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CHAPTER I

INTRODUCTION

I.1 Overview of Molecular Imaging

 Since the discovery of X-Rays by Wilhelm Conrad Röntgen in 1895, medical 

imaging has  become a powerful clinical tool in the diagnosis and treatment of disease. 

Planar X-Ray, Computed Tomography (CT), Magnetic Resonance Imaging (MRI), and 

ultrasound imaging have become ubiquitous in the clinical setting. However, these 

modalities have until recently been limited to use as anatomical imaging modalities, i.e. 

imaging of structure rather than biological function. Molecular imaging, “the 

visualization, characterization and measurement of biological processes at the 

molecular and cellular levels in humans and other living systems” (1)  has recently 

emerged as a clinical and research tool to interrogate functional biological processes. 

Molecular imaging can be utilized in the detection, diagnosis and prognosis of disease 

as well as to aid in the determination of treatment response.

 The most important component of molecular imaging is  the molecular imaging 

agent itself which is  composed of two basic parts, the targeting moiety and the signaling 

moiety (2). The targeting moiety directs the probe to the biological target of interest. A 

number of types of targeting moieties are currently in use including antibodies, proteins, 

peptides, and small molecules.  The signaling moiety provides  a means for detection of 

the molecular imaging probe by an imaging system. Signaling moieties include 
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radionuclides, fluorophores, hyperpolarized molecules, nanoparticles, microbubbles and 

even endogenous substances. 

 The ability to label a targeting moiety with many types of signaling moieties 

allows molecular imaging to occur across  a number of imaging modalities (3). The most 

common clinical molecular imaging modalities are Positron Emission Tomography (PET) 

and Single Photon Emitted Computer Tomography (SPECT), which utilize radionuclides 

as signaling moieties. PET imaging with positron emitting radionuclides such as  11C, 18F, 

64Cu, and 68Ga allows imaging resolutions on the order of millimeters with very high 

sensitivity in both clinical and preclinical settings. SPECT imaging utilizes radionuclides 

that exhibit a single photon decay including 99mTc, 123I, 111In, and 177Lu. SPECT has 

somewhat lower sensitivity compared to PET and has lower resolution in the clinical 

setting, but can have higher resolution in pre-clinical imaging due to specialized 

hardware for small animal imaging. Fluorescence imaging with fluorescent dyes, 

proteins, or quantum dots can have both high sensitivity and resolution when not 

obscured by overlying tissues. However, it can quickly lose both when tissue is present 

between the fluorophore and the detector due to scattering and absorbance of the 

incident and fluorescent photons, as  well as the presence of autofluorescence in the 

tissue. In practice, fluorescence imaging is mainly limited to pre-clinical imaging due to 

depth of detection issues. However fluorescence can be effectively utilized in superficial 

or topical applications in humans. Bioluminescent imaging (BLI), a purely preclinical 

imaging modality, utilizes reporter genes typically expressing luciferase, which cleaves 

injected luciferin leading to the release of light. BLI can have very high sensitivity due to 

the lack of naturally occurring light sources, but has roughly millimeter resolution due to 
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scattering and absorbance of light while traveling though tissue. MRI, while typically 

used for anatomical imaging, may be used as a molecular imaging modality. Signaling 

moieties containing metals that effect either the T1 or T2 relaxation times of hydrogen 

such as Gadolinium or superparamagnetic iron oxide particles, or imaging 19F rather 

than hydrogen have been developed. However, each exhibit very low sensitivity 

compared to PET. Additionally, Magnetic Resonance Spectroscopy (MRS) may be 

utilized to assay naturally occurring molecules or to detect exogenous molecules that 

induce chemical shift, however MRS is very low sensitivity with low resolution compared 

to MRI. Finally, ultrasound imaging can be used as a molecular imaging modality by the 

use of targeted microbubbles. Tiny gas-containing bubbles on the order of microns in 

diameter are injected into the blood stream and can hone to various intravascular 

3

Modality Signal Clinical Sensitivity* Resolution
Clinical; Pre-Clinical

PET 11C, 18F, 64Cu, 68Ga Yes 1 ~4 mm; ~2 mm

SPECT 99mTc, 123I, 111In, 177Lu Yes 10-1-10-2 6-8 mm; 1-2 mm

Fluorescence
Fluorescent proteins, 

fluorochromes, 
quantum dots

Potential 10-2-1† N/A; 1-3 mm

BLI Light No 1-102 † N/A; 1-10 mm

MRI Gadolinium, SPIO, 
USPIO, 19F Potential 10-5 1 mm; 80-100 µm

MRS
Endogenous 
compounds, 

hyperpolarized 13C
Yes < 10-5 ~1mm; < 1mm

Ultrasound Microbubbles Potential > 10-5 300-500 µm; 50 µm

* Relative to PET, † Depth-dependent
 Adapted from (2, 3)

* Relative to PET, † Depth-dependent
 Adapted from (2, 3)

* Relative to PET, † Depth-dependent
 Adapted from (2, 3)

* Relative to PET, † Depth-dependent
 Adapted from (2, 3)

* Relative to PET, † Depth-dependent
 Adapted from (2, 3)



targets. Real time imaging ability makes ultrasound attractive for molecular imaging. 

However, as  well as relatively high resolution in pre-clinical settings, however the 

sensitivity is  low compared to PET, limited to intravascular targets, and has not been 

extensively studied as a molecular imaging modality in a clinical setting. A comparison 

of the performance and characteristics of these imaging modalities  can be found in 

Table 1.

 

I.2 Basics of PET imaging

 PET has become a powerful clinical and research tool in oncology, 

neurosciences, cardiology, and pharmacology in both small animals  and humans. PET 

detects  paired gamma rays that are produced following the positron emission decay of a 

radionuclide tracer. The 511 keV gamma rays are emitted at almost 180º and are 

detected by a ring of scintillators. Detection of two scintillation events within a short time 

window on opposite sides of the detector ring defines a line of response within which 

the positron annihilation is assumed to have taken place. Based upon the detection of 

millions of annihilation events, an image of the radiotracer distribution can be 

reconstructed via a number of algorithms. 

 Compared to many other in vivo imaging modalities, PET has the distinct 

advantage of being inherently quantitative. After calibration, the radioactivity in each 

voxel can be determined using a number of well-established methods. While inspection 

of PET images can be used for simple detection of tumors, especially clinically, it is 

difficult to make comparisons across subjects due to differences in windowing of the 

images, injected dose, and various physiological factors.  Study design for PET 
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generally breaks  down in to two categories, static methods and kinetic methods. In 

static PET imaging, the radiotracer is injected into the patient or animal, allowed to 

circulate, and imaged after the tracer has reached steady state in the tissue of interest. 

Typically, quantification is normalized to the injected activity and the weight of the 

patient, and is expressed as either percent injected dose per gram (%ID/g) or as 

standardized uptake value (SUV). In dynamic imaging, the radiotracer is infused into the 

subject while in the scanner and the uptake of the tracer can be followed until it reaches 

a steady state level. Time-activity curves are then generated for each tissue of interest 

and applied either to compartment modeling or graphical analysis  to determine a wide 

array of biologically relevant parameters. Typically, due to longer imaging times and the 

need to collect blood samples, dynamic imaging is typically utilized only in research 

studies requiring absolute quantification.

I.3 2-deoxy-2-(18F)fluoro-D-glucose (18FDG)

 18FDG is the only clinically approved PET tracer currently available for routine 

cancer detection and diagnosis. Essentially, a glucose molecule labeled with 18F at the 

2’ position instead of a normal hydroxyl group (4), 18FDG enters a cell via the same 

biochemical mechanisms as glucose through specialized glucose transporters, which 

are commonly elevated in cancer cells. However, once entering the cell 18FDG, like 

glucose, is phosphorylated by hexokinase and is  trapped in the cell. However, 18FDG 

cannot proceed with further glycolysis, due to the functionalization with 18F at the 2’ 

position. Image contrast arrises due to the increased glucose metabolism in neoplastic 

tissue compared to normal tissue and the resulting differential accumulation of trapped 
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probe. Imaging with 18FDG exhibits some drawbacks such as  elevated uptake in 

inflammation as well as non-neoplastic tissues of high glucose metabolism including the 

heart, muscles and brain. Additionally, the cellular glycolysis pathway is a complicated 

biological process that can have non-intuitive effects on 18FDG uptake, especially in an 

anti-cancer treatment setting. One must be aware of these effects when interpreting 

18FDG-PET imaging.

I.4 Summary

 While molecular imaging is a rapidly emerging tool in the clinic, by far the most 

common modality and molecular probe are PET and 18FDG, respectively. The work 

contained herein describes the application of 18FDG-PET imaging to a preclinical mouse 

model of human lung cancer. While other modalities could have been used for this 

study, 18FDG-PET imaging was chosen so as to expedite the translation of from pre-

clinical imaging to human imaging. 
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CHAPTER II

18FDG-PET PREDICTS PHARMACODYNAMIC RESPONSE TO OSI-906, A DUAL 

IGF-1R/IR INHIBITOR IN PRECLINICAL MOUSE MODELS OF LUNG CANCER

II.1 Abstract 

Purpose: To evaluate 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography 

imaging (18FDG-PET) as a predictive, non-invasive, pharmacodynamic (PD) biomarker 

of response following administration of a small-molecule IGF-1R/IR inhibitor, OSI-906.

Experimental Design: In vitro uptake studies of 3H-2-deoxy glucose following OSI-906 

exposure were performed evaluating correlation of dose with inhibition of IGF-1R/IR as 

well as markers of downstream pathways and glucose metabolism. Similarly, in vivo PD 

effects were evaluated in human tumor cell line xenografts propagated in athymic nude 

mice by 18FDG-PET at 2, 4, and 24 hours following a single treatment of OSI-906 for the 

correlation of  inhibition of receptor targets and downstream markers. 

Results: Uptake of 3H-2-deoxy glucose and 18FDG was significantly diminished 

following OSI-906 exposure in sensitive tumor cells  and subcutaneous xenografts  (NCI-

H292) but not in an insensitive model lacking IGF-1R expression (NCI-H441). 

Diminished pharmacodynamic 18FDG-PET collected immediately following the initial 

treatment agreed with inhibition of pIGF-1R/pIR, reduced PI3K and MAPK pathway 

activity, and predicted tumor growth arrest as measured by high-resolution ultrasound 

imaging. 
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Conclusion: 18FDG-PET appears to serve as a rapid, non-invasive, PD marker of 

IGF-1R/IR inhibition following a single dose of OSI-906 and should be explored clinically 

as a predictive clinical biomarker in patients undergoing IGF-1R/IR-directed cancer 

therapy. 

II.2 Introduction 

The insulin-like growth factor-1 receptor (IGF-1R) is a tetrameric transmembrane 

receptor tyrosine kinase that is widely expressed in normal human tissues and is  up-

regulated in a number of human cancers including colorectal, non-small cell lung, 

ovarian and pediatric cancers. The receptor is composed of two α and two β subunits 

linked by disulfide bonds  in which the extracellular α subunit is  responsible for ligand 

binding and the β subunit consists of a transmembrane domain and a cytoplasmic 

tyrosine kinase domain. Ligand binding activates the tyrosine kinase activity of IGF-1R 

and results  in trans-β subunit autophosphorylation and stimulation of signaling cascades 

that include PI3K-mTOR and MAPK pathways. Activation of IGF-1R has been reported 

to stimulate proliferation, survival, transformation, metastasis  and angiogenesis, 

whereas inhibition of IGF-1R has been shown to impede tumorigenesis  in several 

human xenograft models (5). 

Increased expression of IGF-1R and its  cognate ligands, IGF-I and IGF-II has 

been demonstrated in a wide range of solid tumors and hematologic neoplasias  relative 

to normal tissue levels. Epidemiologic studies have shown an increased risk for the 

development of colon, lung, breast and bladder cancers with increased circulating levels 

of IGF-I (6-9). Additionally, IGF-1R expression levels have been correlated to poor 
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prognosis in renal cell carcinoma(10, 11). IGF-1R signaling mechanism has also been 

linked to resistance to various anti-tumor therapies including epidermal growth factor 

receptor inhibitors (5, 10, 12, 13).

Similarly, the insulin receptor (IR) is composed of a heterotetramer consisting of 

two extracellular α -subunits and two transmembrane β -subunits. Binding of insulin to 

the IR extracellular α-subunit causes a conformational change bringing together the two 

β-subunits. Activated IR tyrosine kinase phosphorylates  several intracellular substrates 

including IRS-1-4, Shc, Gab1 and Cbl. These phosphorylated proteins  provide a 

docking site for effector proteins  containing Src homology 2 (SH2) domains further 

linking IR to PI3-kinase (PI3K) via the regulatory p85 subunit. Homology between IR 

and IGF-IR ranges from 45-65% in the ligand binding domains to 60-85% in tyrosine 

kinase domains. Expression of IR is highest in adipose tissue and to a lesser extent in 

liver, heart and muscle (14). Overexpression of IR in breast, colon, lung, ovarian and 

thyroid cancers suggest a role of IR in tumor progression (14). More recently it has been 

shown that forced overexpression of IR is tumorigenic in mice (15). 

OSI-906 is a potent and highly selective tyrosine kinase inhibitor that exhibits 

similar biochemical potency against IGF-1R (8 nM) and IR (14 nM) and is  greater than 4 

orders of magnitude more selective for IGF-1R/IR compared to a wide number of other 

receptor and non-receptor kinases (16). Within a panel of >180 kinases only IGF-1R 

and IR were inhibited by greater than 50% at 1.0 µM OSI-906. Inhibition of cell 

proliferation and induction of apoptosis following exposure to OSI-906 appears to be 

directly linked to inhibition of AKT in colorectal, lung, and pancreatic cancer cell lines (5, 

16). In addition, OSI-906 has shown potent antitumor activity in vivo in several xenograft 
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models  (5). Since IGF-1R and IR pathway signaling is linked to glucose metabolism, we 

asked whether 18FDG-PET could function as a surrogate pharmacodynamic marker for 

OSI-906. To this end, we employed in vitro cell culture assays and in vivo animal 

models  measuring uptake of radioactive glucose analogues as a function of treatment 

by OSI-906. Our data demonstrate that glucose uptake is rapidly inhibited in vitro and in 

vivo and tracks  with IGF-1R, IR and AKT inhibition after OSI-906 treatment in sensitive 

tumors. Moreover, reduced glucose uptake was readily observed after OSI-906 

treatment in tumor tissues using 18FDG-PET imaging methodologies. Hence, 18FDG-

PET may function as  a rapid, non-invasive tumor specific pharmacodynamic (PD) 

marker for OSI-906 in the clinical setting where accurate assessment of PD effects  is 

often times limited by the lack of readily accessible tumor samples. As such 18FDG-PET 

may be a useful clinical tool in identifying active doses and patients potentially sensitive 

to this novel antitumor agent warranting further clinical investigation of this approach.

II.3 Materials and Methods

II.3.1 Immortal Human Lung Cancer Cell Lines 

 Human non-small cell lung carcinoma cell lines (NCI-H292, NCI-H441) were 

obtained from American Type Culture Collection (Manassas, VA). All cell lines were 

maintained in RPMI 1640 media (Mediatech, Manassas, VA) supplemented with 10% 

FBS (Sigma, St. Louis, MO) and 1% sodium pyruvate (Mediatech, Manassas, VA) and 

maintained at 37°C and 5.0% CO2. Cells were propagated to 80-90% confluency prior 

to in vitro and in vivo assays. 

II.3.2 3H-2-Deoxy Glucose In Vitro Uptake Assay
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 Cells  were seeded in 12-well tissue culture plates (Becton Dickinson, Franklin 

Lakes, NJ) at a density of 9.0 x 105 cells  per well in normal glucose (11.1 mM) media 

and allowed to attach for 6-8 hours at 37°C (n = 3 wells/group). The media was then 

changed to 5.5 mM glucose media and the cells  were allowed to equilibrate overnight. 

Three hours prior to the assay, the media was again removed and replaced with media 

containing 0.0 mM glucose (glucose starvation). The cells  were then treated with 

varying concentrations of OSI-906 (0.0 µM to 30 µM) and 0.15 mCi of 3H-2-deoxy 

glucose (Perkin Elmer, Boston, MA). After 30 minutes the media was removed, the cells 

placed on ice and washed once with ice cold PBS (Mediatech, Manassas, VA). The 

PBS was then removed and the cells were lysed in RIPA buffer (Sigma, St. Louis, MO) 

for 15 minutes on ice. The lysates were harvested and counted in a Beckman LS6500  

Liquid Scintillation counter (Fullerton, CA). 3H-2-deoxy glucose uptake was calculated 

as raw counts and normalized to control samples (0.0 µM OSI-906). As a positive 

control of glucose uptake inhibition, NCI-H292 cells  were treated with increasing 

concentrations (2.5 µM – 10 µM) of cytochalasin B (Sigma, St. Louis, MO), a known 

inhibitor of GLUT1 and GLUT4 glucose transporters.  

II.3.4 Mouse Models

 Studies  involving mice were conducted in accordance with federal and 

institutional guidelines. NCI-H292 and NCI-H441 non-small cell human xenograft tumors 

were generated as  described (17). Briefly, 4 x 106 cells were injected subcutaneously on 

the right flank of 5-6 week old female athymic nude mice (Charles Rivers, Wilmington, 

MA). Using this method, palpable tumors were typically observed within 2 weeks 

following injection of cells and were allowed to progress until approximately 150-200 
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mm3, and then randomized for treatment studies. Measurement of volume was 

performed using high resolution ultrasound imaging as  described (18). Mice were 

treated when the tumors reached ~200 mm3 in volume. Blood glucose was measured 

using a Freestyle digital glucose meter and test strips  (Abbott) before and at 2, and 4 

hours after treatment with 60 mg/kg OSI-906 or 25 mM tartaric acid vehicle.

II.3.5 Procurement of 18FDG

 18FDG was synthesized in the Vanderbilt University Medical Center 

Radiopharmacy and distributed by PETNET. The average radiochemical purity of the 

product was 98.5% and specific activity was >1,000 Ci/mmol.

II.3.6 18FDG-PET Imaging

 Animal handling methods in preparation for and during 18FDG-PET imaging were 

similar to published protocols (19-21). Briefly, prior to imaging, mice were fasted 

overnight and allowed to acclimate to the PET imaging facility environment for at least 1 

hour while in a warmed chamber at 31.5 0C. Mice were administered a single dose of 

OSI-906 at 60 mg/kg in a 25 mM tartaric acid vehicle via oral gavage (n=8/group). 

18FDG was administered via a single retro orbital injection of ~200 µCi (100 µL) and 

imaged 2, 4 and 24 hours post dosing of OSI-906, or 4 hours after tartaric acid vehicle. 

Mice were conscious during the uptake period and maintained in a warmed chamber. 

Following a 50-minute uptake period, 10-minute static PET scans were collected on a 

Concorde Microsystems micro-PET Focus 220 (Siemens, Culver City, CA). Mice were 

maintained under 2% isofluorane anesthesia in 100% O2 at 2 L/min and kept warm via a 

circulating water heating for the duration of the scan. Immediately following imaging, 

mice were sacrificed and tissues collected for molecular analysis. PET images were 
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reconstructed using the ordered subsets expectation maximization (OSEM) algorithm. 

The percent injected-dose per gram of tissue (%ID/g) was calculated from analysis of 

tumor regions of interest using ASIPro software (Concorde Microsystems Inc.). 

II.3.7 Statistical Analysis

 Wilcoxon Rank Sum tests were performed to compare each treatment time point 

to vehicle treated mice. Comparisons were unadjusted for the multiplicity of testing and 

were deemed significant if p < 0.05. 

II.3.8 Pharmacokinetic Analysis

 At 2, 4, and 24 hours after administration of OSI-906 blood was collected via 

cardiac puncture and placed in BD Microtainer EDTA collection tubes (Becton 

Dickinson, Franklin Lakes, NJ). The samples were centrifuged at 1500 x g for 10 

minutes and plasma protein precipitated with methanol. Analysis  of drug concentration 

was performed by HPLC-MS tandem mass spectroscopy (Applied Biosystems, Foster 

City, CA).  

II.3.9 Western Blot Analysis

 Phosphorylation of IGF-1R and IR in cells and tumor samples were analyzed by 

immunoprecipitation/Western blotting. Cells were lysed using NP-40 lysis buffer (Sigma, 

St. Louis, MO). Tumor samples were homogenized using Precellys 24 (MO BIO 

Laboratories Inc., Carlsbad, CA) in tumor lysis buffer (1% Triton X-100, 10% glycerol, 50 

mM HEPES (pH 7.4), 150 mM NaCl, 1.5 mM MgCl2, 1 mM EDTA supplemented with 

fresh protease inhibitor cocktail (Sigma, St. Louis, MO), phosphatase inhibitor cocktail 

(Sigma, St. Louis, MO), 10 mM NaF and 1 mM sodium orthovanadate). After pre-

clearing by centrifugation (14,000 rpm for 15 minutes), 1 mg of total protein was 
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immunoprecipitated with anti-phosphotyrosine antibody (pY20, Exalpha, Shirley, MA) at 

4 0C overnight. The immunoprecipitates were separated on SDS-PAGE and 

immunoblotted with a total IGF-1R antibody (Cell Signaling, Danvers, MA) followed by 

detection using enhanced chemiluminesence (GE Healthcare Life Sciences,  

Piscataway, NJ). The blots were re-probed with total IR antibody (Cell Signaling, 

Danvers, MA). Phosphorylated IGF1-R and IR bands were quantified using an Image 

Quant LAS 4000 with Image Quant TL 7.0 software (GE Healthcare Life Sciences, 

Piscataway, NJ).

Markers of altered glycolysis  were analyzed by Western blot analysis. Tumor or 

cell lysate samples were separated on SDS-PAGE, immunoblotted and detected using 

enhanced chemiluminesence (GE Healthcare Life Sciences, Piscataway, NJ). The 

antibodies included pAKT (Ser473), total AKT, pS6 (Ser235/236), pERK 1/2, total ERK 

1/2, (Cell Signaling, Danvers, MA) and β-actin (Sigma, St. Louis, MO). The 

phosphorylated to total signal intensities were quantified as above.

II.3.10 RTK Analysis

 Tumor lysates were prepared according to manufactures protocol (Proteome 

Profiler, R&D Systems, Minneapolis, MN) in NP-40 lysis buffer and clarified by 

centrifugation. The samples were incubated with the Human Phospho-RTK Array at 

2000 µg total protein overnight at 4 0C with rocking. The arrays were developed using 

Super- Signal FEMTO ECL detection (Pierce, Rockford, IL). The phospho-spots  on the 

RTK blot were quantified using Image Quant LAS 4000 with Image Quant TL 7.0 

software (GE Healthcare Life Sciences, Piscataway, NJ)
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II.4 Results

II.4.1 Sensitivity of Xenograft Models to OSI-906

 Non-small cell lung cancer is a potentially attractive indication for OSI-906 due to 

the implication of IGF1R/IR as a driver in this, as well as drug resistance in this setting. 

We established sensitivity of the NCI-H292 and NCI-H441 xenograft models to OSI-906 

in vivo by measuring tumor volumes longitudinally with high resolution ultrasound 

imaging. Daily treatment with 60 mg/kg OSI-906 over 10 days resulted in tumor growth 

inhibition in the NCI-H292 xenografts compared to controls  (Fig. 1A), but no growth 

15

F Fig. 1 Validation of cell lines. Daily treatment of mice bearing NCI-H292 xenografts 
with 60 mg/kg OSI-906 results  in significant tumor growth inhibition (A) compared to 
analogously treated vehicle controls. In contrast, NCI-H441 xenografts (B) do not exhibit 
a difference in tumor growth when comparing OSI-906-treated and vehicle-treated 
cohorts. Receptor tyrosine kinase (RTK) arrays (C), illustrate that NCI-H292 cells 
possess relatively high levels  of pIGF-1R and pIR compared to the barely detectable 
levels of pIGF-1R and pIR in NCI-H441 cells.



changes were observed in the non-responsive NCI-H441 xenografts (Fig. 1B). We 

found that NCI-H292 tumors had considerably higher levels  of pIGF-1R and pIR than 

NCI-H441 tumors (Fig. 1C).

II.4.2 Inhibition of 3H-2-Deoxy glucose uptake in vitro
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Fig. 2. In vitro treatment response. 3H-2-deoxy glucose uptake 30 minutes after 
OSI-906 treatment in NCI-H292 cells showed a dose-dependent decrease (A). Similar 
decreases in 3H-2-deoxy glucose uptake were seen at higher doses of OSI-906 in the 
non responding NCI-H441 cells compared with the responding NCI-H292 cells (B). 
Treatment with cytochalasin B as a positive control in NCI-H292 cells  demonstrated 
that 3H-2-deoxy glucose uptake is directly affected by exposure OSI-906, and can be 
linked directly to cellular pathways associated with glucose metabolism (C). Western 
blot of NCI-H292 cells following 30 minutes of exposure to OSI-906 shows target 
inhibition of pIGF-1R and pIR at all doses as well as inhibition of downstream targets 
pAKT and pS6 (D).



 We assessed the effect of OSI-906 treatment on uptake of 3H-2-deoxy glucose in 

NCI-H292 and NCI-H441 cells in vitro. Cells were treated for only 30 minutes  with 

OSI-906 in order to avoid potential anti-proliferative effects of the drug to interfere with 

this  endpoint analysis. OSI-906 treatment resulted in a rapid and dose dependent 

inhibition of uptake of the radiotracer in the NCI-H292 cell line (Fig. 2A). The percent 

inhibition ranged from 12% to 60% as the dose increased from 1.0 µM to 30 µM 

OSI-906. In comparison the NCI-H441 cell line demonstrated a reduced sensitivity to 

OSI-906. For the NCI-H292 cell line a 35% decrease in uptake of 3H-2-deoxy glucose 

was achieved at 10 µM OSI-906 whereas in the NCI-H441 cell line the same decrease 

of the radiotracer was observed at only 30 µM OSI-906 (Fig. 2B). Analysis for cell death 

by FACS using the Invitrogen Live/Dead assay determined no significant cell death at all 

OSI-906 concentrations (1.0 µM -30 µM) tested compared to 0.05% DMSO controls 

(data not shown). As a positive control, cytochalasin B (2.5 µM-10 µM) was 

administered to the NCI-H292 cells  and evaluated for 3H-2-deoxy glucose uptake in an 

17

Fig. 3. In Vitro treatment time course. Western blot of NCI-H292 cells treated with 
10nM, 100 nM, 500 nM, 1 µM, and 5 µM OSI-906 show target inhibition over a 24 hour 
time course. All concentrations of OSI-906 induce a reduction in pIGF-1R at 2 hours, and 
inhibition remains through 24 hours in all but the lowest, 10 nM concentration.



analogous manner. Figure 2C shows that cytochalasin B significantly inhibits  uptake of 

the radiotracer by 85-90% in this cell line, and that the inhibition of 3H-2-deoxy glucose 

by OSI-906 in NCI-H292 cells represents a rapid PD effect.

II.4.3 Correlation with target-pathway inhibition in vitro

 NCI-H292 cell lysates were treated with an increasing concentration of OSI-906 

(0.0 µM-10 µM) for 30 minutes  and then analyzed for pIGF-1R, pIR, pERK 1/2, pAKT, 
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Fig. 4. In vivo 18FDG-PET. Representative transverse 18FDG-PET images of NCI-H292 
and NCI-H441 tumor xenografts (A) show that 18FDG uptake is  significantly reduced (p 
<0.05) in the NCI-H292 xenografts  at all time points following a single treatment of 60 
mg/kg OSI-906 (B) while NCI-H441 xenografts show no changes in 18FDG uptake (C).



pS6 and β-actin as shown in Figure 2D. We observed a significant decrease in 

phosphorylation of AKT and S6 suggesting a correlation between decreased glucose 

uptake and inhibition of targets downstream of IGF-1R and IR. NCI-H292 cells treated 

at lower concentrations (10 nm – 5 µM) over 2, 12 and 24 hours, demonstrated target 

inhibition at all concentrations at 2 hours, and sustained inhibition of pIGF-1R at both 12 

and 24 hours for all concentrations except 10 nM (Fig. 3). 

II.4.4 Inhibition of 18FDG uptake in vivo

 18FDG-PET images of mice bearing the NCI-H292 and NCI-H441 xenografts  are 

shown in Figure 4A. The NCI-H292 xenografts  (sensitive to OSI-906 treatment) show a 

significant decrease (p<0.05) in 18FDG uptake at 2, 4 and 24 hours post dosing with 

19

Fig. 5. In vivo biological validation. RTK array analysis  demonstrates strong target 
inhibition of both pIGF-1R and pIR in NCI-H292 tumor lysates  at 2, 4 and 24 hours  after 
a single 60mg/kg treatment of OSI-906 (A,B). In vivo Western blot of NCI-H292 tumor 
lysates at 4 and 24 hours shows inhibition of selected markers of altered glycolysis, 
pERK 1/2, pAKT and pS6 at 4 hours post-dose that return to baseline levels by 24 
hours (C). 



OSI-906 compared to vehicle treated controls. NCI-H441 xenografts  (insensitive to 

OSI-906 treatment) did not demonstrate a significant change in uptake of 18FDG at any 

time point evaluated. Graphically, these results are shown in Figures 4B and 4C. The 

decreased %ID/g in the NCI-H292 xenografts is suggestive of a rapid PD effect 

observed by 18FDG imaging mediated by the inhibition of IGF-1R and IR pathways by 

OSI-906. Conversely, for the NCI-H441 xenograft model no difference in uptake of the 

radiotracer was observed in the tumor samples  between vehicle controls and the 

OSI-906 treatment group. 

II.4.5 Correlation with target pathway inhibition

 Target inhibition of both pIGF-1R and pIR by a single dose of OSI-906 at 60 mg/

kg in vivo in NCI-H292 xenograft tumors  is  shown in Fig. 5A. The data show that at 2 

and 4 hours post treatment target inhibition of pIGF-1R is  > 80% with 30% inhibition 

observed at 24 hours (Fig. 5B). The effect on pIR is equally pronounced, demonstrating 

significant target inhibition of this receptor. Target inhibition of pIR was > 80% at 4 hours 

post treatment with 40% inhibition observed at 24 hours. Inhibition of both target 

receptors correlated with decreased uptake of 18FDG in the same tumor samples 
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Fig. 6. In vivo Western blot analysis. In vivo Western blot analysis of OSI-906 treated 
NCI-H441 tumors at 2, 4 and 24 hours shows no significant effect on pAKT levels 
compared to vehicle treated controls.



analyzed. Figure 5C shows the results  of 

a Western blot from tumor lysates  at 

selected time points  from mice bearing 

the NCI-H292 xenografts that were 

treated with 60mg/kg OSI-906 (n = 4/

group). We found reduced activation 

levels  of targets involved in glycolysis 

that are downstream of IGF-1R and IR, 

including pAKT, pS6 and pERK 1/2 as measured four hours post treatment with 

OSI-906 compared to untreated control lysates. Importantly, Western blot analysis  of 

OSI-906 treated NCI-H441 tumor xenografts  which do express very low levels of the 

target receptor showed no reduction in pAKT levels  at any time point compared to 

control (Fig. 6).

II.4.6 Pharmacokinetic Analysis

 Table 2 shows the drug concentration in the plasma samples from the NCI-H292 

xenografts remained at a constant concentration ~20 µM for 2 to 8 hours post dosing. 

By 24 hours post-dosing, the level of OSI-906 in the plasma had decreased by ~60% to 

approximately 6.5 µM, resulting in some potential loss of target coverage with time. 

II.5 Discussion

Catabolism of glucose through the TCA cycle in normal cells  is the preferred 

method of ATP production leading to cell proliferation and survival. It is now well known 

that many cancer cells  avidly consume glucose and produce lactic acid for ATP 
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Time Plasma Concentration (μM)

2 Hr 21.48

4 Hr 19.58

8 Hr 17.49

24 hr 6.52
Table 2. Pharmacodynamic analysis of 
OSI-906 in blood plasma. Plasma 
concentrations of OSI-906 in mice at 2, 4, 8 
and 24 hours following a single 60 mg/kg 
dose.



production despite the inefficiency of this  metabolic pathway. The reason why cancer 

cells utilize a less efficient means of ATP production remains elusive; however, recent 

studies suggest that in cancer cells  an increase in glycolysis, in addition to respiration, 

can generate energy more quickly than normal cells that rely on respiration alone. As a 

result, this high rate of glucose metabolism by cancer cells  has resulted in the wide use 

of 18FDG PET to image and diagnose rapidly dividing cells including tumors (22).

Both IGF-1R and IR signal through the PI3K signaling pathway. PI3K is linked to 

both growth control and glucose metabolism. PI3K directly regulates glucose uptake 

and metabolism via AKT mediated regulation of glucose transporter activation and 

expression (GLUT1 and GLUT4), enhanced glucose capture by increased hexokinase 

activity and stimulation of phosphofructokinase activity (23-26). PI3K activation thus 

renders cells  dependent on glucose leading to glucose addiction. In normal cells, 

activation of PI3K/AKT is highly controlled by dephosphorylation of phosphatidylinositol 

by PTEN. However, in many cancers, PTEN is  lost leading to constitutive activation of 

the PI3K pathway (27). Moreover, activation of this pathway can be enhanced by other 

mechanisms which, when combined, can constitute some of the more prevalent classes 

of mutations in human malignancy (e.g. PI3CA, AKT2, BCR-ABL, HER2/neu, etc.). 

Therefore, activation of AKT is likely the most important signaling event in relation to 

cellular metabolism, because AKT is sufficient to drive glycolysis and lactate formation 

and suppress macromolecular degradation in cancer (27, 28). It has been shown that 

various therapeutic agents  that disrupt the PI3K/AKT pathway, either directly or 

upstream of PI3K/AKT lead to decreased glucose uptake in tumors as measured by 

18FDG-PET (29). Furthermore, the ability to inhibit FDG uptake in tumors has been 
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shown to correlate well with treatment response in a number of cancers. As a 

consequence, 18FDG-PET has been used clinically in cancer patients  to predict 

response to various  therapies via the ability of agents to disrupt glucose metabolism 

and glucose uptake in tumors (26, 30-32).

  The primary purpose of these studies was to determine if 18FDG-PET could be 

used as an early, non-invasive PD biomarker for the dual kinase inhibitor OSI-906. We 

first determined in vitro using the sensitive cell line, NCI-H292 that a rapid decrease in 

3H-2-deoxy glucose uptake was observed in a dose dependent manner after treatment 

with pharmacologically relevant concentrations of OSI-906. In the NCI-H441 cell line 

reduced sensitivity to equimolar concentrations of OSI-906 was observed for the same 

assay. NCI-H292 cell lysates were then probed for markers of altered glycolysis by 

Western blot analysis and showed a significant reduction in pIGF-1R, pIR, pAKT, pS6, 

and pERK 1/2. Target inhibition of these markers strongly link IGF-1R and IR to the PI3 
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Fig. 7. Blood glucose measurements. Blood glucose levels increased at 2 and 4 
hours after OSI-906 administration, although levels did not reach statistical significance 
(p > 0.05), compared to baseline. No changes in blood glucose levels were seen in 
vehicle treated mice over a similar period (A). OSI-906 had no detectable effect on 
18FDG uptake in skeletal muscle (B). 18FDG uptake in liver was increased at 2 and 4 
hours after 60 mg/kg OSI-906 treatment but returned to baseline after 24 hours (C).



kinase and AKT pathways  and resultant changes in metabolic activity of cultured cells 

when exposed to OSI-906. 

  In vivo, decreased uptake of 18FDG was observed rapidly at 2, 4, and 24 hours 

after administration of an efficacious dose of 60 mg/kg of OSI-906 in NCI-H292 tumor 

bearing animals. In comparison, the insensitive NCI-H441 xenografts  demonstrated no 

change in uptake of the radiotracer at the same time points and same dosage. Analysis 

of target inhibition of pAKT, pS6, pERK 1/2, pIGF-1R and pIR from NCI-H292 tumor 

lysates was performed by Western blot and RTK array analysis. The results showed 

strong target inhibition of these markers  at 4 hours post administration of a single 60 

mg/kg dose of OSI-906, further corroborating the link of metabolic activity of tumors with 

IGF-1R and IR signaling pathways. Specific target inhibition of pIGF-1R and IR by RTK 

array analysis resulted in significant (p <0.05) reduction of these phospho-targets 

(>80%) at 2 and 4 hours post administration of the agent, and correlated to reduced 

uptake of 18FDG. Blood glucose levels were elevated from a baseline, fasted level 

following 2 and 4 hours of 60mg/kg OSI-906 treatment, however, these levels  did not 

reach statistical significance (p>0.5). As expected, similarly evaluated vehicle treated 

mice did not exhibit elevated glucose levels  when evaluated at 2 hrs  and 4 hrs (Fig. 7A). 

Importantly, 18FDG uptake in NCI-H441 tumors, which are insensitive to OSI-906, was 

similar in both OSI-906-treated and vehicle-treated tumors. The fact that post-treatment 

18FDG uptake in these mice was not decreased when compared to baseline imaging 

suggests that the somewhat elevated circulating glucose levels had no detectable 

impact on 18FDG uptake in this  study. As  further evidence, no change in 18FDG uptake 

was seen in skeletal muscle following OSI-906 (Fig. 7B), and only a slight increase in 
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liver 18FDG uptake was seen at 2 and 4 hours before returning to baseline at 24 hours 

(Fig. 7C). 

  The present findings support a strong link of rapidly altered metabolic activity in 

both cultured cells and in vivo tumors induced by target inhibition of the IGF-1R and IR 

signaling pathways. Though there is still much to be learned how cellular metabolism in 

proliferating cells is regulated, there is  an ever increasing body of information supporting 

increased communication between signaling pathways and metabolic control of the cell. 

Thus, 18FDG-PET should serve as a rapid, non-invasive biomarker of pharmacodynamic 

effects of OSI-906 in patients  treated with this  dual IGF-1R/IR kinase inhibitor. This 

method may be most beneficial in early clinical development where accurate 

assessment of PD effects is often times limited by the lack of readily accessible tumor 

samples. As such 18FDG-PET may be a useful clinical tool in identifying active doses 

and patients potentially sensitive to this novel antitumor agent and perhaps other 

compounds of this target class. Currently, 18FDG-PET imaging is being employed in  

several clinical trials as a biomarker for early efficacy of OSI-906.  
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CHAPTER III

DISCUSSION

III.1 Future Work

 While 18FDG-PET was well suited for use in these studies, the complex 

underlying biology of glucose metabolism may dictate the predilection of other types of 

probes for certain tumors and treatment types. As such, many new molecular imaging 

probes are currently being developed. Contemporary molecular imaging research 

emphasizes the use of new probes to measure biological targets other than glucose 

metabolism. One such probe is 3’-deoxy-3’[18F]-fluorothymidine (18FLT), a marker of 

proliferation (33). 18FLT is a thymidine analog that when phosphorylated by the cytosolic 

enzyme Thymidine Kinase 1 (TK1) is trapped inside the cell. We have previously shown 

that 18FLT may be a biomarker of response to HER2 targeted therapy in breast cancer 

while 18FDG is not (19). However, another study shows that 18FLT is  not a biomarker of 

response in epidermal growth factor receptor targeted therapy in colorectal cancer (17). 

These seemingly disparate results  have led us to look deeper into the cellular 

mechanisms of TK1 regulation and will be a large component of our future research. 

Understanding under what circumstances 18FDG or 18FLT would be better suited in 

imaging treatment response will be of great clinical importance. In addition to 18FLT, we 

are developing novel imaging probes for translator protein (TSPO), a trans-

mitochondrial membrane protein involved in a number of cellular processes including 

cholesterol metabolism, steroidogenesis, and apoptosis. Additionally, TSPO expression 
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levels  have been shown to be correlated to tumor grade (34, 35) and patient outcomes 

across a number of cancer types (36-38). A number of probes have been developed for 

neuroimaging such as PBR06 (39) and DPA-714 (40). However, until recently these 

probes have not been evaluated in the context of cancer. In fact, we were the first to 

show that PBR06 is a promising probe for imaging rat models of glioma (41), and are 

currently moving forward to preliminary clinical use with these agents. However, all 

TSPO targeted imaging probes  currently in use were not developed for cancer imaging, 

and the development of a new generation of probes specifically targeting cancer may 

show significantly better performance than current agents. We have embarked on an 

ambitious probe discovery project involving the synthesis of hundreds of novel small 

molecules based upon the PBR06 and DPA-714 parent scaffolds (42). These new 

ligands  are screened by a number of functional assays including radioligand 

displacement, generation of reactive oxygen species, and steroidogenesis. After 

screening for desirable properties, the novel ligands are labelled with 18F for PET 

imaging in small animals, biological validation and ultimately use in humans. With the 

development and validation of 18FLT and TSPO targeted imaging probes we aim to 

increase the molecular imaging tools available for clinicians beyond 18FDG to help 

diagnose disease and direct therapy.
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