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CHAPTER I 

 

INTRODUCTION 

 

Clinical bioinformatics research relies on molecular biology techniques to inform 

the clinical management of individual patients. Computational models can predict clinical 

outcomes, such as prognosis or response to treatment, based on the results of high 

throughput molecular assays. The large number of such models reported in the literature 

is growing at a pace that overwhelms the human ability to manually assimilate this 

information. For advances in molecular medicine to translate into clinical results, 

clinicians and translational researchers need to have up-to-date access to high-quality 

predictive models. Therefore the important problem of retrieving and organizing the vast 

amount of published information within this domain needs to be addressed. The inherent 

complexity of this domain and the fast pace of scientific discovery make this problem 

particularly challenging. 

In this dissertation, I will discuss the limitations of existing tools for solving this 

problem and propose an information retrieval framework for organizing and retrieving 

clinical bioinformatics predictive models. This framework will need to adequately 

represent the complex attributes that characterize bioinformatics predictive models such 

as their purpose, their underlying methodology and source of data. A knowledgebase in 

which these models are stored and their attributes indexed for effective retrieval will be 

an integral component of this information retrieval framework.  It is also self-evident that 

information within this knowledgebase has to be up-to-date and comprehensive. The 
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methods used to populate this repository will need to be scalable to the pace and volume 

of scientific discovery in this field.  

Based on these observations, the specific aims of this dissertation are: 

1. Propose and validate an information retrieval framework based on a semantic 

analysis of clinical bioinformatics. 

2. Build and evaluate reproducible scalable automated filters for identifying relevant 

clinical bioinformatics papers using the MEDLINE database. 

3. Build and evaluate reproducible scalable automated or semi-automated methods 

for annotating and indexing relevant papers for the supporting knowledgebase. 

 

Aim 1 

The first aim of this dissertation is to propose and validate an information 

retrieval framework based on a semantic analysis of clinical bioinformatics. Formal 

knowledge representation of the domain is needed to support the underlying computation. 

It will also inform the design of the overall information retrieval framework. 

1a. Identify types of information that are relevant to clinical bioinformatics 

predictive models. What objects are related to predictive models in this domain? What is 

the information needed to annotate models and related objects to support their effective 

retrieval? For example, the development and validation of predictive models requires 

datasets of molecular patient data and associated known clinical outcomes. To support 

queries for models in this domain, it will be useful to collect information on the source of 

molecular data used by specific predictive models and on the type of clinical outcomes 

that these models predict. 
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1b. Construct and validate a semantic model (ontology). The datasets described 

above are essential for training and/or testing of predictive models and for determining 

their scope and quality. Therefore, a dataset is an object that is functionally relevant to a 

clinical predictive model. The first step is to define, based on use cases, an ontology of 

objects and relationships in the domain of clinical bioinformatics that are relevant to the 

proposed information retrieval framework. This ontology‘s expressiveness for the domain 

of clinical bioinformatics will be analyzed. 

1c. Design an information retrieval framework based on the semantic model. 

The main purpose of the information retrieval framework is to retrieve models and 

related objects in response to clinical bioinformatics queries. A set of attributes can be 

used to characterize the objects, and the objects can then be annotated by assigning 

values to their attributes. Queries specify the values of these attributes and the objects 

that match query predicates will be retrieved. The classes of attributes that will be chosen 

to annotate objects in the knowledgebase will be based on the semantic model (ontology) 

in Aim 1b. The choice of these attributes, i.e. annotation scheme, needs to balance 

expressiveness - ability to correctly represent the domain – with support for efficient 

indexing and retrieval. 

 

Aim 2 

The second aim of this dissertation is to build and evaluate reproducible scalable 

automated methods for identifying relevant clinical bioinformatics papers using the 

MEDLINE database. Published articles are the primary source of information about 

biomedical research. Building a knowledgebase supporting the desired information 
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retrieval framework requires a set of papers that describe clinical bioinformatics 

predictive models. Manually identifying these relevant papers from the literature from the 

large number of related articles is a tedious task. The scalability of building and 

maintaining an up-to-date collection of relevant papers can be achieved via automated 

filters. Within this framework, filters are text classifiers that flag relevant papers based on 

the text content of their MEDLINE record. Statistical machine learning models have been 

shown in the past to reliably replicate human classification tasks for MEDLINE article 

retrieval. The contents of the MEDLINE record is converted into numerical features that 

can be used by machine learning to compute paper classification. During the feature 

extraction step, tokenization breaks the stream of text into words and/or symbols. In 

addition, feature extraction may rely on linguistic and semantic transformations such as 

shallow parsing, word stemming or stop-word removal. Other types of feature extraction 

steps exist and may depend, for example, on the location of terms within the MEDLINE 

record (title, abstract, MeSH term, etc.)  

2a. The first research question that will be investigated is: can existing or 

modified feature extraction transformations be used to train machine learning filters 

that can identify relevant papers from MEDLINE? The machine learning filters will be 

Support Vector Machine (SVM) based. The performance of these filters will be measured 

by comparison against a gold standard of labeled articles from the domains of lung 

cancer and bioinformatics using area under the receiver operator curve (AUC). This task 

requires prior reliable manual assignment of labels to the requisite gold standard datasets. 

The training and gold standard datasets will need to include a mixture of labels that is 

similar in composition to the results of routine MEDLINE queries in this domain. The 
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goal is to find, from the different permutations of existing feature extraction 

transformations, the feature extraction steps that will produce machine learning models 

with the highest possible AUC cross validation performance in the lung cancer dataset. 

2b. If the performance of machine learning filters is sensitive to the domain 

(disease) of the papers in a dataset, then new filters will need to be trained using gold 

standards built for all possible diseases, a tedious task. Therefore it is important to find 

among the models that satisfy the previous hypothesis, those that can successfully filter 

relevant papers that describe other diseases. Specifically we want to show that it is 

possible to train such filters. Therefore, the second research question will investigate 

whether there exist from among the filters with favorable performance on the lung 

cancer gold standard, filters that identify relevant papers in other domains – 

specifically breast cancer. This step will test the generalizability of the clinical 

bioinformatics filters across multiple medical specialties. The performance of the filters 

will be benchmarked using, as gold standard, a dataset derived from MEDLINE articles 

from the domain of breast cancer. 

2c. The training and testing datasets used for testing the hypotheses above are 

based on one annotator‘s attempt to consistently apply labels about the relevance of these 

papers to clinical bioinformatics. Even if these hypotheses are true, one cannot infer that 

the performance of the filters will generalize to annotations judged by other domain 

experts. It will important to assess generalizability along a different dimension: 

annotation by a different set of experts. Therefore the third research question is: can 

filters trained to identify relevant papers in the domains of bioinformatics and lung 
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cancer using annotation by one expert, identify relevant papers in the same domain as 

judged by other experts whose annotations were not used to train those filters?  

 

Aim 3 

Build and evaluate reproducible scalable automated or semi-automated 

methods for annotating and indexing papers for the supporting knowledgebase. The 

next step in building the supporting knowledgebase is the semantic annotation of relevant 

papers according to the set of attributes defined as part of Aim 1c. The semantic 

annotation of papers is more complex than assigning a binary ―relevant‖ label as in Aim 

2. Annotation requires the identification of more granular attributes of a given paper such 

as determining the biological source of data used in a model and the type of molecular 

assays used. Furthermore, the eligibility of a given article for semantic annotation may 

depend on more than one conditional ―relevance‖ criteria. For example, there may be a 

predictive model that relies on molecular data; however, the outcome that this model 

predicts may not conform to the semantic definition of clinical outcome as defined in this 

information retrieval framework. In this case this model will only qualify for a subset of 

the annotations. The approach followed for automatic semantic annotation in this aim 

will be similar to the approach used in Aim 2. The problem will be cast as a machine 

learning classification problem. Due to the semantic complexity of the attributes used for 

annotation, there may be a need to expand the feature extraction steps to include Natural 

Language Processing (NLP) techniques.   

3a. The first research question is: can existing or modified feature 

transformations be used to train text classifiers that can replicate human semantic 
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annotation of the gold standard? The performance of the classifiers will be measured 

using the average AUC, and will be evaluated using N-fold cross validation. The aim is 

to identify and select methods that achieve high (AUC) against the gold standard in a 

given domain (lung cancer and bioinformatics). This hypothesis will be tested 

independently for all the attributes used for semantic annotation i.e. unique classifiers 

will be trained and tested for every attribute used for semantic annotation. There is no a 

priori assurance that the performance of the classifiers will be uniform across all 

attributes. If the performance of the text classifier is not uniform, then the causes of this 

variability will be investigated including the inherent suitability of the individual 

semantic attribute for automatic annotation. 

3b. The second research question will test whether modifying the feature 

extraction transformations used for training semantic classifiers in Aim 3a to include 

natural language processing (NLP) will alter their performance. Specifically, this step 

will measure the effect of adding the frequency of occurrence of unique UMLS concepts 

(CUI) within the MEDLINE record to the set of features used to train and test the 

machine learning dataset. KnowledgeMap, a natural language processing tool that can 

extract UMLS CUIs in biomedical text, will be used. Similar to Aim 3a, this will be 

tested for all the annotation attributes, and the cause of variation in performance across 

the different attributes, if present, will be investigated. Some annotation attributes (e.g. 

clinical outcome) may be related on the occurrence of CUIs present in traditionally 

epidemiological text whereas other attributes (e.g. those relating to molecular data) may 

be related to the occurrence of CUIs that stem from molecular named entities with 

different coverage in the UMLS.  
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3c. The third research question is: can text classifiers trained for semantic 

annotation of relevant papers in the domains of bioinformatics and lung cancer using 

annotation by one expert, replicate the semantic annotation of independent papers in 

the same domain by other experts? Similar to Aim 2c, this will test the generalizability 

of the classifiers to annotations by different annotators. Similar to Aims 3a and 3b, this 

will be repeated for all the annotation attributes. If variability was found in the 

performance of the classifiers corresponding to different attributes, the causes of such 

variability will be investigated.  
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CHAPTER II 

 

BACKGROUND AND SIGNIFICANCE 

 

Clinical Bioinformatics 

The goal of molecular medicine is to diagnose and find treatments for human 

diseases by the application of tools of molecular and cell biology1. In recent years, 

researchers have begun to link tissue molecular profiles – such as gene expression 

information – of individual patients to relevant disease outcomes such as diagnosis2, 

prognosis3, and response to treatment4. Knowledge discovered from large scale genomic 

and molecular biology data is already being put to clinical use5 and several clinical 

studies are in the development or validation phase6. In a typical scenario, a molecular 

assay is performed on tissue obtained from a patient. Then, a decision model computes, 

based on the assay results, the predicted clinical outcome of the patient‘s disease. 

Therefore, clinical bioinformatics predictive models rely on molecular and clinical data 

obtained from a single patient to compute a ―decision‖ or outcome that is used for the 

clinical management of the patient, for example to help determine the choice of effective 

therapy. In February 2007, the U.S. Food and Drug Administration approved7 the first 

molecular test, MammaPrint™, to predict the recurrence of breast cancer within five to 

ten years. MammaPrint™8 and other genomic profiling tests like Oncotype Dx9 compute 

clinical outcomes using assay measurements from multiple genes (70 for MammaPrint™ 

and 21 for Oncotype Dx). Clinical bioinformatics models can be classified based on the 

type of molecular information used as input. (1) ―Genomic‖ tests measure the in-vivo 
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activity of a complex set of genes in diseased tissue. (2) ―Genetic‖ tests look at inherited 

genetic characteristics that are passed from one generation to another. Inherited genetic 

traits may predispose to certain diseases or may affect an individual‘s response to 

pharmacologic therapy. (3) ―Proteomic‖ tests measure the local signal of a set of proteins, 

the end-product of complex genomic interactions. Clinical bioinformatics models can 

also be classified based on the type of the clinical outcome that they compute. The type 

of clinical outcome and its relation to the personalized clinical management of patients 

has policy and regulatory implications. For example, prognostic and diagnostic genomic 

kits have been regulated as class II devices by the FDA, requiring less oversight10. On the 

other hand, the FDA requires that the related genotypes and dosing guideline information 

be included in drugs where genomic correlation is known to affect treatment outcome11. 

The field of pharmacogenomics12,13 applies whole genome analysis technologies to 

predict treatment response and adverse drug reaction susceptibility based on individual 

genetic variability. For example the cancer drug, irinotecan, has side effects that have 

been linked to an inherited allele that leads to lower expression of a specific drug-clearing 

enzyme14. A listing of drug-related genomic biomarkers is available on the FDA 

website11.  

Building and validating clinical bioinformatics models is a complicated scientific 

process that draws from multiple overlapping sources of genetic, genomic, or proteomic 

data. High throughput experimental methods generate data that can have hundreds or 

even hundreds of thousands of data-points per sample. Such data are difficult to process 

manually and require sophisticated computations that draw from a variety of disciplines 

including biostatistics and machine learning. Furthermore, there is great variability in the 
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methods that evaluate these predictive models‘ validity, generalizability, and supporting 

evidence6. Many analyses of statistical shortcomings of current approaches for building 

and validating predictive models have been published3,15,16. Clinical bioinformatics is a 

complex domain, and there is a clear need to organize the vast amount of information 

surrounding clinical predictive models and related research information. Due to the fast 

pace of scientific discovery, there is also a need for tools that provide up-to-date 

information to clinicians and researchers in this domain. 

 

Related and Similar Resources 

Current resources and databases address some of the clinical bioinformatics 

information needs and can be leveraged when building a system for organizing and 

retrieving clinical predictive models. Most existing resources store only specialized 

subsets of predictive models. For example, PharmGKB17-19 is a database that links 

genomic variability, mostly accounted for by single nucleotide polymorphisms (SNPs), 

with phenotypes relating to pharmacokinetics, pharmacodynamics, or therapeutic clinical 

outcomes. Information is organized in PharmGKB by gene, drug, disease, publications, 

or datasets. ONCOMINE20,21, a database and web-based analysis and visualization tools, 

is restricted to cancer-related gene expression microarray experimental results. Datasets 

in Oncomine are profiled (annotated) by cancer and tissue types, by experimental 

methods, and by the types of gene expression differential analysis performed on these 

datasets, e.g. comparing gene expression differentials across different prognosis groups 

or across different histological subtypes. Oncomine provides links to the original datasets 

as well as analysis tools for (clinical) differential analysis of these datasets, but does not 
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store or classify the applied algorithms or inferred models that were reported in the 

original publications. The Gene Expression Omnibus (GEO)22,23, is a resource developed 

by the NCBI as a MeSH-indexed public repository of microarray and other forms of 

high-throughput ―omics‖ data submitted by the scientific community. Sources of data in 

GEO include gene expression microarrays, ArrayCGH, SNP Arrays, Serial Analysis of 

Gene Expression (SAGE), Massively Parallel Signature Sequencing (MPSS), protein 

arrays, and mass spectrometry. Information in GEO is organized by series (study-

centered data) or by individual genes. Many journals require that gene expression results 

be submitted using the Minimum Information About a Microarray Experiment (MIAME) 

format24 to the GEO prior to publication25. Some of the series in GEO are further curated 

and stored as datasets with more structured annotations (relevant citations, organisms) 

and the possibility to perform online data analysis. The Biometric Research Branch at the 

NCI has developed array analysis tools for gene expression data, and provides a hand-

curated archive of human cancer gene expression datasets26. The Rembrandt repository27 

is highly annotated for clinically-oriented outcomes but is restricted to brain-cancer-

related molecular research data. Recently, GeneSigDB – a curated database of gene 

expression signatures – was revealed28. Articles that describe gene expression signatures 

are manually curated and the gene lists that are reported in the articles are manually 

transcribed and mapped to standardized gene identifiers in other databases. The emphasis 

in GeneSigDB is on extracting genes from published papers and indexing these genes 

across different publications and gene signatures. 
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Formal Ontologies in Support of Translational Bioinformatics 

Ontologies are formal knowledge representations that are computable. Non-vague 

medical concepts are the building blocks of biomedical ontologies29. Ontologies organize 

concepts in hierarchies and describe relationships that can exist between them. In recent 

work, Shah, Butte, Musen et al30, have used ontology-driven indexing of public molecular 

datasets to support translational bioinformatics. They proposed and evaluated a method to 

map free text, the predominant method of dataset annotation, to concepts in ontologies 

such as SNOMED-CT31 and the NCI Thesaurus32. This approach drives the integration of 

information across various objects that pertain to translational bioinformatics. They aim 

to index publically available molecular datasets – such as Gene expression datasets, 

Tissue Micro Array datasets – as well as citations in Pubmed using ontology concepts 

extracted from free text. Ontology-driven indexing will serve as the basis for a prototype 

system for information integration that they will offer online along with other tools, such 

as the ―Open Biomedical Annotator‖33, via the National Center for Biomedical 

Ontology34. Ontology-based approaches have been used by genomic and proteomic 

researchers to ask questions of diverse data repositories. Such cross-database information 

queries benefit from standard and controlled representation of domain knowledge35,36. By 

standardizing and controlling domain concepts, ontologies such as the NCI Thesaurus32, 

the Gene Ontology (GO)37 and the Clinical Bioinformatics Ontology (REFSEQ)38 support 

interoperability between clinical bioinformatics repositories. Other ontology-based 

frameworks, include the RAD/RAPAD Study Annotator39, the Functional Genomics 

Experiment Model40,41, and the Ontofusion system for biomedical database 

integration42,43.  Description logic(DL)-based languages44, such as the Web Ontology 
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Language (OWL)45 are popular means of formal ontology representation. DL is a subset 

of first order logic that is constrained to guarantee decidable computation when it comes 

to classification of objects into classes. DLs can be used for conceptual modeling, 

information integration, and support for semantic query mechanisms. SNOMED-CT is an 

example of a DL-based ontology. Formal ontologies define unambiguous concepts and 

provide along with the concepts their semantic types, synonymy information, tree 

hierarchies and relationships. These attributes make formal ontologies, in theory, the 

ideal choice for the annotation of resources to support information retrieval. 

 

Manual Annotation: Using Humans to Create Structure 

In this proposal, I will use the term ―annotation‖ to refer to the process of 

mapping a string of unstructured text to a collection of concepts in a terminology or 

ontology. Unstructured text is annotated by coupling ontology concepts either to the 

entire text or to specific subsets of the text. An application of the former approach is 

mapping an entire dataset in GEO based on the textual description that accompanies it to 

a disease concept in SNOMET-CT30. Applications of the latter approach46-49 identify and 

highlight every mention of GO concepts within the text of published papers. When 

building systems that rely on annotation of free text, the choice of a specific annotation 

scheme (ontology, terminology, or a simple controlled list) is a crucial operational 

decision. Another important operational decision is the choice of the method used for 

annotation. In this section, I will discuss the annotation that is entirely performed by 

humans. 
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Manual Annotation Using Formal Ontologies 

Formal ontologies are often the first choice due to their desirable properties 

mentioned above. Manual annotation with ontology concepts by domain experts may 

provide the highest possible quality; however, researchers have argued50,51 that many 

problems are associated with this approach, namely: 

1. Evolution: Ontologies change over time. Concepts may be added, removed, 

replaced, or moved around in the graph. While "graceful evolution"
29

 (See 

Cimino‘s terminology disederata) can help achieve backward compatibility, 

completeness cannot be assured in the future unless human annotators go back 

and re-annotate according to the newer versions of the ontology. New concepts 

can be missed in the indexing of old documents. 

2. Inter-annotator agreement: Manual curation is subjective and may depend on the 

scientific background, or expertise of the annotators as well as on the process of 

annotation itself. Research has shown significant variability between 

annotators
47,52,53

. The variability may arise from the complexity of the annotation 

scheme, from the ambiguity in annotation instructions, or from intrinsic difference 

between the individual annotators (education, professional training, annotation 

experience etc.) 

3. Scalability: Human effort cannot keep pace with scientific progress and the 

volume of new published knowledge.  

Despite these drawbacks, ontologies are still the preferred annotation and 

indexing scheme for many reference databases where the stored information is well 

structured and characterized54. GO and other bioinformatics ontologies are used for 
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indexing gene products and structural biology and proteomic databases. Specialized 

ontologies have also been useful for annotating molecular databases for flies and other 

species55. Theoretically, extensive ontologies like SNOMED-CT provide the flexibility 

not just to represent the stored information, but to also represent flexible query 

expressions making them appealing for information retrieval systems. However, 

increased expressiveness leads to increased computational complexity. Using DL 

databases like SNOMED-CT can be computationally impractical for certain tasks given 

the current state of DL reasoning technology56-58. 

 

Manual Annotation Using Ad hoc Schema 

Some researchers have designed annotation schema that are tailored to the task at 

hand. Chapman et al59 used grounded theory to design an annotation scheme for 

extracting clinical conditions from emergency department records. They started with a 

general theory statement and followed an iterative approach to refine the annotation 

schema. The schema was then validated and evaluated for completeness. Since there is no 

external reference to act as gold standard, Chapman et al relied on inter-annotator 

agreement as one measure of the quality of annotation outcome.  

 

Quality of Manual Annotation: Inter-Annotator Agreement 

Hripcsak studied inter-annotator agreement (IAA) in biomedical annotations
60,61

 

and found significant inter-annotation variability when using controlled terminologies to 

code problem lists
52

. A decade earlier Giuse and Miller reported similar variability
62

. 

Hripcsak analyzed different metrics that measure IAA, and concluded that the Kappa 
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concordance statistic is often not suitable to measure agreement when using biomedical 

ontologies for annotation. The theoretical reason for rejecting Kappa, the classical inter-

rater agreement metric, in such cases is that annotators have to select from a large set of 

concepts. The statistical probability of them agreeing on the true negatives is high. Kappa 

will then be skewed towards over-optimistic results, and the false agreement rate will be 

hard to estimate
60

. Hripcsak proposed using another metric, the F-measure, which 

converges to Kappa when the number of concepts to be picked is small relative to the 

entire set of concepts in the terminology
61

. Variability in human cognition, knowledge, 

and understanding of the annotation process are possible explanations of IAA variability. 

Chapman, Dowling and Hripcsak studied annotation behavior in more detail
63

. They 

found that training annotators (physicians and non-physicians) to use the given 

annotation schema helped improve their agreement scores over time. 

Despite IAA variability, manual annotations are generally considered as having 

higher quality yet lower yield than automated methods
50,51,64

. Some studies consider 

manual curation the gold standard without empirically reporting IAA
65

. For 

benchmarking purposes, gold standards can rely on expert consensus or on less subjective 

criteria such as choosing ACP journal club papers as the positive standard for machine 

learning filters that identify high quality papers in internal medicine
66

. 

 

Scalable Annotation 

Clinical bioinformatics is characterized by a fast pace of scientific discovery. 

Manual annotation and curation of text in this domain may not succeed in building 
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comprehensive and up-to-date databases. Many approaches have been proposed as 

solutions for this scalability problem.  

 

Crowdsourcing 

Crowdsourcing is the act of dividing a large task into multiple small similar tasks 

and outsourcing those tasks to a large group of people. Even though it relies on manual 

curation by humans, crowdsourcing relies on technologies (so called ―Web 2.0‖ 

techniques) that allow the harnessing of mass collaboration. Wikipedia is an example of a 

massive collaboration by a large number of people, each contributing a relatively small 

portion of the effort. Some investigators have attempted crowd-sourcing of specialized 

databases. For example, a protein interaction database, WikiProteins
67

, was constructed 

using a structured semantic wiki and community contribution. Other examples include 

the BOWiki
68

, and ArrayWiki
69

. While Wikipedia remains a success case, the above 

mentioned databases are relatively recent, and their long term success as comprehensive, 

up-to-date resources remains to be tested. (BOWiki for example, has not been updated in 

over a year). Crowdsourcing may be performed via an open call for voluntary 

participation from the community. For such project to be successful, multiple factors 

need to be in place, such as a perceived need by the community for the resource, and 

designing the small task units in a way that mirrors current work being done by the 

community members. Another crowdsourcing approach is by making micropayments for 

crowdsource ―workers‖ as compensation for completed units of work. Amazon‘s™ 

Mechanical Turk is a resource that matches workers with repetitive so called Human 

Intelligence Tasks (HIT). Mechanical Turk ―requesters‖ design the HITs and pay 
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―workers‖ a small fee for each completed HIT. For example, the Laboratory for 

Personalized Medicine (LPM) at Harvard Medical School posted hundreds of documents 

on Mechanical Turk and asked the ―workers‖ to annotate those documents by answering 

a small set of questions for each document
70

. 

 

Assisted Curation 

Assisted curation is the transfer from unstructured information (typically text) into 

structured information (typically databases or ontologies) by human curators, who are 

assisted by computational methods based on text-mining. Text mining can provide 

decision support for curators by highlighting semantics types, duplications, or relevant 

entities within the text. For example, Altman et al used PharmPresso, an adaptation of a 

text mining tool TextPresso
71

, to assist the curation of PharmGKB
65

. PharmPresso 

extracts pharmacogenomic concepts and relationships from full article text (not just 

Abstract/MeSH terms) and highlights those concepts in the text of the paper for the 

human user. Jin et al automatically identified GO annotations in the literature using 

multi-label classification techniques that utilized the structure of the GO graph
72

.  

Another approach to assisted curation is using automated methods to label or classify 

entire documents. The most prominent example is the constant massive need to annotate 

the PubMed database using MeSH terms. The staff at the National Library of Medicine 

have been continuously improving the Medical Text Indexer (MTI), a tool that 

automatically recommends MeSH main headings to NLM indexers. The developers of 

TMI use NLP, statistical and machine learning based method for producing MeSH 

recommendations. These methods have been used and evaluated independently and 
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combined
73

. Aphinyanaphongs et al constructed and validated machine learning filters 

that identify PubMed papers describing high quality clinical evidence
66,74

. Haynes et al 

designed filters for high quality clinical studies in the literature by optimizing 

computerized combinations of search terms
75

. In certain situations, human annotation is 

intended as the first step. The outcome of the initial human annotation can then be used to 

train an artificial-intelligence curator that takes over the annotation process if it can 

replicate the quality of human annotation
76

. Currently, there is no standard approach for 

assisted curation of biomedical databases; similarly, there is no consensus yet among 

researchers on the ideal balance between the machine and the human roles in this 

process
50,51,77

. 

 

Leveraging Semantic Technology 

Some specialized biomedical search engines like HubMed
78

, iHOP
79,80

, 

EBIMed
81

, GOPubMed
82

, AliBaba
83

, TextPresso
71

,  augment traditional information 

retrieval frameworks with different semantic enhancement. Their methodologies can be 

summarized as follows: 

 NLP-based techniques are used to identify named entities in the papers. NLP 

techniques include entity recognition by matching strings to concepts, 

enumeration of concept co-occurance, concept disambiguation using contextual 

information, and summarization. The semantic information extracted via NLP is 

then used to annotate and index the text database. Information extraction may 

include ―mining‖ new relationships based on semantic types, such as disease-

drug, and the co-occurrence of concepts in the text. Examples include: the 
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BioProspecting approach for mining genetic markers from the  New England 

Journal of Medicine
84

; the Clinical E-Science Framework (CLEF) information 

extraction approach for building a semantically annotated corpus of clinical 

text
85,86

; and the PharmGKB approach for automatic identification of drug-

genotype-phenotype relationships from the pharmacogenomics literature
65,87,88

. 

 NLP-based techniques parse semantic entities in queries. This is referred to as 

query transformation and refinement. The semantic entities obtained from the 

query are used to match objects in the database that are indexed by those 

concepts. This approach requires preexisting semantic annotation of the database 

as described in the previous point. 

 The hierarchical structure of bioinformatics ontologies like GO can guide the 

users as they browse the database. Subsumption reasoning can be leveraged to 

help the users search the databases at different granularity levels.  

 Information can be obtained based on hyperlinks from the database to external 

sources of knowledge like Wikipedia, or to structured databases like GenBank 

and GEO. Linked resources can provide additional information. For example 

TextPresso, and Pharmpresso extract and analyze full paper text from pdf files. 

Links to protein sequences and motifs can add additional information not 

provided in paper abstracts. 

 Other preprocessing techniques include: highlighting text classified as ―evidence‖ 

like highlighting words from the query in the results; ranking based on score 

functions of arbitrary complexity e.g. using Google‘s PageRank to analyze the 
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network structure of bibliome citations; interactive queries; pre-calculation and 

caching of semantic distances. 

 

Semantic Annotation by Content Creators 

Automated and semi-automated semantic analysis can benefit from semantic 

annotations of published papers and data by the authors themselves upon submission of 

their manuscripts. Proposed frameworks for this approach include: the Structured Digital 

Abstracts (SDAs) requirements by the Royal Chemical Society
89

; the FEBS letters 

experiment
90,91

; and SciXML / SciBORG
92

. Some have proposed requiring 

computationally guided annotation be an integral part of the editorial process
89,93

.  

 

Ontology Learning 

Finally, text can be annotated using new ontologies constructed directly from text 

(rather than automatic annotation of text using existing ontology). This approach attempts 

the automatic discovery of terms, synonyms, concepts, and taxonomic and non-

taxonomic relationships
94

. It may be difficult to automatically construct concept 

synonymy and hierarchical relationships based solely on statistical and natural language 

processing of biomedical text corpora due to the very large number of medical concepts 

and the extensive hierarchies and relationships between these concepts
95,96

. Furthermore, 

the nature of clinical medical knowledge is such that complex semantic manipulations of 

concepts (e.g. post-coordination) are required for adequate representation
97

.  
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Evaluation of Annotation and the Inescapable ―Gold Standard‖ 

Regardless of the methodology used to achieve scalability of document 

annotation, there will be a need for an evaluation study of the annotation process. 

Furthermore, reliable manual (human) annotation of a set of papers will be integral to any 

evaluation of these methods as evident in all of the studies referenced above. Consider 

the broad categories of annotation methodologies: 

 NLP-based information extraction (fully automated, or semi-automated): Such 

methods were typically validated using ―gold standard‖ annotations of concepts 

within documents by human experts. In NLP-based methods, the F-measure
61

 is 

typically used to measure agreement of the outcome of NLP with expert 

annotations, because the facts that are extracted from the text by NLP belong to a 

very large set of concepts. When NLP methods are utilized as classifiers of a 

binary outcome (i.e. to infer whether a label is present or absent), information 

retrieval metrics such as recall, precision and sensitivity are used to evaluate their 

performance
98

.  

 Statistical and machine learning based methods (fully automated label 

assignment, or semi automated use of filters that reduce the work of human 

indexers): Building and validating supervised machine learning models requires 

―gold standard‖ training and testing datasets compiled by human annotators. 

Recall and precision can also be calculated based on the gold standard and used as 

indicators of the performance of the resultant classifiers. However, the output of 

many machine learning models is a real number that can be used to generate a 

ranked result (as opposed to an unordered result set). The ordered ranking allows 
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for variation of the decision cut-off points for class assignment and the 

construction of a precision vs recall curve. The precision vs recall curve can be 

transformed into the receiver operator curve (ROC). The area under the ROC is a 

common metric for evaluating the performance of machine learning text 

classifiers
99

. 

 Manual Annotation by Humans: Biomedical databases can be completely 

annotated by trained curators, by crowdsourcing, or by community volunteers. As 

mentioned earlier, many researchers have pointed to inter-annotator variability in 

biomedical databases
52,53,60,62,63

. Higher variability may result when annotation 

relies on the users‘ conceptual model of the given domain and on their individual 

understanding of the meaning in unstructured text. The reliability of the gold 

standard can be empirically evaluated by assigning an overlapping subset of 

documents to multiple annotators and measuring a concordance metric (e.g. 

Kappa) of their label assignment.  

Building methodologies and tools (such as text annotation workbenches
100

) for 

constructing reliable biomedical text corpora that can serve as gold standard is an active 

area of research
50,63,86,100-102

.  
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CHAPTER III 

 

A NOVEL INFORMATION RETRIEVAL MODEL FOR 

HIGH-THROUGHPUT MOLECULAR MEDICINE MODALITIES 

 

Note 

This chapter consists of the content of the published article: Wehbe FH, Brown 

SH, Massion PP, Gadd CS, Masys DR, Aliferis CF. A novel information retrieval model 

for high-throughput molecular medicine modalities. Cancer Inform. 2009 Feb 9;8:1-17. 

The content of the ―Related Work‖ section of the article is subsumed by Chapter II of this 

dissertation and is omitted from this chapter to avoid redundancy. The ―Appendix‖ of the 

published article is attached to this dissertation as Appendix A. 

 

Introduction 

The goal of Molecular Medicine is to diagnose and find treatments for human 

diseases by the application of tools of molecular and cell biology
1
. In recent years, 

researchers have begun to link tissue molecular profiles—such as gene expression 

information—of individual patients to relevant disease outcomes such as diagnosis
2
, 

prognosis
3
, and response to treatment

4
. Knowledge discovered from large-scale genomic 

and molecular biology data is already being put to clinical use
5
 and several clinical 

studies are in the development or validation phase
6
.  

The field of pharmocogenomics, for example, applies whole genome analysis 

technologies to predict drug treatment response and adverse drug reaction susceptibility 

based on individual genetic variability
12,13

. For instance, an inherited genetic trait places 
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some individuals at risk for adverse drug reactions (diarrhea, neutropenia) to the 

antineoplastic drug irinotecan
14,103,104

. Individuals with the most common variant allele 

(UGT1A1*28) have lower expression levels of an enzyme that deactivates irinotecan.  

The FDA requires that the related genotype and dosing guideline information be included 

in the irinotecan package insert
11

. Other mutations are associated with a good clinical 

prognosis
105

 and positive response to certain classes of drugs
106

.  A listing of drug-related 

genomic biomarkers is available on the FDA website
11

.  

In a typical scenario, a molecular assay is performed on tissue obtained from a 

patient. Then, a decision model computes, based on the assay results, the ―predicted‖ 

clinical outcome of the patient‘s disease. For example, the U.S. Food and Drug 

Administration approved in February of 2007 the first high-dimensional molecular test to 

predict the recurrence of breast cancer within five to ten years. Many similar tests are 

expected to follow
107

.   

Discovering clinically significant knowledge from large-scale genome and 

molecular biology information is a complicated scientific process that draws from 

multiple overlapping sources of data describing complex interactions at the genomic, 

proteomic, or other ―omic‖ levels. High throughput ―omic‖ experimental methods 

generate data that can have hundreds or even hundreds of thousands of data-points per 

sample. Such data are difficult to process manually and require sophisticated 

computation. Decision models that process the resulting data are also complex and draw 

from a variety of disciplines including biostatistics and machine learning. Furthermore, 

there is great variability in the methods that evaluate these predictive models‘ validity, 

generalizability, and supporting evidence
6
.  
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For advances in molecular medicine to come to clinical fruition, it is crucial for 

clinical and translational researchers to have access to relevant, up-to-date, and correct 

information about known molecular medicine modalities
108

, such as research datasets, 

research methods, known and validated decision models, and related evidence. Therefore 

the important problem of retrieving and organizing the vast amount of information issued 

from molecular medicine research needs to be addressed. The inherent complexity of this 

domain and the fast pace of scientific discovery make this problem particularly 

challenging.  

 

Problem Statement 

Our goal is to develop a general purpose information retrieval system that satisfies 

the following two requirements: 

1. The system should be able to index, retrieve and organize most methods of 

molecular profiling, most forms of predictive computational models, many types 

of clinical outcome, as well as supporting evidence and computational resources. 

2. The knowledgebase needs to be comprehensive and up to date. This requires 

simple, cheap, fast, and scalable methods to build the knowledge base and to keep 

it current. To keep up with the rapid pace of discovery in clinical bioinformatics, 

these methods have to be automated or semi- automated in the worst case.  For 

this system to support the first requirement, its underlying knowledge 

representation formalism has to convey the semantic complexity of the clinical 

bioinformatics domain; on the other hand, the underlying formalism has to be 

simple enough to support the second requirement of relying on scalable 



28 

automated methods. The problem, therefore, is to develop a framework and 

semantic model that balance these two requirements.  

This system will also have to accommodate a wide range of query types. Consider 

the following query examples to be posed by clinicians and/or clinical and translational 

researchers: 

 Example Query 1: ―What models exist that predict the response to the 

chemotherapy regiment (CHOP) in patients with diffuse large B-cell lymphoma 

(DLBCL)?‖ In this query, the following entities are specified: ―disease‖ is 

specified as ―DLBCL‖; ―clinical outcome‖ is specified as ―response to CHOP‖. 

Notice that this question leaves the specific method of ―molecular profiling‖ open. 

This query might be posed by an oncologist looking for up-to-date knowledge to 

guide her choice of treatment strategy for her DLBCL patient. 

 Example Query 2: ―What models exist that predict response to the chemotherapy 

regiment (CHOP) based on gene expression profile?‖ This query does not specify 

the type of cancer, it does, on the other hand, restrict all desired models to those 

based on gene expression data.  This query may be posed by a researcher in 

pharmacogenomics looking to correlate the expression of specific genes with the 

biological function of specific drugs. 

 Example Query 3: ―What papers have compared multiple supervised learning 

methods for the prediction of cancer diagnosis based on gene expression data 

using a cross validation method?‖ This query could be posed by a clinical 

researcher in possession of a gene expression dataset who is looking for proven 

methods to build and validate models for diagnosing prospective cancer patients 
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using gene expression microarrays. Notice that in this query, the specific disease 

and the specific outcome are not specified. Only the type of outcome is specified 

as ―diagnosis‖. Also notice that this query specifies classes of algorithms 

(―supervised learning‖) and validation methods (―crossvalidation‖) rather than 

individual methods. 

 Example Query 4: ―What datasets originating from breast tumor samples 

contain mass spectrometry data and contain clinical survival data?‖ This is a 

specific query by someone who is interested in building and testing models that 

predict survival in breast cancer based on raw mass spectrometry data.  

These queries require the search and retrieval of a multiplicity of molecular 

medicine modality object types including but not limited to documents, which are the 

focus of traditional information retrieval problems. Our envisioned system is intended to 

represent and retrieve four different types of objects relevant to clinical bioinformatics: 

 Papers: A published paper is the primary unit of scientific communication. 

Individual papers or groups of papers describe the methods and results of high 

throughput molecular medicine research. 

 Datasets: In many cases, researchers publish their data in the public domain
109

. 

Often, that data is utilized by other researchers seeking to develop new and 

improved analysis methods, to test novel hypotheses, or simply to reproduce or 

validate the published results. 

 Algorithms/Software: Research laboratories that develop data analysis methods 

often publish implementation of the algorithms that they have developed and 

applied
110

. 
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 Models: Predictive computational models are produced by the application of 

algorithms on research datasets. Predictive computational models provide a 

―decision‖ based on molecular assays and clinical data obtained from a single 

patient. The predictive computational model‘s decision (output) may then be used 

for the clinical management of the respective patient, for example to help 

determine the choice of effective therapy. Ideally the process of decision model 

formation includes rigorous statistical validation to ensure that the utility of a 

given decision model can generalize to a wider population. 

 

Model Formulation and Proof of Concept  

 

Model: Objects, indexing scheme, and queries 

We developed an information retrieval model to support our intended system by 

examining use cases that mimic the queries introduced above in the domains of diffuse 

large B-cell lymphoma (DLBCL) and breast cancer. The model is described in the 

context of the task of retrieving research information from the semantically complex 

clinical bioinformatics domain of gene expression microarrays in the diagnosis and 

treatment of DLBCL.  

Initially, we conducted manual literature reviews for papers that describe this 

domain. We noted the different objects that were described in the papers that were 

reviewed, i.e. by identifying Algorithms, Datasets, or Models described in each Paper.  

Conceptually, the objects in the knowledgebase are all the Papers, and the union of all 
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Algorithms, Datasets, and Models that are described by the Papers. An Algorithm, a 

Dataset, or a Model can be referenced in more than one Paper.  

Further examination of these objects revealed that each can be described by at 

least one Context that specifies the following elements in a tuple: <Disease, Population, 

Purpose, and Modality>.  For example in the Paper by Wright et al.
111

, a Model that 

predicts the molecular subtype of DLBCL was produced and validated by applying the 

Algorithm ―Bayes Classifier‖ on two gene expression Datasets. The five objects (1 

Paper, 1 Algorithm, 2 Datasets, and 1 Model) can each be annotated with the following 

Context: (Disease = DLBCL, Population = Human Patients, Purpose = Predict Molecular 

Subtype, Modality = Gene Expression Microarray).  

A query to the knowledgebase should then return a subset of the objects in the 

knowledgebase.  A simple enumeration of Papers, Algorithms, Datasets, and Models that 

relate to gene expression microarrays in the context of DLBCL is shown in the left side 

of Figure 1. We also realized that a query can be represented as a partial or complete 

Context. For example, the Contexts represented by the example queries above are shown 

in Table 1. Queries 1–3 specify partial Contexts, and Query 4 specifies a complete 

Context. A quick and simple indexing scheme can be achieved by using a set of canonical 

terms for each of the Context elements, and then indexing each of the objects with at least 

one complete Context tuple. Objects are retrieved when their Context elements match the 

Context elements specified in the query.  

We conducted a broad search for DLBCL gene-expression-related objects, by 

placing a query as in Figure 1 that specified the following Context: (Disease = DLBCL, 

Modality = Genomic). In the following section we will discuss three clinical 
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bioinformatics scenarios that involve a subset of DLBCL gene-expression-related objects. 

The scenarios were encountered when we analyzed the set of manually collected objects 

that satisfied this Context. Figures 2–4 will provide a pictorial representation of these 

scenarios. 

 

Table 1. Contexts partially or completely specified by the example queries in the problem statement section 
above 

Query # Disease Population Purpose Modality 

1 DLBCL Human Patients Response to 

CHOP Regimen 

- 

2 - - Response to 

CHOP Regimen 

Gene Expression 

3 - - Diagnosis Gene Expression 

4 Breast Cancer Human Patients Predict Survival Mass Spectrometry 
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Figure 1. An overview of how the information retrieval model will be applied to the DLBCL use case. 

Left side: After specifying the desired query parameters (Context, Quality Filtration), the system will return a 

potentially large result set of molecular medicine modality objects.  This enumerated set of objects is the raw 

result. Please refer to the subsection ―Model: Objects, Indexing Scheme and Queries,‖ last two paragraphs. 

Right side: One or more subsets of the raw result may then be selected by the user for visualization and 

organization based on the relationships between these objects. The subsection ―Model: Object Relationships and 

Quality Filters‖ elaborates on this process.  The full details of the DLBCL use case are mentioned in the 

subsection ―Proof of Concept: Diffuse Large B C-Cell Lymphoma‖. Three subsets of objects from the DLBCL 
domain along with their relationships are organized pictorially according to our model in Figures 2, 3 and 4. 

 

 

Proof of concept: Diffuse large B-cell lymphoma 

DLBCL is the most common form of non-hodgkins lymphoma in adults. 

Historically, less than half of DLBCL patients are cured by chemotherapy
112

. It was 

suggested early on that DLBCL actually comprises several diseases that differ in 

responsiveness to chemotherapy. A pioneering paper by Alizadeh et al. in 2000
113
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applied bioinformatics methods to investigate this hypothesis. They measured gene 

expression levels in lymphoid tissue collected from a variety of healthy and sick 

individuals. The microarray platform used, called ―lymphochip,‖ measured mRNA levels 

by hybridization on cDNA spots. The cDNA gene library on the lymphochip was 

deliberately designed to include genes known to be expressed in lymphoid tissue. The 

resultant Dataset, which consisted of around 17 thousand gene expression analytes for 

128 samples, was analyzed using an unsupervised hierarchical clustering Algorithm. 

Based on the hierarchical clustering results, multiple decision Models were generated that 

either related to the biological behavior of DLBCL or to the clinical outcome of patients 

suffering from DLBCL (See Fig. 2). In the former category, the decision Models seemed 

consistent with the following hypotheses: (1) That DLBCL can be distinguished based on 

gene expression data from follicular lymphoma (FL), another form of lymphoma; (2) 

That there are two molecular subtypes of DLBCL; and (3) That one subtype‘s molecular 

signature resembles that of activated peripheral B-cells (APB-like) whereas the other‘s 

signature resembles that of B-cells found in the germinal centers of lymph nodes (GC-

like). The resultant clinical decision Model of this study was that DLBCL samples that 

clustered in the GC-like category had better survival than those that clustered in the APC-

like category. 

Two subsequent studies attempted to further investigate and validate the 

hypotheses that were reported in the Alizadeh Paper. See Figure 2 for a graphical view of 

the objects and relationships that were reported in these three Papers. Rosenwald et al. 

used the same microarray platform, the lymphochip, to collect data from 240 patients 

with DLBCL
114

. In this study, two Algorithms were used. An unsupervised hierarchical 
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clustering Algorithm was used in a similar way to that described in the Alizadeh paper. 

However, three resultant hierarchical clusters (molecular subtypes) were found and 

labeled: ―Activated B- Cell-like‖, ―GC-B-Cell-like‖, and ―Type 3‖. The second 

Algorithm relied on multivariate regression techniques to construct a clinical survival 

prediction Model based on (so-called) gene expression scores. The decision Model was 

derived from a Dataset of 160 patients and was validated on the remaining 80 patients. 

This decision Model instance was compared to another widely used clinical predictive 

Model, the ―International Prognostic Index‖ (IPI)
115

, that predicts clinical outcome based 

only on clinical parameters. Molecular and clinical data were reported as independent 

factors in predicting clinical outcomes. 
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Figure 2. A pictorial representation of the first three widely cited Papers relevant to the DLBCL use 

case along with the Datasets, Algorithms, and Models that were described in these Papers. Identifying and 

presenting relationships between these objects is important for the semantic organization of this domain. These 

relationships are represented by edges connecting the different objects. For example, the three Papers each 

describe how Algorithms were applied to Datasets to produce decision Models. We identify this class of ternary 

relationship as Run_ on_Produce (Produce in the figure for simplification). Furthermore, the Shipp (Shipp and 

others, 2002) and the Rosenwald (Rosenwald and others, 2002) Papers describe how the rightmost and leftmost 

predictive Models (respectively) were validated using the Datasets that they had assayed. This scenario is 
detailed in the subsection ―Proof of Concept: Diffuse Large B-cell Lymphoma,‖ paragraphs 1–3. 

 

 

In a third study, by Shipp et al.
116

, gene expression was measured in tumor 

samples from 58 DLBCL patients receiving the CHOP chemotherapy protocol, and from 

19 FL patients.  In this study, however, oligonucleotide-based microarrays were used 

instead of the cDNA-based lymphochip. Supervised learning methods (Algorithms) were 

used to construct two predictive classifiers (decision Models): one associated with the 

biological hypothesis that DLBCL can be distinguished from FL based on gene 
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expression data, and another associated with the clinical hypothesis that gene expression 

data can predict the clinical outcome of DLBCL. The latter decision Model was also 

compared to the IPI clinical predictive Model, and in this study as well, molecular and 

clinical data were found to be independent factors in predicting outcomes. A more 

rigorous cross validation method was used to validate the models produced by this study. 

In this paper, the previous claims about molecular sub-types were put to test. The same 

unsupervised hierarchical clustering Algorithm was applied on their dataset
1
 to cluster the 

samples. Two molecular subtypes did emerge, and they did show ―APB-‖ and ―GC-‖ B-

cell-like expression patterns. However, survival was not found to be different between the 

two groups. 

 

                                                
1 Notice that the oligonucleotide sequences on the microarrays platform of this study were matched through 

their annotations to the cDNA genes in the ―lymphochip‖ platform used in the other studies. Only the 

sequences that matched were used in this clustering technique. That‘s why the ternary relationship apply-

on-to-produce has an asterisk in Figure 2. 
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Figure 3. This figure shows the objects and relationships that surround the production and external 

validation of a Bayes-classifier Model as described in the Wright et al. (Wright and others 2003) Paper and 

explained in the subsection ―Proof of Concept: Diffuse Large B-Cell Lymphoma‖, paragraph 4. The Model 

(bottom center) was produced by applying the Bayes-classifier Algorithm to the lymphochip Dataset (left). The 

Model was internally validated (left side arc) using that Dataset which was split into independent training and 

testing sets. It was then externally validated (right side arc) using another independent Dataset that was assayed 

and described in a previous Paper (right). It is important to represent and identify this type of scenario in which 

higher quality Models are produced, i.e. Models that generalize across different Datasets and, in this case, across 
different molecular assay platforms (oligonucleotide vs. cDNA). 

 

Wright et al.
111

 wanted to reconcile the results from the last two studies (See Fig. 

3). They developed a Bayes classifier (i.e. a decision Model) to predict molecular sub-
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type and clinical outcome. It was trained and validated on the Rosenwald Dataset that 

used the lymphochip platform. The classifier was then independently validated on the 

Dataset produced by the Shipp group, again using sequence annotations to reconcile the 

cDNA sequences with the oligonucleotide sequences. This seems to support the 

biological hypothesis that the ―two molecular subtypes‖ in DLBCL correlate with 

different biological and clinical behavior. The semantics of the relationship between this 

Model and these two Datasets is reflected through the visual description and organization 

in this figure. 
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Figure 4. This figure describes how an Algorithm (PCA + SIR) was described by the Li et al. (Li, 2006) 

Paper. This Algorithm was benchmarked using two independent Datasets that were assayed and described by 

previous Papers, and one Dataset produced by Monte Carlo simulation.  The Models that were produced by the 

application of this Algorithm on these Datasets were validated internally using one independent split of the 

respective Datasets. This scenario is commonly encountered in methodological research aimed at developing and 

benchmarking new classification Algorithms. Please refer to subsection ―Proof of Concept: Diffuse Large B-Cell 
Lymphoma,‖ paragraph 5. 



41 

 

On the other hand, the more recent paper by Li et al.
117

 describes a study that 

develops and evaluates a specific data-analysis method (i.e. Algorithm) (See Fig. 4). This 

Algorithm, ―Principle Component Analysis and Sliced Inverse Regression‖, was applied 

to both the Rosenwald and Shipp Datasets, as well as to a Dataset produced by a Monte 

Carlo Simulation. Decision Models were generated and they were validated on an 

independent subset obtained through one split of the data (148 training samples, 74 

training samples). This figure focuses on one algorithm in this Context and relates all the 

objects (and relationships) that are relevant to the evaluation of this Algorithm. 

 

Model: Object relationships and quality filters  

These examples demonstrate that the figures and their underlying complex 

semantics cannot be conveyed by simple retrieval and enumeration of objects returned by 

Context, i.e. as in the left side of Figure 1. A potentially large number of returned objects 

need to be organized and displayed intuitively. One aspect of object organization relates 

to the relationships between the different object types. Such relationships were indicated 

by edges in the figures. For example, a Paper can describe how an Algorithm is used to 

Analyze a Dataset. A Model is Produced by running an Algorithm on a Dataset. Models 

are Validated using more than one Dataset.  Grouping objects in annotated relationships 

can be leveraged in post-retrieval organization and display to provide semantic 

information about the objects.  

All the predictive Models mentioned above underwent some form of validation, 

expressed via the Validate relationships in the respective figures. The Validate 
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relationship is further specialized via the Validate External and Validate Internal 

subclasses. Please see the section on evidence annotation in the appendix. As molecular 

predictive Models mature and get closer to routine clinical practice, it is important to 

consider the evidence supporting their validity and generalizability. As described by Pepe 

et al.
118

, clinical bioinformatics predictive models typically go through multiple stages of 

validation before being accepted in standard practice. Therefore, our envisioned system 

will need to filter different objects based on the strength of supporting evidence. For 

example, these query results can be narrowed to include only high quality models by 

appending the following requirements to the query ―[get models that …], have been 

developed using datasets with sample size (n) larger than 200 patients, and that have 

been validated using an independent dataset.‖  

The concepts mentioned so far that will support the information retrieval model 

are described in more detail in the appendix. Now we can revisit Figure 1 in its entirety. 

It gives an overview of how a query is intended to be processed: A query sets the desired 

object types, specifies a partial or complete Context(s), and sets conditions for quality 

filtration. The process is decomposed into three steps: (1) returning objects that are 

indexed by Context tuples that match the query‘s Context, (2) filtering out objects based 

on quality of evidence, and (3) selecting smaller sets of objects by the user and 

organization of these objects along with their relationships in an intuitive way.  

 

Proof of concept: Molecular prognostic test for breast cancer—MammaPrint®  
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The same semantic representation and organizational principles of Papers, 

Datasets, Algorithms, and Models that relate to MammaPrint®, the first commercial 

Breast Cancer molecular prognostic test, are shown in Figure 5 and explained below.  

 

 

Figure 5. This figure depicts objects and object relationships that span the development and evolution 

of the MammaPrint™ Model from its earlier versions. The figure also represents the validation of 

MammaPrint™ across multiple Datasets and its comparison to other Models.  Notice that the other clinical 

predictive models are classical models that do not incorporate molecular data. The information retrieval 

framework will incorporate classical (non-molecular) clinical predictive Models only when they are relevant to 

the validation of molecular prediction Models. Otherwise classical Models will not be indexed or stored. Similar 

to the process described in Figure 1, a query to this domain will return a raw set of objects (Part I, left side). A 

subset of the raw result may be selected for visual organization and display (right side) of the objects and their 

relationships (Part II, right side). The detailed prose description of this scenario is presented in the subsection 

―Proof of Concept: Molecular Prognostic Test for Breast Cancer—MammaPrint®‖. 

 

Researchers in the Netherlands
5
 analyzed historical breast cancer tissues using a 

25,000 sequence oligonucleotide microarray. Seventy genes were found to be predictive 

of 5-year metastasis in Lymph Node (LN)-negative female patients under the age 55. 

Unsupervised hierarchical clustering (Algorithm) distinguished the following three 
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characteristics: Estrogen-receptor negative (i.e. cannot be treated with the drug 

Tamoxifen), having BRCA1 germline mutation, and metastasis within 5 years. In other 

words, three Models were Produced using the hierarchical clustering Algorithm. A 

supervised machine learning method, Artificial Neural Network (ANN, another 

Algorithm), was used to construct a classifier (Model), using a ―70-gene signature‖, that 

predicts these characteristics. This predictive Model was Validated Internally using a 

leave-one-out approach. The researchers also showed that this molecular predictive 

Model was an independent predictor of metastasis from other well-known decision 

Models that relied solely on clinical parameters (the NIH Consensus and the St. Gallen 

Consensus). In that paper, not only did the molecular decision Model improve clinical 

outcome prediction, but it also predicted the same number of patients who had metastasis 

with fewer false positives. This is important given the morbidity and economic costs 

associated with adjuvant chemotherapy
119,120

. The 70-―gene signature‖ Model was 

Externally Validated
121

 using 295 consecutive historical patients in a Dataset that is 

different from the Dataset that was used to Produce that signature. It also provided
122

 the 

correct decision outcome, i.e. Externally Validated, on primary tumor tissue from 7 

patients and on matched metastatic tissue obtained years later from the same patients (not 

shown in Fig. 5). This validation was not of a clinical, but of a biological hypothesis that: 

molecular subtype determines the metastatic potential early in the disease as opposed to 

invasiveness resulting from cumulative mutations
2
. 

A spin-off commercial company, Agendia™, developed a custom kit that 

measured gene expression and contained a similar 70-―gene signature‖ Model, now called 

                                                
2That same study Validated a decision Model described elsewhere (also not shown in Fig. 5) that used 

unsupervised clustering to separate Breast Cancer samples into four molecular subtypes. All matched 

primary tumors and metastatic tissue belonged to the same molecular subtype. 
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MammaPrint®.  MammaPrint® was also Produced using the ANN Algorithm and 

Internally Validated
8
. The new platform was shown to be concordant with the previous 

25,000 oligonucleotide chip
8
 (thus Externally Validating that Dataset’s corresponding 

Model). MammaPrint® was Externally Validated through multi-center European 

consortium study
123

. It was also compared to known clinical decision Models, including 

one based on a software, Adjuvant!, that calculates 10-year survival probability based on 

clinical parameters. 

 

Discussion and Future Work  

Some public resources currently implement some but not all aspects of our 

intended functionality and not in an integrated retrieval framework as was discussed in 

this paper. For example, PharmGKB‘s clinical outcomes are restricted to outcomes of 

therapy, and exclude diagnostic and prognostic markers. Oncomine‘s representation and 

organization of oncology molecular datasets does not cover decision Models, the original 

Algorithms by which these models were produced, or their validation methods. Datasets 

and Papers are MeSH-indexed in GEO/PubMed, but their relationships to respective 

Models, Algorithms, and Contexts are not explicit. The proposed framework is designed 

to complement existing resources and extend current representations to cover molecular 

clinical predictive models and their related modalities. Our choice to model this domain 

using an OWL ontology was made with the goal of semantic integration of this 

framework with existing knowledge sources.  Whenever possible we associate objects in 

our database with their counterparts in external databases, e.g. using PubMed uid for 

papers and GEO accession numbers for datasets. 
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Most existing clinical predictive models do not incorporate molecular features. 

Classical predictive models that are purely based on clinical parameters are outside the 

scope of this information retrieval framework; however, classical models will be 

incorporated only when they exist within the context of molecular predictive models. For 

example, we did include the International Prognostic Index model in the DLBCL case 

study, and the St. Gallen Consensus model in the MammaPrint™ validation case study. 

Similarly, storing and annotating gene signatures that predict underlying biological 

behavior without clinical outcomes is outside the scope of this framework. Again, some 

molecular clinical predictive models incorporate aspects of purely biological signatures, 

so we will also include those only when they exist within the context of clinical models. 

For example, the early DLBCL models (Fig. 2) that identified the underlying biological 

behavior of DLBCL (as APB-like or GC-like) did correlate with clinical outcomes and 

therefore they were included in the framework.  Using molecular signatures that measure 

(EGF-R) receptor activity for choice of treatment with tyrosine kinase inhibiting drugs is 

another example (not discussed in this paper) that comes to mind of what will be included 

in this framework. 

The focus of the present paper is the underlying information retrieval model and 

not the system‘s implementation and inference mechanisms which will be described 

elsewhere (please see Appendix). When developing the formalisms described in this 

paper, we deliberately selected the minimal set of classes and properties that is expressive 

enough to allow for semantic organization of the domain. This level of simplicity is 

intended to enable automated methods for building the knowledgebase. Our current 

research is focused on building and validating machine learning models that can correctly 
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annotate the Contexts described in clinical bioinformatics papers, and that can also 

correctly identify the validation methods that are employed in those papers.  

 

Conclusion 

While clinically-oriented research exploring gene expression microarrays, mass 

spectrometry, SNP arrays and other high-throughput molecular assays has followed an 

exponential growth in recent years, to date there is no general purpose system that allows 

researchers and clinicians to fi nd models, papers, data, and other related information in 

this emerging field using a unified and friendly interface. In the present paper we propose 

a framework for such interface and demonstrate the complexity of its required 

functionality. Our long- term goal is to construct a system that addresses this need. As a 

significant first step, we developed a formalism that supports storage and retrieval of a 

multiplicity of clinical bioinformatics objects such as published papers, datasets, decision 

models, and discovery and inference algorithms.  This formalism opens the way for 

automated methods that support the knowledgebase‘s creation and annotation. In 

addition, it allows for a second layer of organization of objects returned by queries based 

on their (1) interrelationships and (2) strength of methodological validation. We 

demonstrated the power of this model in the complicated domain of diffuse large B-cell 

lymphoma. In future work we plan to deploy and test a prototype system based on the 

model of the present paper applied to biomarker discovery for other malignancies. 
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CHAPTER IV 

 

MACHINE LEARNING FILTERS FOR RETRIEVING 

RELEVANT MOLECULAR MEDICINE PUBLICATIONS 

 

Introduction 

 

In the previous chapter, an information retrieval framework for storing and 

organizing clinical bioinformatics predictive models was proposed. Within this 

framework, these models are annotated and indexed using a set of attributes (the clinical 

bioinformatics Context described in Chapter III and appendix A) that were determined 

based on the semantic analysis of this domain and the types of queries that this 

framework is designed to address. A knowledgebase in which these models are stored is 

integral to this framework. The information that will be used to populate this 

knowledgebase will be derived from published articles that describe clinical 

bioinformatics predictive models. As discussed in Chapter II, the manual retrieval of 

relevant papers from the published literature and the semantic annotation of models 

described herein are tedious tasks. Scalable methods are required to ensure that the 

knowledgebase is comprehensive and up-to-date with the rapid pace of published clinical 

bioinformatics research. This chapter will describe the building and evaluation of 

machine learning filters for automated retrieval of relevant papers from MEDLINE (see 

Figure 6). The next chapter will describe the use of machine learning methods for 

automated or semi-automated semantic annotation of the relevant papers according to the 

semantic annotation scheme. 
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Figure 6 – The second aim of the PhD dissertation is to build and evaluate reproducible scalable 

automated methods for identifying relevant clinical bioinformatics papers from the MEDLINE database. The 

set of relevant papers will be annotated in subsequent steps to build the knowledgebase that will support the 
overall information retrieval framework. 

 

Operational Definition of the ―Relevant Articles‖ 

The semantic model and derived annotation scheme described so far were 

developed based on a thorough analysis of a specialized and relatively small set of 

papers. These papers were obtained via a focused ad hoc search of MEDLINE. 

Constructing a large corpus of related papers for the research described in this chapter 

(and for ultimately building the knowledgebase itself) requires an unambiguous definition 

of ―relevant papers‖. This definition will need to provide operational guidance to human 

annotators for making consistent determinations whether articles in MEDLINE are 

relevant or not. This definition was made after a pilot manual annotation of an expanded 
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set of MEDLINE articles. It was further refined during multiple discussion with domain 

experts and annotators. This culminated in a written document (Appendix B – Annotation 

Guidelines) that was used as an annotation manual by me and by other domain experts 

who were part of this research. This annotation guideline also provided functional 

definitions for the concepts in the annotation scheme itself which have also been refined 

from the clinical bioinformatics Context described in Chapter III. The methods section in 

this chapter will describe the part of the annotation guideline that defined ―relevant 

papers‖. The following chapter will describe the remaining part of the guideline which 

provided operational definitions to annotations which were applied once the papers were 

determined as ―relevant‖. 

 

Automated Filtration Methods 

The scalability of building and maintaining an up-to-date collection of relevant 

papers can be achieved via automated filters (Figure 6). In the context of this framework, 

filters are defined as text classifiers that assign positive or negative labels to papers based 

on the text content of their MEDLINE record. Statistical machine learning models have 

been shown in the past to reliably replicate human classification tasks for MEDLINE 

article retrieval.  

Using machine learning requires the conversion of free unstructured text into 

numerical features that can be used to compute a given paper‘s classification. Feature 

extraction includes counting the frequency of occurrence of words in the given text 

followed by linguistic and semantic transformations such as word stemming or stop-word 

removal. Other types of feature extraction steps exist and may depend, for example, on 
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the location of terms within the PubMed record (title, abstract, MeSH term, etc.) The 

machine learning filters that will be used will be based on Support Vector Machines 

(SVM). SVMs are supervised machine learning classifiers that require a training dataset 

of known classification outcome. The ability of these SVM filters to discriminate relevant 

papers from other MEDLINE articles will be measured by applying them to a test set of 

papers of known classification (gold standard) and examining the resulting area under the 

receiver operating characteristic curve (AUC).  

The first research question in this context is: 

 Can existing or modified feature extraction transformations be used to train 

machine learning filters that can identify relevant papers from MEDLINE?(Aim 

2a) 

The dataset that will be used for this question will be selected from the domains 

of bioinformatics and lung cancer. The performance of the SVM filters will be evaluated 

using N-fold cross validation in which the gold standard is separated into multiple 

independent training and testing sets. 

If the performance of machine learning filters is sensitive to the domain (disease) 

of the papers in a dataset, then new filters need to be trained using gold standards built for 

all possible diseases. This can be avoided if the SVM filters have the ability to find 

relevant articles in other medical specialties. Therefore, the next research question is:  

 Can the filters that were trained using the bioinformatics and lung cancer gold 

standard, and found to have favorable performance identify relevant papers in 

other domains?(Aim 2b) 
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This will test the generalizability of the clinical bioinformatics filters to other 

medical specialties and requires an additional gold standard dataset derived from 

MEDLINE articles from the domain of breast cancer.  

The training and testing datasets used for research questions above are based on 

one person‘s (me) attempt to consistently apply labels about the relevance of these papers 

to clinical bioinformatics. Therefore the final research question will assess 

generalizability along a different dimension: annotation by a different set of experts: 

 Can filters trained to identify relevant papers in the domains of bioinformatics 

and lung cancer using annotation by one expert, identify relevant papers in the 

same domain as judged by other experts whose annotations were not used to train 

those filters?(Aim 2c) 

 

Methods 

 

Defining Relevant Papers and the Annotation Form 

As discussed above, filtering ―relevant‖ papers from the MEDLINE database 

requires an operational definition of what constitutes ―relevant‖ papers. The information 

retrieval framework provided an indexing scheme for clinical bioinformatics predictive 

models that is based on a clinical bioinformatics Context ontology (Chapter III and 

Appendix A). Models or papers that describe models should be annotated along four 

different dimensions that constitute that model‘s clinical bioinformatics Context: Disease, 

Population (biological sample), Modality (assay type), and Purpose (type of clinical 

outcome). A paper is relevant if it is amenable to annotation according to this scheme.  
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The first criterion for relevance is that a paper should describe a predictive 

model. A paper describes a predictive Model if the authors are trying to establish a 

statistical relationship between a set of independent variables and one or more dependent 

variables (outcomes). Figure 7 shows a conceptual representation of a predictive Model 

for this purpose. An intentionally relaxed and widely inclusive definition of statistical 

relationships is chosen for our definition of Model. This can include simple tests of the 

difference of probability of certain measurements occurring in two or more categories 

(outcomes) using parametric tests such as: t-tests, ANOVA, fisher exact test, or non-

parametric tests such as: Kruskal –Wallis, Wilcoxon, or Mann-Whitney. This also includes 

models that measure statistical correlation between the values of independent variables 

and the values of dependent variables, i.e. explicit statistical prediction models like: 

linear or logistic regression, and Kaplan-Meier models. Sometimes the relationship 

between independent and dependent variable is explicitly presented via symbolic 

mathematical equations or via machine learning models that may include artificial neural 

networks, support vector machines, decision trees, or Bayes classifiers. 

 

INDEPENDENT VARIABLES 

(one or many) 

 DEPENDENT 
VARIABLES 
(one or many) 

   

Molecular 
variables 

Clinical 
variables 

RELATIONSHIP 
(statistical) 

Biological 
outcomes 

Clinical 
outcomes 

     

M1 M2 M3 M4 … MI C1 C2 C3 … CJ  O1 O2 … OK 

Figure 7 – Conceptual representation of a predictive model in which a statistical relationship exists 
between a set of independent variables and one or more dependent variables (outcomes). 

 

The independent variables can represent any type of quantifiable observations or 

experimental measurements. They can correspond to measurements obtained via 
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molecular biology techniques or assays using biological samples such as local gene 

expression levels, protein concentrations, or the presence or absence of proteins by using 

antibodies on biological samples. The independent variables may also represent clinical 

measurements or patient characteristics such as sex, age, or the presence or absence of 

disease states (lymph node metastasis, histological subtype, etc.) The Population 

(biological sample) and Modality (assay type) components of the Contexts are only 

applicable if the independent variables correspond to molecular biology assays. Therefore 

the second criterion for relevant papers relates to the independent variables used by the 

model described in those papers, namely that the model’s independent variables should 

include molecular features. 

The dependent variables correspond to a model‘s outcomes of interest. They are 

also quantifiable observations, based on the type of scientific hypothesis that the authors 

are investigating. The outcomes of interest can be classified as biological (e.g. cell 

apoptosis, activation of intra-cellular cascades, cell mobility, presence of a specific 

protein) or clinical (patient death, presence or absence of disease, response to treatment, 

treatment toxicity.) The Purpose component of the clinical bioinformatics Context of 

model is an assertion about the type of clinical outcome that the model is attempting to 

correlate with the independent variables. Therefore the third criterion for determining 

relevant papers is: the model’s dependent variable (outcome) should represent a 

clinical outcome. 

A pilot review that included partial or complete annotation of over 400 papers 

was done. This led to the iterative development of an annotation form (Appendix C) and 

an accompanying set of annotation guidelines that aimed to clarify and operationalize the 



55 

criteria above (Appendix B). The guidelines were refined based on feedback from 

different experts (e.g., meeting with Dr. Pierre Massion and members of his research 

group). This annotation form was used to annotate all the datasets used in this research. 

The top part of the form consists of five ―yes/no‖ questions about the given paper. The 

bottom part of the form consists of multiple boxes where multiple labels can be circled. 

Each of the boxes corresponds to one dimension of the clinical bioinformatics Context. 

The answers in the top part dictate whether specific boxes in the bottom part should be 

used. For example if the paper describes a predictive model (question 1 = yes) which uses 

molecular features as independent variables (question 3 = yes) then the annotator is asked 

to circle the type(s) of assay used to collect the molecular data and the type(s) of 

biological sample that was assayed. In other words, the first part of the form contains 

―gateway‖ questions that activate the different annotation components in the second part. 

The 5 questions in the top part of the form correspond to the ―filtration‖ step of the 

information retrieval framework that is the focus of this chapter. The boxed questions in 

the bottom part of the form correspond to the ―annotation‖ step of the information 

retrieval framework and will be further discussed in the next chapter.  

By asking the annotators to answer five questions that pertain to a given paper‘s 

relevance, the definition of the concept ―relevant paper‖ is essentially decomposed into 

simpler non-vague atomic definitions. This provides a form of cognitive assistance that 

can improve the consistency of annotation, because the annotators are asked to make 

more concrete and focused judgments about the content of the given paper. 
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Table 2 – The five questions in the first part of the annotation form which were used as target features 
for the machine learning filters described in this report 

Variable 

Name 
Domain Question 

T1 entire paper 
Does the article describe at least one predictive 

model? 

T2 
independent 

variables 

Is there a model that has more than one independent 

variable? 

T3 
Is at least one of the independent variables a 
molecular measurement? 

T4 
dependent 

variables 

(outcomes) 

Is one of the outcomes a clinical outcome? 

T5 Is one of the outcomes a biological outcome? 

 

 

Dataset Construction 

Five different datasets were compiled using papers in MEDLINE. The first 

dataset, named ‗Firas-0‘, contains 301 articles. It was derived using ad hoc queries and 

was mostly used to test and refine the annotation guidelines, to determine a preliminary 

list of journals used in subsequent datasets and to run preliminary machine learning 

experiments. The remaining three datasets were compiled using combinations of the 

following PubMed queries: 

 A structural query is a generic query that specifies the language of the article to 

be in English and excludes certain types of articles such as: ‗review‘, ‗news‘, 

‗letter‘, ‗editorial‘, etc. 

 A date query specifies a date window from January 2006 until June 2009. 

 Three journal queries each specifying a mutually exclusive set of journals 
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o A bioinformatics journals query composed of 12 journals that represent 

the domain of bioinformatics. The 12 journals were provided by Dr. 

Constantin Aliferis. 

o A lung cancer journals query composed of 23 journals that represent the 

domain of lung cancer basic and/or clinical research. The 23 journals were 

provided by Dr. Pierre Massion. 

o A breast cancer journals query composed of 7 journals that represent 

the domain of breast cancer basic and/or clinical research. Dr. Fouad 

Boulos, a board certified pathologist trained in breast cancer pathology, 

provided 12 journals. Five of the 12 journals were excluded because they 

were already provided by Dr. Massion. 

Two baseline queries were done to define two mutually exclusive populations of 

articles in MEDLINE: 

1. The lung cancer + bioinformatics population was defined as the MEDLINE 

articles from the 35 journals defined by Drs Massion and Aliferis that fell within 

the date window of the date query and satisfied the constraints of the structural 

query. It contained 58,252 articles. 

2. The breast cancer population was defined as the MEDLINE articles from the 7 

journals defined by Dr. Boulos that also fell within the date window of the date 

query and satisfied the structural query. It contained 5,320 articles. 

Four article sets were randomly sampled from those two populations. They were 

annotated using the forms and guidelines described in the previous sections. The article 
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sets are summarized in Table 3 and Figure 8. More details are shown in Tables 5 and 6 in 

the results section. 

When generating datasets for machine learning experiments, the features were 

extracted from the MEDLINE record for each article. The target features were obtained 

from the annotation of that article by me or by the experts. Each article had five binary 

target features (classes) corresponding to the ―yes/no‖ value assignment by the annotators 

to questions T1 – T5. Table 5 in the results section shows the fraction of articles in each 

article set where these questions were labeled as ―yes.‖ 

 

Table 3 – Source, size and function of the three main datasets used for Aim 2. 

Article Set 

Name 
Annotator Size 

Baseline 

Population 

Used for Aim 

(Training / Testing) 

Firas-1 Firas 500 
lung cancer + 

bioinformatics 

Aim 2a (Train +Test) 

Aim 2b (Train) 
Aim 2c (Train) 

Firas-2 Firas 200 breast cancer Aim 2b (Test) 

Experts-1 
Multiple 

Experts 
340 

lung cancer + 

bioinformatics
†
 

Aim 2c (Test) 

Common 
Firas + 

Experts 
10 

Lung cancer + 

bioinformatics 
Aim 2c (Kappa) 
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Figure 8: The source and relationship between the three article sets and the article populations. The 

baseline populations of articles are selected from MEDLINE using a time window between January 2006 and 

June 2009 and by excluding certain article types like review articles,  letters to the editor, etc. The lung cancer + 

bioinformatics population is selected from a set of 35 journals: 12 bioinformatics and 23 lung cancer. The breast 

cancer population is selected from 7 lung cancer journals. The populations do not overlap. The Firas-1 and 

Experts-1 do not overlap and are each selected randomly from the lung cancer + bioinformatics population. The 
Firas-2 article set is randomly selected from the breast cancer population. 

 

Expert Annotation 

Experts were recruited to annotate batches of articles as part of the Experts-1 

article set. A $2000 dissertation enhancement grant from the Graduate School at 

Vanderbilt University was used to recruit the experts. Once the subjects agreed to 

participate in the study, I met with them and verbally explained the purpose and 

conceptual framework of the study (in some cases that was more thoroughly discussed at 

a group lab meeting). The annotation guidelines were provided in print to each expert. 

The subjects were asked to annotate batches of 30 papers over a period of few weeks. 

Some experts were able to provide annotation for more than one batch. The first 10 
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papers of the first batch given to every subject were identical for all participants. This 

was done to collect data for inter-annotator agreement analysis (see ―common‖ article set 

above). The subjects were asked to answer all the questions on the annotation forms (i.e. 

both top and bottom section). The context annotation questions in the bottom section will 

be used for analysis in Chapter V. 

The education level and occupation among experts was diverse and included: pre-

doctoral trainees in basic biological or translational science, post-doctoral fellows, 

physician scientist (faculty), medical students, medical librarians, and epidemiologists. 

No personal information was collected for the study. The IRB (exemption) study number 

is 100576. The subjects were compensated $150/batch. One expert declined receiving 

compensation. One subject (expert #5) asked to be excused from completing the batch for 

reasons unrelated to the study. That subject‘s batch was reassigned to expert #2. 

 

Document Representation for Machine Learning 

Articles were formatted for learning by text preprocessing and term weighting.  

Individual terms in the abstract, individual terms in the title, and individual MeSH 

headings were extracted from MEDLINE records to count their frequency of occurrence 

within the record. When word stemming was done, multiple forms of the same word were 

eliminated using Porter stemming algorithm
124

 to reduce the dimensionality of the input 

space.  

Terms were weighted using log frequency with redundancy as described by 

Leopold and Kinderman
125

. First, the number of times a term appeared in a document was 

transformed into a log frequency. Then it was multiplied by an importance weight (i.e. 
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redundancy). Redundancy measured how uniformly distributed a term was throughout 

the entire dataset. A term appearing in all documents is not helpful for classification. A 

term appearing many times in one article while occurring once in each of the remaining 

articles is more discriminative
125

.   

The redundancy value for term k, kr , is: 

 

 

 

where N is the number of documents in the corpus, ( , )k if w d  is the number of 

occurrences of term k in document i, and ( )kf w  is the number of occurrences of term k 

in the corpus.  The final step was L2-normalization to account for different text lengths.  

The vector of feature weights for a document i, xi, is: 

 

 

 

where li  is a vector of the log frequencies for all terms in document i, r is a vector of 

redundancy values for all terms in the corpus, l ri  signifies component multiplication, 

and 2l r Li  is the L2-norm of the resultant vector.  Each weight was a value between 0 

and 1.  

Alternative pre-processing approaches of the corpus without term weighting were 

done using only L1- or L2-normalization. In all cases, the corpus was represented as a 

matrix where rows corresponded to documents and columns represented terms. 
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Machine Learning Method and Error Estimation 

Support vector machine (SVM) models were used as the learning algorithm.  

They are a supervised learning method where a kernel function maps the input space to a 

higher-dimensional feature space, and a hyperplane is calculated to separate the classes of 

data
126

. The optimal hyperplane is the solution to a constrained quadratic optimization 

problem. SVM models are usually sparse since the solution depends on the support 

vectors or points closest to the hyperplane
127

.  Most features have zero weights, and the 

number of support vectors will be much smaller than the number of instances in most 

cases.  This property makes SVMs suitable for representing text which typically involves 

high-dimensional data. Prior research has demonstrated that they perform well in 

categorizing text and identifying high-quality articles
66,125

.  

The SVM models‘ performance, their ability to discriminate between positive and 

negative cases in test samples, was measured by area under the receiver operating 

characteristic curve (AUROC or AUC). The ROC is a plot of the true positive rate 

(sensitivity) against the false positive rate (1-specificity) at different output thresholds of 

the decision function calculated by the SVM model for each test case. The AUC is equal 

to the probability that a classifier will rank a randomly chosen positive instance higher 

than a randomly chosen negative one. An AUC of 0.5 describes a random classifier, AUC 

of ~0.75 a mediocre classifier, AUC of ~0.85 a very good classifier, and AUC > 0.9 an 

excellent classifier (while an AUC of 1 denotes perfect classification).  

For Aim 2a, the SVM models were tested using 5-fold stratified nested cross 

validation over the Firas-1 dataset. The dataset was randomly split (stratified) into five 

folds, each containing 100 articles. For every target feature (questions 1-5 in the 
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annotation form), four folds were used as a training set and the fifth was left out as a test 

set. This was repeated for all 5 folds as follows: The training and model selection within 

each training set of 400 articles was done using another internal nested 5 fold (80+320) 

cross validation to optimize for cost and degree. The set of costs was [0.1, 0.2, 0.4, 0.7, 

0.9, 1, 5, 10, 20, 50, 1000], and the set of degrees was [1, 2, 3, 4, 5, 7]. The best 

performing model was then trained on all 400 documents in the training set and applied 

to the 100 documents in the test set to obtain an unbiased estimate of the model‘s 

performance. The area under ROC for all five test folds is reported in the results section. 

For Aims 2b and 2c, the models were trained using the Firas-1 dataset by using cross 

validation to optimize model parameters then using the best parameters to train on the 

entire Firas-1 dataset. The models were then saved in files. The models were loaded and 

tested on the independent datasets Firas-2 (Aim 2b) and Experts-1 (Aim 2c) to test their 

generalizability. 

The dataset preparation, feature extraction, and filter training and validation were 

all done using the Python programming language with the PyML machine learning 

module. Dr. Yin Aphinyanaphongs has graciously provided a code library that interfaces 

with PyML and that supports many of the manipulations that were required for this 

analysis. 
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Results 

 

Summary of Manual Annotations 

A summary of the manual annotation by Firas and by the experts are presented in 

this section. Table 4 shows the number of articles from each journal in the lung cancer + 

bioinformatics population. The rows containing bioinformatics journals provided by Dr. 

Aliferis are shaded. The rest were provided by Dr. Massion. The Firas-1 and Experts-1 

article sets were randomly sampled with no overlap from that population. For Experts-1, 

fourteen batches of 30 articles were given to eight unique experts (See Figure 9). The first 

batch for every expert contained the 10 articles set aside for the common article set, so 

only 20 articles were added to Expert-1. For experts who did more than one batch, all 30 

articles in the subsequent batches were added. Except for the 10 common articles, there 

was no overlap between the expert batches. For example, expert #6 did three batches. The 

first batch contained the 10 common articles + 20 articles that were added to Expert-1. 

The second and third batches contained 30 articles each. Therefore the total number of 

articles from expert #6 that were included in the Experts-1 article set was 20 + 30 + 30 = 

80. 
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Table 4 – This table describes the lung cancer + bioinformatics baseline population of articles. The 

Firas-1 and Expert-1 article sets were randomly sampled from this population. There is no overlap between the 

two article sets. For each journal, the number of articles in the population and the two articles sets are shown. 

The journals listed were provided by Drs. Massion (23 journals, lung cancer research) and Aliferis (12 journals, 
shaded, bioinformatics). 

Journals (lung cancer + bioinformatics) Population Firas-1 Experts-1 

Proc Natl Acad Sci U S A 12205 102 66 

PLoS One 6036 46 32 

Cancer Res 4675 40 22 

Nucleic Acids Res 3940 37 34 

Clin Cancer Res 3083 28 14 

Int J Cancer 2479 26 19 

J Clin Oncol 2448 19 15 

Bioinformatics 2318 23 13 

BMC Bioinformatics 2227 17 13 

Oncogene 2001 14 11 

N Engl J Med 1896 19 13 

Br J Cancer 1861 16 10 

Cancer Epidemiol Biomarkers Prev 1515 6 13 

Am J Pathol 1296 11 6 

J Clin Invest 1067 12 8 
Carcinogenesis 975 7 8 

Am J Respir Crit Care Med 973 10 6 

Lung Cancer 891 11 6 

PLoS Comput Biol 774 8 2 

Nat Genet 746 5 4 

Mol Cell Proteomics 666 5 4 

J Thorac Oncol 641 4 6 

PLoS Med 640 6 4 

Nat Med 554 5 0 

J Pathol 537 7 3 

J Comput Biol 331 3 2 

Cancer Cell 299 4 2 

J Biomed Inform 262 0 0 

IEEE/ACM Trans Comput Biol Bioinform 227 2 2 

Pac Symp Biocomput 189 1 0 

Artif Intell Med 175 2 1 

Cancer Prev Res (Phila Pa) 121 1 0 

OMICS 88 3 0 

Brief Bioinform 61 0 1 
Int J Data Min Bioinform 55 0 0 

Total 
lung cancer 
bioinformatics 

58252 
47602 
10646 

500 
404 

96 

340 
272 

68 
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Figure – 9. The source and composition of the Expert-1 article set. Eight experts were asked to 

annotate 14 batches of 30 papers. The first 10 papers of the first batch that every expert received were identical 
and used for analysis of inter-annotator agreement (The Common article set) 
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The following table (Table 5) shows the number of articles in the breast cancer 

population and in the Firas-2 article set that were randomly sampled from that population. 

 

Table 5 - This table describes the breast cancer baseline population of articles. The Firas-2 article set 

was randomly sampled from this population. For each journal, the number of articles in the population and the 

article sets are shown. The journals listed were provided by Drs. Fouad Boulos (12 journals, breast cancer 
research, 5 were excluded for overlap with Dr. Massion’s journals). 

Journals (breast cancer) Population Firas-2 

Cancer 2302 101 

Breast Cancer Res Treat 1117 38 

Mod Pathol 651 21 

J Natl Cancer Inst 589 19 

Breast Cancer Res 389 15 

Lancet Oncol 271 6 

Breast Cancer 1 0 

Total 5320 200 
 

Table 6 – This table shows the percentage of articles in each article set where the corresponding filter 

question (T1 – T5) was annotated as ―yes.‖ Experts-1 was annotated by multiple experts, and the numbers 

reflects the sum over all the non-overlapping batches of articles that the the experts annotated. The 10 

overlapping articles (―Common‖ article set) that were annotated by Firas and all the experts are not included in 
this table. 

 

Question on 

Annotation 

Form 

T1 

Has model 

 

% of total 

(N) 

T2 

Multivariate 

model 

% of models 

(N) 

T3 

Has molecular 

features 

% of models 

(N) 

T4 

Outcome is 

clinical 

% of models 

(N) 

T5 

Outcome is 

biological 

% of models 

(N) 

Firas-1 (500) 65% (325) 96% (312) 85% (275) 48% (157) 74% (240) 

Firas-2 (200) 87% (174) 98% (171) 52%   (91) 93% (159) 40%   (58) 

Experts-1 (340) 52% (177) 85% (150) 75% (132) 46%   (81) 65% (115) 

 

Table 6 shows the percentage of articles in Firas-1, Firas-2, and Experts-1 where 

the corresponding filter question was answered as ―yes‖. Notice that the percentages 

reported for question 1 (―T1: Does the article describe at least one predictive model?‖) 

report the fraction of all papers that were annotated as ―yes‖ in each dataset. According to 

the workflow indicated in the annotation form, questions 2-5 (T2-T5) are only answered 
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if the paper describes a predictive model. The percentages shown for questions T2-T5 

report the fraction of papers that describe a predictive model that where annotated as 

―yes‖ for these questions. 

Notice that the Firas-2 article set (from the breast cancer population) has a high 

fraction of predictive models and that the majority of those models are models with 

clinical outcome. Recall that clinical outcome is indicated by a ―yes‖ to question 4 (―T4: 

Is one of the outcomes a clinical outcome?‖) More than half (101 of 200) of the articles 

in Firas-2 were from the journal ―Cancer.‖ Many of the articles that were encountered in 

Firas-2 were typical of epidemiological research i.e. risk or survival analysis using 

clinical variables in cancer populations. 

The fractions reported for the Experts-1 article set are aggregated from all 

fourteen batches of articles given to experts. There was variability (not shown here) of 

percentages of answers between the individual batches. In addition to the effect of 

random sampling, this variability may be due to differences in annotation behavior 

between the individual experts. Experts with a ―conservative‖ understanding of what 

constitutes a predictive model will tend to answer ―yes‖ less often on question T1. 
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Training and Validation of Machine Learning Filters (Aim 2a) 

 

 

Figure 10 – For the research question in Aim 2a, models were trained and tested via stratified nested 5-
fold cross validation using the Firas-1 articles set. 

 

This section reports the result of the first research question: Can existing or 

modified feature extraction transformations be used to train machine learning filters that 

can identify relevant papers from MEDLINE? The results of the 5-fold cross validation 

experiment to test whether SVM filters can replicate the annotations by Firas of the Firas-

1 article set are shown in Table 7. These results are obtained using the standard feature 

extraction process (weighting using log-rel frequency with redundancy) described in the 

methods section. Overall, 19939 features were extracted from the 500 articles in this set. 

This means that for all 500 articles the sum of unique words in the abstracts, unique 

words in the title, and unique MeSH headings is 19939.  
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Table – 7: Each cell in this table corresponds to the performance of the SVM filter on each of the filter 

questions (1-5) for the Firas-1 article set. The average area under ROC (AUC) reported is the average over 5 

folds of the stratified nested cross validation experiment using polynomial SVM kernels and feature extraction 
as described in the methods section. 

 
T1: Has a model? 

Average AUC = 0.904 

 
T2: Multivariate Model? 

Average AUC = 0.881 

 
T3: Has molecular features? 

Average AUC = 0.917 

 
T4: Outcome is clinical? 

Average AUC = 0.924 

 
T5: Outcome is biological? 

Average AUC = 0.896 
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Effect of Feature Extraction and Preprocessing 

The result of the 5-fold cross validation using the same folds but different feature 

extraction and preprocessing methods before training the SVM models are shown in 

Table 8. This is for the first question on the annotation form. The first method (log-

relative frequency with redundancy vector) is the default method used for the reported 

results in the previous section. 

 

Table 8 – The effect of different feature extraction and pre-processing methods on the performance of 

the SVM filter for question 1 on the form. The third column shows the number of features extracted from 500 

articles in Firas-1 by including/excluding MeSH terms (column 1) and the use of Porter Stemming to reduce the 

input space. The fourth column shows the pre-processing step used and the resultant average AUC using the 
same 5-fold stratified nested cross validation splits. 

MeSH 

Use 

Porter 

Stemming 

Number of 

Features in 500 

Articles  

Preprocessing 

Average AUC for  

5 test folds in Firas-1 

(Question 1) 

Included N 19939 
Log-rel freq with 

redundancy 
0.904 

Included Y 16619 
Log-rel freq with 

redundancy 
0.901 

Included N 19939 L2-normalization 0.890 

Excluded N 13337 L2-normalization 0.887 

Included N 19939 L1-normalization 0.881 

Excluded N 13337 L1-normalization 0.892 

 

 

Analysis of Misclassifications in Aim 2a 

Applying an SVM filter to an article means that the SVM filter computes a value 

called the ―decision function‖ that corresponds to that article. In the case of the filters for 
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questions 1-5, the output of the decision function can be used to rank the articles based on 

the predicted likelihood that they will have the answer to the corresponding question as 

―yes.‖ For each of the test cases within the 5 folds (i.e. 5 x 100 articles per fold) I looked 

at the ranked list of articles as predicted by the SVM for the T1 question and compared 

that to my annotation value for that question. Table 9 shows this ranking for the top 20 

and bottom 20 articles within each fold. The articles (indicated by their PubMed ID) that 

I classified as not describing a predictive model are shaded red, those that I considered as 

describing predictive models are shaded green. A lower rank value (top rows) 

corresponds to a higher decision function value by the SVM filter. Perfect discrimination 

by the SVM (corresponding to an AUC value of 1) would have occurred if all green cells 

were segregated at the top from all the red cells in the bottom. Red cells near the top 

adversely affect the precision of this filter (i.e. lower positive predictive value, more 

false positives in the retrieved set). Green cells near the bottom adversely affect the recall 

of this filter (i.e. lower sensitivity, more false negatives in the retrieved set). 
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Table 9 – Ranked lists of the 100 cases in each of the test folds based on the value of the decision 

function for the T1 SVM filter. The top rows are expected to have the value ―yes‖ for T1 by the SVM. Green 
cells indicate articles that I manually annotated with ―yes‖ for T1. (table best viewed in color) 

Rank Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 

1 17699846 18003960 18339877 19497995 18172257 

2 17545551 17940499 16552436 17372279 17409400 

3 17308096 18316570 16823852 17311288 18519766 

4 17266042 19289620 19513064 17470860 17906207 

5 19190139 17693662 17942905 19147983 17315194 

6 18392050 18701494 19088723 18725989 19430494 

7 16575786 19151763 18381943 17908961 17052995 

8 17578909 16912199 18337602 16707608 19066609 

9 17096351 18827607 16899629 19383912 17847021 

10 16778098 17135638 19266094 18559598 16505430 

11 16639698 19088020 18829558 19138971 18767034 

12 16698114 17606972 17483316 17486061 17409416 

13 16624828 17158282 18349395 19228733 16818620 

14 16709935 16449974 18334633 19431143 17582601 

15 19276245 16707424 19384944 17289903 18483267 

16 17119046 18648364 18165641 19293795 18765551 

17 17093248 18708389 17179993 19541629 17292828 

18 17261802 17353899 17045205 19035462 19447898 

19 16953234 17483353 16400030 17545531 17763396 

20 17110434 18048820 18565887 18483247 19332718 

 
… … … … … 

81 17932069 18621689 18174223 16772402 19247482 

82 18436648 16754871 18304946 16431844 17032674 

83 16892060 16672366 17606921 17283341 18508970 

84 17412830 18387210 16789820 19399170 17167056 

85 19283079 17172439 18987010 19117739 18518950 

86 16595561 18808329 16901214 18663013 17581870 

87 18562466 19033184 17341495 18089620 19036931 

88 19370150 16733546 18203770 16488977 19336412 

89 16547201 18424799 17145709 17710141 17572025 

90 16832051 18852878 17991681 18344323 16848637 

91 19321429 19515936 18211675 18187508 18978014 

92 16845086 19369499 18703323 19208138 18042553 

93 19010966 18442400 18787685 17277078 18042272 

94 17872912 17392332 17425803 16402894 16504085 

95 16899490 17059592 17984083 19549335 16789817 

96 19535537 19103665 16873487 18697772 18945683 

97 17267434 17537824 19063730 18229697 16756676 

98 16942624 19158162 16845040 18725927 17691896 

99 19008251 19269990 19129210 18387199 17584798 

100 16912992 18388142 16817972 16845081 18184684 

 

 

To understand the filter‘s limitation I looked at the cells that violated the expected 

rank order in the top and bottom 20 rows. First I looked at the two red articles at the top 

part of the list (―false positive‖). They are: 
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PubMed ID Journal Title 

17940499  Br J Cancer  
Weekly epirubicin plus docetaxel as first-line treatment 

in metastatic breast cancer  

16707608 Clin Cancer Res  

Effect of cA2 anti-tumor necrosis factor-alpha antibody 

therapy on hematopoiesis of patients with 

myelodysplastic syndromes  

 

It can be verified by referring to the annotation guidelines that those two articles 

should be classified as describing predictive models (T1 = ―yes‖). They both clearly 

describe statistical associations between independent variables and outcomes. This can be 

considered an error on the part of the annotator (Firas). 

Then I looked at the 12 green cells at the bottom of the table (―false negative‖): 

 

PubMed ID Journal Title 

16789820 PLoS Comput Biol  
Adaptation to different human populations by HIV-1 

revealed by codon-based analyses  

17872912 Bioinformatics  
Graph-based consensus clustering for class discovery 

from gene expression data  

16772402 Nucleic Acids Res  

A base pair at the bottom of the anticodon stem is 

reciprocally preferred for discrimination of cognate 

tRNAs by Escherichia coli lysyl- and glutaminyl-tRNA 

synthetases  

16431844 Nucleic Acids Res  
Oct-2 DNA binding transcription factor: functional 

consequences of phosphorylation and glycosylation  

17710141 PLoS One  
Genome dynamics of short oligonucleotides: the 

example of bacterial DNA uptake enhancing sequences  

19549335 BMC Bioinformatics  Filtering genes for cluster and network analysis  

18229697 Pac Symp Biocomput  
Combining molecular dynamics and machine learning to 

improve protein function recognition  

17032674 Bioinformatics  
Large scale data mining approach for gene-specific 

standardization of microarray gene expression data  
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18508970 Proc Natl Acad Sci  
Synthesis and bioassay of improved mosquito repellents 

predicted from chemical structure  

18518950 BMC Bioinformatics  
A simple and robust method for connecting small-

molecule drugs using gene-expression signatures  

18042553 Bioinformatics  

Identification of differentially expressed gene categories 

in microarray studies using nonparametric multivariate 

analysis  

18042553 BMC Bioinformatics  
Identification of DNA-binding proteins using support 

vector machines and evolutionary profiles  

 

Most of these articles (10 out of 12) were published in the bioinformatics journals. 

This is a disproportionate representation of the overall number of articles from 

bioinformatics journals in this article set (96 out of 500, table 4). The annotation 

guideline lists the following categories as examples of papers that do NOT describe 

predictive models: statistics papers (including population genetics); bioinformatics 

methods papers (without reporting clinical or biological experimental results); structural 

biology (3D structures, binding sites); biotechnology (synthesizing new drug molecules). 

Some of the papers in this list may fall under these categories yet they were still 

annotated as ―yes‖ for T1 by the annotator (Firas). These types of article may be 

indicative of remaining ambiguity in the annotation guideline. 
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Filter Generalizability to a Different Disease Domain (Aim 2b) 

 

Figure 11 – For the research question in Aim 2b, models were trained (using 5-fold cross validation to 
optimize degree and cost parameters) using the Firas-1 dataset and tested using the independent Firas-2 dataset. 

 

This section reports the results for the research question:  Can the filters that 

were trained using the bioinformatics and lung cancer gold standard, and found to have 

favorable performance identify relevant papers in other domains? Using 5-fold cross 

validation and the Firas-1 dataset, SVM models were training using combinations of 

different cost and degree parameters. The models with optimal parameters were then 

trained on the entire Firas-1 (lung cancer + bioinformatics) dataset and applied to the 

independent Firas-2 (breast cancer) dataset. This was repeated for  questions 1-5. The 

AUC was calculated as a measure of the ability of those filters to rank the articles in 

Firas-2 using the manual annotation as a gold standard. The values of the AUC for each 

of the T1-T5 questions are shown in table 8. Overall AUC values support the hypothesis 
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that the SVM filter can rank the articles in a manner similar to the manual annotation. 

There were 9473 features extracted from the 200 articles in Firas-2. Only 5555 of those 

features existed in the Firas-1 dataset and thus were recognizable to the SVM filters. 

As discussed above, this dataset contains a higher fraction of traditional 

epidemiological articles describing clinical predictive models and is relatively 

homogenous. More than half of the articles are from a single journal. Due to the large 

size and variability of the lung cancer + bioinformatics population relative to the breast 

cancer population, there may not have been enough power in Firas-1 training samples to 

build models that can better discriminate articles within this relatively specialized dataset. 

For example the range of output of the decision function of the SVM for T4 was [-

1.06,+1.31] when testing within the Firas-1 cross validation folds. The range of output of 

the same SVM for T4 in Firas-2 was [-0.64,+0.51]. 

 

Table – 10 The results of this experiment to test how well filters can generalize to a different population 

of MEDLINE articles. The filters were trained on 500 articles (Firas-1 set) in the lung cancer and bioinformatics 

population. They were then tested on an independent set of 200 articles (Firas-2 set) in the breast cancer 
population. 

 

Question on 

Annotation 

Form 

T1 

Has a 

model? 

T2 

Multivariate 

model? 

T3 

Has 

molecular 

features? 

T4 

Outcome is 

clinical? 

T5 

Outcome is 

biological? 

AUC when 

testing the 

filter on 

Firas-2 

0.916 0.896 0.881 0.884 0.917 
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Filter Generalizability to Annotations by Different Experts (Aim 2c) 

 

Figure 12 – For the research question in Aim 2c, the same models that were trained for Aim 2b (using 

the Firas-1 dataset for 5-fold cross validation to optimize degree and cost parameters) were tested using the 
independent Experts-1 dataset that was annotated by different experts. 

 

This section reports the results for the research question: can filters trained to 

identify relevant papers in the domains of bioinformatics and lung cancer using 

annotation by one expert, identify relevant papers in the same domain as judged by other 

experts whose annotations were not used to train those filters? The same filters that were 

trained using the 500 Firas-1 dataset in Aim 2b and described in the previous section 

were used for this experiment. These filters were tested on an independent set of 340 

articles (Experts-1 set) that were annotated by 8 different experts. The experts were given 

non-overlapping batches of article to annotate according to the annotation form and 

guidelines as described above. There were 15774 features extracted from the 340 articles 

in Experts-1, of which 8230 existed in Firas-1 and were thus recognizable to the saved 
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SVM filters. The results are shown in table 11 for each expert and for the entire pooled 

Expert-1 dataset. Except for the T4 question, the performance of the SVM filters was less 

favorable when applied to Experts-1 than when they were applied to Firas-2. The 

performance of the filters varied for different experts. This will be analyzed in the next 

section.  

 

Table – 11 The results of the experiment to test how well filters can generalize to articles annotated by 

experts who did not annotate the training set. The last two rows show the performance of the filters when 

applied to the entire pool of articles in Experts-1. Removing expert #3 from that pool improves the performance 
of most filters. 

 

Question on 

Annotation Form 

T1 

Has a 

model? 

T2 

Multivariate 

model? 

T3 

Has 

molecular 

features? 

T4 

Outcome is 

clinical? 

T5 

Outcome is 

biological? 

Expert #1 (20) 0.944 0.913 0.975 0.817 0.816 

Expert #2 (80) 0.885 0.863 0.879 0.977 0.838 

Expert #3 (80)*
 0.653 0.638 0.623 0.949 0.510 

Expert #4 (20) 0.857 0.648 0.827 1.000 0.864 

Expert #6 (80) 0.939 0.882 0.936 0.910 0.969 

Expert #7 (20) 0.725 0.667 0.485 0.971 0.342 

Expert #8 (20) 0.938 0.942 0.935 0.926 0.837 

Expert #9 (20) 0.731 0.630 0.727 0.944 0.694 

All experts (340) 0.798 0.758 0.799 0.936 0.768 

All experts except 

#3 (260) 
0.857 0.805 0.858 0.930 0.830 
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Analysis of Misclassifications and Expert Variability in Aim 2c 

The second to last row in table 11 shows the SVM model‘s predictivity using the 

pooled dataset, i.e. when treating Experts-1 as one dataset. This assumes that the 

annotation behavior was the same by the different experts. When applying the SVM filter 

to each the batches done by separate annotators to rank the articles within that batch, 

there was an observed variability in the AUC between batches. One stark example is the 

difference in outcome observed between expert #3 and expert #6 shown in Table 12. 

Both of these experts volunteered to do three batches of papers. As table 12 shows, when 

applying the SVM filter for T1 to rank the articles in their respective batches, there was 

more segregation of the manual annotation results of expert #6 than of expert #3.  
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Table 12 - This table highlights an extreme case in the variability of AUC when ranking every batch 

individually or when pooling articles by expert. The batches in this table are ranked based on the output of the 

T1 SVM filter. The green cells represent a ―yes‖ annotation by the experts, and the red cells represent a ―no‖ 
annotation of the article indicated by the PubMed ID. 

  Annotator #3  Annotator #6 

Rank  1st Batch 2nd Batch 3rd Batch  1st Batch 2nd Batch 3rd Batch 

1  18844223 18682710 17173139  19318480 18204076 17330233 

2  18276942 16638863 17210994  17164357 18635524 17653092 

3  18491402 16452183 17487844  19291793 17363595 18386818 

4  19224839 17053067 17600087  16840742 19336555 19431210 
5  17565742 18509179 18167534  16532035 17546598 17372254 

6  17409988 17726451 19349548  16769899 17875732 16702377 

7  19047288 19383924 19287092  19293260 18641128 19081160 

8  19440374 17575155 17893910  17627015 16835325 16619035 

9  19002244 18076072 18270592  17360361 16651521 16551849 

10  18670317 19243020 17984110  17925449 17121811 19444914 

11  17284608 16670771 16767156  17377161 17217525 19359485 
12  18648666 17804806 17638882  16501576 16864781 17699815 

13  19283069 16537381 17537754  18757739 18216266 18398482 

14  18268323 19435903 18499801  19033359 19286565 18346967 

15  19264681 18030348 19497884  18369201 17278107 17043219 

16  17311100 18231590 18469852  18174226 16407111 17584784 

17  18094749 18321995 19533687  18621757 16980979 17409941 

18  18427124 16436675 18398474  18524801 16702391 19095792 
19  16815972 18836447 17978184  19465379 17675576 19119996 

20  16464251 17957241 19380442  18296747 18940870 19156197 

21  
 

18523009 17983263  
 

18230720 18779562 

22  
 

19365537 16441182  
 

18946033 18032432 

23  
 

17940610 16537382  
 

16423899 18632578 

24  
 

19228613 18347737  
 

17710132 18716296 

25  
 

19541622 18596928  
 

16793924 18794075 
26  

 
17151368 18045785  

 
18030325 19179708 

27  
 

18927109 17958908  
 

18788908 16500937 

28  
 

16707745 19389733  
 

17616981 16545116 

29  
 

17166289 17963510  
 

16845103 18784187 

30  
 

16844981 17044168  
 

19036790 19075236 

         

AUC 
(batch) 

 0.654 0.938 0.655  0.981 0.917 0.958 

AUC 
(pooled) 

 0.653  0.939 

     

 

Upon further examination of the batches provided by expert #3, it is possible to 

consider that expert‘s annotation as an outlying case. By inspecting some of the extreme 

cases of disagreement between the filter and that expert‘s answers, for the red articles 

near the top of the table or the green articles near the bottom, it is possible to assume that 

that expert‘s adherence to the annotation guidelines deviated from the rest of the 
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annotators. For example, note the title of article number 17600087 ―Let-7 expression 

defines two differentiation stages of cancer,‖ and that one of its MeSH headings is 

―predictive value of tests.‖ That article was classified by expert #3 as not having a 

predictive model. 

The pooled articles for all of Expert-1 without the annotations of expert #3 are 

shown in the last row of Table 11. Figure 13 shows the ROC curve for the pooled 

annotation performance for question 1 with and without expert #3. 

 

Figure 13 – The performance of the filter for question 1 (―Does the paper describe a predictive 

model?‖) when applied to the pooled Experts-1 dataset with and without Expert #3. (AUC = 0.798 and 0.857 
respectively) 

 

Inter-Annotator Agreement 

Finally, Table 13 shows the concordance using the Kappa statistic for question 1 

(―Does the paper describe at least one predictive model?‖)  between all the annotators for 

the 10 articles in the Common article set. Annotator 0 is Firas, annotators 1-9 are the 

experts. The following are concordance values of note: 
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 Firas and expert #6 showed high concordance on question 1 annotation. Note also 

the high AUC for the question 1 SVM filter when tested on expert #6‘s 80 pooled 

articles in Table 12. 

 Perfect concordance between expert #3 and expert #7 on question 1. Both of those 

experts have provided annotation batches with conservative annotation of models. 

The batch provided by expert #7 had only 5 articles out of 30 where question 1 

was answered ―yes‖. Expert #3‘s second batch (Table 12) also had 5 articles out 

of 30 where question 1 was answered ―yes‖ 

 High concordance between experts #1 and #9 also for the question 1. Both experts 

seem to agree on whether articles included predictive models. Both annotators 

have formal training in epidemiology. 

 

Table 13 – Concordance values between the different annotators for the T1 question: ―does the article 

describe at least one predictive model?‖ Annotator ―0‖ is Firas. The experts used for the Expert-1 article set are 
annotators 1-9 

Kappa 
for T1  

0 1 2 3 4 6 7 8 9 

0  0.60 0.40 0.00 0.20 0.80 0.00 0.40 0.40 

1 0.60  0.07 0.21 0.09 0.44 0.21 0.19 0.74 

2 0.40 0.07  0.29 0.29 0.17 0.29 0.09 0.29 

3 0.00 0.21 0.29  0.05 -0.07 1.00 0.12 0.38 

4 0.20 0.09 0.29 0.05  0.29 0.05 0.62 0.05 

6 0.80 0.44 0.17 -0.07 0.29  -0.07 0.55 0.29 

7 0.00 0.21 0.29 1.00 0.05 -0.07  0.12 0.38 

8 0.40 0.19 0.09 0.12 0.62 0.55 0.12  0.12 

9 0.40 0.74 0.29 0.38 0.05 0.29 0.38 0.12  

Mean 0.35 0.32 0.23 0.25 0.20 0.30 0.25 0.27 0.33 
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Discussion 

 

Summary of Results 

The results reported in this chapter are centered on building machine learning 

filters for finding molecular medicine articles in MEDLINE that can be used to populate 

a knowledgebase of clinical bioinformatics models. This began with an operational 

definition of ―relevant papers.‖ This definition is part of an annotation guideline 

document that was based on the semantic analysis described in Chapter III and that was 

iteratively refined using feedback from experts and pilot annotation of articles and 

models. As part of this operational definition, human annotators answered 5 questions 

about the content of given articles that pertain to clinical bioinformatics predictive 

models. The human annotations of different article sets were used to train SVM-based 

machine learning filters. Commonly used feature extraction and pre-processing steps 

were used in the development of these filters. The first article set that I annotated 

consisted of 500 articles from the domains of bioinformatics and lung cancer. Validation 

of the machine learning filters via 5-fold cross validation showed very good predictivity 

on this dataset. The performance of the filters was only slightly reduced when the feature 

extraction and/or pre-processing steps were modified to exclude MeSH terms, to utilize 

word stemming, or to forego term redundancy weighting. This first dataset was used to 

train filters that were saved and applied to other datasets. The second dataset that I 

annotated consisted of 200 articles in a separate set of journals from the domain of breast 

cancer. The saved filters also showed very good predictivity on that dataset and therefore 

generalizability to a different domain. The third dataset consisted of 340 independent 
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articles that were manually annotated by a group of experts. The saved filters from the 

first dataset (annotated by me) showed good predictivity using this dataset and therefore 

generalizability to annotations by other experts. The filters‘ ability to discriminate 

relevant articles was variable across the different annotators. Specifically, marked 

improvement of the performance was observed when one specific annotator was 

excluded from analysis. Examination of that expert‘s annotations suggests that he may be 

an outlier in his annotation behavior from the rest of the experts. Inter-annotator 

agreement using the Kappa statistic provided a partial explanation of the variability in 

model performance along different experts. 

 

Structural Limitations of Training Machine Learning Filters 

The main structural limitation of the proposed methodology for building the 

filters is that the information used in the article representation for machine learning is 

only obtained from the MEDLINE record and not from the full text of the article. The 

annotators, on the other hand, relied on the full text of the article. Despite this limitation 

the filters have shown very good predictivity for the manual annotations for these 

datasets even when discarding the MeSH terms in the MEDLINE record. Human 

annotators typically add MeSH terms to the MEDLINE record of an article after 

assessing that article‘s content. 

 

Under-Representation of Model-Describing Articles from Specific Domains 

Analysis of misclassified articles in the article sets that I annotated for Aim 2a 

(e.g. ―green‖ articles at the bottom of Table 9 and the corresponding text in that 
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subsection) highlighted the possible limitation of having a relatively small number of 

specialized types of relevant articles in the training dataset. The majority of the ―green‖ 

articles at the bottom of Table 9 are from the bioinformatics journal set. Some of those 

bioinformatics articles were found, upon their re-examination in light of a strict 

interpretation of annotation guidelines, to be erroneously labeled ―positive‖ for question 1 

i.e. labeled as describing Models when they actually do not under the guideline‘s 

definition (see next subsection). However, other articles like article 18518950 (―A simple 

and robust method for connecting small-molecule drugs using gene-expression 

signatures‖ BMC Bioinformatics) were true ―positive‖ articles that were given a low 

(―negative‖) decision function by the SVM filter. Such ―positive‖ articles in the 

bioinformatics journal set may describe Models using terms that are not similar to the 

terms that describe Models in the lung cancer journal set (e.g. due to difference in 

communication style used by researchers in different domains). The majority of articles 

in the overall population are obtained from the lung cancer journal set (47602 lung cancer 

articles out of a total of 58252). The prevalence of positive articles from the 

bioinformatics literature is therefore lower and may not provide sufficient statistical 

power for training of the SVM filters to learn their characteristics.  

A similar under-representation of the ―positive‖ models from a specialized type of 

articles was also observed in the Firas-2 (breast cancer) dataset. As shown in Table 5, 

over half of the articles in Firas-2 (101/200) were obtained from the journal ―Cancer.‖ It 

seems the breast cancer dataset includes mostly traditional epidemiological Models that 

relate clinical outcomes to purely clinical independent variables. Recall from Table 6 that 

the percentage of articles annotated as having molecular features in Firas-1 and Expert-1 
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(lung cancer + bioinformatics) was higher than the percentage of articles in Firas-2 

(breast cancer) - 85%, 75% and 52% respectively. Conversely, there were fewer articles 

annotated as having a clinical outcome in Firas-1 and Expert-1 than in Firas-2 – 48%, 

46%, and 93% respectively. This difference was further illustrated by comparing the 

output of the SVM filters using a randomly selected set of 10,000 articles from the lung 

cancer + bioinformatics population and a randomly selected set of 1,000 articles from the 

breast cancer population (Figures 14-16). 

 

 

Figure 14 – The distribution of the SVM decision function for question 1 (―Does the paper describe at 

least one predictive model?‖) for 10,000 randomly selected articles from the lung cancer + bioinformatics 
population (top) and for 1,000 randomly selected articles from the breast cancer population (bottom). 

 

 

Figure 15 – The distribution of the SVM decision function for question 3 (―Do the model’s independent 
variables contain molecular measurements?‖) for the same samples used in Figure 14.  
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Figure 16 – The distribution of the SVM decision function for question 4 (―The model has a clinical 

outcome?‖) for the random samples used in Figure 14. 

 

Guideline Ambiguity and Variability by Expert Annotators 

The annotation guidelines provided an operational manual for the annotation of 

individual articles. As described in the methods section it was iteratively refined and 

disambiguated using pilot annotation and feedback from domain experts. The 

misclassified articles (for question 1) used for testing Aim 2a were analyzed in the 

―Analysis of Misclassification in Aim 2a‖ subsection. It was shown that upon re-

examination of the two false positives (―red‖ articles near the top of Table 9), both of 

these negative articles were actually found to describe a predictive model per the 

annotation guideline, and should therefore be considered true positive classifications by 

the SVM filter. Furthermore, some of the false negatives (the ―green‖ articles near the 

bottom of Table 9) should be considered as true negatives according to the annotation 

guideline. For example, the articles 16431844 (―Oct-2 DNA binding transcription factor: 

functional consequences of phosphorylation and glycosylation‖ Nucleic Acid Res) is a 

structural biology paper that does not describe a model as defined in the annotation 

guideline. Similarly, the results in the subsection ―Analysis of Misclassifications and 

Expert Variability in Aim 2c‖ found that the annotation behavior of expert #3 may be an 
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outlier to the behavior of the rest of the annotators. Experts #3 and #7 seem to assign the 

answer ―yes‖ less frequently within their batches than their counterparts. Assuming that 

the annotators (including Firas) are consistently and faithfully annotating articles 

according to their understanding of the annotation guidelines, their annotation behavior 

will diverge from one another if their cognitive interpretations of the guidelines are not 

the same. The kappa concordance based on the 10 overlapping articles in the Common 

dataset that was annotated by all annotators, including Firas, only provides a partial 

explanation of the inter-annotator agreement. Further analysis of inter-annotator 

agreement and of potentially diverging cognitive interpretations of the annotation 

guideline will be deferred to the next chapter after the rest of the annotation guideline and 

manual annotations by experts are discussed.  

  

Conclusion 

In this chapter, common machine learning text classification techniques were 

applied to the problem of finding MEDLINE articles that are relevant to the information 

retrieval framework described in this dissertation. These filters were validated using 

manual annotation and were found to have very good predictivity using the AUC metric. 

The predictivity was minimally affected when different feature extraction techniques 

were used (including removing the manually assigned MeSH terms in the MEDLINE 

record). Also, the filters‘ predictivity was found to successfully generalize to articles in 

another disease domain as well as to articles that were annotated by a different set of 

experts. These filters are promising scalable techniques for the problem of large-scale 

retrieval of relevant articles to populate the framework‘s knowledgebase. The results 
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found in this chapter point to the importance of the development of a clear operational 

definition of the semantic entities that define clinical bioinformatics predictive models. 

Specifically, it is important that there exists a clear set of annotation instructions that can 

be interpreted and applied in consistent manner by human annotators. This topic will be 

explored further in the next chapter. 
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CHAPTER V 

 

SCALABLE SEMANTIC ANNOTATION OF MOLECULAR 

MEDICINE PUBLICATIONS USING MACHINE LEARNING CLASSIFIERS  

 

Introduction 

This chapter describes a scalable machine-learning-based approach for semantic 

annotation of molecular medicine publications. Recall that the information retrieval 

framework proposes an annotation (and indexing) scheme of models and papers that 

describe these models. This annotation scheme, which was the result of the semantic 

analysis of this domain in chapter III, basically annotates clinical bioinformatics Models 

by associating them with a clinical bioinformatics Context. The primary source of 

information about Models will be from published MEDLINE articles. The previous 

chapter described an operational definition of ―relevant papers‖ – MEDLINE papers that 

describe clinical bioinformatics predictive Models – as well as a scalable machine-

learning-based approach for finding these relevant papers. This chapter will carry this 

work forward by refining the definition of clinical bioinformatics Context and by 

investigating the performance of a scalable machine-learning-based approach for 

extracting from relevant articles the semantic attributes that can be used to annotate the 

Models described wherein. Figure 17 illustrates the work described in this chapter (Aim 3 

of this dissertation) within this information retrieval framework. 
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Figure 17 – The third aim of the PhD dissertation is to build and evaluate automated or semi-

automated methods for annotating and indexing relevant papers within knowledgebase that will support the 
information retrieval framework.  

 

Refinement and Operational Definition of the Annotation Scheme 

According to the framework described in Chapter III, clinical bioinformatics 

predictive Models and related objects in this domain should be annotated using a clinical 

bioinformatics Context. A Context is a tuple that annotates a Model (or a Paper 

describing the Model) along four dimensions: Disease, Population, Modality, and 

Purpose. Objects will be indexed based on the values of their Context annotation. The 

annotation table shown in Figure 17 shows a conceptual representation of how this 

indexing scheme supports the overall framework. As mentioned earlier in this 

dissertation, this indexing scheme was based on the semantic analysis of a specialized 

and relatively small set of papers that were obtained via a focused ad hoc search of 

MEDLINE. As more articles were annotated to construct the datasets used for the 
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research described in the previous chapter and in this chapter, the a priori definition of the 

attributes that constitute a clinical bioinformatics Context were found to be deficient. 

Specifically, they did not provide enough guidance to annotate many of the new instances 

of Models that were encountered. An operational definition of these attributes is essential 

for helping the annotator (initially myself) make consistent annotations and for 

communicating the annotation guidelines to other annotators who are also expected to 

make consistent annotations. As mentioned in the previous chapter, an annotation 

guideline document (Appendix B) and an associated annotation form (Appendix C) were 

created to codify the annotation of models described in MEDLINE articles. This 

annotation guideline was iteratively refined based on the experience of annotating more 

articles and based on discussion with domain experts and other annotators. The part of 

the guideline that defined ―relevant papers‖ – MEDLINE articles that describe a 

predictive Model – was discussed in the previous chapter. This chapter will discuss the 

remainder of the guideline which provided operational definitions of the Context 

attributes used to annotate the relevant papers based on the Models that they described. 

 

Automated or Semi-Automated Annotation Methods 

This chapter describes the work done for Aim 3 of this dissertation that is to build 

and evaluate reproducible scalable automated or semi-automated methods for annotating 

and indexing papers for the supporting knowledgebase of the information retrieval 

framework. As discussed earlier, manual annotation of the potentially large number of 

articles that describe clinical bioinformatics predictive models is a tedious task that can 

be avoided by using scalable automated or semi-automated methods. The approach that 
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will be used will rely on machine learning, specifically SVM text classification. The 

methods will be very similar to those used in the previous chapter. There is, however, a 

conceptual difference in how the machine learning classifier is used to solve this 

problem. In the context of the automated ―filtration‖ the classifier will be used to assign a 

positive or negative label to the document that determines (―filters‖) its suitability for 

annotation, essentially acting as a retrieval agent for articles from a larger dataset 

(MEDLINE). In the context of automated ―annotation‖ the classifier is applied to a set of 

papers with the implicit assumption that these papers are suitable for annotation. The 

purpose of an annotation classifier is to compute a binary decision: whether or not the 

semantic attribute that is associated with this classifier is true for this paper. For example, 

one of the attributes that can be assigned to a Paper that describes a clinical Model is 

whether the Purpose (one of the dimensions that constitute that Model‘s clinical 

bioinformatics Context) of this model is to ―predict prognosis associated with a specific 

treatment.‖ An associated machine learning classifier can be used to compute whether 

this attribute assignment (and the truth of the associated semantic assertion regarding the 

purpose of the Model) is true or not. This operation actually mirrors the annotation 

process that is performed by human annotators. Recall that manual annotation of 

MEDLINE articles is done using an annotation form (Appendix C) in which the 

annotators circle the attribute values that they believe are true for the given article. 

Finally recall also that, as described in the previous chapter, using machine learning 

classifiers for MEDLINE records requires the transformation of free unstructured text 

into numerical features that can be used by the classifiers to compute a given paper‘s 
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classification and that a set of commonly used feature extraction and pre-processing steps 

can be used to achieve this transformation.  

Based on these observations, the first research question under this aim is: 

 Can existing or modified feature extraction transformations be used to train text 

classifiers that can replicate human semantic annotation of the gold 

standard?(Aim 3a) 

This experimental approach will be very similar to that which was followed in 

Aim 2a. Multiple SVM classifiers will be used to correspond to the different attribute 

assignments in the annotation/indexing scheme. The performance of the different 

classifiers will be evaluated using 5-fold cross validation using a gold standard dataset of 

manually annotated articles selected from the domains of bioinformatics and lung cancer 

(the Firas-1 dataset used in the previous chapter). The same feature extraction methods 

used in the last chapter will be used. 

The attributes describing the clinical bioinformatics Context may be more 

semantically complex than the concepts that were used to determine paper ―relevance‖ in 

Aim 2. For example, semantic annotation may rely on more specialized and granular 

biomedical concepts associated with the different types of clinical outcome or the 

multitude of molecular biology concepts associated with molecular assays described by 

these papers. Therefore the performance of the annotation classifiers may be enhanced by 

adding natural language processing (NLP) techniques to the feature extraction 

transformation. NLP may add informative features to the articles in the dataset by 

detecting the presence of complex medical concepts within their MEDLINE record. The 

second research question for this aim is: 
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 Will modifying the feature extraction transformations used for training semantic 

classifiers in Aim 3a to include natural language processing (NLP) techniques 

alter their performance?(Aim 3b) 

KnowledgeMap, an NLP tool that can extract Unified Medical Language Systems 

(UMLS) concepts from biomedical text, will be used. This research question will 

measure the effect of adding the frequency of occurrence of unique UMLS concepts 

(CUIs) within the MEDLINE record to the set of features used to train and test the 

machine learning dataset.  

The third research question that will be investigated is very similar to that in Aim 

2c and is similarly motivated by the fact that the machine learning classifiers used in 

Aims 3a/b are trained and tested using labels that were assigned by the same human 

annotator. Therefore, to test the generalizability of these classifiers to annotations 

assigned by different annotators, the following research question will be assessed: 

 Can text classifiers trained for semantic annotation of relevant papers in the 

domains of bioinformatics and lung cancer using annotation by one expert, 

replicate the semantic annotation of independent papers in the same domain by 

other experts?(Aim 3c) 

 

  



97 

Methods 

 

Annotation Guideline 

The final versions of the annotation guideline (Appendix B) and annotation form 

(Appendix C) were the result of multiple iterations of refinement. During pilot 

annotations of articles, I codified the annotation decisions that I was making. When 

encountering papers describing predictive models whose attributes were not clearly 

defined using previously codified guidelines, the guideline was updated to reflect the new 

instances. The annotation guideline and form were also modified based on feedback from 

experts, obtained for example when presenting this project to Dr. Massion‘s lab group.  

The main structural deviation from the original annotation scheme relates to the 

annotation of Papers that describe more than one predictive Model. It was originally 

envisioned that a Paper that describes more than one predictive Model will be annotated 

using a set of all the clinical bioinformatics Contexts describing these individual models. 

Recall that a Context of a Model is an ordered tuple of annotations describing that 

Model‘s Disease, Population, Modality and Purpose. In the current guideline, the 

attributes from all the Contexts of all the Models described in a given paper are indicated 

on the annotation form (i.e. without specifying an ordered tuple relationship). This 

modification leads to loss of information about the individual Models within such (multi-

model) papers because the set of applicable Contexts (when explicitly annotated) is 

smaller than the Cartesian product of all attributes circled on the form. This modification 

was made because it allowed for significant practical improvement in the time of manual 
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annotations and because annotators who were approached to conduct initial pilot 

annotations showed wide variability in individual tuple assignment. 

The following are other notable modifications from the original annotation 

scheme to the annotation scheme used for this study. For a full description of the 

annotation attributes, please see appendix B: 

1. The form provided freedom to the annotators to specify the applicable Disease 

using free text (to account for the large number and granularity of disease states 

that are expected from the articles in this dataset) as opposed to the original 

canonical list of diseases.  

2. The Population is now explicitly referred to as ―Biologic Sample.‖ The annotators 

are asked to identify the source of the biological sample that was used for the 

molecular assay. In addition to ―Human,‖ ―Cell Line,‖ and ―Animal,‖ the new 

value ―Pathogen‖ was added to refer to molecular predictive models that rely on 

molecular data obtained from pathogens such as viral genome or protein coat 

information. 

3. The Modality is now explicitly referred to as ―Type of Assay.‖ Feedback from the 

experts overwhelmingly indicated that the original values of ―Genetic,‖ 

―Genomic,‖ and ―Proteomic‖ were ambiguous concepts. The categories were 

modified to refer to the type of biological molecule measured by the molecular 

assay and were replaced with a new set: DNA, RNA, or Protein. For example: 

models that rely on molecular measurements obtained using Northern Blot, 

Southern Blot, or Western Blot assays would be annotated as targeting ―RNA,‖ 

―DNA,‖ and ―Protein‖ respectively. Methylation assays and other assays that 
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measure epigenetic regulation were considered under ―DNA‖. Assays that can 

detect post-translational modifications of proteins such as Eastern Blot were 

considered as ―Protein.‖ 

4. The original values for Purpose (type of clinical outcome) were changed from 

―Diagnosis,‖ ―Prognosis with no treatment,‖ ―Prognosis with one treatment arm,‖ 

and ―Prognosis with more than one treatment arm‖ to the following values: 

―Diagnosis,‖ ―Risk Assessment,‖ ―Prognosis Treatment Unspecified‖ and 

―Prognosis: Treatment Specified‖ as described in Appendix B. 

 

Table 14 – The 11 machine learning annotation classifiers that were trained and validated for Aim 3. 

They correspond to structured attributes within the semantic annotation scheme (i.e. the questions at the bottom 
of the annotation form in Appendix C)  

Classifier 

Name 

Context 

Dimension 

Attribute Present 

(True/False) 

BS1 

Population /  

―Biologic Sample‖ 

Human 

BS2 Animal 

BS3 Cell Line 

BS4 Pathogen 

A1 

Modality / 

―Type of Assay‖ 

DNA 

A2 RNA 

A3 Protein 

CP1 

Purpose / 

―Clinical Purpose‖ 

Diagnosis 

CP2 Risk Assessment 

CP3 
Prognosis:  

treatment unspecified 

CP4 
Prognosis:  

treatment specified 
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Machine Learning Annotation Classifiers 

Machine learning classifiers were used to mirror the manual annotation process. 

Specifically, 11 machine learning classifiers were constructed and evaluated throughout 

this chapter. These classifiers correspond to the structured components of the annotation 

scheme at the bottom of the manual annotation form (Appendix C). The semantic 

attributes and the associated machine learning classifiers are shown in Table 14. 

 

Dataset Construction 

The same article sets Firas-1 and Experts-1 that were used in Chapter IV were 

used for Aim 3 experiments. The procedure of obtaining these article sets is described in 

chapter IV.  These two non-overlapping article sets were obtained by random sampling 

from the lung cancer + bioinformatics population. Recall from the last chapter (Table 6) 

that based on manual annotation, the fractions of articles in these article sets that 

described a predictive Model were 65% and 52% for Firas-1 and Experts-1 respectively. 

Furthermore, not all of the articles that did describe a predictive model relied on 

molecular features or described a clinical outcome (85% and 75% of models had 

molecular features; 48% and 46% of the models had a clinical outcome; Table 6). The 

sparseness of the article sets with respect to ―relevant papers‖ that are amenable for full 

annotation may limit these article sets‘ ability to validate the machine learning annotation 

classifiers. 

To enhance the validation of the machine learning annotation classifiers, an 

―enriched‖ article set, Experts-2, was collected and annotated by experts. This article set 

was deliberately sampled in a way to increase the likelihood that it will contain ―relevant 
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articles‖. It was constructed as follows (see also Figure 18): I used the machine learning 

filter that corresponds to question 1 on the form (―Does the article describe at least one 

predictive model?‖) and that was validated in the previous chapter. I applied this filter to 

rank a random set of 1000 articles in the lung cancer + bioinformatics population (non-

overlapping with neither Firas-1 nor Experts-1). The top 300 articles were selected and 

divided into batches. As an informal validation, I manually inspected 60 out of the top 

300 articles and found all 60 articles to actually describe a predictive model. Six out of 

the 8 experts who annotated Experts-1 agreed to further annotate 220 articles in this 

enriched (Experts-2) article set. Table 15 contains the source, size and usage of the 

different article sets used in this chapter. 

 

 

Figure 18 – The procedure used to collect an ―enriched‖ validation dataset Experts-2. After excluding 

Firas-1 and Experts-1 from the lung cancer + bioinformatics population, a random sample of 1000 articles was 

obtained. The filter for question 1 (―Does the article describe at least one predictive model?‖) that was validated 

in the previous chapter was then applied to the 1000 articles. The top 300 ranking articles per that filter’s 
decision function were selected and split into batches. 
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Table 15 – Source, size and function of the three main datasets used for Aim 3. Firas-1 and Experts-1 

were the same ones used in Aim 2. Experts-2 was constructed specifically for Aim 3. The Common dataset 

includes 10/15 articles (depending on annotator) that were annotated by Firas and all experts and is primarily 
for evaluating inter-annotator agreement. 

Article Set 

Name 
Annotator Size 

Baseline 

Population 

Used for Aim 

(Training / Testing) 

Firas-1 Firas 500 
lung cancer + 
bioinformatics 

Aim 3a (Train+Test) 

Aim 3b (Train+Test) 

Aim 3c (Train) 

Experts-1 
Multiple 

Experts (8) 
340 

lung cancer + 
bioinformatics

†
 

Aim 3c (Test) 

Experts-2 
Multiple 

Experts (6) 
220 

lung cancer + 
bioinformatics 

Aim 3c (Test) 

Common 
Firas + 

Experts 
10+5 

lung cancer + 

bioinformatics 

 (Test inter-anntotor 

agreement) 

 

 

Expert Annotation 

The annotation of Experts-1 article set was described in the last chapter. The same 

experts were approached and asked to annotate more batches of articles for the Experts-2 

article set. The annotation of this article set was funded via a $2000 voucher (VR#1017) 

from the Vanderbilt Institute for Clinical and Translational Research (VICTR). The 

subjects were informed that this was an ―enriched‖ article set, meaning that it contained a 

higher fraction of papers describing predictive Models. The expected fraction of articles 

describing predictive Models (100% according to my estimation) was not revealed to 

them to avoid interfering with their judgment of whether a given paper describes a 

predictive model or not. The subjects were asked to annotate batches of 25 papers over a 

period of few weeks at a higher compensation rate per batch than for Experts-1 
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($200/batch). This is because papers that describe predictive models require significantly 

more time and effort than those that do not. Some experts were able to provide annotation 

for two batches. Similar to the procedure followed for Experts-1, the first 5 papers of the 

first batch given to every subject were identical for all participants. These common 

papers and their annotations were added to the ―Common‖ article set for analysis of inter-

annotator agreement. The IRB (exemption) study number is 100576 (same as that used 

during annotation of Experts-1).  

 

Document Representation for Machine Learning Including NLP Output 

The same procedures used in the last chapter for formatting articles for learning 

by machine learning text classifiers were used in this chapter. The methods section of the 

last chapter has a detailed discussion of these transformations which include permutations 

of the following methods: Porter Stemming (yes/no), MeSH term inclusion (yes/no), and 

one of the following normalization and weighting methods (Log-relative frequency with 

redundancy weighting / L1-normalization / L2-normalization). Additional feature 

construction using UMLS CUIs detected in the title or abstract of MEDLINE records was 

done using KnowledgeMap
128,129

 (KM), an NLP-based concept extraction tool developed 

at Vanderbilt by Dr Josh Denny and others. Part of the output of KM is a list of UMLS 

Concepts (CUIs) sorted by decreasing order of occurance within the document (see 

Figure 19). The unique CUIs were treated as terms (features) and their frequency was 

added to the appropriate columns in the dataset. 
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Figure 19 – Part of the output that results from applying KnowledgeMap to the the title and abstract 

obtained from a MEDLINE record (in this case for the paper with PMID = 17229850). KM sorts the unique 
concepts detected in the record by decreasing order of their frequency of occurrence within this record. 
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Machine Learning Training and Validation 

The same learning algorithm that was used in the previous chapter, SVM models, 

was also used for Aim 3 in this chapter. The methods section in the previous chapter 

describes the training of SVM models and the method used (AUC) to measure their 

performance. Recall that in the previous chapter, 5 SVM classifiers were used. They 

correspond to the 5 ―filtration‖ questions described in Table 2. For Aim 2a, the 

predictivity of the SVM models was tested using 5-fold stratified nested cross validation 

using the Firas-1 dataset. For Aims 2b and 2c, the models were trained using the Firas-1 

dataset by using cross validation to optimize model parameters then using the best 

parameters to train on the entire Firas-1 dataset. The models were then saved in files. The 

models were loaded and tested on the independent datasets Firas-2 (Aim 2b) and Experts-

1 (Aim 2c) to test their generalizability.  

In this chapter (Aim 3), a very similar training and validation approach was 

followed. Eleven SVM classifiers were used. Their target features (predicted class) 

correspond to the 11 structured components of the annotation scheme described in table 

14. For each of the 11 SVM annotation classifiers, 5-fold cross validation was used to 

measure their predictivity for the research questions in Aims 3a/3b using the Firas-1 

dataset and the same cross validation folds used for Aim 2a. This allows for consistent 

comparison of the relative predicitivity of all 11 SVM annotation classifiers (as well as 

the 5 SVM filters). For Aim 3c, the 11 SVM classifiers where trained using the Firas-1 

dataset (also using cross validation to optimize for the model parameters) and the 

resultant models were saved to disk. Their generalizability to annotations by other experts 

was tested by loading each of the saved classifiers and applying that classifier to a 
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combined dataset containing annotations from Experts-1 and Experts-2. Additionally 

some of the saved classifiers were applied to an ―enriched only‖ dataset i.e. Experts-2 

without Experts-1. 

 

Large Scale Application of the SVM Classifiers 

As a practical test of the scalability of using the machine learning classifiers that 

have been used so far, a large article set was compiled from both the lung cancer + 

bioinformatics and the breast cancer populations using the following procedure. The 

following sets of articles were excluded from the lung cancer + bioinformatics population 

in MEDLINE (58,252 articles): Firas-1 (500 articles), Experts-1 (340 articles), and 

Experts-2 (1000 articles originally sampled before enrichment). Ten thousand articles 

were sampled from the remaining articles in the population. Similarly, the articles in 

Firas-2 (200 articles) were excluded from the breast cancer population (5,320 articles) 

and 1000 articles were randomly sampled from the remaining articles in the population. 

The resulting pool of 11,000 articles was prepared for machine learning using the same 

methods described above. The SVM classifiers that were trained for Aims 2 (5 SVM 

―filters‖ classifier) and 3 (11 SVM ―annotator‖ classifiers) were loaded from disk and 

applied to all the articles in this pool. The output of these classifiers consists of a 

computed value by each SVM classifier for each article in this pooled dataset. The 

outcome of this procedure is described in the results section below. 
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Results 

 

Re-Annotation of Firas-1 

In the previous chapter during the analysis of the results for Aim 2a, some of the 

misclassifications by the SVM filters during the 5-fold cross validation using Firas-1 

were explained by misannotation and not by misclassification by the SVM filter. For 

example, it was verified by inspecting the papers and the annotation guideline that some 

of the ―false positives‖ (highly scored negatively annotated papers) should have been 

―true positives‖ (see previous chapter). These results were obtained in August/September 

2010. The Firas-1 article set was annotated between April and July 2010. The last major 

change to the annotation scheme as well as the last update of the annotation guideline 

occurred in June 2010 shortly before I began recruiting the experts. I attempted to re-visit 

previously annotated articles in Firas-1 whenever I updated the annotation guideline or 

scheme; however, the results from last chapter seem to indicate that Firas-1 was not 

annotated using a fixed and consistent annotation guideline. Furthermore, the first 200 

articles were annotated without using the printed form. (The results were entered directly 

into a spreadsheet.) 

Therefore, before resuming the analysis for Aim 3 and since the Firas-1 article set 

is integral to Aim 3, I wanted to revisit and re-annotate Firas-1 by strictly and 

consistently using the final versions of the guideline and annotation form. I re-annotated 

the articles in the same chronological order in which they were originally annotated. 

After completing the re-annotation, I examined all the major changes that occurred 

between the pre-September 2011 annotations and the new annotations. I defined a ―major 
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change‖ as a change in annotation that occurred for questions 1 (―The paper describes a 

predictive model?‖), 3 (―The model has molecular features?‖), or 4 (―The model 

describes a clinical outcome?‖), because these questions affect the rest of the annotation 

form. Table 16 shows the major changes that occurred during the re-annotation process. I 

re-ran the 5-fold cross validation experiments done for Aim 2a using the same 5-folds to 

compare the effect of the re-annotation on SVM predictivity. As expected, this re-

annotation improved the predictive ability of the retrained SVM classifiers (Table 17).  

 

Table 16 – The major changes in annotation that occurred after re-annotation of the Firas-1 article set 

using the final versions of annotation guideline and form. Note that most changes in annotation occurred in 

papers that were annotated early during the first round of annotation before the annotation guideline was 
finalized. 

Papers 

(in chronological order of 

original annotation) 

Number of Major Changes in 
Annotation 

1 – 100 20 

101 – 200 13 

201 – 300 12 

301 – 400 7 

401 – 500 4 

 

 

Table 17 – The effect of the re-annotation of Firas-1 using the last version of the annotation guideline 
and form on the N-fold cross validation performance of associated SVM ―filter‖ classifiers 

Question on the Annotation Form 

Average 5-Fold AUC 

Pre-September 2010 

Annotations 

Average 5-fold AUC 

Post-September 2010 

Re-Annotation 

T1: Has a model? 0.904 0.933 

T2: Multivariate model? 0.881 0.899 

T3: Has molecular features? 0.917 0.941 

T4: Outcome is clinical? 0.924 0.944 

T5: Outcome is biological? 0.896 0.918 
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Summary of Manual Annotations 

This section provides a summary of the outcome of manual annotations for each 

of the article sets used in Aim 3. Table 18 shows the journal origin of the articles in these 

datasets. Firas-1 and Experts-1 were randomly sampled from the lung cancer + 

bioinformatics population and previously used in Aim 2. Experts-2 is the ―enriched‖ 

dataset that was sampled from the same population using the procedure described in the 

Methods section. Notice that only one article in Experts-2 was found in the 

bioinformatics journals provided by Dr. Aliferis. Recall that the filter for question 1 was 

used to ―enrich‖ this article set by selecting papers that describe predictive models. The 

fact that using this filter yielded a small number of articles from bioinformatics journals 

is consistent with the discussion in the previous chapter regarding the effect on filter bias 

of under-representation of articles from specialized domains in the training set. Six of the 

8 experts who annotated the batches in Experts-1 agreed to annotate more batches in 

Experts-2. Figure 20 shows the experts who participated in the annotation of Experts-2 

and the allocation of batches. 
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Table 18 – This table describes the 3 article sets used for Aim 3. There is no overlap between these 

article sets. All article sets were sampled from the lung cancer + bioinformatics baseline population. The Firas-1 

and Expert-1 article sets where used for Aim 2 and were randomly sampled from this population. Experts-2 is 

an ―enriched‖ set obtained via the procedure described in the Methods section. The numbers refer to the 

number of articles found in the population or the three article sets from each particular journal. The journals 

listed were provided by Drs. Massion (23 journals, lung cancer research) and Aliferis (12 journals, shaded, 
bioinformatics).  

Journals (lung cancer + bioinformatics) Population Firas-1 Experts-1 Experts-2 

Proc Natl Acad Sci U S A 12205 102 66 13 
PLoS One 6036 46 32 10 

Cancer Res 4675 40 22 42 

Nucleic Acids Res 3940 37 34 1 

Clin Cancer Res 3083 28 14 26 

Int J Cancer 2479 26 19 19 

J Clin Oncol 2448 19 15 19 

Bioinformatics 2318 23 13 0 

BMC Bioinformatics 2227 17 13 0 

Oncogene 2001 14 11 15 

N Engl J Med 1896 19 13 5 

Br J Cancer 1861 16 10 11 

Cancer Epidemiol Biomarkers Prev 1515 6 13 12 

Am J Pathol 1296 11 6 4 

J Clin Invest 1067 12 8 3 

Carcinogenesis 975 7 8 8 

Am J Respir Crit Care Med 973 10 6 9 

Lung Cancer 891 11 6 7 

PLoS Comput Biol 774 8 2 0 

Nat Genet 746 5 4 1 
Mol Cell Proteomics 666 5 4 3 

J Thorac Oncol 641 4 6 2 

PLoS Med 640 6 4 1 

Nat Med 554 5 0 2 

J Pathol 537 7 3 6 

J Comput Biol 331 3 2 0 

Cancer Cell 299 4 2 1 

J Biomed Inform 262 0 0 0 

IEEE/ACM Trans Comput Biol Bioinform 227 2 2 0 

Pac Symp Biocomput 189 1 0 0 

Artif Intell Med 175 2 1 0 

Cancer Prev Res (Phila Pa) 121 1 0 0 

OMICS 88 3 0 0 

Brief Bioinform 61 0 1 0 

Int J Data Min Bioinform 55 0 0 0 

Total 
lung cancer 
bioinformatics 

58252 
47602 
10646 

500 
404 

96 

340 
272 

68 

220 
219 

1 
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Figure 20 – The source and composition of the Expert-2 article set. Of the original eight experts that 

annotated Experts-1, 6 agreed to annotate 10 batches of 25 papers. The first 5 papers of the first batch that 

every expert received were identical and used for analysis of inter-annotator agreement (Added to the Common 
article set) 

 

The outcomes of the manual annotation for the three article sets are shown in 

Table 19. All the structured components of the annotation form are summarized in that 

table. They include the 5 ―filter‖ questions and the 11 structured semantic attributes. The 

semantic attributes are grouped according to the Context dimension that they represent: 

Population (―Biologic Sample,‖ 4 different attribute values), Modality (―Type of Assay,‖ 

3 different attribute values) and Purpose (―Clinical Purpose,‖ 4 different attribute values). 

The 5 SVM classifiers described in previous chapter and the 11 SVM classifiers 

described in this chapter correspond to each of those components of the annotation form. 

As shown in the previous chapter (see Table 11 and associated discussion), the 

annotations by experts #3 and #7 were mostly discordant from the classification of the 
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trained SVM filters. Tables 20 and 21 below summarize their annotation behavior for 

questions 1, 3 and 4 in comparison to other experts. Their annotation behavior seems to 

diverge from the annotation behavior of the rest of the experts. These experts seem to 

label a smaller number of papers as describing predictive Models; furthermore, a higher 

fraction of the Models that they identify include clinical outcomes than the Models 

labeled by other annotators. Assuming their behavior is consistent and faithful to their 

own personal understanding of predictive Models, the data in Tables 20 and 21 are 

consistent with the assumption that these experts consider ―having a clinical outcome‖ a 

necessary condition for defining a predictive Model.   
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Table 19 – The outcome of manual annotation within each of the article sets used for aim 3. For the 

―filtration‖ questions T1-T5, the numbers indicate the fraction (and absolute number) of articles for which the 

question was answered as ―yes.‖ For the rest of questions these numbers indicate the number of papers for 

which these semantic attributes were circled (indicating the truth of their assignment to this paper). The 

hierarchical indentation shown in this table mirrors the workflow of the annotation form. For example questions 

T2-T5 are only answered if T1 was answered ―yes.‖ The percentages indicate the fraction of the papers from 

which that question/attribute is applicable. For example the fractions reported for the Biological Source are 

based on papers for which T3 was answered ―yes‖. The numbers shown for Firas-1 are those obtained after re-
annotation of that dataset.  

Question/Semantic Attribute  
in the Annotation Form 

Firas-1 
(500) 

Experts-1 
(340) 

Experts-2 
(220) 

T1: Has a model? 67% (336) 52% (176) 75% (166) 

T2: Multivariate model? 95% (320) 85% (149) 89% (148) 

T3: Has molecular features? 84% (281) 75% (131) 81% (135) 

Biological Source    

BS1: Human 36% (101) 53% (69) 61% (82) 

BS2: Animal 40% (111) 31% (41) 23% (31) 

BS3: Cell line 45% (126) 38% (50) 39% (53) 

BS4: Pathogen 10% (28)   8% (10)   3% (4) 

Type of Assay    

A1: DNA 53% (148) 36% (47) 41% (56) 

A2: RNA 53% (149) 32% (42) 45% (61) 

A3: Protein 74% (208) 69% (90) 66% (89) 

T4: Outcome is clinical? 44% (148) 46% (81) 62% (103) 

Clinical Purpose    

CP1: Diagnosis 16% (23)   9% (7)   5% (5) 

CP2: Risk Assessment 28% (42) 43% (35) 34% (35) 

CP3: Prognosis: tx unspecified 32% (47) 16% (13) 32% (33) 

CP4: Prognosis: tx specified 35% (52) 42% (34) 41% (42) 

T5: Outcome is biological? 74% (248) 65% (114) 65% (108) 
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Table 20 – The annotation outcome within the Experts-1 article set broken down for experts #3, #7, 
and all other experts combined.  

 Experts-1 Article Set 

Question/Semantic Attribute  
in the Annotation Form 

Expert #3 
(80) 

Expert #7 
(20) 

All others 
(240) 

T1: Has a model? 36% (29) 25% (5) 65% (142) 

T3: Has molecular features? 62% (18) 80% (4) 77% (109) 

T4: Outcome is clinical? 72% (21) 80% (4) 39% (56) 

 

Table 21 – The annotation outcome within the Experts-2 article set broken down for experts #3, #7, 
and all other experts combined.  

 Experts-2 Article Set 

Question/Semantic Attribute  
in the Annotation Form 

Expert #3 
(45) 

Expert #7 
(20) 

All others 
(155) 

T1: Has a model? 31% (14) 65% (13) 90% (139) 

T3: Has molecular features? 43% (6) 77% (10) 86% (119) 

T4: Outcome is clinical? 100% (14) 100% (13) 55% (76) 

 

 

Training and Validation of Machine Learning Annotation Classifiers (Aim 3a) 

The Firas-1 article set was used to answer the research question in Aim 3a: Can 

existing or modified feature extraction transformations be used to train text classifiers 

that can replicate human semantic annotation of the gold standard? SVM classifiers 

were developed in a way that mirrors the manual annotation process for the structured 

components of the annotation scheme as described earlier. The predictivity of these 

classifiers was tested via 5-fold cross validation using the Firas-1 dataset (Figure 21). The 

average 5-fold AUCs for the 11 classifiers using the same folds for all experiments are 

shown in Table 22. All the classifiers show excellent predictivity except the classifier 

associated with the DNA Assay Type attribute (0.800). This can be explained by some of 



115 

the semantic ambiguity associated with the definition of this attribute. This will be 

discussed later in this chapter.  

 

 

Figure 21 – For the research question in Aim 3a, 11 SVM models were trained and tested via stratified 
nested 5-fold cross validation using the Firas-1 articles set. 
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Table 22 – The results of the experiments for testing the research question in Aim 3a. The same folds 
were used for all 11 ―annotation‖ classifiers as well as the 5 (T1-T5) ―filteration‖ classifiers. 

Question/Semantic Attribute  
in the Annotation Form Associated  
with the Classifier 

Average  
5-fold AUC 
in Firas-1 

T1: Has a model? 0.933 

T2: Multivariate model? 0.899  

T3: Has molecular features? 0.941 

Biological Source  

BS1: Human 0.898 

BS2: Animal 0.936 

BS3: Cell line 0.943 

BS4: Pathogen 0.874 

Type of Assay  

A1: DNA 0.800 

A2: RNA 0.920 

A3: Protein 0.920 

T4: Outcome is clinical? 0.944 

Clinical Purpose  

CP1: Diagnosis 0.903 

CP2: Risk Assessment 0.923 

CP3: Prognosis: tx unspecified 0.875 

CP4: Prognosis: tx specified 0.932 

T5: Outcome is biological? 0.918 
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Effect of Using NLP for Feature Extraction (Aim 3b) 

The next research question that I investigated was: Will modifying the feature 

extraction transformations used for training semantic classifiers in Aim 3a to include 

natural language processing (NLP) techniques alter their performance? The feature 

extraction transformations were modified to incorporate the output of KnowledgeMap as 

described in the methods section. Specifically, the performances using 5-fold cross 

validation experiment of the SVM classifiers that result from 4 different feature 

extraction methods (shown in Table 23) were compared. The same folds were used for all 

experiments to be able compare their relative performance. The results are shown in 

Table 24. There was no significant change in performance associated with using the 

different transformations in all but one SVM classifier (BS4: ―Biological Sample = 

pathogen‖).  

 

Table 23 – This table shows the four different feature extraction transformation methods that were 

used for aim 3b. The first method is the default method used throughout this chapter. The other three methods 

differ by the MEDLINE information that are utilized in feature extraction: The second method relies only on 

the terms in the title and abstract, the third method relies in addition on MeSH terms, and the fourth method 
relies in addition on UMLS CUIs extracted by KM. 

Symbol 
MeSH 
Terms 

UMLS 
Concept 

IDs 

# of Features 
in 500 

Articles 
Preprocessing 

LRF: MeSH(+)KM(-) 
(default) + - 19950 

Log-rel freq with 
redundancy 

L2F: MeSH(-)KM(-) - - 13337 
Raw frequency 
L2-normalized 

L2F: MeSH(+)KM(-) + - 19950 
Raw frequency 
L2-normalized 

L2F: MeSH(+)KM(+) + + 24629 
Raw frequency 
L2-normalized 
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Table 24 – This table shows the relative predictive performance of the four feature extraction 
transformations described in Table 23 for all 11+5 SVM classifiers. 

 Average 5-fold AUC in Firas-1 

Question/Semantic Attribute  
in the Annotation Form Associated  
with the Classifier 

LRF 
MeSH(+) 

KM(-) 

L2F 
MeSH(-) 

KM(-) 

L2F 
MeSH(+) 

KM(-) 

L2F 
MeSH(+) 

KM(+) 

T1: Has a model? 0.933 0.907 0.918 0.916 

T2: Multivariate model? 0.899  0.872 0.875 0.877 

T3: Has molecular features? 0.941 0.900 0.912 0.918 

Biological Source     

BS1: Human 0.898 0.873 0.886 0.889 

BS2: Animal 0.936 0.932 0.952 0.953 

BS3: Cell line 0.943 0.922 0.928 0.923 

BS4: Pathogen 0.874 0.694 0.746 0.750 

Type of Assay     

A1: DNA 0.800 0.766 0.776 0.790 

A2: RNA 0.920 0.891 0.908 0.906 

A3: Protein 0.920 0.907 0.911 0.914 

T4: Outcome is clinical? 0.944 0.921 0.927 0.932 

Clinical Purpose     

CP1: Diagnosis 0.903 0.871 0.875 0.874 

CP2: Risk Assessment 0.923 0.915 0.928 0.944 

CP3: Prognosis: tx unspecified 0.875 0.854 0.849 0.865 

CP4: Prognosis: tx specified 0.932 0.883 0.901 0.903 

T5: Outcome is biological? 0.918 0.895 0.897 0.895 

 

The main drop in performance for BS4 was not associated with 

inclusion/exclusion of MeSH or UMLS CUIs. It was related to the pre-processing steps 

used. Note that there are only 28 cases (~5 cases per fold) in the Firas-1 dataset of papers 

describing predictive Models that used pathogens as the biological source (Table 19). The 
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use of feature weighting in the pre-processing step (LRF with Redundancy) may have 

reduced the over-fitting associated the low prevalence of this class in this dataset. 

 

Testing Classifier Generalization to Annotations by Different Experts (Aim 3c) 

The third research question under Aim 3c is: Can text classifiers trained for 

semantic annotation of relevant papers in the domains of bioinformatics and lung cancer 

using annotation by one expert, replicate the semantic annotation of independent papers 

in the same domain by other experts? The purpose of the experiments described in this 

section is to test the generalizability of the classifiers to different annotators. Specifically, 

I measured the predictive performance of SVM classifiers trained using the Firas-1 

dataset and tested using the Expert-1 and Expert-2 datasets.  

 

 

Figure 22 – The experimental setup used for the research question in Aim 3c. The SVM classifiers were 

trained using the Firas-1 dataset annotated by Firas and tested on an independent pooled dataset of 560 articles 
annotated by 8 other annotators. 
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In the first set of experiments (Figure 22), the SVM classifiers were tested using a 

dataset pooled from both Experts-1 and Experts-2. The results are shown in Table 25. 

The analysis was done twice for all 11+5 SVM classifiers, once using all experts and 

once using all experts excluding experts #3 and #7. The main impact of removing experts 

was mostly seen in the ―filter‖ classifiers, which is also consistent with the assumption 

that these experts rely on a definition of predictive models that necessarily requires the 

Model having a clinical outcome. Overall the SVM classifiers show very good 

predictivity on datasets annotated by independent experts. (With only around 5% 

reduction in AUC from the cross validation results using Firas-1.) 

 

 

Figure 23 – Another experimental setup used for the research question in Aim 3c. The SVM classifiers 

were trained using the Firas-1 dataset annotated by Firas and tested on the independent Experts-2 dataset that 
was ―enriched‖ to include mostly papers describing predictive models and annotated by other expers.  

 

The second set of experiments (Figure 23) used only the enriched Experts-2 

dataset to test the SVM classifiers. The purpose here is to evaluate the discriminating 
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ability of the classifiers in a more specialized dataset where non-relevant (non-model 

describing) papers are not present. The results of these experiments for all 11+5 SVM 

classifiers are shown in Table 26. In this setting, the SVM classifiers had good predictive 

performance that was diminished for some classifiers from that of the pooled (and larger) 

test datasets. The effect associated with removing experts #3 and #7 was again related to 

their annotation of mostly models with clinical outcome. Note that the classifier 

associated with CP3 (―Clinical Purpose‖ = ―Prognosis Tx. Unspecified‖) had lower 

performance. This attribute will be discussed later in the chapter. 
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Table 25 – Predictive performance of SVM classifiers trained using Firas-1 and applied to a pooled 
dataset of Experts-1 and Experts-2 as shown in Figure 22. 

 
AUC Using Experts-1,2  

as Test Dataset 

Question/Semantic Attribute  
in the Annotation Form Associated  
with the Classifier 

All Experts 
 

(560) 

All Experts 
except #3,#7 

(395) 

T1: Has a model? 0.762 0.866 

T2: Multivariate model? 0.740 0.833 

T3: Has molecular features? 0.781 0.865 

Biological Source   

BS1: Human 0.857 0.856 

BS2: Animal 0.876 0.878 

BS3: Cell line 0.862 0.893 

BS4: Pathogen 0.811 0.783 

Type of Assay   

A1: DNA 0.758 0.749 

A2: RNA 0.821 0.853 

A3: Protein 0.846 0.866 

T4: Outcome is clinical? 0.919 0.917 

Clinical Purpose   

CP1: Diagnosis 0.872 0.880 

CP2: Risk Assessment 0.933 0.925 

CP3: Prognosis: tx unspecified 0.852 0.851 

CP4: Prognosis: tx specified 0.894 0.897 

T5: Outcome is biological? 0.761 0.831 
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Table 26 – Predictive performance of SVM classifiers trained using Firas-1 and applied to the 
―enriched‖ Experts-2 dataset as shown in Figure 23. 

 
AUC Using Experts-2  

as Test Dataset 

Question/Semantic Attribute  
in the Annotation Form Associated  
with the Classifier 

All Experts 
 

(220) 

All Experts 
except #3,#7 

(155) 

T1: Has a model? N/A N/A 

T2: Multivariate model? 0.581 0.745 

T3: Has molecular features? 0.649 0.775 

Biological Source   

BS1: Human 0.848 0.854 

BS2: Animal 0.903 0.915 

BS3: Cell line 0.789 0.847 

BS4: Pathogen 0.811 0.806 

Type of Assay   

A1: DNA 0.721 0.717 

A2: RNA 0.766 0.806 

A3: Protein 0.737 0.827 

T4: Outcome is clinical? 0.885 0.886 

Clinical Purpose   

CP1: Diagnosis 0.886 0.906 

CP2: Risk Assessment 0.899 0.857 

CP3: Prognosis: tx unspecified 0.771 0.774 

CP4: Prognosis: tx specified 0.898 0.925 

T5: Outcome is biological? 0.708 0.807 
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Large Scale Application of Machine Learning Classifiers 

As described in the methods section and illustrated in Figure 24, I tested the 

practical scalability of using the SVM classifiers that have been discussed in this chapter. 

Using a Linux virtual private server with 256 MB of RAM to run the Python scripts, this 

task was relatively easy. The download and feature extraction step for all 11,000 articles 

and preparation for machine learning was executed in around 30 minutes. Running all 16 

SVM classifiers was complete in less than 10 minutes. The output of the SVM classifier 

for some of the filter questions and semantic attributes are shown in Figures 25-31 and 

will be discussed in the next section. 

 

 

Figure 24 – The 11+5 SVM classifiers that were trained using Firas-1 dataset and that were described 

in this chapter were applied to a large independent dataset composed of 11,000 articles randomly sampled from 
the lung cancer + bioinformatics and the breast cancer populations. 
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Figure 25 

 

Figure 26 
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Figure 27 

 

Figure 28 
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Figure 29 

 

Figure 30 
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Figure 31 

 

 

Discussion 

 

Summary of Results 

In this chapter I described the building and evaluation of a machine learning 

based approach for the semantic annotation of MEDLINE articles as befits our 

information retrieval framework. First, I described how the semantic annotation scheme 

presented in earlier chapters was refined to arrive to an operational definition of the 

relevant concepts. These definitions were codified in an annotation guideline document 

and a related paper annotation form. The resulting annotation process allowed human 

annotators to assign semantic attributes to MEDLINE articles that characterize the 

clinical bioinformatics predictive models that these articles describe. The annotation 
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guideline should lend itself to consistent annotation behavior by humans. This was 

highlighted when I re-annotated a set of 500 articles and found inconsistencies with my 

previous annotations. Most of those inconsistencies occurred in articles that were 

originally annotated prior to the final version of the annotation guideline document.  

The ability to automatically replicate manual annotation was investigated by 

building 11 SVM classifiers that correspond to the structured semantic attributes 

annotated by humans using the paper form. Using an article set of 500 papers that I 

manually annotated and 5-fold cross validation to measure average AUC, the majority of 

the SVM classifiers showed very good or excellent predictive performance. Reliance on 

an NLP tool (KnowledgeMap) to enhance feature extraction for these SVM classifiers by 

extracting UMLS Concepts from the MEDLINE record did not alter their predictive 

performance. The SVM classifiers‘ ability to predict annotation behavior by an 

independent set of experts was investigated by applying them to two test sets annotated 

by 8 unique experts. One of the subsets consisted of 340 randomly selected articles from 

the background study population. The other dataset was constructed using an 

―enrichment‖ procedure that relied on a validated machine learning filter to find 220 

articles specifically describing predictive Models as previously defined (Chapter IV). 

Overall, the SVM classifiers showed very good predictive performance for the combined 

dataset. That performance was slightly diminished when the classifiers were only applied 

to the ―enriched‖ dataset. The limitations of these machine learning classifiers, the 

variability in expert annotation behavior, and possible residual semantic ambiguity in the 

annotation scheme will be discussed below in the context of these experiments. Finally, I 

wanted to gauge the practical scalability of the SVM classifiers that have been developed 
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so far. I applied these classifiers to 11,000 MEDLINE articles. The results were presented 

in this chapter and will be discussed below.  

 

Limitations of the Machine Learning Classifiers 

As discussed in the previous chapter, a main structural limitation of the approach 

used for building the machine learning classifiers is due to relying solely on the contents 

of the MEDLINE record for feature extraction. This approach omits information about 

the content of the articles that is otherwise available to the human annotators. This 

limitation was also observed in the context of semantic annotation as described in this 

chapter. In many of the articles that I encountered during my annotation, the abstract did 

not provide definite information about some of the semantic attributes. I had to resort in 

many instances to the full text of the article and examine the experimental methods 

section to determine the full list of the types of assays that were used. Sometimes, and 

especially for certain journals, that information was only mentioned in supplemental 

material beyond the main body of the article. In addition, sometimes the MeSH terms 

provided misleading information about the experimental method. In many articles, MeSH 

terms like ―cell line‖ were found the MEDLINE record. Upon examination of the article, 

I would find that the experimental manipulations were done on animal xenograft models 

(i.e. biological source = animal not cell line). Sometimes the MeSH term ―gene 

expression profiling‖ would refer to articles in which mRNA was not measured and the 

information about gene expression was obtained via immuneohistochemistry (a ―protein‖ 

type of assay). This approach for feature extraction was used because it was vastly more 

practical to obtain the publically available MEDLINE information (via PubMed e-
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utlities) than to programmatically access the full text of the articles from all journal 

sources. Despite this limitation, the SVM classifiers showed very good predictivity for 

many of semantic attributes. This shows that it is possible for the SVM classifiers to 

duplicate the human annotation which was informed by the content of the full article by 

learning from patterns that were only present in the MEDLINE record. 

Finally, there were two other findings reported in this chapter that may be due to 

the limitations of the machine learning method that was used. They are probably not 

related to the SVM algorithm per se but to the experimental design and the composition 

of the training and testing datasets. The first finding is that the ―enrichment‖ procedure 

used to construct the Experts-2 dataset only produced a single article from the 

bioinformatics journals (table 18). This was discussed in the previous chapter and seems 

to be consistent with the conclusion that was drawn about the low prevalence of 

―relevant‖ articles from the specialized bioinformatics journals in the overall lung cancer 

+ bioinformatics population and the effect of that prior probability on the training and 

performance of the filter. The second finding is the relatively poorer predictive 

performance of the SVM classifier associated with the ―BS4: biological source = 

pathogen‖ semantic attribute when tested using the expert datasets. Recall from table 19 

that the prevalence of this attribute was low in all of the article sets (28/500, 10/340, and 

4/220 in Firas-1, Experts-1, and Experts-2 respectively). The use of redundancy 

weighting may have suppressed the over-fitting of this classifier during cross validation. 

(Note the deterioration of cross-validation performance of this classifier when 

redundancy weighting pre-processing was removed in Table 24.)  
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An interesting observation is that the ―CP1: clinical purpose = diagnosis‖ attribute 

had a similar low prevalence in all datasets (23/500, 7/340, and 5/220 in Firas-1, Experts-

1, and Experts-2 respectively); however very good predictive performance of the 

associated SVM classifier was found in all the experiments in this chapter. I speculate 

that the robustness of this classifier may be due to: (1) less semantic ambiguity 

surrounding what constitutes a ―diagnosis‖ type of clinical outcome leading to a 

consistent annotation by human experts of this attribute; and (2) the presence of highly 

discriminating terms in the dataset with respect to this class such as ―diagnosis‖ or 

―differential diagnosis.‖ 

 

Variability in Expert Annotation Behavior 

Due to the lack of objective criteria for determining the semantic annotations, the 

judgment of the human experts was treated as the gold standard that was used for training 

and validation of the SVM classifiers. The variability of expert annotation behavior, 

specifically the outlying annotation behavior of experts #3 and #7, was highlighted in this 

chapter (see Tables 19-21) as well as the previous chapter. Assuming good faith effort by 

the annotators and assuming that the annotators are consistently and faithfully annotating 

articles according to their understanding of the annotation guidelines, the variability in 

annotation behavior can be explained by the difference in their cognitive interpretations 

of the guidelines. As shown in the results section, the behavior of these 2 experts is 

consistent with the hypothesis that their understanding of the working definition of 

predictive Model requires that the Model be associated with a clinical outcome. While 

variability exists between all experts and at different granularity levels, the variability 
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between these 2 experts and the rest of the experts was the most profound in that it seems 

to be related to the definition of predictive Models themselves; furthermore, it was readily 

detected by simple comparison of the composition of their annotations to those of the 

other experts. 

Regardless of the cause of variability in annotation behavior, the procedure that I 

used to collect expert annotations did not provide for a means to monitor or correct 

obvious outlying behavior during data collection. This was an inherent limitation of this 

experimental design that stemmed from my dual roles as (1) developer of the 

system/author of guidelines and (2) evaluator of the system. To maintain consistency I 

did not want to modify the guideline document after the beginning of expert recruitment 

for the analysis dataset. During the period when experts were actively annotating their 

articles, I refrained from discussing the annotation of specific articles with them (beyond 

general explanation of the guidelines if they asked me for clarifications) to avoid 

introducing bias. Analysis of the causes of variability in the datasets used for this study 

and the investigation of possible approaches to prevent or correct inter-annotator 

variability without introducing bias for one specific annotation behavior is an opportunity 

for future work. 

 

Residual Guideline Ambiguity 

The purpose of the annotation guidelines document is to help the human experts 

make consistent and deterministic semantic annotations of the articles to be able to 

construct high quality training and testing datasets. As discussed above, differences in the 

cognitive interpretation of the guidelines may lead to inconsistency in annotation 
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behavior which in turn may diminish the ability to train predictive and generalizable 

SVM classifiers. The following discussion of two semantic attributes highlights the 

possibility that some semantic ambiguity remains in the final version of the annotation 

guidelines. 

The SVM classifier associated with the ―A1: Type of Assay = DNA‖ semantic 

attribute showed consistently weaker predictive performance in the experiments for Aims 

3a, 3b, and 3c. There seems to be less internal consistency in the training dataset (Firas-1) 

of this attribute‘s annotation than that of the other attributes. An informal survey of my 

notes taken during the annotation of the Firas-1 dataset reveals the following examples of 

the residual semantic ambiguity in the definition of this attribute.  

 Sometimes Flow Cytometric Analaysis (FCA) is performed to measure the total 

DNA content of cells for cell cycle analysis (e.g. to detect apoptosis as an 

outcome or to select cells in a certain stage in the cell cycle). Even though 

technically, the assay is measuring the DNA molecule, there is ambiguity if such 

papers can be truly assigned a positive label for the A1 semantic attribute. The 

measurement of the DNA is not for genetic purpose such as when PCR or 

hybridization is used, but as a surrogate for a cellular state. In the case of 

detecting apoptosis as an outcome, the DNA measurement is actually utilized as a 

dependent variable not an independent variable. For example see article 

17486061 (―Frequent loss of expression of the pro-apoptotic protein Bim in renal 

cell carcinoma: evidence for contribution to apoptosis resistance.‖ Omics) 

 In many studies the genome of model animals or cell lines is altered to study the 

effect of a gene on an outcome such as a downstream effect in a molecular 
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pathway or a specific phenotype such as disease response or cell motility. 

Conceptually, the experimental manipulation is at the gene ―DNA‖ level. In 

practice the actual measurement of DNA may not be strictly performed. For 

example, sometimes mice are used which have been altered using germ-line 

knockout of the specific gene. In some studies, the genome DNA was not 

measured, but the genotype was confirmed via gene expression analysis (e.g. 

confirming mRNA expression using Northern Blot or RT-PCR) or protein 

measurement (e.g. by using immunohistochemistry to measure the presence of the 

gene product protein in the tissue). Alternatively the genome may not be altered, 

but the cells are transfected using cDNA plasmids to induce the expression of 

certain gene products. Gene regulation networks are sometimes studied by 

inserting certain reporter genes (e.g. Luciferase or CAT, see 16916793 and 

17012283) into the genome and swapping them with genes whose activity is 

investigated. In other words DNA measurement is not consistently associated 

with genotype measurement: Sometimes DNA is not measured at all, and other 

molecules are used as surrogates of genotype; on the other hand, sometimes DNA 

(instead of mRNA) molecules are used/measured during the experimental 

manipulation or measurement of gene expression states. 

The SVM classifier associated with the ―CP3: Clinical Purpose = Prognosis: 

Treatment Unspecified‖ semantic attribute showed relatively diminished predictive 

performance when applied to the independent expert dataset. Informal discussion with 

experts after their annotation was complete indicated that some of the experts differed in 

their interpretation of that concept from me and from the other experts. Recall that that 
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semantic attribute refers to Models whose purpose is to predict clinical outcome 

irrespective of the type of treatment given. On the other hand the ―CP4: Clinical Purpose 

= Prognosis Treatment Specified‖ attribute refers to Models whose purpose is to predict 

differential outcomes for specific treatment such as the study of outcomes during 

randomized controlled drug trials or the prediction of treatment response based on 

genomic data. In most of the papers that describe the former (CP3) cases, the treatment 

that the patients received is actually specified but it is not the variable that is controlled or 

experimentally manipulated. For example, a paper predicting the metastasis in cancer 

patients (based on characteristics that are independent of treatment such as molecular 

subtype or the clinical stage) would typically list the standard chemotherapy treatment 

that the patients in their study population received. Some of the annotators told me that 

they would consider the reporting of the treatment in the article as an indication that this 

should be annotated as using the CP4 (―treatment specified‖) as opposed to the CP3 

(―treatment unspecified‖) attribute. 

 

Large Scale Application of the Classifiers  

In this chapter, I described the application of the 5 ―filtration‖ and 11 

―annotation‖ SVM classifiers to a large number of articles. The purpose of this procedure 

was to verify the practical scalability of using the SVM classifiers. The results that were 

reported are only descriptive of the outcome of this procedure and cannot be used to draw 

conclusions beyond what can be concluded from an observational study. The main 

outcome from this procedure is that it will be practical to scale the application of the 

SVM filters to a large fraction of the articles in MEDLINE. The majority of the 
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computational time was consumed by downloading the MEDLINE records, feature 

extraction and preparation of the dataset for machine learning. The application of the 

already trained SVM classifiers was trivial. 

The output of this procedure is a computed decision function for each article by 

each of these 16 classifiers. The results for Aims 2 and 3 have shown that the decision 

function can be used to discriminate articles based on the semantic annotation that is 

associated with that SVM classifier. The range and mean of the decision function for 

MEDLINE articles in each journal are shown in figures 25-31. The following are some 

observations about this output: The filter for question 1 ―T1: The paper describes at least 

one predictive model?‖ seems to assign lower values on average to articles from the 

bioinformatics journals. Some journals like NEJM and PLoS One had a wider range of 

output for this filter. The journals with the highest mean values for ―T3: Has Molecular 

features?‖ include Cancer Res, Oncogene, Carcinogenesis whereas journals with highest 

mean values for ―T4: Outcome is clinical?‖ include Lung Cancer, J Clin Oncol, J Thorac 

Oncol. Note the difference in range of these two filters for the NEJM. Cancer Epidemiol 

Biomarkers Prev had a noticeably higher mean and range than all the other journals for 

the semantic attribute filter ―CP2: Clinical Purpose = Risk Assessment.‖  

One important thing to note is that the output of these classifiers is not completely 

independent. For example the semantic interpretation of a positive label for ―T3: Has 

molecular features?‖ is that T1 = True AND T3 = TRUE. This is based on the workflow 

for the annotation form (Appendix C). Conversely, if that label is false then it that can 

include two different types of papers: (1) papers that do not describe a Model and (2) 

papers that do describe a Model but that Model does not have molecular features. 
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Similarly, the 11 semantic attributes are dependent on two levels of filters that precede 

them. This explains why most of the (CP) semantic attributes in the figures have ranges 

that extend to the left edge of the figures. Assuming the Firas-1 dataset composition (500 

randomly sampled articles) is a good estimate of the composition of the 11,000 randomly 

sampled articles, then 70% of articles (calculated using Firas-1 annotations in Table 19) 

do not describe a predictive Model OR describe a Model that is not clinical. Therefore the 

CP1-4 classifiers should provide a low decision function for at least 70% of the articles. 

 

Conclusion 

The work in this chapter was an extension to the work described in the previous 

chapter. While the previous chapter investigated the use of scalable SVM classifiers for 

identifying relevant articles, this chapter applied similar SVM classifiers to semantically 

annotate the relevant articles. The classifiers have shown very good predictive 

performance when validated using manually annotated articles. The use of the 

KnowledgeMap natural language processing tool to extract UMLS biomedical concepts 

from the MEDLINE record did not seem to alter the performance of the classifiers within 

our experimental design. The good predictive performance of the classifiers was found to 

generalize to annotations made by an independent set of experts. The annotations, by man 

and machine, were based on annotation guidelines that were developed for these 

experiments based on the previous semantic analysis of this domain. Some of the 

variability in expert annotation behavior and in classifier performance can be explained 

by semantic ambiguity that remains in some of the concepts described in the annotation 
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guidelines. Finally, this chapter demonstrated the practical scalability of the SVM 

classifiers to a large numbers of articles in the MEDLINE database. 
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CHAPTER VI 

 

DISCUSSION 

 

Summary of Results 

The work presented in this dissertation describes a framework for retrieving and 

organizing published information about clinical bioinformatics predictive models, models 

that can predict clinical outcomes based on the results of molecular biology assays or 

techniques. This information retrieval framework has to overcome two challenges: (1) the 

semantic complexity and (2) the large volume and fast pace of published information in 

this domain. The limitations and challenges of existing tools were discussed in Chapter 

II. 

The first aim of this dissertation was to conduct a semantic analysis of this 

domain and use the results of that analysis to inform the design of the information 

retrieval framework. In chapter III, a focused in-depth analysis of a small number of well 

known publications in this domain led to the definition of an ontology of predictive 

Models and of related objects. To answer the envisioned queries for these Models, an 

indexing scheme was developed that relied on the annotation of Models (and of Papers 

describing these Models) according to a clinical bioinformatics Context. A Context can 

characterize Models along four dimensions: Disease, Population (biological source of 

molecular data), Modality (molecular assay type), and Purpose (the type of clinical 

outcome). 
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The information used by the proposed framework will be obtained from published 

articles in this domain. The second aim of this dissertation was to train and test machine 

learning SVM filters that can automatically retrieve relevant articles from MEDLINE. 

These filters were trained and validated using a corpus of manually annotated MEDLINE 

articles. To ensure the consistency and quality of this manually annotated dataset, a 

procedure for determining ―relevant‖ articles was developed based on an operational 

definition of bioinformatics predictive Models. The SVM filters showed excellent 

predictive performance when evaluated using a dataset of manually annotated articles 

selected from the domains of lung cancer and bioinformatics. Furthermore, their 

predictive performance was found to extend to articles that were sampled from another 

domain (breast cancer) and to independent articles that were annotated by a separate 

group of expert annotators.  

The third aim of this dissertation was to train and test machine learning SVM 

classifiers that can automatically annotate relevant articles using the indexing scheme that 

was proposed earlier. The definition of clinical bioinformatics Context was found to be 

deficient and did not provide adequate guidance for consistent annotation of newly 

encountered articles beyond the focused set that was used in the first aim. An annotation 

guideline and a paper annotation form were iteratively refined using experience gained 

from the annotation of new articles and feedback from experts. The guideline and form 

were utilized to construct a corpus of manually annotated articles. SVM classifiers were 

developed to mirror the structured semantic attributes on this form. These classifiers were 

trained and tested using the manually annotated datasets. Machine learning experiments 

showed very good predictive performance by these filters when validated using the 
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dataset sampled from lung cancer and bioinformatics domains. This performance was 

also found to generalize to annotations provided by independent experts. The effect of 

using natural language processing techniques to enhance feature extraction (by 

identifying UMLS biomedical concepts) did not improve the performance of these 

classifiers.  

Analysis of the experiments conducted under both Aim 2 and Aim 3 found that 

the variability in the predictive performance of the SVM classifiers can be partially 

explained by the remaining semantic ambiguity of some of the concepts in the annotation 

guideline. Finally, the scalability of the SVM classifiers was practically verified by 

applying them, with relative ease, to a large set of randomly selected articles in 

MEDLINE. 

 

Limitations and Lessons Learned 

 

Knowledge Representation and Annotation 

The semantic complexity of the domain of clinical bioinformatics was one of the 

main challenges facing the development of the information retrieval framework described 

in this dissertation. A multitude of biomedical concepts are relevant to the meaningful 

organization and retrieval of the predictive Models (e.g. molecular assay techniques and 

related biology, epidemiological concepts regarding clinical outcomes, etc.) The 

information elements required for solving this problem were not clearly defined at the 

beginning of this work. The choices made during the knowledge representation phase 

played a big role in shaping the practical components of this framework such as the 
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annotation form or the classes used for the machine learning classifiers. In retrospect, this 

work seems to encompass two different approaches for knowledge representation. The 

first approach, followed during the early phase (Chapter III), relied on a focused and in-

depth analysis of a small set of illustrative examples as well as a priori specifications of 

the envisioned queries for this framework. This produced a formal ontology of objects 

and relationships in this domain. The original intent was to extract these objects from 

published articles and to use sophisticated techniques such as description logic based 

knowledgebases to support complex semantic queries. Practical realities frustrated this 

effort. The second approach relied on iterative and piecemeal refinement of the relevant 

semantic attributes and indexing scheme based on patterns that emerged as I annotated 

more articles. Furthermore, feedback from experts about the utility or ambiguousness of 

certain definitions also helped refine the semantic annotations (and remind me of the 

teleological nature of this process). This approach resulted in the relatively simple and 

flat annotation scheme. I was then able to practically construct the annotated corpus that 

was used to train and validate the machine learning classifiers that mirrored the 

annotation scheme. I regret not using this grounded approach earlier in my PhD work. 

Recall the grounded theory approach that was used by Chapman et al59  to design an 

annotation scheme for extracting clinical conditions from emergency department records. 

They started with a general theory statement and followed an iterative approach to refine 

the annotation schema. 

While the annotation scheme that was eventually used allowed many practical 

accomplishments to occur, it did suffer from some limitations. Some of its limitations 

that relate to Aims 2 and 3 were extensively discussed in Chapters IV and V. Another 
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limitation of this annotation scheme is that the tradeoff for simplicity resulted in less 

representation of some of the concepts that were originally envisioned for this 

framework. Model characteristics such as the strength of evidence (e.g. type of 

validation) or the type of Algorithm that is used by the predictive Model (e.g. logistic 

regression, artificial neural network, etc) are not represented. Pointers to related objects, 

such as the Dataset used to create the Models are also not represented or indexed. 

 

Machine Learning Classifiers 

The limitations of the machine learning classifiers that relate to Aim 2 and Aim 3 

were discussed in their respective chapters. They include the structural limitations of 

using only the MEDLINE record for feature extraction, and the over-fitting that results 

from some of the classes having low prevalence in the datasets (such as articles where the 

biological source of molecular information was ―pathogen.‖) An additional limitation that 

I would like to highlight here is that the SVM classifiers for the ―annotation‖ of semantic 

attributes are not independent from the SVM classifiers for the ―filter‖ questions. The 

entire datasets (including articles where the pre-requisite ―filter‖ questions were false) 

were used for training the semantic annotators. This will have implication on how the 

sequential application of the SVM ―filters‖ (Aim 2) followed by the SVM ―annotators‖ 

(Aim 3) will be used in practice.  

 

Future Work and Open Questions 

 

Machine Learning and Automated Annotation 
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The natural continuation of this work is to apply the classifiers that have already 

been trained to retrieve and organize papers that describe predictive Models. For 

example, this approach can be readily used to reduce the search space if one is interested 

in a comprehensive literature search for molecular signatures for a disease. Beyond a 

direct and ad hoc application of the filters to search for articles, these classifiers can be 

used to construct the back-end of a query based information retrieval tool. As discussed 

in the previous section and when discussing the outcome of the large scale application of 

the classifiers, the outputs of the different classifiers are not independent. An open 

question is how to transform the decision functions computed by each of the classifiers 

about a given article into data that can be leveraged in response to specific queries. Note 

that these classifiers are entirely coupled to the MEDLINE database. There are many 

existing resources that allow searching the space of MEDLINE articles (e.g. PubMed and 

other tools that enhance PubMed) or of related databases (GEO, GenBank, Protein, etc.) 

The annotations that can be derived from the SVM classifiers can be used as an 

additional layer of information that will compliment and leverage the other existing 

resources. 

The following are some of the other open research topics relating to the strict 

machine learning aspect of this work: 

1. Analysis of informative features and the effect of feature selection on the 

performance of the different SVM filters or semantic annotation classifiers. 

2. The addition of new sources for features extraction such as the list of chemicals or 

the journal name from the MEDLINE record. 

 



146 

Building High Quality Annotated Corpora 

The manual annotation that has been undertaken can be expanded and improved 

beyond the experimental set-up that was intended to evaluate the SVM-based approach. 

There is room to revise and improve the annotation guideline and use it to annotate more 

articles from a variety of MEDLINE populations. The expanded annotated datasets can 

be used to directly populate a backend database for a query based information retrieval 

tool. It can also be used to re-train the classifiers with higher power. For example, I have 

already collected an additional article set (Firas-3, not discussed in this dissertation) that 

was obtained via the same ―enrichment‖ method as Experts-2. This dataset can be added 

to the existing training dataset used for the SVM classifiers to increase the prevalence of 

papers that describe Models. 

Further research can be done using the collected manual annotations. A group of 

experts can review these annotations and analyze the sources of discordance. The 

resulting insights can be used to improve the guidelines or the general process that was 

used to create these guidelines. 

Interesting research can be done to investigate different tools and methodologies 

for building high quality annotation corpora. These tools can be used to build annotated 

bibliography articles, but the methods can very well generalize to different types of text 

corpora such as text content of medical records. These methodologies can occur along 

three fronts: 

1. Building new or adopting existing annotation workbench tools. For example, I 

have already implemented a simple multi-user annotation website (not described 

in this dissertation) that was used by Drs. Aliferis, Boulos, and Fu during an early 
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pilot phase of article annotation. This can be expanded to allow simple database 

manipulations of multi-user annotations (storing and exporting annotations, 

generating summary statistics or statics about concordance, use to support 

experimental manipulations, etc.) 

2. Investigating the methods and processes for generation, codification, and 

communication of different annotation schemes and guidelines such as using 

wikis for the collaborative authoring of annotation guidelines. 

3. Investigating the use of different forms of incentives for the creation of high 

quality annotation datasets. This can include incentives based on games that 

reward consistency, adherence to guidelines or concordance with other players.  

 

Conclusion 

The main goal of this work was to develop a framework for retrieval and 

organization of clinical bioinformatics predictive models. The framework relies on a 

specialized annotation and indexing scheme that was developed using semantic analysis 

of this domain. Scalable machine learning classifiers were successfully trained to 

replicate human experts‘ ability to retrieve relevant MEDLINE articles and to annotate 

these articles using the specialized annotation scheme. The experiments that were 

performed highlighted the importance of using clear annotation guidelines that provide 

unambiguous operational definitions for semantic annotations. 
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APPENDIX A 

 

PUBLISHED SUPPLEMENTARY MATERIAL TO CHAPTER III 

 

Note 

This appendix is a verbatim replication of the ―Appendix‖ section of the 

published article: Wehbe FH, Brown SH, Massion PP, Gadd CS, Masys DR, Aliferis CF. 

A novel information retrieval model for high-throughput molecular medicine modalities. 

Cancer Inform. 2009 Feb 9;8:1-17.   

 

Context Indexing and Automation 

As mentioned earlier, an object‘s Context is represented by a tuple that specifies 

Disease, Population, Purpose, and Modality. Whenever an object is described in a Paper 

that object is indexed by the Context with which it is described in that Paper. An object, 

e.g. Dataset, can be indexed by many Contexts because more than one Paper can 

reference the same object and in multiple contexts.  For example, a ―neural network‖ 

Algorithm, can be described in the following Context in one Paper (<DLBCL, Human 

Patients, Prognosis with Treatment, Proteomics>) i.e. neural network predictive Models 

were developed to predict prognosis in DLBCL using proteomic data. It can then be 

described in a different Context in another Paper. A Paper can be indexed by all the 

Contexts that apply to the objects in that Paper; however, individual objects described in 

a Paper are not necessarily described by all the Contexts that are mentioned in that 

Paper. For example, a Paper that evaluates a certain Algorithm using multiple Datasets 
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drawn from multiple diseases can be indexed by Context tuples that reflect all the 

diseases, but each individual Dataset can only be indexed using tuples that reflects its 

specific disease.  

We use a canonical set of terms to specify the individual elements of a Context 

tuple. Initially we are only covering Neoplasms, and we will adopt the following 

nomenclature for Disease: Breast Neoplasms, Lung Neoplasms, Colorectal Neoplasms, 

Prostatic Neoplasms, and so on to cover all neoplasms in the domain of clinical 

bioinformatics.  Population refers to one of three types: Human Patients (Datasets 

created by assays on tissues taken from patients, this can include normal tissue taken as 

control), Cancer Cell Line, and Animal Model. Purpose refers to the type of clinical 

outcome, we have determined four categories of clinical outcomes: (1) Diagnosis, i.e. 

using a computational Model to assign a diagnostic label based on molecular profile, an 

example in this category is the well known AML/ALL classification Dataset by Golub et 

al. (Golub et al. 1999); (2) Prognosis with no treatment, (3) Prognosis with one treatment 

arm, e.g. 5 year survival or metastasis prediction for patients on standard treatment; and 

(4) Prognosis with more than one treatment arm. The latter refers to situations where 

molecular computational models predict whether patients benefit from certain treatments, 

e.g. hormone therapy susceptibility based on molecular pathway activations. It also 

includes situations where the biological effect of certain chemicals, e.g. when tested on 

cancer cell lines, is measured. Finally, we determined three categories for Modality: (1) 

Genetic, refers to high throughput modalities that assess inherited genetic characteristics, 

e.g.  SNPs and haplotypes; (2) Genomic, refers to high throughput modalities that assess 

functional genomic characteristics of disease or disease- related tissues, e.g. gene 
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expression microarrays, array CGH; and (3) Proteomic, e.g. high throughput modalities 

like Mass Spectrometry and Gel Proteomics.  

There are a plethora of reference ontologies
130

 and other formalisms that can 

represent Context elements with high granularity, e.g. SNOMED-CT for Disease and 

Purpose. A very expressive annotation of Context elements using complex ontologies 

with extensive subsumption hierarchies has many benefits. However it is labor intensive 

and with current and foreseeable technology relies heavily on human operators. As 

explained, our aim is to accelerate the indexing and annotation of Papers using 

automated or semi-automated means.  

 

Classes, Objects and Relationships 

We chose to represent the different object types, their relationships, as well as 

other entities in the clinical bioinformatics domain using Description Logic. Using 

Protégé‘s OWL plug-in (Knublauch, Musen and Rector, 2004), we developed an 

ontology (Discovery Systems Laboratory, 2008) that uses OWL axioms to define classes 

(concepts) of clinical bioinformatics entities and their respective properties (attributes). 

We chose OWL because the supporting tools are readily available, because we can use it 

to represent the domain unambiguously, and because we can use it to share our 

representation. We note that our aim is not to build extensive DL-based knowledgebases 

or to develop reference ontologies.  

The main classes are Papers, Datasets, Algorithms, and Models. Datasets can 

have simple properties such as dataset dimensionality and sample size or complex ones 

such as related diseases and population characteristic. Algorithms are annotated with 
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properties to reflect the different methodologies e.g. ―supervised‖ vs. ―unsupervised 

learning‖. Decision Models are annotated by the specific outcomes that they predict.  

The semantics of relationships between classes in clinical bioinformatics is 

captured through relationship classes. For example, a Paper ―proposes‖ or ―invents‖ a 

specific Algorithm, ―evaluates‖ that Algorithm using a Dataset, or simply ―applies‖ that 

Algorithm on a given Dataset.  So in addition to classes of objects, the ontology specifies 

classes of relationships between classes.  Most relationships are binary, although there 

are some that are of higher arity. Relationships in our ontology are represented as classes 

and not properties (or ―roles‖ in DL jargon). Our reasons for that include: (1) uniformity 

in representing all relationships, a significant fraction of which is not binary and thus 

cannot be represented by a DL-role, and (2) the need for rich annotation of the 

relationships themselves. For example, the relationship Validate_Internal (when a model 

is validated within a study) requires further annotations such as the type of validation 

performed (independent prospective sample? N-fold cross validation? Leave One Out 

cross validation?) Modeling relationships using classes instead of roles will add 

complexity to reasoning; however, for the foreseeable applications, we envision that a 

relational database with indexed relationship tuple tables will be adequate (for 

implementation and reasoning) for typical queries. Please see section on inference and 

implementation. Using classes to model relationships may also make reuse of this 

ontology more cumbersome, and is a limitation of this ontology.  The four retrievable 

classes along with a subset of relationship classes are shown in Figure 6. 
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Figure 6. A UML diagram showing the four retrievable classes (subclasses of the abstract 

OmicsRetrievalObject class), some relationship classes (subclasses of the abstract OmicsRelationship class), and 

their associations. Some relevant properties of the retrievable classes are shown here as well. Apply, Invent, 

Assay, and Analyze are binary relationship classes, whereas the rest are ternary. The knowledgebase will 

contain instances of the retrieval and the relationship classes (as well as others not shown here, such as Context-

related classes). For example, a given paper p (instance of Paper) may describe how a given model m (instance of 

Model) was validated using a dataset d (instance of Dataset). An instance v of the Validate relationship will be 

created referencing the objects p, m, and d. If d was the same data- set that was used to produce m, then v will 

belong to the Validate_Internal. class. Validate_Internal and Validate_External are subclasses of the ternary 

relationship, Validate. As such, they inherit its properties but offer more specialized properties such as 

specifying whether the validation method described by the Validate_Internal instance was done on independent 
samples within the related Dataset or not. 
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Research and discovery within the domain of clinical bioinformatics can be 

conceptualized as an overarching process that consists of: (a) collection of high-

throughput molecular profiling data through molecular assays, (b) analysis of such data 

using specialized techniques, and (c) generation and validation of respective decision 

Models.  These processes can be represented via a set of axioms that constrain 

relationships between classes in our ontology. Such constraints represent implicit domain 

knowledge such as: ―In a Paper, one or more Datasets are assayed,‖ or ―An Algorithm is 

applied on a Dataset to produce a Model‖. Some of those constraints can be inferred from 

the UML diagram in Figure 6.  

Currently, relationships between objects are manually annotated. Annotated 

relationships will be used to support the third step in the query process (semantic 

organization and display). These relationship instances are indexed and will be used to 

construct edges between the objects returned by the query and to drive the visual 

organization of results.  

 

Support for Evidence Annotation and Filtering 

As mentioned earlier, decision Models vary in the degree of validity and of 

generalizability outside of the population from which they were formulated. This 

variability results from the different methods with which the investigators validate their 

models and from the different experimental designs.  

The performance of decision Models is usually evaluated on independent samples 

within the study Dataset, or on Datasets collected from different studies altogether. The 

former case is represented through the ―Validate_Internal‖ relationship, and the latter 
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through the ―Validate_ External‖ relationship. Both are subclasses of the Validate 

ternary relationship class (Fig. 6).  Note that internal validations are sometimes done on 

non-independent samples. This is a bad practice that likely leads to over-fitting of the 

resultant decision Models, and is therefore an important attribute to highlight when 

displaying results.  The Validate_Internal relationship is annotated as being done on 

either non-independent or independent samples.  

The class ValidationMethod is a property of the Validate relationship class. 

Instances of this class correspond to specific validation methods such ―Leave-One-Out 

Cross Validation,‖ ―N-Fold Cross Validation,‖ etc. Statistical (Aphinyanaphongs et al. 

2005; Wilczynski et al. 2005) classification methods have been used successfully before 

to classify the nature of evidence based on document content. We plan to automatically 

identify the ValidationMethod classes based on Paper contents.  

 

Brief Discussion of Inference and Implementation 

This paper addresses representational requirements of the information retrieval 

task at hand and the expressiveness of the model and underlying formalism. However we 

will briefly discuss inference and implementation of this model. In the first phase of our 

work, the papers were collected and organized manually. As we added more objects, and 

as the model was formulated we found that a simple relational model was enough to store 

and execute our simple queries. The objects were stored in their own tables, the 

relationships between the objects were stored in join tables, ―Context‖ tuples were stored 

in a separate table, etc. It can be easily shown that matching the pattern of a ―Context‖ 

query can be done via simple SQL queries that are dynamically generated. With the 
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correct choice of index keys, the retrieval process has been very efficient and we expect it 

to scale efficiently for simple queries. We used a simple (PHP-based) web framework 

with a browser interface and a MySQL database backend to build an application for 

storing and retrieving representations of our objects and their relationships. We have not 

yet implemented graph extraction and visualization.  Graph extraction should be a trivial 

problem (identifying objects a certain depth from a model of interest, filtering out/in 

objects with specific properties, etc.) Graph visualization can be done via any of available 

graph-layout software (e.g. Graphviz). Graph elements can be passed to a web browser 

for rendering using a mark-up standard like SVG.  

Semantically, we modeled the relevant objects of the domain, their relationships 

and the domain knowledge using OWL-DL axioms. This OWL file is available for 

download as indicated earlier.  This leaves the door open for future storage and retrieval 

of the objects using DL-based databases and query languages; however, we do not see a 

need in the near future for DL-based inference and implementation. We think that using 

OWL to model the domain will facilitate semantic integration of this framework with 

other resources in the future. We envision implementing this framework as a web service 

that will be compatible with standard web services technology.  

The inference task that we find most challenging is the automated identification of 

relevant papers from the literature and the automated annotation of the objects (for now 

only papers) by the correct ―Context‖ tuples. Again, using automated or semi- automated 

methods is essential for building a comprehensive and up-to-date knowledgebase. This 

has motivated our drive towards simple representation formalism. Our current work is 

focused on building machine learning filters for identifying and annotating domain 
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papers using text categorization, and on investigating different approaches for tuple 

extraction. The purpose, and subsequent evaluation, of this effort is done along two lines. 

The evaluation of information retrieval recall and precision is done using a human-

annotated corpus of papers that serves as a gold standard (currently exists for two 

domains, Lung Cancer and Breast Cancer with more annotations by domain experts 

underway). The individual papers are labeled for many things such as whether they 

describe the domain of clinical bioinformatics, whether they correspond to single gene vs. 

high throughput experiments, as well as all the Context tuple assignments that apply to 

each specific paper. The second dimension of evaluation relates to the adequacy of these 

automated techniques as means for building the knowledgebase required for this purpose, 

and how users interact with the resultant system.  
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APPENDIX B 

 

ANNOTATION GUIDELINES 

 

Note 

This appendix contains the content of the Annotation Guidelines that was given to 

the expert annotators. It has been re-formatted to conform to the rest of the dissertation 

style 

 

Thank you for agreeing to participate in this study. This document accompanies 

the set of article annotation forms. It will provide detailed explanation of the questions on 

the annotation form along with general guidelines and instructions to help you with your 

annotation. Please do not hesitate to contact me if you have any questions. 

Email: firas.wehbe@vanderbilt.edu   

Phone: (615) 936-3016 

This document contains three sections: 

1. General instructions 

2. Guidelines for specific questions 

3. Pointers that might help you go faster through the annotation process  

I attached an ―Examples‖ document. It has detailed explanations of predictive 

models and many examples of models and of types of outcomes. You do not need to refer 

to it to be able to go through the forms; I am only providing it as a detailed reference. 

 

mailto:firas.wehbe@vanderbilt.edu
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General Instructions 

Your task is to annotate a set of 30 articles. Annotation is defined as your written 

response, based on your knowledge of molecular medicine research, to the questions on 

the paper form for each article. Please complete all 30 forms in this batch. When you are 

finished annotating this batch, please contact me to let me know and I will arrange to pick 

the paper forms from you and to deliver to you your compensation for participation. If 

you wish to do more annotations, then please let me know and I will prepare another 

batch of 30 papers that I will also arrange to deliver to you along with your compensation 

for the first batch.  My aim is to collect as many expert annotations as the available funds 

allow. Having multiple batches from the same expert will be ideal for the design of this 

study. It is my personal experience that one‘s annotation will become faster and more 

efficient with practice. 

This set of 30 articles is randomly sampled from 35 journals between January 1, 

2006 and June 30, 2009. Some types of articles such as ―Review Articles,‖ ―News,‖ 

―Letters to the Editor,‖ ―Comments,‖ or ―Editorials‖ were removed from the original 

group of articles. The aim is to annotate articles that describe original clinical or basic 

science research. There are no ―right‖ or ―wrong‖ answers. I want to test whether my 

automatic annotation system can mirror your judgments about the questions in the form. 

When answering the questions, please use all resources that are available to you including 

the PubMed record and MeSH terms, the full text of the article or any other source of 

knowledge you think you need (Wikipedia, google searches, your course notes, etc.)  

You may not need to answer all questions for every article. Questions 1 through 5 

are ―yes or no‖ questions.  Your answer to these questions will determine how to proceed 
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and whether you will need to answer the four questions at the bottom of the page. The 

grey arrows are intended to guide the flow of your annotation based on your answers to 

these questions. These are the possible scenarios: 

 If you circle ―no‖ to question #1, then you do not need to go any further. You are 

done annotating this article. 

 If you circle ―yes‖ to question #1 then you will need to answer all of the following 

questions: Question #2, #3, #4, #5, and DISEASES. 

o If you circle ―yes‖ to question #3 then you will need to answer BIOLOGIC 

SAMPLE and TYPE OF ASSAY 

o If you circle ―yes‖ to question #4 then you will need to answer CLINICAL 

PURPOSE 

 

Specific Questions 

 

Question #1 

―Does the article describe at least one predictive model?‖ 

 

For this study, an article describes a predictive model if the authors are trying to 

establish a statistical relationship between a set of independent variables and one or 

more outcomes.  

Independent Variables 

The independent variables can represent any type of quantifiable observations or 

experimental measurements. For example, the authors may be measuring local gene 
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expression levels, protein concentrations, or the presence or absence of proteins by using 

antibodies on biological samples. Sometimes the independent variables are clinical 

measurements or patient characteristics, such as blood pressure, sex, age, or variables that 

indicate the presence or absence of disease states (lymph node metastasis, histological 

subtype, etc.)  

Dependent Variables or Outcome 

The outcomes of interest are also quantifiable observations. They are based on the 

scientific hypothesis that the authors are investigating. If the authors are trying to 

establish that the outcomes of interest are related in a mathematical or statistical way to 

the independent variables (depend on them) then the paper describes a predictive model 

and the outcome variables are called dependent variables. The outcomes of interest can 

be classified as biological (e.g. cell apoptosis, activation of intra-cellular cascades, cell 

mobility, presence of a specific protein, etc) or clinical (patient death, presence or 

absence of disease, response to treatment, treatment toxicity, etc.) 

A predictive model can be conceptually represented as follows: 

 

INDEPENDENT VARIABLES 

(one or many) 

 DEPENDENT 
VARIABLES 
(one or many) 

   

Molecular 
variables 

Clinical 
variables 

RELATIONSHIP 
(statistical) 

Biological 
outcomes 

Clinical 
outcomes 

     

M1 M2 M3 M4 … MI C1 C2 C3 … CJ  O1 O2 … OK 
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Types of Relationships: 

Statistical relationships can be assessed by tests for the probability of certain 

measurements occurring in two or more categories: Look for parametric tests such as t-

tests, ANOVA, fisher exact test; or non-parametric tests such as Kruskal –Wallis, 

Wilcoxon, or Mann-Whitney. 

Look also for models that measure statistical correlation between the values of 

independent variables and the values of dependent variables: linear regression, 

multivariate linear or logistic regression. 

 If the outcome of interest is the probability of occurrence of a given event, such 

as death or having metastasis, look for Kaplan-Meier or similar survival functions.  

Sometimes the relationship between independent and dependent variable is 

presented via mathematical equations or via complicated so-called machine learning 

models. Examples of machine learning models include artificial neural networks, support 

vector machines, decision trees, or Bayes classifiers. The evaluation of such machine 

learning predictive models is typically reported using sensitivity, specificity and ROC 

curve (AUC). 

The following questions all assume that the paper describes one or more 

predictive models as described above, and that you have determined the independent and 

dependent variables for these models. Questions #2 and #3 relate to the independent 

variables. Questions #4 and #5 relate to the dependent variables (outcomes). 
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Question #2 

―Is there a model that has more than one independent variable?‖ 

 

If the article describes more than one independent variable then please circle 

question #2 ―yes.‖ In other words is the model a single or multivariate model? 

CAVEAT: Sometimes it may seem from the abstract and title that the paper 

describes one single variable association with the dependent variable(s) when that is in 

fact not the case. For example, a paper may describe how the expression of a certain 

biomarker protein may be a predictor of breast cancer outcome. If you look at the full text 

of the paper (see last section on tips on how to quickly browse the full text of articles 

online) you will see that other independent variables were measured in the study and 

controlled in the final analysis as potential confounders. This is because there are many 

variables that are typically known to affect clinical outcome (e.g. clinical staging, 

histological type, and Estrogen Receptor status in breast cancer) and good statistical 

analysis always accounts for known confounders. In this case, this study – despite 

reporting one protein as an independent risk factor – is still considered as describing a 

multivariate prediction model. 

 

Question #3 

―Is at least one of the independent variables a molecular measurement?‖ 

 

This question is self explanatory and easy once you have determined the 

independent variables. If any of the independent variables is the result of a molecular 
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assay, then please circle question #3 as ―yes.‖ The following table lists examples of 

molecular data as well as those that are not considered molecular data. 

 

Independent Variables 

Molecular Variables (obtained from Molecular 

Assays) 

Non-molecular Variables 

 ELISA 

 Immunohistochemistry (including Tissue Micro 

Array) 

 Immunofluorescence 

 Flow Cytometry 

 Western, Northern, Southern, and Eastern blot 

 Any hybridization with probes 

 Gel  Electrophoresis 

 DNA, cDNA and Oligonucleotide  Microarrays 

 PCR, RT-PCR, qRT-PCR 

 Array CGH, FISH 

 Sequencing 

 SNP and Haplotype Chips 

 Mass Spectrometry  

 Methylation Assays 

 
Presence or absence of certain cell membrane 

receptors (usually determined by one of the methods 

above) 

 

Clinical parameters such as: 

 Demographics: Age, sex, race 

 Histological and Clinical Staging of Tumors 

 Disease Diagnosis or Disease States (e.g. 

presence or absence of metastasis) 

 Blood pressure 

Clinical lab values such as: 

 Hematology (e.g. CBC) 

 Histology with regular H&E staining 

 Blood Chemistry (Electrolytes, Creatinine) 

 Iron and heavy metals 

 Liver function tests (ALT, AST, Bilirubin, 

LDH) 

 Urinalysis 

 Blood glucose 

 Cortisol  and steroid tests 
Radiological Tests 

 X-Ray, CT 

 MRI, fMRI 

 PET, SPECT 

 

 

Question #4 

―Is one of the outcomes a clinical outcome?‖ 

 

Is at least one the dependent variables (outcome) a measurement of a clinical 

outcome? Ask yourself if the outcome of the experiment or study mentioned is directly 

applicable to clinical care today. For example, if the study measures the effect of certain 

genes on outcomes like apoptosis or DNA repair mechanism, then those outcomes are 

NOT clinical outcomes. Even though we know that damage to DNA repair is oncogenic 
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and the genes in question may prove useful in personalized medicine in the future, this 

study is not making a direct evidence link to a present day clinical outcome. This is 

similar to using a drug that has been proven to lower blood cholesterol level. Without a 

randomized controlled study that directly measures the association between 

cardiovascular outcomes (heart attack, stroke) and using this drug, we cannot say that that 

drug improves clinical outcomes. We can only say that that drug lowers blood 

cholesterol. The table ―Identifying Clinical Outcomes‖ in the examples document has 

different scenarios of clinical outcomes in the second column. 

 

Question #5 

―Is one of the outcomes a biological outcome?‖ 

 

Is at least one of the dependent variables (outcomes) a measurement of a non-

clinical outcome? In other words does the article describe a predictive model that has at 

least one outcome that is a measurement of biological behavior that is not directly 

applicable to clinical care? Questions #4 and #5 are not mutually exclusive. If an article 

describes a study that measures molecular data and tries to associate that data with a 

direct clinical outcome AND to an outcome that provides a testable hypothesis about the 

biology of the disease then the answer ―yes‖ applies to both questions #4 and #5. 

Examples of biological outcomes: 

 Studies of intra-cellular effects or gene pathways: Activation or de-activation of a 

cascade of intracellular signals based on the value of independent molecular 
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variables such as the relationship between certain receptor proteins in cancer cells 

and the change in gene expression of other intracellular proteins 

 The effect (activation, inhibition, or modulation) of a specific substances or drugs 

on intra cellular molecular pathways 

 Cell biology outcomes such rate of cell growth or cell mobility studies. 

 Studying basic human physiology: For example articles describing a clinical study 

whereby human subject characteristics (age, body mass, diet) are measured and 

are used to predict physiologic response to blood glucose challenge. 

 Preclinical or Phase 0 clinical trials that study pharmacokinetics or 

pharmacodynamics of drug metabolism. 

The table ―Identifying Clinical Outcomes‖ in the examples document has more 

scenarios of non-clinical (biological) outcomes in the third column. 

 

DISEASE 

―Write all the diseases that are studied in this article‖ 

 

If you answered ―yes‖ to question #1, please write all the diseases for which the 

predictive model is applicable. Be as specific as possible. If the article describes a study 

on lung cancer patients and the article clearly states that all patients were included from a 

Non-Small Cell Lung Cancer (NSCLC) population, then please indicate NSCLC in the 

DISEASE box. If the article describes a study done on breast cancer cell line with no 

further specification, then please write ―Breast Cancer.‖ If the study is a basic biology 

research study and you cannot find the biological source of the cell samples or the cells 
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are obtained from normal non-diseased tissue then you can leave this box empty. Cell 

lines are usually referenced using a unique alpha-numeric identifier. If the specific origin 

of the cell line is not clearly indicated, I have found that a quick google search will 

usually return the origin. There are well known cell lines like HeLa (Cervical Cancer) 

and HEK-293 (Human Embryonic Kidney). If the response to question #4 (clinical 

outcome) is ―yes‖ then it is almost certain that the disease will be specified in the paper. 

 

BIOLOGIC SAMPLE 

―What types of biological samples were used?‖ 

 

Please circle all the answers that apply. The answers to this question may not 

always be evident from the abstract or title of the paper. This information is typically 

found in the ―methods‖ section of the full article. This question is straight forward. If 

molecular assays were performed on tissue obtained from human patients (or healthy 

controls) then circle ―Human.‖ If the molecular assays were performed on tissue obtained 

from animals (including xenograft of human cells into mice models) then please circle 

―Animal.‖ The molecular assays were applied to cell lines then please circle ―Cell Line.‖ 

If the molecular assays are targeting proteins and genes that are usually present in 

pathogens (viruses, bacteria, parasites, fungi) then please circle ―Pathogen.‖ Sometimes 

viral genome may be detected in human tissue without evidence of viral particles. It will 

usually be clear from the text of the article that the investigators were looking for or came 

upon viral genomic material. In this case, and even if the molecular assays were applied 

to human tissue, please circle ―Pathogen‖ in addition to ―Human.‖ 
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TYPE OF ASSAY 

―What biological molecule is measured by the molecular assay?‖ 

 

If some of the independent variables were molecular variables, please classify the 

assays used to measure those variables into three categories. If the article describes more 

than one type of molecular assay, please circle all that apply. The classification of 

molecular assays for this annotation is roughly based on the type of molecule that is 

being targeted: DNA, RNA, or Protein. For example: Northern Blot  ―RNA,‖ Southern 

Blot  ―DNA,‖ Western Blot  ―Protein.‖ Please classify Methylation assays and other 

assays that measure epigenetic regulation under ―DNA‖. Assays that can detect post-

translational modifications of proteins such as Eastern Blot can be classified as ―Protein.‖ 

 

CLINICAL PURPOSE 

―What are the types of clinical outcomes  

(dependent variables) that are described in the article?‖ 

 

Please answer this question if you have answered ―yes‖ to question #4 (clinical 

outcomes). There may be more than one clinical outcome discussed in the paper, so 

please circle all the classifications that apply. The middle column of the ―Identifying 

Clinical Outcomes‖ table in the examples section has different scenarios where the 

dependent variables of the predictive model represent clinical outcomes.  Here are the 

definitions of the different types of clinical outcomes: 



168 

Diagnosis:  The purpose of a diagnostic predictive model is to detect or confirm 

the presence of a specific disease. One scenario is when models are used for screening 

asymptomatic patients e.g. using molecular cytology analysis of sputum in patients with 

smoking history for early detection of lung cancer. Another scenario is when models are 

used to identify molecular subtypes of a given disease or to help with differential 

diagnosis e.g. gene expression profiling of diffuse large B-Cell lymphoma (DLBCL) 

when a determination cannot be made by regular histology. Another scenario is when 

models can help in the identification of the primary tumor e.g. when there is a metastatic 

tumor of unknown origin and the molecular tests are used to find the organ of origin of 

the cancer lesion.  

Risk Assessment: If the purpose of the model is to predict or quantify the risk 

that healthy patients will get a specific disease or clinical outcome. One example is using 

SNP arrays to identify whether people with certain haplotypes are at higher risk to 

develop specific diseases. Similar examples include genetic testing for high risk genes for 

cancers like BRCA. This may include models that are not based on molecular data. 

Obvious examples are epidemiological studies that look for environmental risk factors for 

lung cancer (smoking, pollution, occupation). 

Prognosis, treatment unspecified: This category includes models whose purpose 

is to predict clinical outcome irrespective of the type of treatment given such as risk 

scores, or molecular models that try to predict the aggressiveness or metastatic potential 

of certain tumors. Models that predict risk of relapse after treatment should be included in 

this category. 
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Prognosis, treatment specified: This category includes models whose purpose is 

to study specific treatment outcome, sometimes in the presence of other modulating 

independent variables. This category would include: phase II or III drug clinical trials; 

studies that try to assess individual response to treatment or individual risk of drug 

adverse effects based on genetic testing (personalized medicine / pharmacogenomics); 

studies that aim to select candidates for specific treatments based on molecular tests e.g. 

selecting patients for adjuvant hormone therapy for breast cancer based on estrogen-

receptor status of the cancer tissue. 

 

Pointers and Tips 

 

Finding Papers 

The fastest way to find a paper online is to type the following URL substituting 

the ##### characters with the PubMed ID on your form. 

http://www.ncbi.nlm.nih.gov/pubmed/##### 

The page that will come up will display the PubMed record with the title and 

abstract. If you click on the ―Publication Types, MeSH Terms, Substances, Grant 

Support‖ link you will find additional information about the paper that will help you in 

your annotation (MeSH terms, molecular tests, drug names). If you are accessing 

PubMed from Vanderbilt campus there will be links in the top right corner to the full text 

of the article.  

You can have access to the full text from off campus if you visit 

(http://www.mc.vanderbilt.edu/diglib) and authenticate via your vunetid and epassword. 
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Quick Scanning of Online Article 

When reading the full text of the article online, I found that it is easier to read the 

‗html‘ or ‗full text‘ version of an article instead of the ‗pdf‘ version. The pdf version is 

optimized for printing and it is hard to quickly scan if you are reading on a screen.  

I found that most of the information that I needed for annotation can be found in 

the ―methods‖ section and by scanning the figures in the ―results‖ section. The molecular 

assays and biological samples are usually clearly listed in the methods section. There is 

usually a ―statistical analysis‖ paragraph in the methods section that I found useful for 

determining the information about the independent variables and types of outcomes. 

There is usually one or more ―patient characteristics‖ table that clearly shows the 

independent variables that are used for the study (and sometimes dependent variables as 

category columns). 

The fastest way for me to scan an online article is by pressing ―CTRL+F‖ (or 

―Cmd+F‖ ) which works in all browsers. When you press CTRL+F a small dialogue 

appears where you can type words or parts of words and the browser will take you 

quickly to the part of the page that matches what you typed. If you press enter you can 

skip through the document to every part where your search term matches. Some of the 

terms that I have used out of habit are: 

 ―blot‖, ―immune‖, ―fluor‖, ―assay‖, ―chip‖, ―protein‖, ―gene‖, ―genom‖ , ―pcr‖, 

―sequenc‖ for molecular variable scanning 

 ―prognosis‖, ―survival‖, ―treatment‖, ―drug‖, ―therapy‖ when I am looking for 

information about clinical outcomes 
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 ―cell line‖, ―sample‖, ―culture‖, ―assay‖ when I am looking for the biological 

source 

 

Examples 

 

Identifying Predictive Models 

Study Designs 

To help you determine whether certain variables are dependent or independent, 

this section will highlight different types of study design. If you try to determine the kind 

of experimental design used in a paper, it may be clearer for you to identify the outcomes 

and/or the independent variables described in an article. 

Studies with clinical outcomes generally fall into two categories based on the 

how they are structured to test the hypothesis: 

1. In cohort studies or randomized controlled trials the patients are separated into two or 

more groups based on their characteristics or risks, i.e. based on their independent 

variables. In this case, the independent variables are assigned or controlled as if to 

conduct an experimental manipulation. Then the outcomes (dependent variables) are 

measured and the difference in outcome between the experimental groups is tested. 

For example, assume that the authors want to study the mortality associated with two 

drugs. Patients can be assigned to different treatment groups (treatment would be an 

independent variable) while other independent variables such as age, smoking, sex 

and blood pressure are also controlled between the two groups (because they are 

possible confounders). The outcome of interest (death) is then measured over a period 
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of time and the difference in the probability of death is measured between the two 

groups (typically via a survival function). The strength of statistical difference in 

outcome (dependent variable) in such studies is typically reported using relative risk 

(RR) or hazards ratio. 

2. In case control studies, patients are grouped based on the outcome (dependent 

variables), and differences in independent variables are measured and compared 

between the groups. For example, lung cancer patients are assigned to one group, and 

controlled healthy patients are assigned to another group. Independent variables, such 

as smoking, exposure to asbestos, and SNP mutations are measured. In the analysis, 

the difference in measurement of these risk factors is analyzed between the two 

groups (e.g. via multivariate regression). The strength of statistical difference 

between the independent risk factors is typically reported using odds ratio (OR). 

Studies with biological outcomes may also fall into two categories that mirror the 

study design mention above: 

1. Example 1 – assign to categories based on independent variables: The 

investigators want to test the effect of the absence of a given gene on tumor growth 

and vascularization. They construct a xenograft mouse model and compare a wild-

type group vs a gene knock-out or silenced gene (via siRNA) group. They compare 

tumor size after subjecting the mice to a given treatment. The dependent variable is 

the tumor size and the independent variable is the gene mutation status. 

2. Example 2 – assign to categories based on outcome: The investigators measure the 

response of two cell line cultures that respond differently to a given chemotherapeutic 

agent. They conduct gene expression oligonucleotide microarray analysis of both cell 
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lines to measure the expression level of thousands of genes. They use statistical 

methods to look for differentially expressed genes between the two samples. The 

thousands of gene expression signals on the microarray chip are the independent 

variables, and the response to treatment is the outcome. 

 

Examples of Articles That Do NOT Describe Predictive Models 

Here are some examples of types of papers that generally do NOT describe 

predictive models and therefore you should circle ―no‖ for the first question and move to 

the next article. 

 Descriptive Studies: Some papers report on the health or genetic profile of an entire 

population but do not test any measurable differences for that population. Examples 

of such papers are ancestry studies that analyze human migration and genomic marker 

frequencies over geographic location or within ethnic groups. Other examples are 

papers that report prevalence data (e.g. of childhood cancers, or of specific gene 

mutations) from national registries without any experimental manipulation or 

statistical testing. A paper that presents the prevalence of smoking in a given 

population per se should not be included. [However a paper that presents a survey of 

smoking within a given population and that uses smoking status to predict other 

patient characteristics such as disease occurrence or low birth weight DOES 

include a predictive model and question #1 should be circled as “yes.”] 

 Bioinformatics Methods Papers: If the purpose of the article is to describe a new 

methodology for analysis or new experimental platforms (e.g. new microarray chips) 

without reporting any clinical or biological experimental results then the paper does 
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not describe a predictive model. You may encounter bioinformatics papers that 

describe the development of new sequence alignment techniques, or new techniques 

for measuring gene expression signals from microarray chips. Some computational 

biology papers describe new algorithms for building machine learning models. If 

these papers are purely interested in the mathematical proof or theoretical limitations 

of such machine learning algorithms then question #1 should be circled ―no.‖ 

[However, sometimes bioinformatics investigators benchmark their machine 

learning algorithms using real experimental data. In this case, results are typically 

reported using sensitivity, specificity and ROC curves. These papers are considered 

as describing predictive models and question #1 should be circled “yes.”] 

 Statistics Methods Papers: If you encounter a statistics or epidemiology paper that 

describes the mathematical proof behind a new statistics test, then that paper does not 

describe a predictive model.  Similarly papers that describe new statistical analysis 

methods (based on mathematical proofs or on abstract computer simulations) in the 

field of statistical genetics (linkage disequilibrium, population genetics, etc) are also 

papers that do not fall in the predictive model category. 

 Biology Methods Papers:  

o Biochemistry/Structural Biology/ Biophysics/Chemistry: Papers that describe 

3D models of proteins or other molecular structures using crystallography or 

computer simulations. Biophysics papers that study cellular membrane stability, 

or electric voltage potential across a membrane. Papers that describe new mass 

spectrometry techniques. Papers that describe enzyme-substrate dynamics using 
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computer simulation. Papers that describe basic research into microRNA 

molecular structure by analyzing binding sites and structural motifs. 

o Biotechnology: Papers that focus on the new mechanisms of vector construction 

or restriction fragment enzymes. Papers describing pharmacological/chemical 

techniques for discovering or synthesizing new drug molecules (without any 

specific drug or disease action). 

o Neurophysiology/Neuroanatomy: Papers that analyze how the nervous system 

works without mentioning application to diagnosis or treatment of diseases (e.g. 

papers that report new brain or spinal cord connections; papers that simulate or 

analyze human cognition).  

o Systems Biology: Papers describing genomes and gene circuitry of synthesized or 

model organisms such as yeast, bacteria, or viruses. For example, there are papers 

that simulate complex regulatory mechanisms (gene circuits for regulation of cell 

cycles and nutrient consumption) in such organisms using model computer 

simulations. If such models are not validated based on independent measurement 

and statistical correlation then these papers are not relevant. 

o Developmental Biology: Papers that describe embryological development 

(notochord, germ layers, cellular differentiation, etc) should generally not be 

considered if there is no reporting of statistical analysis of experimental 

measurements, e.g. if the paper is qualitatively describing a stage of embryonic 

differentiation or providing pure descriptive statistics of developmental diseases.  

[However if the paper describes an experiment where genetic measurements 
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(independent variables) are statistically correlated with developmental events 

(outcomes) then question #1 should be circled “yes.”] 

 Radiology Methods Papers: Papers describing new biomedical engineering 

techniques for image analysis, image reconstruction or signal processing. Papers 

describing new imaging modalities (e.g. new SPECT, fMRI techniques). [However if 

a papers statistically evaluates the ability of new radiology techniques (e.g. 

automatic detection of calcifications on mammograms) to predict clinical outcomes 

(e.g. screening for breast cancer) then it DOES include a predictive model and 

question #1 should be circled “yes.”] 

 Papers Describing Resources, New Research Centers, Research Cohorts, or 

Consortia: For example, some papers report a new database for protein sequences, 

genetic diseases, or whole genome databases for model organisms like drosophila. 

Sometimes there are papers that describe the formation of a new research network, 

consortium or give descriptive statistics of new clinical cohorts (without providing 

any statistical hypothesis testing). Papers describing the establishment of new disease 

registries with some summary statistics. 

 Synthesis of Research and Prospective Papers: Papers that present new guidelines 

that are proposed by professional societies such as new guidelines for diagnosing and 

treating asthma. Such papers are typically based on research that is published 

elsewhere and that is not directly presented in these papers. Papers that review or 

synthesize results from multiple other papers but do not describe the actual models or 

the statistical validation of the models. Prospective papers by seasoned researchers 

about the need for new research directions. 
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 Case Reports: Papers that report and describe cases of new, interesting, or very rare 

diseases without any statistical analysis. Such papers typically report a very small 

number of cases with a qualitative description of the disease symptoms and 

progression. 

 Errata, Comments, Letters, Editorials, Reviews: I tried removing such papers from 

the main set. Some of them may have escaped my filters. Just answer the question #1  

as ―no.‖ 

 Non-biological Papers: Some of the journals like PLOS One or Nature may include 

astronomy, chemistry, or other non-biomedical disciplines. Just circle ―no‖ for the 

first question. 

 

Identifying Clinical Outcomes 

Source of Biologic 

Sample 
Clinical Not Clinical 

Human 

Alteration in blood measurements that 

lead to a diagnosis. 

 For example correlating  

independent variables to high 

blood glucose (diabetes diagnosis) 

 

Detection and diagnosis of disease: 

 screening for cancer 

 confirming neurological or 
psychological conditions for 

example by imaging 

 

Help in making a differential 

diagnosis: 

 the model helps identify the type or 

origin of a cancer/leukemia based 

on molecular assays 

 

Assessment of risk to have disease:  

 predictive model for lung cancer 

risk from smoking 

 lifetime risk of getting a certain 

condition if you have an inherited 

Alteration in blood measurements 

that have no direct clinical 

significance: 

 some protein that has no clinical 

significance or that significance 

is suspected but not yet 

confirmed 

 

The outcome is a risk factor, but no 

direct link to a known disease is 
established yet: 

 Identifying independent reasons 

that can predict whether 

someone will have elevated 

cholesterol later in life. 

Independent reasons not yet 

directly tied to the bad outcomes 

of high cholesterol  

 

Alteration in histologic 

characteristics also of unknown 
significance: 

 Molecular assays find traces of a 

virus DNA in cancer tissues. 
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Source of Biologic 

Sample 
Clinical Not Clinical 

mutation 

 

Prognosis / disease outcome: 

 Mortality/Survival 

 Disease-free survival 

 Risk of metastasis or exacerbation 
of disease 

 

Response to specific treatment: 

 Stage I clinical trial: drug toxicity 

 Stage II and III clinical trials, 

showing measured clinical 

improvement from certain drug 

regimens compared to others 

 Risk of toxicity, such as 

chemotherapy adverse effects tied 

to genetic markers (personalized 
medicine) 

 Finding that a mutation in the 

cancer tissue makes the patient 

resistant to a given chemotherapy 

agent 

 Tailoring the chemotherapy 

regimen based on molecular assay 

 

This finding has not yet been 

linked to adverse outcome 

 

Physiologic studies for basic 

research: 

 A clinical study that measures 
the glucose metabolism of 

different healthy people based on 

clinical characteristics and/or 

molecular assays 

 

Drug metabolism investigation: 

 A clinical trial on healthy 

volunteers (e.g. Phase I) that 

measures pharmacokinetics and 

pharmacodynamics of a given 

drug 
 

Basic research in genetics 

 Looking for association between 

different haplotypes and non-

clinical outcomes such as 

metabolism or physiologic 

variability. 

Animal Model 

When analyzing the type of outcome 

in animal models, apply the same 

reasoning used for human outcomes 

above. 
 

See extra cases that do not apply  

 

When analyzing the type of outcome 

in animal models, apply the same 

reasoning used for human outcomes 

above. 
  

There are types of outcomes that 

should be considered non-clinical. 

Specifically, when the outcome 

(dependent variable) in the study 

protocol cannot be applied to humans 

for obvious reasons: 

 Diagnosis: Inducing a disease 

and then testing whether a new 

diagnostic test can be used to 

detect the disease 

 Risk Assessment: Testing 

carcinogenicity of substances by 

giving the animals very large 

doses of the substance that is 

being studied. 

 Prognosis: Time-series studies 

where a few mice are sacrificed 

every day to study disease 

progression, e.g. by measuring 

tumor size 

 Response to Treatment: 

Treatment is administered in a 
way that never applies to humans 
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Source of Biologic 

Sample 
Clinical Not Clinical 

e.g. inducing brain metastasis 

and then administering therapy 

directly into animal brains 

 

 

Cell Line 

In vitro studies that are part of 

preclinical investigation: 

 Diagnosis: The cell line is derived 

from human disease AND the 

biomarker assay can be directly 

tested in in vivo pre clinical studies 

relating to same disease 

 Prognosis: The cell line is derived 

from human disease AND the 

experiment is measuring different 

markers that predict aggressiveness 

or remission for same disease 

 Treatment response: The cell line is 
derived from human disease AND 

the substance that is or will be used 

to treat the same disease in humans 

is applied during the cell line 

experiment to study differential 

outcomes 

 

Almost all other cases involving cell 

lines. Here are some examples: 

 Basic research: investigation into 

intra cellular pathways and 

associations between different 

genes and/or proteins groups. 

 Cancer cell motility studies 

 Cancer cell metabolism studies 

such as studying the rate that 

different substances are 

metabolized by cancer cells 

 Drug discovery: applying a 

battery of substances to find 
possible reactions 

 Studies of cell potency (stem 

cells) and cell differentiation 

based on molecular profiling 

Pathogen 

Infectious Disease: 

 Diagnosis: confirming the 

diagnosis of infection by detecting 

the presence of the pathogen e.g. 

by PCR 

 Prognosis: Molecular assays that 

measure the virulence of the 

infectious disease pathogen and 

can be used to assess the risk to the 

host e.g. molecular subtypes 

 Treatment response: Molecular 

assays that can predict the drug 

resistance profile of the pathogen 

 

Pathogen is known to cause an 

increased risk of neoplasm or known 

to alter the outcome of existing 
neoplasm. 

Genome sequencing, phylogenetics. 

 

Basic investigation into mechanism 

of disease. 

 

Molecular disease epidemiology: 
Descriptive statistics showing the 

prevalence of different molecular 

viral subtypes across geographic 

regions without correlation with 

specific outcome. 

 

Confirming presence or absence of 

pathogen in tissue when the presence 

or absence does not affect clinical 

outcome or has no known clinical 

significance yet. 
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APPENDIX C 

 

SAMPLE ANNOTATION FORM 
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