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CHAPTER I 
 

INTRODUCTION 
 

Tumor Heterogeneity and Treatment Resistance 
 One of the greatest limitations in the treatment of cancer is development of resistance to 

the therapeutic effects of common chemotherapies. Though rates of recurrence vary dependent on 
cancer type, there is a high prevalence of tumor recurrence in cancer patients universally. Notably, 
identification of sources of treatment resistance has become a primary focus of ongoing cancer 
research. Several factors contributing to resistance have been established, however, these 
mechanisms and the significance of each in driving resistance are not thoroughly understood [1]. 
Primarily, genetic mutations have been recognized as having implications in treatment response, 
affecting cellular sensitivity to drug. Further studies have suggested functional differences of cells 
comprising the tumor, and those occupying the surrounding tissue, play a role in modulating 
treatment efficacy. It is necessary to develop a fundamental understanding of where resistant cells 
originate and the underlying mechanisms dictating their function [3]. Establishment of a 
technology to study and characterize the progression of cancer cells from drug-responsive to drug-
resistant would inform treatment decisions to target responsive pathways, which would greatly 
enhance patient treatment response and have implications on both patient well-being and burden 
of adverse treatment effects and cost.   

Tumor heterogeneity contributes largely to lack of cellular response to standard 
chemotherapy. Subpopulations of tumor cells can be identified within the bulk mass, each 
exhibiting unique function. Upon administration of first line therapy, the majority of cells respond 
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to and are eliminated from the treatment site [28]. However, select subpopulations can evade 
treatment by operating under mechanisms dissimilar to the bulk populations, of which the drug 
does not target. The residual cells can then proceed to repopulate the previously diseased region, 
occupied by an abundance of drug-resistant cells [1]. Subsequent treatment regimens become 
ineffective, allowing survival and spread of the tumor. There is a deficiency in the understanding 
of molecular mechanisms regulating the heterogeneous nature of cells and the consequent 
treatment response. Furthermore, current methods applied to characterize heterogeneity within 
tumors involve highly invasive protocols, disrupting the environmental dynamics influencing 
heterogeneous development. Flow cytometry is the current gold standard for sorting heterogeneous 
cell samples into their respective populations, but presents limitations to preserving the natural 
tumor cell environment and requires prior knowledge of sample content for label selection [16]. 
Also, this technique provides minimal functional information, which is vital to detect and 
comprehend sources of heterogeneity. Thus, there is a need to develop label-free tools to image 
heterogeneous populations within intact tumor samples and simultaneously provide a functional 
metric correlated to cell-specific heterogeneity.  

 
Cell Cycle Activity as a Source of Heterogeneity 
 Overall, the cell cycle is characterized by series of complex processes involved in 
governing cell generation and maintenance. Cell cycle mechanisms are inherently designed to 
prepare the cell for proliferation events, sustain the cellular environment despite lack of nutrients, 
and eliminate defective cells. Generally, proliferation can be defined as a state in which cells are 
systematically progressing through the stages of the cell cycle [16]. This encompasses periods of 
regulated cell development and reproduction. Upon influence from environment changes, cellular 
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signaling can induce cellular transition to exit the cell cycle and occupy a phase termed quiescence. 
Quiescence is characterized by a lapse in cell production despite maintaining viability [16]. 
Notably, cells entering a state of quiescence often only temporarily occupy this phase, indicating 
the possibility of re-entry into the cell cycle for continued cell growth and development. 
Furthermore, cells can undergo regulated death events referred to as apoptosis.  Each of the 
aforementioned cellular activity states is associated with characteristic shifts in metabolic activity, 
introducing both functional and metabolic heterogeneity to biological systems [16, 25]. Cancer 
cells can exploit cell cycle activity by regulating activation and inhibition of the cell cycle. Cellular 
response to administered treatment can fluctuate to relative the position in the cell cycle [27].  This 
results in cell populations conferring resistance to standard chemotherapies likely due to variations 
in cellular function dependent on cell cycle status. Therefore, cell cycle status and its 
environmental influence should be addressed when considering sources of tumor heterogeneity 
and associated challenges [26].  
 
Metabolism as a Marker of Cell Cycle Activity 

Reduced nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide 
(FAD) are intracellular coenzymes that have a significant functional role in biological processes 
at the cellular level [1]. Both serve as essential components in reactions involved in key metabolic 
pathways, as either reactants or byproducts. Specifically, presence of NADH can directly regulate 
functionality of mitochondria and intracellular energy production, as well as factors influencing 
cellular maturity and death. NADH involvement in glycolysis reveals significant information 
regarding metabolic activity in varied physiological states. Notably, cells under abnormal 
physiological conditions utilize glycolytic processes to supply ATP, resulting in greater production 
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of NADH. This allows characterization of the relationship between glycolytic rates and 
pathophysiology through observation of NADH concentration [1]. Additionally, studies have 
suggested that a similar relationship can be established between glucose uptake and NADH 
concentration, providing supplementary metrics to cellular function. Similarly, FAD production 
has been identified to have direct correlation with eukaryotic cellular respiration processes, such 
as oxidative phosphorylation [2]. The citric acid cycle functions to co-regulate cellular 
metabolism, requiring both NADH and FAD as contributors. Fluctuations in NADH and FAD 
concentrations can be representative of overall respiratory chain response to external influences 
[3]. Monitoring changes in cellular function using NADH and FAD biomarkers is not limited to 
simply metabolic processes. Often, mechanisms of metabolism can be associated with altered 
states within the cellular environment, such as oxidative stress levels. Overall, these metabolic 
coenzymes allow comprehensive visualization of cellular activity as well as influencing factors. 

Metabolism has been identified as a principal regulator of global cellular activity and 
transition between cell cycle phases. Accordingly, modulation of metabolic products has 
implications in determining cellular function and cell cycle status. Specifically, in a leukemic cell 
model, cells actively proliferating exhibit stable progression through each phase of the cell cycle, 
which can be indicated by upregulation of oxidative metabolite (e.g. Acetyl-CoA) production [17]. 
This correlates with increased FAD generation, characteristic of active energy production via 
oxidative phosphorylation [18, 19]. Similarly, previous studies have suggested variation in 
intracellular NADH levels are associated with changes in growth rate. Upon cellular transition into 
a quiescent state, there is an observable decrease in NADH production associated with a reduced 
reliance on oxidative phosphorylation for energy production [19]. Furthermore, damage induced 
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by oxidative stress signals activity within different pathways involved in ATP and NADH 
production, as well as FAD consumption [2]. Increasing oxidative stress levels, along with other 
damage-causing factors, are responsible for mitochondrial initiation of cell death. Consequently, 
mitochondria-driven apoptosis will also produce varied NADH and FAD concentrations [14]. 
Therefore, concentrations of NADH and FAD should ideally correlate with changes in cell 
development, establishing metabolic activity changes as valid biomarkers for cell cycle status.    
 
Optical Imaging of Cellular Metabolism 

Metabolic coenzymes NADH and FAD demonstrate strong autofluorescent properties 
allowing ease of observation via fluorescence imaging techniques [3].  Autofluorescence of NADH 
and FAD exhibit spectral characteristics that are unique to each respective fluorophore. Excitation 
spectra of these molecules are well separated, with excitation maxima of 350 nm for NADH and 
435 nm for FAD. Additionally, NADH and FAD exhibit a Stokes shift in their emitted signal with 
an emission maxima of 460 nm and 535 nm, respectively [12]. NADH has been associated with 
greater overall fluorescence intensity, due to higher quantum yield compared to FAD. However, 
the concentration of each fluorophore in a sample primarily dictates the detectability of 
autofluorescence. This feature allows quantification of fluorophore present from the measured 
autofluorescence signal and correlation to active metabolic pathways in a given sample [13]. Due 
to their involvement in cellular metabolism and unique fluorescence signatures, both coenzymes 
act as key indicators of physiological change within an organism. Utilizing its intrinsic 
autofluorescence, NADH concentrations can be quantified to provide early identification of 
abnormalities within the cellular environment [3]. Due to the stable autofluorescent properties 
exhibited by both, these molecules have been identified as effective metabolic biomarkers.  
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Supplementary information inherently associated with cellular metabolism can be probed 
by observing fluorescence lifetime of metabolic products. Fluorescence lifetime can be defined as 
the time for a molecule to relax to the ground energy state following photon absorption and 
excitation to a higher energy state [10]. The fluorescence lifetimes of NADH and FAD measure 
the protein binding activity of the respective fluorophore. Enzymatic binding of NADH and FAD 
can result in fluorescence lifetime variations, due to conformational changes in these molecule [7]. 
NADH in an unbound state exhibits partial quenching of its adenine side chain, resulting in a faster 
rate of fluorescence decay than in the unquenched, bound form [4]. The opposite trend is 
observable with FAD, with its bound form undergoing quenching and subsequently, exhibiting 
slower fluorescence decay. These variations in fluorescence lifetime can be correlated to 
environmental changes within biological samples, establishing the capacity of these molecules to 
serve as biomarkers.          

Subsequently, other metrics of metabolism exploit NADH and FAD activity to understand 
intracellular mechanisms. Quantification of change in metabolic activity is frequently described 
using a measurement known as the redox ratio. Redox ratio examines the relative abundance of 
NADH and FAD per cell by calculation of the ratio of NADH intensity over FAD intensity [3, 7]. 
This metric provides a global assessment of intracellular metabolic activity and can be indicative 
of the active metabolic pathways across cell type and in response to various perturbations. For 
example, increased redox ratio values are suggested to correlate with amplified NADH production 
associated with glycolytic metabolism. Oxidative metabolism causes simultaneous consumption 
of NADH and FAD production, observable through relative decreases in redox ratio.   
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Cancerous tissue can be characterized by the response to environmental stimuli (e.g. 
changes in oxygen level, glucose availability) and feature expression specific to the degree of 
severity. This has initiated attempted analysis of potential sources for cancer development. 
Recently, consideration has been given to the effects of metabolic dysfunction on cancer onset. 
Inhibiting respiration pathways within mitochondria in conjunction with glycolysis stimulation 
have been shown to correlate with cancerous cell growth [4]. Additional differences can be 
observed in the phenotype and genetic makeup of cancerous mitochondria as opposed to normal 
mitochondria. Altered cellular function associated with cancer cells, specifically metabolic activity 
differences, are significant indicators for understanding response to physiological condition. 
Influence of metabolism on cancer development presents defined characteristics to allow for 
improved means of identification and analysis. Past pilot studies have examined levels of NADH 
autofluorescence between various cancer cell lines to determine that NADH concentration could 
function as a biomarker within all cancer types. Additionally, changes in autofluorescent signal 
within cancer cells have been analyzed in response to drug treatment [4-9]. Characteristic of tumor 
metabolism, decreases in protein bound NADH were observed in the presence of dysplasia, 
attributed to a transition of active metabolic pathways from oxidative phosphorylation to 
glycolysis. These fluctuations in protein bound NADH also correlate with severity of precancerous 
tissue, allowing differentiation between normal, low-grade, and high grade dysplasia [4, 6-9]. 
Notably, identification of early stage cancer growth has been attempted utilizing autofluorescence 
of both NADH and FAD concentrations to establish defined signatures from cells at each stage. 
Signals were found to be proportional with degree of malignancy and cytoplasmic prevalence, 
displaying enhanced metabolic activity in highly invasive cells with smaller cytoplasmic areas. 
These studies have identified metabolism as an effective measure of cancer progression. 
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CHAPTER II 
 

MANUSCRIPT: OPTICAL METABOLIC IMAGING OF HETEROGENEOUS, CELL 
CYCLE-DRIVEN TUMOR CELL SUBPOPULATIONS 

  
Introduction 

 The metabolism, drug response, and genetic expression of cells is heterogeneous within a 
single tumor, which affects cancer progression and response to treatment [1]. Specifically, 
quiescent cancer cells lack responsiveness to standard chemotherapies, introducing a major 
challenge to efficacy of cancer treatment [17, 25]. Quiescent populations have been suggested to 
largely influence tumors to enter a state of dormancy, in which the bulk mass is typically 
unresponsive to therapy. This results in residual cancer cell populations following treatment that 
drive tumor relapse. However, the mechanisms responsible for the origin of quiescent cell 
populations and interactions with their micro-environment are not well understood. Identifying 
quiescent cells within tumors could promote the development of improved therapies to target these 
resistant cell populations.      

Flow cytometry is a standard measure of cell function, and is used to identify quiescent 
and resistant cancer cells in heterogeneous tumors. Flow cytometry requires labeling cells with 
fluorescent dyes and sorting the cells into pure populations ex vivo. One notable limitation of flow 
cytometry includes the use of these fluorescent labels, which disrupt of cell physiology [16]. 
Additionally, flow cytometry requires the dissociation of the sample into a single cell suspension 
ex vivo, and thus loses the spatial context of each sub-population. Characterizing heterogeneous 
sub-populations in intact samples would inform on cell clustering and spatial relationships with 
other cells in the tumor, thus providing a more complete picture of tumor heterogeneity.  
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Optical metabolic imaging (OMI) is attractive for the study of tumor heterogeneity because 
it is non-invasive, does not use exogenous labels, can be conducted in intact samples [7-9, 15] 
including in vivo tumors [28], achieves cellular resolution, and is sensitive to cell metabolism [2]. 
Cell metabolism is a sensitive measure of cell malignancy, cancer progression, and an early 
measure of tumor cell drug response [7-9]. Metabolic changes can be optically quantified using 
the distinct autofluorescent properties of the metabolic co-enzymes NAD(P)H and FAD. The 
fluorescence intensities of NAD(P)H and FAD can be combined into the “optical redox ratio” 
(fluorescence intensity of NAD(P)H / FAD), which is sensitive to the relative amounts of electron 
donor and acceptor in a cell. The redox ratio was established by Chance et al. [13] and has since 
been used for an array of applications in cancer, including studies of cancer progression, invasion, 
and drug response [3, 7-9, 15]. Fluorescence lifetime imaging provides a complementary 
measurement to the redox ratio [28], and is sensitive to the enzyme binding activities of NAD(P)H 
and FAD [10]. Specifically, the protein-bound NAD(P)H lifetime is significantly longer than the 
free NAD(P)H lifetime, due to self-quenching in the free state [7, 10, 21-23]. Conversely, FAD 
lifetimes are short and long in the protein-bound and free states, respectively [10]. Combined 
information from the fluorescence intensities and lifetimes of NAD(P)H and FAD provide a 
measure of the global metabolic activity in individual cells within intact samples [3, 7, 10, 13], 
specifically on redox balance and enzyme binding activity. Previous studies have established that 
OMI (imaging the fluorescence intensities and lifetimes of NAD(P)H and FAD) is sensitive to 
cancer progression and drug response [7-9, 28].  

The goal of this study is to use OMI to discriminate proliferating, quiescent, and apoptotic 
cell populations. We hypothesized that populations exhibiting varying cell cycle activity can be 
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metabolically distinguished upon comparison of fluorescence lifetimes and redox ratio. Here, we 
demonstrate the feasibility of OMI to identify sub-populations in an acute myeloid leukemia 
(AML) model, a well-defined model for observing cell cycle status. Pure and heterogeneous 
populations of each cell type were evaluated using OMI.  The results illustrate that OMI can 
distinguish between proliferating, quiescent, and apoptotic cell populations within a heterogeneous 
sample. Therefore, OMI could be translated for use in solid tumors to differentiate heterogeneous 
cancer cell populations within intact samples and in vivo, and thus promote a better understanding 
of the underlying complexity of environmental influence on cancer progression and treatment 
resistance. 

 

Materials and methods 
 
Cell culture 

Kasumi-1 cells (acute myeloid leukemia progenitors) in suspension were cultured in RPMI 
1640 medium supplemented with 10% fetal bovine serum and 1% penicillin:streptomycin. 
Proliferation, quiescence, and apoptosis groups were generated by replacing RPMI media with 
untreated media or media supplemented with 250nM JQ1 (a transcription inhibitor inducing 
quiescence [6]), or 2.1 µM cytarabine (Ara-C, standard chemotherapy that induces apoptosis [18]), 
respectively. Cells were imaged 72 hours after treatment. For imaging, cells were plated onto 35 
mm glass bottom dishes (MatTek) and overlaid with a coverslip immediately prior to imaging, at 
a density of 2.5x104 cells per dish.  
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Cell cycle activity in each culture was validated with flow cytometry.  Cells from 
proliferation, quiescence, and apoptosis groups were seeded at a density of 2.5x106 cells per 
milliliter in 75-T tissue culture flasks. 72 hours after treatment, each culture was labeled with Ki-
67 (proliferation), cleaved caspase 3 (apoptosis), Hoechst 3342 and pyronin Y (quiescence) to 
confirm cell cycle status of each respective culture via flow cytometry.   

Verification of Metabolism with Varied Cell Cycle Status  

The dominant role of oxidative phosphorylation in leukemic progenitor cells was 
confirmed upon perturbation with cyanide. Proliferating Kasumi-1 cells were plated on 35 mm 
glass dishes at 2.5x104 cells per dish after a 72-hour incubation period. Following acquisition of 
NAD(P)H and FAD images, cell media was replaced with media supplemented with 4mM NaCN 
and imaged five minutes after media change.  

 To verify metabolism associated with an inhibitor-induced quiescent state, cells from the 
proliferation and quiescence cultures were resuspended in media supplemented with 100 nM of 
etomoxir, an inhibitor of fatty acid oxidation [19]. Following treatment, cells were incubated for 
48 hours and imaged using fluorescence lifetime imaging 

Fluorescence Lifetime Imaging 

Fluorescence image collection was conducted on a custom-built multi-photon fluorescence 
microscope. Excitation and emission light through an inverted microscope objective was coupled 
using a 40X (1.3NA) oil-immersion objective. A titanium:sapphire laser was used for 
autofluorescence excitation at wavelengths corresponding to NAD(P)H (750 nm) and FAD (890 
nm) autofluorescence. A 400-480 nm bandpass filter was used to isolate fluorescence emission for 
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NAD(P)H. Additionally, combined use of a 500 nm high pass dichroic mirror and a 500-600 nm 
bandpass filter allow isolation of FAD fluorescence emission. Detection of NAD(P)H and FAD 
fluorescence emission was possible using a GaAsP photomultiplier tube. Time-correlated single 
photon counting electronics were used for acquisition of fluorescence lifetime images. Acquistion 
of 170 x 170 µm (256 x 256 pixels) images required a 60-second integration time and pixel dwell 
time of 4.8 microseconds. Photobleaching of the sample was avoided during image acquisition by 
maintaining photon count rates at approximately 1-2 x 105 photons/second. NAD(P)H and FAD 
fluorescence lifetime was measured for each experimental group at 24 and 72 hours following 
perturbation. Between NAD(P)H and FAD lifetime images in each sample, fields of view were 
kept consistent. 

Image Analysis  

Fluorescence lifetime components (SPCImage) were calculated following analysis of 
fluorescence lifetime images. Fluorescence contributions from background and nuclei of cells was 
minimized upon application of a threshold value to all images. The measured instrument response 
function was deconvolved from the decay curve measurement prior to curve fitting. The second 
harmonic generated signal from urea crystals at 900 nm excitation was used to measure the 
instrument response function, which was found to have a full width at half maximum of 220 ps. 
Calculation of fluorescence lifetime values was achieved by fitting decay curves to a two-
component exponential model, I(t) = α1e-t/τ1 +  α2e-t/τ2 + C, where I(t) is the fluorescence intensity 
at time t following laser excitation, τ1 and τ2 are the short and long fluorescence lifetimes, α1 and 
α2 represent the short and long lifetime component contributions (α1 + α2 = 1), and C represents 
background light contribution. A two-component decay curve was used to represent the free and 



13 
 

protein-bound conformations of NAD(P)H and FAD [9].  Photon counts from the NAD(P)H and 
FAD fluorescence lifetime images were integrated over the fluorescence decay time on a per-pixel 
basis in order to generate NAD(P)H and FAD intensity images. Respective mean lifetimes of 
NAD(P)H and FAD were calculated as a weighted average of the short and long lifetimes (τm = 
α1τ1 + α2τ2). Furthermore, computation of redox ratio for each pixel per image was conducted by 
dividing NAD(P)H fluorescence intensity by FAD fluorescence intensity per pixel. A customized 
CellProfiler pipeline was used to calculate mean redox ratio values, NAD(P)H and FAD mean 
lifetimes corresponding to a single image [5]. Fluorescent bead measurements were acquired daily 
to validate experimental fluorescence lifetime values. Bead lifetime measurements (1.9 ± 0.09 
nanoseconds) were consistent with values reported in literature [15, 28]. 
 
Partial Least Squares - Discriminant Analysis 

In order to obtain maximal separation between groups with differing cell cycle activity, 
partial least squares discriminant analysis [24] was implemented to build a model determining the 
contribution of available metabolic measurements to each data set. This technique performs 
iterations of linear transformations on a matrix of samples with known classification for projection 
onto a vector comprised of classification values corresponding to each sample in the matrix. The 
resultant equation represents an optimal boundary between all groups included in model 
construction. Weight centering of all groups was applied to minimize bias in separation boundaries 
influenced by uneven cell numbers, by averaging the means across all groups and subtracting the 
result from each value in the data set.  Separate models were developed for two-group and three-
group classification to overcome skewed weighting criteria by the training data set. Calculation of 
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the Mahalanobis distance from each class mean to all data points ensured appropriate assignment 
of separation boundaries in the case of three-group classification [24].  

Acquired images from pure proliferative, quiescent, and apoptotic samples at 72 hours 
were used as a training set to develop the aforementioned models. In order to validate these models, 
heterogeneous samples were generated by plating cells from each population at various proportions 
and imaged immediately following plating. For the two-group validation set, proliferative and 
quiescent cells were plated at the following proportions: 100:0, 70:30, 50:50, 30:70, 0:100 
(proliferating:quiescent). Three- group validation included plating proportions of 33:33:33, 
50:25:25, and 25:25:50 (proliferating:quiescent:apoptotic).  

Statistical Analysis 

To assess significant differences between groups as assessed by the redox ratio, NAD(P)H 
m and FAD m, a Wilcoxon rank sum test was conducted. For correction of multiple comparisons 
across data sets, a Tukey multiple comparison test was applied for comparisons of means following 
multi-group classification.  Error bars are representative of the mean ± standard error of the mean. 
Statistical significance was indicated with an α value less than 0.05.   

 

Results 
 
Metabolic Perturbations in Proliferating and Quiescent Cells 

Metabolism of proliferating human acute myeloid leukemia cells was assessed by 
perturbation with cyanide. Cyanide inhibits oxidative phosphorylation, resulting in an abundance 
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of NADH in the cytoplasm. The significant increase in the redox ratio after cyanide treatment (Fig. 
1A) confirms the reported dominance of oxidative phosphorylation in leukemic cells. Similarly, 
the reduced NADH τm is consistent with previous studies of cyanide treatment in cancer cells (Fig. 
1B) [refs]. Trends in FAD τm were also comparable to previously reported data, however there was 
not a significant change in the FAD τm following addition of cyanide. 

Unlike proliferating leukemic cells, quiescent leukemic cells are known to rely on fatty 
acid oxidation, which is a feeder reaction for oxidative phosphorylation [18, 19]. JQ1 is also known 
to induce quiescence in leukemic cells [6]. In order to validate the effect of JQ1, leukemic cells 
were treated with the fatty acid oxidation inhibitor etomoxir [19] (Fig. 2).  As expected, inhibition 
of fatty acid oxidation did not result in significant changes in the redox ratio of proliferating cells 
(Fig. 2A). However, inhibition of fatty acid oxidation did increase the redox ratio of quiescent cells 
(Fig. 2A). These results verify that JQ1 induces these leukemic cells into quiescence, which is 
characterized by the reliance on fatty acid oxidation. 
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Figure 1. Inhibition of Oxidative Phosphorylation.  Quantitative measurement (mean +/- SE) 
of the (A) redox ratio, (B) NAD(P)H mean lifetime (m), and (C) FAD m for proliferating Kasumi-
1 cells (n = 8) before and five minutes after addition of 4 mM cyanide. Redox ratio values increased 
with addition of cyanide, indicating inhibition of oxidative phosphorylation (* p<0.05, *** p < 
0.001) 
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Figure 2. Inhibition of Fatty Acid Oxidation. (A) Quantitative measurement (mean +/- SE) of 
the redox ratio for untreated proliferating (n =12 images) and quiescent (n= 12 image) Kasumi-1 
cells, as well as etomoxir-treated proliferating (n =12 images) and quiescent (n =12 images) cells. 
Kasumi-1 cells were forced into quiescence by treatment with 250 nM JQ1 72 hours before 
etomoxir or vehicle treatment. (B) Representative redox ratio images. The increase in the redox 
ratio after etomoxir treatment indicate that inhibition of fatty acid oxidation also inhibits 
downstream oxidative phosphorylation in quiescent cells only. (* p<0.05, *** p < 0.001) 
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OMI of Proliferative, Quiescent, and Apoptotic Cells 

OMI was performed in acute myeloid leukemia cells forced into proliferative, apoptotic, and 
quiescent states, in order to validate OMI as a method for classifying these cell states.   Gold 
standard flow cytometry verified cell cycle activity associated with each population. Untreated 
(proliferative), JQ1-treated (quiescent), and cytarabine-treated (apoptotic) Kasumi-1 cells were 
treated and imaged at 24 and 72 hours post-treatment. Two-photon fluorescence lifetime imaging 
quantified the redox ratio, NAD(P)H m, and FAD m within proliferating, quiescent, and 
apoptotic cell populations (Fig. 3). The redox ratio progressively increases for apoptotic and 
quiescent cells compared to proliferative cells (p<0.05, Fig. 3A). The NAD(P)H m increases for 
apoptotic cells compared to proliferative and quiescent cells (p<0.05, Fig. 3B).  The FAD m is 
greater for apoptotic and quiescent cells compared to proliferating cells (p<0.05, Fig. 3C). 
Furthermore, cellular morphology can also discriminate between cells with varied cell cycle 
status. Quiescent cells exhibit a decrease in cytoplasmic area (Fig. 4) compared to proliferative 
and apoptotic populations (p<0.05, data not shown), undergoing size reduction at later time 
points. Subpopulation distributions exhibited large overlap for single-cell redox ratio values. 
This trend was similarly observed across mean NAD(P)H and FAD lifetimes, indicating that 
individual metabolic measurements provide limited separation between subpopulations. 
However, the previously-observed differences in mean values of each metabolic measurement 
suggests that a combination of these parameters could allow for identification of cell cycle 
activity on a cell-by-cell basis. 
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Figure 3. Metabolic Measurements of Proliferating, Apoptotic, and Quiescent Cells.  
Quantitative measurement (mean +/- SE) of the (A) redox ratio, (B) NAD(P)H m, and (C) FAD m at the single-cell level for proliferating (n = 12 images), quiescent (n = 12 images), and apoptotic 
(n = 12 images) Kasumi-1 cells at 72 hours post-treatment. Significant differences were observed 
in redox ratio and lifetime values across all populations (* p < 0.05, ** p< 0.01, *** p < 0.001). 
Individual metabolic measurements provide limited separation between subpopulations.  
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Figure 4. Lifetime and redox images. Representative redox ratio, NAD(P)H m, and FAD m 
images of Kasumi-1 cells forced into proliferative, quiescent, and apoptotic states, 72 hours post-
treatment.  
 

Classification Model with Partial Least Squares – Discriminant Analysis (PLS-DA) 

  In order to enhance discrimination between cell cycle status on the single-cell level, partial 
least squares – discriminant analysis (PLS-DA) was performed to maximize separation between 
each population. The first iteration of the PLS-DA model aims to separate proliferating and 
quiescent cell populations. The two-group PLS-DA model provided a linear combination of the 
measured metabolic parameters (redox ratio, NAD(P)H τm, FAD τm), weighted based on their 
significance in representing training set data, for separation between proliferating and quiescent 
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cultures. This two-group PLS-DA model was applied to an initial training data set, consisting of 
measurements from pure samples of quiescent and proliferative cells (Fig. 5A).  The two-group 
PLS-DA model showed improved separation of proliferating and quiescent populations (Fig. 5A) 
compared to any single variable (Fig. 3).  This approach was extended to include all three 
populations, again using measurements of pure samples from quiescent, proliferative, and 
apoptotic cells for the initial training data set (Fig. 5B).  Again, the three-group PLS-DA model 
showed improved separation of proliferating, quiescent, and apoptotic populations (Fig. 5B) 
compared to any single variable (Fig. 3).  
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Figure 5. Two– and Three– Group PLS-DA Model Training Sets.  Quantitative measurement 
(mean +/- SE) of values determined from a PLS-DA model.  (A) Single-cell population 
distributions from the PLS-DA model applied to a two-group training set (proliferating: n = 12 
images, quiescent: n = 12 images) (B) Single-cell population distributions from the PLS-DA model 
applied to a three-group training set (proliferating: n = 12 images, quiescent: n = 12 images, 
apoptotic: n = 12 images). The PLS-DA model results in significant improvement in separation 
between populations (*** p < 0.001) compared to any single variable alone (Fig. 3). 
 
Validation of the Two- and Three-Group PLS-DA Models 

The two- and three-group PLS-DA models were validated on heterogeneous, mixed 
cultures of proliferative, quiescent, and apoptotic cells. The two-group model was validated with 
images of proliferating and quiescent cell mixtures plated at varied proportions (100:0, 70:30, 
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50:50, 30:70, 0:100, respectively), to evaluate the ability of the model to distinguish both 
subpopulations in a single sample (Fig. 6). The two-group PLS-DA model classified proliferative 
cells and quiescent cells with high accuracy, based on the gold standard plated ratio (Table 1).  

 

  

Figure 6. Two-Group PLS-DA Model Validation.  Quantitative measurement (mean +/- SE) of 
values determined from a two-group PLS-DA model.    (A) Single-cell population distributions 
from PLS-DA model applied to a validation set with equal proportions of plated proliferating and 
quiescent cells (n = 12 images) (B) Single-cell population distributions from the PLS-DA model 
applied to a validation set plated at a proportion 70% proliferating and 30% quiescent cells (n = 
12 images). The two-group PLS-DA model results in high classification accuracy compared to 
plated proportions (*** p < 0.001).   
 
 

Table 1:  Comparison of Plated and Modeled Proportions for Two-Group Mixtures 
 
 

 

Similarly, the three-group model was evaluated on mixtures of all populations plated at the 
following ratios: 33:33:33, 50:25:25, 25:25:50 (proliferating, quiescent, apoptotic), to observe 
population-dominant changes in sensitivity to quiescent populations (Fig. 7B). The three-group 

Proliferating:Quiescent Mixture 1 Mixture 2 
Plated Proportions 50 : 50 30 : 70 
Model Proportions 50 : 50 36 : 64 
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model resulted in high classification accuracy for all three populations in mixed samples with equal 
proportions of cells from each population (Table 1). Similar trends were observed in proliferation-
dominant samples, with minimal decrease in sensitivity. Apoptotic-dominant samples, however, 
introduced challenges in distinguishing between apoptotic and quiescent cells.     

 

  

               

Figure 7. Three-Group PLS-DA Model Validation.  Quantitative measurement (mean +/- SE) 
of values determined from a three-group PLS-DA model.  (A) Single-cell population distributions 
from PLS-DA model applied to a validation set with equal proportions of plated proliferating, 
apoptotic, and quiescent cells (n = 12 images) (B) Single-cell population distributions from PLS-
DA model applied to a validation set plated at a proportion of 25% proliferating, 50% apoptotic, 
and 25% quiescent cells (n = 12 images). (C) Single-cell population distributions from PLS-DA 
model applied to a validation set plated at a proportion of 50% proliferating, 25% apoptotic, and 
25% quiescent cells (n = 12 images). The three-group PLS-DA model similarly results in high 
classification accuracy compared to plated proportions (*** p < 0.001).  
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Table 2:  Comparison of Plated and Modeled Proportions for Three-Group Mixtures 
 
 
 
 
 
Discussion  

 Tumor heterogeneity is a significant challenge in new drug development and treatment 
planning in cancer [1]. Unfortunately, there are a lack of methods to assess tumor heterogeneity 
without the use of contrast agents in intact samples. Metabolism is an attractive measure of tumor 
heterogeneity, due to its fundamental role in malignant transformation and in drug resistance [1-
3]. Our results demonstrate that OMI can discriminate between populations exhibiting 
heterogeneous cell cycle activity in a single sample, without the use of contrast agents. OMI has 
been previously used to study single-cell response in vivo [3, 7, 28] and in three-dimensional 
cultures [15]. These studies further support the use of OMI to identify and characterize sources of 
tumor heterogeneity in these samples.  Therefore, the current study provides a framework to 
understand the metabolic sources of tumor heterogeneity in relevant samples, thus providing 
further insight into strategies to circumvent drug resistance. 

To our knowledge, this study is the first to classify cell populations based on cell-cycle 
associated differences in metabolism. However, previous studies have characterized the 
metabolism of leukemic cells in different cell cycle phases. Lagadinou et al. identified oxidative 
phosphorylation as the primary energy source for leukemic progenitor cells, by observing levels 
of reactive oxygen species produced by these cells [18]. These findings are consistent with our 
studies, specifically with the increased redox ratio in Kasumi-1 cells upon inhibition of oxidative 

Proliferating:Apoptotic:Quiescent Mixture 1: 
Equal 

proportions 
Mixture 2: 
Apoptotic 
dominant 

Mixture 3: 
Proliferating 

dominant 
Plated Proportions 33 : 33 : 33 25 : 50 : 25 50 : 25 : 25 
Model Proportions 36 : 26 : 37   28 : 53 : 19 50 : 14 : 36 
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phosphorylation with cyanide (p < 0.05, Fig. 1).  Oxidative phosphorylation is driven by 
metabolites produced in upstream pathways, which promote these cells to adopt different 
functional phenotypes. Samudio et al. similarly characterized the oxygen consumption of leukemia 
progenitors in proliferative or quiescent states [19]. These studies showed that proliferative 
leukemic cells use more glycolytic metabolism compared to quiescent cells. Furthermore, 
perturbation with a fatty acid oxidation inhibitor (etomoxir) eradicated the quiescent cells [19], 
suggesting these cells rely on fatty acid oxidation to drive oxidative phosphorylation downstream.  
Our results with the same fatty acid oxidation inhibitor (Fig. 2) are consistent with these previous 
findings [19], and validate the reliance of quiescent leukemic cells on fatty acid oxidation (in 
contrast to proliferative leukemic cells). Additionally, comparison of redox ratio, NAD(P)H τm 
and FAD τm across proliferative, apoptotic, and quiescent cells indicate that variations in 
metabolism are required for differences in functional phenotype (Fig. 3).  

The original OMI variables (redox ratio, NAD(P)H τm, FAD τm) are somewhat effective in 
distinguishing proliferative, apoptotic, and quiescent cells in vitro (Fig. 3). To optimize single-cell 
classification, we applied PLS-DA to generate a linear combination model of the measured OMI 
variables. Our results show that this PLS-DA model improves the separation of proliferative, 
quiescent, and apoptotic cells in a pure sample (training set, Fig. 5) and in heterogeneous samples 
(validation sets, Figs. 6,7). Agreement between the plated proportions and the PLS-DA model-
predicted proportions are good for both the two-group (Table 1) and three-group (Table 2) models. 
Single cell tracking studies could provide further evaluation of the correlation between plated and 
PLS-DA model cell classifications.  These results suggest that OMI combined with a PLS-DA 
model can identify proliferative, apoptotic, and quiescent cells in unknown, heterogeneous 
samples. This could be a powerful tool to observe the interactions of these cells within tumors.   
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 The results of this study have potential for contributing to studies of tumor dormancy and 
drug resistance. Tumor dormancy has been identified as a primary source of resistance to 
conventional therapies, with the inactive nature of the tumor resulting in a lack of treatment 
response [1, 17]. There are many theories on the mechanisms driving tumor dormancy. One 
predominant theory suggests that, at the single-cell level, quiescence within the tumor promotes 
the bulk mass to enter a state of dormancy [17, 25-27]. The OMI and PLS-DA approach used in 
this paper to identify and monitor quiescent tumor cells in the presence of both proliferative and 
apoptotic cells could be used to study interactions between cell types, and the effect of quiescence 
on tumor progression.  Our findings could also be used to identify extracellular influences that 
initiate transitions between quiescence, proliferation, and apoptosis. Furthermore, these results 
support the use of cellular metabolic measurements to study the development of tumor dormancy.  
 
 Additional studies will be necessary to evaluate our approach to universally examine cell 
cycle-driven tumor heterogeneity. Since transition between proliferation, quiescence, and 
apoptosis is largely controlled by changes in cellular metabolism, metabolic analysis of these sub-
populations should correlate to underlying mechanisms driving functional activity of multiple 
cancer cell types. Translation to in vivo cancer models, such as breast or pancreatic cancer, should 
be possible upon characterization of metabolic differences associated with cell cycle status in these 
cell types. Moreover, transition to three-dimensional organotypic cultures or in vivo mouse studies 
would provide spatial relationships between quiescent cells and other cell types, as well as provide 
more relevant information in understanding the role of tumor heterogeneity in patient treatment 
resistance. Overall, we have demonstrated OMI and PLS-DA as valuable tools for observing cell-
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cycle status. Ultimately, these tools can be used to better understand tumor dormancy and 
treatment resistance.  
 
  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



27 
 

Chapter III 
 

CONCLUSION AND FUTURE DIRECTIONS 
 

 Differences in metabolic activity were observed between populations of proliferating, 
quiescent, and apoptotic cells in a well-defined acute myeloid leukemia model, exhibiting the 
sensitivity of optical metabolic imaging to cell cycle activity.  Upon treatment of leukemic cells 
with perturbations inducing each of the aforementioned functional states, significant differences 
were detected in redox ratio and fluorescence lifetimes of NADH and FAD across all populations. 
This finding supports reported trends in literature characterizing the oxidative metabolism of 
proliferating and quiescent leukemic cells driven by glycolysis and fatty acid oxidation, 
respectively.  Furthermore, application of the classification model developed in this study 
demonstrated the ability to distinguish each cell type within a mixed sample. These results suggest 
that optical metabolic imaging could serve as a tool to identify and characterize heterogeneous 
populations in tumor samples to study their contribution to treatment resistance.  

 Additional studies are required to establish the feasibility of identifying these populations 
in three-dimensional culture or in vivo. Metabolic characterization and classification of these cell 
populations within three-dimensional cultures or in vivo in mice will be necessary to verify the 
sensitivity and universal applicability of this technique. Following appropriate validation, this 
technique could establish a platform for studying the influence of tumor microenvironment on 
tumor cell dormancy.  
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