AND K
(CHAPTER II. EXPERIMENTAL PROCEDURE AND CHARACTERIZATION DATA)

By<br>Aroop Chandra

Dissertation
Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements
for the degree of DOCTOR OF PHILOSOPHY
in

Chemistry

May, 2011
Nashville, TN

Approved
Professor Jeffrey N. Johnston
Professor Gary A. Sulikowski
Professor Ned A. Porter
Professor Lawrence J. Marnett

## Experimental Section

Unless otherwise noted, all reactions were carried out under argon or nitrogen using flame or oven dried glassware. Tetrahydrofuran (THF) and dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ were dried by passage through a column of activated alumina as described by Grubbs..$^{1}$ Molecular sieves (spheres, $4 \AA$ ) were activated at $400^{\circ} \mathrm{C}$ and then stored at room temperature in an air-tight container.

Flash column chromatography was performed using Sorbent Technologies 40-63 mm , pore size $60 \AA$ silica gel with solvent systems indicated. Analytical thin layer column chromatography was performed using Sorbent Technologies 250 mm glassbacked UV254 silica gel plates that were visualized by fluorescence upon 250 nm radiation and/or the by use of ceric ammonium molybdate or potassium permanganate. Solvent removal was effected by rotary evaporation under vacuum ( $\sim 25-40 \mathrm{mmHg}$ ).

IR spectra were recorded on a Nicolet Avatar 360 spectrophotometer and are reported in wavenumbers $\left(\mathrm{cm}^{-1}\right)$. Liquids and oils were analyzed as neat films on a NaCl plate (transmission), whereas solids were applied to a diamond plate (ATR). Proton nuclear magnetic resonance spectra were recorded on either a Varian INOVA-400 ( 400 MHz ), VXR-400 (400 MHz) or Bruker DRX-500 (500 MHz) spectrometers and are recorded in parts per million from residual undeuterated chloroform and are reported as follows: chemical shift (multiplicity [ $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=\mathrm{quarte}$, $\mathrm{qu}=\mathrm{quintet}$, $\mathrm{m}=$ multiplet $]$, coupling constant(s), integration). ${ }^{13} \mathrm{C}$ NMR data were recorded on a Bruker DRX-500 spectrometer. Ratios of diastereomers and isomeric products were

[^0]measured directly from integration of ${ }^{1} \mathrm{H}$ NMR absorptions of protons common to the components.

Characterization data for few compounds included here have been reported earlier. ${ }^{2}$ Optimized reaction conditions and yields for these compounds are included here in this section.

[^1]
## Experimental procedures

Compond Name Page
(S)-tert-Butyl-3-(2-bromopyridin-3-yl)-2-(diphenylmethyleneamino)propanoate (18a). ..... 1
(R)-tert-Butyl 3-(2-bromopyridin-3-yl)-2-((diphenylmethylene)amino)propanoate (18b) ..... 2
tert-Butyl-1-benzhydryl-2,3-dihydro-1H-pyrrolo[2,3-b]pyridine-2-carboxylate (19a ..... 2
and 19b) ..... 2
2-Carboxy-2,3-dihydro-1H-pyrrolo[2,3-b]pyridine-1-ium-2,2,2-trifluroacetate (20a ..... 3
and 20b) ..... 3
(R)-2,3-Dihydro-1H-indole-2-carboxylic acid (21b) ..... 4
Methyl indoline-2-carboxylate hydrochloride (22a and 22b) ..... 4
(S)-Methyl-1-((S)-2-(tert-butoxycarbonylamino)propanoyl)indoline-2-carboxylate (23a). ..... 5
(S)-Methyl-1-(S)-((2-(tert-butoxycarbonylamino)-3-phenylpropanoyl)indoline-2- carboxylate (23b). ..... 6
(R)-Methyl 1-((S)-2-(tert-butoxycarbonylamino)propanoyl)indoline-2-carboxylate (23c). ..... 7
(R)-Methyl 1-((S)-2-(tert-butoxycarbonylamino)-3-phenylpropanoyl)indoline-2- carboxylate (23d). ..... 8
Methyl-2,3-dihydro-1H-pyrrolo[2,3-b]pyridine-2-carboxylate hydrochloride (24a and24b).9
(S)-Methyl-1-((S)-2-(tert-butoxycarbonylamino)propanoyl)-2,3-dihydro-1H- pyrrolo[2,3-b]pyridine-2-carboxylate (25a) ..... 10
(S)-Methyl-1-(S)-((2-(tert-butoxycarbonylamino)-3-phenylpropanoyl)-2,3-dihydro-1H- pyrrolo[2,3-b] pyridine-2-carboxylate (25b) ..... 11
( $R$ )-Methyl-1-((S)-2-(tert-butoxycarbonylamino)propanoyl)-2,3-dihydro-1 H - pyrrolo[2,3-b]pyridine-2-carboxylate (25c). ..... 12
( $R$ )-Methyl-1-(S)-((2-(tert-butoxycarbonylamino)-3-phenylpropanoyl)-2,3-dihydro-1H- pyrrolo[2,3-b] pyridine-2-carboxylate (25d) ..... 13
Methyl-1-(2-((S)-2-(tert-butoxycarbonylamino)propanamido)-3-phenylpropanoyl)-2,3- dihydro- 1 H -pyrrolo[2,3-b]pyridine-2-carboxylate (28aa, and 28ab) ..... 14
1-(2-((S)-2-(tert-butox ycarbonylamino)propanamido)-3-phenylpropanoyl)-2,3-dihydro- $1 H$-pyrrolo[2,3-b]pyridine-2-carboxylic acid (31aa and 31ab) ..... 16
tert-Butyl(2S)-1-(1-(2-(S)-1-(methylamino)-1-oxopropan-2-ylcarbamoyl)-2,3)dihydro- 1 H -pyrrolo[2,3-b]pyridine-1-yl)-1-oxo-3-phenylpropan-2-ylamino)-1-oxopropan-2- ylcarbamate (33aa and 33ab) ..... 17
More polar diastereomer 33aa ..... 17
Conformational Analysis of Boc-L-Ala-D-Phe-L- ${ }^{\mathrm{N} 7}$ Ind-L-Ala-NMe (33aa) ..... 18
Observed Regional (a-c) and Long Range (d) NOESY Correlation (33aa) ..... 18
Identification of Intramolecular Hydrogen Bonding in (33aa) ..... 19
Less polar diastereomer: 33ab. ..... 19
Conformational Analysis of Boc-L-Ala-L-Phe-L- ${ }^{\text {N7 }}$ Ind-L-Ala-NMe (33ab) ..... 20
Observed Regional (a-c) and Long Range (d) NOESY Correlation (33ab) ..... 21
Identification of Intramolecular Hydrogen Bonding in (33ab) ..... 21
tert-Butyl(2S)-1-(1-(2-(S)-1-(methylamino)-1-oxopropan-2-ylcarbamoyl)-2,3)dihydro- 1H-pyrrolo[2,3-b]pyridine-1-yl)-1-oxo-3-phenylpropan-2-ylamino)-1-oxopropan-2- ylcarbamate (33ba and 33bb), ..... 22
More polar diastereomer: 33ba ..... 22
Conformational Analysis of Boc-L-Ala-D-Phe-D- ${ }^{\mathrm{N} 7}$ Ind-L-Ala-NMe (33ba) ..... 23
Observed Regional (a-c) and Long Range (d) NOESY Correlation (33ba) ..... 24
Identification of Intramolecular Hydrogen Bonding in 33ba ..... 24
DMSO-Denatured Conformational Analysis of Boc-L-Ala-D-Phe-D- ${ }^{\text {N7 }}$ Ind-L-Ala-NMe (33ba) ..... 25
Less polar diastereomer: 33bb ..... 25
Conformational Analysis of Boc-L-Ala-L-Phe-D- ${ }^{\text {N7 }}$ Ind-L-Ala-NMe (33bb) ..... 26
Observed Regional (a-c) and Long Range (d) NOESY Correlation (33bb) ..... 27
Identification of Intramolecular Hydrogen Bonding in 33bb ..... 27
Methyl-1-(2-((S)-2-(tert-butoxycarbonylamino)propanamido)-3- phenylpropanoyl)indoline-2-carboxylate (34aa, 34ab, 34ba, and 34bb) ..... 28
Less polar diastereomer: 34aa. ..... 28
More polar diastereomer: 34ab ..... 28
Less polar diastereomer: 34ba ..... 29
More polar diastereomer: 34bb ..... 29
1-[2-(2-tert-Butox ycarbonylamino-propionylamino)-3-phenyl-propionyl]-2,3-dihydro- $1 H$-indole-2-carboxylic acid (35aa, 35ab, 35ba and 35bb) ..... 30
tert-Butyl-(2(S))-1-(1-(2)-((S)-1-(methylamino)-1-oxopropan-2-ylcarbamoyl)indolin-1-
yl)-1-oxo-3-phenylpropan-2-ylamino)-1-oxopropan-2-ylcarbamate (36aa, 36ab) ..... 31
Substitution of 35ab ..... 31
Conformational analysis of Boc-L-Ala-L-Phe-L- Ind- L-Ala-NMe (36ab) ..... 32
Observed Regional (a-c) and Long Range (d) NOESY Correlation (36ab) ..... 32
Identification of Intramolecular Hydrogen Bonding in 36ab ..... 33
tert-Butyl-(2(S))-1-(1-(2)-((R)-1-(methylamino)-1-oxopropan-2-ylcarbamoyl)indolin-1-yl)-1-oxo-3-phenylpropan-2-ylamino)-1-oxopropan-2-ylcarbamate (36ba, 36bb). . 34
(+)-Serratezomine A ((+)-37) ..... 35
Data for latone 277: ..... 36
2-(( $1 R, 2 S, 5 S)$-2-Allyl-6-(tert-butyldimethylsilyloxy)-2-(3,4-dihydro-2H-pyrrol-5-yl)-3- hydroxy-5-methylcyclohexyl)ethyl pivalate (221). ..... 37
Ethyl 2-((1S,2R,3S,Z)-2-(tert-butyldimethylsilyloxy)-3-methyl-5-oxo-6-(pyrrolidin-2- ylidene)cyclohexyl)acetate (222) ..... 38
( $2 E, 4 S, 5 S, 8 E$ )-Ethyl 4-(tert-butyldimethylsilyloxy)-8-(1-(1-(4-methoxyphenyl)ethyl)- pyrrolidin-2-ylidene)-5-methyl-7-oxooct-2-enoate (223) ..... 38
(4R,5S,E)-Ethyl 4-(tert-butyldimethylsilyloxy)-5-methylhepta-2,6-dienoate (232) ..... 39
Ethyl 2-((1S,2S,5S,6S)-2-allyl-6-(tert-butyldimethylsilyloxy)-2-(3,4-dihydro-2H- pyrrol-5-yl)- 5-methyl-3-oxocyclohexyl)acetate (250). ..... 41
(6aS,7S, 8S, 10S, 10aS)-10a-Allyl-7-(tert-butyldimethylsilyloxy)-10-hydroxy-8-methyl-2,3,6a, 7,8,9,10,10a-octahydropyrrolo[2,1-a]isoquinolin-5(6H)-one (250)................... 42
2-((1R,2S,5S)-2-Allyl-6-(tert-butyldimethylsilyloxy)-2-(3,4-dihydro-2H-pyrrol-5-yl)-3- hydroxy-5-methylcyclohexyl)acetic acid (251). ..... 43
2-((1R,2S,5S)-2-Allyl-6-(tert-butyldimethylsilyloxy)-2-(3,4-dihydro-2H-pyrrol-5-yl)-5- methyl-3-(methylsulfonyloxy)cyclohexyl)ethyl pivalate (263) ..... 44
2-((1R,2S,5S)-6-(tert-Butyldimethylsilyloxy)-2-(3,4-dihydro-2H-pyrrol-5-yl)-2-(3- hydroxypropyl)-5-methyl-3-(methylsulfonyloxy)cyclohexyl)ethyl pivalate (264). ..... 45
2-((1R,2S,3S,6S)-3-Allyl-3-(3,4-dihydro-2H-pyrrol-5-yl)-6-methyl-7- oxabicyclo[2.2.1]heptan-2-yl)ethyl pivalate (266) ..... 46
2-((1R,2S,5S)-2-Allyl-6-(tert-butyldimethylsilyloxy)-2-(3,4-dihydro-2H-pyrrol-5-yl)-5- methyl-3-(methylsulfonyloxy)cyclohexyl)ethyl pivalate (269). ..... 47

$$
\begin{aligned}
& \text { 2-((1R,2S,5S)-6-(tert-Butyldimethylsilyloxy)-2-(3,4-dihydro-2H-pyrrol-5-yl)-2-(3- } \\
& \text { hydroxypropyl)-5-methyl-3-(methylsulfonyloxy)cyclohexyl)ethyl pivalate (270)...... } 48
\end{aligned}
$$

(1S,2R,4S)-3-(tert-Butyldimethylsilyloxy)-4-methyl-6-(methylsulfonyloxy)-2-(2- (pivaloyloxy)ethyl)-1', $2^{\prime}, 3^{\prime}, 5^{\prime}, 6^{\prime}, 7^{\prime}$-hexahydrospiro[cyclohexane-1, $8^{\prime}$-indolizin]-4'-ium bromide (272) ..... 49
2-((1S,4S, 6R)-5-(tert-Butyldimethylsilyloxy)-4-methyl-2- (methylsulfonyloxy)hexahydro-1'H-spiro[cyclohexane-1,8'-indolizine]-6-yl)ethyl pivalate (273) ..... 50
(1S,2R,4S)-3-(tert-Butyldimethylsilyloxy)-2-(2-hydroxyethyl)-4-methylhexahydro-1' $H$ - spiro[cyclohexane-1,8'-indolizine]-6-yl methanesulfonate (274). ..... 51
Ethyl 2-((1S,2S,5S,6S)-2-allyl-6-(tert-butyldimethylsilyloxy)-2-(3,4-dihydro-2H- pyrrol-5-yl)-3-hydroxy-5-methylcyclohexyl)acetate (279). ..... 52
Ethyl 2-((1S,2S,5S)-2-allyl-6-(tert-butyldimethylsilyloxy)-2-(3,4-dihydro-2H-pyrrol-5- yl)-5-methyl-3-(methylsulfonyloxy)cyclohexyl) acetate (280). ..... 53
Ethyl 2-((1S,2S,5S)-6-(tert-butyldimethylsilyloxy)-2-(3,4-dihydro-2H-pyrrol-5-yl)2-(3- hydroxypropyl)-5-methyl-3-(methylsulfonyloxy)cyclohexyl) acetate (281) ..... 54
(6aS,7S, 8S, 10R,10aS)-10a-Allyl-7-(tert-butyldimethylsilyloxy)-10-hydroxy-8-methyl- 2,3,6a,7,8,9,10,10a-octahydropyrrolo[2,1-a]isoquinolin-5-(6H)-one (283). ..... 55
(8aR,9R, 10S, 12S)-9-(tert-Butyldimethylsilyloxy)-10-methyl-7-oxo-
1,2,3,5,6,7,8,8a,9,10,11,12-dodecahydrobenzo[e]pyrrolo[3,2,1-ij]quinolin-12- ylmethanesulfonate (286). ..... 56
Ethyl 2-((1S,4S,5R,6R)-5-(tert-butyldimethylsilyloxy)-4-methyl-2-(methylsulfonyloxy) hexahydro-1'H-spiro[cyclohexane-1,8'-indolizine]-6-yl)acetate(291). ..... 57
tert-Butyl 2-benzhydryl-6,6-dimethyl-7-oxo-2,6,7,8-tetrahydrobenzo[cd]indole-1- carboxylate (448) ..... 58
5-Bromo-1,1-dimethylnapthalen-2( 1 H )-one (463). ..... 59
4-(2-Bromophenyl)-1-diazobutan-2-one (464). ..... 60
5-Bromo-3,4-dihydronapthalen-2(1H)-one (466). ..... 61
5-Bromo-1,1-dimethyl-3,4-dihydronapthalen-2(1H)-one (472). ..... 61
tert-Butyl 2-(8-bromo-4,4-dimethyl-3-oxo-1,2,3,4-tetrahydronaphthalen-1-yl)-2- (diphenylmethyleneamino)acetate (473), ..... 62
tert-Butyl 1-benzhydryl-5,5-dimethyl-4-oxo-1,2,2a,3,4,5-hexahydrobenzo [cd] indole-2- carboxylate (474) ..... 63
$N$-(Diphenylmethylene)-2,2-dimethylbut-3-en-1-amine (478). ..... 65
$N$-Benzhydryl-2, 2-dimethylbut-3-enamide (483). ..... 65
$N$-Benzhydryl-2,2-dimethylbut-3-en-1-amine (484) ..... 66
3,3-Dimethyl-4-nitrobutanenitrile (485) ..... 67
5-Bromo-1,1-dimethyl-4-(nitromethyl)-3,4-dihydronapthalen-2(1 H )-one (489). ..... 68
2-(5-Bromo-2-hydroxy-1,1-dimethyl-1,2-dihydronaphthalen-2-yl)-3,3-dimethylpent-4- enoic acid (491) ..... 69
tert-Butyl 5,5-dimethyl-4-oxo-1,2,2a,3,4,5-hexahydrobenzo[cd]indole-2-carboxylate (493) ..... 70
tert-Butyl 6,6-dimethyl-7-oxo-2,6,7,8-tetrahydrobenzo[cd]indole-2-carboxylate (494). ..... 71
tert-Butyl 4-(tert-butyldimethylsilyloxy)-5,5-dimethyl -1,5-dihydrobenzo[cd]indole-2- carboxylate (495) ..... 71
Data for disilylated product (496) ..... 72
6,6-Dimethyl-7-oxo-2,6,7,8-tetrahydrobenzo[ $c d]$ indole-2-carboxylic acid (498) ..... 73
(2R, 2aR)-tert-Butyl 1-benzhydryl-4-(tert-butyldimethylsilyloxy)-5,5- dimethyl,1,2,2a,5-tetrahydrobenzo[cd]indole-2-carboxylate (S1). ..... 73
3-Methylbut-2-en-1-yl 1-benzhydryl-5,5-dimethyl-4-oxo-1,3,4,5- tetrahydrobenzo $[c d]$ indole-2-carboxylate (505). ..... 74
3-Methylbut-2-enyl 2-(diphenylmethyleneamino)acetate (506). ..... 75
3-Methylbut-2-enyl 2-bromoacetate (507) ..... 76
3-Methylbut-2-enyl 2-(8-bromo-4,4-dimethyl-3-oxo-1,2,3,4-tetrahydronaphthalen-1- yl)-2-(diphenylmethyleneamino)acetate (508) ..... 76
3-Methylbut-2-enyl 1-benzhydryl-5,5-dimethyl-4-oxo-1,2,2a,3,4,5- hexahydrobenzo $[c d]$ indole-2-carboxylate (509) ..... 78
2,3-Dimethyl-1-(2-methyl-1H-indol-3-yl)but-2-en-1-one (520). ..... 79
2,3-Dimethyl-1-(2-methyl-1H-indol-3-yl)but-2-en-1-one (521). ..... 80
1,6,6-Trimethyl-6,7-dihydrobenzo $[c d]$ indol- $8(2 H)$-one (522) ..... 81
2-Methyl-4-(2-(2-methylbut-3-en-2-yl)-1H-indol-3-yl)butan-2-ol (524). ..... 82
1-(1H-Indol-3-yl)-3-methylbut-2-en-1-one (527). ..... 83
6,6-Dimethyl-6,7-dihydrobenzo[cd]indol-8(2H)-one (528). ..... 84
6-Dimethyl-2-tosyl-6,7-dihydrobenzo[ $c d]$ indol-8(2H)-one (530) ..... 85
6,6-Dimethyl-8-(2-methylbut-3-en-2-yl)-2-tosyl-2,6,7,8-tetrahydrobenzo[cd]indol-8-ol (532). ..... 86
5-Dimethyl-3-(2-methylbut-3-en-2-yl)-1-tosyl-1,5-dihydrobenzo[cd] indole (534) ..... 87

## 5,5-Dimethyl-3-(2-methylbut-3-en-2-yl)-1-tosyl-1,5-dihydrobenzo[cd]indole (534). . 88

## 5,5-Dimethyl-3-(2-methylbut-3-en-2-yl)-1-tosyl-1,5-dihydrobenzo[ $c d]$ indole (534). . 88

6,6-Dimethyl-7-methylene-2-tosyl-6,7-dihydrobenzo[ cd ]indol-8(2H)-one (535)........ 89
6,6-Dimethyl-7-methylene-2-tosyl-6,7-dihydrobenzo[cd]indol-8(2H)-one (535)....... 90
6,6-Dimethyl-7-methylene-2-tosyl-6,7-dihydrobenzo[cd]indol-8(2H)-one (535)....... 90
5,5-Dimethyl-1-tosyl-3-((trimethylsilyl)oxy)-1,3,4,5-tetrahydrobenzo[cd]indole-3-
carbonitrile (539)...................................................................................................... 91
5,5-Dimethyl-1-tosyl-1,5-dihydrobenzo[cd]indole-3-carbonitrile (540)...................... 92
5,5-Dimethyl-1-tosyl-1,5-dihydrobenzo[cd]indole-3-carbonitrile (540)...................... 93
5,5-Dimethyl-1-tosyl-1,5-dihydrobenzo[cd]indole-3-carbaldehyde (542). .................. 93
1-(1H-Indol-3-yl)-2,3-dimethylbut-2-en-1-one (545)..................................................... 94
4,5,5-Trimethyl-4,5-dihydrobenzo[cd]indol-3(1H)-one (514)..................................... 96
6,6-Dimethyl-2-tosyl-6,7-dihydrobenzo[cd]indol-8(2H)-one (547)............................. 97
4,5,5-Trimethyl-1-tosyl-1,5-dihydrobenzo[cd]indole-3-carbonitrile (549). ................. 98
4,5,5-Trimethyl-1-tosyl-1,5-dihydrobenzo[cd]indole-3-carbonitrile (549). ................. 99
4,5,5-Trimethyl-1-tosyl-1,5-dihydrobenzo[cd]indole-3-carbonitrile (549). ............... 100
4,5,5-Trimethyl-1-tosyl-3-((trimethylsilyl)oxy)-1,3,4,5-tetrahydrobenzo[cd]indole-3-
carbonitrile (550)................................................................................................. 100
4,5,5-Trimethyl-1-tosyl-1,5-dihydrobenzo[cd]indol-3-yl trifluoromethanesulfonate
(551). ............................................................................................................................... 101
4,5,5-Trimethyl-1-tosyl-1,5-dihydrobenzo[cd]indole-3-carbaldehyde (552). ............ 102
(Z)-3-(((tert-Butyldimethylsilyl)oxy)methylene)-5,5-dimethyl-4-methylene-1-tosyl-
1,3,4,5-tetrahydrobenzo [cd]indole (553). ................................................................... 103
(9S,10R)-10-((tert-Butyldimethylsilyl)oxy)-6,6,9-trimethyl-2-tosyl-2,6,7,8,9,10-
hexahydronaphtho[1,2,3-cd]indole-9-carbaldehyde (558)......................................... 104
(8S,10R)-10-((tert-Butyldimethylsilyl)oxy)-8-((E)-1-chloroprop-1-en-2-yl)-6,6-
dimethyl-2-tosyl-6,7,8,10-tetrahydro-2H-isochromeno[8,7,6-cd]indole (559). ......... 106

| (9R,10S)-10-((tert-Butyldimethylsilyl)oxy)-6,6,9-trimethyl-2-tosyl-9-vinyl- |
| :--- |
| $2,6,7,8,9,10$-hexahydronaphtho $[1,2,3-c d]$ indole $\mathbf{( 5 6 0 )} . \ldots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~$ | 108

(9R,10S)-6,6,9-Trimethyl-2-tosyl-9-vinyl-2,6,7,8,9,10-hexahydronaphtho[1,2,3-
$c d]$ indol-10-ol (561). ........................................................................................................... 109
4-Chloro-3-methyl-but-3-en-2-one (231)..................................................................... 110
(Z)-5,5-Dimethyl-4-methylene-1-tosyl-3-(((triisopropylsilyl)oxy)methylene)-1,3,4,5- tetrahydrobenzo $[c d]$ indole (563). ..... 110
1-((8R,9S,10R)-10-((tert-Butyldimethylsilyl)oxy)-8-chloro-6,6,9-trimethyl-2-tosyl- 2,6,7,8,9,10-hexahydronaphtho[1,2,3-cd]indol-9-yl)ethanone (564) ..... 112
Diels-Alder adduct (564) ..... 112
Mukaiyama aldol product (576) ..... 113
(Z)-(5,5-Dimethyl-4-methylene-1-tosyl-4,5-dihydrobenzo[cd]indol-3(1H)- ylidene)methyl 2-phenylacetate (566) ..... 114
(Z)-(5,5-Dimethyl-4-methylene-1-tosyl-4,5-dihydrobenzo $[\mathrm{cd}]$ indol-3(1H)- ylidene)methyl trifluoromethanesulfonate (569). ..... 116
(E)-1-Phenyl-N-((4,5,5-trimethyl-1-tosyl-1,5-dihydrobenzo[cd]indol-3- yl)methylene)methanamine (570) ..... 117
(4,5,5-Trimethyl-1-tosyl-1,5-dihydrobenzo [cd]indol-3-yl)methanaminehydrochloride (572). ..... 118
4,5,5-Trimethyl-1-tosyl-1,5-dihydrobenzo[cd] indole-3-carbaldehyde (572). ..... 119
Methyl ((4,5,5-trimethyl-1-tosyl-1,5-dihydrobenzo[cd]indol-3-yl)methyl)carbamate (573). ..... 119
1-((8R,9R,10R)-10-((tert-Butyldimethylsilyl)oxy)-8-chloro-6,6,9-trimethyl-2-tosyl- 2,6,7,8,9,10-hexahydronaphtho[1,2,3-cd]indol-9-yl)ethanol (577) ..... 120
( $8 R, 9 R, 10 R$ )-10-((tert-Butyldimethylsilyl)oxy)-8-chloro-6,6,9-trimethyl-2-tosyl-9- vinyl-2,6,7,8,9,10-hexahydronaphtho $[1,2,3-c d]$ indole (578) ..... 122
( $8 R, 9 R, 10 R$ )-8-Chloro-6,6,9-trimethyl-2-tosyl-9-vinyl-2,6,7,8,9,10- hexahydronaphtho $[1,2,3-c d]$ indol-10-ol (579) ..... 123
6,6,9-Trimethyl-2-tosyl-2,6-dihydronaphtho[1,2,3-cd]indole (580) ..... 124
6,6,9-Trimethyl-2-tosyl-2,6-dihydronaphtho[1,2,3-cd]indole (580) ..... 125
1-((8R,9S,10R)-8-Chloro-10-hydroxy-6,6,9-trimethyl-2-tosyl-2,6,7,8,9,10- hexahydronaphtho [1,2,3-cd]indol-9-yl)ethanone (582) ..... 125
( $8 R, 9 R, 10 R$ )-8-Chloro-9-(1-hydroxyethyl)-6,6,9-trimethyl-2-tosyl-2,6,7,8,9,10- hexahydro naphtho[1,2,3-cd]indol-10-ol (583) ..... 126
6,6,9-Trimethyl-2-tosyl-10-vinyl-2,6-dihydronaphtho[1,2,3-cd] indole (586) ..... 128
6,6,9-Trimethyl-2-tosyl-10-vinyl-2,6-dihydronaphtho $1,2,3-c d]$ indole (586) ..... 128
( $8 R, 9 R$ )-8-Chloro-6,6,9-trimethyl-2-tosyl-9-vinyl-6,7,8,9-tetrahydronaphtho[1,2,3- $c d$ ]indol-10(2H)-one (587) ..... 129
(8R,9R,10R)-8-Chloro-6,6,9-trimethyl-2-tosyl-9-vinyl-2,6,7,8,9,10- hexahydronaphtho [1,2,3-cd]indol-10-ol (588) ..... 130
( $8 R, 9 R, 10 R$ )-8-Chloro-10-methoxy-6,6,9-trimethyl-2-tosyl-9-vinyl-2,6,7,8,9,10- hexahydro naphtho [1,2,3-cd]indole (596) ..... 131
( $8 R, 9 R, 10 S$ )-8-Chloro-10-methoxy-6,6,9-trimethyl-2-tosyl-9-vinyl-2,6,7,8,9,10- hexahydro naphtho[1,2,3-cd]indole (597) ..... 132
( $8 R, 9 R, 10 R$ )-10-Azido-8-chloro-6,6,9-trimethyl-2-tosyl-9-vinyl-2,6,7,8,9,10- hexahydro naphtho $[1,2,3-c d]$ indole (598) ..... 134
( $8 R, 9 R, 10 R$ )-10-Azido-8-chloro-6,6,9-trimethyl-2-tosyl-9-vinyl-2,6,7,8,9,10- hexahydro naphtho[1,2,3-cd]indole (598) ..... 135
( $8 R, 9 R, 10 R$ )-8-Chloro-6,6,9-trimethyl-2-tosyl-9-vinyl-2,6,7,8,9,10- hexahydronaphtho[1,2,3-cd]indol-10-yl acetate (600) ..... 136
$N-((8 R, 9 R, 10 R)-8$-Chloro-6,6,9-trimethyl-2-tosyl-9-vinyl-2,6,7,8,9,10- hexahydronaphtha [1,2,3-cd]indol-10-yl)formamide (601), ..... 137
$N$-((8R,9R,10R)-8-Chloro-6,6,9-trimethyl-9-vinyl-2,6,7,8,9,10- hexahydronaphtho [1,2,3-cd indol-10-yl)formamide (605). ..... 139
( $\pm$ )-Hapalindole K (602) ..... 140
$N$-((6aS,8R,9R,10R,10aR)-8-Chloro-6,6,9-trimethyl-9-vinyl-2,6,6a,7,8,9,10,10a- octahydronaphtho[1,2,3-cd]indol-10-yl)formamide (603) ..... 141
Formamide 603 ..... 141
Alcohol 604 ..... 142
( $\pm$ )-Hapalindole A (606) ..... 144
(6aS,8R,9R,10R,10aR)-8-Chloro-6,6,9-trimethyl-9-vinyl-2,6,6a,7,8,9,10,10a-octahydro naphtho[1,2,3-cd]indol-10-ol (607) ..... 145
Data for 609: ..... 146
( $8 R, 9 R, 10 R$ )-8-Chloro-6,6,9-trimethyl-9-vinyl-2,6,7,8,9,10-hexahydronaphtho[1,2,3- $c d$ ]indol -10-ol (609). ..... 147
(6aS, $8 R, 9 R, 10 R, 10 \mathrm{a} R$ )-Allyl 10-(((allyloxy)carbonyl)oxy)-8-chloro-6,6,9-trimethyl-9-vinyl-6a, $7,8,9,10,10 \mathrm{a}-\mathrm{hexahydronaphtho}[1,2,3-c d]$ indole-2(6H)-carboxylate (610). 147(6aS,8R,9R,10aR)-8-Chloro-6,6,9-trimethyl-9-vinyl-6,6a,7,8,9,10a-hexahydronaphtho $[1,2,3-c d]$ indol-10(2H)-one (611).149
( $6 \mathrm{a} S, 8 R, 9 R, 10 \mathrm{aS}$ ) Allyl 8-chloro-6,6,9-trimethyl-10-oxo-9-vinyl-6a, 7,8,9,10,10a- hexahydro naphtho[1,2,3-cd]indole-2(6H)-carboxylate (612) ..... 150

## Characterization Data (1D AND 2D NMR Spectral Data)

Figure 1. 1H NMR Spectrum ( $500 \mathrm{MHz}, \mathrm{CDCl} 3$ ) of 33 aa ..... 151
Figure 2. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 33 a . ..... 152
Figure 3. 135 DEPT Spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 33 a ..... 153
Figure 4. HSQC Spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 33 a ..... 154
Figure 5. COSY Spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 33 a ..... 155
Figure 6. HMBC Spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 33 a . ..... 156
Figure 7. NOESY Spectrum ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 33 a ..... 157
Figure 8. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 33 ab ..... 158
Figure 9. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 33 ab ..... 159
Figure 10. 135 DEPT Spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 33 ab ..... 160
Figure 11. HSQC Spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 33 ab ..... 161
Figure 12. COSY Spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 33 ab ..... 162
Figure 13. HMBC Spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 33 ab . ..... 163
Figure 14. NOESY Spectrum ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 33 ab ..... 164
Figure 15. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 33 ba ..... 165
Figure 16. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 33 ba ..... 166
Figure 17. 135 DEPT Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 33 ba ..... 167
Figure 18. HSQC Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 33 ba ..... 168
Figure 19. . COSY Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 33 ba ..... 169
Figure 20. HMBC Spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 33 ba . ..... 170
Figure 21. NOESY Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 33 ba ..... 171
Figure 22. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 33 bb ..... 172
Figure 23. ${ }^{13} \mathrm{C}$ NMR Spectrum $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 33 bb ..... 173
Figure 24. 135 DEPT Spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 33 bb ..... 174
Figure 25. HSQC Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 33 bb ..... 175
Figure 26. . COSY Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 33 bb ..... 176
Figure 27. HMBC Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 33 bb ..... 177
Figure 28. NOESY Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 33 bb ..... 178
Figure 29. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 36 ab ..... 179
Figure $30 .{ }^{13} \mathrm{C}$ NMR Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 36 ab ..... 180
Figure 31. 135 DEPT Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 36 ab ..... 181
Figure 32. HSQC Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 36 ab ..... 182
Figure 33. COSY Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 36 ab ..... 183
Figure 34. HMBC Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 36 ab ..... 184
Figure 35. NOESY Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 36 ab ..... 185
Figure 36. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) of Serratezomine A (37) ..... 186
Figure 37. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) of Serratezomine A (37) ..... 187
Figure 38. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 277 ..... 188
Figure 39. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 277 ..... 189
Figure $40 .{ }^{1} \mathrm{H}$ NMR Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 251 ..... 190
Figure 41. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 251 ..... 191
Figure $42 .{ }^{1} \mathrm{H}$ NMR Spectrum ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 263 ..... 192
Figure 43. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 263 ..... 193
Figure 44. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 264 ..... 194
Figure $45 .{ }^{13} \mathrm{C}$ NMR Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 264 ..... 195
Figure $46 .{ }^{1} \mathrm{H}$ NMR Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 266 ..... 196
Figure 47. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 266 ..... 197
Figure 48. HSQC Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 266 ..... 198
Figure 49. COSY Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 266 ..... 199
Figure 50. NOESY Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 266 ..... 200
Figure 51. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 269 ..... 201
Figure 52. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 269 ..... 202
Figure 53. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 270 ..... 203
Figure 54. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 270 ..... 204
Figure 55. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 279 ..... 205
Figure 56. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 279 ..... 206
Figure 57. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 249 ..... 207
Figure 58. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 249 ..... 208
Figure 59. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 280 ..... 209
Figure $60 .{ }^{13} \mathrm{C}$ NMR Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 280 ..... 210
Figure 61. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 281 ..... 211
Figure 62. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 281 ..... 212
Figure 63. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 286 ..... 213
Figure 64. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 286 ..... 214
Figure 65. HSQC Spectra ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 286 ..... 215
Figure 66. HMBC Spectra ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 286 ..... 216
Figure 67. COSY Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 286 ..... 217
Figure 68. NOESY Spectra ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 286 ..... 218
Figure 69. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 448 ..... 219
Figure 70. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 448 ..... 220
Figure 71. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 463 ..... 221
Figure 72. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 463 ..... 222
Figure 73. ${ }^{1} \mathrm{H}$ NMR Spectra ( $500 \mathrm{~Hz}, \mathrm{CDCl}_{3}$ ) of 464 ..... 223
Figure 74. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 464 ..... 224
Figure 75. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 466 ..... 225
Figure 76. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 466 ..... 226
Figure 77. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 472 ..... 227
Figure 78. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 472 ..... 228
Figure 79. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 473 ..... 229
Figure 80. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 473 ..... 230
Figure 81. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 474 ..... 231
Figure 82. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 474 ..... 232
Figure 83. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 489 ..... 233
Figure 84. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 489 ..... 234
Figure 85. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 491 ..... 235
Figure 86. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 491 ..... 236
Figure 87. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 505 ..... 237
Figure 88. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 505 ..... 238
Figure 89. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 508 ..... 239
Figure 90. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 508 ..... 240
Figure 91. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 509 ..... 241
Figure 92. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 509 ..... 242
Figure 93. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 520 ..... 243
Figure 94. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 520 ..... 244
Figure $95 .{ }^{1} \mathrm{H}$ NMR Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 530 ..... 245
Figure 96. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 530 ..... 246
Figure $97 .{ }^{1} \mathrm{H}$ NMR Spectrum ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 532 ..... 247
Figure 98. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 532 ..... 248
Figure 99. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 534 ..... 249
Figure 100. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 534 ..... 250
Figure 101. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 535 ..... 251
Figure 102. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 534 ..... 252
Figure 103. ${ }^{1} \mathrm{H}$ NMR Spectrum $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ) of 539 ..... 253
Figure 104. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 539 ..... 254
Figure 105. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 540 ..... 255
Figure 106. ${ }^{13} \mathrm{C}$ NMR Spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 540 ..... 256
Figure 107. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 514 ..... 257
Figure 108. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 514 ..... 258
Figure 109. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 546 ..... 259
Figure 110. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 546 ..... 260
Figure 111. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 547 ..... 261
Figure 112. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 547 ..... 262
Figure 113. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 552 ..... 263
Figure 114. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 552 ..... 264
Figure 115. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 553 ..... 265
Figure 116. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 533 ..... 266
Figure 117. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 558 ..... 267
Figure 118. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 534 ..... 268
Figure 119. HSQC Spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 558 ..... 269
Figure 120. NOESY ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 558 ..... 270
Figure 121. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 559 ..... 271
Figure 122. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 559 ..... 272
Figure 123. HSQC Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 559 ..... 273
Figure 124. HMBC Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 559 ..... 274
Figure 125. NOESY Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 559 ..... 275
Figure 126. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 560 ..... 276
Figure 127. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 534 ..... 277
Figure 128. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 561 ..... 278
Figure 129. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 561 ..... 279
Figure 130. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 564 ..... 280
Figure 131. ${ }^{13} \mathrm{C}$ NMR Spectrum $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 564 ..... 281
Figure 132. NOESY Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 564 ..... 282
Figure 133. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 576 ..... 283
Figure $134 .{ }^{13} \mathrm{C}$ NMR Spectrum $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 576. ..... 284
Figure 135. HSQC Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 576 ..... 285
Figure 136. HMBC Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 576 ..... 286
Figure 137. NOESY Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 576. ..... 287
Figure 138. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 577 ..... 288
Figure 139. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 577 ..... 289
Figure 140. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 578 ..... 290
Figure 141. ${ }^{13} \mathrm{C}$ NMR Spectrum $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 578 ..... 291
Figure 142. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 579 ..... 292
Figure 143. ${ }^{13} \mathrm{C}$ NMR Spectrum $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 579 ..... 293
Figure 144. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 587 ..... 294
Figure $145 .{ }^{13} \mathrm{C}$ NMR Spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 587 ..... 295
Figure 146. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 588 ..... 296
Figure 147. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 588 ..... 297
Figure 148. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 596 ..... 298
Figure 149. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 596 ..... 299
Figure 150. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 597 ..... 300
Figure 151. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 597 ..... 301
Figure 152. ${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 598 ..... 302
Figure 153. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 598. ..... 303
Figure 154. HSQC Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 598 ..... 304
Figure 155. HMBC Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 598 ..... 305
Figure 156. NOESY Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 598. ..... 306
Figure 157. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 600 ..... 307
Figure 158. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 600 ..... 308
Figure 159. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 601 ..... 309
Figure 160. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 601 ..... 310
Figure 161. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 602 (hapalindole K ) ..... 311
Figure 162. ${ }^{13} \mathrm{C}$ NMR Spectrum $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ) of 602 (hapalindole K ) ..... 312
Figure 163. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 603 ..... 313
Figure 164. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 603 ..... 314
Figure 165. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 604 ..... 315
Figure 166. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 604 ..... 316
Figure 167. HSQC Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 604 ..... 317
Figure 168. NOESY Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 604 ..... 318
Figure 169. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 605 ..... 319
Figure 170. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 605 ..... 320
Figure 171. 1H NMR Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl} 3$ ) of 606 (hapalindole A) ..... 321
Figure 172. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 606 (hapalindole A) ..... 322
Figure 173. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 607 ..... 323
Figure 174. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 607 ..... 324
Figure 175. HSQC Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 607 ..... 325
Figure 176. NOESY Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 607 ..... 326
Figure 177. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 609 ..... 327
Figure 178. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 609 ..... 328
Figure 179. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 610 ..... 329
Figure 180. ${ }^{13} \mathrm{C}$ NMR Spectrum $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 610 ..... 330
Figure 181. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 611 ..... 331
Figure 182. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 611 ..... 332
Figure 183. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 612 ..... 333

(S)-tert-Butyl-3-(2-bromopyridin-3-yl)-2-(diphenylmethyleneamino)propanoate
(18a).
To a 500 mL round bottom flask equipped with a mechanical stirrer was added the Schiff base $(17.0 \mathrm{~g}, 57.5 \mathrm{mmol})$, the cinchonidine derived catalyst A $(2.32 \mathrm{~g}, 3.87 \mathrm{mmol})$ and dichloromethane ( 100 mL ). The dibromo pyridine $(9.63 \mathrm{~g}, 38.4 \mathrm{mmol})$ was added, cooled to $-78{ }^{\circ} \mathrm{C}$ and the mixture was stirred for 15 minutes. Hand pulverized $\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ was added $(9.66 \mathrm{~g}, 57.5 \mathrm{mmol})$, the reaction was cooled in a dewar to $-60{ }^{\circ} \mathrm{C}$ using a cold finger and stirred for 3 d . The reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}$, the organic layer was washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to an oil. The crude oil was purified by flash chromatography $\left(\mathrm{Al}_{2} \mathrm{O}_{3}, 5-50 \%\right.$ diethyl ether in hexanes) to afford the Schiff base as a white solid (18.3 g, 90\% yield). HPLC (Chiralcel AD, $2 \%$ i- $\operatorname{PrOH} /$ Hexanes, 1 $\mathrm{mL} / \mathrm{min}) \mathrm{t}_{R}(R)=7.3 \mathrm{~m}, \mathrm{t}_{R}(S)=8.5 \mathrm{~m} .(S)=89 \%$ ee. ${ }^{3}$





[^2]
## (R)-tert-Butyl 3-(2-bromopyridin-3-yl)-2-((diphenylmethylene)amino)propanoate

 (18b).To a 500 mL round bottom flask equipped with a mechanical stirrer was added the Schiff base ( $31.9 \mathrm{~g}, 108 \mathrm{mmol}$ ), the cinchonine derived catalyst A ( $4.36 \mathrm{~g}, 7.20 \mathrm{mmol}$ ) and dichloromethane ( 180 mL ). The dibromo pyridine $(18.1 \mathrm{~g}, 72.0 \mathrm{mmol})$ was added, cooled to $-78{ }^{\circ} \mathrm{C}$ and the mixture was stirred for 15 minutes. Hand pulverized $\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ was added $(18.1 \mathrm{~g}, 72.0 \mathrm{mmol})$, the reaction was cooled in a dewar to $-60{ }^{\circ} \mathrm{C}$ using a cold finger and stirred for 3 d . The reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}$, the organic layer was washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to an oil. The crude oil was purified by flash chromatography $\left(\mathrm{Al}_{2} \mathrm{O}_{3}, 5-50 \%\right.$ diethyl ether in hexanes) to afford the Schiff base as a white solid (28.9 g, 88\% yield). HPLC (Chiralcel AD, 2\% i- PrOH/Hexanes, 1 $\mathrm{mL} / \mathrm{min}) \mathrm{t}_{R}(R)=7.3 \mathrm{~m}, \mathrm{t}_{R}(S)=8.5 \mathrm{~m} .(S)=88 \%$ ee. ${ }^{1}$

tert-Butyl-1-benzhydryl-2,3-dihydro-1H-pyrrolo[2,3-b]pyridine-2-carboxylate (19a and 19b).

A flame dried 5 L round bottom flask was charged with benzene (4.1 L). The solution was degassed by freeze-pump-thaw cycles, and then Schiff base ( $19.0 \mathrm{~g}, 40.9 \mathrm{mmol}$ ). The solution was warmed to $80^{\circ} \mathrm{C}$ and a benzene solution ( 25 mL ) of ${ }^{n} \mathrm{Bu}_{3} \mathrm{SnH}(11.6 \mathrm{~mL}$, $43.8 \mathrm{mmol})$ and AIBN ( $2.87 \mathrm{~g}, 17.5 \mathrm{mmol}$ ) was added over 4 h . The reaction was then allowed to stir at $82{ }^{\circ} \mathrm{C}$ for 12 h . The reaction was cooled to rt , and toluene was removed by vacuum. The oily residue was diluted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ and a saturated KF solution
(ca 20 equiv) was added. The mixture was stirred for 3 hours, during which a precipitate formed at the interface. The organic layer was separated, dried, and concentrated to an oil. The crude mixture was purified via flash chromatography $\left(\mathrm{SiO}_{2}, 0-40 \%\right.$ ethyl acetate in hexanes) and subsequent trituration with hexanes afforded the indoline as a white solid $(8.70 \mathrm{~g}, 55 \%)$. HPLC (Chiralcel AD, $10 \% i-\mathrm{PrOH}-H e x a n e s, 1 \mathrm{~mL} / \mathrm{min}) \mathrm{t}_{R}(S)=5.9 \mathrm{~min}$, $\mathrm{t}_{R}(R)=11.8 \min (S)=>99 \%$ ee. Analytical data was identical to that in the literature.

When the enantiomeric Schiff base was substituted into the procedure above, $(R)$ indoline (19b) was isolated as a white solid ( $9.9 \mathrm{~g},>99 \% \mathrm{ee}, 48 \%$ yield).


## 2-Carboxy-2,3-dihydro-1H-pyrrolo[2,3-b]pyridine-1-ium-2,2,2-trifluroacetate (20a

 and 20b).Protected ( $S$ )-azaindoline ( $5.52 \mathrm{~g}, 14.3 \mathrm{mmol}$ ) was treated with trifluoroacetic $\operatorname{acid}(14.5 \mathrm{~mL}, 186 \mathrm{mmol})$ and triethylsilane ( $2.95 \mathrm{~mL}, 35.8 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(29.0 \mathrm{~mL})$. The reaction was stirred overnight and then concentrated under vacuum. $\mathrm{Et}_{2} \mathrm{O}(20.0 \mathrm{~mL})$ was added to the oily residue to precipitate a white solid that was filtered, triturated with $\mathrm{Et}_{2} \mathrm{O}$ and dried to afford the product as the trifluoroacetate salt ( $3.90 \mathrm{~g}, 99 \%$ yield). Analytical data was identical to that in the literature.

Substitution of $(R)$-azaindoline (19b, $1.75 \mathrm{~g}, 4.54 \mathrm{mmol})$ into the procedure above provided 20b as a white solid ( $5.81 \mathrm{~g}, 98 \%$ ).


## (R)-2,3-Dihydro-1H-indole-2-carboxylic acid (21b).

To a solution of trifluoroacetic acid ( $1.25 \mathrm{~mL}, 16.2 \mathrm{mmol}$ ) and triethylsilane $(0.26 \mathrm{~mL}$, $3.12 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ was added the indoline ( $0.48 \mathrm{~g}, 1.25 \mathrm{mmol}$ ). The reaction was stirred for 8 h at rt and solvent was removed in vacuo. $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added to the oily residue to precipitate a white solid that was filtered, triturated with $\mathrm{Et}_{2} \mathrm{O}$, and dried to afford the product as a white solid. $(134 \mathrm{mg}, 66 \%) .{ }^{4}$


## Methyl indoline-2-carboxylate hydrochloride (22a and 22b).

To a $0{ }^{\circ} \mathrm{C}$ solution of the amino acid ( $1.01 \mathrm{~g}, 6.13 \mathrm{mmol}$ ) in methanol ( 10.2 mL ) was added thionyl chloride ( $670 \mu \mathrm{~L}, 9.19 \mathrm{mmol}$ ) over 5 minutes. The solution was slowly warmed to room temperature and stirred for 4 h . The solvent was removed in vacuo and the residue obtained was treated with diethyl ether. The resulting oil was dried under vacuum for 24 h to afford the title compound as a brown viscous oil $(1.29 \mathrm{~g}, 100 \%) . \mathrm{R}_{f}=$ 0.43 (50\% EtOAc/hexanes); $[\alpha]_{D}^{24}-15.7$ (c 3.05, $\mathrm{CHCl}_{3}$ ); IR (film) 3388, 2468, 1747, 1486, 1440, $1033 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( 500 MHz, DMSO-d $_{6}$ ) $\delta 9.23(\mathrm{~s}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~m}, 2 \mathrm{H}), 4.60(\mathrm{dd}, J=10.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}$, $3 \mathrm{H}) 3.38(\mathrm{dd}, J=16.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{dd}, J=16.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 125 MHz, DMSO-d ${ }_{6}$ ) ppm 172.7, 146.5, 129.1, 128.0, 125.0, 121.7, 112.5, 59.4, 52.7, 33.3; HRMS (EI): Exact mass calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{2}[\mathrm{M}-\mathrm{HCl}]^{+} 177.0790$, found 177.0789.

Substitution of ( $R$ )-indoline amino acid ( $500 \mathrm{mg}, 3.06 \mathrm{mmol}$ ) into the above procedure furnished the enantiomeric product ( $620 \mathrm{mg}, 100 \%$ ). $\mathrm{R}_{f}=0.43$ ( $50 \%$

[^3]EtOAc/hexanes); $[\alpha]_{D}^{24}+14.8\left(c 1.6, \mathrm{CHCl}_{3}\right)$; IR (film) $3390,2474,1748,1440,1248 \mathrm{~cm}^{-}$
${ }^{1}$; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$ ) $\delta 7.55-7.44(\mathrm{~m}, 4 \mathrm{H}), 5.16-5.11(\mathrm{~m}, 2 \mathrm{H}), 5.08(\mathrm{dd}, J=$ $9.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}) 3.72(\mathrm{dd}, J=16.4,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=16.4,7.2 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{MeOD}^{2}$ - ${ }_{4}$ ppm 169.8, 136.7, 134.9, 131.3, 130.0, 127.3, 120.4, 61.2, 54.2, 33.9; HRMS (EI): Exact mass calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{ClNO}_{2}[\mathrm{M}-\mathrm{HCl}]^{+}$ 177.0790, found 177.0798.



(S)-Methyl-1-((S)-2-(tert-butoxycarbonylamino)propanoyl)indoline-2-carboxylate (23a).

To a $0{ }^{\circ} \mathrm{C}$ solution of the carboxylic acid $(22.0 \mathrm{mg}, 117 \mu \mathrm{~mol})$, the methyl ester ( 25.0 mg , $117 \mu \mathrm{~mol})$ and diisopropyl ethylamine ( $80.0 \mu \mathrm{~L}, 469 \mu \mathrm{~mol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added BOP-Cl $(213 \mu \mathrm{~L}, 1.64 \mathrm{mmol})$. The reaction was slowly warmed to rt and stirred for 12 h . The reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water, 1 N HCl , and brine. The organic layer was dried, filtered, and concentrated to a brown oil. Column chromatography ( $\mathrm{SiO}_{2}, 0-10-20 \%$ ethyl acetate in hexanes) afforded the desired dipeptide as a $1: 1$ mixture of cis-trans rotamers ( $14 \mathrm{mg}, 35 \%$ ). $\mathrm{R}_{f}=0.19$ ( $20 \% \mathrm{EtOAC} /$ hexanes ); $[\alpha]_{D}^{24}-133.8\left(c \quad 1.80, \mathrm{CHCl}_{3}\right)$; IR (film) 3330, 2979, 1742, 1665, 1511, $1478 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.12(\mathrm{~m}, 5 \mathrm{H}), 7.09-7.05(\mathrm{~m}$, 2H), 5.46-5.43 (m, 2H), 5.25 (dd, $J=11.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}$, $J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{dd}, J=16.8$, $10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=16.5,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=$
$16.5,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 18 \mathrm{H}), 1.39(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}$ ) ppm 171.9, 171.6, 155.3, 154.9, 142.5, 140.1, 131.2, 128.8, $128.4,128.2,126.0,124.8,124.6,124.2,117.7,114.3,79.9,79.8,60.5,60.4,53.4,52.7$, 48.8, 48.5, 33.7, 31.4, 28.5, 20.0, 18.9; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5}$ $[\mathrm{M}]^{+} 349.1758$, found 349.1763 .

(S)-Methyl-1-(S)-((2-(tert-butoxycarbonylamino)-3-phenylpropanoyl)indoline-2carboxylate (23b).

To a $0^{\circ} \mathrm{C}$ solution of the carboxylic acid $(560 \mathrm{mg}, 2.10 \mathrm{mmol})$, the methyl ester ( 300 mg , $1.40 \mathrm{mmol})$, and diisopropyl ethylamine $(910 \mu \mathrm{~L}, 5.18 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added PyBrOP ( $980 \mathrm{mg}, 2.10 \mathrm{mmol}$ ). The reaction was slowly warmed to room temperature and stirred for 2 days. The reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with satd aq $\mathrm{NH}_{4} \mathrm{Cl}$, satd aq $\mathrm{NaHCO}_{3}$ and brine. The organic layer was dried, filtered, and concentrated to a brown oil. Column chromatography $\left(\mathrm{SiO}_{2}, 20 \%\right.$ ethyl acetate in hexanes) afforded the dipeptide as a mixture of $5: 1$ cis/trans rotamers ( $480 \mathrm{mg}, 81 \%$ ). $\mathrm{R}_{f}$ $=0.23(20 \%$ EtOAC/hexanes $) ;[\alpha]_{D}^{24}-25.5\left(c 1.30\right.$, CHCl $\left._{3}\right) ;$ IR (film) 3345, 2975, 2929, $1742,1710,1658,1481,1169 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, cis- rotamer) $\delta 8.24(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 5 \mathrm{H}), 7.07-7.02(\mathrm{~m}, 2 \mathrm{H}), 5.53(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{ddd}, J=9.3,9.3,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=10.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.67$ (s, 3H), $3.12(\mathrm{dd}, J=13.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.05-2.99(\mathrm{~m}, 2 \mathrm{H}), 2.80(\mathrm{dd}, J=16.2,10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$, cis and trans) ppm 171.1, 170.8, 154.7,
$141.5,136.2,129.7,129.4,129.1,128.7,128.4,128.3,127.8,127.1,126.9,125.9,124.6$, $124.3,124.2,117.6,114.179 .7,60.5,60.3,54.6,53.1,52.5,41.6,38.2,32.7,31.3,28.3$, 28.2; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+} 447.1896$, found 447.1897.

## Conformational analysis of Boc-L-Phe-L-Ind-OMe



NOESY was performed to confirm the absolute conformation of trans and cis rotamers. $\mathrm{H} 7 c / \mathrm{H} 4 a$ and $\mathrm{H} 9 / \mathrm{H} 1$ correlations confirmed the presence of trans rotamer. In the trans-amide isomer, the 6-keto group lies close to the $\mathrm{H} 4 f$ resulting in the downfield shift ( $\delta 8.24 \mathrm{ppm}$ ) of this aromatic hydrogen. A stong $\mathrm{H} 7 \mathrm{c} / \mathrm{H} /$ correlation is consistent with the prolyl cis-amide bond.


## (R)-Methyl 1-((S)-2-(tert-butoxycarbonylamino)propanoyl)indoline-2-carboxylate

 (23c).To a $0{ }^{\circ} \mathrm{C}$ solution of the carboxylic acid $(39.7 \mathrm{mg}, 210 \mu \mathrm{~mol})$, the methyl ester ( 30.0 mg , $140 \mu \mathrm{~mol}$ ), and diisopropyl ethylamine ( $90.2 \mu \mathrm{~L}, 518 \mu \mathrm{~mol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.6 \mathrm{~mL})$ was added $\operatorname{PyBrOP}(98.0 \mathrm{mg}, 210 \mathrm{mmol}$ ). The reaction was slowly warmed to room temperature and stirred for 2 days. The reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed
with satd aq $\mathrm{NH}_{4} \mathrm{Cl}$, satd aq $\mathrm{NaHCO}_{3}$ and brine. The organic layer was dried, filtered, and concentrated to a brown oil. Column chromatography $\left(\mathrm{SiO}_{2}, 20 \%\right.$ ethyl acetate in hexanes) afforded the dipeptide as a mixture of $4: 1$ cis/trans rotamers ( $36.7 \mathrm{mg}, 75 \%$ ). $\mathrm{R}_{f}$ $=0.20(20 \%$ EtOAC/hexanes $) ;[\alpha]_{D}^{24}+115.2\left(c 0.61, \mathrm{CHCl}_{3}\right) ;$ IR (film) 3330, 2978, 2933, 1747, 1701, 1659, 1482, 1249, $1168 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, cis- rotamer) $\delta$ $8.19(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.05(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{br} \mathrm{d}, J=10.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.15(\mathrm{br} \mathrm{d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{dt}, J=7.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{dd}$, $J=15.6,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.45-142(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, cis- rotamer) ppm 172.2, 172.0, 155.3, 142.2, 129.5, 127.7, 124.5, 124.3, $117.8,80.0,61.0,52.9,48.1,33.2,28.3,18.2$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 349.1763$, found 349.1764.



## (R)-Methyl 1-((S)-2-(tert-butoxycarbonylamino)-3-phenylpropanoyl)indoline-2carboxylate (23d).

To a $0{ }^{\circ} \mathrm{C}$ solution of the carboxylic acid $(560 \mathrm{mg}, 2.10 \mathrm{mmol})$, the methyl ester $(300 \mathrm{mg}$, $1.40 \mathrm{mmol})$, and diisopropyl ethylamine $(910 \mu \mathrm{~L}, 5.18 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added PyBrOP ( $980 \mathrm{mg}, 2.10 \mathrm{mmol}$ ). The reaction was slowly warmed to room temperature and stirred for 2 days. The reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with satd aq $\mathrm{NH}_{4} \mathrm{Cl}$, satd aq $\mathrm{NaHCO}_{3}$ and brine. The organic layer was dried, filtered, and concentrated to a brown oil. Column chromatography $\left(\mathrm{SiO}_{2}, 20 \%\right.$ ethyl acetate in hexanes) afforded the dipeptide as a mixture of $2.5: 1$ cis/trans rotamers ( $480 \mathrm{mg}, 81 \%$ ).
$\mathrm{R}_{f}=0.23(20 \% \mathrm{EtOAC} /$ hexanes $) ;[\alpha]_{D}^{24}+62.5$ (c 0.80, $\mathrm{CHCl}_{3}$ ); IR (film) 3314, 2977, 2967, 1746, 1702, 1655, 1482, 1250, $1169 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.21(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.01(\mathrm{~m}, 18 \mathrm{H}), 5.66(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.01(\mathrm{br} \mathrm{d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{br} \mathrm{d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{ddd}, J=$ 9.6, 9.6, $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{dd}, J=16.8,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.33$ (br d, $J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{dd}, J=14.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{dd}, J=15.6,10.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.99-2.92(m, 3H), $1.45(\mathrm{~s}, 9 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, cis and trans) ppm 172.0, 171.4, 171.2, 170.2, 155.4, 155.1, 142.2, 140.0, 137.0, 135.7, 129.6, 129.3, $129.2,128.4,128.1,127.8,126.7$ (2C), 125.5, 124.9, 124.6, 124.4, 124.2, 80.0, 79.9, $61.1,60.5,53.8,53.1,52.9,52.5,39.7,38.2,33.2,31.5,28.3,28.2 ;$ HRMS (ESI): Exact mass calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 425.2076$, found 425.2067.


## Methyl-2,3-dihydro-1H-pyrrolo[2,3-b]pyridine-2-carboxylate hydrochloride (24a and 24b).

To a solution of the amine salt ( $100 \mathrm{mg}, 360 \mu \mathrm{~mol}$ ) in methanol $(0.6 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added thionyl chloride $(40.1 \mu \mathrm{~L}, 546 \mu \mathrm{~mol})$ over 2 minutes. The solution was slowly warmed to room temperature and stirred for 4 h . The solvent was removed in vacuo and the residue obtained was treated with diethyl ether. The resulting oil was dried under vacuum for 24 h to afford the title compound as a brown viscous oil $(76 \mathrm{mg}, 99 \%) . \mathrm{R}_{f}=$ $0.47\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;[\alpha]_{D}^{24}-13.5$ (c 1.55, $\mathrm{CHCl}_{3}$ ); IR (film) 3281, 3083, 2948, 2868, 1736, 1647, 1548, 1200, $1021 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}, \mathrm{MeOD}) \delta 7.23(\mathrm{~d}, J=7.0$
$\mathrm{Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.82(\mathrm{dd}, J=11.0,5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.83(\mathrm{~s}, 2 \mathrm{H}), 3.62(\mathrm{dd}, J=18.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{dd}, J=18.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.33$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, MeOD) ppm 169.7, 154.8, 135.1, 129.9, 127.1, 111.6, 57.1, 50.6, 28.8, 33.3; HRMS (EI): Exact mass calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}-\mathrm{Cl}]^{+} 179.0821$, found 179.0820 .

Substitution of $\mathbf{2 0 b}(500 \mathrm{mg})$ into the above procedure furnished the enantiomeric product as a colorless oil (391 mg, 100\%); $[\alpha]_{D}^{24}+7.9\left(c 1.9, \mathrm{CHCl}_{3}\right) .{ }^{5}$


## (S)-Methyl-1-((S)-2-(tert-butoxycarbonylamino)propanoyl)-2,3-dihydro-1H-

 pyrrolo[2,3-b]pyridine-2-carboxylate (25a).To a $0^{\circ} \mathrm{C}$ solution of the carboxylic acid ( $530 \mathrm{mg}, 2.80 \mathrm{mmol}$ ), the methyl ester ( 400 mg , $1.87 \mathrm{mmol})$, and diisopropyl ethylamine ( $1.22 \mathrm{~mL}, 6.91 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added $\operatorname{PyBrOP}(1.31 \mathrm{~g}, 2.80 \mathrm{mmol})$. The reaction was slowly warmed to room temperature and stirred for 2 days. The reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with satd aq $\mathrm{NH}_{4} \mathrm{Cl}$, satd aq $\mathrm{NaHCO}_{3}$ and brine. The organic layer was dried, filtered, and concentrated to a brown oil. Column chromatography $\left(\mathrm{SiO}_{2}, 30 \%\right.$ ethyl acetate in hexanes) afforded the dipeptide as $\geq 99 \%$ trans-rotamer ( $470 \mathrm{mg}, 71 \%$ ). $\mathrm{R}_{f}=0.37$ ( $50 \%$ EtOAC/hexanes); $[\alpha]_{D}^{24}-26.7$ (c 2.25, $\mathrm{CHCl}_{3}$ ); IR (film) 3395, 2921, 1654, $1422 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.18(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{t}, J=$

[^4]$12.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.00-5.93(\mathrm{~m}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{dd}, J=10.4,4.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{dd}, J=16.8,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=17.0,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.47$ $(\mathrm{d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\mathrm{ppm} 173.6,171.5,155.6$, 154.9, 147.3, 133.6, 123.2, 118.7, 79.6, 57.9, 52.7, 49.4, 29.3, 28.5, 18.9; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+} 372.1535$, found 372.1535.




## (S)-Methyl-1-(S)-((2-(tert-butoxycarbonylamino)-3-phenylpropanoyl)-2,3-dihydro-

 1H-pyrrolo[2,3-b] pyridine-2-carboxylate (25b).To a $0{ }^{\circ} \mathrm{C}$ solution of the carboxylic acid ( $480 \mathrm{mg}, 1.82 \mathrm{mmol}$ ), the methyl ester ( 260 mg , $1.21 \mathrm{mmol})$, and diisopropyl ethylamine ( $780 \mu \mathrm{~L}, 4.48 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ was added PyBrOP ( $850 \mathrm{mg}, 1.82 \mathrm{mmol}$ ). The reaction was slowly warmed to room temperature and stirred for 2 days. The reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with satd aq $\mathrm{NH}_{4} \mathrm{Cl}$, satd aq $\mathrm{NaHCO}_{3}$ and brine. The organic layer was dried, filtered, and concentrated to a brown oil. Column chromatography $\left(\mathrm{SiO}_{2}, 30 \%\right.$ ethyl acetate in hexanes) afforded the title product as $\geq 99 \%$ trans-rotamer ( $430 \mathrm{mg}, 84 \%$ ). $\mathrm{R}_{f}=0.45$ (50\% EtOAC/hexanes); $[\alpha]_{D}^{24}-19.1$ (c 1.10, $\mathrm{CHCl}_{3}$ ); IR (film) 3332, 2975, 1750, 1712, 1663, 1595, 1425, $1170 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.27(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.46(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~m}, 1 \mathrm{H}), 6.24(\mathrm{dt}, J=10.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H})$, $3.49(\mathrm{~m}, 2 \mathrm{H}), 3.11(\mathrm{dd}, J=17.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=14.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{~s}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 172.2, 171.3, 155.5, 154.8, 147.0, 137.2, 133.5,
129.6, 128.1, 126.4, 123.2, 118.7, 79.3, 57.8, 54.2, 52.6, 38.1, 29.2, 28.2; HRMS (ESI):

Exact mass calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+} 448.1848$, found 448.1838 .

Conformational analysis of Boc-L-Phe-L-N ${ }^{7}$ Ind-OMe



A NOESY correlation for $\mathrm{H} 4 e / \mathrm{H} 7 c$ and $\mathrm{H} 9 / \mathrm{H} 1$ is consistent with the prolyl transamide bond. No $\mathrm{H} 7 c^{\prime} / \mathrm{H} 1$ correlation was observed, supporting the assignment exclusively as trans-amide rotamer.


## (R)-Methyl-1-((S)-2-(tert-butoxycarbonylamino)propanoyl)-2,3-dihydro-1H-

pyrrolo [2,3-b]pyridine-2-carboxylate (25c).
To a $0{ }^{\circ} \mathrm{C}$ solution of the carboxylic acid ( $530 \mathrm{mg}, 2.80 \mathrm{mmol}$ ), the methyl ester ( 400 mg , $1.87 \mathrm{mmol})$ and diisopropyl ethylamine $(1.22 \mathrm{~mL}, 6.91 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.6 \mathrm{~mL})$ was added $\operatorname{PyBrOP}(1.31 \mathrm{~g}, 2.80 \mathrm{mmol})$. The reaction was slowly warmed to room temperature and stirred for 2 days. The reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with satd aq $\mathrm{NH}_{4} \mathrm{Cl}$, satd aq $\mathrm{NaHCO}_{3}$ and brine. The organic layer was dried, filtered, and concentrated to a brown oil. Column chromatography $\left(\mathrm{SiO}_{2}, 20 \%\right.$ ethyl acetate in hexanes) afforded the title product as $\geq 99 \%$ trans-rotamer ( $430 \mathrm{mg}, 70 \%$ ). $\mathrm{R}_{f}=0.38$ (50\% EtOAC/hexanes); $[\alpha]_{D}^{24}+56.7$ (c 1.85, $\mathrm{CHCl}_{3}$ ); IR (film) 3357, 2977, 1750, 1712,
$1426,1301,1024 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.12(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~m}, 1 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}), 5.55(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{dd}, J=11.2,3.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{dd}, J=16.8,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=17.2,3.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.45(\mathrm{~s}, 9 \mathrm{H}), 1.30(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{ppm} 172.9,171.1$, $154.8,154.4,147.0,133.5,123.1,118.6,79.1,58.3,52.4,49.4,29.5,29.1,28.3,19.3$. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+} 372.1535$, found 372.1530.




## (R)-Methyl-1-(S)-((2-(tert-butoxycarbonylamino)-3-phenylpropanoyl)-2,3-dihydro-

 1H-pyrrolo[2,3-b] pyridine-2-carboxylate (25d).To a $0{ }^{\circ} \mathrm{C}$ solution of the carboxylic acid $(810 \mathrm{mg}, 3.03 \mathrm{mmol})$, the methyl ester ( 430 mg , $2.02 \mathrm{mmol})$ and diisopropyl ethylamine ( $1.32 \mathrm{~mL}, 7.48 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL})$ was added $\operatorname{PyBrOP}(1.41 \mathrm{~g}, 3.03 \mathrm{mmol})$. The reaction was slowly warmed to room temperature and stirred for 2 days. The reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with satd aq $\mathrm{NH}_{4} \mathrm{Cl}$, satd aq $\mathrm{NaHCO}_{3}$ and brine. The organic layer was dried, filtered, and concentrated to a brown oil. Column chromatography $\left(\mathrm{SiO}_{2}, 20 \%\right.$ ethyl acetate in hexanes) afforded the title product as $\geq 99 \%$ trans-rotamer ( $690 \mathrm{mg}, 81 \%$ ). $\mathrm{R}_{f}=0.42$ (50\% EtOAC/hexanes); $[\alpha]_{D}^{24}+68.5$ (c 3.65, $\mathrm{CHCl}_{3}$ ); IR (film) 3331, 2977, 1748, 1713, $1666,1204 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.25(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.41-7.22(\mathrm{~m}, 5 \mathrm{H}), 6.94(\mathrm{~m}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.94(\mathrm{dd}, J=11.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{dd}, J=17.2,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.14$ $(\mathrm{dd}, J=12.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{dd}, J=17.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J=13.6,8.0 \mathrm{~Hz}$,
$1 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{CDCl}_{3}$ ) ppm 171.5, 171.0, 154.8, 154.5, 146.9, $136.6,133.5,129.5,127.9,126.5,123.2,118.7,79.1,58.3,54.0,52.5,39.9,29.2,28.2$;

HRMS (ESI): Exact mass calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+} 448.1848$, found 448.1852.


## Methyl-1-(2-((S)-2-(tert-butoxycarbonylamino)propanamido)-3-phenylpropanoyl)-

 2,3-dihydro-1H-pyrrolo[2,3-b]pyridine-2-carboxylate (28aa, and 28ab).To a $0{ }^{\circ} \mathrm{C}$ solution of the amine salt $(750 \mathrm{mg}, 3.50 \mathrm{mmol})$ and the carboxylic acid $(1.77 \mathrm{~g}$, $5.25 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ was added diisopropylethylamine ( $2.26 \mathrm{~mL}, 12.96 \mathrm{mmol}$ ) and $\operatorname{PyBrOP}(2.45 \mathrm{~g}, 5.26 \mathrm{mmol})$. The reaction was slowly warmed to the room temperature and stirred for 2 days. The reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with satd aq $\mathrm{NH}_{4} \mathrm{Cl}$, satd aq $\mathrm{NaHCO}_{3}$, and brine. The organic layer was dried, filtered, and concentrated to a brown oil. Column chromatography $\left(\mathrm{SiO}_{2}, 0-20-40 \%\right.$ ethyl acetate in hexanes) afforded the tetrapeptide as an inseparable mixture of diastereomers ( 1.22 g , $70 \%$ ), which was characterized as a 3:1 ratio of diastereomers. $\mathrm{R}_{f}=0.66(10 \%$ $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ); IR (film) 3330, 3063, 2101, 2933, 1660, 1167, $1120 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.26(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.42(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}$, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.08(\mathrm{~m}, 6 \mathrm{H}), 6.96-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.86(\mathrm{~s}$, $1 \mathrm{H}), 6.67(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~m}, 1 \mathrm{H}), 5.11(\mathrm{dd}, J=11.5$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 1 \mathrm{H}), 4.89(\mathrm{dd}, J=11.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H}), 4.15-4.04(\mathrm{~m}$,
$2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.52-3.45(\mathrm{~m}, 2 \mathrm{H}), 3.34(\mathrm{dd}, J=16.5,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.15$ $(\mathrm{dd}, J=13.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=17.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=17.0,3.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.93(\mathrm{dd}, J=13.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=14.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.39(\mathrm{~s}$, $9 \mathrm{H}), 1.23(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{ppm}$ $172.0,170.9,170.8,170.7,154.9,154.8,154.2,154.0,146.4,146.3,136.6,136.1,133.5$ (2C), 129.3, 129.0, 127.7, 127.6, 126.2, 126.1, 123.1, 123.0, 118.7, 118.5, 79.0, 64.2, $60.0,58.0,57.5,52.9,52.6,52.1$ (2C), 49.6, 37.7, 37.3, 33.1, 28.7, 27.9, 20.1, 18.6, 18.3, 14.1, 13.8; HRMS (EI): Exact mass calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 497.2400$, found 497.2400.

Substitution of $\mathbf{2 4 b}(0.89 \mathrm{mg}, 4.16 \mathrm{mmol})$ into the above procedure afforded the product as an inseparable mixture of diastereomers (28ba, and 28bb, $1.41 \mathrm{~g}, 69 \%$ ), which was characterized as a $10: 9$ ratio of diastereomers. $\mathrm{R}_{f}=0.64(10 \%$ $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ); IR (film) 3300, 2977, 2931, 1745, 1710, 1650, 1482, $1169 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.31(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.23-$ $7.11(\mathrm{~m}, 6 \mathrm{H}), 6.98(\mathrm{dd}, J=7.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{dd}, J=7.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H})$, 6.66 (br s, 2H), $6.48(\mathrm{~m}, 1 \mathrm{H}), 5.14(\mathrm{dd}, J=11.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.92(\mathrm{dd}, J$ $=11.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-4.06(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.56-3.46(\mathrm{~m}, 2 \mathrm{H})$, $3.35(\mathrm{dd}, J=17.2,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{dd}, J=13.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dd}, J=11.2,4.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=17.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{dd}, J=13.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=$ $14.0,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}), 1.26(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 172.2, 171.7, 171.4, 171.2, 171.0, 170.6, 155.2, $154.6,154.4,147.1,147.1,147.0,136.8,136.3,133.7,133.6,129.6,129.5,128.2,128.0$,
$126.7,123.3,123.2,118.9,79.7,60.3,58.4,57.9,53.4,53.1,52.8,52.6$ (2C), 50.1, 49.9, 38.5, 37.8, 29.3 (2C), 28.3, 21.0, 18.8, 18.7, 14.2; HRMS (EI): Exact mass calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 497.2400$, found 497.2411.


## 1-(2-((S)-2-(tert-butoxycarbonylamino)propanamido)-3-phenylpropanoyl)-2,3-

 dihydro-1H-pyrrolo[2,3-b]pyridine-2-carboxylic acid (31aa and 31ab).To a solution of the methyl ester ( $760 \mathrm{mg}, 1.53 \mathrm{mmol}$ ) in $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL}, 4: 1)$ was added an aqueous solution $(2.0 \mathrm{~mL})$ of $\mathrm{LiOH}(66.0 \mathrm{mg}, 2.75 \mathrm{mmol})$ and the reaction was stirred for 2 h at rt . The solvent was removed in vacuo and the resulting residue acidified to $\mathrm{pH}=2$ with 1 M HCl . The acidic solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic layers were washed with brine, dried, and filtered. The filtrate was evaporated to afford the desired product as a white solid ( $628 \mathrm{mg}, 85 \%$ ); IR (film) 3360, 3314, 2936, 2852, 1652, $1428 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR experiment analysis revealed poorly resolved, broad peaks.

Substitution of 28ba and $\mathbf{2 8} \mathbf{~ b b}(1.41 \mathrm{~g}, 2.83 \mathrm{mmol})$ into the above procedure afforded the product as a white solid (31ba and 31bb $, 1.12 \mathrm{~g}, 83 \%$ ). ${ }^{1} \mathrm{H}$ NMR experiment analysis revealed in poorly resolved, broad peaks. HRMS (EI): Exact mass calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{6}$ $[\mathrm{M}+\mathrm{H}]^{+} 483.2244$, found 483.2243 .

tert-Butyl(2S)-1-(1-(2-(S)-1-(methylamino)-1-oxopropan-2-ylcarbamoyl)-

## 2,3)dihydro-1H-pyrrolo[2,3-b] pyridine-1-yl)-1-oxo-3-phenylpropan-2-ylamino)-1-

 oxopropan-2-ylcarbamate (33aa and 33ab).To a solution of the carboxylic acid ( $630 \mathrm{mg}, 1.30 \mathrm{mmol}$ ), EDC ( $240 \mathrm{mg}, 1.56 \mathrm{mmol}$ ) and HOBT ( $210 \mathrm{mg}, 1.56 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added the amine ( $130 \mathrm{mg}, 1.30$ mmol ). The reaction was stirred for 24 h at rt and quenched with satd aq $\mathrm{NaHCO}_{3}$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with satd aq $\mathrm{NH}_{4} \mathrm{Cl}$, satd aq $\mathrm{NaHCO}_{3}$ and brine. The organic layers were combined, dried, filtered, and concentrated to a brown oil. Column chromatography $\left(\mathrm{SiO}_{2}, 1-3-5 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ afforded the diastereomers as colorless oils ( $480 \mathrm{mg}, 66 \%$ ).

## More polar diastereomer 33aa

$(160 \mathrm{mg}, 22 \%) . \mathrm{R}_{f}=0.36\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;[\alpha]_{D}^{24}-7.8$ (c 1.90, $\left.\mathrm{CHCl}_{3}\right)$; IR (film) 3411 (br), 1662, 1428, $1026 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.28(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}, 7 e), 7.51(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}, 7 c), 7.38(\mathrm{~s}, 1 \mathrm{H}, 5), 7.33-7.24(\mathrm{~m}, 5 \mathrm{H}, 10 c$, $\left.10 c^{\prime}, 10 d, 10 d^{\prime}, 11\right), 7.17(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, 10 \mathrm{e}), 7.00$ (dd, $J=7.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}, 7 d), 6.51(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 10), 6.32$ (d, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}, 2), 5.10(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 14), 5.01(\mathrm{dd}, J=$


Boc-L-Ala-D-Phe-L_N7 Ind-L-Ala-NMe
$10.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}, 7), 4.43(\mathrm{dq}, J=7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}, 4), 4.28(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 13), 3.44-3.34$ (m, $2 \mathrm{H}, 7 a, 10 a), 3.22(\mathrm{dd}, J=17.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}, 7 a), 2.93(\mathrm{dd}, J=12.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}, 10 a)$, $2.76(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 3 \mathrm{H}, 1), 1.42(\mathrm{~s}, 9 \mathrm{H}, 17), 1.27(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, 4 a), 1.22(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}, 13 a) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{ppm} 172.4,172.2,172.1,170.4,154.7$, $146.8,136.6,133.8,129.7,128.3,126.7,124.4,119.3,79.9,59.1,52.5,49.8,49.0,38.1$, 29.2, 28.3, 26.3, 19.3, 17.7; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{~N}_{6} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+}$ 589.2750, found 589.2747.

## Conformational Analysis of Boc-L-Ala-D-Phe-L- ${ }^{\text {N7 }}$ Ind-L-Ala-NMe (33aa)

The crosspeaks could be separated into three local regions and a long range correlation. Beginning from the C-terminal methyl amide, crosspeaks for $\mathrm{H} 2 / \mathrm{H} 4$ and $\mathrm{H} 2 / \mathrm{H} 5$ defined the s-trans conformation of the methyl amide. However a weaker NOESY correlation for $\mathrm{H} 2 / \mathrm{H} 4$ suggests that the peptide chain $C$-terminal to ${ }^{N 7}$ Ind does not fold back upon itself by $180^{\circ}$. A similar s-trans assignment for the alanine amide could be made by observation of a $\mathrm{H} 5 / \mathrm{H} 7$ cross peak.

Observed Regional (a-c) and Long Range (d) NOESY Correlation (33aa)

(c)
(d)


The s-trans conformation of the azaindoline amide bond was determined by observation of crosspeaks between $\mathrm{H} 10 / \mathrm{H} 10 c$ and $\mathrm{H} 10 c / \mathrm{H} 7 e$. Complementary to these are crosspeaks for $\mathrm{H} 10 / \mathrm{H} 11$ and $\mathrm{H} 11 / \mathrm{H} 10 c^{\prime}$, although crosspeaks could not be observed to definitively assign the local conformation of the alanine amide bond as trans. Long range crosspeak H17/H1Oc is consistent with syn conformation of the tert-butyl group such that it is positioned at the exterior of the turn. Absence of crosspeak H10/H5 confirms the configuration of phenylalanine as $(R)$. Absence of $\mathrm{H} 17 / \mathrm{H} 1, \mathrm{H} 17 / \mathrm{H} 2, \mathrm{H} 13 a / \mathrm{H} 2$ or $\mathrm{H} 13 a / \mathrm{H} 1$ crosspeaks are also indicative of the fact that the peptide chain does not fold back on itself by $180^{\circ}$.

## Identification of Intramolecular Hydrogen Bonding in (33aa)

The experiment clearly showed the presence of three NH signals (NH11, NH5, NH14) that were affected minimally by the increasing addition of DMSO- $d_{6}$. This study indicated the presence of a hydrogen bond between NH 11 and O3 to form an 11-membered ring and a hydrogen bond between
 NH5 and O9 to form a $7-$ membered ring ( $\delta$-turn). In contrast, NH2 shifted appreciably with increasing amounts of DMSO- $d_{6}$ indicating that this hydrogen was solvent exposed and not involved in hydrogen bonding.

## Less polar diastereomer: 33ab.

(320 mg, 44\%). $\mathrm{R}_{f}=0.40\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;[\alpha]_{D}^{24}-45.4$ (c 1.85, $\mathrm{CHCl}_{3}$ ); IR (film) 3327, 2957, 2921, 2846, $1653 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.24(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}, 7 e), 7.48(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, 7 c), 7.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 5), 7.31-$ 7.18 (m, 6H, 10c, 10c', 10d, 10d', 10e, 11), 6.99 (dd, $J=7.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}, 7 d), 6.67(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 2), 6.55(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}, 10), 5.11(\mathrm{~s}, 1 \mathrm{H}, 14), 5.04(\mathrm{dd}, J=11.5,5.0$


Boc-L-Ala-L-Phe-L- ${ }^{N 7}$ Ind-L-Ala-NMe $\mathrm{Hz}, 1 \mathrm{H}, 7), 4.45(\mathrm{dq}, J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}, 4), 4.13(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 13), 3.43(\mathrm{dd}, J=$ $17.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}, 7 a), 3.22-3.18(\mathrm{~m}, 2 \mathrm{H}, 7 a, 10 a), 2.86(\mathrm{dd}, J=13.5,10.0 \mathrm{~Hz}, 1 \mathrm{H}, 10 a)$, $2.80(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 3 \mathrm{H}, 1), 1.45(\mathrm{~s}, 9 \mathrm{H}, 17), 1.39(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, 4 a), 1.22(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}, 13 a) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 173.7, 173.3, 172.8, 170.6, 154.5, $146.6,136.0,134.0,129.2,128.5,127.1,124.1,119.3,80.4,60.0,53.9,49.3$ (2C), 36.4, 29.6, 28.4, 26.4, 16.7, 16.3; HRMS (EI): Exact mass calcd for $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{~N}_{6} \mathrm{O}_{6}[\mathrm{M}]^{+}$ 566.2853, found 566.2853.

## Conformational Analysis of Boc-L-Ala-L-Phe-L- ${ }^{\mathrm{N} 7}$ Ind-L-Ala-NMe (33ab)

Assignment of both phenyl alanine configuration (as L-Phe) and tetrapeptide conformation was made using NOESY data and molecular models. The crosspeaks could again be separated into three local regions and long range correlations. Beginning from the C-terminal methyl amide, crosspeaks for $\mathrm{H} 2 / \mathrm{H} 4$ and $\mathrm{H} 2 / \mathrm{H} 5$ defined the s-trans conformation of the methyl amide. A long range weak correlation between H7/H2 suggests the folding of C-terminal peptide chain (L-Ala) such that a 10 -membered hydrogen bond exists between H2/O9. A similar s-trans assignment for the alanine amide could be made by observation of an $\mathrm{H} 5 / \mathrm{H} 7$ cross peak.

The s-trans conformation of the azaindoline amide bond was determined by observation of crosspeaks between $\mathrm{H} 10 / \mathrm{H} 10 c$ and $\mathrm{H} 10 c / \mathrm{H} 7 e$. Complementary to these are crosspeaks for $\mathrm{H} 10 / \mathrm{H} 11$ and $\mathrm{H} 11 / \mathrm{H} 10 c^{\prime}$, although crosspeaks could not be observed to definitively assign the local conformation of the alanine amide bond as trans. This assignment is supported, however, by a long range crosspeak $\mathrm{H} 1 / \mathrm{H} 13 a$ for which such a geometry would be necessary. Additional long range crosspeaks $\mathrm{H} 14 / \mathrm{H} 1$ and $\mathrm{H} 1 / \mathrm{H} 17$ are consistent with anti-conformation of the tert-butyl group such that it is positioned at the interior of the turn. The presence of crosspeak H10/H5 confirms the configuration of phenylalanine as $(S)$.

## Observed Regional (a-c) and Long Range (d) NOESY Correlation (33ab)





## Identification of Intramolecular Hydrogen Bonding in (33ab)

The experiment suggested the presence of a hydrogen bond between NH5 and O12 to form a 10 -membered ring ( $\beta$ turn) and another hydrogen bond between NH2 and O 9 to form a 10 -

membered ring ( $\beta$-turn). The experiment showed the presence of two NH signals (NH5 and NH 2 ) that were affected minimally by the increasing addition of DMSO- $\mathrm{d}_{6}$. In contrast, NH11 and NH14 shifted appreciably with increasing amounts of DMSO-d ${ }_{6}$ indicating that these hydrogens were solvent exposed, also consistent with the $\beta$-turn conformation.

tert-Butyl(2S)-1-(1-(2-(S)-1-(methylamino)-1-oxopropan-2-ylcarbamoyl)-

## 2,3)dihydro-1H-pyrrolo[2,3-b]pyridine-1-yl)-1-oxo-3-phenylpropan-2-ylamino)-1-

 oxopropan-2-ylcarbamate (33ba and 33bb).To a solution of the carboxylic acid ( $1.12 \mathrm{~g}, 2.32 \mathrm{mmol}$ ), EDC ( $430 \mathrm{mg}, 2.78 \mathrm{mmol}$ ) and HOBT ( $380 \mathrm{mg}, 2.78 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(18 \mathrm{~mL}$ ) was added the amine ( $240 \mathrm{mg}, 2.33$ $\mathrm{mmol})$. The reaction was stirred for 24 h at rt and quenched with satd aq $\mathrm{NaHCO}_{3}$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with satd aq $\mathrm{NH}_{4} \mathrm{Cl}$, satd aq $\mathrm{NaHCO}_{3}$ and brine. The organic layers were combined, dried, filtered, and concentrated to a brown oil. Column chromatography $\left(\mathrm{SiO}_{2}, 1-5 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ afforded the individual diastereomers as colorless oils ( $751 \mathrm{mg}, 57 \%$ ).

## More polar diastereomer: 33ba

(291 mg, 22\%). $\mathrm{R}_{f}=0.36\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;[\alpha]_{D}^{24}+37.6\left(c 1.25, \mathrm{CHCl}_{3}\right)$; IR (film) 3341, 2963, 2952, 1641, $1115 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.24(\mathrm{~d}, J=4.8 \mathrm{~Hz}$, $1 \mathrm{H}, 7 e), 7.44(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, 7 c), 7.25-7.22\left(\mathrm{~m}, 4 \mathrm{H}, 10 c, 10 c^{\prime}, 10 d, 10 d^{\prime}\right), 7.18(\mathrm{t}, J=$
$7.2 \mathrm{~Hz}, 1 \mathrm{H}, 10 e), 7.11(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 5), 6.97(\mathrm{dd}, J=7.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}, 7 d), 6.73(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 11)$, 6.72 (br s, 1H, 2), 6.41 (d, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}, 10$ ), 5.10 (d, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, 14), 4.92(\mathrm{dd}, J=15.6,8.4 \mathrm{~Hz}$, $1 \mathrm{H}, 7), 4.49$ (dq, $J=7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}, 4), 4.12$ (br s, $1 \mathrm{H}, 13), 3.39(\mathrm{dd}, J=13.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}, 10 a), 3.24$ (m, 2H, 7a), 2.93 (dd, $J=14.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}, 10 \mathrm{a})$, $2.58(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}, 1), 1.42(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$,
 $4 a), 1.40(\mathrm{~s}, 9 \mathrm{H}, 17), 1.18(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, 13 a)$;
${ }^{13} \mathrm{C}$ NMR (150 MHz, $\mathrm{CDCl}_{3}$ ) ppm 172.4, 172.2, 172.1, 170.4, 155.2, 154.6, 146.8, $136.1,133.8,129.8,129.5,128.4,126.8,124.2,119.2,79.9,59.7,52.8,50.0,49.1,37.6$, 29.0, 28.3, 26.3, 18.7, 17.7; HRMS (EI): Exact mass calcd for $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{~N}_{6} \mathrm{O}_{6}[\mathrm{M}]^{+}$ 566.2853, found 566.2849.

## Conformational Analysis of Boc-L-Ala-D-Phe-D- ${ }^{\text {N7 }}$ Ind-L-Ala-NMe (33ba)

The s-trans conformation of the azaindoline amide bond was determined by observation of crosspeaks between $\mathrm{H} 7 / \mathrm{H} 10, \mathrm{H} 10 / \mathrm{H} 10 \mathrm{c}$ and $\mathrm{H} 10 \mathrm{c} / \mathrm{H} 7 \mathrm{e}$. Complementary to these are crosspeaks for $\mathrm{H} 10 / \mathrm{H} 11$ and $\mathrm{H} 11 / \mathrm{H} 10 \mathrm{c}^{\prime}$, although crosspeaks could not be observed to definitively assign the local conformation of the alanine amide bond as trans. This assignment is supported, however, by a long range crosspeak H1/H17 for which such a geometry would be necessary. Additional long range crosspeaks $\mathrm{H} 1 / \mathrm{H} 11$ and $\mathrm{H} 1 / \mathrm{H} 10 c^{\prime}$ are consistent with ( $Z$ )- $O$-carbamate geometry and an anti conformation of the tert-butyl group such that it is positioned at the interior of the turn. Since the Ala-NH residue is oriented by the azaindoline ring, crosspeak $\mathrm{H} 1 / \mathrm{H} 10 \mathrm{C}^{\prime}$ between the methyl and phenyl can be used to assign the configuration of phenylalanine as $(R)$.

Observed Regional (a-c) and Long Range (d) NOESY Correlation (33ba)


## Identification of Intramolecular Hydrogen Bonding in 33ba

The experiment suggested the presence of a hydrogen bond between NH 2 and O 9 to form a 10 -membered ring ( $\beta$ turn) and another hydrogen bond between NH14 and O9 to form an eight membered ring ( $\delta$ turn). The experiment clearly showed the
 presence of two NH signals (NH14 and NH2) that were affected minimally by the increasing addition of DMSO- $d_{6}$. In contrast, NH11 and NH5 shifted appreciably with increasing amounts of DMSO- $d_{6}$ indicating that these hydrogens were solvent exposed, also consistent with the $\beta$-turn conformation.

DMSO-Denatured Conformational Analysis of Boc-L-Ala-D-Phe-D- ${ }^{\text {N7 }}$ Ind-L-Ala-NMe
(33ba)
To ascertain the extent to which intramolecular hydrogen bonding dictates the conformation of the tetrapeptide, the conformational analysis was repeated with the

DMSO- $d_{6}$ titration experiment
 tetrapeptide as a solution in DMSO- $d_{6}$. Most peaks in the ${ }^{1} \mathrm{H}$ NMR spectrum could be assigned on the basis of coupling patterns and chemical shift relative to the sample in $\mathrm{CDCl}_{3}$. NOESY was used to assign the amide protons that shifted appreciably by the change of solvent. Crosspeaks observed for Boc-L- Ala-D-Phe-D- ${ }^{\mathrm{N} 7}$ In-L-Ala-NMe in DMSO- $d_{6}$ were generally similar to those in $\mathrm{CDCl}_{3}$ with the following exceptioncorrelations between $\mathrm{H} 1 / \mathrm{H} 17$ and $\mathrm{H} 1 / \mathrm{H} 10 \mathrm{c}$ were not present. Since all remaining crosspeaks were conserved, and disruption of the H2 intramolecular hydrogen bond by solvation follows from the DMSO- $d_{6}$ titration experiment, a conformational change, perhaps by rotation about C6-C7 has occurred. The observation of $\mathrm{H} 4 a / \mathrm{H} 2$ crosspeak also supports rotation about the C3-C4 bond.

## Less polar diastereomer: 33bb

$(460 \mathrm{mg}, 35 \%) . \mathrm{R}_{f}=0.38\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;[\alpha]_{D}^{24}+67.1\left(c \quad 1.55, \mathrm{CHCl}_{3}\right) ;$ IR (film) 3411 (br), 1657, $1152 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.22(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}, 7 e)$, $7.46(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, 7 c), 7.19-7.13\left(\mathrm{~m}, 6 \mathrm{H}, 10 c, 10 c^{\prime}, 10 d, 10 d^{\prime}, 10 e, 5\right), 6.98(\mathrm{dd}, J=$ $7.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}, 7 \mathrm{~d}), 6.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 11), 6.61(\mathrm{dd}, J=13.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}, 10), 6.48(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}, 2), 5.00(\mathrm{dd}, J=10.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}, 7), 4.88(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 14), 4.36(\mathrm{dq}, J=7.2,7.2 \mathrm{~Hz}$,
$1 \mathrm{H}, 4), 4.18(\mathrm{~s}, 1 \mathrm{H}, 13), 3.38(\mathrm{dd}, J=12.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}, 7 a), 3.15(\mathrm{~m}, 2 \mathrm{H}, 7 a, 10 a), 2.94$
$(\mathrm{dd}, J=13.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}, 10 a), 2.71(\mathrm{~d}, J=4.8$
$\mathrm{Hz}, 3 \mathrm{H}, 1), 1.42(\mathrm{~s}, 9 \mathrm{H}, 17), 1.40(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}, 4 a), 1.28(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, 13 a) ;{ }^{13} \mathrm{C}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 172.9, 172.3 (2C), 170.1, $155.4,154.2,146.5,135.8,134.0,129.2$ (2C), $128.3,127.0,124.7,119.5,80.1,59.8,53.5,50.0$,


Boc-L-Ala-L-Phe-D- ${ }^{N 7}$ Ind-L-Ala-NMe 49.6, 37.2, 28.6, 28.3, 26.3, 18.1, 17.6; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{~N}_{6} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+} 589.2750$, found 589.2748.

## Conformational Analysis of Boc-L-Ala-L-Phe-D- ${ }^{\text {N7 }}$ Ind-L-Ala-NMe (33bb)

Assignment of both phenylalanine configurations (as L-Phe) and tetrapeptide conformation was made using NOESY data and molecular models. Definitive assignments were possible. The crosspeaks could be separated into three local regions (a$c)$ and a long range correlation (d). Beginning from the C-terminal methyl amide, crosspeaks for $\mathrm{H} 2 / \mathrm{H} 4$ and $\mathrm{H} 2 / \mathrm{H} 5$ defined the s-trans conformation of the methyl amide. A similar s-trans assignment for the alanine amide could be made by observation of a H5/H7 cross peak.

The s-trans conformation of the azaindoline amide bond was determined by observation of crosspeaks between $\mathrm{H} 10 / \mathrm{H} 10 c$ and $\mathrm{H} 10 c / \mathrm{H} 7 e$. Complementary to these are crosspeaks for $\mathrm{H} 10 / \mathrm{H} 11$ and $\mathrm{H} 11 / \mathrm{H} 10 c^{\prime}$, although crosspeaks could not be observed to definitively assign the local conformation of the alanine amide bond as trans. This assignment is supported, however, by a long range crosspeak $\mathrm{H} 1 / \mathrm{H} 13 a$ for which such a geometry would be necessary. Additional long range crosspeaks $\mathrm{H} 13 / \mathrm{H} 17$ and $\mathrm{H} 10 c / \mathrm{H} 17$ are
consistent with syn conformation of the tert-butyl group such that it is positioned at the exterior of the turn. Assignment of phenylalanine as $(S)$ configuration was made by exclusion: whereas a positive definite crosspeak (H7/H10) was observed for its epimer, the only crosspeak observed here between Phe and $\mathrm{D}-{ }^{N 7}$ Ind was $\mathrm{H} 7 e / \mathrm{H} 10 c$.

## Observed Regional (a-c) and Long Range (d) NOESY Correlation (33bb)



(d)


## Identification of Intramolecular Hydrogen Bonding in 33bb

The experiment suggested the presence of a hydrogen bond between NH 2 and O 9 to form a 10 -membered ring ( $\beta$ turn). The experiment showed the presence of one NH signal (NH2) that was affected minimally by the increasing addition of DMSO- $d_{6}$. In
 contrast, NH11 and NH14, and NH5 shifted appreciably with increasing amounts of DMSO- $d_{6}$ indicating that these hydrogens were solvent exposed.


## Methyl-1-(2-((S)-2-(tert-butoxycarbonylamino)propanamido)-3-

## phenylpropanoyl)indoline-2-carboxylate (34aa, 34ab, 34ba, and 34bb).

To a $0{ }^{\circ} \mathrm{C}$ solution of the amine salt $(1.00 \mathrm{~g}, 4.69 \mathrm{mmol})$ and the carboxylic acid $(2.37 \mathrm{~g}$, 7.04 mmol ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9.5 \mathrm{~mL})$ was added diisopropylethylamine ( $3.03 \mathrm{~mL}, 17.36 \mathrm{mmol}$ ) and $\operatorname{PyBrOP}(3.28 \mathrm{~g}, 7.04 \mathrm{mmol})$. The reaction was slowly warmed to the room temperature and stirred for 2 days. The reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with satd aq $\mathrm{NH}_{4} \mathrm{Cl}$, satd aq $\mathrm{NaHCO}_{3}$ and brine. The organic layer was dried, filtered, and concentrated to a brown oil. Column chromatography $\left(\mathrm{SiO}_{2}, 0-20-40 \%\right.$ ethyl acetate in hexanes) furnished each diastereomer as a colorless oil ( $1.69 \mathrm{~g}, 73 \%$ ).

## Less polar diastereomer: 34aa

(798 mg, 34\%). $\mathrm{R}_{f}=0.55$ (50\% EtOAc/hexanes); $[\alpha]_{D}^{24}-35.7$ (c 1.45, $\mathrm{CHCl}_{3}$ ); IR (film) 3317, 3299, 2976, 2933, 1746, 1649, 1512, 1498, $1463 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.19(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.17(\mathrm{~m}, 5 \mathrm{H}), 7.12-7.04(\mathrm{~m}, 3 \mathrm{H}), 6.69(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.74(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.94-4.77(\mathrm{~m}, 2 \mathrm{H}), 4.11-4.04(\mathrm{~m}, 1 \mathrm{H}), 3.78-3.60(\mathrm{~m}$, $5 \mathrm{H}), 3.38-3.28(\mathrm{~m}, 1 \mathrm{H}), 3.06-2.98(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H})$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+} 518.2267$, found 518.2264.

## More polar diastereomer: 34ab

(896 mg, 39\%). $\mathrm{R}_{f}=0.37(50 \% \mathrm{EtOAc} /$ hexanes $) ;[\alpha]_{D}^{24}-51.1$ (c 0.90, $\mathrm{CHCl}_{3}$ ); IR (film) $3329,3316,2976,1744,1649,1511,1498,1481 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz $\left.\mathrm{CDCl}_{3}\right) \delta$
$8.27(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.10-7.08(\mathrm{~m}, 3 \mathrm{H}), 7.02(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.05(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.93-4.86(\mathrm{~m}, 1 \mathrm{H}), 4.22-4.18(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.20-3.00(\mathrm{~m}, 3 \mathrm{H})$, $2.82(\mathrm{dd}, J=16.4,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H}), 1.41(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;$ HRMS (ESI): Exact mass calcd for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+} 518.2267$, found 518.2248.


Substitution of the enantiomeric amine salt ( $450 \mathrm{mg}, 2.11 \mathrm{mmol}$ ) into the above procedure furnished the corresponding diastereomers as colorless oils.

## Less polar diastereomer: 34ba

$(264 \mathrm{mg}, 25 \%) . \mathrm{R}_{f}=0.49\left(50 \%\right.$ EtOAC/hexanes); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.19(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.16(\mathrm{~m}, 5 \mathrm{H}), 7.11-7.06(\mathrm{~m}, 3 \mathrm{H}), 6.67(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{br}$, $1 \mathrm{H}), 4.86-4.79(\mathrm{~m}, 1 \mathrm{H}), 4.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.16-4.04(\mathrm{~m}, 1 \mathrm{H}), 3.72-3.59(\mathrm{~m}, 5 \mathrm{H}), 3.37-3.28$ $(\mathrm{m}, 1 \mathrm{H}), 3.06-2.98(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H})$.

## More polar diastereomer: 34bb

( $517 \mathrm{mg}, 49 \%) . \mathrm{R}_{f}=0.44\left(50 \%\right.$ EtOAC/hexanes); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.23(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 5 \mathrm{H}), 7.10-7.04(\mathrm{~m}, 3 \mathrm{H}), 6.96(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 4.91-4.83(\mathrm{~m}, 1 \mathrm{H}), 4.22-4.04(\mathrm{~m}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.15-2.96(\mathrm{~m}, 3 \mathrm{H}), 2.81(\mathrm{dd}, J$ $=16.2,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.36(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.


## 1-[2-(2-tert-Butoxycarbonylamino-propionylamino)-3-phenyl-propionyl]-2,3-

dihydro-1H-indole-2-carboxylic acid (35aa, 35ab, 35ba and35bb).
To the methyl ester ( $580 \mathrm{mg}, 1.18 \mathrm{mmol}$ ) in $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL}, 4: 1)$ at rt was added $\mathrm{LiOH}(51 \mathrm{mg}, 2.1 \mathrm{mmol})$ and the reaction was stirred for 2 h . The solvent was removed in vacuo and the resulting residue acidified to $\mathrm{pH}=2$ with 1 M HCl . The acidic solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic layers were washed with brine, dried, and filtered. The filtrate was evaporated to afford the desired product as a white solid ( $540 \mathrm{mg}, 96 \%$ ). ${ }^{1} \mathrm{H}$ NMR experiment analysis revealed poorly resolved, broad peaks.

Substitution of 34ab ( $560 \mathrm{mg}, 1.13 \mathrm{mmol}$ ), 34ba ( $190 \mathrm{mg}, 0.38 \mathrm{mmol}$ ), and 34bb ( 511 $\mathrm{mg}, 1.03 \mathrm{mmol}$ ) into the above procedure resulted in 35ab ( 515 mg , 93\%), 35ba (165 $\mathrm{mg}, 90 \%$ ), and 35bb (493 mg, 99\%), respectively.

HRMS (EI): Exact mass calcd for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 482.2291$, found 482.2291.



tert-Butyl-(2(S))-1-(1-(2)-((S)-1-(methylamino)-1-oxopropan-2-ylcarbamoyl)indolin-1-yl)-1-oxo-3-phenylpropan-2-ylamino)-1-oxopropan-2-ylcarbamate (36aa, 36ab).

To a solution of the carboxylic acid ( $515 \mathrm{mg}, 1.07 \mathrm{mmol})$, EDC ( $199 \mathrm{mg}, 1.28 \mathrm{mmol}$ ) and HOBT ( $173 \mathrm{mg}, 1.28 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$ was added the amine ( $109 \mathrm{mg}, 1.07$ $\mathrm{mmol})$. The reaction was stirred for 24 h and quenched with satd aq $\mathrm{NaHCO}_{3}$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with satd aq $\mathrm{NH}_{4} \mathrm{Cl}$, satd aq $\mathrm{NaHCO}_{3}$, and brine. The organic layers were combined, dried, filtered, and concentrated to a brown oil. Flash chromatography $\left(\mathrm{SiO}_{2}, 1-2-3 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ furnished the


Boc-L-Ala-D-Phe-L-Ind-L-Ala-NMe tetrapeptide as a colorless oil (498 mg, $82 \%) . \mathrm{R}_{f}=0.72\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;[\alpha]_{D}^{24}-$ 146.5 ( c 1.6, $\mathrm{CHCl}_{3}$ ); IR (film) 3299, 3062, 2978, 2934, 1650, 1542, 1483, 1415, 1167 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR experiment resulted in poorly resolved, broad peaks and the 2D NMR experiments failed to provide well-resolved cross peaks, indicating that the tetrapeptide might have been aggregated in solution. As a result, the compound could not be fully characterized. HRMS (EI): Exact mass calcd for $\mathrm{C}_{30} \mathrm{H}_{39} \mathrm{~N}_{5} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+}$588.2798, found 588.2800.

## Substitution of 35ab

$(540 \mathrm{mg}, 1.12 \mathrm{mmol})$ into the above procedure furnished the product ( $501 \mathrm{mg}, 79 \%$ ) as $\geq$ 9:1 cis/trans rotamers. $\mathrm{R}_{f}=0.63\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;[\alpha]_{D}^{24}-70.8\left(c \quad 1.3, \mathrm{CHCl}_{3}\right) ;$ IR (film) 3307, 2959, 2922, 2847, 1653, 1536, $1410 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $8.09(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 7 f), 7.31-7.18\left(\mathrm{~m}, 7 \mathrm{H}, 10 c, 10 c^{\prime}, 10 d, 10 d^{\prime}, 10 e, 7 d, 7 e\right), 7.08(\mathrm{~s}$,
$1 \mathrm{H}, 7 \mathrm{c}), 6.97(\mathrm{~s}, 1 \mathrm{H}, 11), 6.86(\mathrm{br} \mathrm{s}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, 5), 6.65(\mathrm{~s}, 1 \mathrm{H}, 2), 5.01(\mathrm{~s}, 1 \mathrm{H}, 14)$, 4.69 (dd, $J=9.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}, 10), 4.24-4.15(\mathrm{~m}, 3 \mathrm{H}, 4$, $13,7), 3.12-3.02(\mathrm{~m}, 3 \mathrm{H}, 10 a, 10 a, 7 a), 2.77(\mathrm{~d}, \mathrm{~J}=4.8$ $\mathrm{Hz}, 3 \mathrm{H}, 1), 2.75(\mathrm{dd}, J=15.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}, 7 a), 1.46(\mathrm{~s}$, $9 \mathrm{H}, 17), 1.37(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, 13 a), 1.21(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}, 4 a) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 173.0,
 $172.3,170.5,169.8,140.8,135.0,130.1,129.3 .0$, $129.0,127.6$ (2C), 125.2, 124.5, 118.4, 80.1, 61.9, 53.5, 50.2, 39.4, 34.0, 28.3, 26.2, 17.6; HRMS (EI): Exact mass calcd for $\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{~N}_{5} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 566.2976$, found 566.3001.

## Conformational analysis of Boc-L-Ala-L-Phe-L- Ind- L-Ala-NMe (36ab)

Assignment of both phenylalanine configuration (as L-Phe) and tetrapeptide conformation was made using NOESY data and molecular models. Definitive assignments were possible.

## Observed Regional (a-c) and Long Range (d) NOESY Correlation (36ab)



The crosspeaks could be separated into three local regions and a long range correlation. Beginning from the C-terminal methyl amide, crosspeaks for $\mathrm{H} 2 / \mathrm{H} 4$ and $\mathrm{H} 2 / \mathrm{H} 3$ defined the s-trans conformation of the methyl amide. A similar s-trans assignment for the alanine amide could be made by observation of a $\mathrm{H} 5 / \mathrm{H} 7$ cross peak. The s-cis conformation of the indoline amide bond was determined by observation of crosspeaks between $\mathrm{H} 10 / \mathrm{H} 10 c, \mathrm{H} 7 / \mathrm{H} 10$ and $\mathrm{H} 10 c / \mathrm{H} 7$. Complementary to these are crosspeaks for $\mathrm{H} 10 / \mathrm{H} 11$ and $\mathrm{H} 11 / \mathrm{H} 10 c^{\prime}$, although crosspeaks could not be observed to definitively assign the local conformation of the alanine amide bond as trans. This assignment is supported, however, by a long range crosspeak $\mathrm{H} 17 / \mathrm{H} 1$ and $\mathrm{H} 17 / \mathrm{H} 14 a$ for which such geometry would be necessary. Additional long range crosspeaks H11/H13, H13/H15, H15/H17 are consistent with syn conformation of the tert-butyl group such that it is positioned at the exterior of the turn. Assignment of phenyl alanine as ( $S$ ) configuration was made by the observation of $\mathrm{H} 7 / \mathrm{H} 10$ crosspeak.

## Identification of Intramolecular Hydrogen Bonding in 36ab

The experiment suggested the presence of a hydrogen bond between NH 2 and O 15 to form a 16-membered ring and another weak hydrogen bond between NH5 and O12 to form a ten membered ring ( $\beta$ turn) where $L$-Ind is present as $i+2$
 residue. The experiment clearly showed the presence of one NH signal (NH2) that was affected minimally by the increasing addition of $\mathrm{DMSO}-d_{6}$ and the other NH signal (NH5) which was affected less than the other two NH signal (NH11 and NH14). In
contrast, NH11 and NH14 shifted appreciably with increasing amounts of DMSO- $d_{6}$ indicating that these hydrogens were solvent exposed.



tert-Butyl-(2(S))-1-(1-(2)-((R)-1-(methylamino)-1-oxopropan-2-ylcarbamoyl)indolin-1-yl)-1-oxo-3-phenylpropan-2-ylamino)-1-oxopropan-2-ylcarbamate (36ba, 36bb).

To a solution of the carboxylic acid ( $104 \mathrm{mg}, 216 \mu \mathrm{~mol})$, EDC $(40.2 \mathrm{mg}, 259 \mu \mathrm{~mol})$ and HOBT ( $35.1 \mathrm{mg}, 259 \mu \mathrm{~mol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added the amine ( $22.1 \mathrm{mg}, 216 \mu \mathrm{~mol}$ ). The reaction was stirred for 24 h at rt and was quenched with satd aq $\mathrm{NaHCO}_{3}$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with satd aq $\mathrm{NH}_{4} \mathrm{Cl}$, satd aq $\mathrm{NaHCO}_{3}$ and brine. The organic layers were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated to a brown oil. Flash chromatography $\left(\mathrm{SiO}_{2}, 1-2-3 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ yielded the desired tetrapeptide as a colorless oil (92 mg, $75 \%$ ). $\mathrm{R}_{f}=0.68\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (film) 3299, 2965, 2933, 1656, 1548, 1483, $1417 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR experiment analysis revealed poorly resolved, broad peaks and the 2D NMR experiments failed to provide wellresolved cross peaks, indicating that the tetrapeptide might have been aggregated in solution. As a result, the compound could not be further characterized.

Substitution of $\mathbf{3 5 b b}(420 \mathrm{mg}, 870 \mu \mathrm{~mol})$ into the above procedure resulted in the tetrapeptide ( $410 \mathrm{mg}, 83 \%$ ) as a $4: 1$ cis/trans rotamer mixture. $\mathrm{R}_{f}=0.63(5 \%$ $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ); $[\alpha]_{D}^{24}+75.0$ (c 1.32, $\mathrm{CHCl}_{3}$ ); IR (film) 3297 (br), 3057, 2975, 2976, $2929,1653,1533,1481 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, cis-rotamer) $\delta 8.13(\mathrm{~d}, J=8.0$
$\mathrm{Hz}, 1 \mathrm{H}), 7.61(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.45(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.29-7.04(\mathrm{~m}, 8 \mathrm{H}), 6.24(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.29(\mathrm{~d}, \mathrm{~J}=$ $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.69-4.67(\mathrm{~m}, 1 \mathrm{H}), 4.39-4.21(\mathrm{~m}, 3 \mathrm{H}), 3.15-3.06(\mathrm{~m}, 3 \mathrm{H}), 2.80(\mathrm{dd}, J=15.5$, $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}), 1.34-1.29(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 173.0, 172.7, 170.8, 170.0, 155.9, 141.6, 135.8, 130.0, 129.5, 129.1, $127.8,127.6,125.2,124.6,118.4,80.6,61.8,54.5,50.1,49.7,39.7,34.1,28.5,26.4,18.1$, 17.6; HRMS (EI): Exact mass calcd for $\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{~N}_{5} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 566.2976$, found 566.2957.

(+)-Serratezomine A ((+)-37).
To a solution of the ester $(13.2 \mathrm{mg}, 25.5 \mu \mathrm{~mol})$ in $\mathrm{MeOH}(600 \mu \mathrm{~L})$ at $0{ }^{\circ} \mathrm{C}$ was added sodium hydroxide ( $220 \mu \mathrm{~L}, 0.1 \mathrm{M}$ in $\mathrm{H}_{2} \mathrm{O}$ ). The reaction was stirred for 30 min before being warmed to $34^{\circ} \mathrm{C}$ and stirred for another 10 h . The solvent was removed in vacuo and the resulting residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed once with $\mathrm{H}_{2} \mathrm{O}$ and then satd aq $\mathrm{NH}_{4} \mathrm{Cl}$ and dried, filtered, and concentrated to a yellow oil. To the crude oil in THF ( $300 \mu \mathrm{~L}$ ) was added TBAF ( $63.8 \mu \mathrm{~L}, 1.0 \mathrm{M}$ in THF). The reaction was stirred for 15 min before being warmed to $40^{\circ} \mathrm{C}$ and stirred for another 20 h . The solvent was evaporated and the resulting crude oil was subjected to mass directed LC purification ( $15 \% \mathrm{CH}_{3} \mathrm{CN} / 0.1 \% \mathrm{TFA}$ ) to afford (+)-serratezomine A as a white solid (2.4 $\mathrm{mg}, 33 \%) . \mathrm{R}_{f}=0.22\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;[\alpha]_{D}^{24}+9.5(c 0.3, \mathrm{MeOH}) ;$ IR (film) 3423, 2920, 2850, 1720, 1463, 1200, $1134 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $\left.400 \mathrm{MHz}, \mathrm{MeOD}\right) \delta 4.32(\mathrm{dd}, J=$ $5.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{dd}, J=11.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=3.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.54$ $(\mathrm{ddd}, J=9.6,9.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.36-3.34(\mathrm{~m}, 1 \mathrm{H}), 3.28-3.25(\mathrm{~m}, 1 \mathrm{H}), 3.14(\mathrm{dd}, J=20.0$,
$8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{ddd}, J=13.2,13.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{br} \mathrm{d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.62-$ $2.61(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{~d}, J=20.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-2.13(\mathrm{~m}, 4 \mathrm{H}), 2.05-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.74$ $(\mathrm{m}, 4 \mathrm{H}), 1.40(\mathrm{ddd}, J=13.6,13.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.01(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{MeOD}) \mathrm{ppm} 173.2,83.5,76.2,66.7,56.0,48.7,37.3,37.1,34.3,34.2,27.0,23.6$, 22.0, 20.6, 19.7, 17.3.

The intermediate TBS protected lactone was also isolated.

## Data for latone 277:

$\mathrm{R}_{f}=0.35\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;[\alpha]_{D}^{24}+3.5(c 0.5, \mathrm{MeOH}) ; \mathrm{IR}$ (film) 2927, 2855, 1738, 1672, 1196, $1039 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.18(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 1 \mathrm{H}), 3.57(\mathrm{br} \mathrm{d}, J=9.0$,

$1 \mathrm{H}), 3.48(\mathrm{br} \mathrm{d}, J=9.6,1 \mathrm{H}), 3.37(\mathrm{dd}, J=20.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.87(\mathrm{~d}, J=$ $13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.72(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.37$ $(\mathrm{d}, J=20.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.04(\mathrm{~m}, 4 \mathrm{H}), 1.85-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.74$ $(\mathrm{m}, 2 \mathrm{H}), 1.63-1.60(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 170.0, 81.3, 75.9, 64.0, 53.9, 46.6, 45.8, 35.7, $35.4,33.4,30.7,26.0,22.4,21.0,19.5,18.0,16.9,14.1,-4.3,-5.2$; HRMS (EI): Exact mass calcd for $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{NO}_{3} \mathrm{Si}[\mathrm{M}]^{+} 393.2699$, found 393.2774.



## 3-hydroxy-5-methylcyclohexyl)ethyl pivalate (221).

Dess-Martin periodinane ( $342 \mathrm{mg}, 805 \mu \mathrm{~mol}$ ) was added to the alcohol ( $200 \mathrm{mg}, 366$ $\mu \mathrm{mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ at rt and stirred for 3 h . The reaction was quenched by the addition of an aqueous solution containing $2: 1$ satd aq $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}: \mathrm{NaHCO}_{3}$ and was stirred until both layers became clear ( $\sim 20 \mathrm{~min}$ ). The two layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried, filtered, and concentrated to a cloudy oil. Column chromatography $\left(\mathrm{SiO}_{2}, 10-15 \%\right.$ ethyl acetate in hexanes) provided the desired product as thick colorless oil ( 199 mg , $100 \%) . \mathrm{R}_{f}=0.47$ (25\% EtOAc/hexanes); $[\alpha]_{D}^{24}-85.9$ (c 1.5, $\mathrm{CHCl}_{3}$ ); IR (film) 2956, 2928, 2858, 1744, $1709 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.73$ (dddd, $J=16.7,10.5$, 8.3, $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{dd}, J=9.2$, $3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{dq}, J=10.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dq}, J=10.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.77$ (m, 2H), 2.99 (dd, $J=13.9,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=14.1,5.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.54(\mathrm{dd}, J=17.0,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.32(\mathrm{~m}, 3 \mathrm{H}), 2.32-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{dd}, J=$ $16.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $0.87(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 209.1, 176.9, $173.1,133.7,119.3,73.5,61.8,61.2,60.4,44.3,40.8,38.0,36.6,35.3,35.1,26.1,22.3$, 18.3, 14.3, 14.0, -4.2, -4.4; HRMS (CI): Exact mass calcd for $\mathrm{C}_{24} \mathrm{H}_{41} \mathrm{NO}_{4} \mathrm{Si}[\mathrm{M}]^{+}$ 435.2799, found 435.2800.


Ethyl 2-((1S,2R,3S,Z)-2-(tert-butyldimethylsilyloxy)-3-methyl-5-oxo-6-(pyrrolidin-2ylidene)cyclohexyl)acetate (222).

Ceric ammonium nitrate ( $16.8 \mathrm{~g}, 30.6 \mathrm{mmol}$ ) was added in one portion to the substrate ( $8.10 \mathrm{~g}, 15.3 \mathrm{mmol}$ ) in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H} 2 \mathrm{O}(5: 1,765 \mathrm{~mL})$ at rt . After 5 min , the reaction was quenched with satd aq NaHCO 3 and extracted with EtOAc. The combined organic layers were washed once with brine, and dried, filtered, and concentrated to an orange/brown oil. The crude oil was subsequently chromatographed $\left(\mathrm{SiO}_{2}, 10-32-38 \%\right.$ ethyl acetate in hexanes) to provide the product as a yellow/brown oil ( $2.8 \mathrm{~g}, 46 \%$ ). Analytical data was identical to that in the literature.

(2E,4S,5S,8E)-Ethyl 4-(tert-butyldimethylsilyloxy)-8-(1-(1-(4-methoxyphenyl)ethyl)-pyrrolidin-2-ylidene)-5-methyl-7-oxooct-2-enoate (223).

Preparation of the $\beta$-stannylenamine: To a flame-dried 1L round bottom flask fitted with a reflux condenser was added the alkynyl imine ( $5.8 \mathrm{~g}, 27 \mathrm{mmol}$ ) and the flask was evacuated and refilled with nitrogen three times. Benzene ( 660 mL ) was added via cannula to the flask, along with ${ }^{n} \mathrm{Bu}_{3} \mathrm{SnH}(1.6 \mathrm{~mL}, 10 \%$ of total 59.6 mmol$)$ and the contents were heated in an oil bath to $90-95^{\circ} \mathrm{C}$. In a separate flask, AIBN $(4.4 \mathrm{~g}, 27$ mmol ) was added and the flask was evacuated and refilled with nitrogen three times. Then benzene ( $110 \mathrm{~mL}, 1.5 \mathrm{~mL}$ benzene $/ 60 \mathrm{mg}$ AIBN) and ${ }^{n} \mathrm{Bu}_{3} \mathrm{SnH}(14.4 \mathrm{~mL}, 90 \%$ of total 59.6 mmol ) was added and the solution was added dropwise to the reaction vessel over 5-7 hours. After the addition is complete, the reaction is stirred an additional 1 h and
then cooled to $\sim 40{ }^{\circ} \mathrm{C}$. The solvent was removed in vacuo and the crude oil was redissolved in THF ( $192 \mathrm{~mL}, 0.14 \mathrm{M}$ ) and cooled to $0^{\circ} \mathrm{C}$.

Preparation of the acid chloride: When the above reaction is cooled and ready for solvent removal, the preparation of the acid chloride is then initiated. To the carboxylic acid (5.0 $\mathrm{g}, 15 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added oxalyl chloride ( $6.6 \mathrm{~mL}, 75 \mathrm{mmol}$ ). After several minutes, catalytic DMF was added $(20 \mu \mathrm{~L})$. The reaction was stirred for 30 $\min$ at $0^{\circ} \mathrm{C}$ and 15 min at rt . The solvent is removed in vacuo and the crude orange oil is placed under high vacuum for at least 30 min . The crude acid chloride is then dissolved in THF ( 108 mL ), cooled to $0^{\circ} \mathrm{C}$, and then cannulated, quick dropwise, to the $\beta$-stannyl enamine solution in THF. After the addition was complete, the reaction is allowed to stir an additional 5 min at $0^{\circ} \mathrm{C}$ and then warmed to rt and stirred overnight. The solvent is removed in vacuo and the crude dark orange oil is loaded directly for column chromatography $\left(\mathrm{SiO}_{2}, 10-20-25-30-35-40 \%\right.$ ethyl acetate in hexanes to provide the desired vinylogous amide 4.95 g ( $68 \%$ ). Analytical data was identical to that in the literature.

(4R,5S,E)-Ethyl 4-(tert-butyldimethylsilyloxy)-5-methylhepta-2,6-dienoate (232).
Crotylation, step 1:1 A 3 L three necked, round bottom flask, fitted with a mechanical stirrer and pressure addition funnel, was charged with $\mathrm{KO}^{t} \mathrm{Bu}(52.6 \mathrm{~g}, 468 \mathrm{mmol})$, trans-2-butene ( $63.8 \mathrm{~mL}, 710 \mathrm{mmol}$ ), and THF ( 425 mL ) and cooled to $-78{ }^{\circ} \mathrm{C}\left(\mathrm{CO}_{2},{ }^{i} \mathrm{PrOH}\right)$. ${ }^{n} \mathrm{BuLi}(188 \mathrm{~mL}, 2.5 \mathrm{M}$ in hexanes) was added dropwise via the addition funnel and the
reaction becomes yellow. After the addition was complete, the bath was changed to a $60{ }^{\circ} \mathrm{C}$ bath $\left(\mathrm{CO}_{2}, 80 / 20 \mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}\right)$ for 45 min , at which time the reaction mixture turned orange in color. The bath was then changed back to the $-78{ }^{\circ} \mathrm{C}$ bath, this time using a large insulated container. To the round bottom was cannulated a solution of the (-)$\mathrm{Ipc}_{2} \mathrm{BOMe}(150 \mathrm{~g}, 474 \mathrm{mmol})$ in ether $(474 \mathrm{~mL})$ and the reaction was stirred an additional one hour, at which time the reaction becomes colorless. Then $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (105 $\mathrm{mL}, 829 \mathrm{mmol}$ ) was added via addition funnel and the reaction stirred an additional hour. The aldehyde ( $50.6 \mathrm{~g}, 395 \mathrm{mmol}$ ) in ether ( 10 mL ) was added slowly via cannula and the reaction was stirred for 3 d before the addition of more aldehyde ( 22 g ) and then stirred for 4 d more, maintaining the temperature at a constant $-60{ }^{\circ} \mathrm{C}$. The reaction was quenched using $3 \mathrm{~N} \mathrm{NaOH}(780 \mathrm{~mL})$ and then $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(378 \mathrm{~mL})$, both via addition funnel, and the cold bath was removed and the reaction warmed to rt and stirred for 12 h . To the crude reaction was added satd aq $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and it was extracted with ether. The combined organic layers were washed with brine, dried, filtered, and concentrated to a yellow oil. Subsequent distillation was utilized to remove a main portion of the (-)-IpcOH byproduct (full vacuum ~ $300 \mathrm{mTorr}, 60-65^{\circ} \mathrm{C}$ ) which cools to a white solid. The remaining yellow oil contained $\mathrm{a} \sim 1.6: 1$ ratio of the $(-)-\mathrm{IpcOH}$ to homoallylic OH , crude oil weight ( $80.8 \mathrm{~g}, \sim 80 \%$ crude yield of the desired alcohol). The crude alcohols were then protected as their TBS ethers to allow for easier separation via chromatography.

TBS protection, step 2: The crude alcohols ( $80.8 \mathrm{~g}, 487 \mathrm{mmol}$ ) and imidazole ( $49.7 \mathrm{~g}, 730$ $\mathrm{mmol})$ were dissolved in DMF ( 1000 mL ) and cooled to $0^{\circ} \mathrm{C} . \mathrm{TBSCl}(110 \mathrm{~g}, 730 \mathrm{mmol})$ was added and the reaction was stirred for 10 min at $0^{\circ} \mathrm{C}$ and at least 4 h at rt . Water was added and the reaction was extracted with EtOAc and the combined organic layers were
washed with brine and then dried, filtered, and concentrated to a yellow oil. The oil was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and then extracted with $\mathrm{H}_{2} \mathrm{O}$ several times to remove the DMF and then placed under high vacuum for several hours. Column chromatography $\left(\mathrm{SiO}_{2}, 1.5-3 \%\right.$ ethyl acetate in hexanes) provided the desired TBS-protected product ( $53.1 \mathrm{~g}, 76 \%$ over two steps, dr 11:1, ee 92.3\%). Analytical data was identical to that in the literature


## Ethyl 2-((1S,2S,5S, 6S)-2-allyl-6-(tert-butyldimethylsilyloxy)-2-(3,4-dihydro-2H-pyrrol-5-yl)- 5-methyl-3-oxocyclohexyl)acetate (250).

Dess-Martin periodinane ( $737 \mathrm{mg}, 1.74 \mathrm{mmol}$ ) was added to the alcohol $(380 \mathrm{mg}, 869$ $\mu \mathrm{mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at rt and stirred for 3 h . The reaction was quenched by the addition of an aqueous solution containing $2: 1$ satd aq $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}: \mathrm{NaHCO}_{3}$ and was stirred until both layers became clear ( $\sim 20 \mathrm{~min}$ ). The two layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried, filtered, and concentrated to a cloudy oil. Column chromatography ( $\mathrm{SiO}_{2}, 10-15 \%$ ethyl acetate in hexanes) provided the desired product as pale yellow oil ( $361 \mathrm{mg}, 96 \%$ ). $\mathrm{R}_{f}=0.47$ (25\% EtOAc/hexanes); $[\alpha]_{D}^{24}-7.1$ (c 0.3, $\mathrm{CHCl}_{3}$ ); IR (film) 2956, 2928, 2858, $1744,1709 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 5.73$ (dddd, $J=16.7,10.5,8.3,6.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.09(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{dd}, J=9.2,3.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.11(\mathrm{dq}, J=10.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dq}, J=10.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.77(\mathrm{~m}, 2 \mathrm{H}), 2.99$ $(\mathrm{dd}, J=13.9,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=14.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{dd}, J$ $=17.0,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.32(\mathrm{~m}, 3 \mathrm{H}), 2.32-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{dd}, J=16.9,3.2 \mathrm{~Hz}$,
$1 \mathrm{H}), 1.83-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H})$, 0.11 (s, 3H), 0.07 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{CDCl}_{3}$ ) ppm 209.1, 176.9, 173.1, 133.7, $119.3,73.5,61.8,61.2,60.4,44.3,40.8,38.0,36.6,35.3,35.1,26.1,22.3,18.3,14.3$, 14.0, $-4.2,-4.4$; HRMS (CI): Exact mass calcd for $\mathrm{C}_{24} \mathrm{H}_{41} \mathrm{NO}_{4} \mathrm{Si}[\mathrm{M}]^{+} 435.2799$, found 435.2800 .

(6aS,7S,8S,10S,10aS)-10a-Allyl-7-(tert-butyldimethylsilyloxy)-10-hydroxy-8-methyl-2,3,6a,7,8,9,10,10a-octahydropyrrolo[2,1-a]isoquinolin-5(6H)-one (250).

To a $-12{ }^{\circ} \mathrm{C}$ solution of the carboxylic acid ( $14.6 \mathrm{mg}, 35.7 \mu \mathrm{~mol}$ ) and diisopropyl ethylamine ( $12.4 \mu \mathrm{~L}, 71.4 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.6 \mathrm{~mL})$ was added $\mathrm{PyBrOP}(33.3 \mathrm{mg}, 71.4$ $\mu \mathrm{mol}$ ) and the reaction was stirred for 3 h . The reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with satd aq $\mathrm{NH}_{4} \mathrm{Cl}$, satd aq $\mathrm{NaHCO}_{3}$ and brine. The organic layer was dried, filtered, and concentrated to a brown oil. Column chromatography $\left(\mathrm{SiO}_{2}, 30-50 \%\right.$ ethyl acetate in hexanes) afforded the cyclic enamide ( $13.9 \mathrm{mg}, 100 \%$ ). $\mathrm{R}_{f}=0.16(50 \%$ EtOAc/hexanes); $[\alpha]_{D}^{24}-7.1$ (c 0.3, $\mathrm{CHCl}_{3}$ ); mp 55.5-57.5 ${ }^{\circ} \mathrm{C}$; IR (film) 3396 (br), 2956, 2928, 2858, $1628 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 5.90-5.75(\mathrm{~m}, 1 \mathrm{H}), 5.54(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 5.19-5.13 (m, 2H), 3.99 (br s, 1H), 3.81-3.72 (m, 2H), 3.38-3.37 (m, 1H), 2.66-2.41 (m, $6 \mathrm{H}), 2.24(\mathrm{dd}, J=14.1,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.68-1.65(\mathrm{~m}, 1 \mathrm{H})$, $0.93(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}),-0.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz , $\mathrm{CDCl}_{3}$ ) ppm 165.2, 141.0, 132.5, 119.2, 108.7, 71.4, 67.5, 44.2, 43.8, 39.3, 36.5, 34.8,
34.2, 29.2, 27.1, 25.8, 18.0, 12.1, -4.5, -5.2; HRMS (EI): Exact mass calcd for $\mathrm{C}_{22} \mathrm{H}_{37} \mathrm{NO}_{3} \mathrm{Si}[\mathrm{M}]^{+}$391.2537, found 391.2539.


## 2-((1R,2S,5S)-2-Allyl-6-(tert-butyldimethylsilyloxy)-2-(3,4-dihydro-2H-pyrrol-5-yl)-

 3-hydroxy-5-methylcyclohexyl)acetic acid (251).To a solution of the ester $(28.0 \mathrm{mg}, 64.1 \mu \mathrm{~mol})$ in $\mathrm{MeOH}(660 \mu \mathrm{~L})$ at $0{ }^{\circ} \mathrm{C}$ was added sodium hydroxide ( $220 \mu \mathrm{~L}, 0.05 \mathrm{M}$ in $\mathrm{H}_{2} \mathrm{O}$ ). The reaction was stirred for 30 min before being warmed to $60{ }^{\circ} \mathrm{C}$ and stirred for 12 h . The solvent was removed in vacuo and the resulting residue acidified to $\mathrm{pH}=2$ with 1 M HCl . The acidic solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic layers were washed with brine, dried, and filtered. Column chromatography ( $\mathrm{SiO}_{2}, 5-10 \%$ methanol in dichloromethane) provided the title compound as a pale yellow oil (20.6 mg, $79 \%$ ). $\mathrm{R}_{f}=0.40\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;[\alpha]_{D}^{24}-$ 40.5 (c $1.05, \mathrm{CHCl}_{3}$ ); IR (film) 3396 (br), 2956, 2928, 2858, $1628 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( 600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.53-5.46(\mathrm{~m}, 1 \mathrm{H}), 4.98-4.94(\mathrm{~m}, 2 \mathrm{H}), 4.19(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{ddd}, J=12.0$, $12.0,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{ddd}, J=12.0,12.0,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.64(\mathrm{~m}, 1 \mathrm{H}), 2.99(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 2.64-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{br} \mathrm{d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.29(\mathrm{~m}$, $1 \mathrm{H}), 2.22-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.04-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.77(\mathrm{~m}, 3 \mathrm{H}), 1.63-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.48$ (br d, $J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.93-0.92(\mathrm{~m}, 12 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}),-\mathrm{COOH}$ proton not observed; ${ }^{13} \mathrm{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 176.7, 174.6, 134.2, 116.9, 75.0, 59.1, $48.6,43.2,40.9,34.1,30.8,26.0,24.8,22.7,21.7,18.2,18.1,14.1,-4.0,-5.2$; HRMS (EI): Exact mass calcd for $\mathrm{C}_{22} \mathrm{H}_{40} \mathrm{NO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 410.2727$, found 410.2728 .


## 2-((1R,2S,5S)-2-Allyl-6-(tert-butyldimethylsilyloxy)-2-(3,4-dihydro-2H-pyrrol-5-yl)-

 5-methyl-3-(methylsulfonyloxy)cyclohexyl)ethyl pivalate (263).To a solution of the alcohol ( $400 \mathrm{mg}, 834 \mu \mathrm{~mol}$ ) and triethylamine ( $255 \mu \mathrm{~L}, 1.83 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added methanesulfonyl chloride ( $124 \mu \mathrm{~L}, 1.08 \mathrm{mmol}$ ). The reaction was stirred for 30 min before it was warmed to rt and stirred for 15 min . The reaction was quenched with satd aq $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried, filtered, and concentrated to a pale yellow oil. Column chromatography $\left(\mathrm{SiO}_{2}, 10-20 \%\right.$ ethyl acetate in hexanes) provided the title compound as a pale yellow oil $(464 \mathrm{mg}, 100 \%) . \mathrm{R}_{f}=0.70(50 \% \mathrm{EtOAc} / \mathrm{hexanes}) ;[\alpha]_{D}^{24}+18.0(c 1.0$, $\mathrm{CHCl}_{3}$ ); IR (film) 3396 (br), 2956, 2928, 2858, $1628 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 5.48-5.38 (m, 1H), 5.20 (br s, 1H), 4.98-4.90 (m, 2H), 4.10-3.98 (m, 2H), 3.89-3.80 (m, $1 \mathrm{H}), 3.78(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.78-3.71(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J=15.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H})$, $2.71-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{ddd}, J=8.0,8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.17(\mathrm{dd}, J=$ $15.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{br} \mathrm{d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.82(\mathrm{~m}, 3 \mathrm{H}), 1.81-1.64(\mathrm{~m}, 2 \mathrm{H})$, $1.50-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{~s}, 9 \mathrm{H}), 0.96(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 178.4, 177.0, 133.2, 117.6, 83.3, 73.1, 63.3, 59.7, 49.0, $44.5,41.4,38.8,38.7,33.7,30.3,30.0,27.2,25.9,25.7,22.4,18.0$ (2C), $-3.9,-4.9$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{28} \mathrm{H}_{52} \mathrm{NO}_{6} \mathrm{SSi}[\mathrm{M}+\mathrm{H}]^{+} 558.3285$, found 558.3278.




2-((1R,2S,5S)-6-(tert-Butyldimethylsilyloxy)-2-(3,4-dihydro-2H-pyrrol-5-yl)-2-(3-hydroxypropyl)-5-methyl-3-(methylsulfonyloxy)cyclohexyl)ethyl pivalate (264).
$\mathrm{BH}_{3} \cdot \mathrm{DMS}(34.1 \mu \mathrm{~L}, 353 \mu \mathrm{~mol})$ was added to the alkene $(93.0 \mathrm{mg}, 168 \mu \mathrm{~mol})$ in THF $(1.7 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The reaction was stirred for 2 h before being warmed to rt and stirred for another 1 h . The reaction was stirred for 2 h before being warmed to rt and stirred for another 1 h . The reaction was cooled to $0^{\circ} \mathrm{C}$, quenched by the addition of 3 N NaOH $(650 \mu \mathrm{~mol})$ and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(500 \mu \mathrm{~mol})$ and was allowed to stir at rt overnight. The reaction was extracted with EtOAc and the combined organic layers were dried, filtered, and concentrated to an oily solid. The residue was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and treated with 4-dimethyl aminopyridine ( $205 \mathrm{mg}, 1.68 \mathrm{mmol}$ ) at rt for 7 d before it was filtered, concentrated, and purified via flash column chromatography $\left(\mathrm{SiO}_{2}, 20-35 \%-50 \%\right.$ ethyl acetate in hexanes) to afford the product as a colorless oily solid ( $48 \mathrm{mg}, 50 \%$ ) in addition to mg of the alkene (22 mg, 23\%). $\mathrm{R}_{f}=0.30(50 \% \mathrm{EtOAc} /$ hexanes $) ;[\alpha]_{D}^{24}-20.0$ (c 0.6, $\mathrm{CHCl}_{3}$ ); IR (film) 2956, 2928, 2858, 1744, $1709 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.27(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.96(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.85-3.81(\mathrm{~m}, 2 \mathrm{H}), 3.68-3.63(\mathrm{~m}, 2 \mathrm{H}), 3.48(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 3.08(\mathrm{~s}, 1 \mathrm{H}), 3.07(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.81(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.55-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.50-2.45(\mathrm{~m}$, $1 \mathrm{H}), 2.07-2.84(\mathrm{~m}, 7 \mathrm{H}), 1.87-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.19-1.16(\mathrm{~m}, 10 \mathrm{H}), 0.95-$ $0.91(\mathrm{~m}, 15 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 178.4 (2C), $83.6,72.5,63.5,63.0,59.8,48.5,39.3,38.7,34.2,32.9,32.0,31.3,30.3,28.1,27.2,26.0$, $22.3,18.0,17.9,14.2,-3.8,-4.9$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{28} \mathrm{H}_{54} \mathrm{NO}_{7} \mathrm{SSi}$ $[\mathrm{M}+\mathrm{H}]^{+} 576.3390$, found 576.3378 .


## 2-((1R,2S,3S,6S)-3-Allyl-3-(3,4-dihydro-2H-pyrrol-5-yl)-6-methyl-7-

oxabicyclo[2.2.1]heptan-2-yl)ethyl pivalate (266).
TBAF $(80.0 \mu \mathrm{~L}, 80.0 \mu \mathrm{~mol})$ was added to the silyl ether ( $15.0 \mathrm{mg}, 26.8 \mu \mathrm{~mol}$ ) in THF $(0.5 \mathrm{~mL})$ and the reaction was refluxed for 2 h , quenched with satd aq. $\mathrm{NaHCO}_{3}$, and extracted with ether. The combined organic layers were dried, filtered, and concentrated to a crude oil that was purified via column chromatography $\left(\mathrm{SiO}_{2}, 12-25-50 \%\right.$ ethyl acetate in hexanes) to furnish the cyclic ether as a yellow oil ( $7.5 \mathrm{mg}, 81 \%$ ) in addition to the alkene (1.5 mg, 10\%). $\mathrm{R}_{f}=0.60(50 \% \mathrm{EtOAc} /$ hexanes $) ;[\alpha]_{D}^{24}-12.6\left(c 1.5, \mathrm{CHCl}_{3}\right)$; IR (film) 2956, 2928, 2858, 1744, $1709 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 5.56$ (dddd, $J=16.8,10.2,7.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.28$ $(\mathrm{d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.04-3.95(\mathrm{~m}, 2 \mathrm{H}), 3.84-3.74(\mathrm{~m}, 2 \mathrm{H}), 2.55-$ $2.49(\mathrm{~m}, 2 \mathrm{H}), 2.33-2.25(\mathrm{~m}, 3 \mathrm{H}), 2.13(\mathrm{dddd}, J=9.0,6.6,6.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{ddd}, J=$ $5.4,5.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{dd}, J=12.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.70(\mathrm{~m}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 9 \mathrm{H})$, 1.16 (ddd, $J=12.6,5.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.97(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 125 MHz , $\mathrm{CDCl}_{3}$ ) ppm 178.7, 177.7, 133.8, 117.8, 86.8, 84.2, 64.3, 60.5, 53.6, 47.2, 45.4, 38.7, 37.5, 35.5, 29.7, 27.4, 27.2, 22.2, 21.2; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{NO}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+} 348.2539$, found 348.2533.




## 2-((1R,2S,5S)-2-Allyl-6-(tert-butyldimethylsilyloxy)-2-(3,4-dihydro-2H-pyrrol-5-yl)-

## 5-methyl-3-(methylsulfonyloxy)cyclohexyl)ethyl pivalate (269).

To a solution of the alcohol ( $283 \mathrm{mg}, 590 \mu \mathrm{~mol}$ ) and triethylamine $(181 \mu \mathrm{~L}, 1.30 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added methanesulfonyl chloride $(60.1 \mu \mathrm{~L}, 767 \mu \mathrm{~mol})$. The reaction was stirred for 30 min before it was warmed to rt and stirred for 15 min . The reaction was quenched with satd aq $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried, filtered, and concentrated to a pale yellow oil. Column chromatography ( $\mathrm{SiO}_{2}, 10-20 \%$ ethyl acetate in hexanes) provided the title product as a thick colorless oil (291 mg, 89\%). $\mathrm{R}_{f}=0.68(50 \% \mathrm{EtOAc} /$ hexanes $) ;[\alpha]_{D}^{24}-44.8$ (c 1.45, $\mathrm{CHCl}_{3}$ ); IR (film) 3396 (br), 2956, 2928, 2858, $1628 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 5.73 (dddd, $J=17.0,10.0,8.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{dd}, J=12.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=$ $16.5, \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.95(\mathrm{~m}, 2 \mathrm{H}), 3.84-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 3.48(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{ddd}, J=8.5,8.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{ddd}, J=$ $8.5,8.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{dd}, J=8.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-1.88(\mathrm{~m}, 3 \mathrm{H}), 1.84-1.78(\mathrm{~m}$, $2 \mathrm{H}), 1.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.50-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}), 0.96(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~s}$, 9H), $0.09(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 178.4 (2C), 136.9, $115.5,83.1,72.5,62.1,59.6,49.6,47.9,40.4,39.3,38.7,34.6,32.7,31.1,27.9,27.2$, 26.0, 22.4, 18.0 (2C), $-3.8,-4.9$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{28} \mathrm{H}_{52} \mathrm{NO}_{6} \mathrm{SSi}$ $[\mathrm{M}+\mathrm{H}]^{+} 558.3285$, found 558.3287.


2-((1R,2S,5S)-6-(tert-Butyldimethylsilyloxy)-2-(3,4-dihydro-2H-pyrrol-5-yl)-2-(3-hydroxypropyl)-5-methyl-3-(methylsulfonyloxy)cyclohexyl)ethyl pivalate (270).
$\mathrm{BH}_{3} \cdot \mathrm{DMS}(102 \mu \mathrm{~L}, 1.06 \mathrm{mmol})$ was added to the alkene $(279 \mathrm{mg}, 504 \mu \mathrm{~mol})$ in THF $(5.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The reaction was stirred for 2 h before being warmed to rt and stirred for another 1 h . The reaction was cooled to $0^{\circ} \mathrm{C}$, quenched by the addition of 3 N NaOH $(2.0 \mathrm{~mL})$ and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(1.5 \mathrm{~mL})$ and was allowed to stir at rt overnight. The reaction was extracted with EtOAc and the combined organic layers were dried, filtered, and concentrated to an oily solid. The residue was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and treated with 4-dimethyl aminopyridine ( $610 \mathrm{mg}, 5.01 \mathrm{mmol}$ ) at rt for 7 d before it was filtered, concentrated, and purified via flash column chromatography $\left(\mathrm{SiO}_{2}, 20-40-60 \%\right.$ ethyl acetate in hexanes) to yield a colorless oily solid ( $228 \mathrm{mg}, 79 \%$ ). $\mathrm{R}_{f}=0.24$ ( $50 \%$ EtOAc/hexanes); $[\alpha]_{D}^{24}-18.2$ (c 0.55, $\mathrm{CHCl}_{3}$ ); IR (film) 2956, 2928, 2858, 1744, 1709 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.29(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.96(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.85-3.81(\mathrm{~m}, 2 \mathrm{H})$, 3.68-3.63 (m, 2H), $3.48(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.08(\mathrm{~s}, 1 \mathrm{H}), 3.07(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.81(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.55-2.50$ $(\mathrm{m}, 2 \mathrm{H}), 2.50-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.84(\mathrm{~m}, 7 \mathrm{H}), 1.87-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.36(\mathrm{~m}, 1 \mathrm{H})$, 1.19-1.16 (m, 10H), 0.95-0.91 (m, 15H), $0.06(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 125 MHz , $\mathrm{CDCl}_{3}$ ) ppm 178.4 (2C), 83.6, 72.5, 63.5, 63.0, 59.8, 48.5, 39.3, 38.7, 34.2, 32.9, 32.0, $31.3,30.3,28.1,27.2,26.0,22.3,18.0,17.9,14.2,-3.8,-4.9$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{28} \mathrm{H}_{54} \mathrm{NO}_{7} \mathrm{SSi}[\mathrm{M}+\mathrm{H}]^{+} 576.3390$, found 576.3395 .

(1S,2R,4S)-3-(tert-Butyldimethylsilyloxy)-4-methyl-6-(methylsulfonyloxy)-2-(2-(pivaloyloxy)ethyl)-1',2',3',5',6',7'-hexahydrospiro[cyclohexane-1,8'-indolizin]-4'ium bromide (272).

Bromine ( $25.2 \mu \mathrm{~L}, 493 \mu \mathrm{~mol}$ ) was added to a solution of the alcohol ( $142 \mathrm{mg}, 247 \mu \mathrm{~mol}$ ), $\mathrm{PPh}_{3}(67 \mathrm{mg}, 249 \mu \mathrm{~mol}$ ), and imidazole ( $33.5 \mathrm{mg}, 493 \mu \mathrm{~mol}$ ) in benzene $(8 \mathrm{~mL})$ at rt . After 10 min , the reaction was quenched with satd aq $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and extracted with EtOAc. The combined organic layers were dried, filtered, and concentrated in vacuo to provide a pale yellow oily solid. The crude was dissolved in $\mathrm{CHCl}_{3}(5 \mathrm{~mL})$ and allowed to sit for 1 d (until TLC revealed the disappearance of the primary bromide). The solvent was removed and the resulting crude oil was purified by column chromatography $\left(\mathrm{SiO}_{2}, 80 \%\right.$ ethyl acetate in hexanes then 5-12\% methanol in dichloromethane) to afford the title compound as a colorless oil (120 mg, 76\%). $\mathrm{R}_{f}=0.12\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;[\alpha]_{D}^{24}-21.4$ (c 1.05, $\mathrm{CHCl}_{3}$ ); IR (film) 2956, 2928, 2858, 1744, $1709 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.22(\mathrm{dd}, J=9.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{dd}, J=21.5,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-4.20(\mathrm{~m}$, $2 \mathrm{H}), 4.18(\mathrm{ddd}, J=6.0,6.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{ddd}, J=6.0,6.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J$ $=16.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.75-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.35-3.22(\mathrm{~m}, 1 \mathrm{H})$, 3.01 (br d, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.35-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{ddd}, J=12.5$, $9.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-2.11(\mathrm{~m}, 2 \mathrm{H}), 2.07(\mathrm{ddd}, J=13.5,3.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-1.90(\mathrm{~m}$, $2 \mathrm{H}), 1.82-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}), 0.99(\mathrm{~d}, J=$ $6.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 193.0, 178.3, 78.2, 72.2, 62.9, 62.3, 49.6, 47.4, 45.8, 40.9, 39.1, 38.7, 31.0, 30.4, 29.7, 28.7, 27.1, 25.7, 19.9, 19.0, 17.9, 16.8, -3.7, -5.0; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{28} \mathrm{H}_{53} \mathrm{NO}_{6} \mathrm{SSi}[\mathrm{M}-\mathrm{Br}]^{+}$558.3285, found 558.3292.


## 2-((1S,4S,6R)-5-(tert-Butyldimethylsilyloxy)-4-methyl-2-

(methylsulfonyloxy)hexahydro-1'H-spiro[cyclohexane-1,8'-indolizine]-6-yl)ethyl pivalate (273).
$\mathrm{PtO}_{2}(71.0 \mathrm{mg}, 313 \mu \mathrm{~mol})$ was added to the iminium salt $(91.1 \mathrm{mg}, 143 \mu \mathrm{~mol})$ in MeOH $(4.0 \mathrm{~mL})$ and a balloon atmosphere of hydrogen was administered. After 5 h , the reaction was complete by TLC and was filtered through Celite with MeOH and then concentrated. The crude oil was chromatographed $\left(\mathrm{SiO}_{2}, 5-10 \%\right.$ methanol in dichloromethane) to provide the amine as a colorless oil ( $45.3 \mathrm{mg}, 57 \%) . \mathrm{R}_{f}=0.30\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $[\alpha]_{D}^{24}-11.4\left(c \quad 1.4, \mathrm{CHCl}_{3}\right)$; IR (film) 3396 (br), 2956, 2928, 2858, $1628 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{MeOD}) \delta 5.24(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.14-4.06(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{dd}, J=7.8,3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.09(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.15-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.06(\mathrm{~m}, 1 \mathrm{H}), 2.02(\mathrm{ddd}, J=14.4$, $4.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{ddd}, J=6.6,6.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-1.70(\mathrm{~m}, 12 \mathrm{H}), 1.59(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 1.49 (dddd, $J=13.8,7.2,7.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}), 1.09(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~s}$, 9H), $0.12(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 150 MHz , MeOD) ppm 178.6, 82.0, 71.6, $64.8,63.6,53.1,46.7,42.0,40.9,39.2,31.3,30.2,29.7,27.2,25.9,25.8,25.7,23.7,18.9$ (2C), 18.5, 17.9, -3.6, -4.9 ; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{28} \mathrm{H}_{54} \mathrm{NO}_{6} \mathrm{SSi}[\mathrm{M}+\mathrm{H}]^{+}$ 560.3434, found 560.3441.


1'H-spiro[cyclohexane-1,8'-indolizine]-6-yl methanesulfonate (274).
To a solution of the ester ( $42.2 \mathrm{mg}, 75.0 \mu \mathrm{~mol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-toluene $(1: 1,4.0 \mathrm{~mL})$ at $78{ }^{\circ} \mathrm{C}$ was added DIBAL ( $375 \mu \mathrm{~L}, 375 \mu \mathrm{~mol}, 1.0 \mathrm{M}$ solution in toluene). The reaction was stirred for 30 min before being warmed to $-5^{\circ} \mathrm{C}$ and stirred for 5 h . The reaction was quenched with satd aq $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried, filtered, and concentrated to a pale yellow oil. Column chromatography $\left(\mathrm{SiO}_{2}, 10-15 \%\right.$ methanol in dichloromethane) provided the alcohol as a yellow oil (18.0 $\mathrm{mg}, 54 \%) . \mathrm{R}_{f}=0.11\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;[\alpha]_{D}^{24}-32.1\left(c 0.95, \mathrm{CHCl}_{3}\right)$; IR (film) 3396 (br), 2956, 2928, 2858, $1628 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 4.72(\mathrm{br} \mathrm{d}, J=6.0 \mathrm{~Hz}$ $1 \mathrm{H}), 3.82(\mathrm{br} \mathrm{d}, J=10.8 \mathrm{~Hz} 1 \mathrm{H}), 3.70(\mathrm{~s}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=7.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 3.35-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{~s}, 3 \mathrm{H}), 2.79(\mathrm{br} \mathrm{d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.60$ (br t, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.22-1.85(\mathrm{~m}, 7 \mathrm{H}), 1.72-1.60(\mathrm{~m}, 5 \mathrm{H}), 0.94(\mathrm{~d}$, $J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.88-0.81(\mathrm{~m}, 1 \mathrm{H}), 0.28(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, $\mathrm{CDCl}_{3}$ ) ppm 82.2, 73.4, 65.2, 60.6, 53.0, 46.8, 42.0, 41.4, 40.8, 31.9, 31.3, 31.2, 30.4, 26.0, 22.7, 19.1, 18.0 (2C), 14.1, -3.9, -5.0; HRMS (EI): Exact mass calcd for $\mathrm{C}_{23} \mathrm{H}_{46} \mathrm{NO}_{5} \mathrm{SSi}[\mathrm{M}+\mathrm{H}]^{+} 476.2866$, found 476.2863.


## Ethyl 2-((1S,2S,5S,6S)-2-allyl-6-(tert-butyldimethylsilyloxy)-2-(3,4-dihydro-2H-

 pyrrol-5-yl)-3-hydroxy-5-methylcyclohexyl)acetate (279).To the ketone ( $61.0 \mathrm{mg}, 140 \mu \mathrm{~mol}$ ) in isopropanol $(2.5 \mathrm{~mL})$ at $-3{ }^{\circ} \mathrm{C}$ was added $\mathrm{NaBH}_{4}$ ( $7.40 \mathrm{mg}, 196 \mu \mathrm{~mol}$ ) and the reaction was stirred for 3 h . The reaction was quenched with butyraldehyde ( $20.6 \mu \mathrm{~L}, 240 \mu \mathrm{~mol}$ ), and allowed to warm to rt for 20 min . The reaction mixture was extracted with EtOAc and the combined organic layers were dried, filtered, and concentrated to a pale yellow oil. Column chromatography $\left(\mathrm{SiO}_{2}, 10-15-20-25-30-\right.$ $50-70 \%$ ethyl acetate in hexanes) provided the desired alcohol ( $38.3 \mathrm{mg}, 63 \%$ ), epimeric alcohol ( $12.8 \mathrm{mg}, 21 \%$ ), tricyclic enamide ( $3.0 \mathrm{mg}, 5 \%$ ), and the epimeric tricyclic enamide ( $2.1 \mathrm{mg}, 3 \%$ ).

Data for $\alpha$-alcohol 279
$\mathrm{R}_{f}=0.50(50 \% \mathrm{EtOAc} /$ hexanes $) ;[\alpha]_{D}^{24}-11.4\left(c 1.85, \mathrm{CHCl}_{3}\right) ;$ IR (film) 3358 (br), 2955, 2927, 2855, $1728 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.99-5.91(\mathrm{dddd}, J=18.0,10.8$, 10.8, 6.0 Hz, 1H), 4.83 (d, $J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.06$ (m, $3 \mathrm{H}), 3.77-3.71(\mathrm{~m}, 2 \mathrm{H}), 3.57(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.35(\mathrm{dd}, J=15.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.43(\mathrm{~m}$, $3 \mathrm{H}), 2.21(\mathrm{dd}, J=15.5,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{dd}, J=16.5,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{dd}, J=16.5$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.86-1.65(\mathrm{~m}, 4 \mathrm{H}), 1.57(\mathrm{ddd}, J=13.5,3.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 0.93(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.16(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}),-\mathrm{OH}$ proton not observed; ${ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 183.4, 172.6, 137.9, 114.3, 73.9, 71.6, 60.7, $59.4,50.5,45.5,39.4,34.7,34.1,31.8,31.3,26.0,22.1,18.1,18.0,14.2,-4.0,-5.4$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{24} \mathrm{H}_{44} \mathrm{NO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 438.3040$, found 438.3028 . Data for $\beta$-alcohol 249: $\mathrm{R}_{f}=0.62(50 \% \mathrm{EtOAc} /$ hexanes $) ;[\alpha]_{D}^{24}+65.3\left(c 1.0, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}$ (film) 3385 (br), 2949, 2932, 2862, $1730 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 5.66$ (br s,
$1 \mathrm{H}), 5.49-5.36(\mathrm{~m}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 4.14(\mathrm{dq}, J=10.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dq}, J=10.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.86(\mathrm{~m}, 1 \mathrm{H})$, $3.82-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.33(\mathrm{dd}, J=15.2,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=16.9$, $11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{br} \mathrm{d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.18$ $(\mathrm{dd}, J=16.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{br} \mathrm{d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.70(\mathrm{~m}, 3 \mathrm{H}), 1.50(\mathrm{ddd}, J=$ $14.0,3.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.01-0.88(\mathrm{~m}, 12 \mathrm{H}), 0.19(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}$ ) ppm 183.6, 173.4, 134.4, 116.9, 74.6, 69.4, 60.4, 59.6, 48.0, 44.1, 41.8, 36.3, 33.9, 30.1, 26.0, 25.1, 21.9, 18.3, 18.1, 14.2, -3.9, -5.3; HRMS (EI): Exact mass calcd for $\mathrm{C}_{24} \mathrm{H}_{43} \mathrm{NO}_{4} \mathrm{Si}[\mathrm{M}]^{+} 437.2956$, found 437.2949 .

Data for cyclic enamide 282: See $\mathbf{2 5 0}$ for characterization data

Data for epimeric cyclic enamide. See $\mathbf{2 8 3}$ for characterization data.



## Ethyl 2-((1S,2S,5S)-2-allyl-6-(tert-butyldimethylsilyloxy)-2-(3,4-dihydro-2H-pyrrol-

 5-yl)-5-methyl-3-(methylsulfonyloxy)cyclohexyl) acetate (280).To a solution of the alcohol $(283 \mathrm{mg}, 647 \mu \mathrm{~mol})$ and triethylamine $(198 \mu \mathrm{~L}, 1.42 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added methanesulfonyl chloride $(65.1 \mu \mathrm{~L}, 842 \mu \mathrm{~mol})$. The reaction was stirred for 30 min before it was warmed to rt and stirred for 15 min . The reaction was quenched with satd aq $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried, filtered, and concentrated to a pale yellow oil. Column chromatography ( $\mathrm{SiO}_{2}, 10-20 \%$ ethyl acetate in hexanes) provided the title compound as a pale yellow oil ( $328 \mathrm{mg}, 98 \%$ ) $\mathrm{R}_{f}=0.64(50 \% \mathrm{EtOAc} / \mathrm{hexanes}) ;[\alpha]_{D}^{24}-26.2$ (c 1.45,
$\mathrm{CHCl}_{3}$ ); IR (film) 2956, 2930, 1731, 1343, $1173 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 5.74-5.68 (dddd, $J=16.8,9.9,7.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{dd}, J=12.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J$ $=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-4.01(\mathrm{~m}, 2 \mathrm{H}), 3.77-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.52(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 3.44(\mathrm{br} \mathrm{d}, J=12.6,1 \mathrm{H}), 3.03(\mathrm{~s}, 3 \mathrm{H}), 2.54-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{dd}, J=16.2,7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.31(\mathrm{dd}, J=16.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-1.98(\mathrm{~m}, 3 \mathrm{H}), 1.94(\mathrm{ddd}, J=13.2,4.2,4.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.90-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.98-0.93(\mathrm{~m}$, $12 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 178.2, 172.2, 136.8, $115.5,82.8,73.4,60.7,59.5,48.9,46.5,39.9,39.1,34.5,34.3,32.5,31.1,25.9,22.3$, 17.9, 17.6, 14.1, $-4.1,-5.4$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{25} \mathrm{H}_{46} \mathrm{NO}_{6} \mathrm{SSi}[\mathrm{M}+\mathrm{H}]^{+}$ 516.2815, found 516.2811.


## Ethyl 2-((1S,2S,5S)-6-(tert-butyldimethylsilyloxy)-2-(3,4-dihydro-2H-pyrrol-5-yl)2-(3-hydroxypropyl)-5-methyl-3-(methylsulfonyloxy)cyclohexyl) acetate (281).

$\mathrm{BH}_{3} \cdot \mathrm{DMS}(119 \mu \mathrm{~L}, 1.26 \mathrm{mmol})$ was added to the alkene ( $309 \mathrm{mg}, 601 \mu \mathrm{~mol}$ ) in THF (6.0 mL ) at $0^{\circ} \mathrm{C}$. The reaction was stirred for 2 h before it was warmed to rt and stirred for another 1 h . The reaction was cooled to $0^{\circ} \mathrm{C}$, quenched by the addition of $3 \mathrm{~N} \mathrm{NaOH}(2.4$ $\mathrm{mL})$ and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(1.8 \mathrm{~mL})$ and was allowed to stir at rt overnight. The reaction was extracted with EtOAc and the combined organic layers were dried, filtered, and concentrated to an oily solid. The residue was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 3 mL ) and treated with 4-dimethyl aminopyridine ( $732 \mathrm{mg}, 6.01 \mathrm{mmol}$ ) at rt for 2 d before it was filtered, concentrated, and purified via flash column chromatography $\left(\mathrm{SiO}_{2}, 20-40-60 \%\right.$ ethyl acetate in hexanes) to yield a colorless oily solid ( $141 \mathrm{mg}, 44 \%$ ) in addition to the alkene
$(44.7 \mathrm{mg}, 14 \%) . \mathrm{R}_{f}=0.20(50 \% \mathrm{EtOAc} /$ hexanes $) ;[\alpha]_{D}^{24}-41.1$ (c 0.9, $\mathrm{CHCl}_{3}$ ); IR (film) 2955, 2930, 2856, 1730, 1633, 1336, 1292, $1172 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $5.23(\mathrm{br} \mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dq}, J=11.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dq}, J=10.8,7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.81(\mathrm{brt}, J=6.0,2 \mathrm{H}), 3.61(\mathrm{ddd}, J=9.5,7.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.47$ (ddd, $J=9.5,7.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H}), 2.83(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.58-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.45-2.34$ $(\mathrm{m}, 1 \mathrm{H}), 2.10-2.02(\mathrm{~m}, 3 \mathrm{H}), 1.99(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.94-1.78(\mathrm{~m}, 4 \mathrm{H}), 1.72-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.22$ $(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.19-1.09(\mathrm{~m}, 1 \mathrm{H}), 0.95-0.93(\mathrm{~m}, 12 \mathrm{H}), 0.16(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{CDCl}_{3}$ ) ppm 178.6, 172.4, 83.4, 73.6, 63.4, 60.8, 59.8, 47.6, 39.2, 34.6, $34.2,32.8,31.6,31.4,30.3,29.7,26.0,22.3,18.0,17.7,14.2,-4.0,-5.3$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{25} \mathrm{H}_{48} \mathrm{NO}_{7} \mathrm{SSi}[\mathrm{M}+\mathrm{H}]^{+} 534.2921$, found 534.2910.


## (6aS,7S, 8S, 10R,10aS)-10a-Allyl-7-(tert-butyldimethylsilyloxy)-10-hydroxy-8-methyl-

 2,3,6a,7,8,9,10,10a-octahydropyrrolo[2,1-a]isoquinolin-5-(6H)-one (283).$\mathrm{SiO}_{2}(500 \mathrm{mg})$ was added to the alcohol ( $20.0 \mathrm{mg}, 45.8 \mu \mathrm{~mol}$ ) in EtOAc $(1.0 \mathrm{~mL})$ at rt and the reaction was stirred for 24 h . The reaction was concentrated in vacuo and the residual solid was purified via flash column chromatography $\left(\mathrm{SiO}_{2}, 40-70 \%\right.$ ethyl acetate in hexanes) to afford the desired product as a colorless oil ( $17 \mathrm{mg}, 91 \%$ ). : $\mathrm{R}_{f}=0.12(50 \%$ EtOAc/hexanes); $[\alpha]_{D}^{24}-19.0$ (c 1.0, $\mathrm{CHCl}_{3}$ ); IR (film) 3396 (br), 2956, 2928, 2858, 1628 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.85-5.73(\mathrm{~m}, 1 \mathrm{H}), 5.13-5.03(\mathrm{~m}, 2 \mathrm{H}), 4.84(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 3.96(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.88-3.85(\mathrm{~m}, 2 \mathrm{H}), 3.43(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.82-2.12(\mathrm{~m}, 7 \mathrm{H}), 2.12-1.75(\mathrm{~m}$, $3 \mathrm{H}), 1.70(\mathrm{dd}, J=13.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.09(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.45(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}$,
$3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 165.7, 142.2, 134.1, 118.1, 106.8, 72.8, 68.7, 47.0, 44.4, 43.1, 39.8, 32.9, 29.7, 27.2, 27.0, 26.0, 18.1, 14.1, -4.5, -5.0; HRMS (EI): Exact mass calcd for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{NO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 392.2621$, found 392.2621 .


## (8aR,9R,10S,12S)-9-(tert-Butyldimethylsilyloxy)-10-methyl-7-oxo-

## 1,2,3,5,6,7,8,8a,9,10,11,12-dodecahydrobenzo[e]pyrrolo[3,2,1-ij]quinolin-12-

ylmethanesulfonate (286).
Bromine ( $12.8 \mu \mathrm{~L}, 249 \mu \mathrm{~mol}$ ) was added to a solution of the alcohol ( $66.0 \mathrm{mg}, 124$ $\mu \mathrm{mol}), \mathrm{PPh}_{3}(67 \mathrm{mg}, 249 \mu \mathrm{~mol})$, and imidazole ( $16.9 \mathrm{mg}, 249 \mu \mathrm{~mol}$ ) in benzene $(4 \mathrm{~mL})$ at rt. After 10 min , the reaction was quenched with satd aq $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and extracted with EtOAc. The combined organic layers were dried, filtered, and concentrated in vacuo to provide a pale yellow oily solid. The crude was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and allowed to sit for 2 d (until TLC revealed the disappearance of the primary bromide). $\mathrm{SiO}_{2}$ (500 mg ) was added to the reaction and stirred for 24 h . The solvent was removed and the resulting crude solid was purified by column chromatography $\left(\mathrm{SiO}_{2}, 80 \%\right.$ ethyl acetate in hexanes then $5-12 \%$ methanol in dichloromethane) to afford the vinylogous amide as a pale yellow oil (36 mg, $62 \%) . \mathrm{R}_{f}=0.43\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $[\alpha]_{D}^{24}-45.3(c \quad 0.75$, $\mathrm{CHCl}_{3}$ ); IR (film) 2956, 2928, 2858, 1744, $1709 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $5.23(\mathrm{dd}, J=12.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{ddd}, J=11.5,11.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $3.36-3.25(\mathrm{~m}, 2 \mathrm{H}), 2.93-2.82(\mathrm{~m}, 5 \mathrm{H}), 2.58(\mathrm{ddd}, J=14.5,11.5,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.30$
$(\mathrm{m}, 2 \mathrm{H}), 2.30-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{ddd}, J=12.0,12.0,12.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.86(\mathrm{ddd}, J=12.0,3.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{ddd}, J=9.5,9.5,4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 0.98(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 187.2, 170.6, 180.9, 85.8, 73.3, 54.8, 50.6, 46.8, 39.4, 38.3, 37.3, $32.1,32.0,29.6,28.6,26.0,23.5,20.0,18.1,17.6,-4.1,-5.1$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{NO}_{5} \mathrm{SSi}[\mathrm{M}+\mathrm{H}]^{+}$470.2397, found 470.2392.

A HMBC correlation was observed between the geminal quaternary carbon and geminal methylene protons to the vinylogous amide ketone. Other coupling constants, including the hydrogen adjacent to the TBS

$R=$ mesylate and mesylate, establish the chair conformation of the cyclohexane ring.


## Ethyl 2-((1S,4S,5R,6R)-5-(tert-butyldimethylsilyloxy)-4-methyl-2-

 (methylsulfonyloxy) hexahydro-1'H-spiro[cyclohexane-1,8'-indolizine]-6yl)acetate(291).To a solution of the alcohol $(50.0 \mathrm{mg}, 93.6 \mu \mathrm{~mol})$ and triethylamine $(26.0 \mu \mathrm{~L}, 186 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added methanesulfonyl chloride $(12.4 \mu \mathrm{~L}, 159 \mu \mathrm{~mol})$. The reaction was stirred for 40 min and quenched with satd aq $\mathrm{NH}_{4} \mathrm{Cl}$. This reaction mixture was stirred for 24 h and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried, filtered, and concentrated in vacuo to provide a white solid. The crude iminium salt was dissolved in $\mathrm{MeOH}(2 \mathrm{~mL})$ and the solution was cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{NaBH}_{3} \mathrm{CN}(17.3$
$\mathrm{mg}, 275 \mu \mathrm{~mol}$ ) was added to the solution and the reaction was stirred for 30 minutes. The reaction was poured into $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with satd aq $\mathrm{NaHCO}_{3}$, and then dried, filtered, and concentrated in vacuo to provide a yellow oil. Column chromatography $\left(\mathrm{SiO}_{2}, 80 \%\right.$ ethyl acetate in hexanes then $5-12 \%$ methanol in dichloromethane) furnished the tertiary amine as a yellow oil (47.9 mg, 97\%). $\mathrm{R}_{f}=0.29\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;[\alpha]_{D}^{24}-6.8\left(c 2.35, \mathrm{CHCl}_{3}\right)$; IR (film) 2954, 2927, 2855, 1733, $1252 \mathrm{~cm}^{-1}$; The ${ }^{1} \mathrm{H}$ NMR experiment resulted in poorly resolved, broad peaks, and as a result the amine could not be characterized; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{25} \mathrm{H}_{48} \mathrm{NO}_{6} \mathrm{SSi}[\mathrm{M}+\mathrm{H}]^{+}$518.2972, found 518.2991.

tert-Butyl
2-benzhydryl-6,6-dimethyl-7-oxo-2,6,7,8-tetrahydrobenzo[cd]indole-1carboxylate (448).

A solution of indoline ( $100 \mathrm{mg}, 214 \mu \mathrm{~mol}$ ) and DDQ ( $51.0 \mathrm{mg}, 225 \mu \mathrm{~mol}$ ) in EtOAcbenzene ( $1: 2,2 \mathrm{~mL}$ ) was stirred for 8 hours at $60^{\circ} \mathrm{C}$. The reaction mixture was then cooled to room temperature, diluted with EtOAc, and washed with satd aq $\mathrm{NaHCO}_{3}$, dried, filtered, and concentrated. The resulting yellow residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 5-15 \%\right.$ ether in hexanes) to afford the desired product as a viscous oil ( $59.8 \mathrm{mg}, 60 \%$ ) in addition to $c a .19 .6 \mathrm{mg}$ of the indoline ( $c a .20 \%$ ). $\mathrm{R}_{f}=0.44$ (20\% $\mathrm{Et}_{2} \mathrm{O} /$ hexanes); IR (film) 2973, 2925, 1696, 1655, 1604, 1450, 1396, 1368, 1324, 1211, 1171, $1132 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.29(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 6 \mathrm{H})$,
7.23-7.21 (m, 4H), $7.02(\mathrm{dd}, J=12.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~s}, 2 \mathrm{H}), 1.57(\mathrm{~s}, 9 \mathrm{H}), 1.45(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm $211.1,161.6,139.9,139.8,136.7,128.4$ (2C), 127.4, 126.3, 123.8, 123.6, 118.5, 114.3, $112.2,81.9,62.4,48.1,38.2,28.5,26.3$; HRMS (EI): Exact mass calcd for $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{BrNO}_{3}$ $[\mathrm{M}]^{+} 465.2304$, found 465.2298 .


## 5-Bromo-1,1-dimethylnapthalen-2(1H)-one (463).

To a solution of 5-bromo-1,1-dimethyl-3,4-dihydronapthalen-2(1H)-one (2.62 g, 10.3 $\mathrm{mmol})$ in toluene/DMSO $(2: 1,140 \mathrm{~mL})$ was added IBX ( $11.56 \mathrm{~g}, 41.30 \mathrm{mmol}$ ) and the mixture was stirred at $85^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was then cooled to room temperature, diluted with $\mathrm{Et}_{2} \mathrm{O}$, and washed with $5 \%$ aq $\mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}$, and brine, and then dried, filtered, and concentrated. The resulting yellow residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 5-10 \%\right.$ ethyl acetate in hexanes) to afford the desired product as a yellow oil ( $1.92 \mathrm{~g}, 65 \%$ ). $\mathrm{R}_{f}=0.32$ ( $10 \% \mathrm{EtOAc} /$ hexanes); IR (film) 2973, 2928, 2867, 1664, 1613, 1583, 1551, 1458, 1438, 1385, 1291, 1216, $1197 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 203.3, 149.8, 141.9, 131.0, 130.7, 127.6, 125.5 (2C), 124.6, 47.3, 27.6; HRMS (EI): Exact mass calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{BrO}[\mathrm{M}]^{+} 249.9993$, found 249.9998 .


## 4-(2-Bromophenyl)-1-diazobutan-2-one (464).

To a $0{ }^{\circ} \mathrm{C}$ solution of 3-(2-bromophenyl)propanoic acid ( $8.00 \mathrm{~g}, 34.9 \mathrm{mmol}$ ) in dichloromethane ( 0.5 M ), was added oxalyl chloride ( 5.90 mL , 69.8 mmol ) over 5 minutes. The solution was slowly warmed to room temperature and stirred until complete conversion was achieved, as evidenced by 1H NMR. The solvent was removed in vacuo to give the title compound, which was used without further purification.

The acid chloride ( $8.50 \mathrm{~g}, 34.6 \mathrm{mmol}$ ) in diethyl ether ( 80 mL ) was added dropwise over 20 min to an ethereal diazomethane solution [prepared from N -methyl- N -nitrosourea $(14.24 \mathrm{~g}, 138.2 \mathrm{mmol})]$, at $-40^{\circ} \mathrm{C}$ while stirring under nitrogen. The solution was allowed to warm to room temperature, and it was then stirred for an additional 6 h . The ether and residual diazomethane were evaporated under reduced pressure at room temperature, using a rotary evaporator fitted with an acetic acid trap. The resulting yellow residue was purified by flash column chromatography ( $\mathrm{SiO} 2,15 \%$ ethyl acetate in hexanes) to afford the desired product as a yellow oil (7.76 g, 88\%). $\mathrm{R}_{f}=0.27(20 \% \mathrm{EtOAc} / \mathrm{hexanes}) ; \mathrm{IR}$ (film) $3087,2101,1641 \mathrm{~cm}-1 ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.22(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{~m}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 3.05(\mathrm{t}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{~s}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 193.5, 139.8, 132.8, 130.6, 128.0, 127.61, 124.2, 54.5, 40.5, 31.4; HRMS (EI): Exact mass calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrO}[\mathrm{M}]^{+} 223.9837$, found 223.9839.


## -5-Bromo-3,4-dihydronapthalen-2(1H)-one (466).

The $\alpha$-diazo ketone ( $7.70 \mathrm{~g}, 30.4 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ was added dropwise over 1 h to a refluxing solution of rhodium(II) acetate ( $80 \mathrm{mg}, 180 \mu \mathrm{~mol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~L})$.The reaction was monitored by TLC and was complete once the diazoketone had been added. The solution was cooled, washed with water and satd aq $\mathrm{NaHCO}_{3}$, dried, and concentrated to 500 mL solution. This solution was treated with trifluoroacetic acid (3 mL ) and the solution was stirred for 4 h at room temperature, washed with water and satd aq $\mathrm{NaHCO}_{3}$, and dried. After solvent removal, the red residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 5-10 \%\right.$ ethyl acetate in hexanes) to afford the desired product as a viscous oil ( $4.80 \mathrm{~g}, 70 \%$ ). $\mathrm{R}_{f}=0.30$ ( $10 \% \mathrm{EtOAc} /$ hexanes ); IR (film) 2960, 2923, 1705, 1393, $1301 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.45(\mathrm{dd}, J=6.0,3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.04(\mathrm{~m}, 2 \mathrm{H}), 3.57(\mathrm{~s}, 2 \mathrm{H}), 3.20(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{CDCl}_{3}$ ) ppm 211.1, 136.1, 135.3, 130.9, 128.1, 127.5, 123.7, 45.0, 37.6, 28.0; HRMS (EI): Exact mass calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrO}[\mathrm{M}]^{+}$223.9837, found 223.9840.


## 5-Bromo-1,1-dimethyl-3,4-dihydronapthalen-2(1H)-one (472).

To a $0^{\circ} \mathrm{C}$ solution of $\beta$-tetralone ( $800 \mathrm{mg}, 4.36 \mathrm{mmol}$ ) in tert-butanol $(7 \mathrm{~mL})$, was added potassium tert-butoxide ( $480 \mathrm{mg}, 4.28 \mathrm{mmol}$ ) in small portions over 10 minutes. The
reaction was stirred for 10 minutes at $0^{\circ} \mathrm{C}$, and methyl iodide ( $357 \mu \mathrm{~L}, 7.14 \mathrm{mmol}$ ) in THF ( 1 mL ) was added to the solution. The reaction was allowed to warm to room temperature and the reaction stirred for 2 h at room temperature. MeI $(268 \mu \mathrm{~L}, 5.36$ mmol ) in THF ( 1 mL ) was added to the solution and the reaction stirred for another 6 h at room temperature. The reaction was quenched with satd aq $\mathrm{NH}_{4} \mathrm{Cl}$, the layers were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with water, dried, filtered, and concentrated. The resulting red residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 5-10 \%\right.$ ethyl acetate in hexanes) to afford the dimethylated product as a colorless oil ( $634 \mathrm{mg}, 71 \%$ yield). $\mathrm{R}_{f}=0.34(10 \%$ EtOAc/hexanes); IR (film) 2971, 2929, 2867, 1716, 1560, 1461, $1301 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45(\mathrm{dd}, J=8.0,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 213.7, 146.1, 134.6, 130.7, 128.3, 125.6, 124.4, 47.7, 36.5, 28.7, 27.2; HRMS (EI): Exact mass calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{BrO}[\mathrm{M}]^{+} 252.0150$, found 252.0144.

tert-Butyl 2-(8-bromo-4,4-dimethyl-3-oxo-1,2,3,4-tetrahydronaphthalen-1-yl)-2(diphenylmethyleneamino)acetate (473).

The enone ( $50.0 \mathrm{mg}, 199 \mu \mathrm{~mol}$ ), Schiff base ( $88.0 \mathrm{mg}, 119 \mu \mathrm{~mol}$ ), and benzyl triethyl ammonium chloride ( 13.6 mg , $59.6 \mu \mathrm{~mol}$ ) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL}) .50 \% \mathrm{KOH}$ $(140 \mu \mathrm{~L})$ was then added and the mixture was stirred vigorously for 8 h . The reaction
mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the organic layer was separated, washed with water, dried $\left(\mathrm{NaSO}_{4}\right)$, filtered, and concentrated. Flash column chromatography $\left(\mathrm{SiO}_{2}, 5-\right.$ $15 \%$ ether in hexanes) of the resulting oil furnished the desired Michael adduct as a white solid $(85.4 \mathrm{mg}, 79 \%)$ in addition to $c a .6 .1 \mathrm{mg}$ of the enone ( $c a .12 \%$ ). A single diastereomer was detected by ${ }^{1} \mathrm{H}$ NMR. mp 172-174 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.20$ ( $20 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes ); IR (film) 3059, 2976, 2918, 2849, 1719, 1623, 1447, 1368, 1266, $1152 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~m}, 2 \mathrm{H})$, 7.28-7.21 (m, 5H), $7.15(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.50(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.41(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 210.9, 172.5, 169.1, 148.5, 138.8, 136.2, 133.6, 130.9, 130.4, 130.1, 129.5, 128.7, 128.2 (2C), 127.7, 127.1, 126.9, 124.8, 81.7, 67.8, 47.0, 44.1, 38.2, 33.5, 29.7, 28.1, 25.7; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{BrNO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$568.1463, found 568.1440.


## tert-Butyl 1-benzhydryl-5,5-dimethyl-4-oxo-1,2,2a,3,4,5-hexahydrobenzo[cd]indole-

 2-carboxylate (474).To a refluxing $\left(90^{\circ} \mathrm{C}\right)$ benzene $(12 \mathrm{~mL})$ solution of the ketimine $(65.0 \mathrm{mg}, 119 \mu \mathrm{~mol})$ and ${ }^{n} \mathrm{Bu}_{3} \mathrm{SnH}(34.1 \mu \mathrm{~L}, 125 \mu \mathrm{~mol})$ was added AIBN $(23.6 \mathrm{mg}, 143 \mu \mathrm{~mol})$ and ${ }^{n} \mathrm{Bu}_{3} \mathrm{SnH}$ (34.1 $\mu \mathrm{L}, 125 \mu \mathrm{~mol})$ dissolved separately in benzene ( 1 mL ) via a syringe pump over 4 h . The solution was stirred for an additional 6 h at $90^{\circ} \mathrm{C}$ and the solvent was removed in
vacuo. The residue was treated with a $1: 1(\mathrm{v} / \mathrm{v})$ solution of $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ and satd aq $\mathrm{KF},{ }^{6}$ and the mixture was stirred vigorously until a white solid precipitated. The organic layer was washed with water, dried $\left(\mathrm{NaSO}_{4}\right)$, filtered, and concentrated. The resulting white residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 15 \%\right.$ ether in hexanes) to afford the product as a viscous oil ( $36 \mathrm{mg}, 66 \%$ ) in addition to $c a .8 .5 \mathrm{mg}$ of the aryl bromide (ca. 13\%). The indoline was characterized as a 5:3 ratio of diastereomers ( ${ }^{1} \mathrm{H}$ $\mathrm{NMR}) . \mathrm{R}_{f}=0.33$ (20\% $\mathrm{Et}_{2} \mathrm{O} /$ hexanes $)$; IR (film) 2975, 2927, 2855, 1730, 1711, 1596, $1454,1367,1276,1238,1217,1150 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.20(\mathrm{~m}, 12 \mathrm{H}), 6.96-6.90(\mathrm{~m}$, $2 \mathrm{H}), 6.63(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{~s}, 1 \mathrm{H}), 5.55(\mathrm{~s}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=9.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.89(\mathrm{ddd}, J=11.0,11.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{ddd}, J=11.0,11.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.91$ $(\mathrm{dd}, J=15.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=15.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{dd}, J=16.0,12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.43(\mathrm{dd}, J=16.0,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}), 1.36(\mathrm{~s}$, $3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 214.2, 213.5, 171.6, $169.3,149.7,149.6,142.6,140.5$ (2C), 139.8, 139.5, 139.0, 130.4, 129.5, 129.4, 129.1, 128.8, 128.7, 128.4, 128.3, 127.6 (2C), 127.4, 127.0, 126.7, 126.4, 125.9, 114.8, 114.7, $107.7,107.6,81.8,81.6,74.3,70.7,67.9,67.1,46.9,46.5,42.9,40.9,40.0,38.5,28.0$ (2C), 27.3, 26.9, 26.3, 24.6; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{31} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 490.2358, found 490.2376.

[^5]

## $N$-(Diphenylmethylene)-2,2-dimethylbut-3-en-1-amine (478).

To an anhydrous solution of benzene ( 18 mL ) and crushed $4 \AA$ molecular sieves were added the amine ( $501 \mathrm{mg}, 1.88 \mathrm{mmol}$ ) and DDQ ( $430 \mathrm{mg}, 1.88 \mathrm{mmol}$ ). The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 1 h . The deep red solution became light orange over the course of the reaction. The solution was cooled to room temperature and quickly filtered through a pad of neutral alumina. The filtrate was concentrated and the resulting red residue was column chromatographed $\left(\mathrm{Al}_{2} \mathrm{O}_{3}, 0-5 \%\right.$ diethyl ether in hexanes) to afford the desired product as a pale yellow oil ( $230 \mathrm{mg}, 45 \%$ ). $\mathrm{R}_{f}=0.52\left(10 \% \mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $)$; IR (film) 3080, 3059, 3023, 2996, 2958, 2925, 2854, 1626, 1463, 1445, 1376, 1313, 1287 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.66(\mathrm{dd}, J=7.5,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-7.43(\mathrm{~m}, 3 \mathrm{H})$, 7.40-7.18 (m, 3H), $7.15(\mathrm{dd}, J=7.5,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.97(\mathrm{dd}, J=17.5,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.93$ $(\mathrm{dd}, J=17.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{dd}, J=11.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{~s}, 2 \mathrm{H}), 1.04(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{CDCl}_{3}$ ) ppm 167.7, 147.5, 140.2, 137.0, 129.7, 128.4 (2C), 128.2, 128.0 (2C), 110.8, 64.3, 38.8, 25.2; HRMS (EI) Exact mass calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}[\mathrm{M}]^{+}$ 263.1674, found 263.1669 .


## $N$-Benzhydryl-2, 2-dimethylbut-3-enamide (483).

The acid (3.00 g, 17.5 mmol$), 1,3$-dicyclohexylcarbodiimide (DCC) ( $3.98 \mathrm{~g}, 19.3 \mathrm{mmol}$ ), and 1-hydroxybenzotriazole (HOBT) (2.61 g, 19.3 mmol ) were dissolved in
dichloromethane ( 1 M ). Benzhydrylamine ( $3.02 \mathrm{~mL}, 17.5 \mathrm{mmol}$ ) was added to the solution, and the mixture was stirred at room temperature for 36 h . The reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and filtered off through a pad of celite. The organic layer was washed with 1 M HCl , brine, and 1 M sodium bicarbonate, then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. The crude material was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 0-15 \%\right.$ ethyl acetate in hexanes) to give the product as a colorless oil (4.15 g, 85\%). $\mathrm{R}_{f}=0.32$ ( $20 \% \mathrm{EtOAc} /$ hexanes); IR (film) 3307, 3025, 2978, 1646, 1635, 1523, 1494, $1450 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.33(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H})$, $7.27(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 6.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{dd}, J=17.5,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.29-5.23(\mathrm{~m}, 2 \mathrm{H}), 1.34(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 174.9, 143.2, 141.6, 128.6, 127.4, 127.2, 114.9, 56.8, 45.4, 24.6; HRMS (EI) Exact mass calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}[\mathrm{M}]^{+} 279.1623$, found 279.1616.


## $N$-Benzhydryl-2,2-dimethylbut-3-en-1-amine (484).

To a $0{ }^{\circ} \mathrm{C}$ solution of $\mathrm{LiAlH}_{4}(1.73 \mathrm{~g}, 45.1 \mathrm{mmol})$ in tert-butyl methyl ether $(150 \mathrm{~mL})$ was added the amide ( $3.15 \mathrm{~g}, 11.3 \mathrm{mmol}$ ) in tert-butyl methyl ether ( 50 mL ) dropwise over 20 minutes. The solution was stirred for 9 h at $55^{\circ} \mathrm{C}$. The reaction was quenched with sequential addition of $\operatorname{NaF}(7.58 \mathrm{~g}, 180.5 \mathrm{mmol})$ and water $(2.44 \mathrm{~mL}, 135.4 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$, and stirring was continued for an additional 1 h . The resulting gray precipitate was filtered off through a pad of Celite, and the filtrate was concentrated. The resulting oil was column chromatographed $\left(\mathrm{SiO}_{2}, 0-5 \%\right.$ ethyl acetate in hexanes) to afford the title
compound as a colorless oil ( $2.86 \mathrm{~g}, 96 \%$ ). $\mathrm{R}_{f}=0.52$ ( $10 \% \mathrm{EtOAc} / \mathrm{hexanes}$ ); IR (film) 3082, 3061, 3025, 2958, 2928, 2902, 2868, 2810, 1492, $1452 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.44(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.33(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.24(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.84$ (dd, $J=17.5,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.07-5.03(\mathrm{~m}, 2 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 2 \mathrm{H}), 1.49(\mathrm{~s}, 1 \mathrm{H})$, $1.10(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 146.9, 144.6, 128.4, 127.2, 126.8, 112.0, 67.9, 58.7, 37.8, 25.2; HRMS (EI) Exact mass calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}[\mathrm{M}]^{+} 265.1830$, found 265.1825.


## 3,3-Dimethyl-4-nitrobutanenitrile (485).

To a solution of isomeric nitriles ( $3.70 \mathrm{~g}, 45.6 \mathrm{mmol}$ ) in nitromethane ( $55.7 \mathrm{~g}, 912 \mathrm{mmol}$ ) was added DBU $(1.39 \mathrm{~g}, 9.10 \mathrm{mmol})$ and the reaction was stirred at $103{ }^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was cooled concentrated in vacuo. To the resulting residue, dichloromethane $(30 \mathrm{~mL})$ and $5 \%$ sulfuric acid $(30 \mathrm{~mL})$ were added and the solution was stirred for 30 minutes. The reaction was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic layers were dried, filtered, and concentrated. Column chromatography $\left(\mathrm{SiO}_{2}, 20 \%\right.$ ethyl acetate in hexanes) furnished the title product as a colorless oil ( $6.1 \mathrm{~g}, 87 \%$ ). $\mathrm{R}_{f}=0.22$ (20\% EtOAc/hexanes); IR (film) 2974, 2940, 2246, 1553, 1472, $1379 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 4.36(\mathrm{~s}, 2 \mathrm{H}), 2.55(\mathrm{~s}, 2 \mathrm{H}), 1.21(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz , $\mathrm{CDCl}_{3}$ ) ppm 116.7, 83.4, 34.5, 28.3, 24.8; HRMS (EI): Exact mass calcd for $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}$143.0742, found 143.0815 .


## 5-Bromo-1,1-dimethyl-4-(nitromethyl)-3,4-dihydronapthalen-2(1H)-one (489).

To a solution of enone ( $38.0 \mathrm{mg}, 152 \mu \mathrm{~mol}$ ) in nitromethane ( $164 \mu \mathrm{~L}, 3.04 \mathrm{mmol}$ ) was added DBU $(22.7 \mu \mathrm{~L}, 152 \mu \mathrm{~mol})$ and the reaction was stirred at $70^{\circ} \mathrm{C}$ for 1.5 h . The reaction was quenched with satd aq $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried, filtered, and concentrated. Column chromatography ( $\mathrm{SiO}_{2}$, $20 \%$ ethyl acetate in hexanes) furnished the ketone as a yellow solid ( $46.5 \mathrm{mg}, 97 \%$ ). $\mathrm{R}_{f}=$ 0.33 (20\% EtOAc/hexanes); mp 112-114 ${ }^{\circ} \mathrm{C}$; IR (film) 2972, 2929, 1717, 1552, 1461, $1280 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54(\mathrm{dd}, J=8.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=$ $8.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{dd}, 8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{ddd}, J=13.2,3.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.50$ (dddd, $J=11.2,5.6,2.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=13.6,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{ddd}, J=$ $14.0,6.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=14.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}$ ) ppm 211.2, 147.6, 131.7, 130.9, 130.1, 127.2, 124.4, 76.1, 47.5, 39.3, 38.9, 30.3, 29.7; HRMS (EI): Exact mass calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{BrNO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 312.0235, found 312.0220.


## 2-(5-Bromo-2-hydroxy-1,1-dimethyl-1,2-dihydronaphthalen-2-yl)-3,3-dimethylpent-

 4-enoic acid (491).To a $-78{ }^{\circ} \mathrm{C}$ solution of diisopropylamine $(137 \mu \mathrm{~L}, 0.98 \mathrm{~mol})$ in THF $(500 \mu \mathrm{~L})$ was added ${ }^{n} \mathrm{BuLi}(391 \mu \mathrm{~L}, 2.5 \mathrm{M}$ solution in THF, 0.98 mol , ) dropwise over 3 mins and the mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 mins and at $0^{\circ} \mathrm{C}$ for additional 20 mins . After return of the reaction to $-78{ }^{\circ} \mathrm{C}$, enone ( $50.0 \mathrm{mg}, 0.39 \mathrm{mmol}$ ) in THF ( $150 \mu \mathrm{~L}$ ) was added dropwise over 5 mins. The solution was stirred at $-78^{\circ} \mathrm{C}$ for 30 mins and at $0{ }^{\circ} \mathrm{C}$ for additional 20 mins. The reaction was quenched with satd aq $\mathrm{NH}_{4} \mathrm{Cl}$, the layers were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 20-40-60-80 \%\right.$ ethyl acetate in hexanes) to afford the acid as a pale yellow oil $(37.0 \mathrm{mg}, 50 \%)$ in addition to the enone ( $21.0 \mathrm{mg}, 42 \%$ ). The acid was characterized as a $6.5: 1$ ratio of diastereomers by ${ }^{1} \mathrm{H}$ NMR. $\mathrm{R}_{f}=0.15(80 \%$ EtOAc/hexanes); IR (film) 3418, 2966, 2926, 2853, 1714, $1454 \mathrm{~cm}^{-1}$.

Data for major diastereomer: ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41$ (dd, $J=7.8,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.20(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.92(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{dd}, J=18.0,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.85(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 180.7, 149.0, 146.2, 138.1, 131.4, 130.9, 129.0, 127.1, 123.5, $122.4,110.1,79.3,53.0,46.7,39.9,29.7,25.1,24.5,19.7$; Exact mass calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{BrO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 401.0728$, found 401.0718.

tert-Butyl 5,5-dimethyl-4-oxo-1,2,2a,3,4,5-hexahydrobenzo[cd]indole-2-carboxylate (493).

To a solution of indoline ( $320 \mathrm{mg}, 653 \mu \mathrm{~mol}$ ) in cyclohexene ( 7 mL ) and ethanol ( 7 mL ) was added aq 1 N HCI ( 0.65 mL ) and $10 \% \mathrm{Pd} / \mathrm{C}(320 \mathrm{mg})$. The reaction was stirred at 80 ${ }^{\circ} \mathrm{C}$ for 8 h and quenched with triethylamine $(5 \mathrm{~mL})$. The reaction was filtered through a pad of $\mathrm{SiO}_{2}$ and the solution was concentrated. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-\right.$ $15 \%$ ethyl acetate in hexanes) of the resulting oil furnished the disubstituted amine as a light yellow oil ( $152 \mathrm{mg}, 72 \%$ ). The product was characterized as $5: 3$ ratio of diastereomers. $\mathrm{R}_{f}=0.28$ (20\% EtOAc/hexanes); IR (film) 3328, 2957, 2924, 2853, 1707 (br), 1457, 1368, 1253, $1155 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.13-7.09(\mathrm{~m}, 2 \mathrm{H})$, 6.72-6.69 (m, 2H), $6.62(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=10.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.38(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.29(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.88(\mathrm{~m}, 1 \mathrm{H})$, $3.66(\mathrm{ddd}, J=11.2,11.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{dd}, J=16.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=14.4$, $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{dd}, J=16.0,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{dd}, J=14.0,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.53(\mathrm{~s}$, $9 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 214.2, 213.6, 171.6, 170.8, 149.1, 147.6, 140.5, 140.3, 129.5, 126.5, $125.2,115.7,115.6,107.8,107.6,82.6,82.2,70.5,65.0,46.8,46.7,43.1,41.4,39.9,39.1$, 28.2, 28.1, 26.9, 26.8, 25.9, 24.5; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}_{3}$ [M$\left.\mathrm{C}_{4} \mathrm{H}_{7}\right]^{+}$246.1130, found 246.0760.

tert-Butyl 6,6-dimethyl-7-oxo-2,6,7,8-tetrahydrobenzo[cd] indole-2-carboxylate (494). A solution of indoline $(152 \mathrm{mg}, 469 \mu \mathrm{~mol})$ and $\operatorname{DDQ}(117 \mathrm{mg}, 515 \mu \mathrm{~mol})$ in toluene $(7.5$ mL ) was stirred for 2 h at $80^{\circ} \mathrm{C}$. The reaction mixture was filtered through a pad of $\mathrm{SiO}_{2}$ and the solution was concentrated. The resulting yellow residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 5-15 \%\right.$ ether in hexanes) to afford the desired indole as a viscous oil (107 mg, 71\%). $\mathrm{R}_{f}=0.36$ (20\% EtOAc/hexanes); IR (film) 3332, 2962, 2926, 2854, 1702 (br), $1455,1159 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.98$ (br s, 1H), 7.34 $(\mathrm{dd}, J=7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~s}, 2 \mathrm{H})$, $1.64(\mathrm{~s}, 9 \mathrm{H}), 1.53(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{CDCl}_{3}$ ) ppm 210.7, 161.6, 139.9, 133.9, 127.2, 124.6, 122.7, 115.6, 114.5, 109.4, 82.0, 62.4, 48.1, 36.9, 28.4, 26.2; HRMS (EI): Exact mass calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3}[\mathrm{M}]^{+}$299.1521, found 299.1432.

tert-Butyl 4-(tert-butyldimethylsilyloxy)-5,5-dimethyl -1,5-dihydrobenzo[cd]indole-

## 2-carboxylate (495).

To a $0{ }^{\circ} \mathrm{C}$ solution of indole $(16.0 \mathrm{mg}, 49.7 \mu \mathrm{~mol})$ and $\mathrm{Et}_{3} \mathrm{~N}(20.7 \mu \mathrm{~L}, 149 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.8 \mathrm{~mL})$ was added TBSOTf $(12.5 \mu \mathrm{~L}, 54.7 \mu \mathrm{~mol})$ dropwise over 2 minutes. The reaction was allowed to warm to room temperature and the reaction stirred for 2 h at rt . The reaction was quenched with satd aq $\mathrm{NH}_{4} \mathrm{Cl}$, the layers were separated, and the
aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried, filtered, and concentrated. The resulting orange residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 5-10 \%\right.$ ethyl acetate in hexanes) to afford the monosilylated product as a colorless oil ( $17.6 \mathrm{mg}, 81 \%$ ) in addition to ( $4.7 \mathrm{mg}, 17 \%$ ) of disilylated product

## Data for monosilylated product (495):

$\mathrm{R}_{f}=0.54$ (20\% EtOAc/hexanes); IR (film) 3333, 2925, 2855, 1733, 1456, $1136 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 8.20(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.28(\mathrm{dd}, J=8.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~s}, 1 \mathrm{H}), 1.64(\mathrm{~s}, 9 \mathrm{H}), 1.51(\mathrm{~s}, 6 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H})$, $0.33(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, $\mathrm{CDCl}_{3}$ ) ppm 163.5, 162.4, 142.2, 134.5, 127.3, 123.4, 119.3, 118.9, 114.8, 108.0, 97.1, 80.9, 41.9, 29.7, 28.6, 25.8, 18.3, -4.5; HRMS (EI): Exact mass calcd for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{NO}_{3} \mathrm{Si}[\mathrm{M}]^{+} 413.2386$, found 413.2373.

## Data for disilylated product (496)

$\mathrm{R}_{f}=0.70$ (20\% EtOAc/hexanes); IR (film) 2955, 2929, 2857, 1701, $1135 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.21(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dd}, J=5.2$, $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 9 \mathrm{H}), 1.50(\mathrm{~s}, 6 \mathrm{H}), 1.15(\mathrm{~s}, 9 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}), 0.43(\mathrm{~s}$, $6 \mathrm{H}), 0.33(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 163.0, 162.6, 141.9, 141.6, 126.0, $125.9,125.4,122.8,115.1,112.5,97.4,80.4,41.7,29.8,28.7,27.9,25.8,20.1,18.3$, -$0.41,-4.5$; HRMS (EI): Exact mass calcd for $\mathrm{C}_{30} \mathrm{H}_{49} \mathrm{NO}_{3} \mathrm{Si}_{2}[\mathrm{M}]^{+} 527.3251 .{ }^{7}$

[^6]

## 6,6-Dimethyl-7-oxo-2,6,7,8-tetrahydrobenzo[ $c d]$ indole-2-carboxylic acid (498).

To a solution of trifluoroacetic acid ( $244 \mu \mathrm{~L}, 3.17 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was added the indoline $(51.0 \mathrm{mg}, 158 \mu \mathrm{~mol})$ and the reaction was stirred for 8 h at rt . The reaction was quenched with satd aq $\mathrm{NH}_{4} \mathrm{Cl}$, the layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried, filtered, and concentrated to afford the carboxylic acid as a red oil ( $41.9 \mathrm{mg}, 100 \%$ ). $\mathrm{R}_{f}=$ 0.42 (50\% EtOAc/hexanes); IR (film) 3306 (br), 2973, 2929, 1691, 1461, $1124 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.31-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~s}, 2 \mathrm{H}), 1.48$ $(\mathrm{s}, 6 \mathrm{H}),-\mathrm{NH}$ and -COOH peaks not observed; ${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{ppm}$ 212.8, 164.9, 140.7, 136.2, 128.1, 125.4, 123.0, 117.3, 115.0, 110.9, 49.3, 37.9, 26.6; HRMS (EI): Exact mass calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{ClNO}_{3}[\mathrm{M}+\mathrm{HCl}]^{+} 279.0662$, found 279.0612.

(2R, 2aR)-tert-Butyl 1-benzhydryl-4-(tert-butyldimethylsilyloxy)-5,5-dimethyl,1,2,2a,5-tetrahydrobenzo[ $c d]$ indole-2-carboxylate (S1).

To a $0{ }^{\circ} \mathrm{C}$ solution of indoline ( $48.0 \mathrm{mg}, 98.1 \mu \mathrm{~mol}$ ) and $\mathrm{Et}_{3} \mathrm{~N}(41.0 \mu \mathrm{~L}, 294 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was added TBSOTf $(49.5 \mu \mathrm{~L}, 216 \mu \mathrm{~mol})$ dropwise over 2 minutes. The reaction was allowed to warm to room temperature and stirred for 2 h . The reaction was quenched with satd aq $\mathrm{NH}_{4} \mathrm{Cl}$, the layers were separated, and the aqueous layer was
extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 5-10 \%\right.$ ethyl acetate in hexanes) to afford the title product as a light yellow oil ( $20.5 \mathrm{mg}, 36 \%$ ) in addition to the indoline ( $28.1 \mathrm{mg}, 59 \%$ ). Single diastereomers of the silylated product and recovered indoline were detected respectively by ${ }^{1} \mathrm{H}$ NMR. $\mathrm{R}_{f}=0.60$ ( $20 \%$ EtOAc/hexanes); IR (film) 2954, 2929, 2857, 1742, 1646, $1456,1216 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 6 \mathrm{H}), 6.89(\mathrm{ddd}, J=7.8,7.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.90(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{~s}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.83(\mathrm{dd}, J=12.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 0.20$ (s, 3H), 0.18(s, 3H); ${ }^{13} \mathrm{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 172.3, 159.2, 149.4, 141.3, 141.0, 139.1, 130.9, 128.5 (2C), 128.4, 128.2, 128.1, 127.9, 127.4, 127.1, 114.5, 106.7, 98.9, 80.8, 74.3, 68.2, 42.5, 40.2, 28.5, 28.1, 25.7, 24.1, 18.3, -4.3, -4.9; HRMS (EI): Exact mass calcd for $\mathrm{C}_{37} \mathrm{H}_{47} \mathrm{NO}_{3} \mathrm{Si}[\mathrm{M}]^{+} 581.3325$, found 581.3280.


## 3-Methylbut-2-en-1-yl 1-benzhydryl-5,5-dimethyl-4-oxo-1,3,4,5-

## tetrahydrobenzo[ $c d]$ indole-2-carboxylate (505).

A solution of indoline $(100 \mathrm{mg}, 209 \mu \mathrm{~mol})$ and $\mathrm{DDQ}(66.0 \mathrm{mg}, 292 \mu \mathrm{~mol})$ in toluene $(5.0$ mL ) was stirred for 3 h at $80^{\circ} \mathrm{C}$. The reaction mixture was filtered through a pad of $\mathrm{SiO}_{2}$ and the solution was concentrated. The resulting yellow residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 5-15 \%\right.$ ether in hexanes) to afford the desired product as a
viscous oil (48.0 mg, 48\%). $\mathrm{R}_{f}=0.54$ ( $20 \% \mathrm{EtOAc} /$ hexanes); IR (film) 3061, 3029, 2976, 2928, 1707, 1659, 1448, 1278, $1176 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.27(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 7.32-7.27 (m, 6H), 7.20-7.18 (m, 4H), 7.02 (dd, $J=8.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.47$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{ddq}, J=7.2,7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 4.09(\mathrm{~s}, 2 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 211.0, 162.4, 140.0, 139.8, 139.2, 137.6, 137.0, 132.4, 130.1, 128.5, 128.4, 128.3, $127.5,126.7,123.6,122.5,119.5,118.4,114.4,112.2,62.7,61.6,48.2,38.1,29.7,26.3$, 25.8, 18.2; Exact mass calcd for $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{NO}_{3}[\mathrm{M}]^{+} 477.2332$, found 477.2305 .


## 3-Methylbut-2-enyl 2-(diphenylmethyleneamino)acetate (506).

To a solution of bromo acetate ( $2.40 \mathrm{~g}, 11.6 \mathrm{mmol}$ ), imine $(2.21 \mathrm{~g}, 12.2 \mathrm{mmol})$ in acetonitrile ( 15 mL ) was added diisopropyl ethylamine ( $2.03 \mathrm{~mL}, 11.6 \mathrm{mmol}$ ) and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 10 h . The reaction mixture was then cooled to room temperature and diluted with $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Et}_{2} \mathrm{O}$. The layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography (basic alumina, 5-10\% ethyl acetate in hexanes) to afford the Schiff base as a colorless oil ( $2.65 \mathrm{~g}, 74 \%$ ). $\mathrm{R}_{f}=0.22$ (basic alumina, $10 \% \mathrm{EtOAc} /$ hexanes); IR (film) 3057, 3024, 2972, 2933, 1742, 1626, $1174 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 7.67-7.66 (m, 2H), 7.47-7.43 (m, 3H), 7.40 (dddd, $J=7.2,7.2,1.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-$ $7.32(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.17(\mathrm{~m}, 2 \mathrm{H}), 5.35(\mathrm{tq}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $4.21(\mathrm{~s}, 2 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 171.8, 170.6,
$139.3,139.2,136.0,130.4,128.7,128.6,128.0,127.6,118.4,62.0,55.6,25.7,18.0$;
HRMS (EI): Exact mass calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 330.1470$, found 333.1466.


3-Methylbut-2-enyl 2-bromoacetate (507).
To a solution of alcohol ( $3.02 \mathrm{~mL}, 29.7 \mathrm{mmol}$ ), triethylamine ( $3.73 \mathrm{~mL}, 26.7 \mathrm{mmol}$ ) and 4-dimethyl aminopyridine ( $363 \mathrm{mg}, 2.97 \mathrm{mmol}$ ) in benzene ( 40 mL ) was added acyl bromide ( 0.65 mL ) and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was then cooled to room temperature, filtered through a pad of $\mathrm{SiO}_{2}$, and the solution was concentrated. Flash column chromatography $\left(\mathrm{SiO}_{2}, 0-5 \%\right.$ ethyl acetate in hexanes) of the resulting oil furnished the ester as a light colorless oil ( $6.0 \mathrm{~g}, 78 \%$ ). Analytical data was identical to that in the literature.


## 3-Methylbut-2-enyl 2-(8-bromo-4,4-dimethyl-3-oxo-1,2,3,4-tetrahydronaphthalen-1-

 yl)-2-(diphenylmethyleneamino)acetate (508).The enone ( $382 \mathrm{mg}, 1.53 \mathrm{mmol}$ ), Schiff base ( $940 \mathrm{mg}, 3.06 \mathrm{mmol}$ ), and benzyl triethyl ammonium chloride ( $87.0 \mathrm{mg}, 0.38 \mathrm{mmol}$ ) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 5.0 mL ). $25 \% \mathrm{aq}$ $\mathrm{KOH}(2.5 \mathrm{~mL})$ was then added and the mixture was stirred vigorously for 14 h . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the organic layer was separated, washed with water, dried, filtered, and concentrated. Flash column chromatography $\left(\mathrm{SiO}_{2}, 5-15 \%\right.$
ethyl acetate in hexanes) of the resulting oil furnished the Michael adduct as a colorless oil ( $596 \mathrm{mg}, 70 \%$ ) in addition to the enone ( $68.0 \mathrm{mg}, 17.1 \%$ ). The Michael adduct was chararacterized as a 5:4 ratio of diastereomers by ${ }^{1} \mathrm{H}$ NMR. $\mathrm{R}_{f}=0.38(20 \%$ EtOAc/hexanes); IR (film) 2974, 2931, 2911, 1734, 1717, $1180 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{dd}, J=$ $7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.23(\mathrm{~m}$, $5 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.11(\mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{br} \mathrm{d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.33$ (br s, 2H), 5.35 (ddq, $J=7.2,7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{ddq}, J=7.2,7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.68$ $(\mathrm{dd}, J=12.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.63-4.61(\mathrm{~m}, 3 \mathrm{H}), 4.56(\mathrm{dd}, J=12.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{ddd}$, $J=6.6,1.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{ddd}, J=5.4,5.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.04-2.95 (m, 4H), 1.76 (s, 6H), 1.70 (s, 6H), 1.36 (s, 3H), 1.30 (s, 3H), 1.15 (s, 3H), 0.91 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{CDCl}_{3}$ ) ppm 212.2, 211.1, 173.0, 170.2, 170.0, 169.9, $148.4,147.4,139.1$ (2C), 139.0, 138.5, 135.9, 135.6, 134.1, 133.3, 130.9, 130.5, 130.3, 129.6, 129.3, 128.8, 128.7, 128.6 (2C), 128.4, 128.3, 128.2, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 127.1, 126.9, 126.8, 125.1, 124.9, 118.4 (2C), 69.7, 67.3, 62.2, 62.1, 47.3, 47.0, 43.8, 43.2, 39.2, 38.2, 33.5, 32.2, 25.7 (2C), 25.6, 25.0, 18.1 (2C); HRMS (ESI): Exact mass calcd for $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{BrNO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 558.1638$, found 558.1627.


## 3-Methylbut-2-enyl 1-benzhydryl-5,5-dimethyl-4-oxo-1,2,2a,3,4,5-

## hexahydrobenzo $[c d]$ indole-2-carboxylate (509).

To a refluxing $\left(90^{\circ} \mathrm{C}\right)$ benzene $(167 \mathrm{~mL})$ solution of the ketimine $(930 \mathrm{mg}, 1.67 \mathrm{mmol})$ and ${ }^{n} \mathrm{Bu}_{3} \mathrm{SnH}(108 \mu \mathrm{~L}, 0.41 \mathrm{mmol})$ was added AIBN ( $219 \mathrm{mg}, 1.36 \mathrm{mmol}$ ) and ${ }^{n} \mathrm{Bu}_{3} \mathrm{SnH}$ $(972 \mu \mathrm{~L}, 3.69 \mathrm{mmol})$ dissolved separately in benzene $(10 \mathrm{~mL})$ via a syringe pump over 4 h. The solution was stirred for an additional 6 h at $90^{\circ} \mathrm{C}$ and the solvent was removed in vасио. The residue was treated with a $1: 1(\mathrm{v} / \mathrm{v})$ solution of $\mathrm{Et}_{2} \mathrm{O}(75 \mathrm{~mL})$ and satd aq $\mathrm{KF},{ }^{8}$ and the mixture was stirred vigorously until a white solid precipitated. The organic layer was washed with water, dried $\left(\mathrm{NaSO}_{4}\right)$, filtered, and concentrated. The resulting white residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 10 \%\right.$ ethyl acetate in hexanes) to afford the product as a viscous oil ( $568 \mathrm{mg}, 75 \%$ ). The indoline was characterized as a $3: 1$ ratio of diastereomers by ${ }^{1} \mathrm{H}$ NMR. $\mathrm{R}_{f}=0.48(20 \%$ EtOAc/hexanes); IR (film) 3060, 3027, 2970, 2931, 2870, 1741, 1710, 1622, 1595, 1493, $1454,1277,1187 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.59(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.26(\mathrm{~m}, 10 \mathrm{H}), 7.24-7.22(\mathrm{~m}, 4 \mathrm{H}), 6.96(\mathrm{dd}$, $J=7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{~s}, 1 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H})$, $5.21(\mathrm{ddq}, J=7.2,7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{ddq}, J=7.2,7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{dd}, J=$ $12.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{dd}, J=12.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{dd}, J=12.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.31$ $(\mathrm{dd}, J=12.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{ddd}$, $J=9.6,9.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{ddd}, J=11.4,11.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J=15.6,5.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=14.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{dd}, J=15.6,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{dd}, J=$ 14.4, $14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H})$,

[^7]$1.39(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 213.9, 213.2, 172.7, 170.0, 149.8, 149.5, 142.3, 140.8, 140.2, 139.8 (2C), 139.5, 139.4, 138.6, 130.7, 129.6, 129.4, 129.1, 128.7, 128.6, 128.5, 128.2, 128.1, 127.9, 127.7, 127.4, 127.1, 126.8, $126.3,125.9,118.0$ (2C), 115.0, 114.9, 107.7, 107.6, 74.1, 70.4, 68.4, 67.2, 62.0, 61.1, $46.9,46.5,42.5,40.9,39.7,38.2,26.8,26.7,26.5,25.7,25.6,24.7,18.1,18.0$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 502.2358$, found 502.2338 .


## 2,3-Dimethyl-1-(2-methyl-1H-indol-3-yl)but-2-en-1-one (520).

To a $0{ }^{\circ} \mathrm{C}$ solution of the acid $(550 \mathrm{mg}, 5.00 \mathrm{mmol})$ in dichloromethane $(0.5 \mathrm{M})$, was added oxalyl chloride ( $866 \mu \mathrm{~L}, 10.00 \mathrm{mmol}$ ) over 5 minutes. Dimethyl aminopyridine ( $6.40 \mathrm{mg}, 0.05 \mathrm{mmol}$ ) was added and the solution was slowly warmed to room temperature and stirred until complete conversion was achieved, as evidenced by ${ }^{1} \mathrm{H}$ NMR. The solvent was removed in vacuo to give the acyl chloride, which was used without further purification.

To a $0{ }^{\circ} \mathrm{C}$ solution of indole ( $150 \mathrm{mg}, 810 \mu \mathrm{~mol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.5 \mathrm{~mL})$ was added $\mathrm{Et}_{2} \mathrm{AlCl}$ ( $540 \mu \mathrm{~L}, 972 \mu \mathrm{~mol}, 1.8 \mathrm{M}$ in toluene) dropwise. The reaction was stirred for 30 minutes at $0^{\circ} \mathrm{C}$, and acyl chloride ( $115 \mathrm{mg}, 972 \mu \mathrm{~mol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.5 \mathrm{~mL})$ was added dropwise to the solution. The reaction was stirred for 3 h at $0^{\circ} \mathrm{C}$, with the last 30 min having minimal ice within the ice/water bath. The reaction was quenched by slow dropwise addition of $\mathrm{pH}=7$ buffer solution and then addition of satd aq $\mathrm{NaHCO}_{3}$ in the same fashion. The
layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 10-20 \%\right.$ ethyl acetate in hexanes) to afford the title product as a yellow oil ( $172 \mathrm{mg}, 79 \%$ ) in addition to the indole (19 mg, 13\%). $\mathrm{R}_{f}=0.37\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes $)$; IR (film) 3313, 2964, 2927, 2854, 1647, 1601, 1421, $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.94(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.82-7.76(\mathrm{~m}$, $1 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 6.30(\mathrm{dd}, J=17.6,10.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.24(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 190.8, 151.8, 148.9, 145.1, 133.3, 127.8, 127.7, $121.9,120.9,120.3,115.4,113.2,111.1,39.5,27.3,26.4,20.6$; HRMS (EI): Exact mass calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$268.1701, found 268.1696.


## 2,3-Dimethyl-1-(2-methyl-1H-indol-3-yl)but-2-en-1-one (521).

To a $0{ }^{\circ} \mathrm{C}$ solution of the acid ( $338 \mathrm{mg}, 3.38 \mathrm{mmol}$ ) in dichloromethane $(0.5 \mathrm{M})$, was added oxalyl chloride ( $586 \mu \mathrm{~L}, 6.76 \mathrm{mmol}$ ) over 5 minutes. Dimethyl aminopyridine ( $6.40 \mathrm{mg}, 0.05 \mathrm{mmol}$ ) was added and the solution was slowly warmed to room temperature and stirred until complete conversion was achieved, as evidenced by ${ }^{1} \mathrm{H}$ NMR. The solvent was removed in vacuo to give the acyl chloride, which was used without further purification.

To a $0{ }^{\circ} \mathrm{C}$ solution of 2-methylindole ( $294 \mathrm{mg}, 2.24 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added $\mathrm{Et}_{2} \mathrm{AlCl}(1.91 \mathrm{~mL}, 3.44 \mathrm{mmol}, 1.8 \mathrm{M}$ in toluene) dropwise. The reaction was stirred for 30 minutes at $0{ }^{\circ} \mathrm{C}$, and acyl chloride ( $400 \mathrm{mg}, 3.37 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.0 \mathrm{~mL}$ ) was added dropwise to the solution. The reaction was stirred for 3 h at $0^{\circ} \mathrm{C}$, with the last 30 min having minimal ice within the ice/water bath. The reaction was quenched by slow dropwise addition of $\mathrm{pH}=7$ buffer solution and then addition of satd aq $\mathrm{NaHCO}_{3}$ in the same fashion. The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, $10-20 \%$ ethyl acetate in hexanes) to afford the title product as a yellow solid ( 460 mg , $96 \%) . \mathrm{R}_{f}=0.42\left(\mathrm{SiO}_{2}, 50 \% \mathrm{EtOAc} / \mathrm{hexanes}\right) ; \mathrm{mp}=188{ }^{\circ} \mathrm{C}$; IR (film) 3158 (br), 2967, 2937, 1653, 1564, 1456, $1378 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.62(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.99$ $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{ddd}, J=7.2,7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18$ (ddd, $J=7.2,7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 2.73(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 189.7, 151.0, 143.0, 134.6, 126.9, 126.4, 122.3, 121.7, 120.9, 116.0, 110.7, 27.3, 20.7, 14.9; HRMS (EI): Exact mass calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}$ $[\mathrm{M}+\mathrm{H}]^{+}$214.1232. found 214.1237.


## 1,6,6-Trimethyl-6,7-dihydrobenzo[cd]indol-8(2H)-one (522).

The substrate $(40.0 \mathrm{mg}, 188 \mu \mathrm{~mol})$ was added in one portion to a melt of $\mathrm{AlCl}_{3}(362 \mathrm{mg}$, $1.88 \mathrm{mmol})$ and $\mathrm{NaCl}(99.0 \mathrm{mg}, 1.69 \mathrm{mmol})$ at $135{ }^{\circ} \mathrm{C}$. After 3 min , the reaction was
poured into ice cold water and the solution was made basic by the addition of satd aq $\mathrm{NaHCO}_{3}$. The solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic layers were dried, filtered, and concentrated to a brown oil. Column chromatography $\left(\mathrm{SiO}_{2}, 20-30 \%\right.$ ethyl acetate in hexanes) provided the tricyclic indole as a pale yellow solid ( 36.0 mg , $90 \%) . \mathrm{R}_{f}=0.34\left(\mathrm{SiO}_{2}, 50 \% \mathrm{EtOAc} /\right.$ hexanes $) ; \mathrm{mp}=138-140{ }^{\circ} \mathrm{C}$; IR (film) 3241, 2957, 2867, 1640, 1606, 1552, $1452 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 9.43(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.23-$ $7.18(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{dd}, J=6.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{~s}, 3 \mathrm{H}), 2.73(\mathrm{~s}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}$ ) ppm 194.8, 138.9, 137.9, 132.8, 128, 5, 123.5, 115.6, 110.5, 108.6, 55.8, 38.9, 29.2, 13.3; Exact mass calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 214.1232$, found 214.1231.


## 2-Methyl-4-(2-(2-methylbut-3-en-2-yl)-1H-indol-3-yl)butan-2-ol (524).

To a $0^{\circ} \mathrm{C}$ solution of 2-prenyl indole ( $\left.100 \mathrm{mg}, 540 \mu \mathrm{~mol}\right)$ in THF $(1.0 \mathrm{~mL})$, was added zinc powder ( $79.5 \mu \mathrm{~L}, \mathrm{mg}, 1.22 \mathrm{mmol}$ ). The solution was slowly warmed to room temperature and stirred for 12 h . The reaction was quenched with satd aq $\mathrm{NH}_{4} \mathrm{Cl}$, the layers were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried, filtered, and concentrated. The resulting crude oil was used in the next step without any further purification.

To a solution of the crude allylation product $(120 \mathrm{mg})$ in $\mathrm{EtOH}(1.0 \mathrm{~mL})$ was added HCl $(3 \mathrm{M}, 1.0 \mathrm{~mL})$ and the reaction stirred at $80^{\circ} \mathrm{C}$ for 1 h . The reaction was quenched with satd aq $\mathrm{NaOH}(1.0 \mathrm{M})$, the layers were separated, and the aqueous layer was extracted
with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, 20-25-30\% ethyl acetate in hexanes) to afford the title product as a pale yellow oil (29.2 $\mathrm{mg}, 20 \%)$ in addition to the indole ( $60 \mathrm{mg}, 60 \%$ ). $\mathrm{R}_{f}=0.15\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes $)$; IR (film) 3356, (br), 2970, $2926 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.81$ (br s, 1H), $7.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{ddd}, J=7.5,7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.07(\mathrm{ddd}, J=7.5,7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{dd}, J=17.5,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=17.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dt}, J=8.5,4.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.81(\mathrm{dt}, J=8.5,4.5$ $\mathrm{Hz}, 2 \mathrm{H}), 1.54(\mathrm{~s}, 6 \mathrm{H}), 1.34(\mathrm{~s}, 6 \mathrm{H}),-\mathrm{OH}$ proton not observed ; ${ }^{13} \mathrm{C}$ NMR ( 150 MHz , $\mathrm{CDCl}_{3}$ ) ppm 145.0, 137.6, 133.2, 128.5, 120.2, 118.1, 117.1, 110.8, 110.2, 109.4, 70.1, 43.9, 37.9, 28.1, 26.6, 18.8; HRMS (EI): Exact mass calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}[\mathrm{M}]^{+}$271.1931, found 271.1938.




## 1-(1H-Indol-3-yl)-3-methylbut-2-en-1-one (527).

To a $0{ }^{\circ} \mathrm{C}$ solution of the acid $(1.50 \mathrm{~g}, 15.0 \mathrm{mmol})$ in dichloromethane $(0.5 \mathrm{M})$, was added oxalyl chloride ( $2.60 \mathrm{~mL}, 30.0 \mathrm{mmol}$ ) over 5 minutes. Dimethyl aminopyridine ( $6.40 \mathrm{mg}, 0.05 \mathrm{mmol}$ ) was added and the solution was slowly warmed to room temperature and stirred until complete conversion was achieved, as evidenced by ${ }^{1} \mathrm{H}$ NMR. The solvent was removed in vacuo to give the acyl chloride, which was used without further purification.

To a $0{ }^{\circ} \mathrm{C}$ solution of indole $(1.17 \mathrm{~g}, 10.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added $\mathrm{Et}_{2} \mathrm{AlCl}$ ( $8.33 \mathrm{~mL}, 15.0 \mathrm{mmol}, 1.8 \mathrm{M}$ in toluene) dropwise. The reaction was stirred for 30 minutes at $0{ }^{\circ} \mathrm{C}$, and acyl chloride ( $\left.1.77 \mathrm{~g}, 15.0 \mathrm{mmol}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(32.4 \mathrm{~mL})$ was added dropwise to the solution. The reaction was stirred for 3 h at $0^{\circ} \mathrm{C}$, with the last 30 min having minimal ice within the ice/water bath. The reaction was quenched by slow dropwise addition of $\mathrm{pH}=7$ buffer solution followed by the addition of satd aq $\mathrm{NaHCO}_{3}$ in the same fashion. The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, $10-20 \%$ ethyl acetate in hexanes) to afford the title product as a yellow solid ( 1.97 g , $99 \%) . \mathrm{R}_{f}=0.72\left(\mathrm{SiO}_{2}, 50 \% \mathrm{EtOAc} /\right.$ hexanes $) ; \mathrm{mp}=114-115{ }^{\circ} \mathrm{C} . \mathrm{IR}$ (film) 3252, 2971, 2932, 1645, 1589, 1520, $1434 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 9.57(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.51$ $(\mathrm{m}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 2 \mathrm{H}), 6.65(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{~d}$, $J=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.01(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{ppm}$ 188.1, $152.7,136.6,131.4,125.9,123.5,122.7,122.4,122.3,119.5,111.6,27.7,20.5$; HRMS (EI): Exact mass calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}[\mathrm{M}]^{+}$199.0992, found 199.0986.


## 6,6-Dimethyl-6,7-dihydrobenzo[cd]indol-8(2H)-one (528).

The substrate $(1.40 \mathrm{~g}, 7.03 \mathrm{mmol})$ was added in one portion to a melt of $\mathrm{AlCl}_{3}(14.2 \mathrm{~g}$, $73.8 \mathrm{mmol})$ and $\mathrm{NaCl}(3.7 \mathrm{~g}, 63.3 \mathrm{mmol})$ at $135{ }^{\circ} \mathrm{C}$ and the solution was stirred vigorously for 4 minutes. The reaction was poured into ice cold water and the solution
was made basic by the addition of satd aq $\mathrm{NaHCO}_{3}$. The solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic layers were dried, filtered, and concentrated to a brown oil. Column chromatography $\left(\mathrm{SiO}_{2}, 20-30 \%\right.$ ethyl acetate in hexanes) provided the indole as a pale yellow solid $(1.31 \mathrm{~g}, 93 \%) . \mathrm{R}_{f}=0.50\left(\mathrm{SiO}_{2}, 50 \% \mathrm{EtOAc} / \mathrm{hexanes}\right) ; \mathrm{mp}=145$ ${ }^{\circ} \mathrm{C}$; IR (film) 3239 (br), 2958, 2868, 1651, 1527, 1439, $1338 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( 600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.21(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{dd}, J=6.0$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{~s}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 194.4, 138.9, 133.8, 127.7, 124.5, 123.5, 116.0, 114.5, 109.4, 55.7, 39.1, 29.3; HRMS (EI): Exact mass calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 200.1075$, found 200.1068.


## 6-Dimethyl-2-tosyl-6,7-dihydrobenzo[cd]indol-8(2H)-one (530).

To a solution of the indole ( $420 \mathrm{mg}, 2.11 \mathrm{mmol}$ ) and diisopropyl ethylamine ( $551 \mu \mathrm{~L}$, 3.17 mmol ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~mL}\right.$ ) at $0{ }^{\circ} \mathrm{C}$ was added $p$-toluenesulfonyl chloride ( 523 mg , $2.75 \mathrm{mmol})$ and dimethyl aminopyridine $(9.8 \mathrm{mg}, 80 \mu \mathrm{~mol})$. The reaction was stirred for 30 min before being warmed to rt and stirred for 15 h . The reaction was quenched with satd aq $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried, filtered, and concentrated to a yellow oil. Column chromatography $\left(\mathrm{SiO}_{2}, 10-20 \%\right.$ ethyl acetate in hexanes) provided the title product as a pale yellow oil ( $737 \mathrm{mg}, 99 \%$ ). $\mathrm{R}_{f}=$ $0.62\left(\mathrm{SiO}_{2}, 50 \% \mathrm{EtOAc} /\right.$ hexanes $) ; \mathrm{mp}=119-121^{\circ} \mathrm{C}$; IR (film) 3126, 2961, 2871, 1686, $1544,1379,1190 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$,
$7.25(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~s}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 150 MHz , $\mathrm{CDCl}_{3}$ ) ppm 194.1, 145.9, 139.7, 134.8, 133.2, 130.2, 128.7, 127.2, 126.5, 124.0, 118.5, 117.8, 111.5, 55.7, 39.2, 29.4, 21.7; HRMS (EI): Exact mass calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+} 354.1164$, found 354.1152 .


6,6-Dimethyl-8-(2-methylbut-3-en-2-yl)-2-tosyl-2,6,7,8-tetrahydrobenzo[cd]indol-8ol (532).

To a $0{ }^{\circ} \mathrm{C}$ solution of indole ( $80.0 \mathrm{mg}, 226 \mu \mathrm{~mol}$ ) in THF ( 2.0 mL ) was added 3,3dimethylallyl magnesium chloride ( $847 \mu \mathrm{~L}, 678 \mu \mathrm{~mol}, 0.75 \mathrm{M}$ in THF) dropwise over 2 minutes. The reaction was allowed to warm to room temperature and stirred for 1 h . The reaction was quenched with satd aq $\mathrm{NH}_{4} \mathrm{Cl}$, the layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography ( $\mathrm{SiO}_{2}, 10-20 \%$ ethyl acetate in hexanes) to afford the title product as a colorless oil ( $73.0 \mathrm{mg}, 76 \%$ ) in addition to indole ( $18 \mathrm{mg}, 23 \%$ ). $\mathrm{R}_{f}=0.65\left(\mathrm{SiO}_{2}, 50 \%\right.$ EtOAc/hexanes); IR (film) 3356, 2962, 2926, 2879, 1371, 1187, 1179, $1131 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~s}$, $1 \mathrm{H}), 7.29(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.39(\mathrm{dd}, J=17.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.34(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.43(\mathrm{~s}$, $3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{ppm}$ 145.4,
$144.8,141.1,135.4,133.0,129.9,128.1,126.8,125.5,122.8,120.8,117.6,114.1,110.4$, 74.2, 45.6, 45.3, 34.8, 32.3, 29.8, 23.1, 22.9, 21.5; HRMS (EI): Exact mass calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+} 446.1766$, found 446.1770.


## 5-Dimethyl-3-(2-methylbut-3-en-2-yl)-1-tosyl-1,5-dihydrobenzo[cd]indole (534).

To a $0{ }^{\circ} \mathrm{C}$ solution of indole ( $40.0 \mathrm{mg}, 113 \mu \mathrm{~mol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ was added $\mathrm{TiCl}_{4}$ $(18.7 \mu \mathrm{~L}, 170 \mu \mathrm{~mol})$ dropwise and the reaction was stirred for 10 minutes. Grignard reagent ( $756 \mu \mathrm{~L}, 454 \mu \mathrm{~mol}, 0.8 \mathrm{M}$ in THF) was then added and the mixture was stirred vigorously for 2 h at $0^{\circ} \mathrm{C}$ and an additional 2 h at rt . The reaction was quenched with satd aq $\mathrm{NaHCO}_{3}$, the layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 5-10 \%\right.$ ethyl acetate in hexanes) to afford the title product as a white solid ( $17.4 \mathrm{mg}, 38 \%$ ) in addition to the the indole ( $23.1 \mathrm{mg}, 58 \%) . \mathrm{R}_{f}=0.68\left(\mathrm{SiO}_{2}, 50 \% \mathrm{EtOAc} / \mathrm{hexanes}\right) ; \mathrm{mp}=139-140$ ${ }^{\circ} \mathrm{C}$; IR (film) 2961, 2925, 2855, $1123 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.75(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{dd}, J=7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{dd}, J=17.6,10.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.59(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{dd}, J=17.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{dd}, J=10.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H})$, $1.36(\mathrm{~s}, 6 \mathrm{H}), 1.33(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{CDCl}_{3}$ ) ppm 147.0, 144.5, 139.3, 135.5, 135.3, 133.7, 133.0, 129.7, 128.5, 126.8, 125.9, 119.5, 118.5, 117.3, 112.0, 110.6, 40.9,
38.1, 31.9, 27.1, 21.5; HRMS (EI): Exact mass calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 406.1835$, found 406.1817.


## 5,5-Dimethyl-3-(2-methylbut-3-en-2-yl)-1-tosyl-1,5-dihydrobenzo[cd]indole (534).

To a $0{ }^{\circ} \mathrm{C}$ solution of indole ( $40.0 \mathrm{mg}, 113 \mu \mathrm{~mol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ was added $\mathrm{SnCl}_{4}$ $(19.9 \mu \mathrm{~L}, 170 \mu \mathrm{~mol})$ dropwise and the reaction was stirred for 10 minutes. Grignard reagent ( $756 \mu \mathrm{~L}, 454 \mu \mathrm{~mol}, 0.8 \mathrm{M}$ in THF ) was then added and the mixture was stirred vigorously for 2 h at $0^{\circ} \mathrm{C}$ and at rt for additional 2 h . The reaction was quenched with satd aq $\mathrm{NaHCO}_{3}$, the layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 5-10 \%\right.$ ethyl acetate in hexanes) to afford the title product as a white solid ( $19.7 \mathrm{mg}, 43 \%$ ) in addition to the the indole ( $22.3 \mathrm{mg}, 57 \%$ ). See above for the analytical data.


## 5,5-Dimethyl-3-(2-methylbut-3-en-2-yl)-1-tosyl-1,5-dihydrobenzo[cd]indole (534).

To a $0{ }^{\circ} \mathrm{C}$ solution of indole ( $40.0 \mathrm{mg}, 113 \mu \mathrm{~mol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(21.5 \mu \mathrm{~L}, 170 \mu \mathrm{~mol})$ dropwise and the reaction was stirred for 10 minutes. Grignard reagent ( $756 \mu \mathrm{~L}, 454 \mu \mathrm{~mol}, 0.8 \mathrm{M}$ in THF) was then added and the mixture was stirred vigorously for 2 h at $0^{\circ} \mathrm{C}$ and at rt for additional 22 h . The reaction was quenched
with satd aq $\mathrm{NaHCO}_{3}$, the layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, $5-10 \%$ ethyl acetate in hexanes) to afford the title product as a white solid ( 40.4 mg , $88 \%$ ). See above for the analytical data.


## 6,6-Dimethyl-7-methylene-2-tosyl-6,7-dihydrobenzo[cd]indol-8(2H)-one (535).

To a $0{ }^{\circ} \mathrm{C}$ solution of indole $(90.0 \mathrm{mg}, 255 \mu \mathrm{~mol})$ and paraformaldehyde $(91.8 \mathrm{mg}, 3.06$ $\mathrm{mmol})$ in DMSO $(2.1 \mathrm{~mL})$ was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(84.0 \mu \mathrm{~L}, 637 \mu \mathrm{~mol})$ dropwise over 2 minutes. The reaction was heated in microwave oven for 2 h at $140^{\circ} \mathrm{C}$. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$, the layers were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography ( $\mathrm{SiO}_{2}$, $5-10-15 \%$ ethyl acetate in hexanes) to afford the title product as pale yellow oil ( 33.0 mg , $35 \%)$ in addition to indole ( $30.0 \mathrm{mg}, 33 \%$ ). $\mathrm{R}_{f}=0.29\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} / \mathrm{hexanes}\right)$; IR (film) 2961, 2924, 2853, 1675, 1599, 1543, 1382, $1190 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=$ $8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H})$, $5.67(\mathrm{~s}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 184.1, 154.4, $145.9,138.4,134.7,133.1,130.2,127.5,127.2,126.6,125.9,121.4,118.7,117.2,111.4$,
42.3, 30.6, 21.6; HRMS (EI): Exact mass calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}]^{+} 366.1158$, found 366.1148.




## 6,6-Dimethyl-7-methylene-2-tosyl-6,7-dihydrobenzo $[c d]$ indol-8(2H)-one (535).

To a $0{ }^{\circ} \mathrm{C}$ solution of indole ( $70.0 \mathrm{mg}, 198 \mu \mathrm{~mol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.3 \mathrm{~mL})$ was added $\mathrm{TiCl}_{4}$ $(43.6 \mu \mathrm{~L}, 396 \mu \mathrm{~mol})$. The reaction was stirred for 5 minutes at $0^{\circ} \mathrm{C}$ and, diisopropyl ethylamine ( $51.7 \mu \mathrm{~L}, 297 \mu \mathrm{~mol}$ ) was added dropwise to the solution. To the resulting orange solution was added tetramethyl methylamine $(41.0 \mu \mathrm{~L}, 297 \mu \mathrm{~mol})$ and the mixture was stirred for 1 h at $0{ }^{\circ} \mathrm{C}$. The reaction was quenched with satd aq $\mathrm{NH}_{4} \mathrm{Cl}$, the layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 5-10-15 \%\right.$ ethyl acetate in hexanes $)$ to afford the title product as a pale yellow oil ( $29.8 \mathrm{mg}, 41 \%$ ) in addition to indole (35.0 $\mathrm{mg}, 50 \%)$. See above for the analytical data.


## 6,6-Dimethyl-7-methylene-2-tosyl-6,7-dihydrobenzo[ $c d]$ indol-8(2H)-one (535).

To a solution of indole ( $23.3 \mathrm{mg}, 66.0 \mu \mathrm{~mol}$ ) in $\mathrm{CH}_{3} \mathrm{CN}(0.5 \mathrm{~mL})$ was added Eschenmoser's salt $(24.5 \mu \mathrm{~L}, 264 \mu \mathrm{~mol})$ and the reaction stirred at $80^{\circ} \mathrm{C}$ for 1 h . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$, the layers were separated, and the aqueous layer was
extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 5-10-15 \%\right.$ ethyl acetate in hexanes) to afford the title compound as a pale yellow compound ( $18.9 \mathrm{mg}, 78 \%$ ). See above for the analytical data.


## 5,5-Dimethyl-1-tosyl-3-((trimethylsilyl)oxy)-1,3,4,5-tetrahydrobenzo[cd]indole-3carbonitrile (539).

To a $0^{\circ} \mathrm{C}$ solution of LiOMe ( $21.5 \mathrm{mg}, 566 \mu \mathrm{~mol}$ ) in THF ( 15.0 mL ) was added TMSCN $(604 \mu \mathrm{~L}, 4.53 \mathrm{mmol})$ and the reaction was allowed to warm to room temperature and stirred for 10 minutes. Ketone ( $1.00 \mathrm{~g}, 2.83 \mathrm{mmol}$ ) in THF ( 4.0 mL ) was added and the reaction was stirred for an additional 4 h at rt . The reaction was quenched with satd aq $\mathrm{KH}_{2} \mathrm{PO}_{4}$, the layers were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with satd aq $\mathrm{KH}_{2} \mathrm{PO}_{4}$, dried, filtered, and concentrated. The resulting cyanohydrin was pure for analytical purpose ( $1.28 \mathrm{~g}, 99 \%$ ). $\mathrm{R}_{f}=0.40\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} / \mathrm{hexanes}\right) ;$ IR (film) 2962, 2934, 1431, $1378,1189 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~s}$, $1 \mathrm{H}), 7.35(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.37(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}$, 3 H ), 0.11 ( $\mathrm{s}, 9 \mathrm{H}$ ) ; ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 145.4, 139.6, 135.3, 133.0, 130.1, $127.0,126.3,125.2,122.2,121.1,119.2,118.1,111.06,64.3,51.8,35.3,30.9,29.7,21.6$, 1.0; HRMS (EI): Exact mass calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SSi}[\mathrm{M}]^{+} 452.1584$, found 452.1564.


## 5,5-Dimethyl-1-tosyl-1,5-dihydrobenzo[cd]indole-3-carbonitrile (540).

To a $0{ }^{\circ} \mathrm{C}$ solution of cyanohydrin ( $200 \mathrm{mg}, 450 \mu \mathrm{~mol}$ ) in $\mathrm{POCl}_{3}(209 \mu \mathrm{~L}, 2.25 \mathrm{mmol})$ was added HF-pyridine $(17.5 \mu \mathrm{~L}, 650 \mu \mathrm{~mol})$ dropwise. The reaction was stirred for 60 minutes at $0^{\circ} \mathrm{C}$ and pyridine ( $563 \mu \mathrm{~L}, 7.00 \mathrm{mmol}$ ) was added. The reaction was stirred at $80^{\circ} \mathrm{C}$ for 2 h and then cooled to $0^{\circ} \mathrm{C}$. The reaction was quenched with 1.0 M HCl and the solution was stirred for 10 minutes. The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with satd aq $\mathrm{NaHCO}_{3}$, dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 10-15-20 \%\right.$ ethyl acetate in hexanes) to afford the title product as a white solid ( $29.2 \mathrm{mg}, 20 \%) . \mathrm{R}_{f}=0.61\left(\mathrm{SiO}_{2}, 50 \% \mathrm{EtOAc} /\right.$ hexanes $) ; \mathrm{mp}=$ $118-120^{\circ} \mathrm{C}$; IR (film) 2965, 2924, 2229, 1596, 1437, $1369 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=$ $8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 2.37(\mathrm{~s}$, 3H), 1.42 (s, 6H); ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 152.6, 145.3, 136.8, 135.1, 133.3, $130.1,127.4,127.0,125.3,119.0,118.9,116.1,114.1,111.6,104.0,39.4,31.1,21.6 ;$ HRMS (EI): Exact mass calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 363.1162$, found 363.1151.


## 5,5-Dimethyl-1-tosyl-1,5-dihydrobenzo[cd]indole-3-carbonitrile (540).

To a $-15{ }^{\circ} \mathrm{C}$ solution of ketone ( $40.0 \mathrm{mg}, 109 \mu \mathrm{~mol}$ ) in toluene $(0.7 \mathrm{~mL})$ was added $\mathrm{Et}_{2} \mathrm{AlCN}(152 \mu \mathrm{~L}, 152 \mu \mathrm{~mol}, 1.0 \mathrm{M}$ in toluene $)$. The reaction was stirred for 1 h at $-15^{\circ} \mathrm{C}$ and 1 h at $5^{\circ} \mathrm{C}$. $\mathrm{HCl}-\mathrm{MeOH}$ mixture ( $1.05 \mathrm{~mL}, 2: 1$ ) was added to the reaction at $5^{\circ} \mathrm{C}$ and the reaction was stirred for an additional hour. The reaction was allowed to warm to rt and the layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried, filtered, and concentrated. The crude cyanohydrin was immediately subjected to the dehydration reaction.

To a solution of the crude cyanohydrin ( 47 mg ) in DME ( $150 \mu \mathrm{~L}$ ) was added $\mathrm{KHSO}_{4}$ $(52.0 \mathrm{mg}, 382 \mu \mathrm{~mol})$ and the reaction stirred at $90^{\circ} \mathrm{C}$ for 1 h . The reaction was quenched with satd aq $\mathrm{NaHCO}_{3}$ and the resulting solution was stirred for 5 minutes. The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 10-15-20 \%\right.$ ethyl acetate in hexanes) to afford the nitrile as a white solid ( $12.1 \mathrm{mg}, 30 \%$ ) in addition to the starting ketone ( $27.1 \mathrm{mg}, 67 \%$ ).


## 5,5-Dimethyl-1-tosyl-1,5-dihydrobenzo[cd]indole-3-carbaldehyde (542).

To a $0^{\circ} \mathrm{C}$ solution of nitrile ( $6.6 \mathrm{mg}, 18 \mu \mathrm{~mol}$ ) in toluene ( 200 mL ) was added DIBAL-H $\left(17.8 \mu \mathrm{~L}, 26.6 \mu \mathrm{~mol}, 1.0 \mathrm{M}\right.$ in toluene) and stirred for 1 h at $0^{\circ} \mathrm{C}$. The reaction was quenched by the stepwise addition of $\mathrm{H}_{2} \mathrm{O}(200 \mu \mathrm{~L})$ and $6 \mathrm{M} \mathrm{HCl}(400 \mu \mathrm{~L})$. The reaction
was allowed to warm to room temperature and stirred until the layers became clear ( $\sim 6$ h). The layers were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 20 \%\right.$ ethyl acetate in hexanes) to afford the enal as a brown solid ( $6.6 \mathrm{mg}, 99 \%) . \mathrm{R}_{f}=0.23\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} / \mathrm{hexanes}\right) ; \mathrm{mp}=$ $180-182{ }^{\circ} \mathrm{C}$; IR (film) 2961, 2922, 2850, 1688, 1370, 1188, 1176, 1164, $1116 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 9.67(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 191.6, 158.1, 144.9, 137.1, 135.5, 133.0, 131.1, 130.6, 129.9, 126.9, 126.7, 121.1, 118.7, $111.9,111.4 ; 39.4,31.0,21.6$ HRMS (EI): Exact mass calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NNaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$ 388.0983, found 388.0983.




## 1-(1H-Indol-3-yl)-2,3-dimethylbut-2-en-1-one (545).

To a $0{ }^{\circ} \mathrm{C}$ solution of the acid $(12.3 \mathrm{~g}, 112 \mathrm{mmol})$ in dichloromethane ( 240 mL ), was added oxalyl chloride ( $19.6 \mathrm{~mL}, 224 \mathrm{mmol}$ ) over 5 minutes. Dimethyl aminopyridine $(12.8 \mathrm{mg}, 0.10 \mathrm{mmol})$ was added and the solution was slowly warmed to room temperature and stirred until complete conversion was achieved, as evidenced by ${ }^{1} \mathrm{H}$

NMR. The solvent was removed in vacuo to give the acyl chloride ( $13.5 \mathrm{~g}, 91 \%$ ), which was used without further purification. ${ }^{9}$

To a $0{ }^{\circ} \mathrm{C}$ solution of indole $(9.24 \mathrm{~g}, 78.7 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$ was added $\mathrm{Et}_{2} \mathrm{AlCl}(56.8 \mathrm{~mL}, 102 \mathrm{mmol}, 1.8 \mathrm{M}$ in toluene) dropwise. The reaction was stirred for 30 minutes at $0{ }^{\circ} \mathrm{C}$, and acyl chloride ( $13.5 \mathrm{~g}, 102 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added dropwise to the solution. The reaction was stirred for 3 h at $0^{\circ} \mathrm{C}$, with the last 30 min having minimal ice within the ice/water bath. The reaction was quenched by slow dropwise addition of $\mathrm{pH}=7$ buffer solution followed by the addition of satd aq $\mathrm{NaHCO}_{3}$ in the same fashion. The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography ( $\mathrm{SiO}_{2}$, $10-20 \%$ ethyl acetate in hexanes) to afford the title product as a yellow solid (15.8 g, $94 \%) . \mathrm{R}_{f}=0.65\left(\mathrm{SiO}_{2}, 50 \% \mathrm{EtOAc} / \mathrm{hexanes}\right) ; \mathrm{mp}=118-120{ }^{\circ} \mathrm{C}$; IR (film) 3184 (br s), 2983, 2926, 1597 (br s), 1517, 1436, $1376 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 10.11$ (br s, 1 H$), 8.39(\mathrm{ddd}, J=10.0,4.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{ddd}, J=10.0$, $4.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 2 \mathrm{H}), 1.96(\mathrm{br} \mathrm{d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}) 1.68(\mathrm{br} \mathrm{d}, J$ $=1.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 198.0, 137.0, 134.6, 131.5, 130.5, 125.5, 123.6, 122.6, 121.9, 117.0, 111.9, 22.4, 19.8, 17.0; HRMS (EI): Exact mass calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 214.1226$, found 214.1220.

[^8]

## 4,5,5-Trimethyl-4,5-dihydrobenzo[cd]indol-3(1H)-one (514).

The indole ( $3.00 \mathrm{~g}, 14.1 \mathrm{mmol}$ ) was added in one portion to a melt of $\mathrm{AlCl}_{3}(27.1 \mathrm{~g}, 141$ $\mathrm{mmol})$ and $\mathrm{NaCl}(4.11 \mathrm{~g}, 70.4 \mathrm{mmol})$ at $119{ }^{\circ} \mathrm{C}$. After 3 min , the reaction was poured into ice cold water and the solution was made basic by the addition of satd aq $\mathrm{NaHCO}_{3}$. The solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic layers were dried, filtered, and concentrated to a brown oil. Column chromatography ( $\mathrm{SiO}_{2}, 15-20-25-30$ $35 \%$ ethyl acetate in hexanes) provided the desired tricyclic indole as a pale yellow oil $(2.17 \mathrm{~g}, 73 \%)$ and its regioisomer as a white solid ( $710 \mathrm{mg}, 23 \%$ ).

Data for (514): $\mathrm{R}_{f}=0.42\left(\mathrm{SiO}_{2}, 50 \% \mathrm{EtOAc} /\right.$ hexanes $)$; IR (film) 3238 (br), 2967, 2870, 1651, 1607, 1525, 1451, $1338 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.87$ (br s, 1H), 7.72 $(\mathrm{dd}, J=6.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{dd}, J=10.1,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{ddd}, J=7.8$, $4.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 6 \mathrm{H}), 1.14(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, $\mathrm{CDCl}_{3}$ ) ppm 198.3, 138.7, 133.5, 127.0, 124.6, 123.7, 116.7, 113.5, 109.3, 56.8, 41.7, 29.9, 23.8, 13.1; Exact mass calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$214.1226. found 214.1225 .

A NOESY crosspeak was observed between the methyl protons and C5 aromatic proton. Other key observations, including HMBC correlation between C16 and H5, confirmed the assigned structure
 of the desired tricyclic indole.

Data for (546): $\mathrm{R}_{f}=0.38\left(\mathrm{SiO}_{2}, 50 \% \mathrm{EtOAc} /\right.$ hexanes $) ; \mathrm{mp}=235-237{ }^{\circ} \mathrm{C}$; IR (film) 3212 (br), 2960, 2834, 1661,1471, $1450 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 10.16(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $7.87(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.19(\mathrm{~m}, 2 \mathrm{H}), 2.87(\mathrm{q}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 198.1, 173.8, 142.1, 123.6, 122.3, 121.5, 121.0, 117.1, 112.3, 59.1, 38.8, 27.5, 24.2, 11.3; Exact mass calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 214.1226$, found 214.1224.


## 6,6-Dimethyl-2-tosyl-6,7-dihydrobenzo[cd]indol-8(2H)-one (547).

To a solution of the indole ( $3.05 \mathrm{~g}, 14.3 \mathrm{mmol}$ ) and diisopropyl ethylamine ( $4.0 \mathrm{~mL}, 22.9$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(90 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $p$-toluenesulfonyl chloride ( $3.54 \mathrm{mg}, 18.6$ mmol ) and dimethyl aminopyridine ( $39.2 \mathrm{mg}, 320 \mu \mathrm{~mol}$ ). The reaction was stirred for 30 min before being warmed to rt and stirred for 15 h . The reaction was quenched with satd aq $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried, filtered, and concentrated to a yellow oil. Column chromatography $\left(\mathrm{SiO}_{2}, 10-20 \%\right.$ ethyl acetate in hexanes) provided the $N$-tosylated indole as a white solid ( $5.2 \mathrm{~g}, 99 \%$ ). $\mathrm{R}_{f}=0.29\left(\mathrm{SiO}_{2}\right.$, $20 \% \mathrm{EtOAc} / \mathrm{hexanes}$ ); $\mathrm{mp}=142-144{ }^{\circ} \mathrm{C}$; IR (film) 3127, 2969, 2925, 2870, 1690, 1544, $1434,1379,1366 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.76$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.23(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H})$, $1.09(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \mathrm{ppm} 197.7,145.8,139.6,134.8$,
$133.0,130.2,128.2,127.2,126.6,124.3,119.1,117.0,111.4,56.7,41.8,29.3,24.3,21.7$, 12.0; HRMS (EI): Exact mass calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 368.1315$, found 368.1311.


## 4,5,5-Trimethyl-1-tosyl-1,5-dihydrobenzo[ $c d]$ indole-3-carbonitrile (549).

To a $-15{ }^{\circ} \mathrm{C}$ solution of ketone ( $136 \mathrm{mg}, 371 \mu \mathrm{~mol}$ ) in toluene ( 1.8 mL ) was added $\mathrm{Et}_{2} \mathrm{AlCN}(1.6 \mathrm{~mL}, 1.67 \mathrm{mmol}, 1.0 \mathrm{M}$ in toluene). The reaction was stirred for 1 h at -15 ${ }^{\circ} \mathrm{C}$ and 1 h at $5{ }^{\circ} \mathrm{C}$. $\mathrm{HCl}-\mathrm{MeOH}$ mixture $(1.05 \mathrm{~mL}, 2: 1)$ was added to the reaction at $5^{\circ} \mathrm{C}$ and the reaction was stirred for an additional hour. The reaction was allowed to warm to rt and the layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried, filtered, and concentrated. The crude cyanohydrin was immediately subjected to the dehydration reaction.

To a solution of the crude cyanohydrin ( 150 mg ) in DME ( $600 \mu \mathrm{~L}$ ) was added $\mathrm{KHSO}_{4}$ ( $260 \mathrm{mg}, 1.91 \mathrm{mmol}$ ) and the reaction stirred at $90^{\circ} \mathrm{C}$ for 1 h . The reaction was quenched with satd aq $\mathrm{NaHCO}_{3}$ and the solution was stirred for 5 minutes. The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 10-15-20 \%\right.$ ethyl acetate in hexanes) to afford the nitrile as a white solid ( $21.0 \mathrm{mg}, 20 \%$ ) in addition to the starting ketone ( $104 \mathrm{mg}, 76 \%$ ). See below for the characterization data.


## 4,5,5-Trimethyl-1-tosyl-1,5-dihydrobenzo[ $c d]$ indole-3-carbonitrile (549).

To a $0{ }^{\circ} \mathrm{C}$ solution of cyanohydrin $(3.05 \mathrm{~g}, 6.54 \mathrm{mmol})$ in $\mathrm{POCl}_{3}(15.0 \mathrm{~mL}, 164 \mathrm{mmol})$ was added HF-pyridine ( $700 \mu \mathrm{~L}, 26.1 \mathrm{mmol}$ ) dropwise. The reaction was stirred for 60 minutes at $0^{\circ} \mathrm{C}$ and pyridine ( $33.0 \mathrm{~mL}, 410 \mathrm{mmol}$ ) was added. The reaction was stirred at $80^{\circ} \mathrm{C}$ for 2 h and then cooled to $0^{\circ} \mathrm{C}$. The reaction was quenched with 1.0 M HCl and the solution was stirred for 10 minutes. The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with satd aq $\mathrm{NaHCO}_{3}$, dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography ( $\mathrm{SiO}_{2}, 10-15-20 \%$ ethyl acetate in hexanes) to afford the nitrile as a white solid $(1.18 \mathrm{~g}, 48 \%) . \mathrm{R}_{f}=0.29\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes $) ; \mathrm{mp}=192{ }^{\circ} \mathrm{C}$; IR (film) 2973, 2927, 2222, 1439, 1369, $1090 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.81(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}$ ) ppm 160.2, 145.1, 137.6, 135.2, 133.1, 130.0, 127.3, 126.9, 125.0, 119.1, 117.7, 116.0, 115.0, 111.4, 102.0, 42.3, 29.9, 21.6, 18.7; HRMS (EI): Exact mass calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 377.1318$, found 377.1309.


## 4,5,5-Trimethyl-1-tosyl-1,5-dihydrobenzo[cd]indole-3-carbonitrile (549).

To a degassed solution of enol triflate $(3.90 \mathrm{~g}, 7.82 \mathrm{mmol})$ and zinc cyanide $(1.10 \mathrm{~g}, 9.38$ $\mathrm{mmol})$ in DMF ( 20 mL ) was added $\mathrm{Pd}\left(\mathrm{Ph}_{3}\right)_{4}(451 \mathrm{mg}, 0.39 \mathrm{mmol})$ and the reaction stirred at $100{ }^{\circ} \mathrm{C}$ for 4 h . The reaction was cooled to rt and quenched with $\mathrm{H}_{2} \mathrm{O}$. The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 10-20 \%\right.$ ethyl acetate in hexanes) to afford the nitrile as a white solid $(2.79 \mathrm{~g}, 97 \%)$. The data matched with the earlier reported data for the cyanide. See above for the characterization data.


## 4,5,5-Trimethyl-1-tosyl-3-((trimethylsilyl)oxy)-1,3,4,5-tetrahydrobenzo[cd]indole-3carbonitrile (550).

To a $0^{\circ} \mathrm{C}$ solution of $\operatorname{LiOMe}(1.0 \mathrm{mg}, 27 \mu \mathrm{~mol})$ in THF $(1.1 \mathrm{~mL})$ was added TMSCN ( $26.2 \mu \mathrm{~L}, 196 \mu \mathrm{~mol}$ ) and the reaction was allowed to warm to room temperature and stirred for 10 minutes. Ketone $(40.0 \mathrm{mg}, 109 \mu \mathrm{~mol})$ was added and the reaction was stirred for an additional 4 h at rt . The reaction was quenched with satd aq $\mathrm{KH}_{2} \mathrm{PO}_{4}$, the layers were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with satd aq $\mathrm{KH}_{2} \mathrm{PO}_{4}$, dried, filtered, and concentrated. The resulting cyanohydrin was sufficiently pure for analytical purposes ( $50.0 \mathrm{mg}, 99 \%$ ). The
cyanohydrin was isolated as a $1: 1$ mixture of diastereomers. ${ }^{10} \mathrm{R}_{f}=0.49\left(\mathrm{SiO}_{2}, 20 \%\right.$ EtOAc/hexanes); IR (film) 2971, 2926, 1376, 1253, 1189, 1175, $1124 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, data for both diastereomers) $\delta 7.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.83(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H})$, $7.37(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$, $2.36(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.44-142(\mathrm{~m}, 6 \mathrm{H}), 1.39(\mathrm{~s}$, $3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 0.15(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, data for both diastereomers) $\mathrm{ppm} 145.3,140.9,135.3$ (2C), 133.1, 133.0, 130.1 (2C), 127.0, 126.9, 125.5, 126.4, 124.9, 124.6, 122.3, 120.8, 119.6, 118.6, 111.1, $110.9,77.2,68.3,50.9,49.1,38.9,37.9,29.7,29.6,27.8,27.7,25.8,21.6,10.5$ (2C), 1.3, 0.7; HRMS (EI): Exact mass calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SSi}[\mathrm{M}]^{+} 489.1644$, found 489.1642 .


## 4,5,5-Trimethyl-1-tosyl-1,5-dihydrobenzo[ $c d]$ indol-3-yl trifluoromethanesulfonate (551).

To a $0{ }^{\circ} \mathrm{C}$ solution of ketone $(1.05 \mathrm{~g}, 2.86 \mathrm{mmol})$ and 4-methyl-2,6-di- ${ }^{\text {t }}$ butylpyridine ( $1.06 \mathrm{~g}, 5.15 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ was added trifluoromethanesulfonyl anhydride ( $0.77 \mathrm{~mL}, 4.58 \mathrm{mmol}$ ) dropwise. The reaction was allowed to warm to room temperature and stirred for 22 h . The reaction was quenched by slow dropwise addition of satd aq

[^9]$\mathrm{NaHCO}_{3}$ at $0{ }^{\circ} \mathrm{C}$ and the solution was stirred for 5 minutes at rt . The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 5-10 \%\right.$ ethyl acetate in hexanes) to afford the enol triflate as a white solid $(1.32 \mathrm{~g}, 53 \%) . \mathrm{R}_{f}=0.42\left(\mathrm{SiO}_{2}, 20 \%\right.$ EtOAc/hexanes); $\mathrm{mp}=101-103{ }^{\circ} \mathrm{C}$; IR (film) 2969, 2926, 2855, 1428, 1378, 1246, 1190, $1008 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.37(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm $145.1,138.2,137.4,135.4,135.0,133.2,130.0,127.1,126.9,126.6,119.3,118.5\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}\right.$ $=320 \mathrm{~Hz}), 116.7,113.7,111.4,44.4,29.9,21.6,12.4$; HRMS (EI): Exact mass calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 500.0808$, found 500.0815 .


## 4,5,5-Trimethyl-1-tosyl-1,5-dihydrobenzo[cd]indole-3-carbaldehyde (552).

To a $0^{\circ} \mathrm{C}$ solution of nitrile $(2.45 \mathrm{~g}, 6.51 \mathrm{mmol})$ in toluene ( 30 mL ) was added DIBAL-H ( $4.99 \mathrm{~mL}, 7.49 \mathrm{mmol}, 1.5 \mathrm{M}$ in toluene) and stirred for 1 h at $0^{\circ} \mathrm{C}$. The reaction was quenched by the stepwise addition of $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and $6 \mathrm{M} \mathrm{HCl}(100 \mathrm{~mL})$. The reaction was allowed to warm to room temperature and stirred until the layers became clear ( $\sim 6$ h). The layers were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 20 \%\right.$ ethyl acetate in hexanes) to afford
the enal as a white solid $(2.45 \mathrm{~g}, 99 \%) . \mathrm{R}_{f}=0.16\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} / \mathrm{hexanes}\right) ; \mathrm{mp}=188$ ${ }^{\circ} \mathrm{C}$; IR (film) 2972, 2925, 2871, 1672, 1438, $1370 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $10.42(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J$ $=8.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.33$ (s, 3H), $1.52(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 190.2, 161.9, 144.6, 137.8, 135.6, 132.6, 129.8, 126.9, 126.4, 126.3, 126.1, 120.8, 118.7, 113.0, 111.1, 42.9, 29.7, 21.6, 13.9; HRMS (EI): Exact mass calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 380.1320$, found 380.1332.


## (Z)-3-(((tert-Butyldimethylsilyl)oxy)methylene)-5,5-dimethyl-4-methylene-1-tosyl-

## 1,3,4,5-tetrahydrobenzo [ $c d]$ indole (553).

To a $-10{ }^{\circ} \mathrm{C}$ solution of enal $(1.03 \mathrm{~g}, 2.72 \mathrm{mmol})$ and triethylamine ( $833 \mu \mathrm{~L}, 5.98 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(13 \mathrm{~mL})$ was added TBSOTf $(808 \mu \mathrm{~L}, 4.62 \mathrm{mmol})$ dropwise and the reaction was stirred for 10 h at $-10^{\circ} \mathrm{C}$. The reaction was quenched by slow dropwise addition satd aq $\mathrm{NH}_{4} \mathrm{Cl}$ and the solution was warmed to rt. The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 5-10 \%\right.$ ethyl acetate in hexanes) to afford the diene as a colorless oil (1.26 g, 94\%). $\mathrm{R}_{f}=0.57\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes $)$; IR (film) 2955, 2927, 2856, 1637, 1375, $1174 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.76(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}$, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{dd}, J=10.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=10.5 \mathrm{~Hz}$,
$2 \mathrm{H}), 7.15(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=0.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 6 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 0.30(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 151.2, 144.5, 140.3, 137.9, 135.7, 132.9, 129.8, 127.1, 126.8, 125.6, 119.6, 116.8, 116.3, 114.7, 111.1, 106.5, 40.2, 29.7, 28.4, 25.7, 21.5, 18.3, -5.2; HRMS (EI): Exact mass calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{Si}^{+} 379.1278\right.$, found 379.1278. ${ }^{11}$

A NOESY crosspeak was observed between the methylene proton of the exocyclic alkene and the methine proton, thus confirming the formation of requisite diene with the desired
 diene geometry.

(9S,10R)-10-((tert-Butyldimethylsilyl)oxy)-6,6,9-trimethyl-2-tosyl-2,6,7,8,9,10-hexahydronaphtho[1,2,3-cd]indole-9-carbaldehyde (558).

To a $-23^{\circ} \mathrm{C}$ solution of diene ( $100 \mathrm{mg}, 203 \mu \mathrm{~mol}$ ) and methacrolein ( $335 \mu \mathrm{~L}, 4.06 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(850 \mu \mathrm{~L})$ was added $\mathrm{EtAlCl}_{2}(112 \mu \mathrm{~L}, 203 \mu \mathrm{~mol}, 1.8 \mathrm{M}$ in toluene $)$ dropwise over 5 minutes. ${ }^{12}$ The reaction was stirred for 30 minutes at $-23^{\circ} \mathrm{C}$ and 1.5 h at $0^{\circ} \mathrm{C}$. The reaction was quenched by slow dropwise addition of satd aq $\mathrm{NaHCO}_{3}$ and and the solution was warmed to rt. The layers were separated, and the aqueous layer was

[^10]extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 5-10 \%\right.$ ethyl acetate in hexanes) to afford the Diels Alder adduct as a viscous oil ( $72 \mathrm{mg}, 63 \%$ ). The adduct was isolated as a single diastereomer as indicated by the NMR analysis. $\mathrm{R}_{f}=0.40\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes $)$; IR (film) 2956, 2928, 2856, 1729, 1368, 1172, 1118, $1100 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 9.70(\mathrm{~s}$, $1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.25(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 2.55(\mathrm{ddd}$, $11.5,11.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H})$, $1.41(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}), 0.74(\mathrm{~s}, 9 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}),-0.29(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ( 125 MHz , $\mathrm{CDCl}_{3}$ ) ppm 205.2, 144.8, 144.7, 140.2, 135.7, 133.5, 129.9, 126.9, 126.7, 126.5, 121.4, $119.8,118.8,115.7,110.8,70.8,49.8,49.3,40.9,31.0,29.0,25.7,22.1,21.9,21.5,18.3$, 16.0, -3.5, -4.1; HRMS (EI): Exact mass calcd for $\mathrm{C}_{32} \mathrm{H}_{41} \mathrm{NNaO}_{4} \mathrm{SSi}[\mathrm{M}+\mathrm{Na}]^{+} 586.2423$, found 586.2426.

A complete 2D NMR analysis was carried out to elucidate the structure of Diels-Alder adduct. HSQC was effective in identifying peaks in the overlapping regions and allowed for NOESY correlations to these regions to be readily distinguishable. NOESY correlations from both H 11 to H 17 and H 11 to aldehyde proton, and the absence of the NOESY correlations between H11 to either H13 and H14, strongly suggested that the H11

proton is equatorial. Additionally, a NOESY correlation between TBS-methyl protons and $\mathrm{H} 13 \alpha$ indicated that the -OTBS is in the axial position, thus confirming the
stereochemistry at C11. The stereochemistry at C12, which has an axial methyl group, could be relayed to both $\mathrm{H} 14 \beta$ and H 18 . These analyses confirmed the structure of the desired Diels-Alder adduct.


## (8S,10R)-10-((tert-Butyldimethylsilyl)oxy)-8-((E)-1-chloroprop-1-en-2-yl)-6,6-

 dimethyl-2-tosyl-6,7,8,10-tetrahydro-2H-isochromeno[8,7,6-cd]indole (559).To a $-78{ }^{\circ} \mathrm{C}$ solution of diene $(25.0 \mathrm{mg}, 50.7 \mu \mathrm{~mol})$ and $\beta$-chloro methacrolein ( $52.5 \mu \mathrm{~L}$, $507 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(220 \mu \mathrm{~L})$ was added $\mathrm{EtAlCl}_{2}(28 \mu \mathrm{~L}, 50.8 \mu \mathrm{~mol}, 1.8 \mathrm{M}$ in toluene $)$ dropwise over 5 minutes. ${ }^{13}$ The reaction was stirred for 30 minutes at $-78{ }^{\circ} \mathrm{C}$ and 3.0 h at $-23{ }^{\circ} \mathrm{C}$. The reaction was quenched by slow dropwise addition of satd aq $\mathrm{NaHCO}_{3}$ and and the solution was warmed to rt. The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 5-10 \%\right.$ ethyl acetate in hexanes) to afford the Mukaiyama aldol product as a yellow oil $(19.5 \mathrm{mg}, 63 \%)$ in addition to the hydrolyzed enal $(\mathbf{5 5 2}, 5.3 \mathrm{mg}$, $21 \%) . \mathrm{R}_{f}=0.31\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} / \mathrm{hexanes}\right) ;$ IR (film) 2956, 2928, 2886, 2857, 1675, 1367, 1170, 1118, 1117, $1095 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 10.25(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~s}$, $1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J=7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{dd}, J=$

[^11]$10.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{dd}, J=14.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=14.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.32$ $(\mathrm{s}, 3 \mathrm{H}), 1.88(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 0.70(\mathrm{~s}, 9 \mathrm{H}),-0.16(\mathrm{~s}, 3 \mathrm{H}),-$ $0.32(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 190.9, 158.1, 144.5, 141.0, 137.5, 135.5, 132.6, 129.7, 129.1, 126.8, 126.4, 126.3, 121.7, 118.5, 115.5, 113.3, 111.3, 75.3, 43.1, 34.4, 32.6, 27.6, 25.6, 21.5, 18.0, 12.1; HRMS (EI): Exact mass calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{ClNO}_{3} \mathrm{~S}$ $\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{O}\right]^{+} 466.12$, found 466.12. ${ }^{14}$

The appearance of a proton as doublet at 6.13 ppm , and the carbon connected to it at 115.5 ppm as shown by HSQC analysis, indicated that this carbon is most probably $\mathrm{sp}^{2}$ hybridized (C19). The ${ }^{1} \mathrm{H}$

NMR showed three well resolved dd patterns at 4.22, 3.40 and 2.59 , which are the methine (C13) and
 methylene (C14) protons adjacent to each other. A weak IR stretch at $1675 \mathrm{~cm}-1$, and the presence of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR NMR peaks at 10.25 and 190.9 ppm indicated the presence of an $\alpha, \beta$-unsaturated aldehyde. The presence of the enal was confirmed by a downfield shift of the C 17 in the ${ }^{13} \mathrm{C}$ NMR spectrum ( 158.1 ppm ).


[^12]
## (9R,10S)-10-((tert-Butyldimethylsilyl)oxy)-6,6,9-trimethyl-2-tosyl-9-vinyl-

## 2,6,7,8,9,10-hexahydronaphtho $1,2,3-c d]$ indole (560).

To a $-78{ }^{\circ} \mathrm{C}$ solution of methyl triphenylphosphonium bromide ( $60.9 \mathrm{mg}, 170 \mu \mathrm{~mol}$ ) in THF ( $600 \mu \mathrm{~L}$ ) was added ${ }^{n} \mathrm{BuLi}(63.1 \mu \mathrm{~L}, 157 \mu \mathrm{~mol})$ dropwise. The reaction was stirred for 10 minutes at $-78{ }^{\circ} \mathrm{C}$ before being warmed to $0^{\circ} \mathrm{C}$ and stirred for another 30 min . The reaction was cooled to $-78{ }^{\circ} \mathrm{C}$ and a solution of aldehyde ( $24.0 \mathrm{mg}, 42.6 \mu \mathrm{~mol}$ ) in THF $(400 \mu \mathrm{~L})$ was added dropwise over 5 minutes. The reaction was stirred for 1 h at $-78{ }^{\circ} \mathrm{C}$ before being warmed to rt and stirred for 10 h . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$ and the layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were washed with brine, dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 8 \%\right.$ ethyl acetate in hexanes) to afford the alkene as a yellow oil ( $21.4 \mathrm{mg}, 89 \%) . \mathrm{R}_{f}=0.55\left(\mathrm{SiO}_{2}, 20 \%\right.$ EtOAc/hexanes); IR (film) 2956, 2927, 2855, 1369, 1187, 1171, 1099, $1088 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J$ $=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.07$ $(\mathrm{dd}, J=17.5,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~s}$, $1 \mathrm{H}), 2.48(\mathrm{dd}, J=19.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{ddd}, J=12.0$, $10.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.48-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 3 \mathrm{H}), 0.74(\mathrm{~s}$, $9 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}),-0.25(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{CDCl}_{3}$ ) ppm 147.1, 144.6, 142.5, $140.6,135.7,133.4,129.7,126.9,126.8,126.3,123.1,120.2,118.6,115.5,111.4,110.6$, 73.4, 40.6, 39.6, 31.1, 28.7, 26.4, 25.9, 22.6, 21.5, 20.0, 18.4, -3.6, -3.8; HRMS (EI): Exact mass calcd for $\mathrm{C}_{33} \mathrm{H}_{43} \mathrm{NNaO}_{3} \mathrm{SSi}[\mathrm{M}+\mathrm{Na}]^{+} 584.2631$, found 584.2646.

(9R,10S)-6,6,9-Trimethyl-2-tosyl-9-vinyl-2,6,7,8,9,10-hexahydronaphtho[1,2,3-cd]indol-10-ol (561).

To a $0^{\circ} \mathrm{C}$ solution of the TBS ether ( $30.5 \mathrm{mg}, 54.4 \mu \mathrm{~mol}$ ) in THF ( 1.0 mL ) was added TBAF ( $136 \mu \mathrm{~L}, 136 \mu \mathrm{~mol}, 1.0 \mathrm{M}$ in THF). The reaction was warmed to rt and stirred for 1 h . The reaction was quenched with satd aq $\mathrm{NaHCO}_{3}$ and the layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were washed with brine, dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography ( $\mathrm{SiO}_{2}, 15 \%$ ethyl acetate in hexanes) to afford the alcohol as a white foam ( $22.9 \mathrm{mg}, 95 \%$ ). $\mathrm{R}_{f}=0.28\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes $)$; IR (film) 3551, 2969, 2926, 2870, 1436, 1362, 1188, 1170, 1116, $1098 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.80(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{dd}, J=17.5,11.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.26(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~s}, 1 \mathrm{H}), 2.49(\mathrm{ddd}, J=19.0$, $5.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{ddd}, J=12.5,9.0,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.75(\mathrm{~s}, 1 \mathrm{H}), 1.58(\mathrm{ddd}, J=13.0,5.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 144.5, 143.3, 142.8, 139.9, 135.7, 133.2, 129.8, 127.2, 126.9 (2C), 126.2, 122.5, 118.8, 118.5, 117.2 (2C), 115.2, 110.7, 72.9, 40.8, 39.6, 30.7, 29.7, 28.4, 22.4, 21.9, 21.5; HRMS (EI): Exact mass calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NNaO}_{3} \mathrm{~S}$ $[\mathrm{M}+\mathrm{Na}]^{+} 470.1776$, found 470.1776 .


4-Chloro-3-methyl-but-3-en-2-one (231).
A solution of methyl magnesium bromide ( $240 \mathrm{~mL}, 3.0 \mathrm{M}$ in ether, 721 mmol ), in ether $(600 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$ and treated with a solution of $\beta$-chloro- $\alpha$-methyl acrolein $(68.5 \mathrm{~g}, 655 \mathrm{mmol})$ as a pre-dissolved solution in ether $(80 \mathrm{~mL})$. The mixture was warmed to room temperature and quenched with an ether-ice mixture, followed by an aqueous work-up to give the alcohol in sufficient purity for oxidation.

The alcohol ( $55.5 \mathrm{~g}, 95.7 \mathrm{mmol}$ ) was added to a slurry of $\mathrm{MnO}_{2}(476 \mathrm{~g}, 5.48 \mathrm{~mol})$ in pentane (1.5 L) and stirred vigorously for 36 hours. Additional $\mathrm{MnO}_{2}(119 \mathrm{~g}, 1.12 \mathrm{~mol})$ was added and the mixture was stirred for an additional 12 h . The mixture was filtered over Celite and concentrated to a yellow oil that was purified by flash chromatography ( $\mathrm{SiO}, 8 \%$ ether in hexanes) to furnish the ketone as a yellow oil ( $54 \mathrm{~g}, 74 \%$ ). Analytical data was identical to that in the literature.

(Z)-5,5-Dimethyl-4-methylene-1-tosyl-3-(((triisopropylsilyl)oxy)methylene)-1,3,4,5tetrahydrobenzo $[c d]$ indole (563).

To a $-10{ }^{\circ} \mathrm{C}$ solution of enal $(11.0 \mathrm{mg}, 29.0 \mu \mathrm{~mol})$ and triethylamine $(12.0 \mu \mathrm{~L}, 87.0$ $\mu \mathrm{mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(400 \mu \mathrm{~L})$ was added TIPSOTf ( $23.4 \mu \mathrm{~L}, 87.0 \mu \mathrm{~mol}$ ) dropwise and the
reaction was stirred for 10 h at $-10^{\circ} \mathrm{C}$. The reaction was quenched by slow dropwise addition of satd aq $\mathrm{NH}_{4} \mathrm{Cl}$ and the solution was warmed to rt . The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography ( $\mathrm{SiO}_{2}, 5 \%$ ethyl acetate in hexanes) to afford the diene as a colorless oil (13.0 mg, 84\%). $\mathrm{R}_{f}=0.56\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes $)$; IR (film) 2944, 2925, 2866, 1375, 1174, $1096 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.74(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{dd}, J=8.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=0.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 6 \mathrm{H}), 1.32(\mathrm{sept}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 18 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 151.3, 144.5, 140.3, 138.5, 135.7, 132.9, 129.7, 127.1, $126.8,125.6,119.7,116.8,116.3,114.4,111.1,106.3,40.2,28.4,21.5,17.7,11.8$; HRMS (EI): Exact mass calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{~S}$ [M-C $\left.{ }_{9} \mathrm{H}_{18} \mathrm{Si}\right]^{+}$380.1320, found $380.1295 .{ }^{15}$

A NOESY crosspeak was observed between the methylene proton of the exocyclic alkene and the methine proton, thus confirming the formation of requisite diene with the desired
 diene geometry.

[^13]

## 1-((8R,9S,10R)-10-((tert-Butyldimethylsilyl)oxy)-8-chloro-6,6,9-trimethyl-2-tosyl-

## 2,6,7,8,9,10-hexahydronaphtho[1,2,3-cd]indol-9-yl)ethanone (564).

$\mathrm{EtAlCl}_{2}\left(1.79 \mathrm{~mL}, 3.22 \mathrm{mmol}, 1.8 \mathrm{M}\right.$ in toluene) was added dropwise to a $-78{ }^{\circ} \mathrm{C}$ solution of the diene $(1.59 \mathrm{~g}, 3.22 \mathrm{mmol})$ and the dienophile ( $2.66 \mathrm{~g}, 22.6 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(13.0 \mathrm{~mL}) .{ }^{16}$ The reaction was stirred for 30 minutes at $-78{ }^{\circ} \mathrm{C}$ and 2.5 h at -23 ${ }^{\circ} \mathrm{C}$. The reaction was quenched by slow dropwise addition of satd aq $\mathrm{NaHCO}_{3}$ and the solution was warmed to rt. The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography ( $\mathrm{SiO}_{2}, 5-10 \%$ ethyl acetate in hexanes) to afford the Diels-Alder adduct $(1.16 \mathrm{~g}, 59 \%)$ in addition to the Mukaiyama aldol product ( $96 \mathrm{mg}, 7 \%$ ).

## Diels-Alder adduct (564)

The adduct was isolated as a single diastereomer ( $\left.{ }^{1} \mathrm{H} \mathrm{NMR}\right) . \mathrm{R}_{f}=0.36\left(\mathrm{SiO}_{2}, 20 \%\right.$ EtOAc/hexanes); mp 240-241 ${ }^{\circ} \mathrm{C}$ (decomp); IR (film) 2928, 2887, 2856, 1716, 1367, 1186, 1170, 1117, $1091 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.16(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{dd}, J=9.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=$

[^14]19.2, 7.2 Hz, 1H), $2.61(\mathrm{dd}, J=18.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H})$, $1.42(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}), 0.71(\mathrm{~s}, 9 \mathrm{H}),-0.08(\mathrm{~s}, 3 \mathrm{H}),-0.31(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 150 MHz , $\mathrm{CDCl}_{3}$ ) ppm 207.3, 144.9, 142.7, 139.7, 135.8, 133.6, 129.9 (2C), 126.9, 126.4, 121.7, $119.2,118.9,116.3,111.1,74.5,56.7,56.1,40.8,34.9,31.2,28.8,26.5,25.6,21.5,18.2$, 13.8, -3.7, -4.2; HRMS (EI): Exact mass calcd for $\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{ClNO}_{4} \mathrm{SSi}[\mathrm{M}]^{+} 611.2287$, found 611.2306.

A complete 2D NMR analysis was carried out to elucidate the structure of Diels-Alder adduct. NOESY correlations from both H 11 to $\mathrm{H} 17^{17}$ and H 11 to C 19 , and the absence of NOESY correlations between H11 to either H13 and H14, suggested that
 the H11 proton is equatorial. Additionally, a NOESY correlation between TBS-methyl protons and $\mathrm{H} 13 \alpha$ indicated that the -OTBS is in the axial position, thus confirming the stereochemistry at C11. The stereochemistry at C12, which has an axial methyl group, could be relayed to both $\mathrm{H} 14 \beta$ and H 19 . These observations support the assignment of the Diels-Alder adduct as depicted.

## Mukaiyama aldol product (576)

$\mathrm{R}_{f}=0.23\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes $) ; \mathrm{mp} 200-202{ }^{\circ} \mathrm{C}$; IR (film) 2962, 2928, 2857, 1674, 1437, 1367, 1187, 1169, $1095 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.83(\mathrm{~s}, 1 \mathrm{H})$, $8.07(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.22$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.5 \mathrm{~Hz}$,

[^15]$1 \mathrm{H}), 4.99(\mathrm{dd}, J=6.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 6 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}$, $3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 0.77(\mathrm{~s}, 9 \mathrm{H}),-0.08(\mathrm{~s}, 3 \mathrm{H}),-0.25(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 189.7, 159.0, 144.4, 144.3, 139.3, 137.4, 135.5, 135.3, $132.8,132.4,129.6,129.5,128.4,126.8,126.5$ (2C), 126.1, 126.0, 121.3, 118.6, 118.3, $115.2,113.1,111.0,110.4,71.9,43.1,41.2,34.5,30.7,27.4,25.5,21.3,17.8,15.0,-5.0,-$ 5.3; HRMS (EI): Exact mass calcd for $\mathrm{C}_{50} \mathrm{H}_{56} \mathrm{~N}_{2} \mathrm{Na} \mathrm{O}_{6} \mathrm{~S}_{2} \mathrm{Si}$ [M] ${ }^{+}$895.3247, found 895.3283.

The ${ }^{1} \mathrm{H}$ NMR analysis showed one well resolved dd pattern at 4.95 in addition to two poorly resolved patterns at 3.30 and 2.25 , which are the methine (C11) and methylene (C12) adjacent to each other. A weak IR stretch at $1675 \mathrm{~cm}^{-}$ ${ }^{1}$, and the presence of ${ }^{1} \mathrm{H}$ NMR and

${ }^{13} \mathrm{C}$ NMR NMR peaks at 9.82 and 189.8 ppm indicated the presence of an $\alpha, \beta$-unsaturated aldehyde. The presence of enal was confirmed by the downfield shift of C17 in ${ }^{13} \mathrm{C}$ NMR spectrum (159.0 ppm).


## (Z)-(5,5-Dimethyl-4-methylene-1-tosyl-4,5-dihydrobenzo[cd]indol-3(1H)ylidene)methyl 2-phenylacetate (566).

To a $0{ }^{\circ} \mathrm{C}$ solution of phenylacetic acid ( $500 \mathrm{mg}, 3.67 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(18.0 \mathrm{~mL})$ was added (diethylamino)sulfur trifluoride ( $824 \mu \mathrm{~L}, 6.24 \mathrm{mmol}$ ) dropwise. The reaction was
stirred for 10 minutes before being warmed to rt and stirred for another 30 min . The organic layer was washed once with $\mathrm{H}_{2} \mathrm{O}$ and then brine and dried, filtered, and concentrated to a pale yellow oil. The crude acyl fluoride was used in the nest reaction without any further purification.

To a $0{ }^{\circ} \mathrm{C}$ solution of acyl fluoride ( $210 \mathrm{mg}, 152 \mu \mathrm{~mol}$ ) in THF ( 1.0 mL ) was added diene ( $30.0 \mathrm{mg}, 60.8 \mu \mathrm{~mol}$ ) and TBAF ( $5.00 \mu \mathrm{~L}, 4.87 \mu \mathrm{~mol}, 1.0 \mathrm{M}$ in THF). The reaction was stirred for 10 minutes at $0^{\circ} \mathrm{C}$ before being warmed to rt and stirred for another 30 min. The reaction was quenched by slow dropwise addition of satd aq $\mathrm{NaHCO}_{3}$. The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 10-20 \%\right.$ ethyl acetate in hexanes) to afford the diene as a pale yellow oil $(10.0 \mathrm{~g}, 34 \%) . \mathrm{R}_{f}=0.41\left(\mathrm{SiO}_{2}, 20 \%\right.$ EtOAc/hexanes); IR (film) 3030, 2968, 2925, 1752, 1373, 1232, 1189, $1122 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~s}$, $1 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.49-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.37(\mathrm{ddd}, J=9.0,5.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{dd}, J=$ $8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~s}, 1 \mathrm{H}), 5.03(\mathrm{~s}$, $1 \mathrm{H}), 3.94(\mathrm{~s}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 168.0, $150.0,144.9,139.9,139.8,132.8,131.2,129.9,129.4,129.1,127.6,126.8,126.6,126.0$, 121.0, 118.2, 117.4, 117.1, 114.8, 111.2, 109.5, 41.6, 40.2, 28.2, 21.6; HRMS (EI): Exact mass calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}\left[\mathrm{M}-\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{O}\right]^{+} 379.1242$, found 379.1220. ${ }^{18}$

[^16]

## (Z)-(5,5-Dimethyl-4-methylene-1-tosyl-4,5-dihydrobenzo[cd]indol-3(1H)-

 ylidene)methyl trifluoromethanesulfonate (569).To a $-10{ }^{\circ} \mathrm{C}$ solution of enal ( $42.0 \mathrm{mg}, 111 \mu \mathrm{~mol}$ ) and 4-methyl-2,6-di- ${ }^{\text {t }}$ butylpyridine ( $68.3 \mathrm{mg}, 333 \mu \mathrm{~mol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(700 \mu \mathrm{~L})$ was added trifluoromethanesulfonyl anhydride (46.7 $\mu \mathrm{L}, 277 \mu \mathrm{~mol})$ dropwise and the reaction was stirred for 2 h . The reaction was quenched with satd aq $\mathrm{NaHCO}_{3}$ at $-10{ }^{\circ} \mathrm{C}$ and the solution was stirred for 5 minutes at rt . The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 5-10 \%\right.$ ethyl acetate in hexanes) to afford the diene as a pale yellow oil $(21.0 \mathrm{mg}, 38 \%)$. The enol triflate was isolated as a 10:1 inseparable mixture of $E$ and $Z$ isomers. ${ }^{19} \mathrm{R}_{f}=0.44\left(\mathrm{SiO}_{2}\right.$, $20 \%$ EtOAc/hexanes); IR (film) 2969, 2926, 2855, 1428, 1378, 1246, 1213, 1190, 1175, $1139 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, data for the major isomer) $\delta 7.83(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$, $1.43(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, data for the major isomer) ppm 148.4, 145.2, $139.3,135.1,132.7,130.7,130.0,127.0,126.4,126.0,124.2,122.0,117.3,112.4,111.5$, 111.3, 40.2, 27.9, 27.3, 21.5, - $\mathrm{CF}_{3}$ carbon peaks not observed; HRMS (EI): Exact mass calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 512.0808$, found 512.0808.

[^17]

## (E)-1-Phenyl-N-((4,5,5-trimethyl-1-tosyl-1,5-dihydrobenzo[cd]indol-3-

 yl)methylene)methanamine (570).The benzylamine ( $25.0 \mathrm{mg}, 65.9 \mu \mathrm{~mol}$ ) was added to the flask containing the aldehyde ( $25.0 \mathrm{mg}, 65.9 \mu \mathrm{~mol}$ ) and $4 \AA$ molecular sieves in toluene ( $300 \mu \mathrm{~L}$ ) and the reaction was stirred for 1 h at $50^{\circ} \mathrm{C}$. The solution filtered through a pad of celite and concentrated to a pale yellow oil. The crude imine was sufficiently pure for all analytical purposes (31.3 $\mathrm{mg}, 100 \%)^{20} . \mathrm{R}_{f}=0.41\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes $) ;$ IR (film) 3028, 2971, 2925, 1637, 1437, 1369, 1168, $1094 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.70(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H})$, $7.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 2 \mathrm{H})$, $7.17(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~s}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H})$, $1.46(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 159.2, 151.2, 144.3, 139.9, 138.7, 135.7, 132.7, 129.7, 128.5, 127.8, 127.1, 126.8 (2C), 125.8, 123.1, 121.3, 118.6, 115.6, 110.8, 65.8, 42.1, 29.8, 21.5, 14.6; HRMS (EI): Exact mass calcd for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 469.1944, found 469.1934.


[^18] (572).

To a $0^{\circ} \mathrm{C}$ solution of nitrile ( $260 \mathrm{mg}, 691 \mu \mathrm{~mol}$ ) in toluene ( 5.0 mL ) was added DIBAL$\mathrm{H}(1.05 \mathrm{~mL}, 725 \mu \mathrm{~mol}, 1.5 \mathrm{M}$ in toluene $)$. The reaction was stirred for 30 min at $0^{\circ} \mathrm{C}$ and an additional 30 min at rt . The reaction was cooled to $0^{\circ} \mathrm{C}$ and propionic acid (55.2 $\mu \mathrm{L}$, $725 \mu \mathrm{~mol})$ was added. The reaction was stirred for a minute and $\mathrm{NaBH}_{4}(104 \mathrm{mg}, 2.76$ mmol ) in MeOH (5.0) was added to the reaction. The reaction was stirred for 30 min at 0 ${ }^{\circ} \mathrm{C}$ and an additional 30 min at rt . The reaction was quenched by slow dropwise addition of $\mathrm{NH}_{4} \mathrm{OH}$. The layers were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed once with $\mathrm{NH}_{4} \mathrm{Cl}$ and then brine and dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 10 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford the ammonium salt as a brown oil (116 mg, 42\%). $\mathrm{R}_{f}=0.14\left(\mathrm{SiO}_{2}, 10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (film) 3000 (br), 2970, 2927, 1369, 1170, $1119 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.77(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 7.05$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H})$, $1.26(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}$ ) ppm 146.8, 144.6, 139.8, 135.1, 133.2, 129.8, 127.2, 126.5, 126.4, 118.9, 118.1, 117.8, 117.2, 110.5, 41.7, 38.1, 29.8, 21.3, 14.6; HRMS (EI): Exact mass calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{OS}[\mathrm{M}]^{+} 380.1553$, found 380.1560 .


## 4,5,5-Trimethyl-1-tosyl-1,5-dihydrobenzo $[c d]$ indole-3-carbaldehyde (572).

To a $0{ }^{\circ} \mathrm{C}$ solution of nitrile ( $20.0 \mathrm{mg}, 53.2 \mu \mathrm{~mol}$ ) in toluene $(250 \mu \mathrm{~L})$ was added DIBAL-H ( $159 \mu \mathrm{~L}, 157 \mu \mathrm{~mol}, 1.0 \mathrm{M}$ in toluene $)$. The reaction was warmed to rt and stirred for 2 h . The reaction was cooled to $0^{\circ} \mathrm{C}$ and more DIBAL-H was added ( $106 \mu \mathrm{~L}$, $105 \mu \mathrm{~mol}, 1.0 \mathrm{M}$ in toluene). The reaction was warmed to rt and stirred for an additional 4 h . The reaction was quenched by the stepwise addition of $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ and $6 \mathrm{M} \mathrm{HCl}(3$ $\mathrm{mL})$. The reaction was stirred vigorously until the layers became clear ( $\sim 6 \mathrm{~h}$ ). The layers were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 2 \%-5 \%-10 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford the amine (5.0 $\mathrm{mg}, 25 \%$ ) in addition to the enal ( $13.0 \mathrm{mg}, 65 \%$ ). See above for the characterization data.


## Methyl ((4,5,5-trimethyl-1-tosyl-1,5-dihydrobenzo[cd]indol-3-yl)methyl)carbamate

 (573).To a $0{ }^{\circ} \mathrm{C}$ solution of the amine salt $(22.0 \mathrm{mg}, 52.8 \mu \mathrm{~mol})$ and triethyl amine ( $22.1 \mu \mathrm{~L}$, $158 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(700 \mu \mathrm{~L})$ was added methyl chloroformate ( $5.30 \mu \mathrm{~L}, 68.6 \mu \mathrm{~mol}$ ). The reaction was warmed to rt and stirred for 2 h . The reaction was quenched with satd aq $\mathrm{NH}_{4} \mathrm{Cl}$ and the layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic layers were washed with brine, dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, $30 \%$ ethyl acetate in hexanes) to afford the carbamate as a pale yellow foam ( 21.5 mg ,
$93 \%) . \mathrm{R}_{f}=0.08\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} / \mathrm{hexanes}\right) ;$ IR (film) 3396, 2969, 2928, 1704, 1524, $1438,1364,1254,1186,1170,1101 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H}), 4.21(\mathrm{br} \mathrm{d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}$, $3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 157.0, 144.6, 143.7, 139.9, 135.5, 133.5, 129.8, 126.8, 126.6, 126.5, 120.6, 119.3, 118.9, 116.2, $110.8,52.3,41.5,39.9,29.9,21.5,14.2$; HRMS (EI): Exact mass calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ $[\mathrm{M}]^{+} 438.1608$, found 438.1406.

$\xrightarrow[(82 \%, d r \text { 1:1) }]{\text { DIBAL-H }}$


1-((8R,9R,10R)-10-((tert-Butyldimethylsilyl)oxy)-8-chloro-6,6,9-trimethyl-2-tosyl-2,6,7,8,9,10-hexahydronaphtho[1,2,3-cd]indol-9-yl)ethanol (577).

DIBAL-H ( $1.70 \mathrm{~mL}, 2.54 \mathrm{mmol}, 1.5 \mathrm{M}$ in toluene) was added to a $0{ }^{\circ} \mathrm{C}$ solution of ketone ( $1.25 \mathrm{~g}, 2.05 \mathrm{mmol}$ ) in toluene ( 24 mL ). The reaction was warmed to rt and stirred for 1 h . After return of the solution to $0{ }^{\circ} \mathrm{C}$, additional DIBAL-H was added ( 1.70 mL , $2.54 \mathrm{mmol}, 1.5 \mathrm{M}$ in toluene). The solution was warmed to rt and stirred for an additional 1 h . The reaction was quenched by the stepwise addition of $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ and 1 M HCl . The layers were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 10-20 \%\right.$ ethyl acetate in hexanes) to afford the alcohol as a viscous oil ( $1.04 \mathrm{~g}, 82 \%$ ). The alcohol was isolated as an inseparable $1: 1$
mixture of diastereomers. ${ }^{21} \mathrm{R}_{f}=0.31\left(\mathrm{SiO}_{2}, 20 \%\right.$ EtOAc/hexanes); IR (film) 3568, 2928, 2855, 1460, 1437, 1369, 1171, $1095 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, data for both diastereomers) $\delta 7.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.72(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 5.07$ $(\mathrm{dd}, J=10.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{dd}, J=9.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 1 \mathrm{H}), 4.47(\mathrm{~s}, 1 \mathrm{H}), 4.22$ $(\mathrm{dd}, J=12.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{ddd}, J=16.8,6.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{dd}, J=18.6,7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.04(\mathrm{~s}, 1 \mathrm{H}), 3.03(\mathrm{~s}, 1 \mathrm{H}), 3.14(\mathrm{dd}, J=18.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{dd}, J=16.2,6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.66$ (ddd, $J=18.6,9.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H})$, $1.45(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $0.86(\mathrm{~s}, 3 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H}), 0.73(\mathrm{~s}, 3 \mathrm{H}), 0.25(\mathrm{~s}, 3 \mathrm{H}),-0.02(\mathrm{~s}, 3 \mathrm{H}),-0.33(\mathrm{~s}$, $3 \mathrm{H}),-0.42(\mathrm{~s}, 3 \mathrm{H}),-\mathrm{OH}$ protons (2) not observed; ${ }^{13} \mathrm{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm $145.0,144.9,143.6,142.4,139.7,135.7,135.6,133.5,129.9,126.9,126.8,126.4,126.3$, $123.1,122.5,119.7,119.4,119.0,118.9,116.1$ (2C), 111.0, 75.1, 74.1, 73.3, 71.8, 64.1, $58.9,45.7,44.3,40.8,40.5,36.0,35.0,30.8,29.7,29.3,28.9,25.9,25.7,21.5,18.4,18.3$, 17.2, 14.1, 14.0, 9.6, -3.3, -3.6, -3.8, -4.3; HRMS (EI): Exact mass calcd for $\mathrm{C}_{33} \mathrm{H}_{44} \mathrm{ClNO}_{4} \mathrm{SSi}[\mathrm{M}]^{+}$611.2443, found 611.2441.


[^19]To a $0{ }^{\circ} \mathrm{C}$ solution of the alcohols ( $\left.116 \mathrm{mg}, 189 \mu \mathrm{~mol}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ was added $\mathrm{Tf}_{2} \mathrm{O}(63.7 \mu \mathrm{~L}, 378 \mu \mathrm{~mol})$ and pyridine $(40.8 \mu \mathrm{~L}, 567 \mu \mathrm{~mol})$ and the reaction was stirred for 30 minutes at $0{ }^{\circ} \mathrm{C}$. The solution was warmed to rt and more pyridine $(183 \mu \mathrm{~L}, 2.27$ mmol ) was added. The reaction was stirred for 12 h and quenched by slow dropwise addition of satd aq $\mathrm{NaHCO}_{3}$ at $0{ }^{\circ} \mathrm{C}$. The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography ( $\mathrm{SiO}_{2}, 5-10 \%$ ethyl acetate in hexanes) to afford the desired alkene as a viscous oil ( $61.6 \mathrm{mg}, 55 \%) . \mathrm{R}_{f}=0.52\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} / \mathrm{hexanes}\right)$; IR (film) 2956, 2926, $2855,1371,1171,1120,1099 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.71(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.17(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{dd}, J=17.4,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{dd}, J=10.8$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{dd}, J=10.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~s}, 1 \mathrm{H}), 3.06$ $(\mathrm{dd}, J=18.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dd}, J=18.6,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H})$, $1.40(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}), 0.73(\mathrm{~s}, 9 \mathrm{H}),-0.08(\mathrm{~s}, 3 \mathrm{H}),-0.21(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ( 150 MHz , $\mathrm{CDCl}_{3}$ ) ppm 144.8, 144.1, 141.3, 139.9, 135.7, 133.4, 129.9, 126.9, 126.6 (2C), 123.6, $119.1,118.7,116.0,114.3,110.9,76.5,61.4,45.6,40.7,34.6,31.6,28.3,25.9,21.5,18.4$, 13.3, $-3.82,-3.92$; HRMS (EI): Exact mass calcd for $\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{ClNO}_{3} \mathrm{SSi}[\mathrm{M}]^{+}$595.2338, found 595.2310.

( $8 R, 9 R, 10 R$ )-8-Chloro-6,6,9-trimethyl-2-tosyl-9-vinyl-2,6,7,8,9,10hexahydronaphtho $[1,2,3-c d]$ indol-10-ol (579).

To a $0{ }^{\circ} \mathrm{C}$ solution silyl ether ( $16.0 \mathrm{mg}, 26.9 \mu \mathrm{~mol}$ ) in THF $(1.0 \mathrm{~mL})$ was added TBAF $(80.8 \mu \mathrm{~L}, 80.8 \mu \mathrm{~mol}, 1.0 \mathrm{M}$ in THF). The solution was warmed to rt and stirred for 1 h . The reaction was quenched with satd aq $\mathrm{NaHCO}_{3}$ and the layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography ( $\mathrm{SiO}_{2}, 20 \%$ ethyl acetate in hexanes) to afford the alcohol as a yellow solid (10.5 mg, 82\%). $\mathrm{R}_{f}=0.27\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes $) ; \mathrm{mp} 138-140{ }^{\circ} \mathrm{C}$ (decomp); IR (film) $3546,2973,2925,1363,1169,1117,1098 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $7.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=8.4,8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{dd}, J=18.0,10.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.43(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{dd}, J=9.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.39$ $(\mathrm{d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=18.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=18.6,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.35$ $(\mathrm{s}, 3 \mathrm{H}), 1.98(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 144.7, 141.2, 140.8, 139.3, 135.6, 133.2, 126.9 (2C), 126.8, 126.5, $122.2,118.7,118.0,117.3,117.2,110.8,74.5,61.3,45.3,40.7,33.6,30.6,29.4,21.6$, 15.8; HRMS (EI): Exact mass calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{ClNO}_{3} \mathrm{~S}[\mathrm{M}]^{+} 481.1473$, found 481.1471.


## 6,6,9-Trimethyl-2-tosyl-2,6-dihydronaphtho[1,2,3-cd]indole (580).

To a $0{ }^{\circ} \mathrm{C}$ solution of alcohol ( $10.0 \mathrm{mg}, 19.3 \mu \mathrm{~mol}$ ) in THF ( $600 \mu \mathrm{~L}$ ) was added TBAF ( $38.6 \mu \mathrm{~L}, 38.6 \mu \mathrm{~mol}, 1.0 \mathrm{M}$ in THF). The reaction was warmed to rt and stirred for 1 h . The reaction was quenched with satd aq $\mathrm{NaHCO}_{3}$ and the layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 10 \%\right.$ ethyl acetate in hexanes) to afford the elimination product as a colorless oil (5.9 mg, 90\%). $\mathrm{R}_{f}=0.44\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes $)$; IR (film) 2966, 2924, 2859, 1369, 1186, 1173, 1123, 1091, $1061 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.81 $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.37(\mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.12(\mathrm{dd}, J=8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 144.7, 142.4, 139.8, 135.9, 135.5, 133.7, 129.9, 129.0, 127.7, 126.8, 126.6, 126.4, 126.1, 124.1, 119.1, 118.6, 116.8, 110.8, 39.1, 33.8, 21.6, 20.9; HRMS (EI): Exact mass calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 402.1522$, found 402.1516 .


## 6,6,9-Trimethyl-2-tosyl-2,6-dihydronaphtho[1,2,3-cd]indole (580).

To a $0{ }^{\circ} \mathrm{C}$ solution of alcohol ( $6.0 \mathrm{mg}, 12.0 \mu \mathrm{~mol}$ ) in THF ( $500 \mu \mathrm{~L}$ ) was added TBAF ( $24.0 \mu \mathrm{~L}, 24.0 \mu \mathrm{~mol}, 1.0 \mathrm{M}$ in THF). The reaction was warmed to rt and stirred for 1 h . The reaction was quenched with satd aq $\mathrm{NaHCO}_{3}$ and the layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 10 \%\right.$ ethyl acetate in hexanes) to afford the elimination product as a colorless oil ( $4.3 \mathrm{mg}, 84 \%) . \mathrm{R}_{f}=0.44\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes $)$. Please see above for characterization data.


## 1-((8R,9S,10R)-8-Chloro-10-hydroxy-6,6,9-trimethyl-2-tosyl-2,6,7,8,9,10-

 hexahydronaphtho [1,2,3-cd]indol-9-yl)ethanone (582).To a $0{ }^{\circ} \mathrm{C}$ solution of silyl ether ( $18.6 \mathrm{mg}, 30.4 \mu \mathrm{~mol}$ ) in THF ( 1.5 mL ) was added TBAF $\left(60.8 \mu \mathrm{~L}, 60.8 \mu \mathrm{~mol}, 1.0 \mathrm{M}\right.$ in THF) and the reaction stirred for 40 minutes at $0^{\circ} \mathrm{C}$. The reaction was quenched with satd aq $\mathrm{NaHCO}_{3}$ and the layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, $20-30 \%$ ethyl acetate in hexanes) to afford the alcohol as a yellow oil ( $8.3 \mathrm{mg}, 55 \%$ ). $\mathrm{R}_{f}=$ $0.11\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes $)$; IR (film) 3503, 2970, 2924, 1704, 1366, 1187, 1170,
$1119,1094 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{dd}, J=9.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=18.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{~s}$, $1 \mathrm{H}), 2.60(\mathrm{dd}, J=18.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H})$, $1.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, $\mathrm{CDCl}_{3}$ ) ppm 144.8, 140.5, 139.1, 135.5, 133.2, 129.9, $126.9,126.7,126.6,122.0,118.7,117.5,117.0,111.0,73.5,57.7,55.5,40.7,33.6,30.8$, 29.1, 28.0, 21.6, 14.5; HRMS (EI): Exact mass calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{ClNO}_{3} \mathrm{~S}[\mathrm{M}-\mathrm{OH}]^{+} 480.13$, found $480.13 .{ }^{22}$

( $8 R, 9 R, 10 R$ )-8-Chloro-9-(1-hydroxyethyl)-6,6,9-trimethyl-2-tosyl-2,6,7,8,9,10hexahydro naphtho[1,2,3-cd]indol-10-ol (583).

To a $0{ }^{\circ} \mathrm{C}$ solution of ketone ( $15.0 \mathrm{mg}, 30.2 \mu \mathrm{~mol}$ ) in toluene ( $200 \mu \mathrm{~L}$ ) was added DIBAL-H ( $20.1 \mu \mathrm{~L}, 30.2 \mu \mathrm{~mol}, 1.5 \mathrm{M}$ in toluene). The reaction was warmed to rt and stirred for 1 h . The reaction was cooled to $0^{\circ} \mathrm{C}$ and more DIBAL-H was added (20.1 $\mu \mathrm{L}$, $30.2 \mu \mathrm{~mol}, 1.5 \mathrm{M}$ in toluene). The reaction was warmed to rt and stirred for an additional 1 h and quenched by the stepwise addition of $\mathrm{H}_{2} \mathrm{O}(20 \mu \mathrm{~L})$ and 1 M HCl . The layers were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 20-30 \%\right.$ ethyl acetate in hexanes) to afford the alcohol as a

[^20]colorless oil (11.6 mg, 77\%). The alcohol was isolated as a 5:4 mixture of diastereomers. ${ }^{23} \mathrm{R}_{f}=0.50\left(\mathrm{SiO}_{2}, 50 \%\right.$ EtOAc/hexanes); IR (film) 3418, 2972, 2927, 1437, 1367, 1187, 1169, 1118, $1095 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, data for both diastereomers) $\delta 7.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~s}, 1 \mathrm{H})$, $7.34(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.94(\mathrm{dd}, J=11.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{dd}, J=10.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~s}$, $1 \mathrm{H}), 4.54(\mathrm{~s}, 1 \mathrm{H}), 4.12-4.09(\mathrm{~m}, 2 \mathrm{H}), 3.10(\mathrm{~s}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=18.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.00$ $(\mathrm{s}, 1 \mathrm{H}), 2.95(\mathrm{dd}, J=18.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=10.4,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dd}, J=$ $10.4,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.54$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.52(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.43$ (s, 3H), $0.99(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 144.8, 141.7, 141.5, $139.4,139.3,135.5,133.3,129.9,126.9,126.7,126.6,122.4,122.3,118.7,118.0,117.9$, $116.5,116.3,110.9,75.0,74.2,73.2,72.0,60.5,59.1,44.4,43.7,40.8,40.7,34.4,34.0$, 31.0, 29.1, 18.9, 21.6, 19.4, 17.8, 14.2, 13.9; HRMS (EI): Exact mass calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{~S}\left[\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{ClO}\right]^{+} 402.1522$, found 402.1. ${ }^{24}$


[^21]
## 6,6,9-Trimethyl-2-tosyl-10-vinyl-2,6-dihydronaphtho[1,2,3-cd]indole (586).

To a $0{ }^{\circ} \mathrm{C}$ solution of alcohol $(10.0 \mathrm{mg}, 20.9 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mu \mathrm{~L})$ was added $\mathrm{Tf}_{2} \mathrm{O}$ $(10.6 \mu \mathrm{~L}, 62.7 \mu \mathrm{~mol})$ and $\mathrm{Et}_{3} \mathrm{~N}(14.5 \mu \mathrm{~L}, 105 \mu \mathrm{~mol})$. The reaction was stirred for 30 minutes at $0^{\circ} \mathrm{C}$ and at rt for 1 h . The reaction was quenched by slow dropwise addition of satd aq $\mathrm{NaHCO}_{3}$ and the layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, 5-10\% ethyl acetate in hexanes) to afford the rearranged tetracyclic product as a white foam ( $1.4 \mathrm{mg}, 15 \%) . \mathrm{R}_{f}=0.52\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes $)$; IR (film) 2959, 2924, 2853, 1457, 1431, 1371, 1187, 1175, 1133, $1094 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.90(\mathrm{~s}$, $1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dd}$, $J=7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{dd}, J=27.0$, $18.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{dd}, J=16.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{dd}, J=27.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}$, $3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 6 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 144.7, 143.4, 139.5, 137.2, 136.7, 135.4, 133.9, 132.9, 129.8, 129.5, 127.2, 126.7, 126.5, 126.2, 124.9, 121.7, 120.7, 118.9, 117.8, 110.5, 39.4, 34.4, 21.5, 20.7; HRMS (EI): Exact mass calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 428.1684$, found 428.1688 .


6,6,9-Trimethyl-2-tosyl-10-vinyl-2,6-dihydronaphtho[1,2,3-cd]indole (586).
To a $0{ }^{\circ} \mathrm{C}$ solution of alcohol ( $\left.25.0 \mathrm{mg}, 52.8 \mu \mathrm{~mol}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(800 \mu \mathrm{~L})$ was added $\mathrm{Tf}_{2} \mathrm{O}$ $(21.2 \mu \mathrm{~L}, 126 \mu \mathrm{~mol})$ and $\mathrm{Et}_{3} \mathrm{~N}(29.0 \mu \mathrm{~L}, 210 \mu \mathrm{~mol})$. The reaction was stirred for 30
minutes at $0^{\circ} \mathrm{C}$ and at rt for 1 h . The reaction was quenched by slow dropwise addition of satd aq $\mathrm{NaHCO}_{3}$ and the layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, 5-10\% ethyl acetate in hexanes) to afford the rearranged tetracyclic product as a white foam ( $1.0 \mathrm{mg}, 4 \%$ ). Please see above for the characterization data.

(8R,9R)-8-Chloro-6,6,9-trimethyl-2-tosyl-9-vinyl-6,7,8,9-tetrahydronaphtho[1,2,3$c d]$ indol-10(2H)-one (587).

To a $0{ }^{\circ} \mathrm{C}$ solution of alcohol ( $6.0 \mathrm{mg}, 12.0 \mu \mathrm{~mol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mu \mathrm{~L})$ was added DessMartin periodinane ( $12.6 \mathrm{mg}, 30.0 \mu \mathrm{~mol})$. The reaction was warmed to rt and stirred for 1 h. The reaction was quenched by the addition of an aqueous solution containing 2:1 satd aq $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}: \mathrm{NaHCO}_{3}$ and was stirred until both layers became clear ( $\sim 20 \mathrm{~min}$ ). The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic layers were dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 15 \%\right.$ ethyl acetate in hexanes) to afford the enone as a pale yellow foam ( $5.8 \mathrm{mg}, 96 \%$ ). $\mathrm{R}_{f}=0.27\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes $)$; IR (film) 2974, 2928, 2359, 2342, 1677, 1369, 1187, 1171, 1116, $1096 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.13(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J=$ $8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{dd}, J=17.6$, $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{dd}, J=4.8,4.0$
$\mathrm{Hz}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J=18.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=18.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H})$, $1.51(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 157, 144.7, $137.9,137.4,135.7,132.6,129.9,127.0,126.7,126.3,124.0,121.8,118.5,117.2,112.7$, 111.2, 64.1, 54.0, 41.8, 33.5, 30.3, 28.9, 21.6, 19.5; HRMS (EI): Exact mass calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{ClNO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 480.1400$, found 480.1415 .

(8R,9R,10R)-8-Chloro-6,6,9-trimethyl-2-tosyl-9-vinyl-2,6,7,8,9,10-

## hexahydronaphtho $[1,2,3-c d]$ indol-10-ol (588).

To a $0{ }^{\circ} \mathrm{C}$ solution of ketone $(29.3 \mathrm{mg}, 62.1 \mu \mathrm{~mol})$ in toluene $(900 \mu \mathrm{~L})$ was added DIBAL-H ( $80.8 \mu \mathrm{~L}, 124 \mu \mathrm{~mol}, 1.5 \mathrm{M}$ in toluene). The reaction was warmed to rt and stirred for 1 h . The reaction was cooled to $0^{\circ} \mathrm{C}$ and more DIBAL-H was added ( $40.4 \mu \mathrm{~L}$, $62.0 \mu \mathrm{~mol}, 1.5 \mathrm{M}$ in toluene). The reaction was warmed to rt and stirred for an additional 1 h and quenched by the stepwise addition of $\mathrm{H}_{2} \mathrm{O}(50 \mu \mathrm{~L})$ and 1 M HCl . The layers were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 10-20 \%\right.$ ethyl acetate in hexanes) to afford the alcohol as a viscous oil ( $29.1 \mathrm{~g}, 99 \%$ ). The alcohol was isolated as an inseparable 11:2 ( $\beta: \alpha$ ) mixture of diastereomers. $\mathrm{R}_{f}=0.27\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes $)$; IR (film) 3547, 2926, 2925, 1437, 1363, 1187, 1169, 1118, $1092 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, data for both isomers) $\delta 8.10(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32$ $(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{dd}, J=17.6,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{dd}, J=17.2$, $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.27(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{dd}, J=9.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.39 (br s, 1H), $4.17(\mathrm{dd}, J=9.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=18.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{ddd}$, $J=18.0,5.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{ddd}, J=18.0,8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=18.4,9.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{brd}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H})$, $1.42(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, data for both isomers) $\mathrm{ppm} 144.5,142.6,141.2,139.1,138.4,135.6,133.1,132.8,129.8$ (2C), $129.0,128.2,127.0,126.8,126.4,126.1,123.0,119.4,118.6,118.5,118.0,117.2,117.1$, $116.7,116.4,110.8,110.7,74.4,73.5,63.1,61.3,46.3,45.3,40.7,40.6,33.5,33.2,30.5$, 30.0, 29.6, 29.3, 21.5, 15.7, 12.4; HRMS (EI): Exact mass calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{ClNNaO}_{3} \mathrm{~S}$ $[\mathrm{M}+\mathrm{Na}]^{+} 504.1376$, found 504.1387.


(8R,9R,10R)-8-Chloro-10-methoxy-6,6,9-trimethyl-2-tosyl-9-vinyl-2,6,7,8,9,10hexahydro naphtho $[1,2,3-c d]$ indole (596).

To a $0{ }^{\circ} \mathrm{C}$ solution of alcohols ( $24.0 \mathrm{mg}, 50.4 \mu \mathrm{~mol}$ ) in THF $(750 \mu \mathrm{~L})$ was added LiHMDS ( $202 \mu \mathrm{~L}, 202 \mu \mathrm{~mol}, 1.0 \mathrm{M}$ in toluene) dropwise. The reaction was stirred for 1 h at $0^{\circ} \mathrm{C}$, and MeOTf $(34.0 \mu \mathrm{~L}, 302 \mu \mathrm{~mol})$ was added dropwise to the solution. The reaction was stirred for 30 min at $0^{\circ} \mathrm{C}$ and 30 min at rt . The reaction was quenched with
satd aq $\mathrm{NH}_{4} \mathrm{Cl}$ and the layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 10 \%\right.$ ethyl acetate in hexanes) to afford the methyl ether as a yellow oil ( $23.2 \mathrm{mg}, 94 \%) . \mathrm{R}_{f}=0.46\left(\mathrm{SiO}_{2}, 20 \%\right.$ EtOAc/hexanes); IR (film) 2973, 2929, 1437, 1368, 1187, 1170, 1120, $1097 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J$ $=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.17$ $(\mathrm{dd}, J=17.5,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.56$ $(\mathrm{dd}, J=10.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{dd}, J=18.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.58$ $(\mathrm{dd}, J=18.5,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{CDCl}_{3}$ ) ppm 144.8, 142.6, 141.5, 139.6, 135.5, 133.3, 129.9, 126.8 (2C), 126.6, 121.8, 119.5, 118.7, 116.1, 115.1, 110.9, 85.1, 61.3, 61.2, 45.2, 40.7, 33.8, 30.9, 29.3, 21.6, 13.9; HRMS (EI): Exact mass calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{ClNNaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$ 518.1533, found 518.1520.



( $8 R, 9 R, 10 S$ )-8-Chloro-10-methoxy-6,6,9-trimethyl-2-tosyl-9-vinyl-2,6,7,8,9,10hexahydro naphtho $[1,2,3-c d]$ indole (597).

To a $0^{\circ} \mathrm{C}$ solution of alcohols ( $20.4 \mathrm{mg}, 42.7 \mu \mathrm{~mol}, \alpha: \beta=2: 11$ ) in THF ( $500 \mu \mathrm{~L}$ ) was added LiHMDS ( $138 \mu \mathrm{~L}, 138 \mu \mathrm{~mol}, 1.0 \mathrm{M}$ in toluene) dropwise. The reaction was stirred for 1 h at $0^{\circ} \mathrm{C}$, and $\mathrm{MeOTf}(19.3 \mu \mathrm{~L}, 171 \mu \mathrm{~mol})$ was added dropwise to the solution. The
reaction was stirred for 30 min at $0^{\circ} \mathrm{C}$ and 30 min at rt . The reaction was quenched with satd aq $\mathrm{NH}_{4} \mathrm{Cl}$ and the layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 10 \%\right.$ ethyl acetate in hexanes) to afford the methyl ether as a yellow oil ( $19.3 \mathrm{mg}, 92 \%$ ). The alcohol was isolated as an inseparable 11:2 ( $\beta: \alpha)$ mixture of diastereomers. $\mathrm{R}_{f}=0.46\left(\mathrm{SiO}_{2}, 20 \%\right.$ EtOAc/hexanes); IR (film) 2969, 2925, 2852, 1367, 1187, 1170, 1120, $1100 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}$, data for both isomers) $\delta 7.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.30(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 6 \mathrm{H}), 7.13(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{dd}, J=18.0,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{dd}, J=17.6,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.35$ $(\mathrm{d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=$ $17.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{dd}, J=10.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{br} \mathrm{d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{dd}, J=$ $10.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{dd}, J=18.4,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.89(\mathrm{ddd}, J=18.0,5.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{ddd}, J=17.6,10.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{dd}, J=$ $18.4,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 6 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H})$, $1.22(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, data for $\beta$-isomer) ppm 144.6 , 144.4, 139.4, 139.2, 135.7, 132.7, 129.9, 127.2, 126.9, 126.8, 126.1, 123.6, 118.6, 118.4, 116.4, 116.1, 85.2, 62.5, 61.3, 47.0, 40.8, 33.2, 30.6, 29.7, 21.6, 10.5; HRMS (EI): Exact mass calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{ClNNaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 518.1533$, found 518.1533.


## (8R,9R,10R)-10-Azido-8-chloro-6,6,9-trimethyl-2-tosyl-9-vinyl-2,6,7,8,9,10-

## hexahydro naphtho[1,2,3-cd]indole (598).

To a $-78{ }^{\circ} \mathrm{C}$ solution of methyl ether $(9.9 \mathrm{mg}, 20 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(700 \mu \mathrm{~L})$ was added $\mathrm{SnCl}_{4}(5.0 \mu \mathrm{~L}, 61 \mu \mathrm{~mol})$ and stirred for 5 min . The reaction was allowed to warm to $0{ }^{\circ} \mathrm{C}$ and stirred for 30 min and an additional 30 min at rt . The reaction was quenched with satd aq $\mathrm{NaHCO}_{3}$ and the layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 10 \%\right.$ ethyl acetate in hexanes) to afford the azide as a yellow oil ( $7.1 \mathrm{mg}, 70 \%$ ). Only one diastereomer could be detected by NMR analysis. $\mathrm{R}_{f}=0.49\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} / \mathrm{hexanes}\right) ; \mathrm{IR}$ (film) 2970, 2923, 2851, 2096, 1369, 1171, $1120 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.80(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 7.23$ $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{dd}, J=17.4,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J$ $=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{dd}, J=10.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~s}, 1 \mathrm{H})$, $3.04(\mathrm{dd}, J=18.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=18.6,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}$, $3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 144.9, 142.5, 141.4, $139.1,135.3,133.4,129.9,126.9,126.8,126.3,119.4,118.8,118.2,116.7,116.3,111.1$, 67.7, 60.4, 44.6, 41.1, 33.7, 31.6, 28.9, 21.6, 15.0; HRMS (EI): Exact mass calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{ClN}_{4} \mathrm{NaO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$529.1441, found 529.1451.

A complete 2D NMR analysis was carried out to determine the stereochemistry at C11. NOESY correlations from both H11 to H17 and


H11 to H19, and the absence of the NOESY correlations between H11 to either H13 and H14, strongly suggested that the H11 proton is equatorial.


( $8 R, 9 R, 10 R$ )-10-Azido-8-chloro-6,6,9-trimethyl-2-tosyl-9-vinyl-2,6,7,8,9,10hexahydro naphtho[1,2,3-cd]indole (598).

To a $-78{ }^{\circ} \mathrm{C}$ solution of methyl ether $(4.9 \mathrm{mg}, 9.9 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mu \mathrm{~L})$ was added $\mathrm{SnCl}_{4}(2.5 \mu \mathrm{~L}, 3.0 \mu \mathrm{~mol})$ and stirred for 5 min . The reaction was allowed to warm to $0{ }^{\circ} \mathrm{C}$ and stirred for 30 min and an additional 30 min at rt . The reaction was quenched with satd aq $\mathrm{NaHCO}_{3}$ and the layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 10 \%\right.$ ethyl acetate in hexanes) to afford the azide as a yellow oil ( $2.0 \mathrm{mg}, 40 \%$ ). Only one diastereomer could be detected by NMR analysis. Please see above for the charaterization data.


## ( $8 R, 9 R, 10 R$ )-8-Chloro-6,6,9-trimethyl-2-tosyl-9-vinyl-2,6,7,8,9,10-

## hexahydronaphtho[1,2,3-cd]indol-10-yl acetate (600).

$\mathrm{H}_{2} \mathrm{SO}_{4}(8.0 \mu \mathrm{~L}, 0.15 \mathrm{mmol})^{25}$ was added dropwise to a $0{ }^{\circ} \mathrm{C}$ solution of alcohol $(8.0 \mathrm{mg}$, $17 \mu \mathrm{~mol})$ in $\mathrm{AcOH}(170 \mu \mathrm{~L})$. The reaction was stirred for 30 min at $0^{\circ} \mathrm{C}$ and 30 min at rt . The reaction was cooled to $0{ }^{\circ} \mathrm{C}$ and quenched by the sequential addition of satd aq $\mathrm{Na}_{2} \mathrm{CO}_{3}$ followed by 1.0 M NaOH . The solution was warmed to rt and stirred for 10 min . The layers were separated, the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layers were dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 10 \%\right.$ ethyl acetate in hexanes) to afford the acetate as a pale yellow foam ( $7.7 \mathrm{mg}, 94 \%$ ). The acetate was isolated as a $7: 1$ ratio of diastereomers ( ${ }^{1} \mathrm{H}$ NMR $) . \mathrm{R}_{f}=0.35\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes $) ; \mathrm{IR}$ (film) 2971, 2927, $1734,1558,1506,1457,1369 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.0$ Hz, 2H), 7.12 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{dd}, J=17.2,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H}), 5.30(\mathrm{~d}$, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{dd}, J=10.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{dd}, J=$ 18.4, 6.0 Hz, 1H), 2.58 (dd, $J=18.0,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.47$ (s, 3H), 1.46 (s, 3H), 1.17 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 170.1, 144.7, 143.0, $140.0,139.0,135.6,133.4,129.8,127.0,126.6,126.5,119.9,118.6,117.7,117.4,116.7$,

[^22]$111.0,74.1,60.3,44.0,40.9,33.6,30.8,29.3,21.6,21.0,14.5$; HRMS (EI): Exact mass calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{ClNO}_{2} \mathrm{~S}\left[\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]^{+} 464.1451$, found $464.1465 .{ }^{26}$

The stereochemistry at C11 was determined by comparing the NMR of 16a with the acetylated product of the $\alpha$-alcohol (15). The consistency between coupling constants of these two compounds in ${ }^{1} \mathrm{H}$ NMR analysis suggested similar configuration.

Procedure for alcohol acylation: To a $0^{\circ} \mathrm{C}$ solution of $\alpha$-alcohol ( $4.0 \mathrm{mg}, 8.4 \mu \mathrm{~mol}$ ) in THF ( $200 \mu \mathrm{~L}$ ) was added LHMDS ( $37 \mu \mathrm{~L}, 37 \mu \mathrm{~mol}, 1.0 \mathrm{M}$ in toluene) dropwise. The reaction was stirred for 1 h at $0^{\circ} \mathrm{C}$, and acetyl bromide ( $2.5 \mu \mathrm{~L}, 34 \mu \mathrm{~mol}$ ) was added to the solution. The reaction was stirred for 30 min at $0^{\circ} \mathrm{C}$ and 30 min at rt . The reaction was quenched with satd aq $\mathrm{NH}_{4} \mathrm{Cl}$ and the layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were dried, filtered, and concentrated. The resulting acetate was pure for analytical purposes.



## $N$-((8R,9R,10R)-8-Chloro-6,6,9-trimethyl-2-tosyl-9-vinyl-2,6,7,8,9,10-

hexahydronaphtha $[1,2,3-c d]$ indol-10-yl)formamide (601).
$\mathrm{H}_{2} \mathrm{SO}_{4}(225 \mu \mathrm{~L}, 4.20 \mathrm{mmol})$ was added dropwise to a $0^{\circ} \mathrm{C}$ solution of alcohol ( 100 mg , $210 \mu \mathrm{~mol})$ in TMSCN ( $420 \mu \mathrm{~L}, 3.15 \mathrm{mmol})$. The reaction was stirred for 30 min at $0{ }^{\circ} \mathrm{C}$ and 30 min at rt . The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and quenched by the sequential

[^23]addition of satd aq $\mathrm{Na}_{2} \mathrm{CO}_{3}$ followed by 1.0 M NaOH . The solution was warmed to rt and stirred for 10 min . The layers were separated, the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layers were dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 20-30-40 \%\right.$ ethyl acetate in hexanes) to afford the formamide as a yellow oil ( $52 \mathrm{mg}, 48 \%$ ). Only one diastereomer could be detected by NMR analysis. $\mathrm{R}_{f}=0.39\left(\mathrm{SiO}_{2}, 50 \% \mathrm{EtOAc} /\right.$ hexanes $)$; IR (film) 3276, 2962, 2924, 2853, 1663, 1368, 1170, $1119 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.26(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=$ $8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{dd}$, $J=17.6,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{br} \mathrm{d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=$ $11.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{dd}, J=9.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=18.4$, $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{dd}, J=18.4,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.24$ (s, 3H) ; ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{CDCl}_{3}$ ) ppm 160.5, 144.7, 140.6, 139.9, 138.9, 135.5, 129.9, 129.8, 126.9 (2С), 126.4, 121.1, 118.5, 117.2, 117.1, 116.9, 110.9, 70.5, 61.2, $52.2,44.0,40.8,33.3,30.6,29.4,21.5$; HRMS (EI): Exact mass calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+} 509.1666$ found 509.1664.

A NOESY experiment was carried out to determine the stereochemistry at C11. NOESY correlations from both $\mathrm{H} 11^{17}$ to H 17 and H 11 to H 19 , and the absence of crosspeaks between H11 to either H13 and H14, suggested that the H11 proton is

equatorial. Additionally, a NOESY crosspeak between H13 and H20 was observed which indicated the axial orientation of the formamide functionality. These two observations are consistent with the formation of the $\alpha$-formamide.


## $N$-((8R,9R,10R)-8-Chloro-6,6,9-trimethyl-9-vinyl-2,6,7,8,9,10-

hexahydronaphtho[1,2,3-cd indol-10-yl)formamide (605).

To a solution of formamide ( $13.0 \mathrm{mg}, 25.6 \mu \mathrm{~mol}$ ) in $\mathrm{MeOH}(3.6 \mathrm{~mL})$ was added Mg turnings ( $56.0 \mathrm{mg}, 2.30 \mathrm{mmol}$ ) and the reaction and stirred for 4 h at rt . The reaction was quenched with satd aq $\mathrm{NH}_{4} \mathrm{Cl}$ and the solution was stirred for 30 min at rt . The layers were separated, the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layers were dried, filtered, and concentrated. The resulting detosylated product was isolated as a mixture of cis- and trans-rotamers and found to be pure for all analytical purposes $(9.0 \mathrm{mg}, 100 \%) . \mathrm{R}_{f}=0.24\left(\mathrm{SiO}_{2}, 50 \% \mathrm{EtOAc} /\right.$ hexanes $)$; IR (film) 3357, 3278, 2962, 2924, 2850, 1684, 1679, 1669, $1653 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, data for the major diastereomer) $\delta 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.91$ (br s, 1 H ), 7.23 (dd, $J=7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.11$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{dd}, J=17.6$, $11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{br} \mathrm{d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=11.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{dd}, J=10.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{dd}, J=18.1,5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=18.1,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}$, data for both isomers) ppm 164.9, 160.8, 140.7, 140.6, 140.4,
138.8, 138.7, 136.9, 136.1, 133.9, 133.7, 124.7, 124.5, 124.4, 122.3, 118.0, 116.6, 116.4, 114.9 (2C), 114.8, 112.2, 112.1, 111.9, 108.0, 107.9, 62.5, 61.7, 58.4, 53.0, 44.7, 44.0, 41.1, 40.9, 33.3, 31.9, 31.1, 30.7, 30.0, 29.6, 17.2, 15.8; HRMS (EI): Exact mass calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{ClN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 355.1577$, found 355.1572.


## ( $\pm$ )-Hapalindole K (602).

To a $0{ }^{\circ} \mathrm{C}$ solution of formamide $(1.9 \mathrm{mg}, 5.4 \mu \mathrm{~mol})$ and $\mathrm{Et}_{3} \mathrm{~N}(14.4 \mu \mathrm{~L}, 107 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$ was added phosgene $(9.3 \mu \mathrm{~L}, 19 \mu \mathrm{~mol}, 20 \%$ in toluene). The reaction was stirred for 15 min at $0{ }^{\circ} \mathrm{C}$ and quenched with satd aq $\mathrm{NaHCO}_{3}$. The solution was warmed to rt and stirred for 10 min . The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic layers were dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, $20-30 \%$ ethyl acetate in hexanes) to afford hapalindole $\mathrm{A}(1.6 \mathrm{mg}, 85 \%) . \mathrm{R}_{f}=0.70\left(\mathrm{SiO}_{2}\right.$, $50 \%$ EtOAc/hexanes); IR(film) 3411, 2958, 2920, 2850, $2134 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( 600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.25(\mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{dd}, J=17.4,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~d}, J=$ $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 1 \mathrm{H}), 4.43(\mathrm{dd}, J=7.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.08$ (ddd, $J=18.0,4.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{br} \mathrm{dd}, J=18.4,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}$, 3 H ), 1.33 ( $\mathrm{s}, 3 \mathrm{H}$ ) ; ${ }^{13} \mathrm{C}$ NMR (150 MHz, $\mathrm{CDCl}_{3}$ ) ppm 158.5, 139.9, 138.6, 136.6, 133.8,
$124.7,124.4,118.8,117.6,116.3,114.9,111.5,108.0,61.4,60.3,43.3,41.1,32.9,30.5$, 30.1, 16.7; LRMS (EI): Exact mass calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{ClN}_{2}[\mathrm{M}+\mathrm{H}]^{+} 357.15$, found 357.20.

$N$-((6aS,8R,9R,10R,10aR)-8-Chloro-6,6,9-trimethyl-9-vinyl-2,6,6a,7,8,9,10,10a-octahydronaphtho[1,2,3-cd] indol-10-yl)formamide (603).
$\mathrm{LiAlH}_{4}\left(452 \mu \mathrm{~L}, 678 \mu \mathrm{~mol}, 1.5 \mathrm{M}\right.$ in THF) was added to a $0{ }^{\circ} \mathrm{C}$ solution of formamide $(17.0 \mathrm{mg}, 33.9 \mu \mathrm{~mol})$ in THF ( 3.0 mL ) and the reaction was stirred for 13 h at $0^{\circ} \mathrm{C}$. The reaction was quenched with sequential addition of $\mathrm{H}_{2} \mathrm{O}(100 \mu \mathrm{~L})$ and 0.5 M NaOH and the solution was stirred for 5 min at rt . The layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography ( $\mathrm{SiO}_{2}$, 30-40-50-60-70\% ethyl acetate in hexanes) to afford the formamide as a yellow oil in addition to the side products 604 and 605.

## Formamide 603

(isolated as a mixture of cis- and trans-rotamers): ${ }^{27}$ yellow oil ( $4.6 \mathrm{mg}, 39 \%$ ). $\mathrm{R}_{f}=0.15$ ( $\mathrm{SiO}_{2}, 50 \% \mathrm{EtOAc} / \mathrm{hexanes}$ ); IR (film) 3396, 3287, 2961, 2923, 2853, 1679 (br s) $\mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, data for the both isomer) $\delta 8.23(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}), 8.13$ (br s, 1H), 8.08 (br s, 1H), 7.23-7.18 (m, 4H), $7.08(\mathrm{dd}, J=2.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.95$ $(\mathrm{m}, 2 \mathrm{H}), 6.94(\mathrm{dd}, J=6.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{dd}, J=8.8,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{br} \mathrm{d}, J=8.8$

[^24]$\mathrm{Hz}, 1 \mathrm{H}), 5.83(\mathrm{dd}, J=16.6,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{dd}, J=16.6,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=$ $17.0,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=11.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{dd}, J=9.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=12.4,4.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.16(\mathrm{dd}, J=10.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.63(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.14(\mathrm{ddd}, J=$ $12.8,7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.94(\mathrm{ddd}, J=13.2,4.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{~s}$, $3 \mathrm{H}), 1.55-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{dd}, J=7.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}$, $3 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, data for both rotamers) ppm $165.1,160.1,144.7,143.1,137.7$ (2C), 133.6, 133.5, 124.3, 124.0, 123.5, 123.1, 119.5, $118.9,115.8,114.8,113.9,113.6,112.0,111.7,108.6,108.5,64.4,64.0,60.9,55.3,46.2$, $45.8,45.7,45.4,38.1,38.0,37.7,36.4,32.1,31.5,31.1,24.6$ (2C), 22.7, 21.3, 20.0; HRMS (EI): Exact mass calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+} 379.1553$, found 379.1557.

## Alcohol 604

(isolated as a mixture of cis- and trans- rotamers): pale yellow oil (1.7 mg, 14\%). $\mathrm{R}_{f}=$ $0.07\left(\mathrm{SiO}_{2}, 50 \% \mathrm{EtOAc} / \mathrm{hexanes}\right)$; IR (film) 3356 (br s), 2961, 2923, 2852, 1669 (br s) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, data for the both isomer) $\delta 8.12(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{br} \mathrm{d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{br} \mathrm{d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18$ $(\mathrm{dd}, J=8.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=1.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.97$ (dd, $J=1.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{dd}, J=16.8,10.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.30$ $(\mathrm{d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=18.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=9.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.59(\mathrm{dd}, J=12.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{dd}, J=12.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{brd}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.44(\mathrm{br} \mathrm{d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{ddd}, J=13.8,3.6,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.13-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{~s}, 2 \mathrm{H}), 1.90(\mathrm{dd}, J=13.8,12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{dd}, J=13.8$,
$12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 6 \mathrm{H}), 0.82(\mathrm{~s}, 3 \mathrm{H}), 0.80(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$, data for both isomers) ppm 165.0, 159.9, 145.1, 143.0, 138.4, 138.0, 133.4, 133.3, 123.7, 123.5, 123.4 (2C), 119.9, 119.0, 115.9, 114.8, 113.8, 113.6, 111.9, $111.8,109.0$ (2C), 80.6, 80.2, 62.0, 61.6, 61.1, 55.2, 45.6, 43.5, 42.3, 42.1, 37.2, 36.8, 31.9, 26.7, 26.9 (2C), 22.7, 20.3, 19.7, 18.6; HRMS (EI): Exact mass calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 395.1502$, found 395.1503.

The ${ }^{1} \mathrm{H}$ NMR analysis indicated a 5:1 mixture of cis- and trans-rotamers and as a result, the NMR peaks in general were broadened. First, HSQC was used to assign the formamide -NH and -OH protons and then NOESY correlations were used to assign the stereochemistry of newly formed quaternary center (C15). The alcohol proton shows strong correlations to formamide $-\mathrm{NH}, \mathrm{H} 13$, and H 10 . As previously elucidated, the formamide functionality is $\alpha$ which indicates that the newly formed quaternary center has $\alpha-\mathrm{OH}$. Additionally, the formamide -NH was observed to shift downfield ( $\delta 7.37 \mathrm{ppm}$ ) which also suggests the possibility of hydrogen bonding with $\alpha-\mathrm{OH}$. The presence of NOESY correlation between $\mathrm{H} 2, \mathrm{H} 11$ and $\mathrm{H} 2, \mathrm{H} 17$ also supports the assigned chair conformation of the cyclohexane core.


Formamide 605 (isolated as a mixture of cis- and trans-isomer): Please see above for characterization data.

( $\pm$ )-Hapalindole A (606).
To a $0{ }^{\circ} \mathrm{C}$ solution of the formamide $(3.8 \mathrm{mg}, 10.7 \mu \mathrm{~mol})$ and $\mathrm{Et}_{3} \mathrm{~N}(29.8 \mu \mathrm{~L}, 214 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.8 \mathrm{~mL})$ was added phosgene $(18.5 \mu \mathrm{~L}, 37.5 \mu \mathrm{~mol}, 20 \%$ in toluene $)$. The reaction was stirred for 15 min at $0{ }^{\circ} \mathrm{C}$ and quenched with satd aq $\mathrm{NaHCO}_{3}$. The solution was warmed to rt and stirred for 10 min . The layers were separated, the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layers were dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, $20 \%$ ethyl acetate in hexanes) to afford hapalindole $\mathrm{A}(3.4 \mathrm{mg}, 90 \%)$ as a oil. $\mathrm{R}_{f}=0.60$ ( $\mathrm{SiO}_{2}, 50 \% \mathrm{EtOAc} / \mathrm{hexanes}$ ); IR (film) 3417 , 2964, 2924, 2853, 2134, $1439 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.07(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{dd}, J=5.4,2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.89(\mathrm{dd}, J=1.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{dd}, J=17.5,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=11.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.24(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.23(\mathrm{dd}, J=12.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 2.32$ (ddd, $J=13.4,4.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.15$ (dddd, $J=13.5,3.5,3.5,0.7 \mathrm{~Hz}, 1 \mathrm{H})$, $1.56(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{ddd}, J=13.0,13.0,13.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 157.9, 143.3, 138.0, 133.5, 124.0, 123.6, 118.7, 116.2, 114.1, 110.7, 108.6, 63.9, 63.2, 44.7, 44.2, 38.1, 37.1, 32.0, 31.1, 24.4, 18.9; HRMS (EI): Exact mass calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{ClN}_{2}[\mathrm{M}+\mathrm{H}]^{+} 339.1628$, found 339.1617 .





## (6aS,8R,9R,10R,10aR)-8-Chloro-6,6,9-trimethyl-9-vinyl-2,6,6a,7,8,9,10,10a-

 octahydro naphtho[1,2,3-cd]indol-10-ol (607).To a $0{ }^{\circ} \mathrm{C}$ solution of alcohol $(45.0 \mathrm{mg}, 94.3 \mu \mathrm{~mol})$ in THF $(6.0 \mathrm{~mL})$ was added $\mathrm{LiAlH}_{4}$ ( $1.56 \mathrm{~mL}, 2.37 \mathrm{mmol}, 1.5 \mathrm{M}$ in THF) and the reaction was stirred for 36 h at $10^{\circ} \mathrm{C}$. The reaction was quenched with sequential addition of $\mathrm{H}_{2} \mathrm{O}(500 \mu \mathrm{~L})$ and 0.5 M NaOH and the solution was stirred for 5 min at rt . The layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography ( $\mathrm{SiO}_{2}$, 10-20-25\% ethyl acetate in hexanes) to afford the desired reduced product as a viscous oil $(14.3 \mathrm{mg}, 47 \%)$ in addition to the detosylated side co-product ( $2.4 \mathrm{mg}, 8 \%$ ). $\mathrm{R}_{f}=0.60$ ( $\mathrm{SiO}_{2}, 50 \% \mathrm{EtOAc} /$ hexanes); IR (film) 3364 (br), 2959, 2923, 2851, 1457, $1441 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.98$ (br s, 1H), 7.20-7.16 (m, 2H), $6.95(\mathrm{dd}, J=6.6,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.90(\mathrm{dd}, J=1.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{dd}, 18.0,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{dd}, J=11.4,0.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{dd}, J=12.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.74$ (br s, 1H), $2.28(\mathrm{ddd}, J=13.2,4.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{br} \mathrm{d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.10$ (dddd, $J$ $=13.2,3.6,3.6,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{ddd}, J=13.2,13.2,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.20$ (s, 3H), $0.86(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{ppm} 143.9,138.6,133.5,124.5$, 123.2, 118.7, 116.3, 113.7, 112.2, 108.3, 64.0, 47.7, 44.5, 37.7, 36.3, 32.1, 31.6, 29.7,
24.6, 20.17; HRMS (EI): Exact mass calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]^{+} 330.1619$, found 330.1607.

A complete 2D NMR analysis was performed to ascertain the stereochemical outcome of reduction step. First, HSQC was used to assign the -OH proton and also differentiate between H 15 and $\mathrm{H} 14 \alpha$, $\mathrm{H} 14 \beta$ protons, as the latter is connected to a secondary carbon. Then NOESY correlations were used to assign the stereochemistry of newly formed chiral center (C15 and C10). The alcohol proton shows strong NOESY correlations to H 13 , and H 15 . As previously elucidated, the alcohol
 functionality is $\alpha$ which means that the newly formed chiral centers have $\alpha$-protons. The presence of NOESY correlations between $\mathrm{H} 2, \mathrm{H} 11$ and $\mathrm{H} 2, \mathrm{H} 17$ also confirms the assigned chair conformation of the cyclohexane core.

## Data for 609:

$\mathrm{R}_{f}=0.06\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes $)$; IR (film) 3401 (br), 2963, 2923, 2851, 1460, 1444 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.86(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.23(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.10$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{dd}, J=18.0,11.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.40(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{dd}, J=9.6,5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.42(\mathrm{~s}, 1 \mathrm{H}), 3.05(\mathrm{dd}, J=18.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=18.0,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H})$, $1.49(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}),\left(-\mathrm{OH}\right.$ proton not observed); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{ppm}$ $141.9,139.1,136.5,134.0,124.6,123.3,116.4,115.8,114.8,113.1,107.8,77.2,75.2$, 61.8, 45.3, 40.7, 33.6, 31.1, 29.6, 15.3; HRMS (EI): Exact mass calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{ClNO}$ $[\mathrm{M}+\mathrm{H}]^{+} 328.1468$, found 328.1455 .

( $8 R, 9 R, 10 R$ )-8-Chloro-6,6,9-trimethyl-9-vinyl-2,6,7,8,9,10-hexahydronaphtho[1,2,3$c d$ ]indol -10-ol (609).

To a solution of alcohol ( $10.0 \mathrm{mg}, 21.0 \mu \mathrm{~mol}$ ) in $\mathrm{MeOH}(3.0 \mathrm{~mL})$ was added Mg turnings $(45.8 \mathrm{mg}, 1.88 \mathrm{mmol})$ and the reaction was stirred for 4 h at rt . The reaction was quenched with satd aq $\mathrm{NH}_{4} \mathrm{Cl}$ and the solution was stirred for 30 min at rt . The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic layers were dried, filtered, and concentrated. The resulting detosylated product was found to be pure for all analytical purposes $(6.8 \mathrm{mg}, 99 \%)$. See above for the characterization data.

( $6 \mathrm{aS}, 8 \mathrm{R}, 9 \mathrm{R}, 10 \mathrm{R}, 10 \mathrm{a} R)$-Allyl 10-(((allyloxy)carbonyl)oxy)-8-chloro-6,6,9-trimethyl-9-vinyl-6a,7,8,9,10,10a-hexahydronaphtho $[1,2,3-c d]$ indole-2(6H)-carboxylate (610).

To a $-10{ }^{\circ} \mathrm{C}$ solution of alcohol ( $4.0 \mathrm{mg}, 12.1 \mu \mathrm{~mol}$ ) in THF ( $200 \mu \mathrm{~L}$ ) was added LiHMDS ( $61 \mu \mathrm{~L}, 61 \mu \mathrm{~mol}, 1.0 \mathrm{M}$ in toluene) dropwise. The reaction was stirred for 1 h at $-10^{\circ} \mathrm{C}$, and allyl chloroformate ( $5.2 \mu \mathrm{~L}, 48 \mu \mathrm{~mol}$ ) was added dropwise to the solution. The reaction was stirred for 30 min at $-10^{\circ} \mathrm{C}$ and 30 min at $0^{\circ} \mathrm{C}$. The reaction was
quenched with satd aq $\mathrm{NH}_{4} \mathrm{Cl}$ and the layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography ( $\mathrm{SiO}_{2}$, $10 \%$ ethyl acetate in hexanes) to afford the desired product as a colorless oil ( 2.8 mg , $47 \%) . \mathrm{R}_{f}=0.44\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} / \mathrm{hexanes}\right) ;$ IR (film) 2955, 2925, 2853, 1742 (br s), 1439, 1394, $1252 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.46(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $7.31(\mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{dddd}, 17.4,10.2,6.0,6.0$ Hz, 1H), 5.96 (dddd, 17.4, 10.8, 6.0, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.91$ (dd, $J=17.4,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.47$ $(\mathrm{d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{dd}, J=17.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{dd}, J$ $=10.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{dd}, J=10.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J$ $=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{dd}, 12.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.91$ (dd, 13.2, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.69$ (ddd, 12.6, $6.0,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{ddd}, 13.2,6.0,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dd}, 12.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~s}$, 1H), 2.24 (ddd, 13.2, 4.2, $4.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.15 (ddd, 13.2, 3.6, $3.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.46 (ddd, 13.2, $13.2,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 165.4, 154.3, 142.3, 138.5, 131.5, 125.9, 120.5, 120.4, 119.5, 119.1, 117.7, 117.6, $116.1,115.7,112.9,82.9,68.7,67.6,63.7,46.0,44.4,37.5,35.2,32.2,31.2,24.5,19.1 ;$ HRMS (EI): Exact mass calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{ClNO}_{5}[\mathrm{M}]^{+} 497.1969$, found. ${ }^{28}$



[^25]
## (6aS, $8 R, 9 R, 10 \mathrm{a}$ )-8-Chloro-6,6,9-trimethyl-9-vinyl-6,6a,7,8,9,10a-

## hexahydronaphtho[1,2,3-cd]indol-10(2H)-one (611).

To a $0{ }^{\circ} \mathrm{C}$ solution of alcohol ( $\left.5.9 \mathrm{mg}, 17.9 \mu \mathrm{~mol}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(600 \mu \mathrm{~L})$ was added DessMartin periodinane ( $19.0 \mathrm{mg}, 44.8 \mu \mathrm{~mol}$ ) and the reaction was stirred for 1 h . The reaction was quenched by the addition of an aqueous solution containing 2:1 satd aq $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}: \mathrm{NaHCO}_{3}$ and was stirred until both layers became clear ( $\sim 20 \mathrm{~min}$ ). The layers were separated, the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layers were dried, filtered, and concentrated. The resulting residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 15 \%\right.$ ethyl acetate in hexanes) to afford the enone as a pale yellow foam ( $3.8 \mathrm{mg}, 65 \%$ ). $\mathrm{R}_{f}=0.60\left(\mathrm{SiO}_{2}, 40 \% \mathrm{EtOAc} /\right.$ hexanes $)$; IR (film) 3399 (br), 2923, 2953, $1698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.07(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.23-7.19(\mathrm{~m}$, $2 \mathrm{H}), 6.99(\mathrm{dd}, J=6.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{dd}, J=1.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{dd}, J=17.4$, $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=12.6,3.6$ $\mathrm{Hz}, 1 \mathrm{H}$ ), 4.23 (br s, 1H), 2.27 (dddd, $J=13.8,3.6,3.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{ddd}, J=13.2$, $3.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{ddd}, J=13.2,13.2,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.11$ (s, 3H) ; ${ }^{13} \mathrm{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ppm 211.3, 139.7, 137.3, 133.8, 123.6, 123.5, $120.0,116.5,113.9,108.8,108.4,64.9,57.2,46.5,45.8,37.5,31.6,30.7,24.6,20.1$; HRMS (EI): Exact mass calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]^{+} 328.1468$, found 328.1391.


To a $-10{ }^{\circ} \mathrm{C}$ solution of indole ( $4.5 \mathrm{mg}, 13.7 \mu \mathrm{~mol}$ ) in THF $(500 \mu \mathrm{~L})$ was added LiHMDS ( $34.2 \mu \mathrm{~L}, 34.2 \mu \mathrm{~mol}, 1.0 \mathrm{M}$ in toluene). The reaction was stirred for 1 h at -10 ${ }^{\circ} \mathrm{C}$, and allyl chloroformate $(3.6 \mu \mathrm{~L}, 34 \mu \mathrm{~mol})$ was added dropwise to the solution. The solution was stirred for 30 min at $-10^{\circ} \mathrm{C}$ and 30 min at $0{ }^{\circ} \mathrm{C}$. The reaction was quenched with satd aq $\mathrm{NH}_{4} \mathrm{Cl}$ and the layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were dried, filtered, and concentrated to provide a yellow oil. The crude Alloc protected indole was carried on to the next step without further purification.

To a solution of the crude indole ( 2.6 mg ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mu \mathrm{~L})$ was added triethyl amine $(30.0 \mu \mathrm{~L}, 73.5 \mu \mathrm{~mol})$ and the reaction was stirred for 4 h at $40^{\circ} \mathrm{C}$. The reaction was concentrated and the resulting residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 10 \%\right.$ ethyl acetate in hexanes) to afford the desired product as a colorless oil (2.2 $\mathrm{mg}, 40 \%)$. The NMR data matched that in the literature. ${ }^{29}$

[^26]Figure 1. 1H NMR Spectrum ( $500 \mathrm{MHz}, \mathrm{CDCl} 3$ ) of 33 aa


Figure 2. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $\mathbf{1 2 5} \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 33a


Figure 3. 135 DEPT Spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of $\mathbf{3 3 a}$


Figure 4. HSQC Spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 33 a


Figure 5. COSY Spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 33 a


Figure 6. HMBC Spectrum ( $\mathbf{1 2 5} \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 33a


Figure 7. NOESY Spectrum ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 33a


Figure 8. ${ }^{1} \mathrm{H}$ NMR Spectrum $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 3} \mathbf{a b}$


Figure 9. ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{Spectrum}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 33ab



Figure 10. 135 DEPT Spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of $\mathbf{3 3 a b}$


Figure 11. HSQC Spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 33 ab


Figure 12. COSY Spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 33ab


Figure 13. HMBC Spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 33ab


Figure 14. NOESY Spectrum ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 33ab


Figure 15. ${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 33ba


Figure 16. ${ }^{13} \mathrm{C}$ NMR Spectrum $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 3 b a}$


Figure 17. 135 DEPT Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 33ba



Figure 18. HSQC Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of $\mathbf{3 3 b a}$


Figure 19. COSY Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of $\mathbf{3 3 b a}$


Figure 20. HMBC Spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 33ba


Figure 21. NOESY Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 33ba


Figure 22. ${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 3 b b}$


Figure 23. ${ }^{13} \mathrm{C}$ NMR Spectrum $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 3 b b}$


Figure 24. 135 DEPT Spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 33bb


Figure 25. HSQC Spectrum ( $\mathbf{1 5 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) of $\mathbf{3 3 b b}$


Figure 26. . COSY Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 33bb


Figure 27. HMBC Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of $\mathbf{3 3 b b}$


Figure 28. NOESY Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 33bb


Figure 29. ${ }^{1} \mathbf{H}$ NMR Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 36ab


Figure 30. ${ }^{13} \mathrm{C}$ NMR Spectrum $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 6 a b}$


Figure 31. 135 DEPT Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 36ab


Figure 32. HSQC Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of $\mathbf{3 6 a b}$


Figure 33. COSY Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 36 ab


Figure 34. HMBC Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 36ab


Figure 35. NOESY Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 36ab


Figure 36. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) of Serratezomine A (37)


Figure 37. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) of Serratezomine A (37)


Figure 38. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $\mathbf{6 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) of 277


Figure 39. ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR Spectrum ( $\mathbf{1 5 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$ ) of 277


Figure 40. ${ }^{\mathbf{1}} \mathrm{H}$ NMR Spectrum ( $\mathbf{6 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$ ) of 251


Figure 41. ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR Spectrum ( $\mathbf{1 5 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$ ) of 251


Figure 42. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $\mathbf{5 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 263


Figure 43. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $\mathbf{1 2 5} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$ ) of 263


Figure 44. ${ }^{\mathbf{1}} \mathrm{H}$ NMR Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 264


Figure 45. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $\mathbf{1 5 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$ ) of 264



Figure 46. ${ }^{\mathbf{1}} \mathrm{H}$ NMR Spectrum ( $\mathbf{6 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 266


Figure 47. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 266


Figure 48. HSQC Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 266


Figure 49. COSY Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 266


Figure 50. NOESY Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 266


Figure 51. ${ }^{1} \mathrm{H}$ NMR Spectrum $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 269


Figure 52. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 269


Figure 53. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $\mathbf{6 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 270


Figure 54. ${ }^{13} \mathrm{C}$ NMR Spectrum $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 270


Figure 55. ${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 279


Figure 56. ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{Spectrum}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 279



Figure 57. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 249


Figure 58. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) of 249


Figure 59. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 280


Figure 60. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $\mathbf{1 5 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) of 280


Figure 61. ${ }^{\mathbf{1}} \mathrm{H}$ NMR Spectrum ( $\mathbf{6 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 281


Figure 62. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $\mathbf{1 5 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) of 281


Figure 63. ${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 286


Figure 64. ${ }^{\mathbf{1 3}} \mathrm{C}$ NMR Spectrum ( $\mathbf{1 5 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$ ) of 286


Figure 65. HSQC Spectra ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 286


Figure 66. HMBC Spectra ( $\mathbf{1 5 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) of 286


Figure 67. COSY Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 286


Figure 68. NOESY Spectra ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 286


Figure 69. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 448


Figure 70. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 448


Figure 71. ${ }^{1} \mathrm{H}$ NMR Spectrum $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 463


Figure 72. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) of 463


Figure 73. ${ }^{1} \mathrm{H}$ NMR Spectra $\left(500 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right)$ of 464


Figure 74. ${ }^{13} \mathrm{C}$ NMR Spectrum $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 464


Figure 75. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $\mathbf{5 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 466


Figure 76. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) of 466

yWN $\partial_{\varepsilon เ}$


Figure 77. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $\mathbf{5 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$ ) of 472


Figure 78. ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{Spectrum}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$ of 472


Figure 79. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) of 473
(

Figure 80. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) of 473


Figure 81. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) of 474


Figure 82. ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{Spectrum}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 474


Figure 83. ${ }^{1} \mathrm{H}$ NMR Spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 489


Figure 84. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 489


Figure 85. ${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 491


Figure 86. ${ }^{\mathbf{1 3}} \mathrm{C}$ NMR Spectrum ( $\mathbf{1 5 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) of 491


Figure 87. ${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 505


Figure 88. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 505







Figure 89. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 508


Figure 90. ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR Spectrum ( $\mathbf{1 5 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) of 508


Figure 91. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 509


Figure 92. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 509


Figure 93. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$ ) of 520


Figure 94. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 520


Figure 95. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 530


Figure 96. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 530


Figure 97. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $\mathbf{5 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$ ) of 532


Figure 98. ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR Spectrum ( $\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) of 532


Figure 99. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 534


Figure 100. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 534



Figure 101. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) of 535


Figure 102. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 534


Figure 103. ${ }^{1} \mathrm{H}$ NMR Spectrum $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 539


Figure 42. ${ }^{\circ} \mathrm{C}$ NMK Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 21

Figure 104. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 539


Figure 105. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) of 540


Figure 106. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 540


Figure 107. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 514


Figure 108. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) of 514


Figure 109. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) of 546


Figure 110. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 546


Figure 111. ${ }^{1} \mathbf{H}$ NMR Spectrum ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) of 547


Figure 112. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 547


Figure 113. ${ }^{\mathbf{1}} \mathbf{H}$ NMR Spectrum ( $\mathbf{6 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) of 552


Figure 114. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $\mathbf{1 5 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) of 552


Figure 115. ${ }^{1} \mathbf{H}$ NMR Spectrum ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 553


Figure 116. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) of 533


Figure 117. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 558


Figure 118. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) of 534


Figure 119. HSQC Spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 558


Figure 120. NOESY ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 558


Figure 121. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 559


Figure 122. ${ }^{13} \mathrm{C}$ NMR Spectrum $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 559


Figure 123. HSQC Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 559


Figure 124. HMBC Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 559


Figure 125. NOESY Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 559


Figure 126. ${ }^{1} \mathbf{H}$ NMR Spectrum $\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$ of 560


Figure 127. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) of 534


Figure 128. ${ }^{1} \mathrm{H}$ NMR Spectrum $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 561


Figure 129. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 561


Figure 130. ${ }^{\mathbf{1}} \mathrm{H}$ NMR Spectrum ( $\mathbf{6 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) of 564


Figure 131. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 564


Figure 132. NOESY Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 564


Figure 133. ${ }^{1} \mathbf{H}$ NMR Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 576


Figure 134. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 576


Figure 135. HSQC Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 576


Figure 136. HMBC Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 576


Figure 137. NOESY Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 576


Figure 138. ${ }^{1} \mathbf{H}$ NMR Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 577


Figure 139. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $\mathbf{1 5 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) of 577


Figure 140. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 578


Figure 141. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 578


Figure 142. ${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 579


Figure 143. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 579


Figure 144. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 587


Figure 145. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $\mathbf{1 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$ ) of 587


Figure 146. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 588


Figure 147. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 588




Figure 148. ${ }^{1} \mathbf{H}$ NMR Spectrum ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 596


Figure 149. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 596


Figure 150. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 597


Figure 151. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 597


Figure 152. ${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 598


Figure 153. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 598


Figure 154. HSQC Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 598


Figure 155. HMBC Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 598


Figure 156. NOESY Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 598


Figure 157. ${ }^{1} \mathrm{H}$ NMR Spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 600


Figure 158. ${ }^{13} \mathrm{C}$ NMR Spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 600


Figure 159. ${ }^{\mathbf{1}} \mathrm{H}$ NMR Spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 601


Figure 160. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 601


Figure 161. ${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 602 (hapalindole K)


Figure 162. ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{Spectrum}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 602 (hapalindole K )


Figure 163. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 603


Figure 164. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 603




Figure 165. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 604


Figure 166. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 604


Figure 167. HSQC Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 604


Figure 168. NOESY Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 604


Figure 169. ${ }^{1} \mathrm{H}$ NMR Spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 605


Figure 170. ${ }^{13} \mathrm{C}$ NMR Spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 605


Figure 171. 1H NMR Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl} 3$ ) of 606 (hapalindole A)


Figure 172. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 606 (hapalindole A)


Figure 173. ${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 607


Figure 174. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 607



Figure 175. HSQC Spectrum ( $\mathbf{1 5 0} \mathbf{M H z}, \mathrm{CDCl}_{3}$ ) of 607


Figure 176. NOESY Spectrum ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 607


Figure 177. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$ ) of 609


Figure 178. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 609


Figure 179. ${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 610


Figure 180. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $\mathbf{1 5 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$ ) of 610


Figure 181. ${ }^{1} \mathrm{H}$ NMR Spectrum ( $\mathbf{6 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) of 611


Figure 182. ${ }^{13} \mathrm{C}$ NMR Spectrum ( $\mathbf{1 5 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$ ) of 611


Figure 183. ${ }^{\mathbf{1}} \mathbf{H}$ NMR Spectrum ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of $\mathbf{6 1 2}$



[^0]:    ${ }^{1}$ Pangborn, A. B.; Giardello, M.A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518-1520.

[^1]:    ${ }^{2}$ Viswanathan, R. Ph. D. Dissertation, Indiana University Bloomington, IN, 2005 and Pigza, J. A. Ph. D. Dissertation, Indiana University Bloomington, IN, 2008

[^2]:    ${ }^{3}$ The alkylation product can be triturated with hexanes to provide the material $>99 \%$

[^3]:    ${ }^{4}$ Commercially available

[^4]:    ${ }^{5}$ The difference in the optical rotation values might have been caused by the residual thionyl chloride from the reaction.

[^5]:    ${ }^{6}$ Complete saturation by KF is necessary.

[^6]:    ${ }^{7}$ Highly unstable compound. HRMS could not be obtained

[^7]:    ${ }^{8}$ Complete saturation by KF is necessary.

[^8]:    ${ }^{9}$ Due to the low boiling point $\left(\sim 145{ }^{\circ} \mathrm{C}\right)$, the acyl chloride should be put under high vacuum for longer duration of time ( $\sim 2$ minutes).

[^9]:    ${ }^{10}$ The cyanohydrin was found to hydrolyze upon exposure to $\mathrm{SiO}_{2}$ or upon storage for a longer duration of time (>7 days). As a result the crude cyanohydrin was subjected to the subsequent (elimination) reaction immediately after isolation.

[^10]:    ${ }^{11}$ TBS group was lost
    ${ }^{12}$ Rapid addition leads to lower yields.

[^11]:    ${ }^{13}$ Rapid addition leads to lower yields.

[^12]:    ${ }^{14}$ Loss of TBSOH was observed, due to elimination, resulting in a highly conjugated system.

[^13]:    ${ }^{15}$ TIPS group was lost

[^14]:    ${ }^{16}$ Rapid addition leads to lower yields.

[^15]:    ${ }^{17}$ Heterocycle numbering used here throughout instead of IUPAC/CAS numbering.

[^16]:    ${ }^{18}$ Benzyl group was lost

[^17]:    ${ }^{19}$ 2D NMR analysis to determine the regioselectivity was not carried out.

[^18]:    ${ }^{20}$ The imine was found to hydrolyze on silica and upon storage for longer duration of time ( $>7$ days).

[^19]:    ${ }^{21}$ The alcohol is highly sensitive to the base, and should not be stored for an extended period of time.

[^20]:    ${ }^{22}$ Loss of a $\mathrm{H}_{2} \mathrm{O}$ molecule due to elimination was observed.

[^21]:    ${ }^{23}$ The alcohol is highly sensitive to the base, and should not be stored for an extended period of time.
    ${ }^{24}$ The HRMS indicated that the product has gone a tandem Grob fragmentation/elimination sequence to give compound $\mathbf{5 8 0}$.

[^22]:    ${ }^{25} 95-98 \%$ EMD

[^23]:    ${ }^{26}$ Elimination of AcOH observed.

[^24]:    ${ }^{27}$ The assigned structure was confirmed after the compound was converted to ( $\pm$ )-hapalindole A

[^25]:    ${ }^{28}$ Decomposition of the compound was observed. The desired mass of the compound or its fragment could not be obtained in HRMS.

[^26]:    ${ }^{29}$ Fukuyama, T.; Chen, X. Q. J. Am. Chem. Soc. 1994, 116, 3125.

