to remember: 

-­‐ Write your name on the front page of every packet 
-­‐ It is super important you read the directions very carefully, and follow them as closely as 

you can 
-­‐ On the computer screen is a clock. On the packets, there will be places to jot down your 

Start and Stop times. Be sure you do this.  
-­‐ This is supposed to be a little challenging, don’t worry about grading. The most important 

thing is to put in a good effort. 
-­‐ There will be 3 parts and then the quiz. I’ve noted the amount of time you have for each 

part on the board. When you’re done, raise your hand and I’ll give you the next part.  
-­‐ If you finish early, you can go ahead to the next section after checking with me. Keep 

your eye on the time and try to pace yourself so you get through everything, but if you 
can’t get to everything, that’s totally fine. 
 

Alright, go ahead and get started!! 

Notes for you: 

Don’t give much help. If a student has a question, just tell them to re-read the problem carefully, 
and do their best.   

If Low on Time:    Can have student skip the “On a scale from 1-5” page (3 mins)  
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APPENDIX C 

Item Screening Values 

Assessment Item Flag -
ged 

Item-Total 
Correlation N Mean Std 

Dev Infit Outfit Item 
Difficulty 

Item 
Difficulty 

SE 

Scale 
Alpha 

Alpha If 
Deleted 

Week One            

 Pretest            
  W1_P1_1_Trans_Valid_C  0.42 74 0.51 0.50 0.87 0.7 -1.06 0.31 0.624 0.551 

  W1_P1_1_Trans_HQ_C  0.46 74 0.16 0.37 0.78 0.45 1.78 0.41 0.624 0.546 

  W1_P1_2_Trans_VALID_P * 0.32 74 0.81 0.39 1.28 6.57 -4.43 0.62 0.624 0.592 

  W1_P1_2_Trans_HQ_P  0.40 74 0.41 0.49 0.92 0.76 -0.3 0.31 0.624 0.564 

  W1_P1_3_Trans_Valid_C  0.27 74 0.30 0.46 1.18 1.01 0.49 0.33 0.624 0.615 

  W1_P1_3_Trans_HQ_C * 0.31 74 0.07 0.25 1.09 0.68 3.52 0.65 0.624 0.603 

 Posttest            
  W1_P4_Quiz_1_HO_Score_C  0.24 74 0.73 0.45 1.51 1.69 -1.35 0.33 0.858 0.860 

  W1_P4_Quiz_1_MSAG_Score_P  0.40 74 0.86 0.34 1.09 1.19 -2.66 0.42 0.858 0.854 

  W1_P4_Quiz_1_Why_Valid_C  0.45 74 0.62 0.49 1.13 1.03 -0.58 0.3 0.858 0.852 

  W1_P4_Quiz_1_Why_HQ_C  0.33 74 0.27 0.45 0.99 1.08 1.58 0.3 0.858 0.856 

  W1_P4_Quiz_2_Size_Score_C  0.47 74 0.85 0.36 0.92 1.15 -2.49 0.4 0.858 0.851 

  W1_P4_Quiz_2_Why_Valid_C  0.58 74 0.85 0.36 0.76 0.62 -2.49 0.4 0.858 0.848 

  W1_P4_Quiz_2_Why_HQ_C  0.32 74 0.24 0.43 1.05 0.9 1.76 0.31 0.858 0.857 

  W1_P4_Quiz_3_Decision_Score_P  0.51 74 0.72 0.45 1.06 0.78 -1.25 0.32 0.858 0.849 

  W1_P4_Quiz_3_dfAG_Score_P  0.48 74 0.81 0.39 1.06 0.74 -2.06 0.36 0.858 0.851 

  W1_P4_Quiz_3_dfWG_Score_P  0.42 74 0.77 0.42 1.14 1.3 -1.69 0.34 0.858 0.853 

  W1_P4_Quiz_3_F_Score_P  0.71 74 0.58 0.50 0.66 0.55 -0.32 0.29 0.858 0.840 

  W1_P4_Quiz_3_MSWG_Score_P  0.74 74 0.62 0.49 0.61 0.5 -0.58 0.3 0.858 0.839 

  W1_P4_Quiz_3_SSAG_Score_P  0.62 74 0.58 0.50 0.82 0.72 -0.32 0.29 0.858 0.844 

  W1_P4_Quiz_3_SSTot_Score_P  0.64 74 0.50 0.50 0.73 0.66 0.18 0.29 0.858 0.843 

  W1_P4_Quiz_4_Score_C  0.44 74 0.88 0.33 0.97 1.07 -2.84 0.44 0.858 0.853 

  W1_P4_Quiz_5_Valid_C  0.38 74 0.74 0.44 1.22 1.38 -1.46 0.33 0.858 0.854 

  W1_P4_Quiz_5_HQ_C  0.51 74 0.32 0.47 0.79 0.6 1.23 0.29 0.858 0.849 

  W1_P4_Quiz_6_F_Score_C  0.40 74 0.55 0.50 1.2 1.15 -0.15 0.29 0.858 0.854 

  W1_P4_Quiz_6_MSAG_Score_C  0.15 74 0.11 0.31 1.19 1.06 2.93 0.4 0.858 0.860 

  W1_P4_Quiz_6_SSAG_Score_C  0.15 74 0.12 0.33 1.23 1.1 2.78 0.38 0.858 0.861 

  W1_P4_Quiz_7_Valid_C *D 0.10 74 0.03 0.16 1.04 0.7 4.52 0.73 0.858 0.860 

  W1_P4_Quiz_7_HQ_C *D 0.06 74 0.01 0.12 1.03 0.86 5.25 1.01 0.858 0.860 

 Retention            
  W1_P5_1_InDe_Score_C  0.59 74 0.65 0.48 1.12 0.96 -2.43 0.35 0.935 0.932 

  W1_P5_1_InDeWhy_Valid_C  0.64 74 0.46 0.50 0.97 0.8 -0.93 0.32 0.935 0.932 

  W1_P5_1_InDeWhy_HQ_C  0.52 74 0.34 0.48 1.2 1.28 -0.02 0.32 0.935 0.933 

  W1_P5_2_Trans_Valid_C * 0.42 74 0.55 0.50 1.5 2.01 -1.64 0.32 0.935 0.935 

  W1_P5_2_Trans_HQ_C  0.31 74 0.35 0.48 1.67 3.79 -0.13 0.32 0.935 0.936 

  W1_P5_3_dfAG_Score_P  0.67 74 0.61 0.49 0.93 0.73 -2.08 0.34 0.935 0.931 

  W1_P5_3_dfWG_Score_P  0.70 74 0.58 0.50 0.84 0.58 -1.85 0.33 0.935 0.931 

  W1_P5_3_HO_Score_P  0.61 74 0.64 0.48 1.1 0.87 -2.31 0.35 0.935 0.932 

  W1_P5_3_MSAG_Score_P  0.77 74 0.50 0.50 0.65 0.48 -1.23 0.32 0.935 0.930 

  W1_P5_3_SSTot_Score_P  0.79 74 0.36 0.48 0.56 0.41 -0.23 0.32 0.935 0.930 

  W1_P5_3_SSWG_Score_P  0.83 74 0.42 0.50 0.49 0.37 -0.63 0.32 0.935 0.929 

  W1_P5_3_Why_Valid_C  0.71 74 0.61 0.49 0.78 0.51 -2.08 0.34 0.935 0.931 

  W1_P5_3_Why_HQ_C  0.64 74 0.27 0.45 0.86 0.66 0.52 0.34 0.935 0.932 

  W1_P5_4_Decision_Score_P  0.42 74 0.16 0.37 1.06 1.4 1.55 0.39 0.935 0.934 

  W1_P5_4_F_Valid_P  0.56 74 0.41 0.49 1.15 1.05 -0.53 0.32 0.935 0.933 

  W1_P5_4_F_HQ_P *D 0.43 74 0.05 0.23 0.61 0.16 3.29 0.6 0.935 0.934 

  W1_P5_4_SSAG_Valid_P  0.45 74 0.19 0.39 1.13 1.14 1.26 0.37 0.935 0.934 

  W1_P5_4_SSAG_HQ_P *D 0.50 74 0.08 0.27 0.65 0.21 2.69 0.5 0.935 0.934 

  W1_P5_4_Fcritdf_Valid_P  0.59 74 0.36 0.48 1.04 1.17 -0.23 0.32 0.935 0.932 

  W1_P5_4_Fcritdf_HQ_P *D 0.37 74 0.11 0.31 1.22 0.78 2.24 0.45 0.935 0.935 

  W1_P5_4_MSAG_Valid_P  0.68 74 0.41 0.49 0.86 0.68 -0.53 0.32 0.935 0.931 

  W1_P5_4_MSAG_HQ_P *D 0.51 74 0.08 0.27 0.61 0.2 2.69 0.5 0.935 0.934 

  W1_P5_4_MSWG_Valid_P  0.71 74 0.38 0.49 0.78 0.59 -0.33 0.32 0.935 0.931 

  W1_P5_4_MSWG_HQ_P *D 0.43 74 0.05 0.23 0.61 0.16 3.29 0.6 0.935 0.934 

  W1_P5_4_SSTot_Valid_P * 0.49 74 0.66 0.48 1.18 2.85 -2.56 0.36 0.935 0.934 

  W1_P5_4_SSTot_HQ_P *D 0.36 74 0.35 0.48 1.58 2.07 -0.13 0.32 0.935 0.936 

  W1_P5_4_SSWG_Valid_P  0.53 74 0.30 0.46 1.05 1.43 0.3 0.33 0.935 0.933 

  W1_P5_4_SSWG_HQ_P *D 0.55 74 0.12 0.33 0.69 0.33 2.05 0.43 0.935 0.933 
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Week Two 

 Pretest            
  W2_P1_1_Valid_C  0.60 74 0.70 0.46 0.98 0.45 -3.03 0.48 0.767 0.709 

  W2_P1_1_Quality_C  0.45 74 0.20 0.40 1.03 0.67 2.45 0.41 0.767 0.749 

  W2_P1_2_Valid_P  0.60 74 0.76 0.43 0.76 0.18 -4.14 0.59 0.767 0.710 

  W2_P1_2_Quality_P  0.46 74 0.36 0.48 1.17 1.25 0.76 0.36 0.767 0.747 

  W2_P1_3_Valid_C  0.51 74 0.39 0.49 1.05 1.82 0.51 0.36 0.767 0.734 

  W2_P1_3_Quality_C  0.47 74 0.14 0.34 0.75 0.3 3.45 0.49 0.767 0.746 

 Posttest            
  W2_P4_Quiz_1_Score_C  0.62 74 0.78 0.41 0.97 0.93 -2.59 0.44 0.927 0.924 

  W2_P4_Quiz_1_Why_Valid_C  0.55 74 0.68 0.47 1.08 1.21 -1.47 0.33 0.927 0.925 

  W2_P4_Quiz_1_Why_Quality_C  0.47 74 0.38 0.49 1.05 1.55 0.5 0.29 0.927 0.926 

  W2_P4_Quiz_2_Score_C  0.54 74 0.68 0.47 1.11 1.41 -1.47 0.33 0.927 0.925 

  W2_P4_Quiz_3_ACond_Score_C *D -0.13 74 0.11 0.31 1.54 5.03 2.64 0.41 0.927 0.931 

  W2_P4_Quiz_3_AGroup_Score_C *D -0.01 74 0.04 0.20 1.07 5.67 3.83 0.61 0.927 0.929 

  W2_P4_Quiz_3_AInter_Score_C *D 0.40 74 0.73 0.45 1.27 3.49 -1.95 0.37 0.927 0.927 

  W2_P4_Quiz_3_BCond_Score_C  0.39 74 0.53 0.50 1.27 1.43 -0.43 0.29 0.927 0.927 

  W2_P4_Quiz_3_BGroup_Score_C * 0.37 74 0.59 0.49 1.34 2.03 -0.87 0.3 0.927 0.927 

  W2_P4_Quiz_3_BInter_Score_C  0.62 74 0.76 0.43 0.91 0.91 -2.24 0.4 0.927 0.924 

  
W2_P4_Quiz_3_C_Interpret_Valid_
C  0.64 74 0.73 0.45 0.84 0.83 -1.95 0.37 0.927 0.924 

  
W2_P4_Quiz_3_C_Interpret_Qualit
y_C  0.37 74 0.24 0.43 1.1 1.09 1.4 0.32 0.927 0.927 

  W2_P4_Quiz_3_CCond_Score_C * 0.08 74 0.12 0.33 1.36 2.06 2.48 0.39 0.927 0.929 

  W2_P4_Quiz_3_CGroup_Score_C  0.61 74 0.74 0.44 0.96 0.83 -2.09 0.38 0.927 0.924 

  W2_P4_Quiz_3_CInter_Score_C  0.41 74 0.55 0.50 1.21 1.36 -0.6 0.3 0.927 0.927 

  W2_P4_Quiz_4_Score_P  0.35 74 0.53 0.50 1.4 1.5 -0.43 0.29 0.927 0.927 

  W2_P4_Quiz_4_df_Score_P  0.29 74 0.14 0.34 1.04 1.26 2.34 0.38 0.927 0.927 

  W2_P4_Quiz_5_Score_C  0.45 74 0.57 0.50 1.24 1.29 -0.69 0.3 0.927 0.926 

  W2_P4_Quiz_6_DesCol_Score_P  0.50 74 0.58 0.50 1.09 1.24 -0.78 0.3 0.927 0.925 

  W2_P4_Quiz_6_DesInter_Score_P  0.74 74 0.39 0.49 0.59 0.52 0.41 0.29 0.927 0.922 

  W2_P4_Quiz_6_DesRow_Score_P  0.69 74 0.39 0.49 0.69 0.6 0.41 0.29 0.927 0.923 

  W2_P4_Quiz_6_dfCol_Score_P  0.76 74 0.34 0.48 0.51 0.42 0.75 0.3 0.927 0.922 

  W2_P4_Quiz_6_dfInter_Score_P  0.67 74 0.42 0.50 0.79 0.7 0.24 0.29 0.927 0.923 

  W2_P4_Quiz_6_dfTot_Score_P  0.69 74 0.28 0.45 0.6 0.47 1.12 0.31 0.927 0.923 

  W2_P4_Quiz_6_dfWG_Score_P  0.65 74 0.45 0.50 0.82 0.73 0.08 0.29 0.927 0.923 

  W2_P4_Quiz_6_FInter_Score_P  0.76 74 0.36 0.48 0.53 0.45 0.58 0.29 0.927 0.922 

  W2_P4_Quiz_6_FRow_Score_P  0.76 74 0.39 0.49 0.56 0.48 0.41 0.29 0.927 0.922 

  W2_P4_Quiz_6_MSCol_Score_P  0.75 74 0.34 0.48 0.53 0.44 0.75 0.3 0.927 0.922 

  W2_P4_Quiz_6_SSInter_Score_P  0.65 74 0.43 0.50 0.83 0.74 0.16 0.29 0.927 0.923 

  W2_P4_Quiz_6_SSRows_Scores_P  0.68 74 0.54 0.50 0.83 0.69 -0.52 0.29 0.927 0.923 

 Retention            
  W2_P5_1_CC_Score_C *D 0.34 74 0.53 0.50 1.53 3.16 -2 0.32 0.942 0.944 

  W2_P5_1_Inter_Score_C *D -0.09 74 0.12 0.33 2.97 9.9 2.1 0.48 0.942 0.947 

  W2_P5_1_USC_Score_C *D 0.03 74 0.03 0.16 1.41 5.03 4.42 0.78 0.942 0.944 

  W2_P5_2_SSAge_Valid_P  0.52 74 0.58 0.50 1.09 1.09 -2.41 0.33 0.942 0.941 

  W2_P5_2_SSAge_Quality_P  0.46 74 0.24 0.43 1.74 1.49 0.42 0.39 0.942 0.942 

  W2_P5_2_SSLevel_Valid_P  0.55 74 0.49 0.50 1.19 1.03 -1.69 0.32 0.942 0.941 

  W2_P5_2_SSLevel_Quality_P  0.48 74 0.22 0.41 1.65 1.54 0.74 0.41 0.942 0.941 

  W2_P5_3_DesCond_Score_P  0.81 74 0.18 0.38 0.42 0.2 1.27 0.44 0.942 0.938 

  W2_P5_3_DesInter_Score_P  0.69 74 0.16 0.37 0.78 0.52 1.47 0.45 0.942 0.939 

  W2_P5_3_DesTime_Score_P  0.65 74 0.15 0.36 0.83 0.59 1.67 0.46 0.942 0.939 

  W2_P5_3_dfCond_Score_P  0.55 74 0.68 0.47 0.92 0.65 -3.27 0.38 0.942 0.941 

  W2_P5_3_dfInter_Score_P  0.62 74 0.47 0.50 0.9 0.94 -1.59 0.32 0.942 0.940 

  W2_P5_3_dfTime_Score_P  0.57 74 0.65 0.48 0.87 0.6 -3 0.36 0.942 0.940 

  W2_P5_3_dfTot_Score_P  0.57 74 0.45 0.50 1.14 1.17 -1.39 0.32 0.942 0.940 

  W2_P5_3_dfWG_Score_P  0.71 74 0.38 0.49 0.8 0.68 -0.86 0.33 0.942 0.938 

  W2_P5_3_FCond_Score_P  0.84 74 0.18 0.38 0.33 0.16 1.27 0.44 0.942 0.937 

  W2_P5_3_FInter_Score_P  0.79 74 0.16 0.37 0.47 0.2 1.47 0.45 0.942 0.938 

  W2_P5_3_FTime_Score_P  0.85 74 0.22 0.41 0.41 0.23 0.74 0.41 0.942 0.937 

  W2_P5_3_Inter_Valid_C *D 0.69 74 0.22 0.41 0.91 0.88 0.74 0.41 0.942 0.939 

  W2_P5_3_Inter_Quality_C *D 0.00 74 0.00 0.00 1 1 6.49 1.84 0.942 0.944 

  W2_P5_3_MSCond_Score_P  0.83 74 0.23 0.42 0.49 0.28 0.58 0.4 0.942 0.937 

  W2_P5_3_MSInter_Score_P  0.72 74 0.31 0.47 0.86 0.7 -0.27 0.36 0.942 0.938 

  W2_P5_3_MSWG_Score_P  0.84 74 0.24 0.43 0.5 0.3 0.42 0.39 0.942 0.937 

  W2_P5_3_SSCond_Score_P  0.83 74 0.24 0.43 0.54 0.32 0.42 0.39 0.942 0.937 

  W2_P5_3_SSTime_Score_P  0.75 74 0.35 0.48 0.74 0.57 -0.63 0.34 0.942 0.938 
    W2_P5_3_SSWG_Score_P   0.69 74 0.35 0.48 0.91 1.11 -0.63 0.34 0.942 0.939 

 


