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CHAPTER I 

INTRODUCTION 

    

1.1 Introduction 

The performance of computer systems is of great interest to performance analysts, 

capacity planners, system administrators, and others involved in system design, 

evaluation, and maintenance.  Due to the wide range of hardware and software found in 

today’s environments, the performance of a system can vary greatly as its environmental 

conditions change.  Hardware failures can introduce variability into a system by affecting 

the availability of devices and the effectiveness of related software components (e.g., 

load balancers).  The workload a system is subjected to can also have adverse effects on 

system performance because it can exhibit variability that leads to undesirable and 

unpredictable behavior.   

In traditional performance evaluation studies, the impact of variability is often 

minimized or overlooked in order to simplify the analysis and evaluation of the 

underlying system performance models.  Therefore, it is important to better understand 

the effects of variability in order to maximize system performance and minimize the 

negative effects of variability inherently found in most systems.  By explicitly 

incorporating knowledge of variability performance effects into performance evaluation 

models, the accuracy and effectiveness of these models can be improved. 
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1.2 The Importance of Variance 

To illustrate the importance of variance, consider Figure 1, which shows histograms of 

the number of items purchased at two busy supermarkets.  Both supermarkets exhibit the 

same mean (i.e., average) number of items per customer, 15.  However, the number of 

items purchased at Supermarket A is always close to the mean value (i.e., about 15 

items), while the quantity purchased at Supermarket B tends to vary more widely.  

Customers at A seem satisfied that they are treated fairly, while at B, customers with 

smaller purchases frequently complain about having to wait behind customers with larger 

purchases.  In response, Supermarket B decides to install express checkout lanes to be 

used exclusively by customers purchasing 10 items or less.     

 
Figure 1: Example histograms of number of items purchased 

at two supermarkets 

The shopping experience at Supermarket A is more predictable because the 

distribution of the number of items purchased exhibits low variability (i.e., high 

regularity).  Without adding the new checkout lanes, the shopping experience at 

Supermarket B is less predictable because of the high variability (i.e., low regularity) 
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within the distribution of the number of items purchased.  Customers with small 

purchases become more irritated because they often get delayed by customers ahead of 

them in line with larger purchases.  However, with the new checkout lanes, all customers 

are better served.  In fact, customers with small purchases will tend to shift their shopping 

preferences from Supermarket A to Supermarket B.  This example illustrates how 

variance can affect scheduling (and management) decisions related to system 

performance and emphasizes the need for further study involving the effects of 

variability.  

1.3 Motivation for Research 

Although the impact of variability spans a wide range and type of environments, we 

focus on distributed and real-time systems in our research.  In these systems, a key factor 

affecting performance is the scheduling algorithm used to allocate resources and schedule 

jobs1.  Many traditional scheduling algorithms do not consider the variance of 

performance parameters when making decisions regarding how and when jobs should be 

allowed to execute.  Therefore, when the environmental conditions of a system change 

due to variability (e.g., an irregular service time), these algorithms can cause a decrease 

in system performance that could otherwise be minimized or avoided.  In this 

dissertation, the effects of variance in distributed and real-time systems is studied using 

formal modeling techniques, such as matching the second moment (or higher2) of 

performance parameters, the method of stages, discrete-event simulation, and state-space 

analysis.  The emphasis in this study is placed on comparing and contrasting the 

                                                 
1 The term task or task stream is typically used in the discussion of real-time environments. 
2 Higher moment typically has the connotation of any moment above the fourth moment.  In this 
dissertation, higher moment loosely refers to the second moment, and in general refers to moments other 
than the first moment (i.e., not necessarily moments above the fourth moment). 
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performance of traditional scheduling algorithms to that of new and experimental 

algorithms. 

The use of tools such as queuing network models and state-space diagrams is helpful 

in examining the performance and behavior of scheduling algorithms.  However, it is 

often difficult, if not impossible, to apply these or other analytical techniques to realistic, 

large-scale environments, due to pitfalls such as state-space explosion.  In these 

situations, simulation techniques serve as powerful modeling tools that overcome many 

of these shortcomings.  Further, the use of simulation can provide comprehensive data 

that helps verify performance results not able to be verified analytically.   

Due to the unique conditions found in many real-time environments, special-purpose 

modeling tools are often required to conduct detailed or focused experiments.  We have 

developed a simulation tool called MOSS (Method Of Stages Simulator) that provides a 

way of systematically modeling the variance found in the workloads of real-time 

environments.  In addition, we have created a Matlab State-space Analysis Tool (MSAT) 

that can be used to analytically solve small state-space models describing real-time 

environments. 

1.4 Thesis Statement 

The variance of parameters in performance models can have both positive and negative 

effects on system performance, particularly in real-time systems where scheduling 

algorithms often do not incorporate variance in their decisions.  By studying the effects of 

systematically changing the variance of parameters in performance models, scheduling 

routines that take advantage of this information can outperform traditional scheduling 

algorithms.  The explicit incorporation of variance in the performance modeling of 
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scheduling algorithms improves the design, efficiency, and performance of distributed 

and soft real-time systems.  

1.5 Research Overview 

As distributed and real-time systems become more pervasive, there is growing interest in 

the reliability and performance of these environments.  More specifically, there is a need 

to better understand how tasks executing in these systems can be scheduled more 

efficiently and effectively.  Research involving the performance analysis and capacity 

planning of real-time systems has been conducted for decades.  A significant portion of 

this work has focused on comparing the average performance of scheduling routines and 

analyzing their theoretical behavior.  However, most of this work has focused on the 

analysis of existing methods, rather than discovering new ones.  Further, these studies 

have typically considered only the first moment of performance parameters.  Therefore, 

much less is known about the performance effects of higher moments, such as variance.   

 As part of this dissertation research, we develop a performance model of a large 

enterprise (distributed) environment using Colored Petri Nets and use it to answer several 

performance prediction questions in capacity-planning scenarios.  In this work, difficulty 

arises in developing a robust model that accurately captures the behavior of the measured 

system workload.  In particular, the distributions of the inter-arrival and service times 

more closely resemble those of heavy-tailed or hyperexponential distributions.  Through 

a rigorous refinement process, the overall mean and variance, as well as the mean and 

variance of each job type, are matched for the inter-arrival and service times.  During this 

refinement process, we observe that by simply changing the variance of a single 

workload parameter (e.g., service time), the system performance is significantly affected.  
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This demonstrates experimentally that accurately modeling system variance is an 

important topic in performance evaluation. 

The difficulty encountered in this study motivates further work that leads to a more 

unified and structured modeling approach that makes it easier to generate accurate 

workloads.  This technique also provides a basis for analyzing the effects of higher 

moments, such as variance.  The method of stages modeling technique is used to achieve 

a two-moment match for each performance parameter of interest.  It also lends itself well 

to performance modeling of variability because the number of stages used to model a 

particular parameter is directly related to its variance.  Therefore, conducting sensitivity 

analysis experiments on the variance of performance parameters is both easy and 

standardized using this approach.  The method of stages is also well suited to analytical 

approaches, making the verification of results possible.   

One caveat, however, is that applying such techniques to many practical systems is 

not feasible due to state-space explosion.  Therefore, a simulation approach is employed 

that utilizes this powerful modeling technique, while not being susceptible to the pitfalls 

of analytical methods.  Due to the additional constraints placed on distributed and real-

time systems, specialized modeling and analysis tools are required.  Existing tools often 

target only hard real-time systems, where even one missed deadline is unacceptable, or 

are too narrow in scope to be used effectively for detailed sensitivity analysis.  Further, 

these tools are often based on ad-hoc and informal methods, making analysis and 

validation of results difficult.  In this dissertation, we rectify some of these shortcomings 

by examining soft real-time systems, applying formal modeling techniques, developing 

specialized performance modeling tools, and analytically validating the results. 
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1.6 Research Contributions 

The main contributions of our work are as follows: 

1. Case Study of an Enterprise Grid Environment 

In cooperation with Acxiom Corporation, we develop a performance model of an 

enterprise grid environment that captures the important characteristics of the 

infrastructure, including job scheduling routines.  During the model calibration 

process, it is observed that changing the variance of a single workload parameter 

significantly affects the estimated system performance.  After a rigorous refinement 

process and model validation, several capacity-planning scenarios are examined, and 

output from the model is used to help guide decisions regarding future expansion.   

2. Method of Stages Simulator 

We develop a simulation tool called MOSS (Method Of Stages Simulator) that uses 

the method of stages to help analyze the effects of variance in real-time scheduling.  

MOSS provides an intuitive graphical interface that makes it easy to conduct higher-

moment sensitivity analysis experiments on practical workloads in real-time systems.  

The MOSS engine uses the method of stages as the theoretical basis for its 

simulations and the user interface provides a direct link between the method of stages 

theory and its practical application.  By changing a single parameter, the number of 

stages, the user can model various distributions and simulate conditions ranging from 

soft to hard real-time environments.  Using MOSS to study the effects of variance on 

existing scheduling algorithms, as well as to discover new state-based algorithms, has 

produced new and interesting results. 

3. Uniform Sensitivity Analysis Experiments 
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We use the method of stages modeling technique to match the first two moments of 

performance parameters and systematically investigate the effects of variance in a 

uniform manner.  We make several interesting observations and develop heuristics 

that summarize many of the important findings from our work.  The basic framework 

of the method of stages, where real-world processes are modeled by a series of 

discrete stages, can be applied to many other areas of research outside of distributed 

or real-time systems. 

4. The TLAX Algorithm 

Using MOSS, we develop the XLAX scheduling technique and compare its 

performance to that of the traditional scheduling algorithms.  We then propose a 

simpler and easier to implement algorithm, named TLAX (Threshold LAXity), and 

show experimentally that it is robust and can outperform the traditional scheduling 

algorithms, particularly under heavy load conditions.  These results help demonstrate 

the importance of explicitly considering the variance in the development of 

performance models. 

5. Matlab State-Space Analysis Tool 

In order to help analytically validate results obtained from MOSS, we develop the 

Matlab State-space Analysis Tool (MSAT) that constructs and solves small state-

space models describing real-time environments.  Specifically, the tool can be used to 

construct a complete state diagram for any model based on the method of stages 

technique, where a pair of tasks is used.  A number of different scheduling algorithms 

can be evaluated using this tool, and the models are solved analytically to obtain 

exact (theoretical) performance metrics.   
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6. Analytical Validation of Results 

Using MSAT, we analytically validate the results obtained from MOSS and 

demonstrate the feasibility and accuracy of using such modeling tools.  The analytical 

validation improves the reliability of MOSS and encourages the use of this and 

similar tools to investigate the effects of variability in the future. 

1.7 Organization 

Related work is presented in Chapter II.  This chapter includes the necessary background 

information related to performance modeling using Colored Petri Nets, performance 

modeling and task scheduling in real-time systems, and the method of stages modeling 

technique.   

A case study of an enterprise grid environment is presented in Chapter III.   This 

chapter includes the workload characterization and important aspects of the performance 

model, such as parameterization, calibration, and validation.  Capacity-planning scenarios 

are used to illustrate the effectiveness and usefulness of the developed model.   

The MOSS simulation tool is presented in Chapter IV.  This chapter includes a 

motivating example to demonstrate the usefulness of the simulator.  A detailed tutorial 

discusses the user interface and describes all the steps necessary to run simulations and 

output performance metrics.   

A more focused discussion of MOSS is presented in Chapter V.  This chapter 

includes a specific workload example, illustrating how MOSS can be used to study the 

effects of variability.  Some interesting observations are used to help guide the remaining 

sensitivity analysis experiments.   
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Detailed sensitivity analysis experiments are presented in Chapter VI.  This chapter 

discusses how MOSS is used to compare the performance of traditional scheduling 

algorithms.  The development and performance of a new, generic scheduling algorithm 

(XLAX) is also presented.   

A more specialized scheduling algorithm, named TLAX, is discussed and evaluated 

using MOSS in Chapter VII.  This algorithm outperforms the traditional algorithms and 

proves to be a robust choice for scheduling tasks in workloads with high variability.  

MSAT is used to study analytical results of TLAX in Chapter VIII.  In this chapter, 

the experimental results obtained from MOSS are validated and some insights are gained 

into the TLAX algorithm by examining state-space information.   

Concluding remarks and future work are discussed in Chapter IX. 
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CHAPTER II 

RELATED WORK 

 

This chapter presents research related to modeling and analyzing the performance of 

scheduling algorithms in distributed and real-time systems.  A case study involving an 

enterprise grid environment is described in Chapter III that uses a performance model 

constructed from Colored Petri Nets (CPNs). Therefore, a brief history of Petri nets is 

provided along with a more detailed discussion of Petri net extensions and some specific 

examples of their use in performance modeling.  A simulation tool called MOSS (Method 

Of Stages Simulator) is presented in Chapter IV that allows a user to analyze the effects 

of variance on workloads in real-time environments.  To better explain the theoretical 

basis for MOSS, a fundamental survey of real-time scheduling algorithms is provided 

along with a detailed discussion of stage-type distributions, which MOSS uses to achieve 

higher-moment matches for performance parameters.  In Chapter VIII, an analytical 

state-space tool developed using Matlab is presented that provides mathematical 

validation of MOSS results.  Therefore, analytical techniques applied to state-space 

models are also discussed.  The purpose of this chapter is to provide the reader with a 

concise understanding of the topics to be discussed in the remainder of this dissertation. 

2.1 Performance Modeling Using Petri Nets 

Petri nets are graphical and mathematical modeling tools that can be used in a wide 

variety of applications.  The notion of Petri nets was first introduced by Carl Adam Petri 

in his 1962 dissertation [70].  A number of technical reports and papers followed, and 
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later the first textbook focusing on Petri nets was published in 1981 [69].  Since then, 

Petri nets have been used to model many different types of systems and applications.  A 

myriad of research papers, textbooks, and tutorials have been written, and Petri himself 

co-authored a revised introduction to Petri nets in 2008 [71].   

Due to their descriptive power, Petri nets are also used as visual aids to assist in 

graphically representing how complex systems interact and behave, similar to how flow 

charts or UML diagrams are used to describe complex processes.  The illustrative power 

of Petri nets makes them relatively easy for novices to understand underlying system 

complexities.  They also provide a powerful modeling framework that allows experts to 

design detailed simulators and performance analysis tools.  However, even with the help 

of the latest modeling and simulation tools, it can be difficult for inexperienced users to 

create or apply Petri nets to designing and modeling complex systems.   

2.1.1 Petri Net Definition 

A Petri net (PN) is a directed bipartite graph consisting of two types of nodes: places and 

transitions.  In the graphical representation of a PN, places are drawn as circles and 

transitions are drawn as thin rectangles.  Weighted arcs are directed either from a place to 

a transition, or from a transition to a place.  Arcs are labeled with positive integer weights 

that correspond to a number of tokens, and unit weights (i.e., weight values of 1) are 

typically omitted from illustrations.  A marking is denoted by an m-vector M, where m is 

the total number of places in a PN.  The pth component in M denotes the number of 

tokens in place p.  Therefore, a marking assigns a number of tokens to each place and an 

initial marking M0 specifies the initial quantity of tokens in each place before any 

transitions fire.  A place p is marked with k tokens if a marking assigns k tokens to p.  
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This is illustrated graphically by k dots drawn inside of p.  A formal Petri net definition, 

based on [69], is provided in Table 1. 

Table 1: Formal Petri net definition 

A basic Petri net is a 5-tuple, ( )0,,,, MWATPPN =  where: 
 
 { }mpppP ,,, 21 K=  is a non-empty, finite set of places, 

{ }ntttT ,,, 21 K=  is a non-empty, finite set of transitions, 
)()( PTTPA ××⊆ U  is a set of arcs, 

{ }K,3,2,1: →AW  is a weight function, and 
{ }K,3,2,1,0:0 →PM  is the initial marking. 

  
Any place pi with an arc directed from pi to a transition ti is called an input place of ti, 

whereas any place pj with an arc directed from tj to pj is called an output place of tj.  A 

transition t is enabled when each input place p of t is marked with at least W(p, t) tokens, 

where W(p, t) is the weight of the arc from p to t.  An enabled transition can fire at any 

time, and there is no rule governing the order in which multiple-enabled transitions 

should fire.  When a transition t fires, it removes W(p, t) tokens from each input place p 

of t, and it adds W(t, p) tokens to each output place p of t, where W(t, p) is the weight of 

the arc from t to p.  Therefore, the weight function W specifies the number of tokens that 

travel across a given arc.   

As an example, consider Figure 2, which illustrates a Petri net with places p1, p2, and 

p3, and transitions t1 and t2.  The formal definition of the net shown in Figure 2 is given in 

Table 2.  For simplicity, all arc weights have a value of 1 and are omitted from the 

diagram.  Place p1 contains three tokens, p2 contains two tokens, and p3 contains zero 

tokens (i.e., p3 is empty).  In Figure 2, t1 is enabled because each of its input places (p1 

and p2) contains at least one token.  However, t2 is not enabled because p3 is empty.  In 
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the current state, because t1 is the only enabled transition, the only possible event is the 

firing of t1.  When t1 fires, it will consume (remove) one token from p1 and one token 

from p2, and produce a single token into p3.  Since all tokens are identical, any one of the 

tokens in p1 and any one of the tokens in p2 may be consumed by t1—all of the tokens in a 

particular place are indistinguishable.  Figure 3 illustrates the Petri net immediately after 

t1 fires, where t2 is now enabled because p3 contains a token.  Strictly speaking, because t1 

and t2 are both enabled, either of these transitions can fire but they cannot both fire 

simultaneously.  Transitions t1 and t2 are said to be immediate firing transitions, meaning 

they fire whenever they are enabled (with no additional firing constraints).  In the case of 

multiple enabled transitions, the firing occurs in random order.  This non-deterministic 

nature of Petri nets is one reason they are effective in modeling the concurrent, non-

deterministic nature of distributed systems such as grid environments [8]. 

Figure 2: Simple Petri net Figure 3: Petri net after t1 fires 
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Table 2: Formal definition of the PN shown in Figure 2 

( )0,,,, MWATPPN =  where: 
 
 P  { }321 ,, ppp=  
 T  { }21, tt=  
 A  )}(),(),(),(),(),{( 221231231211 ptptpttptptp →→→→→→=  
 W  { }1,1,1,1,1,1=  
 0M  { }0,2,3=  
   

2.1.2 Basic Modeling Principles 

Many of the constraints and requirements of real-world systems can be modeled using 

basic PN principles.  For example, a series of two events can be sequenced as shown in 

Figure 4, where the token in p1 progresses to p2 and then to p3.  Transition t1 must fire and 

produce a token in p2 before t2 is enabled, thus forcing the sequence of events. 

 
Figure 4: PN sequencing 

 Figure 5 indicates how decisions, concurrency, and synchronization can be modeled.  

In (a), the token in p4 enables transitions t3, t4, and t5 but when one of the transitions fires, 

the token is removed, leaving the remaining two transitions disabled.  Therefore, a non-

deterministic decision has to be made as to which one (and only one) of these three 

transitions fires.  In (b), transition t6 requires a token from places p5, p6, and p7 in order to 

fire.  Thus, the firing of t6 represents the synchronization of the three places.  In (c), 
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places p9, p10, and p11 represent concurrent actions, each of which may independently 

finish at any time, triggering the firing of the next step in the process.  

 
Figure 5: PN decision, synchronization, and concurrency 

 Mutual exclusion can be modeled as shown in Figure 6.  Both transitions t11 and t13 

require a token from p14 but after either transition fires, the remaining one is left disabled.  

Therefore, p13 and p16 can never simultaneously contain a token.  When either t12 or t14 

fires, a token is placed back into p14, re-enabling both t11 and t13.  In this way, the token in 

p14 serves as an access token or key, and the presence of a token in either p13 or p16 

implies possession of this key. 

 
Figure 6: PN mutual exclusion 
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2.1.3 Petri Net Extensions 

Using PNs to model distributed systems leads to a natural representation of components 

in real-world environments.  For example, jobs are naturally represented as tokens and 

transitions correspond to various events in the job flow description, such as job arrivals 

and resource acquisition.  However, when jobs are not all identical, a PN Model (PNM) 

can grow quite complex due to the overhead involved in adding the places and transitions 

necessary to track job information and events.  For example, data clustering techniques 

result in multiple heterogeneous job classes and, therefore, a PNM that relies on cluster-

based input parameters must accurately model distinct and often very different job types.  

Modeling such a system using basic PNs can be quite difficult because tokens are 

indistinguishable and therefore, different job types must be explicitly modeled in the PN 

structure.  Modeling other job behavior can be difficult, if not impossible, as well.  For 

example, it is well-known that basic PNs are not suited for modeling prioritized jobs [5]. 

Basic Petri nets are limited in their modeling power for other reasons as well.  

Because there is no notion of time or delays in basic PNs, all transitions are immediate 

and therefore, modeling specific temporal behavior (e.g., the service delay at a disk) is 

not possible.  Further, because all tokens are identical, there is no method of representing 

more than a single flow of information through a basic PN without introducing duplicate 

copies of net pieces, which makes the PN more difficult to understand and analyze.  

Therefore, PNs have been continuously extended in various ways to add more flexibility 

and expressive power.   

One of the earliest PN extensions is called Stochastic Petri Nets (SPNs), which adds a 

number of functions, as well as probabilistic firing of transitions and other features.  For 
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example, transitions may also be “timed,” which means that, once enabled, the transition 

fires after a specified non-deterministic time (e.g., exponential) delay.  Timed transitions 

are illustrated graphically by unfilled rectangles.  Input functions can be used to define 

additional operations or conditions that must be carried out or satisfied before a transition 

fires.  Similarly, output functions can be used to specify additional operations to be 

carried out after a transition fires.  Thus, SPNs are powerful tools for graphically 

expressing time-based systems, but their effectiveness rapidly decreases as the system 

they are modeling grows in complexity and size.   

Generalized Stochastic Petri Nets (GSPNs) combine the features of basic PNs and 

SPNs and allow both immediate and timed transitions.  When there are multiple enabled 

immediate transitions, the transition selected to fire is no longer chosen at random but is 

instead selected from firing weights (probabilities) associated with each transition.  In the 

case of mixed enabled transitions (immediate and timed), the firing of immediate 

transitions has priority over timed transitions.  The concept of inhibitor arcs is also 

introduced, which allow a transition to fire only when a corresponding place is empty.  In 

Figure 6, for example, place p14 and its associated arcs can be removed and replaced with 

inhibitor arcs as shown in Figure 7.  An inhibitor arc drawn from p13 to t13 prevents t13 

from firing whenever a token is present in p13.  Similarly, the inhibitor arc drawn from p16 

to t11 allows t11 to fire only if p16 is empty.  These two inhibitor arcs achieve the same 

mutual exclusion effect as shown in Figure 6 and are more of a convenience in 

representation rather than a new formalism.   
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Figure 7: PN mutual exclusion using inhibitor arcs 

Although GSPNs represent a small step in the PN lineage, their increased modeling 

power is significant.  In [60], GSPNs are used to create a model of a multi-processor 

architecture in which processors cooperate by exchanging messages through a set of 

common memories connected through a bus network.  Figure 8 depicts this architecture, 

where processors Pi use their local buses LBi to access private memory PMi and they use 

global buses GBi to share common memories CMi.  Figure 9 shows a portion of the 

GSPN model that corresponds to the selection and accessing of one common memory.  

The shaded places p1, p2, and p3 represent active processors, available buses, and waiting 

processors, respectively.  Each processor may issue an access request at rate λ so that 

timed transition t1 fires at rate | p1| λ, where | p1| denotes the number of tokens in p1 (i.e., 

the number of active processors).  A token in p3 represents a processor that needs to 

select a memory to perform an external access. If no bus is available (indicated by p2 

being empty) the processor waits, but if a bus is available the processor selects a memory 

according to a uniform distribution.   

Because of the symmetry of the GSPN model, its behavior can be explained easier by 

focusing on the subnet that describes the access to the first common memory.  Assume 
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that one bus is available and a processor in p3 decides to access the first common 

memory.  The selection of the first common memory is represented by the immediate 

firing of t2, which removes a token from p3 and places it into p4.  At the same time, a 

token is also removed from p2 to indicate that a bus is now in use.  Therefore, the tokens 

in p4 represent processes that want to access a common memory and have an assigned 

bus.  These tokens can be consumed by either transition t5 or t6.  Transition t5 is enabled 

only if no processor is accessing the selected memory (indicated by p7 being empty).  If t5 

fires, the processor keeps the bus and a token is placed into p7 to indicate that the 

processor is accessing or queued for common memory.  On the other hand, if another 

processor is already using a bus to access the same common memory, transition t6 is 

enabled.  If t6 fires, the bus is released, indicated by a token returned to p2, and the new 

accessing processor will be waiting for the same memory and the same bus that is already 

in use by a processor in p7 (i.e., note the weight of 2 on the arc from t6 to p7).  Therefore, 

the tokens in p7 correspond to processors accessing or queued for common memory using 

a single bus.  When a token is available in p7, timed transition t11 fires probabilistically at 

rate µ, where 1/µ is the average access time.  The firing of t15 represents the bus being 

assigned to the next waiting processor.  If no other processor is waiting to access the 

common memory (i.e., p7 is empty), then t14 instead fires and removes the token from p7.  

In this case, a token is returned to p2 to indicate the availability of the bus.   

The GSPN models of this architecture are continuously refined to produce more 

efficient model representations.  By exploiting properties of the GSPN model and the 

corresponding state-space (e.g., Embedded Markov Chains (EMCs) and the existence of 

tangible and vanishing states) an efficient GSPN model is used to obtain upper and lower 
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bound estimates of various performance metrics [60].  It is also demonstrated how 

knowledge of the existing system can be used to create very different but equally 

powerful GSPN models of the same environment.  For example, the models initially 

created are well suited for multi-processor systems containing a small number of 

memories or processors.  However, in practice it is typically more common for such 

systems to contain a large number of processors and memories but relatively few buses.  

The GSPN model is, therefore, modified so that its complexity grows linearly with the 

number of buses, instead of memories or processors, and thus becomes a much more 

realistic and scalable model.  In general, GSPNs are more powerful and scale better than 

SPNs, but they still become overly complex as the corresponding target environment’s 

size increases.  Although GSPNs provide increased flexibility, their modeling power is 

limited because tokens are indistinguishable, as with SPNs.   

 
Figure 8: Example microprocessor architecture 
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Figure 9: GSPN model of the microprocessor architecture 

Queuing Petri Nets (QPNs) are one of the latest advancements in the PN lineage and 

are part of a larger group of PN extensions collectively referred to as high-level Petri 

nets.  The idea behind QPNs is to combine the expressive power of queuing networks and 

the modeling power of GSPNs.  Queuing networks work well for modeling resource 

contention and scheduling strategies, but are not as well suited for modeling process 

blocking and synchronization, which PNs in general are [51].  Therefore, QPNs 

significantly improve model expressiveness, allowing much more detailed system aspects 

to be modeled by integrating queuing stations directly into QPN places.  This allows the 

modeler to easily experiment with different queuing strategies while maintaining the 

flexibility of PN-based models.   

Figure 10 shows a QPN model of a central server environment where a job (launched 

from a terminal) must wait for available memory before entering the system [10].  After 

memory is allocated (indicated by t2 firing), a job receives service at the CPU.  After 
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completion at the CPU (indicated by t3 firing), the job moves to p4, where it either exits 

(via the firing of t4) the system and restarts, or proceeds to receive service at a disk (via t6 

or t7). When a job exits, its previously allocated memory is returned via t1, as well as a 

terminal token.  Alternatively, a job can receive service at either of two disks and then 

return to again receive service at the CPU.  The places p2, p3, p5, and p6 are queuing 

places, where each one contains its own queuing station.  In a queuing place, a discipline 

is specified that determines the order in which tokens are removed.  For example, the 

order in which jobs are removed from p2 to start executing at the CPU is FIFO, which is 

indicated in the figure by the label in curly braces for p2.  Therefore, jobs can be started in 

FIFO order, LIFO, or any other desired manner simply by changing the discipline built 

into p2.  The discipline associated with the CPU (i.e., p3) is Processor Sharing, which 

means anytime multiple jobs are present at the CPU, each one is allocated an equal 

portion of the processor.  Similarly, the discipline associated with both Disk 1 and Disk 2 

is Shortest Job Next and causes shorter jobs to be processed first.  Finally, the solid 

transitions are immediate and fire immediately once tokens are available in each of their 

respective input places.  The remaining transitions (i.e., t1, t3, t6, and t7) are timed and 

each one fires at a rate according to the µi value below each transition. 
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Figure 10: Example QPN model of central server system 

The use of QPN-based modeling has produced promising results in the area of 

performance modeling and prediction.  For example, a modified form of QPNs is used in 

[50] to analyze the performance of a realistic e-business application based on the 

SPECjAppServer2001 application, which is designed to produce realistic workloads 

based on large distributed applications complex enough to represent a real-world e-

business system [1].  A similar study is done in [48] where the performance of distributed 

component-based systems is analyzed using QPNs.   

2.1.4 Colored Petri Nets 

Another type of high-level Petri net is Colored Petri Nets (CPNs), which extend GSPNs 

by allowing tokens to be different colors [35].  Different colored tokens can be used to 

represent different job types/classes.  Transitions are also allowed to fire in different 

modes, depending on what types (colors) of tokens they consume.  The use of CPNs in 

performance modeling has produced many results.  For example, in [13] CPNs are used 

in the CAPLAN project, where a tool called Design/CPN is used in the capacity planning 

of web servers.  The server environment studied consists of multiple layers (e.g., 
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structural, application, and resource) and a corresponding CPN model is constructed to 

mimic the operation and interaction of these layers.  Figure 11 shows the portion of the 

CPN used to model the behavior of each server thread that processes a client GET 

request.  Each server thread executes a loop that consists of opening a connection, 

handling a request, and closing the connection.  These operations are modeled by the 

transitions TCP_OpenConn, HTTP_GetURL, and TCP_CloseConn, respectively.  Each 

of the bold places and transitions shown in Figure 11 corresponds to a CPN subnet that 

models similar or related behavior.  For example, after a connection is opened, a token is 

produced into the Opened place and then passes through a related subnet before being 

consumed by HTTP_GetURL.  Therefore, the place Opened corresponds to a subnet that 

performs all actions required after a connection is opened but before a GET request is 

processed.  This ability to nest CPNs inside of places and transitions demonstrates the 

hierarchical nature of CPN performance models.  Using the complete CPN model in [13], 

the server response time, number of delayed requests, and resource utilization can be 

examined for different simulated workloads.  The CPN model is validated by comparing 

output metrics against the actual system measurements.  It is determined, for example, 

that if the server’s workload increases to approximately 100 requests/sec, incoming 

requests begin to stall and response time increases dramatically.  It is found that a 

maximum workload of 75 requests/sec can be processed while still maintaining an 

acceptable Service Level Agreement (SLA) that specifies a maximum wait time for 

incoming requests. 
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Figure 11: Portion of CPN model used in CAPLAN project 

The hierarchical nature of CPNs is typically a restriction of the particular modeling 

environment, rather than the CPN definition itself.  This hierarchical structure is an 

important feature, especially when constructing large, complex models.  In fact, a 

hierarchical modeling technique is discussed in [80] and it suggests that just as 

distributed applications typically consist of a hierarchy of layers, any model describing 

such a system should itself be hierarchical in nature.  It is argued that hierarchical models 

consisting of several layers provide a degree of accuracy that cannot be achieved with 

single layer performance models.  The hierarchical representation of a distributed system 

within the proposed modeling framework inherently provides great flexibility in 
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assessing computation, communication, and hardware related issues [80].  A hierarchical 

model is, therefore, an important consideration to keep in mind when high accuracy is 

desired in performance predictions.  Because they represent a higher level of abstraction 

than basic SPNs, CPNs provide an excellent compromise between readability and 

expressive power.  With CPNs, token types (colors) can be defined that directly 

correspond to job classes, allowing tokens to store and carry with them all necessary job 

parameters.  New token colors can be created to capture the behavior of common system 

changes, such as new job types, without requiring physical changes to the net structure.   

Despite the many PN extensions developed over the years, CPNs remain one of the 

most commonly used and cited modeling tools in the PN lineage.  A number of 

characteristics contribute to their popularity, including their hierarchical design structure, 

ability to be generically timed, and a large number of formal analysis methods [36].  

Another significant contributing factor to the success of CPNs is the existence of CPN 

Tools, which is a graphical simulation tool designed specifically for constructing and 

analyzing CPN-based models.  A detailed treatment of the basic concepts, analysis 

methods, and practical use of CPNs can be found in [33], [34], and [37].  CPNs are used 

in Chapter III to model the performance of an enterprise grid environment. 

2.1.5 CPN Tools 

One of the most commonly referenced simulation tools for modeling the performance of 

Colored Petri Nets is CPN Tools, which is discussed in [75].  CPN Tools provides a 

development environment that allows the creation, specification, modification, 

simulation, and analysis of CPNs.  Figure 12 shows a screenshot of the CPN Tools 

development environment with an example CPN model displayed.  The model shown is 
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simple and represents a job workflow description where jobs wait in a queue to be 

serviced one at a time until they finish and finally, restart. The left pane of the window 

displays custom token colors, functions, and other parameters created by the user.  Token 

types, or colors, may contain complex data structures such as arrays, lists, vectors, and 

records.  Many built-in functions supporting mathematical (and other) operations can be 

used to define custom functions, or may be accessed directly in the PN model.   

In Figure 12, a custom token type named JOB has been created and defined as a 

UNIT that is timed.  A UNIT is a predefined token color (based on the primitive data type 

unit) in CPN Tools and it behaves exactly as a token in basic PNs, except that UNITs may 

also possess a time value.  Other color types can be defined using any number or 

combination of primitive types, or as lists/vectors of other color types.  Two variables 

named job and reset_job have been defined, both of color type JOB.  Two user functions 

named expDelay and numJobsExecuting have been defined that return a random value 

from an exponential distribution and the number of jobs currently executing, respectively. 
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Figure 12: CPN Tools development environment 

 To construct a model, Petri net components are selected from the floating menus 

along the top and added to the drawing window.  Components such as arcs can be drawn 

by first selecting a place or transition and then dragging a line to the target item.  Overall, 

a model is drawn and created in a manner similar to that used in most graphical design 

tools.  However, one distinct feature of CPN Tools is the use of circular menus that are 

accessed by right clicking an area of interest.  The menu options displayed are context-

specific and an option is selected by moving the mouse in a circular motion and then 

clicking.  An example context menu is shown in Figure 12 on the lower left.     

 Places, transitions, and arcs resemble those in basic PN diagrams with a few key 

differences.  Each place in a CPN model has a name, color type, and initial marking.  The 

name is a label that uniquely identifies the place, while the color type identifies the type 

of tokens that may appear in the place at any given time.  An initial marking specifies the 

number and type of tokens that are initially present before any simulation or analysis 

begins.  In Figure 12, the place named queue may contain only JOB type tokens and 
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initially there are five such tokens present.  All places shown in the example model may 

contain only JOB tokens, and no places other than queue contain initial tokens.   

 Each transition is drawn as a box or rectangle and has an associated name that 

uniquely identifies it.  A transition may also have an associated guard condition, timing 

delay, or code segment.  A guard condition specifies additional constraints that must be 

satisfied in order to enable the transition.  In Figure 12, the start job transition has a guard 

condition that calls the numJobsExecuting function to verify there is at most one job 

currently executing.  The delay inscription, attached to the upper right of the transition, 

specifies that a produced token will be time-stamped with a delay equal to the current 

time plus a delay value returned from the expDelay function.  A code segment is used to 

specify additional operations that should be performed when a transition fires, as well as 

which values should be assigned/bound to output variables.  An input function3 specifies 

which input variables, if any, appear in the defined actions, and output functions specify 

variable bindings.  Actions can invoke built-in or user-defined functions or perform other 

operations before ultimately creating the values to be used by the output function.     

An important feature of CPN Tools concerns the timing and delay behavior of 

transitions.  With SPNs, for example, a transition delay prevents a token in its input place 

from being consumed and defers firing until the delay period has elapsed.  In CPN Tools, 

all transitions fire immediately, provided that any associated guard conditions are all true 

and there are sufficient input tokens available.  When a transition fires, any produced 

tokens are time-stamped with the appropriate delay, forcing them to remain in their 

respective output places until the corresponding delay has passed.  Therefore, a transition 

delay does not affect the firing of the transition, but rather the time value of a produced 
                                                 
3 For simple expressions, binding is automatic and nothing must be specified in the input function. 
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token.  This feature is merely a design decision on the part of the developers and not a 

restriction on the CPN framework, but it does affect the design of CPN models and it is 

important to keep in mind during model development. 

Arcs in CPN models may also contain labels that specify the number and type of 

tokens that travel across them.  These labels are called arc inscriptions and they typically 

specify variable names that the code segment of each transition assigns values to upon 

transition firing.  For simple binding situations, such as when a single token flows along 

each arc, bindings are done automatically.  In Figure 12, the restart job transition 

contains a code segment where the action creates a new UNIT (specified by the set of 

parentheses) and the output function binds this value to the variable reset_job.  Code 

segments are common in most CPN models, although they are often not required.  For 

example, due to the simple binding requirements, the code segment for restart job can be 

eliminated.   

In the provided example, jobs must wait in the queue before being started.  If a job is 

already executing, the remaining jobs in the queue must wait until the executing job 

finishes.  When a job starts, the token is stamped with a delay representing its service 

time that will prevent it from being consumed by the end job transition until the delay has 

elapsed.   After this service delay, end job will consume the token in executing jobs and 

place a new token in finished jobs.  Notice that the newly created token will not be 

stamped with a delay because there is no delay associated with end job.  Therefore, 

tokens added to finished jobs may be consumed at any time by restart job.  When restart 

job fires, the produced token is stamped with a delay and placed back into queue.   
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Note that on average, jobs will execute for five time units and have to wait ten time 

units in the queue before they are available for consumption.  Thus, it will likely be 

common to have jobs waiting in the queue even though no job is executing.  The restart 

job transition in this example could also represent a simple job generator where the 

attached transition delay represents an average inter-arrival time.  There are many other 

features of CPN Tools not discussed that provide built-in functionality for interactive 

simulations, constructing state-space diagrams, gathering various statistics, and using 

external scripts [35] [75] [86].   

2.1.6 Analyzing Petri Nets 

The analysis of PNs is closely related to the analysis of concurrent systems, primarily 

because PNs are often used to model concurrency.  Therefore, solutions for many of the 

classical problems found in concurrent systems are applied directly to the analysis of 

PNs, making properties such as boundedness, reachability, and liveness fundamental to 

PN analysis.  These and other properties can be used to analyze the behavior and 

correctness of PN models, although many analytical questions concerning PN models are 

still open problems [59].     

 Two main categories of PN properties are those that depend on the initial marking, 

and those that do not.  Properties that are dependent upon the initial marking are called 

behavioral or marking-dependent properties, while those that are independent of the 

initial marking are referred to as structural properties [65].  Many behavioral properties of 

PNs are closely related to each other and provide insight into the expected or desired 

behavior of a PN model.  For example, the boundedness property of a PN is concerned 

with whether or not its set of all possible markings is finite.  The graph that results from 
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constructing this set of markings is called a coverability tree and algorithms for 

determining boundedness based on coverability trees are well known [42, 72, 76].  A 

similar property, k-boundedness, involves determining if any place in a PN may ever 

contain more than k tokens.  Determining if a PN is bounded or k-bounded is useful in 

identifying bottlenecks, overflow situations, and under-run conditions.  

The reachability property of a PN is concerned with whether or not a given marking 

Mi is reachable from the initial marking M0.  This property is useful in determining if a 

system could possibly reach a desired/undesired state of execution, such as when stop 

criteria are met or a deadlock situation arises.  The problem of determining the 

reachability of a PN is decidable4 [47, 61], but it requires exponential time and space to 

verify in general [57].  Due to this significant shortcoming, reachability analysis of many 

practical systems is often limited to a subset of a PN model.   

The liveness property of a PN determines for each reachable marking if there exists at 

least one enabled transition.  The liveness property ensures, among other things, that a 

PN will never reach a marking that results in a deadlock condition.  The problem of 

determining the liveness of a PN is recursively equivalent to the reachability problem, 

and requires exponential time to determine [22].  The computational requirement of 

determining liveness remains open and this restriction is impractical for applications on 

most systems.  Therefore, a number of relaxed liveness properties have been defined so 

that portions of PN models can be more effectively analyzed.    

Much of the pioneering work regarding the analysis of PNs is based on the previous 

results of vector addition systems [42], which are known to be logically equivalent to 

PNs [21].  Thus, vector addition systems play a key role in the incorporation of other 
                                                 
4 A problem is decidable if there exists an algorithm that gives the correct answer for every input instance. 



34 

properties into PN analysis.  The concepts of deadlock freedom, home spaces, 

promptness, fairness, persistence, and semi-linearity have also been incorporated into the 

PN analysis framework.  Collectively, there are many known techniques, methods, and 

results for the analysis of PNs but much of this work is not applicable to real-world 

systems due to space/time requirements or other constraints imposed on the PN structure. 

A number of other properties and results exist and collectively the general analysis 

techniques for PNs can be grouped into three main categories: a coverability/reachability 

method, a matrix-equation approach, and a reduction or decomposition technique [65].  

The coverability method involves examining a coverability tree by recursively checking 

each enabled transition and recording the new marking created when the transition fires.  

In most cases, various properties regarding the PN behavior can be discovered during 

construction of the coverability tree.  However, this tree grows infinitely large in an 

unbounded PN and therefore, is of little use.  By modifying the tree construction method 

so that only reachable states are added, a reachability tree can be constructed instead.   

The reachability tree contains only reachable markings and is therefore, more useful in 

the application of PN analysis properties.   Similarly, various operational laws (e.g., 

Little’s Law, Forced Flow Law, Service Demand Law, and Utilization Law) can be used 

along with state-space information to compute performance metrics of interest [63].  

However, due to the size and complexity of most distributed systems, the state-space of 

PN-based models quickly becomes intractable due to the common state-space explosion 

problem.  Further, many distributed systems of interest are open systems, in which 

customers enter, spend some time in the system, and then exit.  In describing such a 
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system, the corresponding state-space is infinite and cannot be enumerated, leaving only 

approximate solutions [62].   

The remaining two methods (i.e., matrix-equation solving and 

reduction/decomposition techniques) are powerful but are often limited to specialized 

subclasses of Petri nets.  For example, the matrix-equation approach involves 

transforming the PN model into a corresponding system of linear equations.  Because 

such systems can be solved using matrix operations, this method is efficient but generally 

only provides necessary or sufficient information for either inferring desired properties, 

or ruling out dangerous conditions [12].  Similarly, reduction or decomposition 

techniques can be applied to PNs in order to create a simpler model while preserving the 

system properties to be analyzed.  These techniques typically use transformations to 

convert PNs into smaller, simpler models but often their range of application is quite 

narrow.   

Many transformation and synthesis methods exist to transform an abstracted model 

back into a more refined one [32, 87].  However, the problems of state-space explosion 

and the limited application of many PN analysis techniques and properties are significant 

shortcomings.  Therefore, modeling tools typically also provide simulation capabilities 

that allow otherwise intractable models to be studied.  These simulation tools lend 

themselves well to performance analysis of PN-based models, in particular because they 

are not hindered by the state-space explosion issue.    

2.1.7 Modeling Example 

As an example, consider the queuing network shown in Figure 13 that depicts a queuing 

network model of a closed system containing three jobs (i.e., the multiprogramming 
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level, MPL, is three).  Jobs wait for a scheduler to route them to one of two servers, 

whichever has the fewest jobs.  In the situation where server1 and server2 have the same 

number jobs, the tie is broken by sending the job to server1.  A job is scheduled at an 

average rate of µs and then proceeds to either server1 to be serviced at rate µ1, or to 

server2 to be serviced at rate µ2.  Each of the two servers can service only a single job at 

a time and after completing its service, a job returns to the scheduler.   

 
Figure 13: Example queuing network model 

An equivalent PN model5 of this example network is shown in Figure 14.  Places p1, 

p4, and p6 serve as wait queues where jobs must wait before being serviced.  In the figure, 

two jobs are waiting on the scheduler, while the third job is currently being scheduled.  

When a job is processed by the scheduler, t2 selectively places a token into p3.  The 

transitions t3 and t6 fire immediately if their respective guard conditions are satisfied.  

Transition t3 fires when the number of jobs at server1 is less than or equal to the number 

executing at server2.  Similarly, when there are fewer jobs at server2, transition t6 fires 

                                                 
5 The model shown uses notation from multiple types of PNs to make the illustration more concise. 
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and routes the job to server2.  An inhibitor arc drawn from p2 to t1 prevents a job from 

beginning the scheduling process if one is already being scheduled at p2.  Similar 

inhibitor arcs ensure no more than one job is ever executing at places p5 or p7.  The timed 

transitions t2, t5, and t8 correspond to completion events for the scheduler, server1, and 

server2, respectively.   

Note that an explicit job queue is modeled for the scheduler, but if statistics involving 

job queuing at the scheduler are not important to the modeler, the inhibitor arc from p2 to 

t1 can be removed and places p1 and p2 can be combined.  The inhibitor arc from p5 to t4 

can be removed and places p4 and p5 can be combined if detailed information (e.g., the 

order of job completions) is not desired for server1.  A similar operation can be 

performed for server2 by removing the inhibitor arc from p7 to t7 and combining places 

p6 and p7.   

 
Figure 14: Equivalent PN diagram 

 From this PNM, a corresponding state-space diagram can be constructed and is 

shown in Figure 15.  Each state descriptor indicates the number of jobs present in each 
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place in the PN diagram in Figure 14.  For example, in state 110100, the number of 

jobs/tokens present in places p1, p2, p3, p4, p5, p6, and p7 are one, one, zero, one, zero, 

and zero, respectively.  In this state, two possible things can happen: a job can finish the 

scheduling process at the scheduler, or it can complete service at server1.  A newly 

scheduled job proceeds to server2 (i.e., state 010101) because server2 has fewer jobs.  If 

a job finishes at server1, it returns to the scheduler (i.e., state 210000).  Notice that states 

such as 110001 are possible due to jobs completing service at a server.  Due to the 

shortest-queue scheduling, such a state cannot be entered as a result of a job completing 

service at the scheduler.  Note that because transitions t6 and t7 in Figure 14 are 

immediate, there are never any tokens for any length of time in P3. 

 
Figure 15: Equivalent state-space diagram 
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Figure 16: Equivalent state-space diagram with simplified descriptors 

Due to the inhibitor arcs present in the PN diagram in Figure 14, there is never more 

than one job executing at a device at any given time.  Any jobs arriving to a busy device 

must wait in the wait queue before receiving service.  Therefore, the state descriptors 

used in the state diagram can be simplified by combining the number of waiting jobs and 

the number of executing jobs at each device.  For example, in state 110100, there are two 

jobs present at the scheduler (i.e., one job waiting and one being scheduled), one job at 

server1 (receiving service), and no jobs at server2.  From the total number of jobs at a 

device, it is known how many jobs are waiting.  Therefore, state 110100 can be described 

simply as state 210.  The remaining state descriptors can be described and simplified in a 

similar manner.  Figure 16 illustrates the state diagram that uses the shorter state 

descriptors.  Both the short and long descriptors capture the same information, but shorter 

descriptors are sometimes easier to work with. 

The state-space diagram shown in Figure 16 (or Figure 15) can be solved using a 

number of techniques.  For example, according to the forced flow law, in steady-state, the 

flow for any state must be balanced such that incoming flow to the state equals the 

outgoing flow from the state [63].  Therefore, a balance equation can be written for each 
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state and the set of all of these equations can be solved to obtain the steady-state 

probability for each state.  These balance equations are shown in Table 3, where Ps 

denotes the steady-state probability of being in state s.  The last equation specifies that 

the sum of all the steady-state probabilities is one for an n-state diagram. 

Table 3: Global balance equations for steady-state diagram 

State Balance Equation 
300 30020122101 PPP sµµµ =+  
210 210112011112300 )( PPPP ss µµµµµ +=++  
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After obtaining the steady state probabilities, a number of performance metrics can be 

calculated.  For example, the utilization of the scheduler can be calculated by noting the 

states in which there is at least one job present at the scheduler.  Referring to Figure 16, 

there is at least one job present at the scheduler in all states except state 021.  The 

utilization at the scheduler is, therefore, the sum of the probabilities of being in any state 

where at least one job is present at the scheduler.  Put another way, the utilization at the 

scheduler is the portion of time the scheduler is idle, subtracted from 1, which is 

0210.1 P− .  As with all state-space analysis, analyzing most practical systems in this 

manner becomes intractable due to state-space explosion.  Therefore, many 

approximation and simulation techniques exist for estimating these performance metrics. 

It should be noted that once a PNM has been constructed, it can easily be modified to 

incorporate various changes in architecture.  For example, the previous example assumes 
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there is one job type, and all jobs are identical.  Suppose the test environment is modified 

so that multiple job types are introduced, type1 and type2.  Suppose type1 jobs can access 

only server1 and type2 jobs can be serviced at either server.  Suppose server1 can only 

service a type2 job at half the rate of a type1 job.  Although these modifications represent 

a significant change to the model description, only slight changes are required to the 

PNM to incorporate these new features.  An additional token color can be added in order 

to identify and distinguish the two job types.  To limit access for type1 jobs to only 

server1, a constraint can be added to p4 specifying that only type1 tokens are allowed.  To 

account for type2 jobs being serviced at half the rate at server1, the firing rate of t5 can be 

defined as a function of the job type that is currently executing. 

2.1.8 Summary of Petri Net Modeling 

Petri nets (PNs) are often exploited for their descriptive power and used as visual aids to 

help illustrate the intricacies of complex systems.  PNs and their numerous extensions 

have been used for performance modeling in a wide variety of applications.  Colored 

Petri Nets (CPNs) in particular have received a significant amount of attention because 

they exhibit an excellent compromise between readability and expressiveness.  CPNs 

provide great flexibility in model development and with the help of CPN Tools, their 

resulting performance models can be analyzed both analytically and via simulation.  

Other classical analysis tools such as queuing networks and state diagrams continue to 

play an important role in modern performance analysis as they often help gain insights 

and identify important trends in system behavior. 
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2.2 Performance Modeling in Real-Time Systems 

A real-time system is one in which explicit timing requirements place constraints on the 

scheduling and execution of tasks.  Such constraints are typically defined in the form of 

deadlines, where a deadline represents the latest time for which a task should have 

completed its execution.  The goal of real-time systems is often to miss as few deadlines 

as possible, and preferably to avoid them altogether.  Therefore, performance modeling 

of real-time systems typically involves evaluating and comparing the performance of 

different scheduling algorithms.   

Real-time systems are typically divided into two main categories: hard and soft real-

time systems.  In hard real-time systems, a missed deadline is unacceptable because it can 

lead to total system failure or other catastrophic events.  Such systems are commonly 

found in airplane control systems, automobile electronics, and medical equipment. In soft 

real-time systems, a missed deadline is undesirable, rather than intolerable.  Therefore, in 

these systems, the value or utility of a task completion typically decreases after its 

deadline elapses.  Systems involving weather forecasting, displaying flight-plan 

information, and streaming media are examples of soft-real time systems.  

Figure 17 graphically illustrates a deadline in both hard and soft real-time systems.  

For a hard deadline (a), an operation results in maximum value if it is completed anytime 

before the deadline occurs, but a completion after the deadline results in zero or negative 

value.  Similarly, with a soft deadline (b), an operation results in maximum value if it is 

completed before its deadline time, but afterwards, the resulting value decreases 

according to some value function V(t).  (Here, the function V(t) is defined only for values 

of t that occur after the deadline.)  In many systems, there are also specialized deadline 
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semantics adopted.  For example, deadlines in streaming media applications are 

sometimes termed isochronal or just-in-time (c), where a completion before or after the 

deadline time results in little or no value.  That is, positive value is obtained only if an 

operation is completed within a short time window around the deadline.  Advanced 

algorithms or buffer-and-hold techniques are sometimes used to treat these systems as 

specialized hard or soft real-time systems [43].  The exact meaning of hard and soft 

deadlines, as well as the function V(t), is often application specific. 

 
Figure 17: Hard, soft, and just-in-time deadlines 

 In this dissertation, soft real-time systems in which V(t)=0 are studied.  That is, some 

missed deadlines are acceptable, but there is no value in the service completion of a task 

after its deadline has elapsed.  This type of system essentially applies the notion of hard 

deadlines to a real-time environment in which task (arrival, service, and deadline) 

behavior is aperiodic, and missed deadlines are acceptable.  However, unlike in hard real-

time systems, no attempt is made to guarantee that all the deadlines are met.  Instead, the 

performance goal is to maximize the overall percentage of met deadlines in light of 

unpredictable task behavior.  In this case, the occurrence of a deadline is only statistically 

known and is, therefore, fuzzy.  The term fuzzy real-time system is not widely used in the 
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literature, but it typically refers to the use of fuzzy logic in a real-time environment.  

Therefore, the term soft real-time system is used loosely in the remainder of this 

dissertation.    

2.2.1 Real-Time Scheduling 

Some of the earliest results concerning scheduling in real-time systems date back to the 

early 1970’s, when the study of priority scheduling strategies first became popular.  With 

priority scheduling, each task is assigned a priority based on a policy or classification 

technique.  When multiple tasks are ready to execute and there is contention for a 

resource (e.g., processor), the conflict is resolved by allocating the resource to the task 

with the highest priority.   

Two main categories of priority scheduling algorithms are static priority and dynamic 

priority [12].  With static priorities, tasks are assigned priorities ahead of time and 

therefore, a priori knowledge is required to determine a task schedule.  After task 

execution begins, the priorities of tasks and the schedule do not change.  By contrast, 

with dynamic priorities, the schedule is determined at runtime by updating task priorities 

based on some well-defined policy.  In general, static priority algorithms require less 

overhead and are easier to implement in practice, but provide less flexibility than 

dynamic priority algorithms because the latter can make adjustments on the fly in light of 

unexpected events.  Therefore, dynamic algorithms provide greater potential for fewer 

missed deadlines. 

2.2.2 Static Priority Scheduling 

In the pioneering work of Liu and Layland [58], tasks are assumed to be periodic, 

independent (e.g., no blocking), and have constant service times, as well as deadlines that 
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coincide with their periods.  For simplicity, only a single processor environment is 

considered.  Their work introduced a static priority scheduling algorithm, known as Rate 

Monotonic (RM), that can always schedule a set of periodic tasks of any size such that no 

deadlines are missed, provided that the total system utilization remains less than 0.693 

[58].  The general result for such a group of n periodic tasks is given by the expression in 

equation 1. 
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As shown, for a task i, Ci denotes its computation time and Ri denotes its request time 

(i.e., period).  That is, 
i

i
R
C  is the required processor utilization for task i.  This expression 

defines an upper bound for the combined utilization of a set of n tasks, such that a 

feasible6 schedule is not guaranteed for the set of tasks if their combined utilization 

exceeds this upper bound.  For two tasks (i.e., n=2), the utilization bound is ln(2), which 

is approximately 0.828.  Therefore, a pair of tasks is guaranteed to be feasible (i.e., 

schedulable) if their combined utilization does not exceed 0.828.  As n approaches 

infinity, the utilization bound approaches the value 0.693 and the above result guarantees 

the existence of a feasible schedule only if the combined task utilization does not exceed 

0.693.  It should be noted that this is only a sufficient, and not, necessary condition.  That 

is, there are sets of tasks having a combined utilization greater than 0.693 that can still be 

scheduled feasibly.  Liu and Layland’s work used only worst-case analysis.  Lehoczky, 

                                                 
6 A feasible schedule is one where all tasks meet their deadlines. 
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Sha, and Ding later showed that the average actual utilization is about 0.88 in most 

practical situations [52].     

 The progression of static-priority scheduling theory is a direct result of extending Liu 

and Layland’s work in a number of ways.  Some studies present results containing 

stronger feasibility conditions than Liu and Layland, such as Lehoczky, who examines 

tasks with deadlines greater than their periods [53].  Other work focuses on examining 

the worst-case behavior of metrics other than deadline times, such as response time [28].  

The common goal of most of this research is to develop more widely applicable analysis 

methods for priority-based algorithms that are not restricted by the assumptions of Liu 

and Layland.  Additional research focuses on topics such as non-periodic tasks [27, 55, 

81], interdependent tasks [74, 78], and tasks operating in distributed environments [73-

74].  It was only after most of this research that Rate Monotonic scheduling theory gained 

popularity and software developers took serious interest, thanks to renewed interest from 

researchers at IBM [18]. 

2.2.3 Dynamic Priority Scheduling 

With dynamic priority algorithms, new issues arise that must be addressed.  For example, 

because priorities are computed at runtime, an executing task must be stopped if its 

priority decreases to less than that of some other waiting task.  This formerly executing 

task will be blocked until its priority again becomes the highest.  There is also the 

increased overhead that comes with making scheduling decisions at runtime.  Still, the 

importance of more flexible scheduling algorithms is recognized and this motivates 

research of dynamic priority algorithms. 
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A deadline-driven algorithm with dynamic priorities was introduced by Liu and 

Layland, commonly referred to as Earliest Deadline First (EDF).  With EDF, priorities 

are dynamically assigned to tasks according to their approaching deadlines such that the 

task with the nearest deadline is assigned the highest priority.  This algorithm is known to 

be optimal, in that, if a task set has a feasible schedule via any priority assignment 

algorithm, the EDF algorithm will also produce a feasible schedule, even if the system 

utilization approaches 1 [58].  It is also known that EDF is optimal among any 

preemptive scheduling algorithm [16].  Liu and Layland’s result, listed in equation 2, is 

necessary, as well as sufficient.  The EDF algorithm requires more overhead than RM 

due to the dynamic nature of priority updates, despite its apparently more appealing 

feasibility condition.  Also, RM has been shown to be quite versatile and adaptable in 

practice [52].  
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 Another dynamic priority algorithm, Least Laxity First (LLF), was introduced by 

Mok and is also known to be optimal [64].  With LLF, the laxity7 of each task is 

recomputed each time there is a system change, such as a task arrival or completion.  

Priorities are assigned based on laxity, such that that the task with the least laxity is 

assigned the highest priority.  The feasibility constraint for LLF is the same as shown in 

equation 2.  While a task is executing, there may be other tasks with lower priorities 

waiting for their turn at the processor.  Even though these tasks are blocked, their 

                                                 
7 The laxity of a task is defined as the deadline time minus the expected remaining service time. 
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deadlines are still approaching and, therefore, their laxities and priorities must be updated 

continuously.  When the priority of a blocked task becomes higher than that of an 

executing task, the executing task must be preempted, and the waiting task must be 

started.  However, the same situation could occur again immediately. This process of 

priority toggling can continue in a repetitive manner and eventually lead to thrashing, 

where the processor spends more time performing context switches than it does 

performing meaningful processing.  However, if the overhead due to context switching is 

ignored, LLF is known to be optimal [17].   

To help alleviate or eliminate the priority toggling problem, a number of variant 

techniques have been introduced, such as the Stack Resource Policy (SRP) introduced in 

[9].  With SRP, the key observation is that jobs with long relative deadlines can delay, 

but not preempt, jobs with shorter relative deadlines.  Therefore, the focus is placed on 

jobs with longer relative deadlines that block jobs with shorter relative deadlines.  In this 

way, preemption levels and priority levels are defined separately so that a job’s 

preemption level is inversely proportional to its relative deadline [9].  Under SRP, 

priorities are assigned based on absolute deadlines, as well as static preemption levels, 

and a job is not allowed to start executing unless its preemption level is high enough.    

 Both EDF and LLF have implementation overhead due to the context switching 

required when task priorities are updated.  With EDF, deadline times have to be updated 

regularly in order to adjust task priorities correctly.  With LLF, the deadline time as well 

as the remaining service time must be updated continuously in order to compute the 

laxity of each task.  Due to the extra overhead incurred by LLF, much of the research that 

followed tends to focus on EDF scheduling.  Another reason for this trend stems from the 
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desire to remove or strengthen the assumptions imposed on deadline driven scheduling, 

and extend its applicability.  EDF is easier to analyze, making its generalization and 

application to a wider range of situations seem more feasible. 

2.2.4 Other Scheduling Techniques 

Many other scheduling techniques, both static and dynamic priority, have been 

introduced over the years.  Much of this work is an extension or modification of earlier 

work done by Liu and Layland that resulted from removing or relaxing some of their 

assumptions.  In the same way their RM results guided the progression of static priority 

scheduling, so too did their EDF algorithm guide studies in dynamic priority scheduling.  

For example, Spuri investigated using EDF to schedule non-periodic tasks [82-83].  Mok 

showed that EDF remains optimal when there is a combination of periodic and non-

periodic tasks, provided a lower bound can be placed on the inter-arrival times of non-

periodic tasks [64].  Further relaxations led to a number of hybrid scheduling techniques 

and allocation protocols.  In [46], for example, Koren and Shasha discuss the optimality 

of EDF and RM variants that allow tasks to be occasionally skipped.  This work provided 

a glimpse of future soft real-time scheduling topics that would later become popular.   

Overall, research topics have progressed from the scheduling of single processor, 

periodic, independent tasks to that of present-day systems, where both periodic and non-

periodic tasks can use multiple processors, may have dependencies, and can experience 

processor overload and network failures.  Thus, this expansion of target environments has 

led to a wide range of focused scheduling topics.  Protection against system overload, for 

example, is addressed by Abeni and Buttazzo with their Constant Bandwidth Server 

technique [2-3] and the need for mutual exclusion of resources is addressed by Baker et 
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al. with a number of access control policies [9, 41, 84].  Despite such advancement and 

expansion of scheduling topics, much of the research still focuses on hard deadlines and 

assumes worst-case behavior to support analysis methods.  The worst-case assumption 

makes it easier to place bounds on deadline analysis but this also leads to pessimistic 

bounds for system utilization.  Indeed, in systems where the expected utilization is 

significantly less than the worst-case behavior, the system performance can be greatly 

improved. 

2.2.5 Scheduling in Soft Real-Time Systems 

In soft real-time systems, a few missed deadlines are often acceptable.  For example, in 

streaming media applications where frames of image data are sent across a network, an 

occasional dropped frame may be acceptable (e.g., when viewing a video).  Assuming 

worst-case behavior in such systems leads to low system utilization due to the imposed 

pessimistic constraints.  That is, assuming every frame of data will require the maximum 

possible utilization assures all frames of data are eventually delivered, but this comes at 

the cost of extended wait times.  On the other hand, assuming that all frames will require 

only the average utilization will lead to about half of the frames being delivered on 

time—the half that requires the average utilization.  However, the other half of these 

frames requires (on average) more than the average utilization and, therefore, these 

frames are dropped.  In such systems, it is often a tradeoff between the expected number 

of missed deadlines and the expected system utilization. 

 Due to the past emphasis on hard deadlines, previous work related to scheduling in 

soft real-time systems is scarce by comparison.  Algorithms such as Stochastic Rate 

Monotonic Scheduling (SRMS) [6] and the development of Real-Time Queuing Theory 
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[54] were developed with soft real-time systems in mind and other studies have followed.  

However, research dealing with soft deadlines has not been as rapid to follow as its hard 

deadline counterpart has and this commonly leads to the modification of existing methods 

to meet new deadline requirements.  Accordingly, many present-day schedulers utilize 

RM, EDF, or LLF scheduling algorithms, or close variants.  Much of the latest research 

in the area of soft real-time scheduling focuses on the development of hybrid scheduling 

techniques, where traditional algorithms are being adapted for use in modern application 

environments.  For example, in [68], the Quality of Service (QoS) guarantees in a 

streaming media application are improved by using elastic priorities along with RM 

scheduling to reduce task starvation.  In [56], the success ratio of EDF is improved by 

forming dynamic groups of tasks, where each group of tasks is scheduled using a 

secondary algorithm.  Another example from Abeni considers EDF scheduling along with 

task skipping to improve performance in multimedia applications [2].  In [29], the 

deadline miss ratio of periodic tasks scheduled using LLF is reduced by using fuzzy 

inference tables to determine task priorities.  Scheduling in soft real-time systems 

remains an active and open area of research. 

2.2.6 Summary of Real-Time Scheduling 

Performance modeling of scheduling algorithms in real-time systems has advanced 

significantly since the first static and dynamic priority-based algorithms were introduced 

in the 1970's.  Classic algorithms such as RM, EDF, and LLF have been the focus of 

numerous studies involving periodic, independent tasks.  These scheduling algorithms are 

known to be optimal, under certain conditions, in hard real-time environments and are the 

basis for many of the current real-time scheduling algorithms in use today.  Despite the 



52 

advancement and expansion of scheduling topics, much of the latest real-time scheduling 

research still focuses on hard deadlines and assumes worst-case behavior.  Accordingly, 

many present-day schedulers still utilize the RM, EDF, or LLF scheduling algorithms, or 

close variants.  Therefore, it is beneficial to improve the performance of these traditional 

algorithms as they often serve as the framework for new, hybrid routines.  In this 

dissertation, the effects of variability on the performance of traditional algorithms are 

studied and used to develop a new hybrid algorithm with improved performance. 

2.3 The Method of Stages 

The exponential distribution has been used to model a wide range of aspects of the real-

world, from satellite constellations to woodpecker attacks on power poles [4].  In 

performance analysis, the exponential distribution is often used because of its ease of use 

and memoryless property.  Using an exponential distribution simplifies the analysis 

techniques by eliminating the need to explicitly model time due to its appealing 

Markovian properties.  For example, non-constant service times are often modeled by 

exponential distributions because the knowledge of a service start-time does not affect 

when the service will end.  However, in reality this is often not a practical assumption for 

many realistic workloads, especially those of distributed environments which sometimes 

demonstrate sporadic or heavy-tail behavior [26].  Thus, it is sometimes desirable and 

useful to use distributions other than the exponential distribution, and yet retain some of 

its appealing analysis properties.  This can be done using a general phase-type 

distribution, which is also called a stage-type distribution.  The technique of using stage-

type distributions to model performance parameters is loosely referred to as the method 



53 

of stages.  Thus, the method of stages can be used in a number of situations when 

exponential distributions are not appropriate.    

2.3.1 Stage-Type Distributions8 

Stage-type distributions get their name from the fact that they can be represented as a 

combination of exponential stages.  The exponential distribution itself can be thought of 

as a stage-type distribution consisting of only one stage.  The exponential distribution has 

a probability density function (pdf) of fX(x)=µe-µx for x≥0, expected mean of 1/µ, and 

variance of 1/µ2.  Consider a random variable A that represents the service time of a job at 

a disk, where A is exponentially distributed with parameter µ>0.  Figure 18 illustrates this 

graphically, where a single stage is represented by a circle containing the exponential 

parameter, µ.   A job will arrive at the disk, receive service for an amount of time 

sampled from A, and then exit.  Because the values of A are exponentially distributed, the 

expected mean of the service time is 1/µ and its variance is 1/µ2.    

 Now suppose the disk instead services jobs in a sequence of two identical stages as 

shown in Figure 19.  Here, the service time is sampled from a random variable B, where 

B is exponentially distributed with parameter 2µ.  In Figure 19, an arriving job receives 

an amount of service in stage 1 that is sampled from B, followed by a second, 

independent amount of service sampled from B in stage 2.  Note that in order to match 

the mean value (1/µ) from the single stage exponential distribution (for variable A), each 

of the two stages shown in Figure 19 (for variable B) must use a parameter of 2µ.  The 

disk operates in one stage or the other, but not both.  Therefore, a job spends an amount 

of time randomly chosen from a pdf fB(b), followed by another independent amount of 

                                                 
8 The summary given in this section is based on the discussion provided in [85]. 
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time chosen from fB(b).  The expression for the total amount of service received by the 

job is the sum of the two service amounts received in each stage, which is the sum of two 

independent and identically distributed exponential random variables.  Let B be an 

exponentially distributed random variable with parameter 2µ and let T=B+B, where T 

represents the total service time across both stages. 

  

Figure 18: A single exponential stage Figure 19: Two exponential stages in sequence 

To find the pdf for T, first consider the general case of two continuous independent 

random variables X and Y, and let S=X+Y.  Assuming that X and Y are each exponentially 

distributed with parameter λ, the pdf for X is fX(x)=λe-λx and the pdf for Y is fY(y)=λe-λy.  

Using the convolution formula for independent (continuous) random variables and the 

fact that y=s–x, the pdf for S is given by [85]: 

fS(s) = ∫
∞

∞−
fX(x) fY(s – x) dx 

 
= ∫

s

0
fX(x) fY(s – x) dx, for nonnegative x and y. 

 

In the more specific case, when S=X+X, and the samples taken from X are 

nonnegative, the pdf for S is given by: 

fS(s) = ∫
s

0
fX(x) fX(s – x) dx 

 
= ∫

s

0
 [λe-λx] [λe-λ(s – x)] dx 
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= λ2  ∫

s

0
e-λx – λs + λx dx 

 
= λ2e-λx ∫

s

0
dx = λ2xe-λx, for x ≥ 0. 

 

For the sum S=X+X, the rate parameter is λ and the resulting pdf for S is given by 

λ2xe-λx.  Therefore, the pdf for the previous expression for T=B+B can be found by 

replacing λ (in the expression for the pdf of S) with 2µ, resulting in (2µ)2xe-(2µ)x=4µ2xe-2µx.  

Thus, the pdf for a distribution consisting of two consecutive exponential stages is 

4 xxe µµ 22 −  and the mean and higher moments can be found using Laplace transforms 

[85], resulting in a mean of 1/µ and a variance of 1/(2µ2).  Therefore, the mean of the 

distribution resulting from splitting it into two stages does not change, but the variance is 

reduced by 50%.   

2.3.2 Common Stage-Type Distributions 

The technique of using a sequence of exponential stages can easily be generalized to the 

case where there are a succession of k identical, but independent, exponential stages with 

parameter kµ as shown in Figure 20.  The resulting distribution is typically referred to as 

a k-stage Erlang distribution (denoted Erlang-k) [67].  A job receiving service via this 

type of distribution must spend k consecutive intervals of time, each selected from an 

exponential distribution with parameter kµ, before its service is completed.  During this 

time, no other job can receive service from the same server, and the job cannot leave until 

all k stages have been completed.  The resulting mean of the Erlang-k distribution is 1/µ 

and the variance is (1/k)(1/µ2), where k represents the number of stages.  Table 4 
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summarizes the properties of an Erlang-k distribution.  From the table, it is seen that the 

CV9 of an Erlang-k distribution is always < 1 (for k>1).   

 
Figure 20: The Erlang-k distribution 

Table 4: Properties of the Erlang-k distribution 

 pdf Mean Variance CV 
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Using this approach, it is possible to use a sequence of exponential stages to model 

performance parameters that have less variability than that of the exponential distribution, 

and yet maintain its desired mathematical properties (e.g., memoryless property).  

However, using a single sequence of stages, the choice of variance is limited to a discrete 

set because only multiples of 1/k for integer k are possible (where the multiplier is 1/µ2).  

One way to overcome this problem is to use a mixture of Erlang-(k-1) and Erlang-k 

distributions, resulting in distributions with variances ranging from 
21

1
1
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− µk

to 
211
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⎛
µk

.  

Another technique is to relax the constraint on the parameter kµ of each stage, allowing 

each stage si to have its own parameter µi.  This leads to the hypoexponential distribution, 

as illustrated in Figure 21.   

                                                 
9 The coefficient of variation (CV) is the ratio of the standard deviation to the mean. 
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Figure 21: The hypoexponential distribution 

Table 5: Properties of the hypoexponential distribution 

 pdf Mean Variance CV 
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The properties of the hypoexponential distribution are summarized in Table 5.  The 

pdf results from the convolution of k exponential pdf’s, each of which has its own rate 

parameter, µi.  The expected mean of the hypoexponential distribution is given by ∑
=

k

i i1

1
µ

, 

while its variance is equal to ∑
=

k

i i1 2
1

µ
.  From Table 5, it is seen that the denominator in 

the expression for the CV must be greater than or equal to the numerator and therefore, 

the coefficient of variation of the hypoexponential distribution is ≤ 1.0.  Using this 

distribution provides greater flexibility in matching the real-world, observed variance of 

performance parameters.   

The previous techniques can be used to match the first two moments of performance 

parameters having CV’s less than 1.0.  However, to model parameters with an observed 

CV greater than 1.0, a new but similar approach must be taken.  To accomplish this, 

branching probabilities can be introduced so that either of two exponential stages can be 
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visited, but not both.  Figure 22 shows this configuration, where with probability α1 a job 

will visit the top stage and receive service at rate µ1, or with probability 1-α1 it will visit 

the lower stage and receive service at rate µ2.  Only one stage is active at any given time, 

and after completing service at one of these stages, a job exits the system.  In a manner 

similar to the previous discussion, Laplace transforms are used to obtain the expressions 

for the mean and variance, which are given by 
2
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Figure 22: Two exponential stages in parallel 

This stage-type distribution can be generalized by increasing the number of stages, 

resulting in the hyperexponential distribution shown in Figure 23.  A starting job will 

take exactly one of the available paths determined by the branching probabilities.  The 

mean of the hyperexponential distribution is given by ∑
=

k

i i

i

1 µ
α  and its variance is given by 
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α .  The properties of the hyperexponential distribution are 
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summarized in Table 6.  The Cauchy-Schwartz inequality can be used to show that the 

CV is ≥ 1.0  [85]. 

 
Figure 23: The hyperexponential distribution 

Table 6: Properties of the hyperexponential distribution 

pdf Mean Variance CV 
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2.3.3 The Coxian Distribution 

It is also possible to combine hypoexponential and hyperexponential distributions to 

obtain representations that are more complex.  Cox shows how any distribution with a 

rational Laplace transform can be represented as a sequence of exponential stages [15].  
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This series of stages can be represented using branching probabilities that permit a job to 

exit the system after any given stage.  Such a distribution is commonly referred to as the 

Coxian distribution and is illustrated in Figure 24.  After receiving service in the first 

stage, a job will continue to the next stage with probability α1 or with probability 1-α1 it 

will exit the system, bypassing the remaining stages. 

 
Figure 24: The Coxian distribution 

From Figure 24, it can be deduced that with probability α1(1 – α2 ), a job will receive 

service in the first two stages and then exit the system.  Continuing this reasoning, the 

probability pj that only the first j stages will be completed before a job exits is given by 

the expression ∏−=
−

=

1

1
)1(

j

i
ijjp αα .  Therefore, the Coxian distribution can also be 

represented as a probabilistic choice from among k hypoexponential distributions as 

shown in Figure 25.  This distribution is typically referred to as the extended Erlang 

distribution.  Overall, a Coxian distribution can be used to match any CV of any 

distribution by choosing the appropriate number of stages, branching probabilities, and 

rate parameters  [85].   
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Figure 25: The extended Erlang distribution 

2.3.4 Advantage of Stage-Type Distributions 

The use of stage-type distributions provides a convenient method of matching the 

observed characteristics of performance parameters while maintaining the appealing 

analysis properties of the exponential distribution.  The key advantage of using stage-type 

distributions is that the concept of time is represented discretely by a number of stages, 

rather than in a continuous manner.  By focusing on individual stages, rather than on an 

entire distribution, the notion of time is effectively captured by simply noting which stage 

of a given distribution is currently active.  Because each stage has the desirable 

memoryless property, the overall arrangement of stages has the memoryless property as 

well.  This leads to discrete, rather than continuous, state diagrams and simplifies the 

resulting discussion and analysis methods. 

 The method of stages can be applied to many situations where a single exponential 

distribution is not appropriate.  Using stage-type distributions provides a direct method of 

modeling the higher moments of performance parameters while holding the mean 
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constant.  This allows focused performance analysis studies to be conducted in a uniform 

manner that is applicable to both analytical and simulation techniques.  State diagrams 

can be constructed for small or simple models and analyzed in order to gain insights into 

the behavior of a system.  When the analysis of state diagrams becomes intractable, 

simulation techniques can be applied that also utilize the method of stages modeling 

approach. 

2.3.5 Matching Higher Moments 

The work presented in this dissertation focuses on the study of the second moment (i.e., 

variance) and its effects in performance modeling.  However, the general technique of 

using stage-type distributions to model the behavior of performance parameters can be 

used to match third, fourth, and higher moments as well.  For example, analytical 

expressions can be derived for Erlang distributions that match the third moment of any 

distribution [38].    The first three moments of a distribution can also be matched using 

only Coxian distributions [39].  

 The generalized family of distributions, commonly known as a Johnson distribution, 

is based on a transform of the normal distribution and includes normal, lognormal, 

bounded, and unbounded forms.  This fitting technique provides great flexibility in the 

choice of fitting parameters and it can be used to match the first four moments of 

virtually any distribution [40].  A significant drawback to this approach, however, is that 

the distribution forms are not memoryless, and therefore, time must be modeled in a 

continuous manner.  This prevents the use of discrete Markov analysis and therefore, 

restricts the application of analytical techniques (e.g., discrete state-space diagrams). 
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In [31], an iterative technique is presented that uses acyclic stage-type distributions to 

match an arbitrary number of moments.  When using stage-type distributions such as 

these, the memoryless property of the exponential distribution can be taken advantage of 

to represent time discretely.  The common problem with these and other techniques is 

often the computational complexity involved in determining the various parameters for 

the modeled distributions.  In general, the numerical complexity of the solution increases 

as the number of desired moments increases and, therefore, applying such techniques to 

real-world systems can be challenging.  

2.3.6 Modeling Technique 

The method of stages is used to effectively approximate the characteristics of task 

parameters such as inter-arrival times, service times, and deadline times.  This is done by 

using three separate processes to represent each task.  An arrival process is used to model 

the arrival characteristics of the task, while the service and deadline processes are used to 

model the execution and deadline behaviors, respectively.  In effect, each process 

corresponds to the value of a performance parameter that is divided into a fixed number 

of stages, where each stage is modeled using an exponential distribution.  This is 

achieved by using stage-type distributions, where each process is modeled by a k-stage 

Erlang distribution [85].  The arrival, service, and deadline processes operate 

independently based on their defined distribution specifications.    

Within the arrival process, each stage is statistically identical and the amount of time 

spent in any given stage is exponentially distributed.  Recall Table 4 which shows the 

probability density function (pdf), mean, variance, and coefficient of variation (CV) for a 

k-stage Erlang distribution, where k is a positive integer.  For k=1, the pdf reduces to that 
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of an exponential distribution having a CV of 1.0.  As the value of k increases, the 

variance of the distribution decreases.  As k approaches infinity, the variance approaches 

zero which characterizes a completely deterministic process.  Therefore, by adjusting the 

value of k, a wide range of distribution behaviors can be captured and modeled, from one 

that is completely deterministic with low variance (i.e.,  CV=0) to one  that is exponential 

with relatively high variance (i.e., CV=1.0).  For distributions that are more complex, 

Coxian distributions can be used to approximate the actual distribution to any desired 

level of accuracy.  The tradeoff is between the accuracy of the model and its complexity.   

The explicit modeling of the variance in this manner comes at a cost of increased 

overhead due to extra computation and storage requirements of the underlying detailed 

state information.  Because exact modeling of a completely deterministic distribution 

would require an infinite number of stages, such a distribution can instead be 

approximated using a sufficiently large (e.g., 50) number of stages.  More importantly, 

the behavior of many realistic distributions with low variance can be approximated using 

only a small number of stages.  Using this technique, the mean and variance of the inter-

arrival, service, and deadline time distributions for a given task stream can be accurately 

modeled.   

 The method of stages can be used to completely describe a system’s workload and 

lends itself well to Markovian analysis.  At any given time, each task can be described by 

specifying the current stage of each of its arrival, service, and deadline processes.  A 

combined description of all tasks in the system provides a complete representation of the 

current system state.  Therefore, a list of all possible states can be enumerated and a state-

space diagram can be constructed.  As discussed previously, a number of analysis 
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methods can be applied to state-space diagrams to determine various performance metrics 

[63].  However, due to the state-space explosion problem, simulation methods are often 

used to approximate these values.  A special-purpose simulation tool has been developed 

that uses the method of stages for its simulation engine [23]. 

2.3.7 Workload Representation 

A workload in a real-time system is represented by a group of task streams, each of 

which corresponds to a collection of tasks that are all statistically identical.  Within each 

stream, tasks are characterized by an arrival, service, and deadline process.  Each of these 

three processes is composed of a number of stages that defines the progress of each 

corresponding process.  The number of stages within each process is indirectly 

proportional to the variance of the process.  For a given task, these processes compete 

with each other and progress through each of their stages until one of them reaches 

completion.  Similarly, processes belonging to different task streams also compete with 

each other.  For example, the service processes of task streams compete against each 

other for scarce resources (e.g., processors).   

The stages of the arrival process are used to model the task inter-arrival time.  When 

the arrival process completes its last stage, a new (actual) arrival occurs.  When this 

happens, the service and deadline processes are both started, and the arrival process 

restarts, indicating the progress of the next arrival.  The service stages model the task 

service/execution time, where an actual service completion (i.e., met deadline) occurs 

when the final service stage is completed before the final deadline stage.  Thus, the 

deadline stages model the progression of a deadline process that represents an 

approaching deadline that should be met.  When a deadline process completes its last 
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stage, the deadline time has elapsed and if the corresponding service process has not 

already finished its last stage, the task misses its deadline.   

Figure 26 illustrates the representation of a single example task stream consisting of 

an arrival, service, and deadline process.  In this example, there are four arrival stages, 

two service stages, and three deadline stages.  For the arrival process, ¼ of the total inter-

arrival time is spent in each stage, whereas ½ of the total service time is spent in each of 

the two service stages.  For the deadline process, ⅓ of the total deadline time is spent in 

each of the three deadline stages.  Therefore, in terms of rates, each arrival stage must 

operate at four times the overall arrival rate, whereas each service stage must operate at 

twice the overall service rate.  Similarly, each deadline stage operates at three times the 

overall task deadline rate.   

 
Figure 26: Example task stream representation 

In this example, the deadline process is explicitly represented, meaning it directly 

competes against the arrival and service processes.  However, sometimes the deadline 

process is implicitly represented by the arrival process.  For example, the Method Of 

Stages Simulator (MOSS) (see Chapter IV) allows the linking between the arrival process 

and the deadline process [23]. When such linking is specified, the deadline time is 

implicitly modeled in the arrival process, where a new arrival corresponds to the deadline 
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of the previous arrival.  In this case, the deadline process is the arrival process.  Note the 

distinction between this situation and one where a deadline process has identical 

distribution characteristics as the arrival process.  In the latter situation, it is possible that 

the deadline process finishes before the arrival process.  In the former, this is not 

possible.  The situation where the deadline process is the arrival process is representative 

of many practical soft real-time systems, such as a weather satellite, where the data is 

periodically collected.  This data should be processed and reported before the next (more 

current) data arrives from the satellite.  Thus, the arrival of new data corresponds to the 

deadline of the previous data. 

2.3.8 State-Space Representation 

Consider a system with two task streams, S1 and S2.  Suppose that S1 and S2 are 

characterized by their workload parameters shown in Table 7.  Assume that the variance 

of the arrival rate for stream Si is 
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actually be modeled by an Erlang-4 process.  Similarly, the variance of the service rates 
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, respectively.  Therefore, the service 

process for each stream can be modeled using an Erlang-4 and Erlang-3 process, 

respectively.  The deadline process for each stream uses four stages and can be modeled 

similarly.  Note that in practice the measured or estimated variance of the performance 

parameters would be used to choose an appropriate value for the number of stages.   

Because the mean inter-arrival time for S1 is 1/λ1, each of the two stages of the 

arrival process for S1 operates for a mean time of 1/2λ1.  That is, each stage in the arrival 
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process of S1 operates at rate 2λ1.  The arrival process for S2 is identical, except that its 

arrival rate, 2λ , is used.  The service time for S1 is 1/µ1 and therefore, each of the four 

stages of its service process operates for a mean time of 1/4µ1, where each stage operates 

at rate 4µ1.  Each stage of the service process for S2 operates for a mean time of 1/3µ1, or 

a rate of 3µ1.  The formulation of the deadline processes is similar.      

Table 7: Example task stream workload parameters 

Task 
Stream 

Arrival 
Rate 

Service 
Rate 

Deadline 
Rate 

S1 1λ  1µ  1δ  
S2 2λ  2µ  2δ  

    
Figure 27 illustrates an example state descriptor that captures one specific state of the 

two task streams S1 and S2.  This illustration is a simplified version of that used in Figure 

26.  The state descriptor illustrates the number of stages of each process for each task.  

The top half of the state shows information for S1, while the bottom half shows 

information for S2.  A filled circle in a process indicates the current/active stage and the 

absence of a filled circle in a process indicates that process has not yet started.  The state 

shown in Figure 27 represents the initial state (State 1), when the arrival process of each 

stream is in its first stage, and the service and deadline processes of each stream have not 

yet started. 

 
Figure 27: Example state descriptor 
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 Using these state descriptors, a complete state diagram can be constructed, from 

which the overall system status is easily identified.  Figure 28 shows a portion of the state 

diagram that illustrates the possible state transitions from the initial state (State 1).  From 

State 1, the arrival process of S1 can progress to its next stage at rate 2λ1, causing the 

system to move to State 2.  Alternatively, the arrival process of S2 can progress to its 

next stage at rate 2λ2, resulting in the system changing to State 3.  From State 2, the 

system can move to State 4 if the arrival process of S1 completes its second stage, or to 

State 5 if the arrival process of S2 completes its first stage.  In State 4, the arrival process 

of S1 has just completed both of its stages.  This represents the arrival of a new S1 task to 

the system.  Consequently, the service and deadline processes of S1 become active and 

the arrival process is restarted at stage 1.   

 
Figure 28: Example task arrivals 
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After an arrival for a stream has occurred, the service and deadline process for this 

stream begin executing in their first stage.  Figure 29 shows a portion of a state diagram 

where State 1 indicates the service process of each stream is in its second stage.  Note 

that the single (bottom) incoming arc for State 1 corresponds to an S2 event (i.e., the 

service process for S2 moving to its second stage).  The diagram illustrates the possible 

state transitions that can lead to a service completion (State 13) or deadline expiration 

(State 11) for S1.  Consider EDF scheduling, where the task with the earliest expected 

deadline is allowed to execute whenever multiple service processes are able to execute.  

Assume that the mean execution time for each stage of each process is identical, which 

for the deadline processes, is equivalent to assuming 3δ1=3δ2. This assumption simplifies 

the discussion by allowing the reader to determine the earliest expected deadline for a 

task by simply counting its remaining number of deadline stages.  In State 1 of Figure 29, 

S1 has two remaining deadline stages to execute and S2 has three remaining deadline 

stages to execute.  Because the execution time of each stage is assumed identical, the 

remaining time until its respective deadline is less for S1.  Therefore, the service process 

for S1 is allowed to execute in State 1, resulting in the system state described in State 3.  

However, S2 is not allowed to execute and therefore, there is no transition leaving from 

State 1 that corresponds to the progression of the service process of S2.  The arrival and 

deadline processes for S2 continue because their progression is not dependent upon the 

service process execution.  In this figure, the two transitions corresponding to the 

progression of arrival and deadline processes for S2 are shown as small arcs leaving the 

bottom of some states. 
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Figure 29: Example service completions and missed deadlines for EDF 

In State 1, the arrival, service, and deadline processes of S1 are in stages 1, 2, and 2, 

respectively.  The arrival process can finish a stage at rate 2λ1, leading to State 2.  The 
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service process can finish a stage at rate 4µ1, leading to State 3.  The deadline process can 

finish a stage at rate 3δ1, leading to State 4.  In State 2, if the arrival process completes its 

current stage (indicated by the top solid circle), the arrival process completes.  This 

indicates the arrival of a new S1 task.  Thus, in State 5, the arrival, service, and deadline 

processes of S1 are reset to their first stages.  This represents the event that the previously 

executing S1 task missed its deadline due a subsequent S1 arrival. 

In State 8, the service process of S1 is executing in its final stage.  If the service 

process completes the stage, the task successfully completes execution.  This models the 

event that the task’s service requirements are satisfied before its deadline expiration, 

indicating the task met its deadline (State 13).  When a task meets its deadline, its service 

and deadline processes are terminated.  In State 4, the deadline process for S1 is in its 

final stage.  If the deadline process finishes its current stage, the deadline for S1 expires, 

resulting in a missed deadline (State 11).  When a task misses its deadline, any remaining 

service stages are terminated. 

 When the service processes of more than one task stream are ready to execute, a 

scheduling algorithm is used to determine which task should be given priority and 

assigned the processor.  Figure 30 shows the partial state diagram when the RM 

scheduling algorithm is used, assuming that λ1 > λ2.  With RM scheduling, the processor 

is always given to the task with the largest arrival rate (i.e., smallest inter-arrival time).  

Therefore, in this example, priority is given to S1 whenever the service processes of both 

S1 and S2 are ready to execute.  Therefore, in any given state, the service process of only 

one stream can be executing, either at rate 4µ1 if an S1 task is present, or at rate 3µ2 if 

only an S2 task is present. 
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Figure 30: Partial state diagram assuming RM scheduling 

 In State 1, tasks from both S1 and S2 are present.  Therefore, the processor is given to 

the S1 task.  The arrival process for S1 is executing in its last stage at rate 2λ1.  If it 

finishes its current stage, it will terminate, indicating a new task arrival for S1 (State 2).  

In this case, the newly arriving task preempts the currently executing task, causing it to 

miss its deadline.  The arrival, service, and deadline process of the new task begin at their 

first stage. 

 Figure 31 shows a partial state diagram if the EDF scheduling algorithm is used.  

Again, to keep the discussion simple, the assumption is made that the mean execution 

time for each stage of each deadline process is identical.  Therefore, the stream with the 

earliest expected deadline can be determined in any state by simply counting the number 

of remaining deadline stages.  In State 1, the deadline process for S1 is executing in its 

second stage, while the deadline process for S2 is executing in its first stage.  Therefore, 

there are two deadline stages remaining for S1 and three deadline stages remaining for 
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S2.  In this state, the S1 task is given the processor because it has the earliest expected 

deadline.  For S1, the arrival of a new task occurs at rate 2λ1, causing the currently 

executing task to miss its deadline.  The new task preempts the old task, and the arrival, 

service, and deadline processes of the new task restart in stage 1 (State 2).   The service 

process of S1 completes a stage at rate 4µ1, resulting in State 4.  Because the service 

process of S1 is executing in its last stage in State 1, the transition from State 1 to State 4 

at rate 4µ1 corresponds to a met deadline for S1 (State 4).  Therefore, in State 4, the 

service and deadline processes of S1 are deactivated due to the met deadline.   

 
Figure 31: Partial state diagram assuming EDF scheduling 

Similarly, from State 1, the deadline process of S1 can complete its current stage at 

rate 3δ1, resulting in State 3.  In State 1, the processor is not allocated to S2 and the 

service process of S2 cannot progress to its next stage.  However, an arrival for S2 can 

occur at rate 2λ2, resulting in State 6 and causing the S2 task to miss its deadline due to 

the subsequent S2 task arrival.  Finally, in State 1, the deadline process for S2 can 
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complete its current stage at rate 3δ2, resulting in State 8.  Notice that in State 8, both S1 

and S2 have the same number of deadline stages remaining.  Therefore, under the 

assumption that 3δ1=3δ2, both S1 and S2 should be allowed to execute.  The decision of 

what to do in such a tie-breaking situation is often left to the system designer.  For this 

discussion, S1 is given priority over S2 as a tie-breaking rule, as indicated by the arc from 

State 8 to State 10 in Figure 30.  

State diagrams can be constructed for other scheduling algorithms as well, including 

new hybrid scheduling algorithms.  Constructing and analyzing these diagrams is helpful 

in describing and determining the performance characteristics of different scheduling 

algorithms, but for practical systems, the problem of state-space explosion again arises.  

Because MOSS uses the method of stages as its modeling engine, the overall system state 

at any given time during a simulation corresponds to a state in an algorithm-specific state 

diagram.  Therefore, the simulation capabilities of MOSS are crucial in analyzing system 

behavior based on the method of stages, without suffering from the pitfalls of state-space 

explosion.  

2.3.9 Summary of the Method of Stages 

Stage-type distributions get their name from the fact that they can be represented as a 

sequence of exponential stages.  Using such distributions preserves the appealing 

properties (e.g., memorylessness) of the exponential distribution while adding the 

increased flexibility associated with modeling time using discrete stages.  Having discrete 

stages allows the moments (e.g., variance) of a performance parameter to be easily 

matched.  By changing the number of stages, the variance of the workload parameters can 

be systematically adjusted and studied in detail.   A mixture of Erlang, hypoexponential, 
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and hyperexponential distributions can be used to model workload parameters that have 

variances different from that of the exponential distribution.  Ultimately, the Coxian 

distribution can be used to mimic the behavior of any distribution having a rational 

Laplace transform, and to any desired degree of accuracy.  Using the method of stages 

modeling approach, a separate process is used to model the behavior of each important 

workload parameter, allowing its sensitivity to variance to be studied in detail.  

2.4 Chapter Summary 

In this chapter, the three main topics discussed are performance modeling using Petri 

nets, performance modeling in real-time systems, and the method of stages modeling 

technique.  Each of these topics provides the fundamental information necessary to 

understand the remaining work in this dissertation.   

Petri nets (PNs) are mathematical modeling tools that are often exploited for their 

descriptive power and ability to help illustrate and explain complex system behavior.  

Colored Petri Nets (CPNs) provide an excellent compromise between readability and 

expressiveness and, therefore, provide great flexibility in the development of 

performance models.  CPN Tools allows CPN-based models to be analyzed both 

analytically and via simulation.  Other classical analysis tools such as queuing networks 

and state diagrams help gain insights and identify important trends in system behavior. 

Performance modeling of scheduling algorithms in real-time systems has advanced 

significantly since the first static and dynamic priority-based algorithms were introduced 

in the 1970's.  Classic algorithms such as RM, EDF, and LLF have been the focus of 

numerous studies involving periodic, independent tasks.  Much of the past work 

involving the study of real-time algorithms focuses on hard deadlines and assumes worst-
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case behavior.  However, many present-day schedulers still utilize the RM, EDF, or LLF 

scheduling algorithms, or close variants.  Thus, it is beneficial to improve the 

performance of these traditional algorithms as they often serve as the framework for new, 

hybrid routines. 

The method of stages technique uses stage-type distributions that preserve the 

appealing properties (e.g., memorylessness) of the exponential distribution while adding 

the increased flexibility associated with modeling time using discrete stages.  Having 

discrete stages allows the moments (e.g., variance) of a performance parameter to be 

easily matched, and the variance of workload parameters can be easily studied simply by 

changing the number of stages.  A mixture of Erlang, hypoexponential, and 

hyperexponential distributions can be used to model workload parameters that have 

variances different from that of the exponential distribution.  Ultimately, Coxian 

distributions can be used to mimic the behavior of any observed distribution to any 

desired degree of accuracy.      

 In the next chapter, a case study of the enterprise grid environment is discussed. 

2.5 Research Contributions 

The contributions presented in this chapter include: 

• A discussion of the fundamentals of performance modeling with PNs 

• A brief overview of the relevant historical aspects of real-time scheduling and a 

primer of task scheduling in soft real-time environments 

• A concise development and discussion of the method of stages technique and its 

flexibility in modeling and analyzing variance 
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CHAPTER III 

PERFORMANCE MODELING OF AN ENTERPRISE GRID 

ENVIRONMENT USING COLORED PETRI NETS10 

 

3.1 Introduction 

Performance modeling of distributed systems involves developing accurate models that 

capture critical aspects of the operating environment, such as workload characterization, 

hardware constraints, and the interaction between jobs and distributed software 

components.  To accurately characterize the workload, measurements of the actual 

system are used to develop a concise job description that effectively captures the overall 

load placed on the system due to job input.  Any physical system limitations such as 

hardware constraints can then be used to guide the model development, using the 

workload characterization results for model parameterization. The requirements of jobs 

and their interaction with the operating environment is an especially important aspect of 

the model development.  This is particularly true for grid systems, where jobs compete 

for resources (e.g., processors) and wait for the necessary shared services to become 

available before beginning execution.  However, it is often difficult to produce an 

accurate performance model in these environments due the variability found within the 

system workload.  

Various types of grid systems are in use today, many of which form the backbone of 

large businesses.  These businesses rely on Quality of Service (QoS) standards and 

                                                 
10 Reprinted with the Permission of Acxiom Corporation. 
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Service Level Agreements (SLAs) in order to maintain customer satisfaction.  A client 

experiencing repeated job delays or other problems will quickly become dissatisfied.  

Therefore, capacity planning is especially important in these commercial environments, 

where an unexpected decrease in system performance may have a negative impact on the 

company’s profitability.  It is also essential for planning purposes to identify client 

resource needs, both before a grid system is deployed and after it is in use.  The latter 

requires constant system reevaluation to ensure client expectations are met as the system 

demand evolves. 

This chapter presents a case study of a real-world enterprise grid system.  The 

workload this system is subjected to is studied and characterized to produce a group of 

job classes whose behavior accurately mimics that of the real workload.  It is shown that 

the variability found within the job parameters plays an important role in the behavior of 

the system and is difficult to incorporate directly into a performance model.  The explicit 

incorporation of variance in the performance model developed in this study proves to be 

an essential step in developing an accurate prediction model of such enterprise systems. 

Figure 32 shows a simplified view of a grid environment.  Users connect through 

client software and use batch scheduling systems to submit jobs to a job scheduler.  The 

job scheduler is responsible for allocating computers or processors (loosely called 

“nodes”) to waiting jobs.  Jobs execute applications on their allocated nodes and utilize 

various data services (e.g., sorting routines, mathematical calculations, and data cleansing 

techniques).  These data services operate on dedicated computers and communicate with 

nodes in the node pool.  Jobs execute on nodes and repeatedly invoke the data services 

until they complete their execution.  While executing, a job locks nodes exclusively until 
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it completes, at which time the nodes are released back to the node pool for use by other 

competing jobs.  

 
Figure 32: Simplified view of grid environment 

When a job arrives, it is placed into a queue, where it must wait until it acquires locks 

on a set of resources (e.g., hardware and software).  In the case study described in this 

chapter, only a single type of resource is considered: the processing nodes.  Once the 

necessary nodes are available, the job locks the nodes and begins executing. During 

execution, it performs computations and utilizes various other resources, such as database 

servers and shared service routines.  Nodes locked by an executing job are not accessible 

by other jobs.  Once execution is complete, the job releases its locks on the processing 

nodes and exits the system.   

The Petri Net Model (PNM) described in this chapter predicts various performance 

metrics for the grid environment it models, including node pool utilizations, job queue 

times, and system throughputs.  The role of the model is to abstract and capture the 

primary characteristics of the system to help assess whether the expected workload queue 

times will likely satisfy a particular SLA (e.g., queue times less than 15 minutes).  

Alternative design scenarios created by varying any combination of the system attributes 
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can be evaluated and compared on the basis of the output from the model analysis.  

Because the required objective of the system (e.g., fifteen-minute SLA for application 

queue time) can be specified, the model results can be used for business value analysis.  

For example, the model can be used to assess whether or not a new client’s workload can 

be handled with existing hardware without violating the SLAs of current clients. The case 

study described in this chapter is based on performance data provided by Acxiom 

Corporation of an enterprise grid system used in the large-scale data processing industry.   

3.2 System Overview and Data Analysis 

The queuing discipline used in the test environment is based on a fair-share policy that 

uses custom rules for balancing system usage among different user groups.  For the case 

study, First Come First Serve with fill in (FCFS-FI) is used as the test environment’s 

scheduling policy.  FCFS-FI is FCFS, but if the job at the head of the queue cannot start 

because it requires more processing nodes than are currently available, the queue is 

searched for the first job that can start.  If such a job is found, it is allowed to start even 

though it is not at the head of the queue. 

The collection of processing nodes, called the node pool, consists of 128 nodes and 

represents all the available nodes from which each job must obtain locks on its specific 

number of required nodes.  These nodes are removed from the pool, allocated to a job 

when it starts, and returned when the job terminates.  In this study, a month of complete 

job data is obtained in raw format, a portion of which is shown in Figure 33.  There are 

26,557 jobs in this data set and for each job, there are a number of values (i.e., features) 

characterizing the job.  For example, Column A (the Job ID feature) contains unique job 

identifiers and Column B (the Job Type feature) lists the job type or category.  Column C 
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indicates the number of processing nodes required for allocation before the job can start 

executing.  Column D indicates the number of database records required during job 

execution.  Columns E, F, and G list the day and time each job arrives, starts, and stops, 

respectively.    Column H lists the number of splits (i.e., threads) generated when the job 

starts.   

Each job can be completely described by its feature vector (i.e., its row in the job data 

file).  The goal is to obtain a set of representative feature values accurately describing the 

workload data that can be used as input parameters to the PNM.  Ideally, the entire 

dataset would be used as the input stream but this is not efficient or practical.  However, 

reducing the dataset too much can cause important data trends to be inaccurately modeled 

or altogether overlooked.  A compromise is needed between a large, accurate dataset, and 

a small, unrepresentative dataset.   

There are important workload and performance measurements of interest available 

from the raw data presented in Figure 33.  For example, queue time is computed by 

taking the difference between job submit-time and job start-time.  Execution/service time 

is obtained by taking the difference between start time and stop time.  The inter-arrival 

time is the time that passes between two consecutive job arrivals.  Another metric is the 

average number of nodes in use at any given time, which is a measure of how busy the 

system is.  From the raw data set, the average number of nodes in use is found to be 

76.54, or 59.80%.  Due to the large variability within the data set, using the mean values 

for each feature vector would produce a parameter set that is not representative of the 

entire data set [63].  This would reduce the entire data set to the mean values, ignoring 

many of the trends contained in the raw workload data.  Incorporating the variance of the 
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performance parameters into the model development is particularly important in order to 

generate an accurate workload to use as model input.  The initial step in determining the 

workload variability is developing an appropriately sized and descriptive data set, which 

is the goal of workload characterization.  

 
Figure 33: Portion of raw job data 

3.3 Workload Characterization 

Clustering is a technique used to identify homogenous clusters, or groups, of jobs within 

a large workload.  Clustering techniques are often used in large, grid computing 

environments to identify similar classes of jobs in order to reduce the size and complexity 

of the workload being studied.  With any clustering technique, the goal is to identify 

groups of jobs that are similar to all jobs within the same cluster, but as different as 

possible from jobs in other clusters.  Each cluster has a centroid, which is a vector that 
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contains the mean value of each feature for the jobs within the cluster.  The resulting 

clusters correspond to different job classes of a multi-class performance model [63].   

Although there are a number of clustering techniques (e.g., k-means and spanning-

tree), hierarchical clustering is selected for this study.  In this clustering technique, a 

hierarchy of clusters is constructed from individual features by repeatedly merging 

clusters.  For this study, the hierarchical clustering is done based on the number of nodes 

required, because this parameter is used in the real-world scheduling policy.  The number 

of nodes required11 ranges from 1 to 30 so initially 30 clusters are created where each job 

is placed into its corresponding cluster based entirely on its number of required nodes.  

Clusters are then combined based on their percentage of the workload and observed 

performance characteristics.  The notation Cx is used to refer to job clusters, where x 

denotes the number of nodes required by a job in that class.  For example, the C8 cluster 

is created by combining all jobs requiring five, six, or eight nodes because these jobs 

require a similar number of nodes and account for only a small percentage of the total 

workload.  The C12 and C16 classes are created in a similar manner.  Using this refined 

method of hierarchical clustering requires detailed analysis of the workload and is more 

of an art, rather than a science.     

The results of grouping jobs into six job clusters/classes are shown in Table 8.    

Consider class C4, which consists of all jobs requiring four processing nodes.  All C4 

jobs require four processing nodes and account for 12.66% of the entire job workload.  

Classes C8, C12, and C16 consist of jobs requiring different numbers of nodes, as 

mentioned previously.  For modeling purposes, all C8 jobs are assumed to require eight 

                                                 
11 Some values for the number of nodes required are not listed because jobs do not request this specific 
number of nodes (e.g., no jobs require exactly 3, 7, 9, 13-14, 17-19, 21-29, or greater than 30 nodes). 
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nodes and account for 2.19% of the entire workload.  Using clustering, the 26,557 jobs 

are reduced to six job types, where the centroid of each cluster represents the average job 

characteristics within that cluster.   

Table 8: Six job classes resulting from clustering 

Class # Nodes Required # Jobs % Jobs 
C1 1 9,862 37.13 
C2 2 4,598 17.31 
C4 4 3,361 12.66 
C8 5, 6, 8 581 2.19 
C12 10, 11, 12 3,216 12.11 
C16 15, 16, 20, 30 4,939 18.60 
 Total 26,557 100.00 

    
Table 9 shows the per-class mean (µ), standard deviation (σ), and coefficient of 

variation (CV) for each feature of interest.  All of the values listed in Table 9 are 

calculated from the raw dataset.  The CV, defined as the ratio σ/µ, is a measure of 

variability within a data set; larger CV values denote larger variability within the job 

class.  Note that overall measurements are obtained by placing all jobs into a single large 

cluster, and not by averaging the six job cluster measurements.  For example, in Table 9 

the average overall inter-arrival time is 1.68 minutes.  This value is obtained by 

measuring the average delay between each consecutive job arrival, regardless of class.  

Naturally, the average inter-arrival time within each class is larger. 

3.4 Metrics of Interest 

The inter-arrival time and service time measurements for each job class are used as inputs 

to parameterize the PNM.  Since the inter-arrival time distribution characterizes the input 

data stream, it is essential to mimic this distribution accurately in the PNM.  Likewise, 

service times indicate the amount of time jobs are in execution and are used to 
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parameterize the service time distributions.  One of the outputs of the PNM is queue 

times, which are used in the model validation step.  Queue time is a key output metric of 

interest because Quality of Service (QoS) measurements and Service Level Agreements 

(SLAs) are specified based on the amount of time a job should have to wait before being 

allowed to execute.   

Correctly characterizing the job arrival process is an important step in developing an 

accurate and useful model.  In modeling, it is often assumed that arrival and service 

processes are exponentially distributed with a CV equal to 1.0.  However, as is often the 

case in practice, the data set in Table 9 shows that the coefficients of variation for inter-

arrival and service time distributions are all greater than 1.0, suggesting the 

corresponding distributions are more accurately modeled using a heavy-tailed or a 

hyperexponential distribution.  This reiterates the importance of not only matching the 

mean of performance parameters, but also their variance.  A performance model that fails 

to capture the second moment of the workload (i.e., the variance) will not produce 

accurate and representative input, leaving the predictions based on such models, of 

limited value. 

Table 9: Workload characterization results 

 Inter-arrival Time (min) Service Time (min) Queue Time (min) 
Class  µ σ CV µ σ CV µ σ CV
C1 4.53 21.04 4.64 5.84 44.37 7.59 1.53 6.99 4.58
C2 9.71 27.57 2.84 4.63 25.81 5.58 1.74 8.38 4.82
C4 13.27 44.72 3.37 15.36 143.80 9.36 4.60 25.47 5.54
C8 74.79 248.00 3.32 14.25 75.88 5.32 42.43 126.40 2.98
C12 13.81 41.99 3.04 17.83 128.40 7.21 13.12 45.69 3.48
C16 9.02 25.31 2.81 29.65 119.30 4.02 28.51 84.18 2.95
Overall 1.68 6.50 3.87 12.90 91.25 7.07 9.28 46.54 5.01
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3.5 Petri Net Model 

The Petri net structure is constructed from the system architecture description, job flow 

description, and workload characterization.  Jobs are represented by tokens and places are 

used to simulate the resource pool, execution states, and other workflow components.  

Job tokens contain all the data necessary to propagate them through the net.  Transitions 

are used to time and sequence the token propagation, as well as ensure necessary 

operating conditions and constraints are fulfilled.  Transitions specify input conditions by 

referencing variables contained inside of job tokens waiting to be selected for 

consumption.   

The scheduling algorithm is implemented by attaching a sequence number to each job 

token as it enters the job queue, where jobs arriving later receive larger sequence 

numbers.  This sequence number identifies the order in which jobs enter the queue and it 

is used to provide additional constraints on the consumption of the corresponding job 

tokens.  Therefore, the order in which a job starts depends on its sequence number, as 

well as its number of required nodes.  In this way, FCFS-FI is implemented by searching 

the sequence numbers from smallest to largest whenever the job at the head of the queue 

requires more nodes than are currently available.  Additional scheduling strategies can be 

explored by adding or removing similar constraints on the way in which tokens are 

removed from the job queue.  For example, strict FCFS can be implemented by forcing 

the consumption of job tokens to follow their sequence numbers, regardless of whether or 

not their required nodes are available.  The job with the current sequence number waits at 

the head of the queue until its required number of nodes becomes available and forces all 

jobs with larger sequence numbers to wait behind it. 
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Figure 34 shows a simplified diagram of the PNM, where initialization functions, 

timing variables, and other details are removed.  A more complete PNM diagram [24] is 

shown in Figure 35.  The notation i`v is used to denote i identical tokens, one of which is 

bound to the variable v when a transition fires.  When the job arrival transition fires, a job 

token t is removed from job token and sent to job queue.  At the same time, one new job 

token nt is generated and placed into job token, where it must wait an appropriate delay 

before it is removed and sent to job queue.  In this manner, the job generator mimics a job 

arrival stream by generating jobs from the six class types, and delays are generated from 

hyperexponential distribution functions to match the observed job parameters found in 

Table 9. 

 
Figure 34: Simplified view of the PNM 

Jobs in job queue must wait until the required number of nodes (i.e., r`n) become 

available, at which time, token t and its required number of nodes r are removed from job 

queue and node pool, respectively.  Next, the job begins executing where it remains in 

place execute an amount of time determined by its average service time, also determined 

by a per-class hyperexponential distribution.  Finally, the job finishes and is sent to place 

finished jobs where it waits to be removed (i.e., deleted) from the net.  When a job 

finishes, the nodes acquired when the job started are released and returned to node pool.  
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All job information collected while the token traverses the net is examined and written to 

output files for later analysis. 

 The complete PNM shown in Figure 35 includes the configuration parameters and 

details omitted from the simplified view.  In the figure, the lower left portion of the 

model represents the job generator responsible for accurately mimicking the workflow 

observed in the real-world system.  The input, output, and action functions shown beside 

transitions perform actions necessary for the correct operation of the PNM.  Before a 

transition fires, any required input variables (e.g., tokens) are initialized by the input 

functions.  When a transition fires, any declared action variables (specified by the actions 

section) are bound (i.e., assigned) to the appropriate output variables by the output 

functions.  When there is a one-to-one relationship between input and output variables, or 

when the semantics are well understood, the input, output, and action functions are 

omitted.   

 In the complete PNM, implementation details omitted from the general discussion can 

be seen.  For example, a job starts after it acquires its required number of processing 

nodes, but it must then wait to acquire locks on all (if any) required database records.  

The job is then classified as either a Type I or Type II job, where the latter type requires 

the use of shared service routines (e.g., database queries) and the former does not.  For 

Type I jobs, the acquired processing nodes and database records are sufficient for the job 

to execute until completion.  In Figure 35, a job token in place job wait classify continues 

along the top branch in the net if it does not require the use of any shared services.  This 

criterion is indicated in the figure by the guard condition (enclosed in brackets) on the 

transition job type I check asserting that the number of required shared service certificates 
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(i.e., permissions) of token t must equal zero.  Similarly, any job that requires shared 

services requests them using the appropriate number of certificates.  Therefore, a job 

token t is classified as a Type II job if it requires greater than zero certificates and 

proceeds along the bottom branch shown in the figure.  The remainder of the operation of 

the PNM is similar to that provided in the previous discussion. 

3.5.1 Parameterization  

Several parameters and metrics obtained from the workload characterization are used to 

parameterize the PNM.  These values provide a starting point for assigning values to 

various rates and timing variables.  For example, the average inter-arrival time ITi is used 

to regulate the rate of the job generator so that a new job is created and placed into the 

queue every ITi simulation time units, where i specifies the job class.  The average 

service time STi is used to timestamp tokens so that they remain in the execution place 

STi time units before being allowed to continue through the net.  The average number of 

nodes required by a particular job class is used to specify the value of r in Figure 34. 

The goal is to parameterize and calibrate the PNM by matching the first two moments 

(µ and σ) of the arrival and service processes so that they closely match the raw, real-

world measurements.  To do this, parameters related to the job generation are varied so 

that the inter-arrival time distribution of the PNM closely matches that of the actual 

measurements.  Similarly, numbers created and used as service time delays in the PNM 

are varied until the service time distribution statistics closely match those from the real 

data.  The queue time measurements, obtained as output from the PNM, are compared to 

the measured values for validation purposes.  
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Figure 35: Complete CPN model 
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3.5.2 Calibration 

Finding a job generator that accurately mimics the first and second moments of each of 

the job classes, as well as the overall job arrival stream, is particularly difficult.  Initially, 

a different job generator is used for each job class to create six independent job streams, 

all of which supply job tokens to the job queue.  A number of hyperexponential 

distributions are tested and a two-moment match for inter-arrival times (ITs) for each job 

class can be achieved.  Matching the mean and standard deviation of a distribution is a 

well-studied technique [44] [77].  Applying this technique to the independent job streams 

assures that the first two moments of each job class’ arrival stream match the measured 

values. However, only the first moment of the overall average can be matched—the 

second moment (σ) of the overall IT cannot be matched using this technique. 

The PNM is thus modified to use a two-step job generator, with the first step being 

used to match the first two moments of the overall job arrival stream, and the second step 

being used to match the correct percentage of jobs within each job class.  This is done by 

using a single distribution function in the first step that matches the overall measured 

values (µ and CV) for the ITs in order to decide when a new job should be generated.  

The new job is then tagged in the second step with a particular job class based on the job 

percentages from the measured workload (see Table 8).  Using this adaptation, the first 

two moments for the overall IT values are matched.  Using the measured job percentages 

to tag jobs assures the first moment for each class is also matched.  However, the per-

class second moment cannot be matched using this method.   

The problem with using a job generator in the first step and having only one input 

stream to the job queue is that large ITs from one class are not correlated with large ITs 
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from other job classes.  Daily cycles are present in the system being studied that result in 

job arrival correlations during the peak and non-peak hours.  A large IT tends to indicate 

non-peak hours and this behavior is seen across all of the different job classes.  Large 

gaps in IT values tend to occur at night, for each of the job classes.  To further calibrate 

the model, a method is needed that simulates these observed daily cycles.  Several 

techniques are possible but the method presented here involves using burst factors. 

The final technique selected is a three-step job generator, as shown in Figure 36.  

Note that the job path for class C2 jobs is emphasized.  In step one, the job class 

percentages (see Table 8), pi’s, are used to select which job class Ci to use.  In step two, a 

burst factor bi is used to determine how many consecutive jobs of class Ci should be 

generated.  In step three, a branching probability α is used to determine which one of two 

mean values m1 and m2 should be used as input for a two-stage hyperexponential 

distribution.  That is, when a new job event is triggered, the measured job percentages are 

used in the first step to determine which job class should be used.  In the second step, bi 

jobs are created, all of which are assigned the same job class, Ci.  Each of the bi jobs is 

assigned an inter-arrival time based on its job class in the third step.  Each of these jobs is 

then sent to the job queue after its inter-arrival delay has passed.  After the last job output 

from the third step has been sent to the job queue, the three-step process is repeated.  This 

technique is used to synthetically mimic the day and night cycles observed in the real-

world system.  In effect, a large burst factor increases the CV of a particular job class’ IT. 

To determine optimal burst factors, experiments are run to vary the burst factor from 

1 to 20 for each job class.  The output produces a table allowing a burst factor to be 

chosen for each job class that results in an approximate two-moment match for each job 
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class’ IT values.  The optimal burst factors are found to be 15, 4, 6, 6, 5, and 4 for job 

classes C1, C2, C4, C8, C12, and C16, respectively.  For instance, when a new job event 

is triggered and class C2 is chosen in step one, four consecutive C2 jobs will be generated 

in step two, each of which is stamped with a different inter-arrival delay in step three. 

 
Figure 36: The three steps of job generation 

Having matched the first two moments for the per-class and overall IT distributions, 

the service times (STs) are next matched by using a method similar to that used for the 

ITs.  A hyperexponential distribution is created for each job class in order to create a two-

moment match for each job class’ ST distribution.  No daily cycles are observed in the 

ST distributions (i.e., a C4 job runs approximately just as long whether submitted during 

peak hours or non-peak hours).  That is, unlike ITs, a large ST event for a job of one job 

class is, in general, not correlated to a large ST event of a job in a different job class.   

3.5.3 Validation 

Having created a two-moment match for IT and ST distributions, the queue time (QT) 

values output from the PNM are next examined to determine the validity of the model.  

The goal is to find a baseline model that mimics the observed measurement data.  The 

metrics for the baseline model are shown in Table 10.  By comparing the baseline model 
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results in Table 10 against the actual measurement data in Table 9, the overall model is 

validated (in general), with a few noted exceptions.    

Table 10: Metrics for baseline model 

Some discrepancies and uncharacteristic values can be seen when comparing the 

measured values in Table 9 to the baseline metrics in Table 10.  For example, class C8 

has a measured IT of 74.79 minutes, but the baseline model approximates the C8 IT only 

moderately well, with a value of 71.88 minutes.  Also of interest are the queue times, 

particularly the large C8 measured queue time of 42.43 minutes and standard deviation of 

126.4 minutes.  The baseline model approximates the C8 queue time average and 

standard deviation as 5.34 minutes and 13.26 minutes, respectively, which is a significant 

difference.  However, this unusual behavior of class C8 jobs is not a major concern 

because C8 jobs account for only 2.19% of the entire workload.  By comparing the actual 

measurement statistics in Table 9 to those used by the baseline PNM in Table 10, the 

other per-class parameters (e.g., the first two moments of ITi and STi) match well.  Such a 

validated PNM can be used to predict various capacity-planning scenarios. 

 Inter-arrival Time (min) Service Time (min) Queue Time (min) 
Class  µ σ CV µ σ CV µ σ CV
C1 4.35 18.68 4.29 5.81 44.12 7.59 0.27 1.61 5.93
C2 9.48 28.05 2.96 4.66 26.42 5.67 0.55 2.26 4.11
C4 12.92 43.69 3.38 14.83 130.63 8.81 1.85 5.56 3.01
C8 71.88 236.08 3.29 14.21 70.69 4.97 5.34 13.26 2.48
C12 13.55 42.45 3.13 17.89 130.79 7.31 12.63 36.79 2.91
C16 8.85 26.62 3.01 28.89 115.73 4.01 31.13 89.26 2.87
Overall 1.63 6.48 3.97 12.65 89.10 7.04 7.82 42.33 5.42
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3.6 Capacity-Planning Scenarios 

In the following scenarios, only the specified parameters are varied in each case—all 

other model parameters are held constant, at the baseline values.  A 15-minute SLA for 

queue time is used in these scenarios. 

Scenario 1:  What is the effect of varying the number of processing nodes in the node 

pool?  Here, the initial size of the node pool is varied from 100 to 200 nodes, in 

increments of 10.  The effect on queue time is shown in Figure 37.  
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Figure 37: Effect of node pool size on queue time 

The bold line indicates the overall average queue time and the black dot on this line at 

128 nodes marks the baseline average queue time of 7.82 minutes.  As the number of 

processing nodes (node pool size) increases, the average job queue time decreases.  An 

overall queue time of approximately 40 minutes is expected when the node pool size is 
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100 nodes and a queue time of nearly zero is expected as the node pool size approaches 

200.   

From Figure 37, it is seen that it is necessary to maintain a node pool size of 

approximately 120 nodes, in order to maintain an SLA of 15 minutes for overall queue 

time.  Therefore, the node pool size can be reduced by approximately eight nodes, to 120, 

and still meet a 15-minute queue time SLA for the overall average.  Notice that at 

baseline, a 15-minute SLA is not met for the class C16 jobs.  The node pool must be 

increased to approximately 140 nodes for all job class queue times to meet such an SLA. 

Along the top of Figure 37, the overall percentage of nodes in use is shown for each 

node pool size.  At baseline, the node pool usage is approximately 60%.  If the node pool 

were reduced by the eight nodes suggested previously, the node pool usage would 

increase to approximately 66%.  

Scenario 2:  What is the effect of varying the job arrival rate?  Here, the overall 

average job arrival rate is varied by an intensity factor ranging from 0.7 to 1.3, in 

increments of 0.1.  An intensity factor of 1.3 indicates a 30% increase in the job arrival 

rates for all job classes.  The effect on queue time is shown in Figure 38.  
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Figure 38: Effect of job arrival rate on queue time 

An intensity factor of 1.0 corresponds to the baseline model.  As the intensity factor 

increases, the average job queue time also increases.  A queue time near zero is expected 

when the baseline arrival rate decreases by 30% (to intensity factor 0.7), and a queue time 

of more than 45 minutes is expected if the baseline arrival rates increase by 30% (to 

intensity factor 1.3).   

Notice from Figure 38 that if the (baseline) average job arrival rates increase by more 

than 10%, a 15-minute SLA for overall queue time can no longer be met.  In order for all 

job classes to meet the 15-minute SLA, the workload must be reduced by approximately 

20% because of the C16 average queue time.  If this were done, the node pool usage 

would be reduced from 60% to 49%.  Also, notice that even though a 20% increase in job 

arrival rates from the baseline (to intensity factor 1.2) only increases the node pool usage 

by about 14 percent, the C16, C12, and overall queue times increase rapidly. 
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Scenario 3:  What is the effect of changing the queuing discipline from FCFS-FI to 

strict FCFS?  This scenario involves changing the manner in which jobs are removed 

from the job queue.  The effect on queue time is shown in Figure 39. 

In the baseline model, FCFS-FI is used.  If the queuing discipline is changed to strict 

FCFS, the overall average job queue time increases from 7.82 minutes (baseline) to 25.39 

minutes, as shown in Figure 39.  With strict FCFS, job class has no effect on the order in 

which jobs are removed from the queue, which tends to produce a balancing effect on all 

of the per-class job queue times.  Notice that in the baseline model (FCFS-FI), average 

queue times increase left to right across job classes, as do the number of required nodes.  

With strict FCFS, this trend is not seen, as each of the per-class queue times is within 

10% of the overall queue time.  This is due to the fact that FCFS-FI discriminates against 

larger-node jobs by allowing smaller-node jobs to “fill-in” and bypass the larger-node 

jobs that arrived earlier.  Strict FCFS does not allow such bypassing and treats all jobs 

uniformly.   
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Figure 39: Effect of queuing discipline on queue time 

In the baseline model, only C16 jobs do not meet a 15-minute SLA, exceeding the 

SLA by approximately 15 minutes.  The SLA must be doubled to 30 minutes in order for 

the baseline model to meet this requirement for all job classes.  However, with strict 

FCFS, no job class meets the 15-minute SLA and the only job class slightly benefiting 

from a change to strict FCFS is C16.  All of the remaining job classes suffer a significant 

performance hit because of the change.  The overall node pool usage increases by 1% 

(1.28 nodes) as a result of changing the queuing discipline.  Because the number of nodes 

in use is a relative measure of how busy the system is, this suggests there is no significant 

effect on the overall system utilization.  However, with FCFS-FI, there are likely more 

smaller node jobs in the system at any given time because they are given preference by 

the scheduling algorithm.  Therefore, the individual utilizations of the smaller-node job 

classes are expected to increase, while the per-class utilizations of the larger-node jobs 

are expected to decrease.  These results are confirmed experimentally.   
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3.7  Chapter Summary 

A case study is presented that describes how the workload of a large enterprise grid 

environment is characterized and used to parameterize a high-level Petri Net Model 

(PNM) for performance prediction.  By studying the workload characterization results, it 

is demonstrated that job parameters in this system are best approximated by using 

hyperexponential distributions.  However, using such distributions to achieve a two-

moment match for the inter-arrival and service times, as well as developing a job 

generator that accurately mimics the behavior of the entire workload, proved to be 

particularly difficult.  A formal modeling technique, such as the method of stages, is 

needed in order to develop performance models that consistently and efficiently achieve 

higher-moment matches for performance parameters.  In addition, the relative importance 

of these higher-moment matches and the effect of variance on performance metrics 

require further study.  In the next chapter, a simulation tool called MOSS is presented 

that provides a systematic manner of studying the effects of variability in real-time 

systems. 

3.8 Research Contributions 

The contributions presented in this chapter include: 

• A thorough discussion and analysis of a case study of a real-world enterprise grid 

environment 

• A novel three-step job generation technique that accurately reproduces the 

workload observed in the real-world environment and matches the first two 

moments of performance parameters 
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• An empirical demonstration that incorporating variance into performance models 

is important, and sometimes necessary, for model calibration 

• A demonstration, through the use of capacity-planning scenarios, that the 

validated performance model is a good tool for predicting the effects of changes 

to the real-world system 
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CHAPTER IV 

A SIMULATION TOOL FOR MODELING VARIANCE 

IN SOFT REAL-TIME SYSTEMS12 

 

4.1 Introduction 

In an attempt to better quantify the importance of achieving higher-moment matches for 

performance parameters, a technique known as the method of stages can be used.  The 

method of stages is a formal modeling technique that provides an intuitive method for 

achieving higher-moment matches for performance parameters.  In addition, the method 

of stages provides a direct way of manipulating the variance of performance parameters 

through the number of stages used.  This modeling technique is used as the basis for a 

new simulation tool called MOSS (Method Of Stages Simulator) that provides an 

intuitive interface for conducting sensitivity analysis experiments involving the effects of 

variance on performance parameters.  MOSS can be used to describe, simulate, and 

analyze the workload and performance characteristics of real-time environments, as well 

as the effects of variance on performance metrics of interest.   The effects of variance on 

parameters such as inter-arrival, service, and deadline times in real-time environments 

can be easily studied using MOSS.  This chapter focuses on the analysis of soft real-time 

systems, and in particular, how variance can affect the performance of scheduling 

algorithms in these environments. 

                                                 
12 Reprinted with the Permission of the Society for Modeling and Simulation International (SCS). 
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Soft real-time systems are able to tolerate a limited number of deadline misses and 

still be useful, provided these misses are bounded by a threshold.  For example, an airline 

information system must be able to keep departure times updated in order to satisfy 

customers.  However, due to issues such as weather conditions, unexpected maintenance, 

a larger than normal number of flights, and/or unanticipated layovers, it is difficult to 

keep passengers accurately informed.  In these situations, sporadic data input causes 

unreliable service times and results in an unpredictable operating environment.  When 

passengers miss their flights, alternate flights are typically substituted.  Therefore, a 

common goal in soft real-time systems is to keep deadline misses at a minimum, while 

maximizing system throughput.   

A number of scheduling algorithms attempt to achieve performance goals by 

modeling system variability using worst-case time analysis in order to predict actual 

system behavior.  Other algorithms ignore variance altogether, even though it can 

significantly affect their performance.  Ignoring variance can lead to overly optimistic 

predictions, while assuming worst-case behavior is pessimistic because the worst case 

may rarely happen in practice.  Interestingly, the first moment (i.e., the mean) of 

performance parameters typically receives most of the focus of study and less attention is 

paid to the second moment (i.e., the variance).  However, accurately modeling the second 

moment can be more important than matching the first moment exactly.  That is, system 

performance can be more sensitive to the variance than the mean.    

A more strategic approach is to incorporate the information regarding the system 

variability directly into a performance model that can then use this information to analyze 

system behavior and make better scheduling decisions.  For example, if a system is under 
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light load, a simple EDF (Earliest Deadline First) scheduler may perform quite well, 

regardless of the workload variability.  However, as the system load increases, and 

particularly as the system utilization approaches 100%, a scheduler that does not adjust 

its scheduling decisions based on the variance of the workload can cause the system to 

miss more deadlines than necessary.  A number of existing tools and simulators can be 

adapted to analyze soft real-time systems to determine ways of improving system 

performance.  Such tools include QPME, GreatSPN, Möbius, JMT, and CPN Tools [7, 

11, 20, 49, 75].  However, these tools focus on providing a generic framework for 

constructing many different types of models for analyzing and/or simulating a wide range 

of target systems, rather than on a specific aspect of performance.   

The primary goal of MOSS is to allow a user to investigate and analyze the effects of 

variance on different performance parameters in soft real-time systems.  A key advantage 

of using MOSS is that it is based on the well-established technique of method of stages, 

which it uses to capture and model the variance within task parameters.  This allows the 

variance of inter-arrival times, service times, and deadline times to be matched to 

measured values.  In addition, the effect of variance on parameters and performance 

metrics can be studied in a uniform and systematic manner. 

4.2 Motivating Example 

As an example, consider a pharmacy where prescriptions are received by a technician, 

who then fills the orders and prepares them for customer pick-up.  Suppose there are two 

possible types of prescriptions: drop-offs and phone-ins.  Drop-off orders are sporadic 

with an average inter-arrival time of six minutes between submitted orders.  Phone-in 

orders on average also arrive every six minutes.  However, these orders are much more 
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regular because they tend to originate from scheduled doctor’s office visits and exhibit 

less variance in their inter-arrival times than drop-offs.  The service time is the amount of 

time it takes the pharmacist to mix the needed drugs together to fill the order.  Deadlines 

occur when the customer arrives to pick up their order.  Both the service and deadline 

time behaviors are assumed identical for the drop-off and phone-in prescriptions.  

Therefore, the only difference between the two prescription types in terms of arrival, 

service, and deadline characteristics is the variance of their inter-arrival times.   

When either type of order arrives, a technician/receptionist records the prescription 

details and submits the order to a pharmacist who later fills it.  The pharmacist requires 

an average of two minutes to mix the needed drugs together to fill an order of either type.  

In most cases, this is also a practical assumption because prescriptions of either type are 

not expected to exhibit any significant differences.  Because two orders cannot be filled 

at the same time, after an order is started by the pharmacist, it must be completed before 

the next order can be processed.  However, given a set of outstanding orders to fill, the 

pharmacist can decide which one to fill next, to maximize the likelihood of completing 

the order before the next customer pickup (i.e., the order’s deadline).  The emphasis in 

this example is placed on the variance of the arrival process, rather than on the filling of 

prescriptions or customer pickups.  The performance goal is to maximize the overall 

percentage of met deadlines (i.e., to successfully complete as many prescriptions as 

possible before customer pick-up).  The free variable is which order the pharmacist 

should work on next (i.e., the scheduling algorithm), a drop-off order or a phone-in order, 

which are identical in every way except for their inter-arrival time variances. 
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MOSS is used to run four different groups of simulations for this pharmacy scenario.  

Two groups are run under light system load (i.e., when the mean inter-arrival time 

between orders is large), while two are run under heavy system load (i.e., when the mean 

inter-arrival time between orders is small).  Under light load, one group is used to 

estimate the overall percentage of met deadlines if drop-off prescriptions are given 

priority, while the second group is used to estimate the same metric assuming phone-in 

prescriptions are given priority.  An average is taken across all the simulations in a given 

group in order to obtain an estimate of the overall percentage of met deadlines.  This 

process is repeated assuming heavy system load.  The results from the simulations are 

summarized in Table 11.  (see Section 4.8 for validation of these results) 

Table 11: Simulation results from pharmacy scenario 

System Load Priority Given To Overall % Met 
Deadlines 

Drop-offs 92.66% Light 
Phone-ins 91.06% 
Drop-offs 46.23% Heavy 
Phone-ins 51.67% 

   
As Table 11 indicates, giving priority to drop-off prescriptions maximizes the overall 

percentage of met deadlines when the system is under light load.  However, under heavy 

system load, priority should instead be given to phone-in prescriptions to maximize the 

percentage of met deadlines.  Recall that the only statistical difference between the drop-

off and phone-in prescriptions is the variance within their inter-arrival time patterns.  This 

example illustrates that the workload variance influences the best scheduling decision.  

This effect of variance has been noted in other research as well.  In [45], for example, the 

arrival patterns of network traffic data are studied and a second-moment characterization 



108 

of traffic streams is introduced.  It is shown how simple computations based on the 

variances of arrival patterns can be used to determine accurate QoS estimates for 

performance parameters.  These estimates are used in new scheduling routines that result 

in higher system utilizations. 

4.3 Method of Stages Simulator 

The Method Of Stages Simulator (MOSS) is a graphical Windows program that allows a 

user to describe a workload from a soft real-time system and to model its variance by 

discrete event simulation.  MOSS is written in Visual C++ and is comprised of 

approximately 40,000 lines of code.  The core of the simulation engine uses the method 

of stages to achieve a two-moment match for inter-arrival, service, and deadline times of 

each task stream input to the simulator.  The layout and look of the program are intended 

to be simple and easy to use.  The MOSS clock-icon shown in Figure 40 reflects the fact 

that MOSS is a simulator with an internal floating-point clock, and the colored circles 

represent arrival, service, and deadline process stages.  Standard buttons and controls are 

used to operate the simulator, similar to those found in most Windows applications. 

 
Figure 40: The MOSS icon 

The information describing an input workload is composed of a number of task 

streams whose description and behavior are based on the method of stages technique.  A 
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task scheduler is used to determine how competing tasks should share resources.  MOSS 

currently supports a single resource (i.e., processor) and a number of traditional 

scheduling algorithms (e.g., Earliest Deadline First (EDF), Rate Monotonic (RM), Least 

Laxity First (LLF), and Shortest Remaining Service Time First (SRSTF)) [14].  Other 

scheduling algorithms are currently under development.  The scheduling algorithm and 

additional simulator parameters can be configured to further customize each simulation.   

A series of dialog windows assist the user in entering workload, scheduler, and 

simulator parameters.  These parameters can be loaded from a configuration file, or 

entered directly into fields provided by the user interface.  Error checking is performed 

and the user must enter valid values in all required fields before progressing to the next 

step.  After the required configuration information has been loaded from a specified file 

or entered manually, a simulation can be started, which executes to completion unless it 

is paused by the user.  A number of performance statistics can be viewed in real-time 

while the simulation is running.  Once complete, various output files can be examined to 

observe the performance metrics of interest.   

An installer program, sample configuration files, and help files are provided to aid in 

getting started.  The installer consists of a standard installation wizard similar to the 

installation programs that accompany most current Windows applications.  The installer 

prompts for an installation directory and then installs the necessary files and components.  

The file type MCF (MOSS Configuration File) is registered with the operating system to 

associate files with a .mcf extension with MOSS.  This associates the MOSS program 

icon with the MCF file type, and allows the user to click on any MCF file and open it 
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directly in MOSS.  MOSS is currently only supported on the Windows platform and may 

be downloaded at [23].   

4.4 Configuration Information 

A MOSS configuration describes a system workload and consists of a number of 

parameters that specify the configuration of the task streams, scheduler, and simulator.  

This information can be loaded from an existing configuration file, which is an ordinary 

text file containing formatted blocks of data similar to those found in most scripting 

languages.  Therefore, MOSS configuration files can be opened and edited by any 

program capable of editing ASCII text files.  A configuration file contains all the 

information needed to precisely reproduce a given simulation.  These files provide a 

convenient mechanism for loading, saving, and modifying different simulation 

configurations.  MOSS also provides its own basic file editor that allows editing of 

configuration files and provides features such as syntax highlighting, multi-line 

indenting, and error checking.  (The MOSS file editor is shown in Figure 42).  The user 

may alternatively specify the configuration parameters manually and allow MOSS to 

generate a new configuration file that is later saved.  Note that some screenshots of 

MOSS, such as the one shown in Figure 42, show only partial dialog windows in order to 

conserve space.   

The first dialog window of MOSS is shown in Figure 41.  This window asks the user 

to either load a configuration file or create a new configuration file manually.  If a file is 

loaded, the user can click the Edit File button to open the built-in editor and edit the 

configuration information.  Any changes made to the configuration information can be 

saved or discarded, but MOSS will generate an error if the modified information cannot 
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be successfully parsed.  This prevents a user from inadvertently saving a faulty 

configuration file that would later fail to load.  The user can also click the Go to 

Simulation button provided at the top of the window in order to bypass the configuration 

screens and go directly to the Run Simulation window.  Alternatively, the user can 

progress through a series of dialog windows and manually enter or edit parameters.  If a 

file is loaded, the various fields in each window are pre-populated with information from 

the configuration file.  At the bottom of each dialog window, there is a Back, Next, and 

Exit button to go back, move forward, or exit the application, respectively.  Throughout 

the manual configuration process, the user may move forward and backward through the 

configuration steps as needed.  However, if a configuration file is not loaded, or if the 

user makes changes at any step, the Next button is disabled until all required information 

is successfully entered.  After loading a file successfully or selecting the manual 

configuration option, the user progresses to the next dialog window by clicking the Next 

button.   
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Figure 41: Main dialog window 
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Figure 42: Configuration file editor 

4.4.1 Task Stream Configuration 

For each task stream, the user specifies values that define the characteristics of each 

stream’s arrival, service, and deadline processes.  The information for each task stream is 

displayed on a separate tab.  Tabs can be added or removed by clicking the appropriate 

buttons.  MOSS currently limits the number of task streams to ten in order to reduce 

simulation overhead and maximize screen readability.  Figure 43 shows a screenshot of 

the task stream configuration window for a sample configuration consisting of ten task 

streams.   

MOSS internally labels task streams with the integer identifiers zero through nine, but 

the user can enter a custom text string to more appropriately identify each stream.  The 

user can delete the currently selected task stream by clicking the Remove Stream button.  
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At least one task stream is required and, therefore, a user cannot delete the last remaining 

stream.  In this example, the Add Task Stream button is disabled because the maximum 

number of allowed streams (i.e., ten) has been reached.   

 
Figure 43: Task stream configuration window 

A dropdown list provides three options for the deadline cause, as shown in Figure 43.  

Recall that the deadline process is sometimes defined as (i.e., linked to) the arrival 

process.  In other words, when the deadline process is specified as the arrival process, the 

next succeeding arrival of a task also represents the deadline for the immediately 

preceding task in that stream.  In MOSS, when Arrival is selected as the cause for the 

deadline in the dropdown list, the deadline process information is not needed and is 

hidden.  If the deadline cause is changed to Deadline or Arrival or Deadline, the deadline 
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process information is required and reappears in the window.  For the arrival, service, and 

deadline processes, the user specifies the amount of time that passes between successive 

events, as well as the number of stages for each process.  Because the number of stages 

for a process determines its variability (i.e., second moment, variance), MOSS allows the 

user to effectively specify the first two moments of the arrival, service, and deadline 

processes.   

All time values must be entered in minutes, but decimal values are accepted, which 

allows task streams with time values of seconds or non-integral minute values to be 

configured.  The input boxes for time values do not allow invalid characters to be entered 

and the number of stages must be selected from a dropdown list.  This helps prevent the 

user from entering invalid or undesired values.  Once all task streams have been 

configured, the user is asked to enter scheduler configuration information. 

4.4.2 Scheduler Configuration 

The scheduler configuration currently consists of a single parameter that specifies the 

scheduling algorithm to be used.  The algorithm is selected from a dropdown list that 

provides several popular scheduling algorithms.  Figure 44 shows a portion of the 

scheduler configuration window with the algorithm selection list expanded.  Because 

additional scheduling algorithms are continually being implemented, the user is prompted 

to proceed at their own risk if they select an algorithm that is still under development.  

The list of scheduling algorithms contains short acronyms but a more detailed description 

is displayed next to the listing to help the user select the best choice.  This detailed 

description is updated as different algorithms are selected.  In Figure 44, the Rate 

Monotonic (RM) scheduling algorithm is currently selected and its description is 



116 

displayed beside the algorithm selection list.  The other acronyms are EDF (Earliest 

Deadline First), FCFS (First Come First Serve), FS (Fair Share), LLF (Least Laxity 

First), PS (Processor Sharing), and SRSTF (Shortest Remaining Service Time First).  

  
Figure 44: Portion of scheduler configuration window 

One issue that arises with scheduling algorithms is what to do in the case of a tie, 

where multiple tasks have the same priority and all of them should be allowed to execute.  

For example, when using the Rate Monotonic algorithm, if two tasks have the same inter-

arrival time, they have the same priority.  The decision of selecting what do in this case is 

typically arbitrary and often left up to the implementer.  In MOSS, priority is determined 

by using a tolerance value to test each value in question.  If multiple tasks have nearly 

(i.e., within a small tolerance) the same determining value (e.g., deadline time in the case 

of EDF), then the tasks are allowed to share the processor equally.  The tolerance value 

MOSS uses to break ties is currently 0.00001.  For example, when using RM scheduling, 

the value that determines priority is the inter-arrival time of each task stream.  Therefore, 

using RM scheduling, if a workload has three task streams S1, S2, and S3 with inter-

arrival times of 5.000001, 5.000002, and 4.999 minutes, respectively, then streams S1 
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and S2 will be assigned the same priority, P, while S3 will be assigned a priority higher 

than P.    

4.4.3 Simulator Configuration 

The simulator configuration window allows the user to specify a seed for the internal 

random number generator or the user can choose to let MOSS generate a seed randomly.  

The seed is used to initialize the random number generator and set its start state.  The 

seed used during any given simulation is recorded in the configuration file.  This value is 

saved, which allows any simulation to be reliably repeated later.  The simulation length is 

specified by a decimal value time unit.  Figure 45 shows a portion of the simulator 

configuration window with the time unit list expanded.  While the unit of time for the 

simulation length is being entered, a corresponding maximum value is displayed to help 

the user specify a valid numeric value.  To reduce overhead, MOSS currently limits the 

simulation length to one year.  The remaining option in the simulator configuration 

allows the user to open a browse window and select the desired output directory for 

resulting simulation data.   

When the Next button is clicked, a dialog window presents the user with a summary 

of all the current configuration information, displayed in a hierarchical tree view as 

shown in Figure 46.  Displaying all of the configuration information in this form helps 

the user to notice any undesired values or errors in their configuration settings. The 

settings-tree can be printed or saved in a text file. 
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Figure 45: Portion of simulator configuration window 

 
Figure 46: Portion of configuration summary window 

4.5 Running a Simulation 

The final dialog window allows the user to start the simulation by clicking the Start 

button.  Once a simulation is started, the Start button label changes to Pause.  A repeated 

click of this button pauses or resumes the simulation.  Figure 47 shows a screenshot of a 
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simulation that is currently paused. While a simulation is running, a progress bar 

indicates the rate at which the simulation is progressing and the number of simulated 

minutes is displayed as well.  A status message indicates the current state of the 

simulation (e.g., paused, or resumed) as well as any other important information, such as 

warnings about possible error conditions.  A Terminate button is provided in case the 

user wants to terminate a simulation early.  For example, if a simulation takes longer than 

expected, the user can terminate the simulation gracefully without waiting for it to 

complete.  If the Terminate button is pressed, a message box is displayed asking the user 

to confirm the termination, before the simulation is actually terminated. 

 
Figure 47: Run simulation dialog window 
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On the left side of the window is a checkbox that allows real-time simulation statistics 

to be viewed while the simulation is executing.  By displaying these statistics, it extends 

the user-perceived run time of the simulation, due to the additional overhead.  Therefore, 

a refresh interval can be selected that controls how often the statistics are updated—the 

smaller the interval, the more overhead is incurred and the longer the perceived run time 

is extended.  To change the refresh interval, the user must uncheck the View Simulation 

Details option.  Selecting this option displays tabs that group the statistics into categories.  

MOSS currently displays three categories of statistics: method of stages process counts, 

deadline met/miss percentages, and system utilizations.   

The Process Counts tab displays the number of processes created, completed, and 

aborted for the arrival, service, and deadline processes of each task stream.  The Deadline 

Percentages tab provides a graphical display that indicates the percentages of met and 

missed deadlines for each of the task streams.  Because these percentages are an 

important metric, one advantage of MOSS is that it allows the user to intuitively view this 

information in real-time as the simulation is executing, rather than having to wait until 

the simulation completes.  For each task stream, a single bar indicates the percentage of 

met and missed deadlines by displaying a green and red portion, respectively.  The 

Utilizations tab displays the utilizations of each task, as well as overall, using blue bars in 

a manner similar to the deadline percentages.   

The screenshot in Figure 47 shows a simulation that is currently paused and the 

Deadline Percentages tab is selected.  The mouse pointer is hovering over task stream 6 

and a small yellow label displays the custom task stream name supplied by the user 

during the configuration setup.  When a simulation finishes, a finished message is added 
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to the status box and all buttons are disabled except for the Exit button.  This message 

indicates that the simulation has completed and all output data has been saved 

successfully.  MOSS does not terminate immediately so that the user can finish viewing 

the graphical statistics before exiting.  When the Exit button is clicked, MOSS closes. 

4.6 Examining Output Files 

Several output files are created for each simulation and each file can be examined to 

observe desired statistics or performance metrics.  Figure 48 shows a list of files that are 

output from one of the simulations from the pharmacy example.  All of the simulation 

settings are saved in a MOSS configuration file that can be reloaded later in order to 

precisely repeat a given simulation.  A text file containing the same settings in a tree 

format is also saved if the user selects this option.  An XML file is saved that contains a 

summary of all the simulation results and a portion of an example summary file is shown 

in Figure 49.  Note that the deadline time information is empty because no deadline 

process was configured for the given simulation.  The summary file uses a spreadsheet 

scheme that can be opened using Microsoft Excel and other spreadsheet applications 

capable of opening XML documents. 
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Figure 48: List of output files generated by MOSS 
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Figure 49: Portion of example summary file 

A number of text files containing detailed statistics for each task stream are saved in 

CSV format in two directories, Tasks and Metrics.  These two directories reflect how 

each group of files is organized.  The files in the Tasks directory are grouped by task and 

allow the user to view all the recorded statistics for a particular task stream.  The 

filename of each task stream file indicates the user-specified text string as well as the 

stream number.  Similarly, the files in the Metrics directory are grouped by metric, and 

the user can view a particular metric for all task streams at once.  In this way, a user can 

quickly view all the metrics for a given task, or view all the task data for a given metric, 
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without having to scan across multiple files.  The files in the Tasks directory include the 

count, sum, mean, standard deviation, variance, and CV for performance metrics such as 

inter-arrival, service, deadline, response, and wait times.  Deadline statistics include the 

number and percentage of met/missed deadlines for each stage of the arrival, service, and 

deadline processes.  Utilizations, overall percentage of met/miss deadlines, and process 

statistics (e.g., number of service processes aborted and their causes) are output as well.  

Each file in the Metrics directory lists the same information, only in a different format. 

4.7 Discussion 

It has been demonstrated that variance does affect performance metrics and that it should 

be taken into account when making scheduling decisions.  MOSS can easily assist in 

exposing such issues.  Because the variance of the input parameters is related to the 

number of stages in a given process type (e.g., an arrival, service, or deadline process) by 

the formula shown in Table 12, various sensitivity analysis experiments can easily be 

performed.  As an example, using the performance parameters from the pharmacy 

scenario, simulations are run where the only parameter that changes in each simulation is 

the number of stages in each of the arrival processes.  In each simulation, the number of 

stages in the arrival process is the same for both task streams, but across simulations, the 

number of stages is varied from 1 to 10.  As the number of stages in the arrival processes 

increases, the variance within the inter-arrival times decreases.  This decrease in variance 

causes the arrival patterns of both task streams to become more regular, improving 

performance.   

Figure 50 shows the results from running a series of simulations using the Shortest 

Remaining Service Time First (SRSTF), Earliest Deadline First (EDF), and Least Laxity 
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First (LLF) scheduling algorithms.    The graph shows that as the variance decreases, the 

overall percentage of met deadlines increases, resulting in better performance.  As the 

number of stages increases from 1 to 10, each of the three algorithms results in 

approximately the same overall performance boost—about a 50% increase over the 

starting value.  This is somewhat surprising because only the second moment (i.e., 

variance) is changing.  The mean (i.e., first moment) of a distribution is more often the 

focus of such sensitivity analysis experiments when comparing the performance of 

different scheduling algorithms.  In this example, the means are held constant and yet, the 

trend lines for each algorithm are not flat, indicating the importance of accurately 

modeling the variance.  This example demonstrates that variance plays an important role 

in the performance of scheduling algorithms.  Decreasing the CV by half (i.e., from 1.00 

to 0.50) results in an improved performance change of about 35% – 45%. 

Table 12: Properties of an Erlang-k distribution (revisited) 
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Figure 50: Algorithm sensitivity with respect to variance 
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Figure 51: Algorithm sensitivity with respect to system load 

Two sets of simulations were previously presented that demonstrate the effect of 

giving priority to one task type over the other, for both light and heavy system loads.  

Under light load (i.e., approximately 65% utilization) it is better to give priority to drop-

off prescriptions (i.e., streams with higher variance), while under heavy load (i.e., 

approximately 90% utilization) it is better to give priority to phone-in prescriptions (i.e., 
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streams with lower variance).  One method of varying the system load is to change the 

number of task streams in the system because more tasks in the system will lead to higher 

utilization.  Another method of varying the system load (i.e., the one used here), is to 

change the inter-arrival times.  Decreasing the inter-arrival times proportionally across all 

task streams causes tasks of each type to arrive more frequently, thereby increasing the 

system load.   

To span the gap between light and heavy system loads, additional MOSS simulations 

are run in a similar manner.  The resulting graph is shown in Figure 51.  As expected, as 

the overall system utilization increases from 65% to 95%, the percentage of met 

deadlines decreases significantly, from more than 90% to about 50%.  When the system 

is about 75% utilized, it makes little difference which prescription type is given priority.  

Giving priority to either type results in the same percentage of met deadlines.  Therefore, 

an effective scheduling strategy in this system would be to give priority to the task stream 

that will result in the highest percentage of met deadlines as a dynamic function of the 

system load.  In this example, if the system utilization is less than 75%, priority should be 

given to drop-offs, and otherwise the priority should be given to phone-ins. 

A similar analysis could be conducted in order to compare the performance of several 

different scheduling algorithms operating a under varying system loads.  For any given 

utilization, the algorithm that produces the highest percentage of overall met deadlines 

can easily be identified.  In particular, all of the various crossover points (i.e., utilizations 

where the choice of the best algorithm changes) can be identified and used in a hybrid 

scheduling algorithm that bases its scheduling decisions on the current system utilization.  

In separate simulations run using an experimental version of MOSS, the results appear to 
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support the claim that using such a hybrid scheduling algorithm will not only match the 

performance of traditional algorithms such as RM, EDF, and LLF, but also outperform 

them, sometimes significantly.  Searching for and testing such hybrid scheduling 

algorithms appears to be a promising direction towards developing generic state-based 

scheduling algorithms.  Such hybrids will necessarily include the higher moments in the 

workload parameters as well as system performance metrics such as the overall system 

load/utilization.  MOSS enables sensitivity analysis experiments to help guide such 

research efforts.  

4.8 Simulator Validation 

Recall from the motivating example that the priority between two task stream types (i.e., 

drop-offs and phone-ins) is toggled under both light and heavy load conditions.  MOSS is 

used to obtain estimates of the percentage of met deadlines in each case.  The differences 

between these metrics in each case are used to demonstrate how variability alone can 

affect system performance.  To validate these results, state-space models are constructed 

for each scenario and solved analytically to obtain the correct/exact values for the 

performance metric (i.e., percentage of met deadlines).  Table 13 lists the analytical 

(exact) percentage of met deadlines, the MOSS estimates of this same metric, and the 

MOSS confidence intervals.  The table indicates that with 99% certainty, the MOSS 

estimates are accurate to within one-tenth of one percent.  This validation of the MOSS 

values demonstrates that they are both accurate and significant, supporting the argument 

that changing only the variability affects the performance considerably. 
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Table 13: Summary of MOSS performance estimates with 

confidence intervals 

  
Overall % Met Deadlines 

MOSS Confidence 
Intervals 

System 
Load 

Priority 
Given To 

Analytical 
Values 

MOSS 
Estimate 

95th 99th 

Drop-offs 92.71% 92.66% ± 0.040 ± 0.062 Light 
Phone-ins 91.10% 91.06% ± 0.071 ± 0.109 
Drop-offs 46.28% 46.23% ± 0.058 ± 0.090 Heavy 
Phone-ins 51.62% 51.67% ± 0.048 ± 0.074 

      
4.9 Chapter Summary 

Many soft real-time systems, such as those involving airline flight information, weather 

forecasting, and highway traffic analysis, operate in uncertain and unpredictable 

operating environments.   This causes tasks in such systems to exhibit unpredictable and 

variable inter-arrival, service, and deadline behavior.  It has been demonstrated that 

modeling this variability is important and it can have a significant effect on the 

performance of scheduling algorithms.  This chapter describes MOSS, a simulation tool 

that uses the method of stages technique to model the variability in the workload of soft 

real-time systems in a uniform and understandable manner. 

MOSS has been used to conduct sensitivity analysis on input parameters such as 

inter-arrival.  It demonstrates that variance can significantly impact the overall system 

performance.  This variability impacts the performance of various scheduling algorithms 

by as much as 50%.  This topic will be explored in more detail in Chapters VI and VII.  

Prior to this, Chapter V provides a more detailed discussion of modeling and simulation 

of variance in order to provide an overview of the basic structure of our remaining 

sensitivity analysis experiments. 
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4.10 Research Contributions 

The contributions presented in this chapter include: 

• The introduction, explanation, and demonstration of the Method Of Stages 

Simulator (MOSS) through live screenshots and examples 

• Discussion of advanced features of MOSS, including an installation and setup 

program, graphical user interface, flexible configuration file format, built-in file 

editor, and extensive simulation output 

• Demonstration of the usefulness of MOSS through a specific workload example, 

illustrating the ease in which the effects of variance on system performance can 

be studied in detail 
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CHAPTER V 

MODELING AND SIMULATION OF VARIANCE 

 

5.1 Introduction 

Much work has been done involving the performance analysis of scheduling algorithms 

but little is known regarding the impact of variance and higher moments on scheduling 

decisions.  The following work involves conducting in-depth sensitivity analysis 

experiments, developing variability-based guidelines for improving system performance, 

and developing improved state-based scheduling algorithms by incorporating these 

results into hybrid scheduling strategies.  This chapter discusses the reasons for the 

chosen modeling technique (i.e., method of stages) and describes the general techniques 

and procedures used to conduct sensitivity analysis experiments in the remainder of this 

work.  Added emphasis is placed on task laxity because it is an important concept that is 

used in the development of the resulting hybrid algorithms.  A large number 

(approximately 75,000) of simulations are run using MOSS to gather the data for the 

results presented in this chapter.  In light of this work, several improvements can be made 

to the MOSS tool to improve its usability and functionality.  The last section of this 

chapter provides a discussion of a new prototype of MOSS based on this feedback.   

5.2 Choosing a Modeling Technique 

Variability can be introduced into a system from various sources.  In order to model and 

study the effects of this variability, a number of different approaches can be taken.  To 

decide upon the most appropriate modeling technique, an important consideration is the 



132 

source of the variability that is to be studied.  Two types of variability that arise in 

performance modeling are workload variability and system variability.  In real-time 

systems, the workload consists of task streams characterized by unique arrival, service, 

and deadline behavior.  Workload variability, therefore, originates from the variable 

behavior of the arrival, service, and deadline processes of task streams.  System 

variability results from unpredictable behavior found within the environment to which the 

workload is subjected.  It is, therefore, a result of issues such as resource contention, 

device and communication failures, bottlenecks, poor scheduling policies, and overload 

conditions. 

 Other issues regarding how variability is to be modeled must be considered as well.  

For example, a method of representing the variability information must be selected, one 

that is compatible with the desired modeling framework [79].  That is, an abstraction 

must be defined that links or correlates the real-world variability to a mechanism in the 

modeling framework.  Next, a modeling tool that supports and captures the necessary 

information must be identified and implemented.  Finally, the issue of verification must 

be addressed, where the results obtained from the modeling tools are verified.  

Fortunately, a number of verification techniques are known and are applicable to a wide 

range of real-time modeling environments [66].  

 Our goal is to study the effects that workload variability has on the overall system 

performance in a soft real-time environment.  Therefore, a technique is required that both 

generates accurate workloads containing realistic and variable behavior, and allows this 

variability to be systematically changed and studied.  The method of stages technique 

meets these requirements and lends itself well to analytical, as well as simulation, 
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modeling techniques.  Because the scheduling algorithm is directly affected by the 

variable nature of task streams, the performance differences resulting from scheduling 

decisions serve as good indicators as to the effects of changes in workload variability.  

Therefore, the scheduling algorithm is selected as the main criterion to evaluate the 

overall effects on system performance.   

 In this work, the variability to be studied is explicitly represented in the behavior of 

tasks that make up the workload.  That is, there is a direct correlation between the 

variability in the real-world task behavior and that of the task representation used in the 

modeling framework.  Using the method of stages technique, stage-type distributions are 

used to generate accurate task streams that result in realistic workloads.  The variability 

of these streams can be systematically modified and the resulting performance effects on 

different scheduling algorithms can be studied.  A custom simulation tool, MOSS, 

utilizes this method of stages framework to analyze the effects of variance within the 

workload, and to study the resulting performance of scheduling algorithms.  Analytical 

techniques, such as state-space analysis, are used to validate the results from MOSS. 

5.3 Modeling and Simulation Framework 

MOSS can be easily used to conduct a wide range of experiments to determine the effects 

of variance on system performance.  To help guide the discussion of the general 

modeling framework, a simple system composed of two task streams, S0 and S1, is 

presented.  These two streams are characterized by the performance parameters shown in 

Table 14.  Both task streams have the same mean inter-arrival time but slightly different 

service times.  S0 has more regularity in both its arrival and service behavior, while S1 

exhibits more variability in these parameters.  For simplicity, the deadline of each stream 
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is assumed to coincide with its next arrival (i.e., the deadline process is the arrival 

process).   

Table 14: Task stream parameters for the baseline system 

Task Stream 
Inter-arrival 
Time (min) 

Number of 
Arrival Stages 

Service Time 
(min) 

Number of 
Service Stages 

S0 6.0 10 2.85 10 
S1 6.0 2 2.95 2 

     
5.3.1 Sensitivity Analysis Experiments 

Using MOSS, a number of simulations13 are run to generate the data used to create 

sensitivity graphs and comparison results.  Figure 52 shows a sensitivity graph that 

compares the performance of the EDF, LLF, and SRSTF scheduling algorithms for an 

intensity factor14 (IF) of 1.0 as the number of stages (i.e., variance) of the task workload 

changes.  This graph corresponds to the baseline system, except that the number of stages 

for the arrival and service processes of S0 is varied; all other parameters for both task 

streams are held constant.  Because the inter-arrival times of each stream are roughly 

twice the value of their service times, this graph corresponds to a lightly loaded (i.e., 

approximately 46%-80% utilized) system.   

                                                 
13 The simulation length used in these experiments is 30 days. 
14 An intensity factor is a multiplier for the arrival rate such that an intensity factor of 2.0 corresponds to an 
arrival rate that is twice that of the baseline system. 
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Figure 52: Algorithm comparison for IF=1.0 

As Figure 52 shows, increased regularity in this under-utilized system boosts the 

overall performance by increasing the percentage of met deadlines.  Thus, increased 

variability leads to a decrease in system performance and the system under light load 

performs best when the workload is very regular.  Comparing the performance of each 

algorithm15 when there is one stage (relatively high variability, CV of 1.0) to that when 

there are 20 stages (relatively low variability, CV of 0.223), the impact on performance is 

roughly the same—about a 15% decrease in the overall number of met deadlines.  For a 

given number of stages, the average laxity for each algorithm is approximately the same 

and the average values of these laxities are shown along the top of the graph.  Notice that 

under light load, the average laxity is positive. 

The effects of an intensity factor of 1.5 are shown in Figure 53.  With an intensity 

factor of 1.5, the system is moderately loaded (i.e., approximately 75% – 92% utilized) 

and the performance of each algorithm across the number of stages is not as widespread 

                                                 
15 The RM scheduling algorithm exhibits nearly identical performance compared to LLF and is not shown 
in this, or the remaining graphs in this chapter. 
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as it is for light load.  However, the performance difference across the three algorithms is 

more widespread when compared to the system having an intensity factor of 1.0.  In this 

moderately loaded system, increased variability still causes a decrease in system 

performance, only not as much.  The average laxity values have decreased but they are all 

still positive.   
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Figure 53: Algorithm comparison for IF=1.5 

Figure 54 shows the performance comparison with an intensity factor of 2.0, which 

corresponds to a heavily loaded (i.e., approximately 87% – 99% utilized) system.  

Contrary to the performance of the light or moderate system loads, increased variance 

boosts system performance in the heavily loaded environment.  The average laxity values 

have decreased to the point that they have become negative and this characteristic is 

exacerbated as the variance decreases.  A negative laxity value indicates that a job 

currently requires an average amount of service time that is greater than its expected 

deadline time.  Therefore, if some of the jobs expected to miss to their deadlines 

(identified by their negative laxity values) are aborted, there is increased opportunity for 
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performance improvement under heavy system load.  As the workload becomes more 

regular, the laxity values become more negative.  Therefore, the optimal conditions for 

laxity-based performance improvement occur under heavy, regular system load. 
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Figure 54: Algorithm comparison for IF=2.0 

The results from the previous three graphs indicate that as the intensity factor 

increases, the percentage of met deadlines may increase or decrease as the variance of the 

workload changes, depending on the system load.  However, the trend of the overall 

system utilization is consistent in that, as the intensity factor increases, the system 

becomes more utilized and therefore, the overall system utilization increases.  Figure 55 

summarizes this result where each utilization value is the average of all the individual 

utilizations of each algorithm.  As the workload becomes more regular, the system 

reaches its maximum utilization, suggesting that as the variance decreases, the system 

utilization increases in a concave manner.  In future work, we hope to prove this result 

analytically. 
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Figure 55: Overall system utilization for various scheduling algorithms 

Under heavy system load, negative laxity values identify tasks that are not expected 

to meet their deadlines.  Thus, it might be better to sacrifice these tasks, not allocate any 

further resources to them, and instead allocate resources to tasks with positive laxity.  

This research indicates that tasks with negative (and maybe even some tasks with positive 

laxities, depending on the system load) should be terminated unless they are 

characterized by high variability in their service times.  A highly regular task with a 

negative laxity will most likely miss its deadline and therefore, it should be aborted as to 

not waste any further processing time.  On the other hand, a highly variable task with a 

negative laxity is more likely to meet its deadline because its irregular nature could lead 

to it finishing early.  The difficult decision is determining exactly when a task should be 

aborted.   

The LLF algorithm makes scheduling decisions based on laxity, but negative laxity 

values are often used to abort tasks without giving them any further chance to finish.  

This is because the variance of task parameters is assumed equal to zero, implying that a 
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task with a negative laxity will definitely miss its deadline.  With some scheduling 

algorithms, negative laxity values are taken advantage of in an attempt to boost 

performance, but the system variance is rarely taken into account.  Therefore, because 

many existing scheduling algorithms typically do not incorporate variance into their 

scheduling decisions, their performance can be significantly affected, particularly under 

heavy load.  Considering these negative laxity values and the effects of variance can be 

utilized and taken advantage of to develop new scheduling guidelines based on the 

variability of the workload.  This issue is investigated further in order to determine how 

task variability can be used to schedule tasks most effectively and abort (i.e., give up on) 

those that are expected to miss their deadlines.  Examining different ways of using task 

laxity to improve performance is of particular concern.     

5.3.2 Variability-Based Guidelines for Scheduling 

Although the sensitivity analysis presented in the previous section is relatively simple, 

closer inspection reveals some interesting observations.  For example, as the arrival rate 

intensity factor increases from 1.5 to 2.0, the overall effect of variance on system 

performance is inverted.  Under light and moderate load, increased variability hurts 

system performance, but under heavy load, the increased variance results in a higher 

percentage of met deadlines.  Therefore, there exists an intensity factor between 1.5 and 

2.0 that results in an overall balancing effect of variance on the system performance.  

That is, there must be some intensity factor such that the overall percentage of met 

deadlines remains approximately constant as the number of stages is varied from 1 to 20.   

A relative measure of change in the percentage of met deadlines can be obtained for a 

given algorithm (e.g., SRSTF) by computing the difference between the met-deadline 
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percentage using one stage and the met-deadline percentage using 20 stages.  This 

provides a relative measure of comparison between a system with high variability and 

one with high regularity.  Although the percentage of met deadlines is commonly used 

for performance comparisons, sometimes the raw number of met deadlines can be more 

useful or relevant than the percentages.  For example, under light load, the percentage of 

met deadlines is relatively high but there are fewer jobs in the system.  In other words, 

the gross number of jobs is less in a lightly loaded system, which indicates excess system 

capacity.  Under heavy load, the percentage of met deadlines is significantly smaller, but 

there are many more jobs in the system.  Therefore, a system under heavier load can often 

outperform a more lightly loaded system in terms of raw system throughput.  

Figure 56 illustrates the change in the percentage of met deadlines for SRSTF as the 

system load increases from moderate (IF=1.5) to heavy (IF=2.0).  The dotted line 

indicates the point at which the overall change in the met deadline percentage is 

approximately zero.  Therefore, for an intensity factor of approximately 1.68, the overall 

system performance is expected to be nearly constant, regardless of the system variance.  

Using MOSS to simulate a workload having an intensity factor of 1.68, the resulting 

change in the percentage of met deadlines is found to be 0.1%.  The corresponding 

system utilization ranges from 81.6% to 95.8% and the average laxity ranges from 0.233 

minutes (13.98 seconds) to 0.375 minutes (22.5 seconds).  Therefore, if the SRSTF 

algorithm is used, a target utilization of around 88% is expected to minimize the effects 

of variance on the overall percentage of met deadlines.   

Similarly, Figure 57 shows that an intensity factor of approximately 1.71 minimizes 

the effects of variance on the overall number of met deadlines.  Using SRSTF, a target 
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utilization of approximately 90% is expected to minimize the effects of variance on the 

overall number of met deadlines.  Similar results are observed for EDF and LLF.  Thus, 

for each scheduling algorithm, there exists a preferred target utilization range that 

minimizes the effects of variance and maximizes the overall system performance. 

-10

-8

-6

-4

-2

0

2

4

6

8

10

1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2

Arrival Rate Intensity Factor

C
ha

ng
e 

in
 P

er
ce

nt
ag

e 
of

 M
et

 D
ea

dl
in

es

-1200

-1000

-800

-600

-400

-200

0

200

400

600

1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2

Arrival Rate Intensity Factor

C
ha

ng
e 

in
 N

um
be

r o
f M

et
 D

ea
dl

in
es

Figure 56: Change in percentage of met 

deadlines for SRSTF 

 

Figure 57: Change in number of met deadlines 

for SRSTF 

 
 An important use of MOSS is analyzing results from sensitivity analysis experiments 

to determine a target utilization range for a given scheduling algorithm.  Adapting an 

existing algorithm in this manner essentially renders it unaffected by variability in the 

system workload.  As shown, this can lead to a significant performance increase, 

particularly under heavy system load.  These results provide the first important step of 

analyzing the effects of variance on scheduling decisions.  Using MOSS to systematically 

test the impact of variability on task scheduling has proven fundamental in identifying 

important trends that warrant future research.   

Overall, MOSS can be used to vary a number of parameters for each task stream, as 

well as the scheduling algorithm used to schedule or abort tasks.  By conducting more 

detailed sensitivity experiments using the previous findings, the parameters most 

sensitive to variance can be further studied under different workloads.  For small 
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examples, state diagrams can also be constructed and analyzed to identify states in which 

these conditions exist.  This state-space information, as well as the results from MOSS 

sensitivity analysis experiments, can be incorporated directly into scheduling strategies to 

develop hybrid scheduling algorithms.  The performance of these hybrid algorithms and 

their sensitivity to changes in variability can be compared to that of traditional scheduling 

algorithms.  Using these techniques and results, MOSS can be used to develop improved 

state-based algorithms that outperform existing traditional scheduling algorithms. 

5.3.3 Improved State-Based Scheduling Algorithms 

It might be tempting to assume that a scheduling algorithm that maximizes system 

throughput, such as SRSTF, should ideally maintain an average laxity of zero.  The idea 

is that tasks should barely meet their deadlines with no wasted execution time.  However, 

the variance of the workload can significantly affect the system performance of any 

scheduling algorithm, particularly under heavy system load.  Increased workload 

variability can cause tasks to take longer than expected to complete their execution and 

ultimately miss their deadline.  Therefore, unless the variability and intensity of a 

workload can be guaranteed to stay within a predetermined range, the previous results 

show an average laxity of approximately 18 seconds (out of a total average execution 

time of 3 minutes) is ideal in order to minimize the effects of variance. 

 Figure 58 shows a comparison of the number of met deadlines for SRSTF as the 

workload intensity increases, where the average system utilizations for each throughput 

curve (and intensity factor) are shown along the top of the figure.  Each throughput curve 

corresponds to different variability within the workload, ranging from relatively high 

variability (n=1, CV=1.00) to relatively high regularity (n=20, CV=0.223), where the 
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dotted circles indicate the maximum point of each curve.  Recall that an intensity factor 

(IF) of approximately 1.7 was previously identified as optimal in order to minimize the 

effects of variance on the system performance.  An IF of 1.7 in the graph corresponds to 

the point at which all of the curves are closest to each other according to the sum of their 

differences.  To the left of this point, increased regularity improves system performance 

but to the right, increased variability boosts performance.   

Under moderate to heavy system load, the increased performance due to high 

variability is significant.  At IF=2.0 for example, an additional 800 (approximately 18%) 

deadlines are met for the n=1 curve, compared to the next best performance of the n=5 

curve.  The number of met deadlines for IF=2.0 ranges from 4,770 (n=20 curve) to 5,825 

(n=1 curve), which is a difference of 1,055 deadlines (22% relative performance 

difference).  For light to moderate loads, the system performance is maximized by 

maintaining as much regularity in the workload as possible.  Under light load (i.e., 

IF=1.0), the increased performance due to high regularity leads to an additional 210 

(approximately 4%) deadlines met when comparing the baseline system (i.e., n=10 curve) 

to the more regular system (n=20 curve).  For IF=1.0, the number of met deadlines ranges 

from 4,629 (n=1 curve) to 5,546 (n=20 curve), which is a difference of 917 deadlines 

(20% relative performance difference).  Under moderate load (i.e., IF of approximately 

1.4), the increased performance due to high regularity leads to an additional 393 

(approximately 7%) deadlines met when comparing the baseline system to the more 

regular system.  Therefore, the performance gain of the more regular system (i.e., n=20) 

over the baseline system (i.e., n=10) is nearly doubled under moderate load, when 

compared to light load. 
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Figure 58: Throughput comparison and system utilizations for SRSTF 

 If knowledge of the workload variability is known, the information in Figure 58 can 

be used to determine a target range for system utilizations.   Recall that the baseline 

workload variability corresponds to the n=10 curve.  Therefore, the ideal target workload 

IF for this system is approximately 1.4, which will result in the maximum number of met 

deadlines.  In practice, the workload intensity is often not known in advance, or it may 

not remain bounded.  Thus, it is beneficial to develop scheduling strategies that 

dynamically adjust their behavior based on the current workload variability.   

Alternatively, maintaining a target system utilization range may be more practical.  

As the workload intensity increases, the system utilization will also increase due to the 

additional load.  Therefore, a workload with an intensity factor of 1.4 can become less 

intense and decrease towards an intensity factor of 1.3, or it can become more intense and 
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increase towards an intensity factor of 1.5.  If either of these intensity factors is reached, 

the number of met deadlines will be less than optimal.  Therefore, a target range for the 

system utilization can be determined a priori using MOSS.  Then, during execution, the 

system can take self-adjusting actions (e.g., admitting fewer or more tasks) to maintain its 

target utilization range.  Using MOSS, the target utilization range for a workload with 

intensity factor 1.4 is about 89% to 92%.  MOSS is used to create the list of system 

utilizations shown along the top of Figure 58, which allow target utilization ranges to be 

identified for different workload variability and various load conditions.  Maintaining 

such a target utilization range maximizes the percentage of met deadlines and at the same 

time, minimizes the effects of changes in workload variability. 

 A number of the previous results can be incorporated into an experimental hybrid 

scheduling algorithm that takes variance into account.  Such an algorithm can be 

designed to minimize the effects of variance regardless of system load, improving its 

overall performance and applicability to real-world systems.  In addition, the explicit 

incorporation of variance in scheduling decisions can help guide the development of 

state-based scheduling algorithms that either take advantage of the known system 

variance, or are independent of it.  Examining different strategies for incorporating the 

task laxity into scheduling decisions is also important.   

5.4 Prototype of the Next Version of MOSS 

Using MOSS, a number of experimental techniques for studying variance have been 

presented in the previous sections.  In light of the large volume of data gathered, some 

suggested improvements can be made to the MOSS tool.  This section provides a 

discussion of some of these improvements and includes screenshots of a prototype of the 



146 

next version of MOSS.  Although the user interface of MOSS has already been updated 

and is reflected in the screenshots in the following sections, the underlying 

implementation details are left for future work. 

 The main improvement to MOSS is the support for automatically running batches of 

related (but independent) simulations.  With the current version of MOSS, a user starts 

the MOSS application, configures the desired options, and waits for the simulation to 

complete and output data.  The user then repeats this process the desired number of times 

and calculates the average value of target performance metrics.  In this manner, the user 

does tedious work by repeatedly running the simulator to gather output data and 

computing the averages of performance metrics.  With the MOSS prototype, the 

simulator automatically runs batches of simulations that are related according to the 

criteria specified by the user.  The average, standard deviation, variance, coefficient of 

variation, and (90%, 95%, and 99%) confidence intervals are automatically computed for 

each performance metric.  This new functionality greatly improves the user “friendliness” 

of MOSS and makes it applicable to a wider range of usage. 

5.4.1 Main Dialog Window 

The main dialog window of the MOSS prototype is shown in Figure 59.  This window 

has been updated to make it easier for the user to run simulations by providing additional 

help when a manual configuration option is selected.  There are four types of manual 

configuration options provided.  Each one serves as a template that populates the 

subsequent fields and windows of MOSS with default values.   

A Basic configuration type is used to run a single simulation any desired number of 

repetitions.  This type of configuration is best suited for estimating performance metrics 
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for a single scheduling algorithm.  The Advanced configuration type is used to run a 

group of independent simulations any number of times.  This option is best suited for 

repeatedly evaluating a performance metric across a range of values.  The Algorithmic 

configuration type is designed for conducting sensitivity analysis experiments on 

scheduling algorithms.  With this simulation type, the user specifies criteria (in a 

subsequent dialog window) that control which algorithms are evaluated and how the 

parameters (if any) of each one are modified across simulations.  The last type, 

Workload, is used to conduct sensitivity analysis on workloads by systematically 

modifying the workload parameters specified by the user.  Each of these options 

enhances the usability of MOSS and reduces the time required in running groups of 

simulations. 

Support is also added for a recent files list so that a list of recently used configuration 

files is displayed for convenience.  Figure 60 illustrates the main dialog window with the 

configuration file options enabled (as opposed to the manual configuration options 

emphasized in Figure 59).  A user can browse for a configuration file not in the recent 

list, or select a recent filename from the list and load the file immediately.  An attribute 

named Workload Description has been added to the configuration file format that allows 

a detailed description of the workload to be saved inside the corresponding configuration 

file.  This feature makes it easier for a user to distinguish among similar workloads, 

particularly when conducting lengthy sensitivity analysis experiments involving multiple 

configuration files. 
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Figure 59: Prototype of main dialog window emphasizing manual 

configuration options 
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Figure 60: Prototype of main dialog window emphasizing the 

configuration file option 

5.4.2 Configuration File Editor 

Some small changes have been made to the interface of the configuration file editor in the 

form of larger buttons and additional support for inserting commonly used file commands 

(e.g., task stream, scheduler) quickly.  Figure 61 shows a screenshot of the updated 

configuration file editor with an example configuration displayed.  Notice that at the top 

of the configuration information, the workload description (as discussed in the previous 

section) is specified.  As with all parameters, the user can edit configuration information 

either in the file editor (if a file is loaded) or via the dialog windows provided by MOSS.   

In addition to parsing the current configuration, the user can check for errors (via the 

Check for Errors button) by using the interactive help tool.  When an error is found in the 
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current configuration, a help wizard suggests possible causes for the error and provides 

suggestions for making corrections.  This feature makes it easier for novice users to edit 

configuration files, which encourages a more thorough understanding of using and 

editing MOSS configuration files.  

 
Figure 61: Prototype of configuration file editor 

5.4.3 Task Stream Configuration 

Figure 62 illustrates the updated task stream configuration window.  At the top of the 

window, a field allows the user to modify the workload description.  The fields providing 

the configuration options for the arrival, service, and deadline process of each task stream 

have been redesigned to make it easier and more intuitive to adjust these parameters.  For 

each process type, time adjustment controls allow the user to easily increase or decrease 



151 

the appropriate time parameter by clicking the increase/decrease (i.e., + or -) buttons.  A 

step value controls the increment by which the time value is adjusted and is changed by 

clicking the left/right (i.e., < and >) buttons.  The equivalent number of seconds and 

hours is updated immediately when the time is adjusted. 

 For each type of process, the distribution type and number of stages are selected from 

dropdown lists.  If the selected distribution type has additional configuration parameters, 

the Configure button is enabled.  Clicking this button opens another configuration 

window that allows the user to specify additional settings for the given distribution.  For 

example, in Figure 62, the distribution type for the service process of Stream 8 is 

currently set to a hyperexponential distribution with four stages.  Clicking the Configure 

button allows the user to specify the rate parameter and branching probability for each of 

the hyperexponential distribution’s four stages.  (When the distribution type is changed in 

the dropdown list, all configurable parameters for the distribution are set to default 

values.)   The variance and CV resulting from the distribution settings are displayed 

below the distribution type.  The user can increase/decrease the number of stages by 

clicking the plus/minus buttons beside the number of stages.  This allows the user to 

immediately see the effect on the variance and CV of changing the number of stages. 

In the upper right of the window, a summary pane provides a graphical representation 

of various task stream details including relative arrival, service, and deadline behavior of 

tasks, as well as the relative task loads imposed on the system.  In Figure 62, the task 

details pane currently depicts the relative tasks loads using orange bars, where larger bars 

indicate greater relative load.  For example, task Stream 2 (S2) of the current 
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configuration imposes the greatest relative load on the system, followed by streams S3 

and S4, respectively.  A grey bar on the far right of the pane indicates the average load. 

The user can change the view of the details pane by clicking the left/right buttons on 

the upper right.  The update button (i.e., !) allows the user to toggle updating of the 

details pane on and off.  (When the user switches task streams or performs other 

operations quickly, the application window can flicker due to constant updating.)  

Clicking the left/right buttons of the details pane steps through the available panes, where 

each option displays a different set of task stream details.  For example, Figure 63 

illustrates the detail panes that show the inter-arrival times and arrival rates.  Similar 

detail panes (not shown) illustrate the relative nature of the service times and service 

rates.  Figure 64 illustrates the detail panes that show the deadline times and deadline 

rates.  Notice that the bar for Stream 8 (S8) is red instead of blue, because Stream 8 has 

an actual deadline process associated with it.  The deadline of each the remaining task 

streams is the next arrival, and thus the arrival is the deadline (i.e., these streams do not 

have a distinct deadline process). 

The purpose of the detail panes is to show the user, at a glance, the relative 

relationship among all of the task streams.  When several task streams are present, it is 

useful to have a common representation of a particular parameter for all of the task 

streams.  For example, if the user is adjusting the inter-arrival times of the task streams, 

the detail view can be switched to the inter-arrival times (or arrival rates) in order to 

immediately see the effect of any adjustments.  
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Figure 62: Prototype of task stream configuration window 

 
Figure 63: Portion of task details pane illustrating arrival behavior 

 
Figure 64: Portion of task details pane illustrating deadline behavior 
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5.4.4 Scheduler Configuration 

A portion of the scheduler configuration window is shown in Figure 65.  For some 

scheduling algorithms, configurable parameters have been added.  For the TLAX 

algorithm, for example, the user can specify a threshold value other than the default (i.e.,  

0.50).  New scheduling algorithms continue to be added and the options associated with 

each algorithm continue to increase. 

 At the bottom of the configuration window are options to run simulations based on a 

multi-processor environment.  Although the default setting is a single processor, the user 

can specify up to ten processors.  If desired, a different scheduling algorithm can be 

specified for each of the processors, which means the scheduler will use only the 

corresponding algorithm when assigning the given processor to a task.  For example, for 

a two-processor configuration, EDF might be specified for Processor 1 while LLF is 

specified for Processor 2.  In this case, all tasks assigned to Processor 1 are scheduled 

based on the EDF algorithm and all tasks assigned to Processor 2 are scheduled using the 

LLF algorithm.  These options allow the user to investigate the effects of running 

different scheduling algorithms concurrently.    
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Figure 65: Prototype of scheduler configuration window 

5.4.5 Simulator Configuration 

The updated simulator configuration window is shown in Figure 66.  As shown, a number 

of new features have been added that enhance the usefulness and effectiveness of MOSS.  

The simulation mode shown in the upper left corresponds to the manual configuration 

options shown in the main dialog window of MOSS (see Figure 59).  In Figure 66, the 

simulation mode is set to Workload analysis and, therefore, the Mode Settings pane 

displays options for configuring simulations for sensitivity analysis of the workload.   

When the simulation mode is changed, the Mode Settings pane is updated to display 

the available options for the selected simulation mode.  For example, when the simulation 

mode is set to Single simulation, the mode settings are hidden because no additional 

options are available for running only a single simulation.  For the Multiple repetitions 
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option, the only configurable parameter is the number of repetitions, which specifies the 

number of times the specified simulation should be run.  In this case, average metrics are 

automatically computed and output when the simulations finish.   

For the Algorithm analysis mode, the current configuration is used to run multiple 

simulations, where in each simulation, the only difference is the scheduling algorithm 

used.  A simulation can be run for each available scheduling algorithm, or the user can 

select which algorithms to use in the Mode Settings pane.  The user can also select the 

number of times to repeat each simulation by changing the number of repetitions.  As the 

number of repetitions increases, so too do the accuracy and confidence of the average 

metrics that are later output.  

For the Workload analysis mode, several settings are available in the Mode Settings 

pane, as shown in Figure 66.  The user must select the type of parameter to systematically 

change, which is a time parameter (i.e., inter-arrival time, service time, or deadline time), 

the number of (arrival, service, or deadline) stages, or the variance.  Note that for streams 

whose deadline process is the arrival process, changing the arrival process is equivalent 

to changing the deadline process.  In Figure 66, the inter-arrival time is selected as the 

type of parameter to change.  For the Stages/Variance option, the user is able to change 

the number of stages or the variance of any process modeled using an Erlang-k 

distribution.  The number of stages (only) can be varied for hypoexponential and 

hyperexponential distributions.  (Due to the complexity in estimating unknown 

distribution parameters, the options are limited to Erlang-k distributions.)   

The task streams that are to be changed are selected from a list displaying all of the 

available task streams.  Then the settings that specify the initial value and step parameters 
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are specified.  The options for the initial value are either the current value (i.e., time 

value, number of stages, or variance) as specified in the task configuration parameters, or 

a fixed value entered by the user.  This value either increases or decreases in each 

subsequent simulation, depending on the selection in the dropdown list.  In either case, 

the user specifies a step value in the form of either a percentage or a numeric value.  That 

is, if a time parameter or the variance is to be changed, the step is either a percentage or a 

decimal value.  If the number of stages is to be changed, the step is either a percentage or 

an integer value.  A stop value, specified as either a percentage or absolute value, 

specifies the maximum value for the parameter to be changed.  One final option allows 

the user to specify all of the selected streams, or any of the selected streams, as a further 

constraint on the stop criteria.  All of these options determine the number of simulations 

required, and each simulation is repeated the number of times specified by the number of 

repetitions. 

Figure 67 shows an example of the Mode Settings pane after the parameter type is 

changed from a time value to the Stages/Variance option.  The dropdown list for this 

option allows the user to systematically change the number of stages for the arrival, 

service, or deadline process of the available task streams.  Alternatively, the user can 

choose to directly modify the variance of the arrival, service, or deadline process 

(modeled by an Erlang-k distribution) of any task stream.  In Figure 67, the number of 

deadline stages is to be changed and, therefore, all task streams whose deadline process is 

not modeled by an Erlang-k distribution are disabled in the task stream list.  In the figure, 

streams 8 and 9 are disabled because each of their service processes is modeled by a 

hyperexponential distribution (see Figure 62).   
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Table 15 provides a summary of the available combinations of configuration 

parameters and distribution types that can be automatically changed using MOSS.  (Any 

possible combination can be specified for any task stream, but combinations other than 

those listed in the table require the user to edit configuration files.)  In the table, a 

checkmark indicates an option with full automation support and MOSS can automatically 

run a range of sensitivity analysis experiments based on settings provided by the user.  

The Dec entries mean the parameter can automatically be decreased only.  The remaining 

CF entries represent options that can be performed using MOSS, but require the use of 

additional configuration files.  

As shown in Table 15, the number of stages for hypoexponential and 

hyperexponential distributions can be systematically decreased in experiments.  MOSS 

achieves this by using the rate parameters already specified by the user (during task 

configuration) and distributing the remaining branching probability equally for each stage 

(this default weighting strategy can be changed by the user).  For example, suppose the 

user specifies a four-stage hypoexponential distribution for the service process of a task 

stream and specifies branching probabilities of 0.1, 0.2, 0.4, and 0.3 during the task 

configuration step.  During the simulation configuration step, the user can select options 

to decrease the number of service stages for the same task stream.  Suppose the user 

chooses to decrease the number of service stages by 1 stage in each simulation.  To 

determine the branching probabilities for the three-stage hypoexponential distribution, 

MOSS divides the remaining probability required (0.3 in this case) by the number of 

stages (i.e., 3), and therefore, uses branching probabilities of 0.2, 0.3, and 0.5 for stages 1, 

2, and 3, respectively.  That is, MOSS distributes the probability removed (by decreasing 
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the number of stages) equally across the branching probabilities of the remaining stages.  

Other options are provided, such as using equal branching probabilities for each stage, 

and the user can specify custom distribution settings using MOSS configuration files.  

Increasing the number of stages for a given distribution type requires an additional 

rate parameter and branching probability for each stage added.  Therefore, automatically 

increasing the number of stages in experiments using distributions other than Erlang-k 

distributions is not supported.  Similarly, due to the more complex nature (e.g., a wide 

range of CV values) of experiments involving Coxian distributions, support for 

automatically changing the number of stages or variance of these distributions is not 

supported from the user interface.  Lastly, systematic changing of the variance for 

distributions other than Erlang-k distributions is supported through configuration files 

only. 

Table 15: Summary of available parameter and distribution 

combinations automatically changed by MOSS  

 Distribution Type 

 
Parameter Automatically Changed 
Category Type 

Erlang-k 

H
ypo-exponential 

H
yper-exponential 

C
oxian 

Inter-arrival     
Service     

Time 

Deadline     
Arrival  Dec Dec CF 
Service  Dec Dec CF 

Stages 

Deadline  Dec Dec CF 
Arrival  CF CF CF 
Service  CF CF CF 

Variance 

Deadline  CF CF CF 
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To examine other complex groups of simulations, the user can run each group 

separately.  For example, the combination of an algorithm analysis and a workload 

analysis can be conducted by repeatedly running groups of workload analysis type 

simulations.  In this way, a scheduling algorithm is selected and then the workload 

analysis is automatically performed by MOSS.  After the simulations finish, the user can 

restart MOSS, select the next algorithm of interest, and repeat the same workload 

analysis.  The user is also able to specify complex workload configurations by using 

Erlang-k, hypoexponential, hyperexponential, and Coxian distributions to model the 

behavior of each task stream.  This is done from the task configuration window, or using 

the configuration file editor. 

The final enhancements to the simulator configuration are the Real-World Priority, 

Trace Options, and Output Mode.  The real-world priority is used to specify the priority 

of the MOSS application while it is running.  The default setting is Auto/Throttled, which 

means the application automatically adjusts its priority to achieve the best performance 

based on criteria such as available memory and the number of programs running.  The 

user can also set the priority level to Normal, Medium, or High priority.  Increasing the 

priority causes MOSS to run faster (in real-time) but requires additional resources.  The 

Trace Options affect which, if any, detailed log information is collected and later output.  

This information is most useful to those conducting advanced sensitivity analysis 

experiments using MOSS and wish to examine running statistics.  Finally, the Output 

Mode can be set to either Incremental or Bulk, depending on if the user prefers for MOSS 

to output simulation data immediately as it becomes available, or wait and output all data 

after the last simulation finishes, respectively.  The Enable compression option specifies 
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that MOSS should compress all the output data.  This option conserves space and is 

useful when a large volume of information is generated. 

 
Figure 66: Prototype of simulator configuration window 

 
Figure 67: Mode settings pane illustrating advanced options 



162 

5.4.6 Configuration Settings and Options 

The updates to the configuration settings window are shown in Figure 68.  The 

enhancements are related to snapshots, which are images of the detailed statistics (i.e., 

process counts, deadline percentages, and utilizations).  A snapshot combines all of these 

statistics for a given instant in (simulation) time and provides a summary of the entire 

system state at that instant.  A timestamp can be included in each image if desired, and 

the mode of recording snapshots can be set to Manual or Automatic.  In Manual mode, a 

snapshot is created and saved only when the user clicks the Snapshot! button from the 

Run Simulation window (see Figure 69).  In Automatic mode, snapshots are automatically 

created in regular intervals that depend on the snapshot count and disk size restrictions 

specified by the user.  Regardless of the snapshot record mode, the user can choose to 

output each snapshot as soon as it is created, or wait until all of the simulations have 

finished and output the snapshots in bulk.  Lastly, the File Format options shown at the 

bottom of Figure 68 allow the user to choose which file type(s) (i.e., image format) to use 

for saved snapshots. 
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Figure 68: Prototype of configuration settings window 

5.4.7 Running a Simulation 

The only significant changes to the run simulation window (Figure 69) are the addition of 

a second progress indicator and a button to open the directory containing output files.  

Because MOSS will run multiple groups of possibly length simulations, the overall 

simulation progress, as well as the progress of the current simulation, is displayed to keep 

the user informed.  During this time, the user can view statistics and estimates of 

performance metrics in real-time, via the Simulation Details windows.  The user can 

immediately view any available output by clicking the Open Output Directory button.  

This button opens an operating system window that allows the user to view any of the 

output files or spreadsheets that are available. 
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Figure 69: Prototype of run simulation dialog window 

 Collectively, the enhancements to MOSS provide great flexibility in conducting 

sensitivity analysis experiments and increase the practicality and usability of the tool.  

The next version of MOSS will automatically run batches of simulations and output 

summary metrics for each batch, allowing the user to focus on examining and interpreting 

results, rather than manually running simulations.  The hope is that future versions of 

MOSS will lead to its more widespread use and help guide research efforts in the study of 

variance in real-time environments.  

5.5 Chapter Summary 

In the previous discussion, the example system is kept simple for ease of discussion.  

However, complex systems can be studied using MOSS just as easily.  In particular, 

parameters such as mean inter-arrival, service, and deadline times, as well as number of 
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stages (i.e., variance) for each of these values, can be varied by holding all other 

parameters constant in order to generate sensitivity analysis results for comparison 

purposes.  Such analysis provides the primary effect of the parameter being varied.  Pairs 

of related (or unrelated) parameters can also be varied simultaneously in order to study 

secondary effects.  That is, two parameters can be varied at the same time in order to 

determine the causal relationship that exists, if any.  The myriad of possible secondary 

pairs of parameters prevents a full enumeration of all possibilities, but a representative 

sample can be tested and used to guide more focused studies in specific contexts.  The 

MOSS prototype discussed in the previous section will improve the MOSS user interface 

and enhance its functionality, making it more practical and applicable for a wider range 

of users.   

Using MOSS, many different types of sensitivity analysis experiments can be 

conducted.  In the next chapter, MOSS is used to conduct sensitivity analysis on 

traditional scheduling algorithms to compare their performance to that of a new 

scheduling algorithm, XLAX, that considers variance and reserve laxity values when 

making scheduling decisions.  Such hybrid scheduling algorithms take advantage of the 

variability within a workload and can outperform traditional algorithms.   

The prototype of MOSS discussed in this chapter illustrates several changes to the 

MOSS user interface that enhance its usability.  Editing workload configurations is made 

easier by the new configuration options and addition of a recent files list.  The task 

stream configuration is also enhanced by new adjustment controls, additional distribution 

types, and a graphical display summarizing the relative relationships among task streams.  
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A number of additional upgrades, such as support for multiple processors, further 

enhance the power of the MOSS tool. 

5.6 Research Contributions 

The contributions presented in this chapter include: 

• A discussion of the modeling framework and techniques used throughout various 

sensitivity analysis experiments using MOSS 

• Observations reinforcing the argument that variability affects system 

performance, which include 

o Variance has about a 15% performance impact on the percentage of met 

deadlines under light load conditions 

o As the system utilization increases, the average laxity decreases, and 

increased workload variability results in better performance 

o For each scheduling algorithm, there exists a preferred target utilization 

range, corresponding to a workload intensity factor, that maximizes the 

overall system performance, as well as minimize the effects of changes in 

workload variability  

• A presentation of the next version of MOSS and discussion of the enhanced 

interface and features via prototype screenshots 
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CHAPTER VI 

SENSITIVITY ANALYSIS OF RM, EDF, LLF, AND XLAX 

 

6.1 Introduction 

In this chapter, MOSS is used to compare the performance of traditional scheduling 

algorithms (i.e., RM, EDF, and LLF) to that of a proposed algorithm, XLAX, that 

considers variance as well as a threshold-based laxity value, when making scheduling 

decisions.  A simple but representative workload consisting of four task streams is used 

as the basis for sensitivity experiments.  By examining a subset of the possible 

variability-based techniques and laxity thresholds, the relative performance of XLAX can 

be compared to that of the traditional scheduling algorithms RM, EDF, and LLF. 

6.2 Workload Description 

A workload consisting of four task streams is used to facilitate the discussion.  For 

simplicity, the deadline for a given task is assumed to coincide with its next arrival.  A 

summary of task parameters is given in Table 16. 

Table 16: Task parameters for baseline system 

Task Stream 
Inter-arrival 
Time (min) 

Number of 
Arrival Stages 

Service Time 
(min) 

Number of 
Service Stages 

S0 30.0 10 4.0 10 
S1 30.0 2 4.0 2 
S2 20.0 10 8.0 10 
S3 20.0 2 8.0 2 
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As shown in Table 16, S0 and S1 have the same average inter-arrival and service 

times but differ with respect to the variance of their arrival and service processes.  S0 is 

characterized by arrival and service processes that have less variability than those of S1.  

Similarly, S2 and S3 have the same average inter-arrival and service times, but S2 

contains less variability within its arrival and service behavior compared to that of S3.  

Notice that relative to S2 and S3, streams S0 and S1 impose lighter load on the system 

because tasks in these streams arrive less often and require less service time than streams 

S2 and S3.  

The configuration presented in Table 16 serves as a moderately loaded baseline 

system.  An arrival rate intensity factor (IF) of 1.0 is used to describe this system.  Light 

and heavy system loads will also be discussed and correspond to intensity factors of 0.5 

and 1.5, respectively.  Under light load (IF=0.5), the arrival rates of all task streams are 

half of those found in the baseline system.  Similarly, the tasks in the heavily loaded 

system (IF=1.5) have arrival rates that are 1.5 times those found in the baseline system.  

For the given workload, the light, medium, and heavy loads correspond to average system 

utilizations of approximately 52%, 88%, and 99%, respectively.  Table 17 summarizes 

the workloads for light, moderate, and heavy system loads. 
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Table 17: Task parameters for light, medium, and heavy loads 

System 
Load 

Average 
System 
Utilization 

Task 
Stream 

Inter-arrival 
Time (min) 

# of 
Arrival 
Stages 

Service 
Time (min) 

# of 
Service 
Stages 

S0 60.0 10 4.0 10 
S1 60.0 2 4.0 2 
S2 40.0 10 8.0 10 

Light 
(IF=0.5) 

52% 

S3 40.0 2 8.0 2 
S0 30.0 10 4.0 10 
S1 30.0 2 4.0 2 
S2 20.0 10 8.0 10 

Medium  
(IF=1.0) 

88% 

S3 20.0 2 8.0 2 
S0 20.0 10 4.0 10 
S1 20.0 2 4.0 2 
S2 13.33 10 8.0 10 

Heavy 
(IF=1.5) 

99% 

S3 13.33 2 8.0 2 

       
6.3 The XLAX Algorithm 

Consider an experimental form of the LLF algorithm, named XLAX, that maintains x-

percentage of laxity for each task at any given time.  The current reserve laxity 

percentage ri is computed separately for each task whenever a new scheduling decision is 

made.  For a task ti, its current reserve laxity percentage ri is computed using the ratio of 

its remaining service time (Si) and the amount of time remaining until its deadline (Di), as 

shown in equation 1.  This notation simplifies the discussion of XLAX and does not 

affect the connotation associated with the term laxity.  For the remainder of the 

discussion, the term reserve laxity is used to loosely refer to a reserve laxity percentage.  

Table 18 provides a summary of the relationship between the absolute laxity16 and the 

corresponding reserve laxity percentage (ri) of a task ti. 

 

                                                 
16 Absolute laxity refers to the value of the remaining service time subtracted from the time until deadline, 
Di – Si, as opposed to the laxity ratio which is computed as the relative ratio (Di – Si) / Di. 
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Table 18: Relationship between absolute laxity and laxity ratio 

Relationship 
between Si 
and Di 

Sign of 
Laxity 
Value Value of ri Meaning 

Si < Di + (0, 1] ti has positive reserve laxity 
Si = Di 0 0 ti has no reserve laxity 
Si > Di - ( ∞− , 0) ti has negative reserve laxity 

    
From Table 18, a positive laxity value corresponds to a positive reserve laxity ratio of 

ri.  Under the proposed XLAX scheduling algorithm, if ri < x (and ri > 0) for a given task 

ti, then ti does not have the desired percentage of reserve laxity and could be given 

priority over other tasks whose reserve laxities are greater than x.  Variability can be 

taken into account so that, for example, the more variable tasks are given priority over 

tasks exhibiting more regularity.  In Table 18, laxity values that are zero or negative have 

a direct correlation to their corresponding laxity ratios.  That is, zero laxity corresponds to 

a reserve laxity of zero, and negative laxity corresponds to a negative reserve laxity.  

Because a task is expected to miss its deadline when it has negative laxity, priority can be 

given to the task with the largest variance.  The reasoning is that due to its larger 

variance, it is possible such a task could finish executing early and meet its deadline.  A 

task exhibiting low variance (i.e., high regularity) is more consistent and it will likely 

miss its deadline regardless if it is allocated the processor or not.  Depending on the 

system state, algorithms such as XLAX can dynamically adjust their scheduling decisions 

based on the variability of performance parameters, the relationship of task laxities, and 
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the changing system load.  To further investigate the XLAX algorithm, a sensitivity 

analysis is conducted in order to compare different variability methods and evaluate the 

importance of task laxities in determining their effect on scheduling decisions.  

6.4 Parameters for the XLAX Algorithm 

The key concept of XLAX is that the reserve laxity of a task eventually falls below a 

minimum value (i.e., threshold), distinguishing it from other tasks whose reserve laxities 

are still above the threshold value.  After dividing tasks into groups based on their reserve 

laxities, variability can be taken into account to further determine the optimal scheduling 

decision.  For example, tasks with less reserve laxity could be given priority over tasks 

having greater reserve laxity because the deadlines of the former are likely to occur 

sooner.  A group of tasks that all have similar amounts of reserve laxity can be further 

classified based on the variability of their parameters.  In this way, a positive threshold 

value is used to define a minimum percentage of reserve laxity that should be maintained 

for a given task.  Note that a single threshold value is currently used for all task streams, 

but each stream could just as easily use a different threshold value if desired.  At any 

instant, the reserve laxity of a task can be classified as either negative (N), below (B) the 

threshold, or above (A) the threshold.  Therefore, this method provides a means of 

assigning a task to one of three possible categories: N, B, or A.  Figure 70 illustrates this 

classification that uses the reserve laxity value of a task along with a threshold, t. For 

simplicity, threshold values are referred to as a percentage of the reserve laxity value.  
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Figure 70: Categories of reserve laxity for a task 

When the laxity of a task is negative, it is placed into the negative (N) group.  Tasks 

in group N are expected to miss their deadline because they are estimated to require more 

service time than the amount of time remaining before their deadline.  A task with 

positive reserve laxity is placed into either group A or B, depending on if its reserve 

laxity is above or below the given threshold value.  A task with reserve laxity above the 

given threshold is considered safer in that it still has enough laxity in reserve to meet its 

deadline.  Therefore, tasks with reserve laxities above the threshold are placed into group 

A.  If the laxity of a task falls below the threshold value, but is still positive, the task is 

expected to barely meet its deadline and is placed into group B.  Tasks in group B are 

presumed to be less safe than tasks in the group A because their deadlines are more 

quickly approaching.   

Using this classification technique, a target group of tasks can be identified from 

which a single task is selected to execute.  A number of techniques can be used to select a 

particular task from a given target group, but this dissertation focuses on three different 

methods.  The first (LV) method involves selecting the task with the least variability in its 

arrival behavior.  The second (HV) method involves selecting the task with the highest 

variability in its arrival behavior.  Note that methods involving the variability of the 

service or deadline behavior of tasks can also be used.  In our experiments, such methods 

yield similar results to those presented in this chapter and therefore, they are not 

discussed individually.  The last (AL) method involves selecting the task with the least 
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absolute (reserve) laxity.  For tasks in groups A or B, the AL method is equivalent to 

using the LLF algorithm within the group of tasks.  If LLF is used within the N group, 

priority is given to the task with the most negative laxity because the least laxity 

corresponds to the largest negative laxity value.  For tasks in the N group, the AL method 

instead selects the task having the least negative reserve laxity (i.e., the task with negative 

laxity closest to zero).  When negative laxity values are involved, LLF selects the task 

with the largest negative laxity value to execute, even though this task is more likely to 

miss its deadline when compared to other tasks that also have negative laxities.  The 

reasoning is that by selecting the task with the least negative laxity, the AL method 

increases the likelihood of selecting a task from the N group that meets its deadline.      

6.5 Performance of Traditional Algorithms 

For each of the system workloads, the performance of the traditional scheduling 

algorithms RM, EDF, and LLF is evaluated by using MOSS to conduct several groups of 

simulations.  Within each group, independent simulations produce estimates of desired 

performance metrics (e.g., percentage of met deadlines).  These metrics are then averaged 

across all simulations within a group in order to obtain approximate performance values 

of the RM, EDF, and LLF algorithms under different system loads.  Table 19 provides a 

summary of the performance of the traditional scheduling algorithms.  Under light load 

(i.e., IF=0.5), all three traditional algorithms perform similarly and only a small 

percentage of deadlines is missed.  Under medium load (i.e., IF=1.0), both EDF and LLF 

outperform RM, and EDF provides about a 4 percent improvement over LLF.  Under 

heavy load (i.e., IF=1.5), the performance difference is more significant and EDF (with 

46.88%) outperforms the next best (i.e., RM with 38.20%) by more than 20 percent. The 
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performance of these traditional scheduling algorithms will be used to evaluate the 

relative performance of the XLAX algorithm.  In particular, the performance of the EDF 

algorithm will serve as the primary comparison metric for evaluating the relative 

performance of the XLAX algorithm. 

Table 19: Performance summary for traditional algorithms 

  % Met Deadlines 
System Load Intensity Factor RM EDF LLF 
Light 0.5 95.46 96.46 96.36 
Medium 1.0 70.98 78.49 75.30 
Heavy 1.5 38.20 46.88 36.21 

     
6.6 Experimental Setup for Testing XLAX 

To evaluate the XLAX algorithm, four threshold values are used in the experiments—

25%, 50%, 75% and 90%.  Using a 50% threshold means that any task (with positive 

reserve laxity) having at least 50% laxity in reserve is placed into the A group, whereas a 

task with less than 50% reserve laxity is placed into the B group.  For each of these 

threshold values, the three XLAX variability methods (LV, HV, and AL) are tested to 

compare their relative performance under different system loads.  The experiments 

consider light, medium, and heavy load conditions.  Consider a lightly loaded system 

(i.e., IF=0.5) where tasks are expected to meet most of their deadlines.  At any instant, the 

system contains tasks from a combination of each of the four task streams described in 

the workload (see Table 16).  Because the deadline of a task coincides with its next 

arrival, a given task stream always has at most one task present in the system.  In 

addition, due to task completions before their next arrival, tasks from some streams are 

not always present.  Given that at least one task is available for scheduling, Table 20 lists 
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the possible situations (i.e., cases) that can arise based on the task groups described 

previously.   

Table 20: Possible combinations of task groups 

Case  Group N Group B Group A 
0    
1    
2    
3    
4    
5    
6    

    
The period of time after a task meets or misses its deadline, but before the next arrival 

of its associated task stream occurs, corresponds to an unschedulable time period for that 

stream.  Therefore, a task stream has a schedulable task present only if a task of that type 

is present (i.e., has arrived) but has not yet met or missed its deadline.  Referring to Table 

20, Case 0 corresponds to the situation where all schedulable tasks have reserve laxities 

greater than the current threshold value and are therefore, placed into group A.  Case 1 is 

similar and corresponds to a situation where all schedulable tasks have positive reserve 

laxities that are below the threshold value.  Case 2 represents the situation where all 

schedulable tasks have negative reserve laxities.  Beginning with case 3, there are 

schedulable tasks present in more than one task group.  For example, in case 3 all 

schedulable tasks are in either group B or group A.  Cases 4 and 5 are similar and 

correspond to situations where tasks are classified into either groups N and A, or groups 

N and B, respectively.  Finally, case 6 corresponds to the situation where at least one task 

is present from each of the three groups. 
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To systematically test the performance of the XLAX algorithm, simulations are first 

run assuming light load.  Initially, scheduling decisions are varied only when the system 

state corresponds to case 0.  For all other cases, a default scheduling algorithm of 

Processor Sharing (PS) is used.  After the results from applying the various techniques in 

case 0 have been tested, the best variability method can be identified for each threshold 

value.  These preferred methods are then fixed for case 0 and the testing progresses to 

case 1.  When testing the performance of techniques in case 1, scheduling decisions are 

varied only in case 1.  When a situation arises that corresponds to case 0, the best 

technique discovered in the previous step is used.  When a situation arises that 

corresponds to any case 2 through 6, the default PS algorithm is used.  Once the 

performance results are obtained for a given case, the best strategy for each threshold 

value is identified and fixed so that all subsequent decisions for that case are the best 

discovered thus far.  This step-wise process continues until optimal scheduling methods 

have been identified for all six cases.  As the study progresses through each of the cases, 

more information is discovered and incorporated into the overall scheduling algorithm.  

For example, when case 6 is tested, the best techniques for cases 0 through 5 have already 

been determined and fixed.  This series of simulations is referred to as the first iteration.  

A second iteration of simulations is later conducted and will be discussed separately. 

For cases 0 through 2, there is only one task group present and therefore, the choice 

of the task group is clear.   However, in cases 3 through 6, multiple groups of tasks are 

concurrently present and a decision must be made to determine which one of the task 

groups to select a task from for scheduling.  In the experiments, each group is tested 

individually to better evaluate the overall performance of the XLAX algorithm.  In case 
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3, for example, task groups A and B are always present for any given threshold value.  

Therefore, before one of the three variability methods (i.e., LV, HV, or AL) can be 

applied, one of the groups must be designated to select tasks from for scheduling.  In this 

case, a series of simulations is run in which tasks are always selected from group A.  

Then another series of simulations is run in which tasks are always selected from group B 

instead.  In this way, one group is essentially given priority over another group 

throughout the duration of the series of simulations. 

To obtain an estimate for a given performance metric, a set of simulations is run and 

the metric values from the set are averaged.  Each individual simulation is independent, 

and any given group of simulations is independent of other groups.  For a given workload 

type (i.e., light, medium, or heavy), some 15,000 simulations are run to obtain the 

comparison data for the first iteration of case testing.  Within a given iteration, the testing 

begins with case 0 and proceeds through case 6.   

6.7 Sensitivity Analysis Results from the First Iteration 

In this section, the results from the first iteration of sensitivity analysis experiments are 

discussed.  Results for each of the system workloads are discussed separately, followed 

by an overall summary for the entire iteration.  An experimental version of MOSS is used 

to conduct these experiments.   

6.7.1 Results for the System under Light Load 

Recall from the previous discussion that under light load, the EDF algorithm performs 

best among the traditional algorithms, meeting approximately 96.46% of overall 

deadlines.  Under light load, the system utilization is approximately 52% and the 

percentage of met deadlines is expected to be high.  Table 21 provides a summary of the 
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performance of XLAX for the system under light load.  As mentioned previously, priority 

is given to each task group separately in cases 3 through 6.  The performance of each of 

the three variability methods is given and the best option for each threshold, task group, 

and case is provided in Table 21. 
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Table 21: First iteration results for light load 

LIGHT LOAD 
IF=0.5 

(~52% Utilization) 

XLAX Method 
Best Performance 

for Threshold 

C
ase 

Threshold  

Priority to 
G

roup 

LV HV AL Method % Met  

B
est 

Perform
ance 

for C
ase 

25 A 94.63 95.94 96.41 AL 96.41  
50 A 94.52 95.71 96.28 AL 96.28  
75 A 94.56 95.69 96.10 AL 96.10  

0 

90 A 95.30 95.36 95.28 HV 95.36  
25 B 96.42 96.20 96.40 LV 96.42  
50 B 96.28 96.30 96.28 HV 96.30  
75 B 95.88 96.15 95.92 HV 96.15  

1 

90 B 95.08 95.64 95.69 AL 95.69  
25 N 96.37 96.43 96.17 HV 96.43  
50 N 96.45 96.30 96.24 LV 96.45  
75 N 95.96 96.13 96.06 HV 96.13  

2 

90 N 95.64 95.58 95.63 LV 95.64  
B 96.48 96.36 96.20 LV 96.48  25 
A 96.20 96.54 96.41 HV 96.54  
B 96.22 96.37 96.24 HV 96.37  50 
A 96.34 96.20 96.26 LV 96.34  
B 96.23 96.38 96.10 HV 96.38  75 
A 95.75 95.85 95.74 HV 95.85  
B 95.76 95.95 96.06 AL 96.06  

3 

90 
A 95.50 95.53 95.73 AL 95.73  
N 96.26 96.37 96.32 HV 96.37  25 
A 96.40 96.32 96.32 LV 96.40  
N 96.48 96.38 96.45 LV 96.48  50 
A 96.31 96.30 96.33 AL 96.33  
N 96.27 96.35 96.42 AL 96.42  75 
A 96.16 96.37 96.40 AL 96.40  
N 96.03 95.70 96.19 AL 96.19  

4 

90 
A 95.97 96.00 96.00 AL 96.00  
N 96.35 96.37 96.47 AL 96.47  25 
B 96.40 96.35 96.34 LV 96.40  
N 96.40 96.30 96.45 AL 96.45  50 
B 96.33 96.22 96.34 AL 96.34  
N 96.32 96.28 96.33 AL 96.33  75 
B 96.31 96.27 96.33 AL 96.33  
N 96.12 96.01 95.87 LV 96.12  

5 

90 
B 96.01 96.06 95.90 HV 96.06  
N 96.20 96.40 96.36 HV 96.40  
B 96.40 96.51 96.48 HV 96.51  

25 

A 96.25 96.19 96.39 AL 96.39  
N 96.35 96.35 96.10 HV 96.35  
B 96.35 96.30 96.32 LV 96.35  

50 

A 96.20 96.26 96.38 AL 96.38  
N 96.28 96.25 96.21 LV 96.28  
B 96.32 96.37 96.36 HV 96.37  

75 

A 96.12 96.45 96.06 HV 96.45  
N 96.09 95.83 96.24 AL 96.24  
B 95.99 95.78 95.94 LV 95.99  

6 

90 

A 95.97 96.12 96.01 HV 96.12  
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 From the data in Table 21, it is apparent that the performance remains comparable, 

regardless of the threshold value, variability method, or which group is given priority.  

That is, the percentage of met deadlines is approximately the same (i.e., around 96%) 

each time.  For a given threshold value, there is no clear advantage to using any particular 

one of the three variability methods (i.e., LV, HV, and AL) over another.  For all cases 

other than 2 and 4, a threshold value of 25% results in the best performance but further 

classification of the best approach is inconsistent from one case to another.  In general, 

there is no obvious performance improvement as the optimal decisions from earlier cases 

is incorporated.  Overall, it can be seen that under light load the performance of XLAX is 

perhaps slightly better, but at least comparable, to that of the traditional algorithms.  Note 

that under such light load, there is typically only one task to schedule, making the 

scheduling decision trivial.  Therefore, under light load, all scheduling algorithms are 

expected to be comparable. 

6.7.2 Results for the System under Medium Load 

Under medium load, the EDF algorithm again performs best among the traditional 

algorithms, meeting approximately 78.49% of overall deadlines.  Under medium load, the 

system utilization is approximately 88% and the percentage of met deadlines is expected 

to be less than that under light load.  Table 22 provides a summary of the performance of 

XLAX for the system under medium load.  In the early cases (i.e., cases 0 through 3), the 

performance of XLAX is comparable to that of EDF but marginally lower by about 2%.  

The reason for this is that the default algorithm, PS, is sub-optimal and it takes cases 0 

through 2 to eliminate PS from the analysis.  However, after case 6 is tested, XLAX 

meets 79.03% of overall deadlines, which is slightly better than EDF.   
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Table 22: First iteration results for medium load 

MEDIUM LOAD 
IF=1.0 

(~88% Utilization) 

XLAX Method 
Best Performance 

for Threshold 

C
ase 

Threshold  

Priority to 
G

roup 

LV HV AL Method % Met  

B
est 

Perform
ance 

for C
ase 

25 A 74.94 72.34 76.74 AL 76.74  
50 A 74.84 71.31 76.33 AL 76.33  
75 A 73.39 72.79 73.59 AL 73.59  

0 

90 A 73.14 73.15 73.04 HV 73.15  
25 B 76.91 76.74 76.61 LV 76.91  
50 B 76.42 76.80 76.24 HV 76.80  
75 B 74.98 73.27 74.06 LV 74.98  

1 

90 B 76.06 72.51 75.14 LV 76.06  
25 N 76.70 76.92 76.63 HV 76.92  
50 N 76.55 75.80 76.28 LV 76.55  
75 N 74.98 75.37 75.16 HV 75.37  

2 

90 N 76.58 76.07 76.30 LV 76.58  
B 74.84 75.14 75.03 HV 75.14  25 
A 77.70 78.00 78.44 AL 78.44  
B 74.70 74.53 75.13 AL 75.13  50 
A 76.83 77.02 77.89 AL 77.89  
B 70.54 70.20 69.81 LV 70.54  75 
A 77.83 77.66 77.98 AL 77.98  
B 75.71 72.21 74.36 LV 75.71  

3 

90 
A 76.86 76.87 77.13 AL 77.13  
N 78.41 78.49 78.74 AL 78.74  25 
A 78.69 78.65 78.75 AL 78.75  
N 76.86 76.82 76.77 LV 76.86  50 
A 78.21 78.22 78.18 HV 78.22  
N 77.70 77.84 77.85 AL 77.85  75 
A 78.17 78.09 78.07 LV 78.17  
N 76.72 77.01 76.97 HV 77.01  

4 

90 
A 76.97 77.08 76.96 HV 77.08  
N 78.45 78.94 78.99 AL 78.99  25 
B 78.91 78.70 78.91 LV 78.91  
N 78.03 78.35 78.06 HV 78.35  50 
B 78.14 78.18 77.95 HV 78.18  
N 77.98 78.07 77.80 HV 78.07  75 
B 77.97 78.14 78.25 AL 78.25  
N 77.22 77.04 76.76 LV 77.22  

5 

90 
B 76.88 77.07 77.28 AL 77.28  
N 78.83 78.37 78.97 AL 78.97  
B 78.70 79.03 78.83 HV 79.03  

25 

A 78.35 78.51 78.69 AL 78.69  
N 78.43 77.87 77.96 LV 78.43  
B 77.86 78.62 78.35 HV 78.62  

50 

A 78.05 78.52 78.30 HV 78.52  
N 78.01 77.59 77.97 LV 78.01  
B 78.20 77.88 78.18 LV 78.20  

75 

A 78.28 78.33 78.12 HV 78.33  
N 77.15 76.80 76.95 LV 77.15  
B 77.01 76.83 76.96 LV 77.01  

6 

90 

A 76.94 76.58 77.09 AL 77.09  
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 Under medium load, a 25% threshold appears to work best and except for case 6, the 

AL method appears to be preferable.  However, the particular task group to give priority 

to varies from one case to another and it is difficult to make any further claims for 

medium load.  Overall, the performance of XLAX is still comparable to that of EDF 

under medium load. 

 
6.7.3 Results for the System under Heavy Load 

Under heavy load, the EDF algorithm again performs best among the traditional 

algorithms, meeting approximately 46.88% of overall deadlines.  Under heavy load, the 

system utilization is near 100% and the percentage of met deadlines is expected to be 

significantly less than that under medium load.  Table 23 provides a summary of the 

performance of XLAX for the system under heavy load.  Here, even in the early cases, 

XLAX already outperforms EDF by about 4%.  After the maximum percentage of met 

deadlines is determined in case 6, XLAX is found to meet approximately 59% of overall 

deadlines, significantly outperforming EDF by about 26%.   

 Under heavy load, a 25% threshold works best for cases 0, 1, 2, and 4.  For these 

cases, the LV method is the best choice, except for case 2, where the AL method results 

in better performance.  For the cases 3, 5, and 6, a 50% threshold works best, but the 

choice of the best variability method is mixed because the AL, LV, and HV methods 

appear to be preferred for cases 3, 5, and 6, respectively.  For cases 3 through 6, the 

particular task group to give priority to A in all cases, except for case 5, where priority 

should instead be given to group B.  Thus, the results for heavy load are mixed but they 

provide good suggestions and motivation for the next iteration of testing. 
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Table 23: First iteration results for heavy load 

HEAVY LOAD 
IF=1.5 

(~99% Utilization) 

XLAX Method 
Best Performance 

for Threshold 

C
ase 

Threshold  

Priority to 
G

roup 

LV HV AL Method % Met  

B
est 

Perform
ance 

for C
ase 

25 A 48.55 45.12 45.08 LV 48.55  
50 A 44.89 44.78 45.35 AL 45.35  
75 A 43.64 43.16 43.59 LV 43.64  

0 

90 A 32.25 32.80 32.85 AL 32.85  
25 B 48.43 48.36 48.36 LV 48.43  
50 B 45.31 45.67 45.47 HV 45.67  
75 B 44.74 43.22 44.20 LV 44.74  

1 

90 B 40.44 33.45 36.23 LV 40.44  
25 N 48.28 48.40 48.54 AL 48.54  
50 N 45.81 45.65 45.42 LV 45.81  
75 N 44.37 44.51 44.59 AL 44.59  

2 

90 N 40.06 41.12 40.58 HV 41.12  
B 48.15 48.06 47.86 LV 48.15  25 
A 49.25 48.67 48.88 LV 49.25  
B 36.76 39.98 38.01 HV 39.98  50 
A 49.50 49.12 49.99 AL 49.99  
B 36.63 37.00 35.87 HV 37.00  75 
A 48.75 48.19 48.72 LV 48.75  
B 40.19 38.36 39.67 LV 40.19  

3 

90 
A 41.12 41.26 41.40 AL 41.40  
N 41.53 41.78 41.71 HV 41.78  25 
A 55.98 55.47 55.88 LV 55.98  
N 46.03 47.16 46.80 HV 47.16  50 
A 52.68 52.29 52.72 AL 52.72  
N 47.26 47.25 47.42 AL 47.42  75 
A 49.67 49.58 49.86 AL 49.86  
N 41.45 41.61 41.59 HV 41.61  

4 

90 
A 41.40 41.87 41.47 HV 41.87  
N 55.99 55.89 55.92 LV 55.99  25 
B 55.83 56.30 55.95 HV 56.30  
N 52.86 52.72 52.95 AL 52.95  50 
B 56.46 56.29 56.39 LV 56.46  
N 49.98 49.67 49.99 AL 49.99  75 
B 54.89 54.82 54.98 AL 54.98  
N 41.33 41.69 41.44 HV 41.69  

5 

90 
B 54.09 54.64 54.59 HV 54.64  
N 55.95 55.47 55.91 LV 55.95  
B 56.05 55.85 55.82 LV 56.05  

25 

A 56.02 56.32 56.54 AL 56.54  
N 51.57 51.62 51.46 HV 51.62  
B 57.57 57.55 57.84 AL 57.84  

50 

A 58.82 59.05 58.66 HV 59.05  
N 49.69 49.60 49.73 AL 49.73  
B 56.38 56.31 56.15 LV 56.38  

75 

A 57.42 57.45 57.40 HV 57.45  
N 53.98 54.12 53.87 HV 54.12  
B 55.34 55.21 55.33 LV 55.34  

6 

90 

A 55.21 55.41 55.53 AL 55.53  
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6.7.4 Summary of Results from the First Iteration 

To provide a more concise summary of the results from the first iteration, the data for 

individual task groups is removed.  Table 24 provides a summary of all the results from 

the first iteration of simulations.  For cases 3 through 6, the notation _X suffix of the 

variability method denotes the task group to which priority is given.  Overall, it can be 

seen that XLAX performs comparably to EDF for light and medium system load, but for 

heavy system load, there is a significant advantage in using the XLAX algorithm.     
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Table 24: Summary of results from first iteration 

LIGHT LOAD MEDIUM LOAD HEAVY LOAD 
IF=0.5 IF=1.0 IF=1.5 

~52% Overall Utilization ~88% Overall Utilization ~99% Overall Utilization 
Best Traditional:  
EDF (96.46%) 

Best Traditional:  
EDF (78.49%) 

Best Traditional:  
EDF (46.88%) 

C
ase 

Threshold 

B
est 

M
ethod 

%
 M

et 

C
ase 

Threshold 

B
est 

M
ethod 

%
 M

et 

C
ase 

Threshold 

B
est 

M
ethod 

%
 M

et 

25 AL 96.41 25 AL 76.74 25 LV 48.54 
50 AL 96.28 50 AL 76.33 50 AL 45.35 
75 AL 96.10 75 AL 73.59 75 LV 43.64 

0 

90 HV 95.34 

0 

90 HV 73.15 

0 

90 AL 32.85 
25 LV 96.42 25 LV 76.91 25 LV 48.43 
50 HV 96.30 50 HV 76.80 50 HV 45.67 
75 HV 96.15 75 LV 74.98 75 LV 44.74 

1 

90 AL 95.70 

1 

90 LV 76.06 

1 

90 LV 40.44 
25 HV 96.43 25 HV 76.92 25 AL 48.54 
50 LV 96.45 50 LV 76.55 50 LV 45.81 
75 HV 96.13 75 HV 75.37 75 AL 44.59 

2 

90 LV 95.64 

2 

90 LV 76.58 

2 

90 HV 41.12 
25 HV_A 96.54 25 AL_A 78.44 25 LV_A 49.25 
50 HV_B 96.37 50 AL_A 77.89 50 AL_A 49.99 
75 HV_B 96.40 75 AL_A 77.98 75 LV_A 48.75 

3 

90 AL_B 96.06 

3 

90 AL_A 77.13 

3 

90 AL_A 41.40 
25 LV_A 96.40 25 AL_A 78.75 25 LV_A 55.98 
50 LV_N 96.48 50 HV_A 78.22 50 AL_A 52.72 
75 AL_N 96.42 75 LV_A 78.17 75 AL_A 49.86 

4 

90 AL_N 96.19 

4 

90 HV_A 77.08 

4 

90 HV_A 41.87 
25 AL_N 96.47 25 AL_N 78.99 25 HV_B 56.30 
50 AL_N 96.45 50 HV_N 78.35 50 LV_B 56.46 
75 AL_N 96.33 75 AL_B 78.25 75 AL_B 54.98 

5 

90 LV_N 96.12 

5 

90 AL_B 77.28 

5 

90 HV_B 54.64 
25 HV_B 96.51 25 HV_B 79.03 25 AL_A 56.54 
50 AL_A 96.38 50 HV_B 78.62 50 HV_A 59.04 
75 HV_A 96.45 75 HV_A 78.33 75 HV_A 57.45 

6 

90 AL_N 96.24 

6 

90 LV_N 77.15 

6 

90 AL_A 55.53 

            
 When the first iteration of testing begins, in all cases except 0, the default PS 

algorithm is used to make scheduling decisions.  Therefore, the PS algorithm is not 

completely eliminated from the decision-making process until after the testing in case 6 

has been completed.  In some sense, only the metrics listed for case 6 provide a truly 
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accurate representation of the performance of XLAX.  Therefore, a second iteration of 

testing is done in which the default PS algorithm is never used. 

6.8 Sensitivity Analysis Results from the Second Iteration 

During the first iteration, the testing began with case 0 and in all other cases, the default 

PS algorithm is used.  In the second iteration, testing begins with case 0, just as with the 

first iteration.  However, none of the remaining cases uses the PS algorithm this time, but 

instead use the best decisions discovered during the first iteration.  The overall 

performance of XLAX is expected to continually improve as better information is 

discovered and incorporated into each case.  In particular, the results are expected to 

stabilize and provide a consistent summary for the best choices to make when using the 

XLAX algorithm.   

6.8.1 Results for the System under Light Load 

Under light load, the results from the second iteration are comparable to those from the 

first iteration.  Table 25 provides a summary of the performance results from the second 

iteration for the system under light load.  As with the first iteration, there is no clear 

decision as to the optimal variability method or to which task group priority should be 

given.  A threshold value of 25% appears to be the preferred choice overall, but cases 0, 

1, and 4 suggest that a larger threshold (e.g., 50% – 75%) should be used. 

 

 

 

 

 



187 

Table 25: Second iteration results for light load 

LIGHT LOAD 
IF=0.5 

(~52% Utilization) 

XLAX Method 
Best Performance 

for Threshold 

C
ase 

Threshold  

Priority to 
G

roup 

LV HV AL Method % Met  

B
est 

Perform
ance 

for C
ase 

25 A 94.81 95.81 96.13 AL 96.13  
50 A 94.80 95.78 96.33 AL 96.33  
75 A 94.69 95.59 96.35 AL 96.35  

0 

90 A 95.83 96.05 95.97 HV 96.05  
25 B 96.40 96.33 96.18 LV 96.40  
50 B 96.51 96.33 96.26 LV 96.51  
75 B 96.26 96.42 96.24 HV 96.42  

1 

90 B 95.94 96.16 96.21 AL 96.21  
25 N 96.38 96.47 96.31 HV 96.47  
50 N 96.40 96.35 96.29 LV 96.40  
75 N 96.34 96.24 96.38 AL 96.38  

2 

90 N 96.12 96.04 96.05 LV 96.12  
B 96.33 96.47 96.30 HV 96.47  25 
A 96.41 96.37 96.48 AL 96.48  
B 96.26 96.34 96.19 HV 96.34  50 
A 96.28 96.23 96.12 LV 96.28  
B 96.20 96.27 96.28 AL 96.28  75 
A 95.91 95.72 95.88 LV 95.91  
B 95.73 96.10 96.00 HV 96.10  

3 

90 
A 95.68 95.68 95.70 AL 95.70  
N 96.36 96.13 96.17 LV 96.36  25 
A 96.33 96.28 96.32 LV 96.33  
N 96.22 96.44 96.15 HV 96.44  50 
A 96.21 96.35 96.31 HV 96.35  
N 96.29 96.22 96.10 LV 96.29  75 
A 96.27 96.28 96.14 HV 96.28  
N 95.98 95.74 96.01 AL 96.01  

4 

90 
A 95.91 95.87 95.56 LV 95.91  
N 96.35 96.38 96.35 HV 96.38  25 
B 96.20 96.24 96.44 AL 96.44  
N 96.33 96.30 96.06 LV 96.33  50 
B 96.30 96.27 96.20 LV 96.30  
N 96.34 96.27 96.33 LV 96.34  75 
B 96.39 96.08 96.20 LV 96.39  
N 95.80 95.83 95.72 HV 95.83  

5 

90 
B 95.74 95.83 95.65 HV 95.83  
N 96.11 96.42 96.63 AL 96.63  
B 96.08 96.50 96.28 HV 96.50  

25 

A 96.28 96.19 96.33 AL 96.33  
N 96.35 96.24 96.46 AL 96.46  
B 96.35 96.22 96.42 AL 96.42  

50 

A 96.35 96.46 96.24 HV 96.46  
N 96.41 96.26 96.53 AL 96.53  
B 96.21 96.41 96.18 HV 96.41  

75 

A 96.33 96.19 96.40 AL 96.40  
N 95.85 95.93 95.73 HV 95.93  
B 96.04 95.82 95.76 LV 96.04  

6 

90 

A 95.75 95.81 95.77 HV 95.81  
 



188 

6.8.2 Results for the System under Medium Load 

Under medium load, the results from the second iteration are again comparable to those 

from the first iteration, in terms of overall performance.  Table 26 provides a summary of 

the performance results from the second iteration for the system under medium load.  

Contrary to the first iteration results, in this second iteration, the unanimous decision for 

the best threshold value appears to be 25%.   However, the choice of which variability 

method to use (i.e., LV, HV, or AL) is still not clear, as the preferred choices for each 

case vary.  It is also still difficult to make a uniform decision regarding which task group 

(A, B, or N) should receive priority.  In terms of overall performance, the percentage of 

met deadlines is comparable to the values found during the first iteration of testing. 
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Table 26: Second iteration results for medium load 

MEDIUM LOAD 
IF=1.0 

(~88% Utilization) 

XLAX Method 
Best Performance 

for Threshold 

C
ase 

Threshold  

Priority to 
G

roup 

LV HV AL Method % Met  

B
est 

Perform
ance 

for C
ase 

25 A 77.36 75.95 78.31 AL 78.31  
50 A 76.90 75.77 78.21 AL 78.21  
75 A 78.22 78.23 78.22 HV 78.23  

0 

90 A 76.79 76.94 76.84 HV 76.94  
25 B 78.82 78.61 78.58 LV 78.82  
50 B 78.30 78.21 78.43 AL 78.43  
75 B 78.06 76.53 77.08 LV 78.06  

1 

90 B 76.77 74.48 75.47 LV 76.77  
25 N 78.97 78.94 78.93 LV 78.97  
50 N 78.11 78.68 78.18 HV 78.68  
75 N 78.23 78.13 77.98 LV 78.23  

2 

90 N 76.94 76.95 76.92 HV 76.95  
B 75.30 75.35 75.25 HV 75.35  25 
A 78.65 78.40 79.04 AL 79.04  
B 74.56 74.39 74.92 AL 74.92  50 
A 77.82 77.70 78.16 AL 78.16  
B 66.65 68.27 67.19 HV 68.27  75 
A 77.78 78.27 78.17 HV 78.27  
B 75.72 71.11 73.87 LV 75.72  

3 

90 
A 76.69 76.54 76.95 AL 76.95  
N 78.59 78.26 78.53 LV 78.59  25 
A 78.65 78.86 78.76 HV 78.86  
N 76.85 77.06 76.82 HV 77.06  50 
A 78.04 78.38 78.26 HV 78.38  
N 77.78 78.05 77.73 HV 78.05  75 
A 78.24 77.88 77.71 LV 78.24  
N 76.83 77.02 77.27 AL 77.27  

4 

90 
A 76.76 77.03 77.22 AL 77.22  
N 78.65 78.28 78.75 AL 78.75  25 
B 78.77 78.59 78.62 LV 78.77  
N 78.32 78.36 77.96 HV 78.36  50 
B 78.26 78.21 78.62 AL 78.62  
N 78.01 77.59 77.99 LV 78.01  75 
B 78.09 78.09 78.08 HV 78.09  
N 76.82 77.48 76.93 HV 77.48  

5 

90 
B 77.41 76.67 76.79 LV 77.41  
N 78.53 78.63 78.72 AL 78.72  
B 78.62 78.31 78.81 AL 78.81  

25 

A 78.61 78.57 78.70 AL 78.70  
N 77.94 77.93 78.21 AL 78.21  
B 78.21 78.33 78.29 HV 78.33  

50 

A 78.46 78.10 78.12 LV 78.46  
N 77.96 77.43 77.65 LV 77.96  
B 77.68 78.18 78.04 HV 78.18  

75 

A 78.02 78.02 78.16 AL 78.16  
N 77.06 77.27 76.99 HV 77.27  
B 77.21 77.12 77.01 LV 77.21  

6 

90 

A 76.86 76.69 76.96 AL 76.96  
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6.8.3 Results for the System under Heavy Load 

Under heavy load, the results from the second iteration show that the performance of 

XLAX is more stable throughout the case testing, which is to be expected.  Table 27 

provides a summary of the performance results from the second iteration for the system 

under heavy load.  Contrary to the first iteration results, in this second iteration, the 

unanimous decision for the best threshold value is 50%.  Looking at the second iteration 

results for light, medium, and heavy loads, it appears that as the system utilization 

increases, so too does the optimal threshold value.  That is, as the system load increases, 

the amount of laxity held in reserve for each task should also be increased. 

From Table 27, it is apparent that priority should always be given to the “rightmost” 

task group in terms of laxity.  That is, task group A should always be given priority over 

task group B, whenever both groups are present.  Similarly, task group B should always 

be given priority over task group N, whenever both groups are present.  However, the 

choice of which variability method (i.e., LV, HV, or AL) to use overall is still unclear.  

Whenever group A is present, the best variability method to use is AL, except for case 0, 

where LV is the preferred method.  There are only two cases (i.e., cases 1 and 5) where 

group B is present and group A is not.  However, these two cases provide contradictory 

methods, with case 1 suggesting LV and case 5 suggesting HV.  The choice of variability 

methods will be addressed in the next section.   
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Table 27: Second iteration results for heavy load 

HEAVY LOAD 
IF=1.5 

(~99% Utilization) 

XLAX Method 
Best Performance 

for Threshold 

C
ase 

Threshold  

Priority to 
G

roup 

LV HV AL Method % Met  

B
est 

Perform
ance 

for C
ase 

25 A 56.36 56.32 54.80 LV 56.36  
50 A 58.72 58.57 58.68 LV 58.72  
75 A 57.58 57.55 57.65 AL 57.65  

0 

90 A 55.08 55.36 55.30 HV 55.36  
25 B 56.28 56.34 56.41 AL 56.41  
50 B 59.34 58.87 59.32 LV 59.34  
75 B 57.45 57.56 56.99 HV 57.56  

1 

90 B 55.26 54.61 51.50 LV 55.26  
25 N 56.10 56.16 56.52 AL 56.52  
50 N 59.30 59.55 59.79 AL 59.79  
75 N 56.95 57.23 57.39 AL 57.39  

2 

90 N 55.47 55.16 55.22 LV 55.47  
B 55.56 55.68 55.39 HV 55.68  25 
A 56.51 56.25 56.19 LV 56.51  
B 48.83 51.35 49.97 HV 51.35  50 
A 59.34 59.24 59.60 AL 59.60  
B 50.25 52.88 49.75 HV 52.88  75 
A 57.50 57.51 57.27 HV 57.51  
B 54.90 54.21 53.94 LV 54.90  

3 

90 
A 55.47 55.21 55.41 LV 55.47  
N 43.44 42.51 43.21 LV 43.44  25 
A 56.64 56.66 56.22 HV 56.66  
N 53.52 53.82 54.00 AL 54.00  50 
A 59.38 59.32 59.51 AL 59.51  
N 53.94 54.77 54.60 HV 54.77  75 
A 57.25 57.21 57.43 AL 57.43  
N 55.27 54.82 55.04 LV 55.27  

4 

90 
A 55.42 55.22 55.12 LV 55.42  
N 56.22 55.99 55.98 LV 56.22  25 
B 56.21 55.97 56.48 AL 56.48  
N 54.80 55.01 54.98 HV 55.01  50 
B 59.45 59.72 59.65 HV 59.72  
N 50.10 50.05 50.17 AL 50.17  75 
B 57.76 57.34 57.46 LV 57.76  
N 41.12 42.00 42.04 AL 42.04  

5 

90 
B 55.34 55.46 55.12 HV 55.46  
N 55.45 55.49 55.52 AL 55.52  
B 55.48 55.72 55.39 HV 55.72  

25 

A 56.24 56.51 56.37 HV 56.51  
N 52.09 52.04 52.12 AL 52.12  
B 58.16 58.16 58.26 AL 58.26  

50 

A 59.35 59.60 59.77 AL 59.77  
N 48.19 48.13 47.89 LV 48.19  
B 55.40 55.66 55.23 HV 55.66  

75 

A 57.51 57.63 57.58 HV 57.63  
N 53.87 53.91 53.84 HV 53.91  
B 55.30 54.97 54.95 LV 55.30  

6 

90 

A 55.27 55.38 55.45 AL 55.45  
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6.8.4 Summary of Results from the Second Iteration 

Table 28 provides a summary of all the results from the second iteration of testing.  As 

before, the data for individual task groups is not shown.  Examining this summary table, 

it is easier to identify the trends mentioned previously.  Under light or medium system 

load, there is little performance gain when using the XLAX algorithm.  However, under 

heavy system load, XLAX provides a significant performance improvement (i.e., about 

26%) over the best-performing traditional algorithm (i.e., EDF).   Using a 50% threshold 

and giving priority to the rightmost task group results in the overall best performance 

under heavy load.  This demonstrates that the optimal amount of reserve laxity is not 

zero, as might be expected.    
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Table 28: Summary of results from second iteration 

LIGHT LOAD MEDIUM LOAD HEAVY LOAD 
IF=0.5 IF=1.0 IF=1.5 

~52% Overall Utilization ~88% Overall Utilization ~99% Overall Utilization 
Best Traditional:  
EDF (96.46%) 

Best Traditional:  
EDF (78.49%) 

Best Traditional:  
EDF (46.88%) 

C
ase 

Threshold 

B
est 

M
ethod 

%
 M

et 

C
ase 

Threshold 

B
est 

M
ethod 

%
 M

et 

C
ase 

Threshold 

B
est 

M
ethod 

%
 M

et 

0 25 AL 96.13 0 25 AL 78.31 0 25 LV 56.36 
 50 AL 96.33  50 AL 78.21  50 LV 58.72 
 75 AL 96.35  75 HV 78.23  75 AL 57.65 
 90 HV 96.05  90 HV 76.94  90 HV 55.36 
1 25 LV 96.40 1 25 LV 78.82 1 25 AL 56.41 
 50 LV 96.51  50 AL 78.43  50 LV 59.34 
 75 HV 96.42  75 LV 78.06  75 HV 57.56 
 90 AL 96.21  90 LV 76.77  90 LV 55.26 
2 25 HV 96.47 2 25 LV 78.97 2 25 AL 56.52 
 50 LV 96.40  50 HV 78.68  50 AL 59.79 
 75 AL 96.38  75 LV 78.23  75 AL 57.39 
 90 LV 96.12  90 HV 76.95  90 LV 55.47 
3 25 AL_A 96.48 3 25 AL_A 79.04 3 25 LV_A 56.51 
 50 HV_B 96.34  50 AL_A 78.16  50 AL_A 59.60 
 75 AL_B 96.28  75 HV_A 78.27  75 HV_A 57.51 
 90 HV_B 96.10  90 AL_A 76.95  90 LV_A 55.47 
4 25 LV_N 96.36 4 25 HV_A 78.86 4 25 HV_A 56.64 
 50 HV_N 96.44  50 HV_A 78.38  50 AL_A 59.51 
 75 LV_N 96.29  75 LV_A 78.24  75 AL_A 57.43 
 90 AL_N 96.01  90 AL_N 77.27  90 LV_A 55.42 
5 25 AL_B 96.44 5 25 LV_B 78.77 5 25 AL_B 56.48 
 50 LV_N 96.33  50 AL_B 78.62  50 HV_B 59.72 
 75 LV_B 96.39  75 HV_B 78.09  75 LV_B 57.76 
 90 HV_N 95.83  90 HV_N 77.41  90 HV_B 55.46 
6 25 AL_N 96.63 6 25 AL_B 78.81 6 25 HV_B 55.72 
 50 HV_A 96.46  50 LV_A 78.46  50 AL_A 59.77 
 75 AL_N 96.53  75 HV_B 78.18  75 HV_A 57.63 
 90 LV_B 96.04  90 HV_N 77.27  90 AL_A 55.45 

            
Further inspection of the heavy-load results shows that priority should be given to 

tasks in group A, and that the preferred variability method is AL in this case.  This means 

that the task with the least laxity in group A is selected to execute, which is also by 

definition, the task with reserve laxity closest to the threshold value.  When no tasks in 
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group A are present, priority should be given to tasks in group B, and the best selection 

method is LV in case 1 and HV in case 5.  Although the performance of any of the three 

variability methods is similar, it can be hypothesized that either LV or HV (but not AL), 

is the best choice.  Under this hypothesis, it is best to avoid the AL method and, 

therefore, an easy method of doing this is by selecting the task with the most laxity.  A 

similar argument can be given for the situation where priority is given to tasks in group N 

(i.e., whenever no tasks in groups A or B are present).  This hypothesis is tested and 

further examined in the next section.   

All tasks in group A have excess positive laxity and, therefore, selecting the task with 

the least amount in excess is logical because this task is likely to be the next one to move 

from group A to group B.  Similarly, all tasks in group B are “critical” because they are 

running out of laxity.  When one of these tasks is selected to execute, it is again logical to 

select the task that has the best chance of meeting its deadline.  This corresponds to the 

task that has the most laxity to spare, which is the task with reserve laxity closest to the 

threshold value.  All tasks in group N have run out of laxity and will likely not meet their 

deadlines.  Of all the tasks in group N, the one most likely to meet its deadline is the task 

with the least amount of negative laxity.  Therefore, in all cases it seems the best overall 

strategy is to select the task with reserve laxity closest to the threshold value.  This 

provides the motivation and insight into the development of a new scheduling algorithm, 

TLAX, which is the subject of the next chapter. 

6.8.5 Summary of Simulation Results 

It has been demonstrated that system performance is improved by using the XLAX 

scheduling algorithm, particularly under heavy system load.  Table 29 provides a 
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summary of the performance of the traditional algorithms, as well as XLAX, under the 

different system loads.  Under light load, the performance of all four algorithms is 

approximately the same and there are few missed deadlines.  Under medium load, the 

performance of XLAX is comparable to that of EDF and both of these algorithms provide 

a performance boost over RM and LLF.  Under heavy load, XLAX significantly 

outperforms all of the traditional algorithms.  Figure 71 illustrates this performance boost 

graphically.  

Table 29: Performance summary of all algorithms 

  % Met Deadlines 
System Load Intensity Factor RM EDF LLF XLAX 
Light 0.5 95.46 96.46 96.36 96.63 
Medium 1.0 70.98 78.49 75.30 78.81 
Heavy 1.5 38.20 46.88 36.21 59.77 
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Figure 71: Graphical performance summary of all algorithms 
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Incorporating the information discovered in this sensitivity analysis about using 

XLAX under heavy load, a simple algorithm can be described that uses a threshold-based 

laxity.  This algorithm, TLAX (Threshold LAXity), uses the same classification 

technique of task groups as XLAX.  However, TLAX prioritizes the task groups by 

assigning the highest priority to tasks in group A, followed by tasks in group B.  The 

lowest priority is assigned to tasks in group N.  However, instead of using different 

variability-based techniques (i.e., LV, HV, or AL) to select a task from a given group, 

TLAX selects the task from within a target group that has the reserve laxity closest to the 

threshold value.  To select a task from group A, TLAX identifies the task having the least 

reserve laxity.  To select a task from group B, TLAX selects the task having the most 

reserve laxity because the laxity of this task is closest to the threshold value.  Similarly, to 

select a task from group N, the task with the most laxity is again chosen.  This simple 

strategy is easy to understand, easy to implement, and it summarizes the most important 

characteristics and decisions discovered from the sensitivity analysis presented in this 

chapter.   

As with XLAX, TLAX uses a threshold value to place tasks into groups.  TLAX then 

determines which task from the target group should be selected to execute.  The XLAX 

analysis indicates that a 50% threshold value results in the best performance under heavy 

system load.  To test the performance of TLAX, initial testing is done by using a 50% 

threshold value regardless of the system load.  TLAX-50 is used to schedule tasks under 

the same light, medium, and heavy system loads discussed previously.  The performance 

of TLAX-50 is found to be comparable to that of XLAX and is summarized in Table 30.  

Although TLAX-50 performs slightly worse than XLAX under all three system loads, it 
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is a generic threshold-laxity algorithm that is easily described and implemented.  Under 

light or medium load, the performance of TLAX-50 is comparable to that of the best 

traditional algorithm (i.e., EDF).  However, under heavy load, TLAX-50 significantly 

outperforms all of the traditional scheduling algorithms by about 26%.  The performance 

of TLAX will be further investigated in the next chapter. 

Table 30: Performance summary of the TLAX algorithm 

  % Met Deadlines 
System Load Intensity Factor RM EDF LLF XLAX TLAX-50 
Light 0.5 95.46 96.46 96.36 96.63 96.32 
Medium 1.0 70.98 78.49 75.30 78.81 78.47 
Heavy 1.5 38.20 46.88 36.21 59.77 59.37 

       
6.9 Chapter Summary 

The results from the sensitivity analysis experiments conducted using MOSS are both 

interesting and instrumental in the comparison of scheduling algorithm performance and 

the development of improved algorithms.   The analysis of the XLAX algorithm provides 

key insights into the best variability method to use and how to select tasks from within a 

common group.  By summarizing the key findings regarding the performance of XLAX, 

a new algorithm, TLAX, is developed that is easier to understand and simpler to 

implement.  TLAX performs comparably to the traditional scheduling algorithms (i.e., 

RM, EDF, and LLF) under light or medium load, but provides a significant performance 

boost under heavy system load.  The performance of TLAX using a 50% threshold value 

shows promise for further analysis and study of such state-based algorithms, particularly 

under heavy system load.  The TLAX algorithm will be studied in detail in the next 

chapter. 
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6.10 Research Contributions 

The contributions presented in this chapter include: 

• Evaluating and comparing the performance of traditional scheduling algorithms 

with an emphasis on the effects of variability 

• Illustrating that the effects of variability are load-dependent 

• Demonstrating that as the system utilization increases, the optimal threshold value 

for XLAX/TLAX also increases 

• Introducing and developing the novel XLAX and TLAX algorithms, which are 

robust and can outperform the traditional algorithms 
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CHAPTER VII 

THE TLAX SCHEDULING ALGORITHM 

 

7.1 The TLAX Algorithm 

The TLAX (Threshold LAXity) algorithm is derived from the sensitivity analysis results 

of XLAX.  Like XLAX, TLAX uses a threshold-based laxity value to place tasks into one 

of three possible groups: N, B, or A.  Tasks in group A all have positive reserve laxities 

above the given threshold value and are assigned the highest priority.  Tasks in group B 

all have positive reserve laxities (below the threshold value) and are assigned the next-

highest priority.  Finally, tasks in group N all have negative reserve laxities and are 

assigned the lowest priority.  TLAX differs from XLAX in that TLAX selects a task from 

within a group by identifying the task with reserve laxity closest to the threshold value.  

Therefore, from group A, TLAX selects the task with the least positive reserve laxity.  

From group B, TLAX selects the task with the most positive reserve laxity.  Finally, from 

group N, TLAX selects the task with the least negative reserve laxity.  Although this 

technique is simple, it has proven to be a powerful and effective scheduling strategy, 

particularly under heavy system load.  The concept of a threshold-based laxity technique 

is a novel approach to task scheduling in real-time systems.  In this chapter, sensitivity 

analysis is conducted on the TLAX algorithm and its performance is evaluated and 

compared to that of the traditional scheduling algorithms (i.e., RM, EDF, and LLF).  

Results show that TLAX outperforms the traditional scheduling algorithms under heavy 
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load situations, and that it is robust in that it is insensitive to changes in workload 

variability. 

7.2 Performance Comparison of TLAX 

The workload presented earlier consisting of four task streams is again used as a basis for 

the sensitivity analysis.  This workload is reproduced in Table 31 for convenience.  As 

shown in the table, S0 and S1 have the same average inter-arrival and service times for 

each system load condition.  However, stream S0 exhibits more regularity in both its 

arrival and service processes when compared to those of S1.  Similarly, S2 and S3 share 

the same average arrival and service parameters, but these values differ from those of S0 

and S1.  That is, streams S2 and S3 impose more relative load on the system due to their 

higher service requirements and lower inter-arrival times, when compared to S0 and S1.   

Table 31: Workload parameters for light, medium, and heavy loads 

System Load 
Task 
Stream 

Inter-arrival 
Time (min) 

Number of 
Arrival 
Stages 

Service Time 
(min) 

Number of 
Service Stages 

S0 60.0 10 4.0 10 
S1 60.0 2 4.0 2 
S2 40.0 10 8.0 10 

Light 
(IF=0.5) 

S3 40.0 2 8.0 2 
S0 30.0 10 4.0 10 
S1 30.0 2 4.0 2 
S2 20.0 10 8.0 10 

Medium  
(IF=1.0) 

S3 20.0 2 8.0 2 
S0 20.0 10 4.0 10 
S1 20.0 2 4.0 2 
S2 13.33 10 8.0 10 

Heavy 
(IF=1.5) 

S3 13.33 2 8.0 2 
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 Using MOSS, the performance of the traditional algorithms RM, EDF, and LLF can 

easily be compared to that of TLAX (using a 50% threshold value) under each of the 

three system loads.  A summary of the results is shown in Figure 72.  Under light load, all 

three algorithms exhibit similar performance, but under medium load, EDF and TLAX-

50 provide a modest (i.e., 1% – 10%) performance improvement over RM and LLF.  A 

significant performance increase occurs under heavy load, where TLAX-50 outperforms 

EDF by approximately 26%, and outperforms LLF and RM by 54% and 63%, 

respectively. 
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Figure 72: Performance summary of RM, EDF, LLF, and TLAX 

7.3 Sensitivity Analysis of the Threshold Value 

The XLAX analysis shows that a 50% threshold value provides significantly improved 

overall performance under heavy load, while maintaining performance under medium 

and light load that is comparable to that of the best traditional scheduling algorithm (i.e., 

EDF).  To further investigate the threshold value, a sensitivity analysis is conducted to 

determine the optimal threshold value for light, medium, and heavy load conditions.    
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The results from the workloads operating under light, medium, and heavy system loads 

will be discussed first, followed by a more general discussion of the results from 

intermediate system loads.  Note that TLAX-0 (i.e., when the threshold is zero) 

corresponds to Least Positive Laxity First, where the task with the least amount of 

positive laxity is selected is execute. 

7.3.1 Analysis under Light Load 

Under light load, few deadlines are missed by any of the scheduling algorithms, as shown 

in Figure 72.  These results are expected because there is little contention for the 

processor under light load.  Figure 73 provides a comparison of the percentage of 

deadlines met by TLAX for threshold values ranging from 0.0 to 0.70. As seen in the 

figure, the threshold value used by TLAX has little impact on the overall performance of 

the algorithm under light load.  The most significant change occurs at a threshold value of 

approximately 0.62, but even this change is small.  In addition, small variations in results 

are expected when conducting simulation experiments.   
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Figure 73: TLAX Threshold comparison for light load 

7.3.2 Analysis under Medium Load 

Under medium load, the performance of TLAX is more sensitive to changes in the 

threshold value when compared to that of light load.  Figure 74 summarizes the 

performance of TLAX under medium load.  From the graph, a threshold value less than 

about 20% results in approximately the same overall performance (i.e., about 75% met 

deadlines).  After the boost in performance at a threshold value of about 25%, any 

threshold value in the range of approximately 25% – 60% results in comparable 

performance.  

 Figure 75 provides more detail by presenting the sensitivity of individual task streams 

within the workload, where the bold line indicates the overall system performance shown 

in Figure 74.  Two trends are apparent in the performance curves of the individual task 

streams.  One trend occurs at a threshold of approximately 20%, while the second occurs 

at a threshold of about 60%.  (These trends are likely due to the discrete nature of the 
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number of stages and the specific task parameters.)  Both of these trends coincide with 

the trends seen in the overall performance curve discussed previously (i.e., Figure 74).  

The trend that occurs at the 20% threshold shows that the performance of each task 

stream except S3 improves as a result of using a larger threshold value.  The trend that 

occurs at the 60% threshold shows that the performance of streams S0 and S1 improve 

for larger threshold values.  At the 60% threshold, the performance of streams S2 and S3 

decreases.  Afterwards, the performance of S3 begins to slowly improve as the threshold 

increases, while the performance of S2 continues to decrease for larger threshold values.  

In general, as the threshold value increases across the graph, the performance of S0 and 

S1 improve, while that of S2 decreases.  The performance of S3 decreases suddenly at the 

20% threshold and then monotonically increases until the 60% threshold is reached, 

where its performance again drops and begins increasing.  From among the two streams 

that impose lighter relative load on the system (i.e., S0 and S1), the performance of the 

more variable stream (i.e., S1) improves the most.  However, from among the two 

streams that impose heavier relative load on the system (i.e., S2 and S3), the performance 

of the more regular stream (i.e., S2) suffers the most.  This graph demonstrates the 

dynamic nature of the workload and highlights the complex interactions that can occur 

among different streams.  This reiterates the idea that the performance of individual task 

streams impacts the performance of other streams.     
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Figure 74: TLAX threshold comparison for medium load 
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Figure 75: Detailed TLAX threshold comparison for medium load 



206 

7.3.3 Analysis under Heavy Load 

Under heavy load, the overall performance is quite sensitive to changes in the threshold 

value.  Figure 76 illustrates the change in performance as the threshold value increases.  

Notice that even for smaller threshold values where less laxity is held in reserve, it is 

advantageous to use a larger threshold value.  For example, increasing the threshold value 

from 20% to 30% provides a relative performance increase of nearly 4% in the overall 

percentage of met deadlines.  Overall, the performance improvement of using a larger 

threshold value in the range of 40% – 50% is apparent under heavy load, and provides a 

relative performance increase of about 13%. 

 Figure 77 summarizes the performance results for individual task streams.  It is 

apparent that the task streams influence each others performance for threshold values less 

than about 40%.  Aside from the interaction between S2 and S3 at about a 50% threshold, 

the performance of each task stream stabilizes for threshold values greater than 40%.  

The graph also shows that for threshold values greater than 50%, the performance of S3 

(a relatively variable stream) continues to increase, while the performance of S2 (a 

relatively regular stream) decreases.  This is likely a reflection of the workload 

variability, where increased variability generally boosts performance under heavy load, 

while increased regularity generally degrades performance.  From the figure, it is evident 

that the best overall performance occurs when using a threshold value in the range 40% – 

60%.  Note that the fluctuation of values (i.e., jitter) seen in the figures in this chapter is 

typical in such simulation studies.  An analytical study is presented in the next chapter 

that, while more limited in scope, removes the simulation jitter and validates these 

simulation findings. 
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Figure 76: TLAX threshold comparison for heavy load 
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Figure 77: Detailed TLAX threshold comparison for heavy load 
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7.4 Evaluating Additional System Loads 

In addition to light, medium, and heavy system loads, a number of additional loads are 

considered in order to span the gap between light and medium loads, and between 

medium and heavy loads.  The intermediate loads between light and medium correspond 

to intensity factors ranging from 0.6 to 0.9.  Similarly, the intermediate loads between 

medium and heavy correspond to intensity factors ranging from 1.1 to 1.4.  For each load, 

TLAX is again evaluated using a range of threshold values in order to determine the 

preferred threshold for a given system load.  For each intensity factor (i.e., system load), 

the best found threshold value (i.e., the one that produces the maximum percentage of 

met deadlines) is identified.  Figure 78 shows a plot of the preferred threshold value as a 

function of the average system utilization.  A linear (dashed) best-fit line is shown in 

addition to the data curve.  As shown in the figure, the value of the best-found threshold 

increases as the system utilization increases.  Increased utilization corresponds to heavier 

system load and therefore, more laxity should be held in reserve to maximize 

performance.  Recall from the XLAX analysis (see Table 28 in Section 6.8.4) that a 50% 

threshold value results in the best overall system performance across various system 

loads.  Additional support for this finding is seen in Figure 78, where the performance 

gain under heavier loads is maximized by using a 50% threshold.   
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Figure 78: Preferred TLAX threshold values as a function of utilization 

Figure 78 demonstrates a data curve that follows a varying pattern that generally 

increases from left to right, as the system utilization increases.  As mentioned previously, 

this jitter is expected, due to the inherent randomness (e.g., random number generation) 

embedded into the simulation results.  That is, in a series of simulations, it is expected to 

obtain values that are above, as well as below, the actual/correct values.  Thus, an 

average of a set of metrics is used as an approximation for the actual/correct value.  The 

linear best fit provides a reasonable approximation of the optimum threshold value as a 

function of the system utilization.  The linear equation is denoted f(U), where U 

represents the system utilization.  Using a known utilization level as input, an estimate of 

the best threshold value for TLAX can be obtained using the approximation function 

f(U).  Figure 79 shows the TLAX algorithm performance comparison for different system 

utilizations.  The performance of TLAX-50, TLAX-f(U), and the traditional scheduling 

algorithms are shown.  For system utilizations under about 83%, there is little or no 
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performance gain using the TLAX algorithm when compared to the performance of EDF.  

However, for heavier loads, TLAX begins to outperform all of the traditional scheduling 

algorithms.  The biggest performance boost is seen under the heaviest system loads, 

where the utilization approaches 100%.  Under these conditions, both TLAX-50 and 

TLAX-f(U) outperform the next best algorithm (i.e., EDF) by about 26%.  Notice that the 

performance of TLAX-f(U) is nearly identical to that of TLAX-50, regardless of the 

system utilization.  This suggests that using TLAX with a 50% threshold provides a good 

tradeoff between necessary overhead involved with evaluating and maintaining different 

load data, and maximizing the overall system performance.  That is, in systems where it 

may not be practical to implement TLAX with a dynamic threshold, a good alternative is 

to fix the TLAX threshold value at 50%. 
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Figure 79: Performance comparison of algorithms for various system loads 
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As expected, as the system utilization increases, the overall percentage of met 

deadlines decreases due to increased load.  However, the trend of any individual task 

stream does not necessarily follow this same trend, particularly under heavy load.  Figure 

80 shows a comparison of the percentage of met deadlines of the various task streams as 

the system utilization increases.  For utilizations under 90%, the trend of each task stream 

follows that of the overall percentage of met deadlines (i.e., decreasing as a function of 

the system load).  However, for utilizations above 90%, this trend does not hold.  For 

example, the percentage of met deadlines for S1 increases for utilizations ranging from 

90% to 95%.  This effect is presumably the result of the relatively high variability of S1, 

where its variable behavior allows it to meet additional deadlines under increased load 

conditions.  The effect of increased variability boosting system performance in heavy 

load conditions has been noted in related work [25].  Streams S0 and S3 also exhibit 

increased met deadlines within the 90% – 95% utilization range.  While the performance 

of both S2 and S3 decreases significantly, that of S2 decreases suddenly when the 

utilization reaches about 90%.  This effect is again attributed to the relatively high 

regularity of S2 under heavy load.  Overall, these results indicate that individual task 

streams can influence each others performance and do not necessarily follow the same 

trend as the overall performance.  For utilizations higher than about 92%, the emphasis 

shifts from shorter tasks (i.e., tasks with smaller service requirements) to tasks that are 

more regular.  Therefore, workload variability is particularly important because task 

streams with different variability characteristics can influence the performance of other 

task streams, even those exhibiting very regular behavior.  
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Figure 80: TLAX performance comparison for individual task streams 

7.5 Evaluating Different Workloads 

The previous discussion focuses on a single workload consisting of four task streams that 

differ in their performance characteristics.  Although various system loads have been 

evaluated, no changes to the actual workload have been considered.  In this section, five 

different, but related, workloads are considered.  Among these workloads, the workload 

discussed previously will be referred to as Workload 3 (W3) because it corresponds to the 

middle of a workload spectrum.  W3 consists of two task streams S0 and S1 that exhibit 

the same average arrival and service characteristics, but S0 is regular whereas S1 exhibits 

variability.  Similarly, streams S2 and S3 exhibit the same average characteristics but S2 

is regular compared to the variable S3 stream.  Therefore, the workload discussed 

throughout this chapter (i.e., Workload 3) consists of two regular streams (i.e., S0 and S2) 

and two variable streams (i.e., S1 and S3).  Two of the streams (i.e., S0 and S1) impose 

less relative load on the system, whereas the other two streams (i.e., S2 and S3) impose 
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more relative load on the system.  A spectrum of related workloads can be constructed by 

modifying the composition of the task streams in each workload.  Figure 81 illustrates 

this spectrum of workloads that range from regular to variable.  On the left end of the 

spectrum, Workload 1 consists of four identical tasks, each of which exhibits high 

regularity.  On the opposite end of the spectrum, Workload 5 consists of four identical 

streams as well, each of which exhibit high variability.  Using combinations of these task 

streams provides a spectrum of workloads ranging in variability, regularity, and relative 

system load.  Just as different load conditions were imposed on Workload 3, light, 

medium, and heavy load conditions can be imposed on each of these five workloads.  

Note that these load conditions are relative to each workload and a particular utilization 

(e.g., under light load) for one workload does not necessarily correspond to the same 

utilization in a different workload. Therefore, the meaning of light, medium, and heavy 

are relative to each other within the same workload.  Table 32 summarizes the 

characteristics for each of these workloads, assuming relatively moderate load conditions. 

 
Figure 81: Workload spectrum 
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 Table 32: Parameters for task streams along the workload spectrum 

  Workload Parameters 

Workload Task Stream(s) 
Inter-arrival 
Time (min) 

Number of 
Arrival/Service 
Stages 

Service 
Time (min) 

W1 S0, S1, S2, S3 30.00 10 4.00 
S0, S1, S2 30.00 10 4.00 W2 
S3 20.00 2 8.00 
S0 30.00 10 4.00 
S1 30.00 2 4.00 
S2 20.00 10 8.00 

W3 

S3 20.00 2 8.00 
S0 30.00 10 4.00 W4 
S1, S2, S3 20.00 2 8.00 

W5 S0, S1, S2, S3 20.00 2 8.00 

     
Workload 1 contains high regularity but imposes relatively light load on the system.  

This results in light, medium, and heavy loads that correspond to system utilizations of 

27%, 53%, and 80%, respectively.  Figure 82 provides a performance comparison for 

each algorithm under the three different system loads for Workload 1.  For all three load 

conditions, the performance of EDF, LLF, and TLAX-50 is comparable with little 

difference.  The performance of RM at higher system utilizations is somewhat lower. 
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Figure 82: Performance summary for Workload 1 

For Workload 2, the traditional algorithms outperform TLAX-50 under both the 

medium and heavy load conditions by about 1%, as shown in Figure 83.  This behavior is 

similar to that seen throughout this chapter when discussing Workload 3.  Under light 

load conditions, TLAX is comparable to the traditional algorithms, with less than 1% 

difference among all the algorithms.   
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Figure 83: Performance summary for Workload 2 

Workload 3 is the driving example discussed throughout this chapter but the resulting 

performance data is shown again in Figure 84.  For the light and moderate load 

conditions of this workload, TLAX performs comparably to the best traditional 

algorithm, EDF.  However, for a utilization of 99%, TLAX outperforms the traditional 

scheduling algorithms. 
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Figure 84: Performance summary for Workload 3 

In Workload 4, medium and heavy load conditions correspond to higher system 

utilizations when compared to the medium and heavy load conditions of the first two 

workloads (i.e., Workload 1 and Workload 2).  The performance comparison for 

Workload 4 is shown in Figure 85.  Under light load (i.e., 61% utilization), the 

performance of all the algorithms is comparable.  However, TLAX outperforms the 

traditional algorithms under the medium and heavy load conditions.  Under medium load 

(i.e., 91% utilization), TLAX outperforms EDF by about 5%.  Under heavy load (i.e., 

98% utilization), TLAX outperforms RM by 36%, EDF by 13%, and LLF by 50%.  
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Figure 85: Performance summary for Workload 4 

The results for Workload 5 are shown in Figure 86 and are similar to those observed 

for Workload 4.  For the light load situation, EDF outperforms TLAX-50 by about 1%.  

For the medium and heavy system load conditions, TLAX-50 outperforms all of the 

traditional algorithms by about 9% in each case.  From the results shown in Figures 84, 

85, and 86, TLAX performs relatively better for workloads that are more diverse (i.e., 

workloads where the task streams are not as uniform).  That is, from Workload 3 to 

Workload 5, the diversity decreases (and uniformity increases), as illustrated previously 

in Figure 81.  Among these three workloads (i.e., Workload 3, Workload 4, and 

Workload 5), the relative performance of TLAX is best for Workload 3, slightly worse 

for Workload 4, and worst for Workload 5.  This suggests the performance of TLAX 

improves as the diversity of the workload increases, suggesting it is a robust scheduling 

algorithm. 
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Figure 86: Performance summary for Workload 5 

 Figure 87 shows a performance summary for all of the workloads as a function of the 

system utilization as it increases from 50% to nearly 100%.  For moderate system loads 

where the utilization is less than about 70%, all of the algorithms exhibit similar 

performance.  For utilizations ranging from about 70% to 88%, EDF and TLAX-50 both 

maximize the percentage of met deadlines.  At these higher utilizations, the spread among 

the performance of the algorithms increases, and both LLF and RM fail to match the 

performance of EDF or TLAX.  Finally, for utilizations above 90%, TLAX outperforms 

all of the traditional algorithms.  Again, for the three heaviest load conditions (i.e., 

utilizations of 98%, 99%, and 99%), TLAX outperforms the best traditional algorithm 

(i.e., EDF) by 13%, 26%, and 17%, respectively.  The overall trend is that the 

performance decreases as the utilization increases, but three general exceptions occur for 

utilizations of 27%, 53%, and 80%.  At these utilizations, the percentage of met deadlines 

is nearly 100% for all the scheduling algorithms.  Referring to the workload descriptions, 
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these three situations correspond to light, medium, and heavy load conditions for 

Workload 1, which consists of four identical and regular tasks. 
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Figure 87: Performance summary for all workloads 

7.6 Sensitivity to Workload Variability 

The performance of the TLAX algorithm has been compared to that of the traditional 

scheduling algorithms by examining different workloads under different system load 

conditions.  The impact of changes to workload variability has also briefly been 

considered in the analysis due to the differences in variability found within the example 

workloads.  For example, the four identical tasks that makeup Workload 1 exhibit high 

regularity, while the four identical tasks that comprise Workload 5 exhibit high 

variability.   
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To better demonstrate the effects of workload variability, consider Workload 5, which 

consists of four identical, highly variable (i.e., low regularity) tasks.  To modify the 

variability of this workload, the number of arrival and service stages is varied from 2 to 

10, holding all other parameters constant.  As the number of stages for a given parameter 

decreases, the variability (i.e., variance) of the parameter increases.  For each number of 

stages, simulations are run to evaluate the performance of the scheduling algorithms 

discussed previously.  In this way, the effect of changes in variance for each algorithm 

can be examined and compared to that of the other algorithms.  The changes in variance 

are considered under light, medium, and heavy system load conditions.  To provide an 

additional comparison for the TLAX-50 algorithm, the performance of TLAX-30 and 

TLAX-70 are shown as well, where each of these algorithms uses a 30% and 50% 

threshold, respectively.  Note that in each of the load situations, the utilization varies 

across a different range of values for each algorithm.  Therefore, the average utilization 

across all the variance values is used in the following discussion to provide a good 

estimate of the overall system utilization.  

 Figure 88 shows the performance results of each algorithm as the workload is 

incrementally changed from one with high variability to one with high regularity, 

assuming that the system is under light load conditions (i.e., utilization of about 70%).  

The number of stages as well as the CV (coefficient of variation) is shown to indicate the 

workload variability.  As the number of stages increases, the variability of the arrival and 

service behavior of each task stream decreases.  That is, moving from left to right across 

the graph corresponds to an increase in regularity.  As Figure 88 shows, increased 

regularity results in improved performance for all of the scheduling algorithms.  All of 
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the traditional algorithms except for RM perform similarly as the workload variability 

changes.   

For the TLAX algorithm, TLAX-30 and TLAX-50 perform similarly, with TLAX-30 

resulting in a slight performance advantage in most cases.  Notice that for three to ten 

stages, TLAX-70 performs worse than either TLAX-30 or TLAX-50, and outperforms 

only the RM algorithm.  Overall, Figure 88 shows that all of the algorithms are sensitive 

to changes in variability under light system load.  To maximize the overall system 

performance, either the EDF or LLF traditional algorithms should be used.  For a 

variation of TLAX, either TLAX-30 or TLAX-50 results in similar performance that is 

comparable to that of the best traditional algorithms (i.e., EDF and LLF).  
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Figure 88: Effect of workload variability under light load 
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 Figure 89 compares the algorithm performance as the variance is changed under 

medium load conditions (i.e., utilization of about 80%).  As the number of stages 

increases (i.e., the variance of the workload decreases), the performance of all the 

traditional algorithms decreases.  This is in contrast to what is seen under light load 

conditions, where increased regularity boosts the performance of all of the algorithms.  

As Figure 89 indicates, each of the traditional algorithms is much more sensitive to 

changes in variability when compared to the TLAX algorithms.  The performance of 

TLAX varies, and TLAX-30 performs generally worse as the variability decreases.  Both 

TLAX-50 and TLAX-70 are more stable, and therefore, less sensitive, to the changes in 

variability.  The performance of TLAX-70 remains nearly constant regardless of the 

workload variability.  Finally, TLAX-50 and TLAX-70 are both relatively insensitive to 

changes in variability, but TLAX-50 consistently provides slightly better performance 

throughout. 
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Figure 89: Effect of workload variability under medium load 

 Figure 90 shows the performance results for each algorithm assuming that the system 

is under heavy load conditions (i.e., utilization of about 98%).  The performance of each 

of the traditional algorithms decreases significantly as the workload variability decreases.  

The performance of TLAX also decreases as the workload regularity increases, but this 

effect is less pronounced compared to the traditional algorithms.  Consider the best 

traditional algorithm, EDF, where the percentage of met deadlines decreases from 27% 

for two stages, to barely 9% for ten stages.  This performance decrease corresponds to 

nearly a 67% relative decrease in performance.  Except for two stages, TLAX-50 

performs best from among the three TLAX algorithms.  The performance of TLAX-50 

decreases from 33% for two stages to about 30% for 10 stages.  This performance change 
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corresponds to only a 9% relative change in performance, which is a significant 

performance gain over the best-performing traditional algorithm (i.e., EDF).   
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Figure 90: Effect of workload variability under heavy load 

Table 33: Percent change in met deadline percentage of algorithms 

  Traditional Algorithms TLAX Algorithms 
Number 
of Stages CV RM EDF LLF TLAX-30 TLAX-50 TLAX-70

2 0.707 0.00 0.00 0.00 0.00 0.00 0.00
3 0.577 -28.47 -21.91 -54.60 -9.91 -4.03 -3.30
4 0.500 -27.94 -15.81 -25.16 -1.13 -2.90 -8.05
5 0.447 -24.61 -15.45 -45.37 -0.51 -0.36 -2.98
6 0.408 -24.31 -10.39 -49.85 -1.74 -0.56 -0.82
7 0.378 -22.56 -11.38 -21.56 -4.29 0.58 -0.18
8 0.354 -20.80 -10.26 -41.62 -8.83 -1.99 -1.78
9 0.333 -22.92 -8.26 -12.45 -2.95 -0.09 -0.81

10 0.316 -22.88 -8.78 -32.45 1.20 -0.16 -1.57
Average -24.31 -12.78 -35.38 -3.52 -1.19 -2.44
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 Table 33 shows a summary of the percent change in met deadline percentage for each 

algorithm.  Among the traditional algorithms, EDF has the smallest percentage change 

with an average decrease of about 13%.  However, the best TLAX algorithm (i.e., 

TLAX-50) has an average percent change of just over 1%.  The results presented in the 

previous figure and graph illustrate that a significant performance increase results from 

using TLAX-50 under heavy load conditions.  Further, the performance of TLAX is 

almost unaffected by changes in workload variability, suggesting it is a robust algorithm 

for use in heavy load conditions.   

Overall, this sensitivity analysis shows that the performance of traditional scheduling 

algorithms can be significantly affected by changing only the workload variability.  This 

effect is intensified under heavy load conditions, where many tasks are missing their 

deadlines.  Under these conditions, where there is heavy load and unsteady workload 

variability, the TLAX-50 algorithm provides robust performance even in the presence of 

changing variability within the workload. 

 It should be noted that although the variability of both the arrival and service behavior 

are changed in the analysis presented in this section, similar effects have been 

demonstrated when varying only the arrival process.  In [45], for example, the arrival 

patterns of network traffic data are studied and a second-moment characterization of 

traffic streams is introduced.  It is shown how simple computations based on the 

variances of arrival patterns can be used to determine accurate QoS estimates for 

performance parameters.  These estimates are used in new scheduling routines that result 

in higher system utilizations.  
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7.7 Chapter Summary 

In this chapter, a novel scheduling algorithm named TLAX is presented that uses a 

threshold-based laxity value along with prioritized groups of tasks to make scheduling 

decisions.  It is shown that a 50% threshold results in the overall best performance for 

TLAX across different system load conditions.  Under light to moderate system load, 

TLAX generally performs comparably to the best traditional algorithm.  However, under 

heavy load conditions, TLAX-50 outperforms the best traditional algorithm by as much 

as 26%.   

Under heavy load, the TLAX algorithm is also robust in regard to changes in 

workload variability.  That is, the performance of all the traditional scheduling algorithms 

decreases significantly, as the workload becomes more regular in heavy load conditions, 

but the performance of TLAX-50 remains nearly constant regardless of the workload 

variability.  The TLAX algorithm, therefore, shows promise in its application to 

scheduling in heavy-load situations in soft real-time systems. 

The results presented in this chapter are based on data from sensitivity analysis 

experiments conducted using MOSS.  Because the output from any simulation tool is 

subject to jitter, an analytical approach is required in order to avoid such issues.  In the 

next chapter, a mathematical and theoretical approach based on state-space analysis is 

used to evaluate the performance of TLAX and validate the results from MOSS. 

7.8 Research Contributions 

The contributions presented in this chapter include: 
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• Analyzing and comparing the TLAX algorithm based on simulation results 

provided from MOSS that illustrate its robustness and show that it can outperform 

the traditional scheduling algorithms under heavy load conditions 

• Providing additional evidence that workload variance significantly affects system 

performance, where under light load, increased variance degrades performance, 

but under heavy load, increase variance boosts performance 

• Illustrating that as the system utilization increases, the amount of laxity held in 

reserve for tasks should also increase 

• Demonstrating that the performance trends of individual task streams do not 

necessarily follow that of the overall performance curve, where the overall system 

performance may increase under heavy load, but the performance of one or more 

task streams decreases due to their variability 
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CHAPTER VIII 

ANALYTICAL STATE-SPACE VALIDATION OF TLAX 

 

8.1 Introduction 

In the previous chapter, the analysis of TLAX was based on simulation data obtained 

from MOSS.  Because the output from any simulation tool is subject to jitter17, the 

purpose of this chapter is to analyze the TLAX algorithm on a theoretical and 

mathematical basis.  Using a mathematical approach, the TLAX results obtained from 

MOSS can be validated and further explored to investigate its behavior.  Due to the 

precise description of the method of stages modeling approach, the technique of 

constructing state diagrams and using state-space analysis provides a convenient 

mechanism for conducting the mathematical study.   

The use of state diagrams is a useful analytical technique for analyzing the details of 

complex systems.  Using state-space analysis, details that would otherwise be difficult to 

analyze can easily be studied to help gain insight into system behavior.  In this chapter, 

state-space analysis is used to study the differences among scheduling decisions made by 

EDF and TLAX from a theoretical, as opposed to simulation, perspective.  We developed 

a specialized tool, the Matlab State-space Analysis Tool (MSAT), to construct and solve 

state-space models describing small real-time systems.  Without this tool, the analysis 

presented in this chapter would not be possible.  To keep the analysis tractable, a 

workload consisting of two task streams is analyzed in detail.  Using this approach, it can 

                                                 
17 Jitter is variability that results from simulation effects such as the underlying random number generation. 
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be demonstrated mathematically that TLAX outperforms the EDF algorithm under heavy 

loads.  By studying and solving the underlying global balance equations of the state-space 

diagrams, insight can be gained as to how the scheduling decisions made by TLAX differ 

from those made by traditional algorithms, such as EDF.     

In the next section, a workload consisting of two task streams is presented.  The 

technique of state-space analysis is then revisited (see Section 2.3.8) and used to motivate 

the remainder of the discussion.  The state diagrams are solved using MSAT and 

examined to gain insight into the TLAX algorithm.  The results obtained analytically 

from solving the state-space models are used to validate the MOSS findings. 

8.2 Workload Configuration 

Two task streams are used in this study to keep the analysis tractable.  That is, the 

number of states in the resulting state-space diagram increases exponentially as the 

complexity of the example increases.  Therefore, this study serves as a proof of concept 

and an initial step towards broader theoretical analysis. The parameters for each of the 

two streams under various loads are shown in Table 34.  By using only two task streams 

and a small number (i.e., 2 to 4) of stages for each stream, the size of the resulting state-

space diagrams is reduced and the explicit performance results are tractable.  Note that 

even in this limited system, the number of resulting simultaneous equations that must be 

solved is 120.  Compare this to the 435,600 states that would be found in a state diagram 

of any of the examples presented in the previous chapter.   

When using two task streams, increasing or decreasing the relative load imposed on 

the system is accomplished by scaling the inter-arrival times.  Therefore, light, medium, 

and heavy loads can be imposed by using intensity factors of 0.5, 1.0, and 1.5, 
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respectively.  For each of the two task streams, the deadline is assumed to coincide with 

the next arrival of the same type.  That is, the deadline process of each task stream is its 

arrival process.  This assumption is common in practical systems and is used here to 

reduce the example complexity and size of the resulting state-space diagrams. 

Table 34: Workload configuration 

System Load 
Task 
Stream 

Inter-
arrival 
Time 
(min) 

Service 
Time (min) 

Number of 
Arrival/Service 
Stages 

Arrival/Service
CV 

S0 18.0 6.00 2 0.707 Light 
(IF=0.5) S1 24.0 8.00 4 0.500 

S0 9.0 6.00 2 0.707 Medium  
(IF=1.0) S1 12.0 8.00 4 0.500 

S0 6.0 6.00 2 0.707 Heavy 
(IF=1.5) S1 8.0 8.00 4 0.500 

      
8.3 Understanding the State-Space Model 

Before constructing a state-space model, a state descriptor is defined that captures all the 

necessary state information for a given state.  When using the method of stages, the 

natural state descriptor is one in which a numeric value is used to represent the current 

stage of each process (i.e., arrival, service, or deadline) for each task.  Therefore, in the 

example in this chapter, the state descriptor is a four digit numeric value (i.e., the current 

stage of execution of the arrival and service process of each task stream).   

The information captured in a state descriptor is also represented graphically in the 

state diagram using the method of stages notation.  Figure 91 shows the state descriptor 

representing an example state (i.e., state 1020).  Note that because the deadline of each 

task is its arrival, there can never be more than one task of the same type present at any 

given time.  In the figure, the label above the circle is a compact representation of the 
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information shown graphically.  The first half (i.e., the leftmost two digits, 10) of the 

state label contains information for task stream S0, while the second half (i.e., rightmost 

two digits, 20) contains information for task stream S1.  The two digits corresponding to 

S0 indicate the active stage of its arrival and service process, respectively.  Similarly, the 

two digits corresponding to S1 indicate the active stage of its arrival and service process, 

respectively.  The active stage of each process is indicated in the state descriptor by a 

solid circle.  In state 1020, for example, stream S0 is in its first arrival stage, while stream 

S1 is in its second arrival stage.  The service process of each task stream is in stage 0 

(i.e., neither stream has begun execution). 

 
Figure 91: Example state descriptor 

8.3.1 Constructing the State-Space Diagrams 

At any instant, the arrival process and service process of each task may be executing in 

any one of their available stages.  For an arrival process, one of its stages is always 

active, but for a service process, it is possible that none of the service stages is active.  

This occurs, for example, after a service process successfully completes, but before the 

next task arrival.  Because the method of stages technique utilizes well-defined rules that 

describe how each process progresses through its stages, it is easy (though somewhat 

tedious and complex) to construct a state-space diagram for any given scheduling 

algorithm.  Figure 92 shows a portion of a state diagram that illustrates task arrivals, 
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based on the task configuration presented previously.  In this figure, arrival rates for S0 

and S1 are indicated by the values λ0 and λ1, respectively.  The arrival rates are scaled by 

the appropriate number of stages to obtain the per-stage transition rates.  Note that the 

states shown in this partial diagram are algorithm-independent, because a scheduling 

decision is made only when the service processes of both tasks are active.  In other 

words, in this diagram, there are no states shown in which the service processes of both 

S0 and S1 are simultaneously active.  Thus, the scheduling decision is irrelevant.    

 
Figure 92: Partial state diagram of task arrivals 

Even when analyzing only two task streams and two to four stages, the size of the 

state diagram is large enough that constructing and solving the model becomes tedious.  
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For example, consider the configuration shown in Table 34.  For a task from S0, the 

arrival process must always be in one of its two possible stages, and its service process 

must be in one three possible states (i.e., inactive, in stage 1, or in stage 2).  This leads to 

6 (2 * 3) possible combinations.  Simultaneously, a task from stream S1 must be in one of 

its four possible arrival stages, and its service process must be in one of five possible 

states (i.e., inactive or in one of its four service stages).  For this task, there are 20 (4 * 5) 

possible combinations.  Therefore, overall there are 120 (6 * 20) possible states.  Note 

that depending on the specific scheduling algorithm used, the resulting state diagram may 

not encompass the entire set of possible states.  That is, some states may be missing from 

a given state diagram depending on which scheduling algorithm is used.  However, to 

analytically solve this system in order to obtain the expected number of met deadlines, a 

system of 120 (i.e., one for each state) equations must be solved simultaneously. 

To make the study of the resulting state-spaces feasible, a tool (see Section 8.4) was 

created in Matlab that constructs the complete state-space diagram, including all state 

transition arcs and their associated weights.  To accomplish this, the method of stages 

modeling technique is expressed in Matlab code.  Then, configuration parameters and an 

initial start state are specified.  Beginning with the start state, all possible reachable states 

are generated, along with the corresponding arcs and weights.  Next, each of the newly 

created states is examined to determine additional reachable states.  Using this recursive 

approach, a list of all reachable states, transition arcs, and arc weights is constructed and 

combined to form the complete state-space model. 



235 

8.3.2 Solving the Model 

If a system is observed long enough, it will reach “steady-state,” in which the flow into 

any given state will equal the flow out of that same state [63].  That is, in steady state, the 

difference obtained by subtracting the outgoing flow from the incoming flow (or vice 

versa) must be zero.  Using this approach, each state can be examined and the 

expressions for the incoming and outgoing flows can be used to determine the 

corresponding values in a state transition matrix.  Thus, the global balance equations are 

determined for each state and one side is subtracted from the other so that the sum is zero.   

Figure 93 shows an example state (state 2020, outlined in bold) from the previous 

diagram, along with its associated incoming and outgoing states.  In the figure, service 

rates for S0 and S1 are indicated by the values µ0 and µ1, respectively.  The service rates 

are scaled by the appropriate number of stages to obtain the per-stage transition rates.  

States 2010, 1020, 2220, and 2024 are responsible for the incoming flow to state 2020, 

while the outgoing flow from state 2020 travels to states 1120 and 2030.  Therefore, the 

global balance equation for state 2020 is constructed using the expressions shown in 

Table 35, and is given by 0)42(4224 20201020241222001020020101 =+−+++ PPPPP λλµµλλ .  

(The term Pabcd denotes the probability of being in state abcd in steady state.) 
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Figure 93: Example state illustrating incoming and outgoing flow 

Table 35: Global state information for state 2020 

Incoming Flow Outgoing Flow 
20241222001020020101 4224 PPPP µµλλ +++  202010 )42( Pλλ +  

  
In a similar manner, an equation is formed for each state, resulting in a system of 120 

equations and 120 unknowns (i.e., the steady-state probabilities).  In solving such a 

system, one additional piece of information (i.e., the fact that all the steady-state 

probabilities must sum to one) is used to construct the last row of a transition matrix.  

Overall, the resulting linear system fully describes the state-space model and in matrix 

form is represented by Ax=b, where A is the state transition matrix, x is the vector of 

unknown steady-state probabilities, and b is the solution vector consisting of all zeros, 

except for the last row, which contains a value of 1.  This organization is illustrated in 

Figure 94.  Given the values in Table 34 for medium load (i.e., λ0= 9
1 , λ1= 12

1 , µ0= 6
1 , and  
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µ1= 8
1 ), the resulting global balance equation for state 2020 is given in equation 1.  This is 

represented in matrix form as shown in Figure 94.  Systems of this form can be solved 

quickly and efficiently using Matlab.   
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Figure 94: Matrix representation of global state equations 

8.3.3 Calculating Performance Metrics 

After the steady-state probabilities are obtained, many desired metrics can be computed 

directly from the model.  For example, the overall system utilization can be obtained by 

summing the probabilities across all states in which at least one task is executing.  

Alternately, the percent of time the system is idle can be obtained by summing the 
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probabilities across all states in which no task is executing.  The overall utilization can 

therefore, be computed as 1.0 – idle_percentage.  The states corresponding to a met (or 

missed) deadline for a given task stream are also easily identified.  Using these states, the 

percent of met (or missed) deadlines can be calculated by multiplying the probability of 

being in that state by the weight associated with the appropriate outgoing arc.   

Other desired metrics can computed in a similar manner.  For example, the number of 

tasks executing in any given state is easily obtained by observing the state descriptor (in 

this example, there is always zero, one, or two tasks executing).  The steady-state 

probability for a given state corresponds to the percentage of time spent in that state.  

Therefore, the average number of tasks expected to be executing in a given state is found 

by multiplying the number of tasks executing (i.e., zero, one, or two) by the steady-state 

probability.  Overall, the expected number of tasks executing in the system at any given 

time is found by computing the sum of the average number of tasks executing in each 

state.  

8.4 The Matlab State-Space Analysis Tool 

Constructing and solving even small state-space models can be tedious and complex.  To 

resolve this issue, we developed a tool using Matlab called MSAT (Matlab State-space 

Analysis Tool) that can construct a state-space diagram corresponding to a real-time 

system composed of two task streams.  The model is then solved analytically using 

Matlab’s efficient matrix operations, allowing many performance metrics to be computed 

exactly.  This section provides a description of the design and limitations of MSAT, as 

well as how it is used to obtain the analytical results presented in this chapter. 
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8.4.1 Tool Design 

MSAT is a Matlab program that runs from the command prompt.  For convenience, the 

interface of MSAT is provided by a configuration section in a program script file.  

Although a graphical user interface can easily be added, this feature is left as future work.  

The number of task streams is fixed at two, and the deadline of each task is its next 

arrival.  This simplifies the tool development, shifting the focus to the engine that 

constructs and solves the state diagrams.  Approximately 2,000 lines of code comprise 

the functionality of MSAT, which is broken up into functions/modules.  The modular 

design of MSAT allows it to be easily modified and updated to support additional 

scheduling algorithms, the ability to solve larger models, and functionality to output a 

wide range of performance metrics and graphs. 

8.4.2 Configuration of Parameters 

For each task stream, the arrival and service behavior is specified by parameters listed in 

the configuration section of the MSAT script.  Figure 95 shows the Matlab Editor 

window displaying a portion of the configuration section for MSAT.  As shown, the 

inter-arrival time (iat), number of arrival stages (nas), service time (st), and number of 

service stages (nss) are specified for each task stream.  The scheduling algorithm name 

(alg) is specified using a text string and a threshold value (tlaxthresh) can be specified for 

the TLAX algorithm.  Additional algorithms and parameters can easily be added.  For 

convenience, the initial start state (states(1).descriptor) is also a configuration parameter 

that allows the user to modify the beginning of the constructed state diagram.  This is 

useful for larger models, when a specific state may be of particular interest.  As with 

MOSS, Processor Sharing (PS) is used in the case of a tie, when two tasks have exactly 
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the same scheduling criterion (e.g., reserve laxity, in the case of TLAX).  For 

convenience, the tolerance value used to test for ties between scheduling criterions is a 

configuration parameter (TEST_TOL).  An output directory (outputfolder) specifies the 

directory in which output files should be created.  In Figure 95, the number of specified 

stages is small (i.e., one for the first18 task stream and two for the second task stream) to 

reduce the size of the state-space model shown later in Section 8.4.4. 

 
Figure 95: Portion of MSAT configuration section 

8.4.3 Running MSAT and Solving Models 

After the configuration parameters have been specified, the tool is run from the command 

prompt or directly from the Matlab Editor.  MSAT begins with the specified start state 

                                                 
18 Note the notation change, where the two task streams are named S1 and S2, as opposed to S0 and S1.  
This is to maintain consistent notation in the Matlab code, as Matlab indices must begin with 1. 
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and constructs a list of all possible reachable states.  Then, an iterative process is used to 

construct the reachable states for each remaining state until the complete state diagram 

has been constructed.  For each state, a list of incoming and outgoing arcs is saved, along 

with all the weight values associated with the transitions.  This information is stored in a 

compact form using Matlab’s built-in struct data type. 

The state-transition matrix (A) is constructed from the state-space information by 

recursively examining the list of states, arcs, and arc weights.  The vector x represents the 

unknown steady-state probabilities, and the vector b represents the sum vector.  Each 

entry in b represents the sum of the corresponding global state equation, where all terms 

in the equation have been moved to the left side, for a sum of zero.  Therefore, the b 

vector contains all zeros except for the entry in the last row, which corresponds to the 

sum (i.e., 1) all of the steady-state probabilities.  This results in a linear system expressed 

in matrix form as Ax=b and is quickly and efficiently solved using Matlab.  The linear 

system is solved to obtain the steady-state probability for each state.  The solutions are 

checked to verify that A*x equals b to within the desired level of accuracy (the chosen 

default value is currently 0.0000000001).  The solution vector is also checked to verify 

that the sum of all the steady-state probabilities is 1.     

8.4.4 Performance Metrics and Output 

From the steady-state probabilities, the utilizations and percentage of met deadlines are 

automatically computed by MSAT.  Support for additional metrics can be easily added.  

All output can be selectively displayed on the screen and/or output to files.  In addition to 

the desired output metrics, the state-space diagram is also of interest because it is 

sometimes desirable to examine the diagram manually.  However, it is not possible to 
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display the generated state diagrams in an existing format that is easily viewed.  To 

remedy this problem, we apply a custom format to the state diagram information that 

allows it to be displayed in a clear, compact manner. 

 Figure 96 shows a portion of output from MSAT, assuming the configuration 

parameters specified in Figure 95, EDF scheduling, and start state of 1010 are used.  In 

this example, there are only 12 states in order to reduce the size of the output information 

and state-space diagram.  Information regarding the state counts is shown, along with the 

steady-state probabilities.  Letters are used to represent the arc weights to make the state 

diagram more compact.  The letters A and B correspond to the per-stage arrival rate and 

service rate, respectively, of the first task stream (i.e., S1).  The letter C is equal to one-

half of B and corresponds to the rate at which S1 executes when there is a tie and PS is 

used.  The letters D, E, and F have similar connotation, only for the second task stream 

(i.e., S2).  The performance metrics are shown at the bottom of the output window.  The 

last portion of the output file (i.e., the state-space diagram) is shown in a separate figure 

(i.e., Figure 97) to conserve space. 
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STATE INFORMATION 
  State Counts 
    # total: 12 
    # with at least one self arc: 6 
    # with no task executing: 2 
    # with S1 executing: 4 
    # with S2 executing: 6 
    # with S1 and S2 executing (PS): 0 
 
  Steady-State Probabilities 
    (sum of probabilities: 1.0000000000) 
 
    State   Steady-state Probability 
    1010    0.1853644596 
    1110    0.0411921021 
    1020    0.2926871796 
    1120    0.1049877202 
    1011    0.1062857944 
    1111    0.0748568224 
    1021    0.0227755274 
    1012    0.0755188539 
    1121    0.0225101268 
    1022    0.0308240220 
    1112    0.0167819675 
    1122    0.0262154240 
 
  Arc Weights 
    (Stream 1) 
    A=0.055556        (per stage arrival rate) 
    B=0.166667        (per stage service rate) 
    C=(B/2)=0.083333  (per stage PS rate) 
    (Stream 2) 
    D=0.083333 
    E=0.250000 
    F=(E/2)=0.125000 
 
 
PERFORMANCE METRICS 
  Utilizations: 
    Overall: 52.19% (47.81% idle) 
    Stream 1: 23.78% 
    Stream 2: 28.41% 
 
  Met Deadline Percentages: 
    Overall: 74.86% (25.14% missed) 
    Stream 1: 71.35% (28.65% missed) 
    Stream 2: 79.53% (20.47% missed) 

 
Figure 96: Portion of state information and output metrics from MSAT 

Figure 97 shows the state diagram output from MSAT.  In the diagram, each 

rectangle corresponds to a state and its related information.  For a given state, its state 

descriptor is enclosed in parentheses and its steady-state probability is enclosed in curly 
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braces (i.e., {}).  The labels to the left of a state descriptor correspond to incoming arc 

information, while the labels to the right of the descriptor correspond to its outgoing arc 

information.  Consider state 1110, shown on the upper right of the state diagram.  The 

label on the left (i.e., 1010[A]) indicates that state 1110 has an incoming arc with weight 

A from state 1010.  Similarly, the labels on the right indicate that there are two arcs 

leaving (i.e., outgoing) from state 1110—one arc has weight D and goes to state 1120, 

while the other arc has weight B and travels to state 1010.  In the case of self-arcs (i.e., 

arcs where source and destination states are the same), the weights of any such arcs are 

listed underneath the state descriptor.  Notice that in this diagram, the letters C and F 

(corresponding to PS arcs) are not present because there are no states in which PS is used 

(i.e., there are no scheduling ties). 
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STATE DIAGRAM 
 
+--------------------------+--------------------------+ 
|      {0.1853644596}      |      {0.0411921021}      | 
| 1110[B]->(1010)->[A]1110 | 1010[A]->(1110)->[D]1120 | 
| 1012[E]          [D]1020 |           A      [B]1010 | 
+--------------------------+--------------------------+ 
|      {0.2926871796}      |      {0.1049877202}      | 
| 1010[D]->(1020)->[A]1120 | 1110[D]->(1120)->[D]1111 | 
| 1120[B]          [D]1011 | 1020[A]   A      [B]1020 | 
| 1022[E]                  | 1122[E]                  | 
+--------------------------+--------------------------+ 
|      {0.1062857944}      |      {0.0748568224}      | 
| 1020[D]->(1011)->[A]1111 | 1120[D]->(1111)->[D]1121 | 
| 1111[B]          [D]1021 | 1011[A]   A      [B]1011 | 
| 1021[D]          [E]1012 | 1121[D]                  | 
| 1022[D]                  | 1122[D]                  | 
+--------------------------+--------------------------+ 
|      {0.0227755274}      |      {0.0755188539}      | 
| 1011[D]->(1021)->[A]1121 | 1011[E]->(1012)->[A]1112 | 
|                  [D]1011 | 1112[B]          [D]1022 | 
|                  [E]1022 |                  [E]1010 | 
+--------------------------+--------------------------+ 
|      {0.0225101268}      |      {0.0308240220}      | 
| 1111[D]->(1121)->[D]1111 | 1021[E]->(1022)->[A]1122 | 
| 1021[A]   A      [E]1122 | 1012[D]          [D]1011 | 
|                          |                  [E]1020 | 
+--------------------------+--------------------------+ 
|      {0.0167819675}      |      {0.0262154240}      | 
| 1012[A]->(1112)->[D]1122 | 1121[E]->(1122)->[D]1111 | 
|           A      [B]1012 | 1022[A]   A      [E]1120 | 
|                          | 1112[D]                  | 
+--------------------------+--------------------------+ 

Figure 97: Example MSAT output showing the state-space diagram 

The information listed in the compact form of the state-space diagram can be loaded 

into any text editor and easily searched for state information.  This format represents a 

convenient mechanism for representing the state information because all of the necessary 

information is attached to each state, unlike in a traditional state-space diagram where 

arcs must be examined and followed in order to determine the incoming and outgoing 

states.  Note that although the state diagram output from MSAT contains redundant 

information, the internal storage representation of the diagram is very efficient and uses 
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only symbolic links.  Overall, MSAT provides a convenient and reliable method of 

solving the state-space models to analytically obtain the information and metrics 

necessary for our study.   

8.5 Analytical Results 

To study the TLAX algorithm, state-space diagrams are constructed and solved for each 

load condition using MSAT.  Because the EDF scheduling algorithm is used for relative 

performance comparisons of TLAX, the same procedure is repeated for the EDF 

algorithm.  Each state-space model is then solved to obtain the steady-state probabilities 

and performance metrics.   The metrics for each algorithm, along with any state diagram 

differences, are used to analytically compare and study the behavior of the algorithms.   

8.5.1 Performance Comparison Summary 

Table 36 provides a summary of the overall percentage of met deadlines for EDF and 

TLAX.  The metrics obtained analytically via MSAT, as well as the metrics output from 

MOSS, are given in the table.  Because the performance of TLAX depends on the 

particular threshold value used, the threshold value resulting in the maximum 

performance is chosen.  That is, the percentage of met deadlines shown for TLAX 

corresponds to the maximum value observed across the range of threshold values.    As 

Table 36 shows, the metrics obtained from MOSS closely match those obtained 

analytically, which validates the MOSS findings presented in the previous chapter.  

Similar to the results seen in the previous chapter, EDF marginally outperforms TLAX 

under light load by about 2%, but under heavy load conditions, TLAX outperforms EDF 

by over 17%. 
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Table 36: Performance comparison of analytical (MSAT) and 

simulation (MOSS) results 

  Overall % Met Deadlines 

  
Analytical (MSAT) 

Values 
Simulation (MOSS) 

Values 
System Load Utilization EDF TLAX EDF TLAX 
Light 
(IF=0.5) 

58.69% 83.39% 82.10% 83.43% 82.15%

Medium  
(IF=1.0) 

85.70% 50.49% 52.91% 50.54% 52.99%

Heavy 
(IF=1.5) 

94.76% 29.65% 34.85% 29.71% 34.91%

      
Table 37 lists the MOSS confidence intervals of both the EDF and TLAX algorithms.  

The table indicates that with 99% certainty, the MOSS estimates are accurate to within 

one-tenth of one percent.  These results also validate the experimental values obtained 

from MOSS and emphasize the accuracy and stability in using MOSS for performance 

modeling of similar systems. 

Table 37: MOSS confidence intervals for EDF and TLAX 

  MOSS Confidence Intervals 
  EDF TLAX 
System Load Utilization 95th 99th 95th 99th 
Light 
(IF=0.5) 

58.69% ± 0.044 ± 0.069 ± 0.068 ± 0.093

Medium  
(IF=1.0) 

85.70% ± 0.056 ± 0.090 ± 0.059 ± 0.091

Heavy 
(IF=1.5) 

94.76% ± 0.049 ± 0.078 ± 0.055 ± 0.096

      
 Due to the relatively small state-space of this example (i.e., 120 states in this 

example, as opposed to the 435,600 states in the examples from the previous chapter), the 

performance of TLAX under heavy load is less dramatic than previously reported.  That 

is, in this case, TLAX does not achieve the 25% relative performance increase over EDF 
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as with previous examples.  However, if the number of stages is increased so that a wider 

range of variance values is possible, the performance improvement of TLAX over EDF is 

more noticeable.  Table 38 shows a summary of the performance gains that can be 

achieved by increasing the number of stages of only S1, assuming heavy load conditions.  

Note that increasing the number of stages increases the size of the state-space (however, 

from our experience, MSAT can easily handle state spaces up to about 3,000 states). 

Table 38: Performance summary of increased state-space size for 

heavy load conditions 

Overall % Met 
Deadlines Number of 

Stages 
for S1 

Total 
Number 
of States Utilization EDF TLAX 

Relative 
Performance 
Increase of 
TLAX 

4 120 94.76% 29.65% 34.85% 17.53%
6 252 97.75% 26.97% 33.68% 25.15%
8 432 98.39% 25.09% 32.92% 31.21%

      
 From the table, it is seen that the performance of TLAX is not as sensitive to changes 

in the workload variability (i.e., number of stages) as EDF.  This confirms the similar 

observations in Chapter VII.  Also note that as the regularity increases (i.e., as the 

number of stages increase), the utilization/throughput also increases, but the percentage 

of met deadlines decreases.  In real-time systems, it is typically desired to maintain low 

system utilization in order to improve the percentage of met deadlines.  However, when 

heavy load situations do arise, the performance gain of using a more robust scheduling 

algorithm such as TLAX is evident.  That is, under heavy system utilization, the 

performance of EDF degrades more quickly than that of TLAX. 
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8.5.2 Met Deadline Percentages 

The TLAX algorithm is parameterized by its threshold value, and therefore, its 

performance is dependent upon both the threshold value and the system load.  To 

compare the performance differences resulting from different threshold values and 

varying load conditions, a state-space diagram is constructed for threshold values  

ranging from 0% to 100% (in 1% increments) for each load condition.  This is easily 

done analytically, using MSAT.  Figure 98 shows the overall percentage of met deadlines 

as a function of the threshold value under light load conditions.  (Note that the discrete 

“jump” behavior seen in the graph is not jitter, but rather a result of the discrete number 

of stages used to parameterize the variance.)  From the figure, and noting the y-axis 

range, it is seen that the threshold value has only a small impact (approximately 3%) on 

performance, with the maximum performance obtained by using a threshold value of 

about 0.68 or greater.  Recall from the MOSS simulation results that plots (for example, 

see Figure 78 in Section 7.4) of performance metrics (e.g., percentage of met deadlines) 

are typically characterized by jitter, where trends in the plot fluctuate (i.e., increase and 

decrease).  Because the results shown in the figure are generated from analytical values, 

rather than simulation estimations, the pattern of the deadline percentages is characterized 

by a strictly increasing function, as expected.   
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Figure 98: TLAX met deadline percentages for light load 

 Figure 99 shows the met deadline percentages assuming medium load conditions.  

Here, the performance impact of the threshold value is greater (approximately 10%) than 

under light load conditions.  In addition, the performance reaches it maximum value 

earlier in terms of the threshold value.  That is, the maximum percentage of met deadlines 

is obtained by using a threshold value of about 0.35 or greater. 

 



251 

 
Figure 99: TLAX met deadline percentages for medium load 

Figure 100 shows the percentage of met deadlines assuming heavy load conditions.  

Here, the performance immediately reaches it maximum value for a threshold value 

greater than zero.  The relative impact (i.e., the change in the percentage of met 

deadlines) of the threshold value, however, is approximately the same (about 10%) as 

that seen under medium load conditions.    
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Figure 100: TLAX met deadline percentages for heavy load 

Overall, it is seen that the TLAX threshold value affects its performance, as seen 

previously for the results obtained from MOSS.  However, using analytical results, it is 

easier and more accurate to study the resulting trends because they are consistent and not 

subject to simulation jitter.  In this particular example, using any threshold value other 

than zero under heavy load conditions will maximize the performance of TLAX.  

Therefore, in this example, TLAX significantly outperforms EDF under heavy load 

conditions and the threshold value appears to play little role. 

8.5.3 Most Laxity First (MLF) Scheduling 

The results presented in the previous figures seem to indicate that the higher the threshold 

value, the better the resulting performance will be.  This implies that withholding the 

maximum amount of laxity, and thus a “most laxity first” scheduling policy, is a viable 

scheduling technique.  However, it has already been demonstrated in the previous chapter 

that for several workloads (and particularly under heavy load conditions), this result does 

not hold.  That is, a plot of the TLAX threshold values shows that a point is reached that 
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corresponds to the maximum performance gain, and after this point, increasing the 

threshold value any further only decreases the system performance (see Figure 76 in 

Section 7.3.3). 

To further investigate this issue analytically, the Most Laxity First (MLF) algorithm 

is implemented in MSAT and the performance results are obtained for MLF under light, 

medium, and load conditions.  Table 39 provides a comparison of the performance results 

for EDF, TLAX, and MLF (results for EDF and TLAX are shown again for 

convenience).  Notice that under light load, MLF is outperformed by both EDF and 

TLAX.  Under medium load, MLF slightly outperforms EDF but falls below TLAX.  

Under heavy load, MLF outperforms EDF, but MLF is outperformed by TLAX by about 

9%.   

Table 39: Performance comparison for MLF 

  Overall % Met Deadlines 
System Load Utilization EDF TLAX MLF 
Light 
(IF=0.5) 

58.69% 83.39% 82.10% 79.61% 

Medium  
(IF=1.0) 

85.70% 50.49% 52.91% 50.97% 

Heavy 
(IF=1.5) 

94.76% 29.65% 34.85% 32.04% 

     
These results are based on the small example of two task streams.  To test MLF on a 

more realistic workload, the MLF algorithm is implemented in MOSS and tested on 

Workload 3 from Chapter VII.  Using this workload, the performance of MLF is 

evaluated under light, medium, and heavy load conditions, the same as in the previous 

chapter.  The performance summary provided in Chapter VII is revisited (see Figure 72) 

below, as show in Figure 101, with the results for MLF indicated by the slashed bar.  As 
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seen in the figure, MLF is slightly outperformed by all the remaining algorithms under 

light load.  Under medium load, the performance of MLF is similar to that of LLF but 

falls short of EDF by about 5%.  Under heavy load, MLF is still outperformed by EDF by 

about 5% and is outperformed by TLAX by over 30%.   
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Figure 101: Revisited performance summary with MLF included 

Therefore, the MLF policy fails to perform under different workloads and different 

load conditions.  Further, MLF is sensitive to changes in workload variability, just as 

LLF, which reduces its performance potential.  These results show that it is important to 

carefully examine results in broad scope and that it can be difficult to extract accurate 

generalizations from workload analysis involving variability. 

8.5.4 Examining Missing States 

To provide better insight into how the scheduling decisions made by TLAX differ from 

those made by EDF, information from the state diagrams is examined more closely.  For 

example, while state diagrams for EDF each contain all of the possible 120 states, state 

diagrams for TLAX, in general, do not.  This can be demonstrated by listing all of the 
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missing states in each TLAX diagram and comparing the diagrams for different TLAX 

threshold values.  Figure 102 provides a summary of the state diagram information for 

TLAX under light load conditions.  As mentioned previously, the full state diagram for 

this example contains 120 states.  In the figure, the state numbers (i.e., short identifiers) 

are shown along the bottom, while the state descriptors (i.e., the full four-digit identifiers) 

are shown along the top.  A state descriptor indicates the entire system state at a given 

moment, indicating the current stage of the arrival and service process of each task 

stream.  In state 2130, for example, the arrival and service processes of S0 are in stages 2 

and 1, respectively, while the arrival and service processes of S1 are currently in stages 3 

and 0, respectively. 

In Figure 102, each state is represented by a circle, where grey circles correspond to 

states that are present in the given diagram.   Black circles correspond to states that are 

missing due to a task from S0 not being allowed to execute.  Similarly, white circles 

correspond to states that are missing due a task from S1 not being allowed to execute.  

For example, consider state 1212 (i.e., state number 55).  To enter this state, the previous 

state must have been either state 1112 (with an S0 task executing) or state 1211 (with an 

S1 task executing).  However, with a sufficiently high threshold value (i.e., 0.68 or 

greater), priority would be given to the S1 task in state 1112 and to the S0 task in state 

1211.  Thus, it is impossible under TLAX to enter state 1212.  A key observation is that 

above certain threshold values, TLAX “sacrifices” certain tasks so that it has a better 

chance of “saving” others. 
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Figure 102: States missing from TLAX diagram for light load 

From Figure 102, it is evident that missing states occur only at the larger threshold 

values.  That is, for threshold values less than 0.68, none of the TLAX state diagrams is 

missing any states.  In addition, the absence of a missing state is propagated throughout 

all state diagrams that correspond to larger threshold values.  That is, after a particular 

state is missing from a diagram corresponding to a given threshold value, the same state 

is also missing from all diagrams that correspond to larger threshold values.  This result 

indicates the validity of the previous observation about TLAX sacrificing certain tasks.  

In the figure, this pattern is indicated by the repeated sequence of missing states and 

appears graphically as either black or white sub-columns. 

 The black and white sub-columns appearing in the figure offer insight into the 

scheduling decisions made by TLAX.  A single black state represents a 

missing/inefficient state, where allowing an S0 task to execute would not be allowed 
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under TLAX because it would lead to suboptimal performance.  That is, a black state is 

one in which TLAX would never find itself because it has already given up on (i.e., 

sacrificed) the S0 task.  Giving the processor to the S0 task would make it more likely 

that both the S0 and S1 tasks would miss their deadlines, while allocating the processor to 

the S1 task would make it more likely that the S1 task would meet its deadline at the cost 

of sacrificing the S0 task by giving up on it.  From the figure, there are four black sub-

columns but twice as many (i.e., eight) white sub-columns, suggesting that as the 

threshold value increases, TLAX gives up on an S1 task more often than an S0 task.  This 

is also intuitive, because the S1 tasks place more relative load on the system, by 

definition.  By contrast, the EDF algorithm never gives up on a task, and all the states 

missing from the TLAX diagrams are present in EDF state diagrams.  Thus, EDF does 

not have the effective coping (i.e., threshold) mechanism that TLAX does. 

Figure 103 shows the states missing from the TLAX diagrams assuming medium load 

conditions.  In this figure, the exact same groups of missing states are present.  However, 

under medium load, the missing states first appear in the diagrams corresponding to 

smaller threshold values.  Here, the missing states appear for all threshold values greater 

than 0.33.  Therefore, under medium load, TLAX makes the same decisions in terms of 

which task it gives up on, only the decision is made earlier (i.e., for smaller threshold 

values) as the load increases. 
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Figure 103: States missing from TLAX diagram for medium load 

 Figure 104 shows the missing state information for TLAX assuming heavy load 

conditions.  Again, the exact same groups of missing states appear, but in this figure, the 

missing states appear for all threshold values except zero.  Therefore, under heavy load, 

TLAX gives up on the same tasks regardless of the threshold value.   
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Figure 104: States missing from TLAX diagram for heavy load 

After observing the missing state information for light, medium, and heavy load 

conditions, a correlation can be seen between the missing states and the threshold values 

for which maximum performance is achieved.  For example, from Figure 98 it is seen 

that the last jump in performance (to the maximum value) occurs for a threshold value of 

0.68.  From Figure 102, the missing states are first eliminated from the state diagram for 

the same threshold value, 0.68.  The same pattern is observed when comparing the results 

for medium and heavy loads.  That is, the maximum performance jump and the point at 

which missing states are first eliminated are the same.   

As observed previously, the specific TLAX threshold value has no effect, in this 

example, on the performance under heavy load conditions and yet TLAX still 

outperforms EDF significantly.  Thus, the important thing is that there is a positive 

threshold value.  That is, these results suggest that the task classification technique (i.e., a 
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threshold-based laxity approach) used by TLAX is also a crucial factor in its performance 

under heavy load.  However, it should be noted that in a two-task example, the 

combinations of task groups is limited.  Examination of additional tasks, across a broader 

spectrum of parameter settings, is an area of future research.  The research presented here 

is an initial step that illustrates the importance and potential for threshold-based 

scheduling algorithms.  

8.5.5 Comparing the State-Space Models 

Another comparison method consists of contrasting the entire state-space models of EDF 

and TLAX.  This type of theoretical analysis would not be practical for larger systems 

due to the large number of states.  However, for two task streams, the state-space model 

can be summarized in a relatively compact representation.  This analysis method is 

convenient because EDF has the same compact representation regardless of the intensity 

factor.  Similarly, the representation corresponding to the best TLAX state diagram is the 

same, regardless of the intensity factor.  The complete state diagrams are, of course, 

different because the values of arc weights change as a result of changing the intensity 

factor.  The scheduling decision made in any given state, however, does not change as a 

result of changing the intensity factor.  This is because the intensity factor simply scales 

the arrival rates, proportionally, and therefore, the decision made by a particular 

algorithm (e.g., EDF) in a given state (e.g., 2011) is the same under light, medium, and 

heavy loads.  That is, the likelihood (i.e., steady state probability) of being in any 

particular state changes based on the intensity factor, but the decision of which task is 

allocated the processor in that state does not.  Because some of the arc weights associated 

with these states change, the resulting performance metrics vary. 
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Figures 105 and 106 illustrate such a compact representation of the state-space 

diagrams for both EDF and TLAX.  To make the state-space information easier to 

examine, the state diagrams are broken into two parts, where Figure 105 illustrates states 

1 through 60 and Figure 106 illustrates states 60 through 120.  For TLAX, a threshold 

value of 0.70 is used because this value results in the best performance regardless of the 

load conditions.  In the figures, an idle state (i.e., one in which no task is executing) is 

represented by a grey circle, whereas a state missing from the corresponding diagram is 

represented by an X.  States where either an S0 or an S1 task (but not both 

simultaneously) is present is represented as before, by either a black circle or a white 

circle, respectively.  Note that in some states in the EDF diagram, both an S0 and S1 task 

are executing simultaneously, via processor sharing.  In the given example, no two 

reserve laxities are ever equal and therefore, TLAX never uses PS—this issue is further 

addressed in the next section. 

 
Figure 105: Comparison of state diagrams (states 1-60) for EDF and TLAX 
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Figure 106: Comparison of state diagrams (states 60-120) for EDF and TLAX 

In Figures 105 and 106, if EDF and TLAX make the same scheduling decision, their 

respective states are shaded the same color.  Thus, it is seen that EDF and TLAX both 

make the same scheduling decisions in all states to the left of state 2111.  In all such 

states (except state 1111) the service process of one or both of the task streams is inactive 

and therefore, no scheduling decision is necessary.  (In state 1111, EDF and TLAX both 

choose the S0 task to execute.)  For the remainder of the states, there are several 

similarities as well as several differences.  For example, in states such as 2240 and 1211, 

EDF and TLAX both choose the S0 task to execute.  In states such as 2013 and 1041, 

both algorithms choose the S1 task to execute.  From the figures, it can be seen that there 

are more states for which EDF and TLAX both select the S1 task (i.e., matching white 

dots), as opposed to the states where both algorithms select the S0 task (i.e., matching 

black dots).  There are also numerous differences among the decisions made by each 

algorithm. 

Figure 107 presents a simplified version of the previous figures that shows only those 

states in which the EDF and TLAX scheduling decisions are different.  Perhaps the most 

interesting difference corresponds to the 12 states missing from the TLAX state-space 

diagrams, indicated by an X in the figure.  The missing TLAX states 1223 and 1224 (i.e., 
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state numbers 86 and 104, respectively) correspond to EDF states in which PS is used.  

Similarly, the TLAX state 1234 (state number 114) corresponds to a state in which EDF 

selects the S1 task to execute.  For all nine of the remaining missing states, EDF chooses 

the S0 task to execute.  However, in the same set of missing states, TLAX would choose 

the S0 task in only two of those states—1212 and 1213.  (See Figure 102, for example.)  

In the seven other states, TLAX would instead choose the S1 task to execute.   

For the majority of the missing states, TLAX has already given up on S1, whereas in 

the same corresponding states, EDF has not given up.  Instead, EDF allocates the 

processor to the task stream (i.e., S1) TLAX has already given up on.  Therefore, most of 

the missing states correspond to situations in which the S1 task has more reserve laxity 

(according to TLAX) than S0, but an earlier deadline (according to EDF) than S0.  This 

perhaps suggests that EDF negatively affects its own performance by allowing the S1 

task to execute in these states.  (Recall that the S1 stream imposes more relative load on 

the system, compared to S0—see Table 34.)  Results such as these help compare and 

contrast the scheduling decisions made by EDF and TLAX, and illustrate the importance 

of analytical, as well as simulation, approaches. 

 
Figure 107: Differences in state diagrams for EDF and TLAX 
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8.5.6 The Significance of Processor Sharing 

Another obvious difference among the state diagrams is the presence of states in which 

EDF uses processor sharing.  In the MOSS implementation of scheduling algorithms, ties 

are broken by using processor sharing (PS) and to be consistent, MSAT is implemented 

in the same manner.  In order to determine the significance of using PS for ties, MSAT is 

modified to test the effect of two other tie-breaking strategies for EDF.  Note that tie 

breaking is not an issue for TLAX in this example because there is never a tie in the 

reserve laxity values of tasks.  For EDF, the state-space model is reconstructed assuming 

that in the case of a tie, priority is always given to the S0 task.  This technique is then 

repeated assuming that ties are broken by instead always giving priority to the S1 task.  

Table 40 shows a summary of the performance effect for EDF when using different tie-

breaking rules. 

Table 40: Performance effect of changing the EDF tie-breaking rule 

 Overall % Met Deadlines 
 Stream Given Priority  

in Case of Equal Deadlines 
System Load S0 S1 Both (PS) 
Light  
(IF=0.5) 

83.52% 83.33% 83.39% 

Medium  
(IF=1.0) 

50.96% 50.42% 50.49% 

Heavy  
(IF=1.5) 

30.43% 29.39% 29.65% 

    
 From Table 40, it is seen that using a different tie-breaking rule has minimal effect on 

the performance of EDF, when compared to the met deadline percentages obtained using 

PS.  Considering that TLAX achieves a relative performance increase over EDF that 

ranges from 17% to 31% (depending on the number of stages), the fact that EDF was 
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tested using PS for tie breaking is negligible.  In addition, tasks in real-world systems 

rarely have the exact same scheduling criterion (e.g., deadline) and therefore, this seems 

like a minor implementation artifact.  

8.6 Chapter Summary 

In this chapter, a mathematical and theoretical approach is used to analytically compare 

and contrast the performance of EDF and TLAX.  Because the output from MOSS and 

other simulators is subject to jitter, the MSAT tool is used to analytically solve state-

space models describing real-time systems based on the method of stages modeling 

approach.  A small workload is used in this chapter to keep the analysis tractable.  The 

study serves as a proof of concept and an initial step towards broader theoretical analysis.   

Using MSAT, state-space models based on the sample workload are constructed and 

solved analytically.  MSAT outputs compact forms of state-space diagrams and calculates 

desired performance metrics exactly.  The state-space models are used to compare and 

contrast both EDF and TLAX scheduling decisions.  It is observed that while TLAX 

gives up on, and sacrifices, tasks after a certain threshold value is reached, EDF never 

gives up on tasks.  The sacrifices made by TLAX correspond to missing states in the state 

diagrams and help gain insight into the differences between EDF and TLAX.  The task 

classification technique (i.e., a threshold-based laxity approach) used by TLAX is a 

unique and important criterion in making scheduling decisions and warrants future 

investigation.   

The analytical results obtained from MSAT validate the MOSS findings presented 

earlier in Chapter VII and confirm that TLAX outperforms EDF under heavy load 

conditions.  Based on graphs presented early in the chapter, a Most Laxity First (MLF) 
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scheduling policy appears to be a simple and viable scheduling strategy, but with further 

analysis, it is demonstrated that MLF fails to perform well (consistently) under varying 

workloads.  This observation emphasizes the importance of further exploration and 

demonstrates that interpreting results involving variability studies can be difficult.  

8.7 Research Contributions 

The contributions presented in this chapter include: 

• Development, description, and demonstration of the Matlab State-space Analysis 

Tool (MSAT) 

• Description and demonstration of the compact form of state-space representation 

used in MSAT  

• State-space analysis of the TLAX algorithm 

• Analytical validation of the TLAX findings obtained from MOSS 
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CHAPTER IX 

CONCLUSION 

 

9.1 Motivation Revisited 

As performance analysis and capacity planning of distributed and real-time systems 

become more pervasive, the effects of variability within the workloads to which these 

systems are subjected play an increasingly important role in system performance.  In the 

past, the effects of variance have typically been minimized or ignored in performance 

modeling, especially in the area of task scheduling algorithms.  By studying the effects of 

variance on performance parameters such as inter-arrival times, service times, and 

deadline times, the results can be incorporated into new hybrid scheduling strategies that 

are either immune to workload variability, or adapt their performance in light of it.  In 

particular, new hybrid scheduling techniques that utilize threshold-based laxity 

approaches and key insights gained from state-based performance analysis show 

promising results for future work.  This work emphasizes the importance of explicit 

incorporation of variance in performance modeling, particularly in the field of real-time 

task scheduling algorithms.   

9.2 Summary of Results 

In performance modeling, the mean of workload parameters often receives much of the 

focus of research with little or no attention being given to the higher moments of 

parameters.  As seen in the case study detailed in Chapter III, matching only the mean is 
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often insufficient in developing an accurate performance model.  However, even after a 

performance model is validated and higher-moment matches are achieved for 

performance parameters, the effects of variability can still have significant effects on 

system performance.  Thus, it is important and beneficial to study the effects of higher 

moments (e.g., variance) in performance modeling and evaluation. 

 The MOSS simulator presented in Chapter IV is useful in conducting various 

sensitivity analysis experiments to determine the effects of variability on workload 

parameters.  In doing so, many interesting results have been presented.  However, these 

results represent only the initial steps in the exploration of the higher moment effects in 

performance modeling.  Through simulation and analytical techniques, the role of 

parameter variance in evaluating the performance of systems can be further investigated.   

 Variability is inherently found in most real-time systems and it can be introduced by 

the workload itself, hardware failures, and uncontrollable environmental factors.  It is 

shown that by incorporating the effects of variability directly into scheduling routines 

(Chapters VI and VII), the performance of scheduling algorithms can be improved.  For 

example, the TLAX algorithm can outperform EDF by as much as 50% in heavy load 

conditions.  Further, TLAX is much less susceptible to changes in the workload 

variability when compared to traditional scheduling algorithms.  These results can guide 

the development of scheduling algorithms that maintain consistent performance 

regardless of system load or changes in workload variability.   

 The method of stages framework, MOSS, and MSAT are all powerful modeling tools 

that can be further exploited to provide insights into the effects of workload variability on 

system performance.  In the last year, it has been demonstrated that variable behavior 
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found in task workloads is often self-similar and can exhibit irregularity on many 

different scales [30].  This type of study helps to revive interest in topics such as 

workload characterization and analysis, evaluation of scheduling algorithms, and 

performance improvement techniques.  We hope this work will help guide future research 

efforts and motivate the explicit incorporation of variance in performance modeling. 

9.3 Summary of Research Contributions 

The main contributions of this work are summarized as follows: 

1. Case Study of an Enterprise Grid Environment 

We developed a performance model of a large grid environment using Colored Petri 

Nets.  The difficulty encountered in validating the performance model led to the novel 

development of a three-step job generator that accurately achieves a two-moment 

match for performance parameters.  Using capacity-planning scenarios, we 

demonstrate that the validated model is a good tool for predicting the effects of 

changes made to the real-world system.  It is observed that changing the variance of a 

single workload parameter significantly affects the estimated system performance.  

This motivated the further study of the effects of variability on system performance 

and led us to the method of stages modeling technique.    

2. Uniform Sensitivity Analysis Experiments 

We adopt the method of stages modeling technique and apply it to performance 

analysis and evaluation in soft real-time systems.  This technique provides a flexible 

and powerful modeling framework that allows the first two moments of performance 

parameters to be matched.  In addition, the workload variance can be systematically 

controlled and investigated in a uniform manner, allowing the effects of variance to 
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be methodically investigated.  In this work, several interesting observations are made 

and heuristics (see Section 9.4) are developed to summarize many of the important 

findings from our work.  The basic framework of the method of stages, where real-

world processes are modeled by a series of discrete stages, can be applied to other 

areas of research outside of distributed or real-time systems.  For example, warehouse 

management systems, supermarket distribution mechanisms, and even parking lot 

customer behavior all contain variability that can be modeled by discrete processes 

using the method of stages technique. 

3. Method of Stages Simulator 

We develop a simulation tool called MOSS (Method Of Stages Simulator) that uses 

the method of stages to help analyze the effects of variance in real-time scheduling.  

MOSS includes many advanced features, such as a setup and installation program, 

extensive help documentation, an intuitive graphical user interface, and a built-in 

configuration file editor.  Future enhancements to MOSS have been explored via a 

discussion of the enhanced prototype currently in development.  MOSS achieves a 

two-moment match for the inter-arrival times, service times, and deadline times of 

each task stream comprising a workload.  By changing a single parameter, the 

number of stages, the user can model various distributions and simulate conditions 

ranging from soft to hard real-time environments.  Using MOSS to study the effects 

of variance on existing scheduling algorithms, as well as to discover new state-based 

algorithms, has produced new and interesting results.  In particular, the development 

and testing of the TLAX algorithm has proven it a robust algorithm that outperforms 

the traditional scheduling algorithms. 
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4. The TLAX Algorithm 

With the help of MOSS, we develop the XLAX scheduling technique and compare its 

performance to that of traditional scheduling algorithms.  With further inspection, we 

propose the TLAX algorithm, which is simpler to describe and easier to implement.  

Through sensitivity analysis studies conducted using MOSS, we show experimentally 

that TLAX can outperform the traditional scheduling algorithms, particularly under 

heavy load conditions.  These results help demonstrate the importance of explicitly 

considering the variance in the development of performance models. 

5. Matlab State-Space Analysis Tool 

In order to help analytically validate results obtained from MOSS, we develop the 

Matlab State-space Analysis Tool (MSAT) that constructs and solves small state-

space models describing real-time environments.  A simple, but novel, representation 

of state-space diagrams is used to output compact state-space information.  

Specifically, the tool can be used to construct a complete state diagram for any model 

based on the method of stages technique, where two task streams are allowed.  A 

number of different scheduling algorithms can be evaluated using this tool, and the 

models are solved analytically to obtain exact (theoretical) performance metrics.  The 

design of MSAT provides great flexibility and makes it easy to add and test new 

scheduling algorithms, compute additional performance metrics, and output new 

summary information such as charts, graphs, and spreadsheets. 

6. Analytical Validation 

Using MSAT, we analytically validate several of the results obtained from MOSS and 

demonstrate the feasibility and accuracy of using such modeling tools.  The analytical 
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validation strengthens our confidence in the MOSS tool and we hope this and similar 

tools will be used to investigate the effects of variance in the future. 

9.4 Observations and Heuristics 

An interesting and applicable result from our work is that the changes in variability alone 

can significantly affect system performance, and these changes are load-dependent.  That 

is, depending on the system utilization, variability can both positively and negatively 

impact the overall system performance.  By studying the results from sensitivity analysis 

experiments, it is seen that the variance of task parameters has about a 15% performance 

impact on the percentage of met deadlines for systems under light load.  In general, 

increased variability degrades performance in light load situations. 

As the system load increases, the average laxity of tasks naturally decreases.  

However, the optimal amount of reserve laxity is not zero, as might be expected.  Instead, 

our work suggests that it is important to use a nonzero threshold value for laxity-based 

scheduling routines.  The performance of the TLAX algorithm suggests that the best 

threshold value is about 50%.  Further, the amount of laxity to hold in reserve increases 

as the system utilization increases.  Maintaining about 50% laxity under heavy loads 

allows TLAX to outperform traditional scheduling algorithms, and it is also robust in that 

it is insensitive to changes in workload variability.   

When the system utilization is high, increased workload variability actually boosts 

system performance.  As this trend is opposite that seen under light load, the system 

utilization is a key criterion in monitoring and improving system performance of 

scheduling algorithms.  Ideally, the intensity of workloads a system is subjected to would 

be controlled in order to maximize performance, but this option is typically not feasible 
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in practice.  However, our work shows that workload intensity factors correspond to 

ranges of overall system utilization levels.  Thus, for any given scheduling algorithm, 

there exists a preferred target utilization range that not only minimizes the effects of 

variance, but also maximizes the overall system performance.  These utilization ranges 

can be determined experimentally a priori by analysis tools such as MOSS.   

9.5 Future Work 

In this current work, we focus on workloads composed of tasks whose deadlines coincide 

with their next arrivals.  That is, we have explored only workloads for which the deadline 

of a task is its next arrival.  A deadline can also be modeled by a distinct deadline process 

that is characterized by stage-type distribution parameters that are either the same or 

different from those of the arrival process.  Thus, the role a unique deadline process plays 

in task behavior can be explored, as well as its effect on the overall system performance.  

MOSS already supports this feature and further investigation of the deadline process may 

lead to additional insights in task scheduling. 

 The effects of variability using distributions other than Erlang-k distributions (e.g., 

Coxian distributions) can be explored as well.  The next version of MOSS is already in 

development and this feature, among others, will be supported.  This will increase the 

usefulness of MOSS and allow the study of a wider range of realistic workloads while 

maintaining the systematic approach (i.e., method of stages) to modeling the effects of 

variance.   

 Also of importance is investigating the significance of the third, fourth, and higher 

moments of performance parameters to determine their impact on system performance 

and compare it to the results related to variance.  In fields such as civil and environmental 
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engineering, the position and shape of strength distribution curves have been shown to 

play an important role in predicting structural reliability [19].  Just as the variance of 

parameters is important, the less investigated higher moments that further determine the 

shape (e.g., skewness, kurtosis) of distributions may also play an important role in 

evaluating and predicting system performance.  Tools such as MOSS can help make the 

important initial steps needed in order to expand such research efforts in real-time studies 

and other related fields.  

 We have provided validation of the MOSS findings based on the analytical MSAT 

tool.  In future work, an exhaustive validation of the MOSS simulator should be done, in 

the hopes of making the use of MOSS more widespread, as well as motivating the 

development of other modeling tools based on the method of stages framework. 

Other possible topics for future work include multi-processor systems, development 

of additional state-based scheduling algorithms, conducting sensitivity analysis on 

additional scheduling algorithms (e.g., group EDF [56] and fuzzy LLF [29]), and 

experimentally evaluating the performance of TLAX and similar state-based algorithms 

in real-world environments. 
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