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CHAPTER 1 

 

INTRODUCTION 

Text partially adapted from: 

Sarett SM, Nelson CE, Duvall CL (2015). Technologies for controlled, local delivery of siRNA. 

Journal of Controlled Release, 218. 

Sarett SM (2014). Conjugation of palmitic acid improves potency and longevity of siRNA 

delivered via endosomolytic polymer nanoparticles. Unpublished master’s thesis, Vanderbilt 

University, Nashville, Tennessee. 

 

1.1 Motivation 

The discovery that double stranded RNA (dsRNA) can trigger catalytic degradation of 

messenger RNA (mRNA) has inspired more than two decades of research aimed at 

understanding and harnessing this mechanism1. Because well-designed RNA interference 

(RNAi) therapeutics can potently and specifically suppress translation of any gene, including 

intracellular targets traditionally considered “undruggable”, they have been heavily studied as a 

potential new class of pharmaceutics that can modulate drug targets that are inaccessible by 

conventional small molecule inhibitors and antibody drugs2. The pathologies of chronic wounds 

and cancers are particularly well-suited to modulation with RNAi. 

Chronic, non-healing wounds are a potentially high-impact target because sites of 

impaired healing are characterized by widespread changes in gene expression and the 

extracellular milieu relative to those of normally healing wounds3-5. Manipulation of a master 
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regulator gene, such as that encoding a transcription factor, offers the opportunity to broadly 

influence the environment at the wound, allowing for a healing and wound closure. Addressing 

this pathology necessitates localized delivery of RNAi effectors. 

Alternatively, cancer is a powerful target for gene silencing because cancer is a wildly 

heterogenous and rapidly evolving disease6. RNAi strategies are extremely versatile because they 

can be readily adapted to target any genetic sequence7. Therefore, these strategies can be easily 

altered to address cancer’s genetic diversity and capacity for drug resistance. Facile treatment of 

the majority of cancers requires systemic, intravenous delivery of RNAi mediators. 

In the development of gene silencing therapeutics, synthetic, double-stranded small 

interfering RNA (siRNA) has emerged as a leading candidate8, 9. siRNA is potentially 

advantageous in comparison to other RNAi approaches because it can directly load into the RNA 

induced silencing complex (RISC) machinery, simplifying dosing control and circumventing the 

requirement for delivery into the nucleus (e.g., as required with shRNA-encoding vectors)10, 11. 

However, emergence of translational siRNA therapies has remained slow, with the primary 

challenge being the formidable anatomical and physiological barriers that must be overcome to 

deliver siRNA to its intracellular site of action in target cell types2. 

These barriers are particularly daunting given siRNA’s poor pharmacokinetic properties; 

siRNA has a short half-life in vivo due to nuclease degradation, is incapable of effectively 

translocating the cellular membrane, and faces lysosomal degradation upon endocytosis. 

Strategies to address these issues are diverse, encompassing a wide range of carriers and 

conjugates12. However, siRNA delivery strategies are accompanied by associated side effects 

and drawbacks13. Identification of effective, potent, and biocompatible siRNA delivery strategies 

remains a significant challenge, as evidenced by the fact that an siRNA therapeutic has yet to 
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achieve clinical approval. Thus, investigation of alternative and novel strategies to improve 

siRNA’s pharmacokinetic profile is a highly impactful pursuit. 

 

1.2 Approach: siRNA hydrophobization 

Optimized polymeric and lipid carriers can protect the siRNA against degradation and 

transport it into the cell14, and the incorporation of endosomolytic moieties in these systems can 

also facilitate endosomal escape15. Encapsulation of siRNA into nanocarrier delivery vehicles is 

typically driven by electrostatic condensation of anionic siRNA with polycationic polymers or 

lipids. These polyelectrolyte formulations are hampered by poor stability in vivo, as they are 

prone to disassembly in the presence of serum proteins and during renal filtration16-18. 

Additionally, these carrier systems can elicit an immune response and cytotoxicity at high 

concentrations13. Increasing gene silencing potency and enabling the use of lower doses of the 

delivery system enhances the likelihood of siRNA’s therapeutic application. A promising 

strategy to accomplish this aim is via hydrophobization of the carrier or of the siRNA itself. 

 Increasing the hydrophobicity of cationic polymer-based siRNA delivery systems has 

been shown to correspond to improvements in gene silencing. Hydrophobization of the cationic 

carrier poly(ethylene imine) (PEI) via conjugation of lipids to the polymer maintains silencing 

efficacy while reducing cytotoxicity, although the lipid chains begin to negatively impact gene 

silencing at a threshold chain length19. Additionally, more hydrophobic poly(β-amino ester) 

(PBAE)-based delivery vehicles were shown to achieve greater transfection than comparable 

counterparts20. Further, optimizing the ratio of hydrophobic and cationic content of an siRNA-

loaded polymer nanoparticle conferred enhanced nanoparticle stability and gene silencing 

potency21. These studies demonstrate that incorporating hydrophobic components within the 
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nanocarrier, thereby facilitating hydrophobic interactions within the delivery vehicle, can allow 

for improved therapeutic efficacy. A logical extension of incorporation of hydrophobic moieties 

into the nanocarrier is to hydrophobize the siRNA cargo. 

 Hydrophobic modification of the siRNA cargo allows enhanced loading into 

nanocarriers, as encapsulation is driven not solely by electrostatic interactions but also by 

hydrophobic interactions between the siRNA molecules or with hydrophobic carrier components. 

Incorporation of siRNA conjugated to cholesterol into cationic lipoplexes resulted in lipoplexes 

with improved loading efficiency, stability, and circulation time compared to lipoplexes loaded 

with unmodified siRNA22. The potential benefits derived from dual hydrophobization of siRNA 

cargo and delivery vehicle components have yet to be fully explored. Most strategies of this 

nature exclusively explore siRNA-cholesterol, and modulation of the hydrophobic moiety is an 

attractive area for investigation.  

Hydrophobization of the siRNA has also shown therapeutic efficacy without a 

nanocarrier delivery system. The drawbacks of conventional cationic nanocarriers, including 

toxicity at high doses, preferential uptake and clearance by the mononuclear phagocyte system 

(MPS), and a large size that limits broad tissue penetration, have prompted investigation of 

siRNA conjugates that enable reduction or elimination of the nanocarrier component. Lipid-

conjugated siRNA has been explored as a means of gene silencing without an additional carrier23, 

24. Hydrophobic modification of siRNA with lipidic moieties imparts resistance to degradation 

by nucleases and facilitates increased interaction with the cellular membrane, improving siRNA 

uptake25, 26. Additionally, the biocompatibility and physiological relevance of lipids allows 

modified siRNA to leverage endogenous lipid trafficking mechanisms. For example, cholesterol-

siRNA associates with high and low density lipoproteins in serum, which naturally distribute to 
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the liver, and carrier-free hepatic gene silencing has been achieved with siRNA-cholesterol 

conjugates27, 28. 

Palmitic acid (PA) conjugation was found to be a superior modification for siRNA 

compared to cholesterol, various aromatic groups, and additional lipidic moieties29, 30. 

Specifically, PA conferred increased stability to siRNA while also enhancing cellular penetration 

and gene silencing beyond that achieved via other hydrophobic modifications25, 26. While siRNA-

PA exhibited some silencing activity without a carrier system, it was most efficacious in 

combination with the commercial lipidic vector Lipofectamine 2000. Importantly, the 

development of siRNA conjugates that effect potent gene silencing in non-hepatic tissues 

remains an unmet need. Evaluation of a more diverse set of hydrophobic molecules for siRNA 

conjugation will provide further insight and allow development of more successful therapeutic 

approaches. 

 

1.3 Innovation 

 To date, exploration of siRNA conjugates has been less extensive than investigation into 

nanocarrier-based delivery strategies. As discussed, achieving silencing in non-hepatic targets 

remains a significant challenge and limits the applicability of previously reported siRNA 

conjugates. Investigation of novel, strategically chosen hydrophobic moieties for siRNA 

modification will allow development of superior siRNA conjugates for 1) local delivery from 

biomaterial scaffolds for regenerative medicine applications and 2) systemic, intravenous 

delivery for cancer therapies. 

 Effective local siRNA delivery from a biomaterial scaffold requires an siRNA conjugate 

system that impacts potent gene silencing, maintains high biocompatibility, and exhibits 
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sustained release from the scaffold. As mentioned, monovalent hydrophobic modification of 

siRNA with PA improves stability, cellular uptake, and silencing potency beyond unmodified 

siRNA25. Additionally, PA modification is expected to enable greater retention of siRNA in 

partially hydrophobic biomaterial scaffolds. Thus, siRNA-PA is a promising candidate for a 

local, scaffold-based delivery application. However, monovalent hydrophobic modification of 

siRNA may not be sufficient to induce potent carrier-free silencing; previous reports utilized a 

high (micromolar dose) in in vitro studies. Combination of siRNA-PA with a polymer 

nanocarrier system is a unique alternative to its carrier-free use that could improve the potency of 

the delivery system. Alternatively, a rational strategy to address the potential shortcoming of 

monovalently hydrophobic siRNA-PA is a multivalently hydrophobic siRNA conjugate, which 

to date has never been evaluated. A multivalently hydrophobic siRNA conjugate is hypothesized 

to facilitate stronger hydrophobic interactions with the cell membrane and the biomaterial 

scaffold, promoting enhanced cellular uptake and scaffold retention, respectively. Development 

of a multivalently hydrophobic siRNA conjugate is a wholly novel approach that could have 

broad utility in local, scaffold-based RNAi therapies, which currently show immense promise in 

regenerative medicine. 

 Designing an optimal siRNA conjugate for intravenous administration requires 

consideration of the delivery challenges unique to systemic delivery. Of particular concern is the 

rapid renal clearance of unmodified siRNA, which has a circulation half-life of less than 2 

minutes. Leveraging endogenous proteins as chaperons for siRNA could extend the circulation 

half-life of siRNA. It has been noted that cholesterol- and α-tocopherol-modified siRNA 

associates with serum lipoproteins24, 27, whose physiological role is transportation of these 

molecules. While lipoproteins deliver their cargo primarily to the liver, the most abundant serum 
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protein albumin, a natural fatty acid carrier, does not target a specific organ. Thus, albumin’s 

extremely prolonged circulation time (on the order of weeks)31 could facilitate distribution of 

siRNA to a non-hepatic target. We have identified a hydrophobic moiety that binds albumin with 

high affinity, and hypothesize that conjugation of the albumin-binding moiety to siRNA will 

broadly enhance its pharmacokinetic properties. Albumin has been investigated extensively as a 

carrier and a conjugate for small molecules as well as protein therapeutics; albumin-based 

therapeutics like Abraxane, Levemir, and Optison have achieved clinical relevance31, 32, 

demonstrating the translatability of this approach. However, no one has investigated non-

covalent, in situ targeting of siRNA to albumin for non-hepatic delivery. The application of 

albumin-binding siRNA to cancer is particularly promising due to the unique tumor 

microenvironment and the propensity for rapidly-growing tumor cells to internalize albumin33. 

An albumin-binding siRNA conjugate is anticipated to allow for the first demonstration of in 

vivo, carrier-free gene silencing at a non-hepatic target site. 

 Taken together, the proposed mono- or multivalently hydrophobic siRNA conjugate for 

local delivery and albumin-binding siRNA conjugate for systemic delivery are unique 

approaches to address the delivery barriers limiting RNAi therapy development. Development 

and investigation of these conjugates carrier-free and in concert with polymer nanocarriers will 

be a strong contribution to a growing knowledge base that will enable the translation of siRNA 

therapeutics to the clinic. 

 

1.4 Specific aims 

 The overall goal of this project is to broaden the therapeutic index of small interfering 

RNA (siRNA) therapies by developing siRNA conjugates that enable potent and sustained gene 



 8 

silencing while maintaining high treatment biocompatibility. We hypothesize that siRNA 

conjugation with mono- or multivalent hydrophobic moieties will improve siRNA’s 

pharmacokinetic properties, notably stability, cellular uptake, bioavailability, and 

potency/longevity, resulting in enhanced therapeutic efficacy and facilitating clinical translation 

of RNAi therapies. We evaluate this hypothesis through completion of the following aims: 

 

Specific Aim 1: Synthesize an siRNA-palmitic acid (PA) conjugate and evaluate in combination 

with nanoparticle carriers in vitro for application to local, systemic delivery strategies. 

Conjugation of siRNA to palmitic acid (PA) has been found to be superior to various aromatic 

groups and additional lipidic moieties in potentiating siRNA gene silencing efficacy and cellular 

internalization. siRNA conjugated to PA or unmodified siRNA will be packaged into our 

established polymer nanoparticle (NP) systems optimized for local or systemic delivery. We will 

evaluate cellular uptake and gene silencing in cells relevant to local delivery-focused, 

regenerative medicine applications (mouse fibroblasts (NIH-3T3s) and mesenchymal stem cells 

(MSCs)) as well as in cells relevant to systemic delivery-focused, cancer treatment applications 

(the triple negative human breast cancer cells MDA-MB-231s and MCF7s). Additionally, we 

will investigate the loading capacity and resistance to disassembly of NPs incorporating siRNA-

PA. We anticipate that siRNA-PA will act synergistically with polymer NP systems to enhance 

silencing potency and longevity overall while reducing the required polymer dose, thereby 

broadening the therapeutic index of these treatment strategies. 

 

Specific Aim 2: Synthesize siRNA conjugated to strategically-chosen hydrophobic moieties and 

evaluate carrier-free in vitro for application to local, systemic delivery strategies. Both lipidic 



 9 

vectors and cationic polymers can provoke the induction of inflammatory cytokines and 

interferon responses, and cationic delivery vehicles are known to cause toxicity associated with 

their high surface charge. Reducing or eliminating the need for a nanocarrier is thus a highly 

impactful pursuit. For local delivery applications, we propose to conjugate siRNA to a 

copolymer containing the reactive group pentafluorophenyl acrylate (PFPA), which allows for 

decoration of the polymer with multiple hydrophobic moieties. In contrast to the single PA 

molecule on siRNA-PA, the higher concentration of hydrophobic molecules on the polymer-

siRNA conjugate is anticipated to facilitate greater and sustained interaction with the cellular and 

endolysosomal membranes. We will synthesize and characterize the multivalent siRNA-polymer 

conjugate. For systemic delivery applications, we have identified a divalent lipid moiety that 

binds to albumin. We hypothesize that conjugation to this albumin-binding moiety will allow 

siRNA to leverage albumin as an endogenous nanocarrier and enhance its pharmacokinetic 

properties. We will evaluate albumin-binding siRNA’s stability, in vitro cellular uptake in MDA-

MB-231s and MCF7s, and circulation half-life and biodistribution in CD31 mice. The studies 

described in aims 1 and 2 will result in identification of lead siRNA conjugate systems for both 

local and systemic delivery applications. 

 

Specific Aim 3: Investigate lead siRNA conjugate systems in vivo in therapeutically-relevant 

models for local, scaffold-based delivery at sites of impaired wound healing and systemic, 

intravenous delivery to tumors. In the local delivery setting, siRNA designed against prolyl 

hydroxylase 2 (PHD2) and delivered in nanoparticles from a biodegradable scaffold has shown 

promise for treatment of chronic wounds. Additionally, we have previously established the 

capacity of poly(thioketal) urethane (PTK-UR) scaffolds to promote wound healing. After 
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identifying a lead siRNA conjugate-based therapeutic for local delivery, we will incorporate the 

therapeutic into PTK-UR scaffolds, and assess its efficacy in vivo in previously established 

models of impaired wound healing (rat ischemic wound models). We will evaluate PHD2 

silencing via real time RT-PCR and blood vessel development and tissue ingrowth via 

histological staining. In the systemic delivery setting, nanocarrier-based delivery of RNAi cancer 

therapies has proven complex and challenging. We will identify a lead siRNA conjugate for 

systemic delivery and assess it in vivo in orthotopic and patient-derived xenograft triple negative 

breast cancer models in mice. We will evaluate silencing of a model gene, distribution to tumors, 

and penetration and uptake at the site of tumors. These investigations will yield valuable insight 

into the therapeutic efficacy and translatability of our siRNA conjugate-based therapies in the 

pathologies of chronic wounds and cancer. 

 

 In summary, the principal goal of this work is to develop siRNA conjugate-based 

delivery systems that are optimized for 1) local, biomaterial scaffold-based delivery for treatment 

of chronic wounds or 2) systemic, intravenous delivery for cancer treatment. We anticipate that 

these siRNA conjugate-based systems will reduce immunogenic effects related to conventional 

siRNA transfection strategies while maintaining potent and sustained gene silencing. This 

combination will broaden the therapeutic index of the RNAi therapies, enhancing the probability 

of clinical success and translation. 

 

1.5 Outline 

 This dissertation describes the development of hydrophobically-modified siRNA 

conjugates and their evaluation for therapeutic efficacy in local and systemic delivery platforms. 
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Chapter 1 provides the motivation for this work and brief introductory information and outlines 

the specific aims that will be addressed. Chapter 2 details comprehensive background 

information on the characteristics and mechanism of action of siRNA, barriers that impede 

siRNA’s delivery to its target site (encompassing general barriers as well as those specific to 

local and systemic delivery), and existing strategies to improve siRNA’s delivery. Background is 

also given on the two therapeutic focuses of this work, chronic wounds and cancer. Chapter 3 

describes the evaluation of siRNA modified with the lipid palmitic acid (siRNA-PA) in 

combination with a polymer nanoparticle carrier system tailored to local delivery applications for 

gene silencing potency and longevity. Chapter 4 expands upon the utility of siRNA-PA through 

investigation in concert with nanoparticles designed for intravenous administration, with a focus 

on pharmacokinetics, physiological stability, and gene silencing in tumors. Chapter 5 details the 

development of a novel albumin-binding, lipid-based siRNA conjugate (siRNA-L2) and its 

evaluation carrier-free as a potentially transformative oncological therapeutic. Chapter 6 explains 

the strategy and progress in synthesis of siRNA conjugated to a multivalently hydrophobic 

polymer for use in local RNAi therapies. Finally, Chapter 7 concludes this work with a broad 

summary and assessments of its significance, possible limitations, and promising futures 

directions. 
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CHAPTER 2 

 

BACKGROUND 

Text partially adapted from: 

Sarett SM, Nelson CE, Duvall CL (2015). Technologies for Controlled, Local Delivery Of 

siRNA. Journal of Controlled Release, 218. 

Sarett SM (2014). Conjugation of Palmitic Acid Improves Potency and Longevity of siRNA 

Delivered via Endosomolytic Polymer Nanoparticles. Unpublished master’s thesis, Vanderbilt 

University, Nashville, Tennessee. 

Sarett SM, Werfel TA, Jackson MA, Kilchrist KV, Brantley-Sieders D, Duvall CL (2017). 

Lipophilic siRNA Targets Albumin in Situ and Promotes Bioavailability, Tumor Penetration, 

and Carrier-Free Gene Silencing. PNAS, Under review. 

Sarett SM, Werfel TA, Chandra I, Jackson MA, Kavanaugh TE, Hattaway ME, Giorgio TD, 

Duvall CL (2016). Hydrophobic Interactions between Polymeric Carrier and Palmitic Acid-

Conjugated siRNA Improve PEGylated Polyplex Stability and Enhance In Vivo 

Pharmacokinetics and Tumor Gene Silencing, Biomaterials, 97. 

Sarett, SM, Kilchrist, KV, Miteva, M, Duvall, CL (2015). Conjugation of Palmitic Acid 

Improves Potency and Longevity of siRNA Delivered via Endosomolytic Polymer 

Nanoparticles. Journal of Biomedical Materials Research Part A, 103. 
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2.1 siRNA mechanism 

The molecular phenomenon of RNAi-based post-transcriptional gene silencing, first 

termed “reversible co-suppression”, was unraveled following the unexpected observation by 

Napoli et al. in 1990 that introduction of a transgene intended to overexpress chalcone synthase 

(CHS, a gene for flower pigmentation) yielded more white flowers and was associated with a 50-

fold reduction of CHS mRNA34. The gene silencing capability of antisense 

oligodeoxynucleotides (ODNs) was first elucidated, but it was discovered soon thereafter that 

double-stranded RNA (dsRNA) are capable of achieving 100 to 1000-fold more potent gene 

suppression than ODNs35. The delivery of dsRNA of varying lengths, siRNA, short hairpin RNA 

(shRNA), and plasmids expressing shRNA can trigger gene-specific silencing, which is optimal 

when there is full complementarity between the guide strand and the target mRNA sequence9, 36.  

These synthetic dsRNA molecules are more effective than ODNs because they “hijack” the 

catalytically-active gene silencing machinery that is integral to endogenous, negative feedback 

pathways utilized by naturally expressed microRNA (miRNA)9, 37, 38. 

When larger dsRNA are delivered to the cellular cytoplasm, they are cleaved by the 

enzyme Dicer into siRNA, which are 19-21 nucleotides in length and characterized by 3’ 

nucleotide overhangs. The siRNA strands are then separated, and the antisense or guide strand, 

recognized by a less stable 5’ end, is incorporated into the RNA-induced silencing complex 

(RISC)39. The activated RISC loaded with the siRNA guide strand binds to complementary 

mRNA and initiates its degradation. When siRNA binds completely to mRNA, it facilitates 

RISC-mediated cleavage of the mRNA. However, if siRNA binds partially to the mRNA it can 

block translation to protein without mediating cleavage7, 40. Fully complementary binding is 

important because the activated RISC has enzymatic activity, enabling a single siRNA to elicit 
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the degradation of multiple mRNAs41. In contrast, synthetic microRNA (miRNA) often modulate 

multiple mRNA targets with partial complementarity and thus can influence larger systems of 

genes42. While the coordinated control of multiple, related genes through miRNA therapeutics is 

a powerful strategy, properly designed siRNA-based therapeutics are desirable because they 

offer more predictable functional effects based on modulation of specific genes. 

 

2.2 General delivery barriers 

 While discovery and development of small molecule drugs for clinical use remains an 

enormous challenge, the translation of siRNA therapeutics is fully unchartered. Thus, in addition 

to traditional drug development challenges, the “normal” pipeline for development of an siRNA 

drug for FDA clearance has yet to be established43, 44. The major difficulty faced when designing 

siRNA therapeutics is that of delivery to its site of action; synthetic dsRNA or siRNA molecules 

have relatively poor pharmacokinetic properties and thus face more formidable extracellular and 

intracellular delivery challenges relative to small molecule drugs. Oral bioavailability of siRNA 

molecules is very poor because they are relatively large, hydrophilic, and susceptible to 

degradation, and systemic, intravenous delivery of siRNA results in rapid renal filtration and 

clearance through the urine14. siRNA also has a short half-life in vivo and can be degraded by 

nucleases, especially if optimized chemical modifications are not incorporated onto the siRNA 

molecule45. Furthermore, siRNA does not readily translocate lipid bilayers, such as those that 

constitute the outer cellular membrane and the endo-lysosomal intracellular vesicles. The latter 

can cause siRNA that has been internalized by target cells to be degraded within lysosomes or 

exocytosed, rather than becoming bioavailable for interaction with the RISC machinery in the 
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cytosol14, 46, 47. For example, in the absence of a mechanism for endosomal escape, only 1-2% of 

the siRNA delivered by lipid nanoparticles is believed to be released into the cytosol and to be 

bioavailable for RISC loading and target gene silencing. There are a variety of delivery systems 

under development for overcoming these systemic and general delivery barriers14, but there 

remains a need to optimize the biocompatibility and therapeutic efficacy of these systems. 

 Utilization of siRNA therapeutically is complicated by the potential for toxicity and 

immunogenicity of both the siRNA molecules and the carriers used. siRNA molecules can 

activate Toll-like receptors (TLRs), which are a part of the innate immune system that recognizes 

and mounts an immune response against microbial invaders48-52. Additionally, siRNA can elicit 

off-target effects due to partial sequence complementarity to unintended genes or by saturating 

the cell’s RISC machinery, altering endogenous miRNA gene regulatory processes51, 53, 54. 

Furthermore, systems used to deliver siRNA can induce toxic and immunogenic consequences14. 

These inadvertent effects can override therapeutic benefits and convolute interpretation of 

experiments designed to test the functional significance of siRNA therapeutics55. These 

challenges highlight the need for diverse approaches to siRNA delivery that facilitate isolation of 

confounding variables. 

 

2.3 Modifications and carriers 

A variety of chemical modifications, conjugation strategies, and lipid/polymer carriers 

have been identified to address the challenges inherent to siRNA therapies. A commonly-utilized 

chemical modification to siRNA molecules is replacement of phosphodiester linkages with 

phosphorothioate linkages at select locations on the backbone, which confers improved 
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resistance of siRNA to nuclease degradation45, 56, 57. Further, modifications to the siRNA 

backbone at the 2’ position, such as 2’-O-methyl, endow siRNA molecules with greater stability 

and eliminate the TLR-driven immune response without impacting silencing efficacy45, 56, 58, 59. 

Careful siRNA sequence selection can also aid in avoiding modulation of non-targeted genes and 

enhance the activity at the targeted gene. Systematic, computer-aided optimization of siRNA 

sequence and design has become standard practice and accelerates identification of siRNA 

sequences likely to exhibit high target gene silencing with minimal off-target effects and 

immunogenicity45, 51. 

While optimization of siRNA sequence and chemical modifications can improve upon 

safety and efficacy, siRNA activity benefits from delivery via a carrier system in most 

applications. These carriers typically improve stability against nucleases and enhance cellular 

penetration capacity and/or endosomal escape; thus, siRNA formulation into nanocarriers is 

often utilized synergistically with systems for localized, sustained delivery14. siRNA carriers 

vary widely but commonly consist of lipids/liposomes, polymers, or viral constructs12, 14, 60-62. 

Transfection with lipids/liposomes is the most broadly utilized technique, with a variety of 

commercial reagents available that can facilitate fusion with and transport across cellular 

membranes12, 14, 63.  Similarly, cationic polymers and dendrimers are conventionally used for 

siRNA packaging, protection, and delivery. Synthetic polymers such as linear or branched PEI, 

poly(L-lysine), poly(amidoamine) (PAMAM) dendrimers, PBAEs, 

poly(dimethylaminoethylmethacrylate) (pDMAEMA), and histidine and/or imidazole containing 

copolymers, as well as natural polymers like atelocollagen and chitosan, are among the most 

extensively utilized14, 64-70. These cationic polymers electrostatically package/protect siRNA and 
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in some cases, contain secondary and tertiary amines that enable endosomal escape via the 

proton sponge effect64. 

Other polymers have also been developed that have active membrane-disruptive behavior 

triggered by the slightly acidic pH of the endo-lysosomal pathway. These polymer-based systems 

have been utilized primarily to form siRNA nano-formulations with actively endosomolytic 

cores and have been combined with a variety of micelle/polyplex surface chemistries21, 70-73. 

Several of these systems leverage a poly(DMAEMA-co-butyl methacrylate-co-propylacrylic acid 

(PAA) polymer block that is approximately charge-neutral and forms a stable micelle core at 

physiologic pH.  When exposed to a more acidic pH, the DMAEMA and PAA monomers 

become concurrently more protonated, yielding a net cationic state that triggers micelle 

destabilization and endo-lysosomal membrane interaction/disruption70. 

Cationic lipids and polymers have a number of shortcomings that are gradually being 

addressed through both rational design and high throughput synthesis/screening approaches. 

Traditional cationic transfection reagents generally provoke the induction of inflammatory 

cytokines and interferon responses, especially at high concentrations, resulting in cytotoxicity. 

Additionally, these carriers often suffer loss of activity in serum and salt-containing 

environments. Adsorption of proteins to the particle surface prompts aggregation and/or 

clearance by cells of the MPS, and the presence of counterions destabilizes polyelectrolyte 

nanoparticles, inducing their disassembly. Additionally, while the nanocarrier should remain 

stable in the extracellular environment, the siRNA must be released from the packaging system 

intracellularly in order to ensure efficient incorporation into the RISC complex14, 17. Recent and 

ongoing research addresses these concerns; bioreducible, biodegradable, and environmentally-

responsive polymers and PEGylation strategies can be utilized both to reduce cytotoxicity and to 
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incorporate mechanisms of siRNA release14, 66, 73-75. While these strategies have led to dramatic 

improvements in efficacy compared to early generation nanocarriers, their synthetic complexity 

presents another substantial barrier to clinical translation. 

 

2.4 siRNA conjugates 

Direct conjugation to molecules such as polymers, peptides, lipids, antibodies, and 

aptamers is another strategy for facilitating siRNA silencing efficacy in a non-toxic manner12, 60, 

76. Conjugation of targeting ligands, antibodies, or aptamers to siRNA has shown promise as a 

means to facilitate receptor-mediated, cell-specific uptake. For example, Alnylam demonstrated 

the in vivo silencing efficacy of trivalent N-acetylgalactosamine (GalNAc) siRNA conjugates 

and showed hepatocyte-specific uptake when delivering the conjugates carrier-free77, 78. Akin to 

Alnylam’s other therapies, this siRNA conjugate relies upon the natural trafficking of injected 

therapeutics to the liver and is not readily translatable to non-hepatic pathologies. 

With respect to antibodies, the bulk of prior research has concentrated on conjugation to 

the siRNA delivery vehicle79, 80; however, Cuellar et al. focused on direct antibody conjugation 

to siRNA. Their studies comprehensively evaluated seven siRNA-antibody conjugates, 

investigating each with and without a delivery carrier, with reducible and non-reducible linkage 

sites, and in cell lines with a range of antigen expression81. Of those investigated, only two 

exhibited carrier-free silencing at doses up to 500 nM, and the silencing achieved was lower than 

that achieved in conjunction with a lipid-based carrier. Lack of an endosomal escape mechanism 

was identified as a critical barrier to vector-free siRNA-antibody efficacy. Aptamers are an 

alternate targeting strategy, and aptamers directly fused to siRNA showed increased stability and 
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moderate gene silencing at sub-micromolar doses without the use of a transfection reagent82. 

Notably, this approach requires complex production methods, limiting its potential utility. 

Another option for siRNA conjugation is that of cell-penetrating peptides (CPPs). CPPs, 

like the HIV-derived Tat peptide and penetratin, have emerged as potent cellular membrane 

translocators, but they are also associated with concerns regarding cytotoxicity and 

immunogenicity83, 84 85-87. Additionally, the positive charge on CPPs can complicate their use as 

a conjugation-based strategy for siRNA due to the formation of aggregates that act as vectors 

similar to larger carrier vehicles. This phenomenon also convolutes gene silencing effects 

attributed to distinct CPP-siRNA conjugates. 

The strategy of coupling a peptide ligand to siRNA avoids many of the problems 

associated with CPP-conjugated siRNA, and the conjugation of siRNA to the cell-binding motif 

RGD was shown to both increase cellular uptake and facilitate gene silencing at low siRNA 

doses 88. However, the gene silencing efficacy of RGD-modified siRNA was explored solely in a 

melanoma cell line engineered to overexpress the αvβ3 receptor that RGD bind; it would be 

crucial to confirm this conjugate’s efficacy in cells expressing physiologically relevant levels of 

αvβ3. αvβ3 is of interest due to its high binding affinity for RGD and its common overexpression 

on cancerous cells89. Significantly, siRNA conjugated to divalent RGD was ineffective at 

silencing gene expression, while siRNA conjugated to tri- and tetravalent RGD had similar and 

impressive silencing effects. As cellular uptake was similar between di- and multivalent 

conjugates, the reason for this difference is undetermined but is perhaps linked to cellular 

internalization88. These results indicate the significant impact of valency on cellular association 

and other physiological interactions. Distinct from both CPP- and integrin-based approaches is 

identification of a peptide with desired cellular specificity and penetration via phage display, as 
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was accomplished by Hsu et al.; their siRNA-peptide conjugate penetrated the skin and achieved 

in vivo silencing of >40% at 10 µM in a mouse model. While the capability to penetrate skin is 

exciting, the high dose requirement is a drawback90. 

siRNA conjugation has also been achieved with more complex biologic molecules, such 

as cationic moieties and polymers. Unfortunately, siRNA modified with cationic moieties, for 

example oligospermine, induces charge-based toxicity at higher doses91. While a combination of 

both oligospermine and cholesterol was effective at improving biocompatibility, synthesis of 

these conjugates requires multiple steps resulting in low yield92. Improved synthesis and 

purification methods for cationic siRNAs allowed for silencing at lower doses and therefore 

limited toxic side effects; however, these measures add further steps before obtaining the final 

product and again result in a low final yield93. The potential for toxicity, the low yields, and the 

complications and expense associated with cation-conjugated siRNA present major barriers to 

their widespread use. 

Another effective, though complex, approach was described for the conjugation of 

siRNA to a synthetic anionic polymer via a maleic acid amide (MAA) linkage that enabled 

endosomal disruption and release of single siRNA molecules into the cytoplasm94. siRNA was 

conjugated to maleic acid amide at a very high efficiency using a one-step reaction, and siRNA 

release was triggered at acidic pH via hydrolysis of MAA94, directly addressing the endosomal 

escape barrier. However, the siRNA-polyanion constructs required packaging with a polycation 

into a polyion complex to achieve gene silencing94. Additionally, in this system the hydrolysis of 

MAA would yield a free amine group; while no cellular toxicity was seen at the doses used, this 

could pose a problem at higher concentrations. siRNA conjugated to a diverse range of PEG 

architectures has also been explored in conjunction with a range of cationic delivery agents95-97. 
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These approaches demonstrate the feasibility and potential utility of polymer-siRNA conjugates. 

However, those investigated to date have necessitated combination with a transfection aid to 

achieve potent gene knockdown. 

A leading strategy for siRNA modification is conjugation with lipid-like moieties such as 

cholesterol, α-tocopherol, and palmitic acid. These modifications hydrophobize the siRNA and 

can dramatically improve its pharmacokinetic properties, resulting in enhanced silencing activity 

when coupled to nanocarriers or delivered carrier-free24, 25, 98.  These conjugations increase 

siRNA nuclease resistance and enhance cellular internalization (by facilitating interaction with 

the cellular membrane) without detrimentally impacting gene silencing activity25, 30. Conjugation 

to cholesterol and α-tocopherol have demonstrated some potential for use without a cationic 

delivery agent, as these modifications improve stability against nuclease degradation as well as 

cellular internalization. Notably, a variant of cholesterol-conjugated siRNA is commercially 

marketed as a gene-silencing agent for use without a transfection reagent23, 24, 26, 27, 85, 99. 

However, cholesterol and α-tocopherol-conjugated siRNA require high doses (micromolar) 

before a gene silencing effect can be observed, and the gene silencing of these conjugates can 

depend on pre-incubation with lipoproteins that associate with the lipophilic moieties of the 

siRNA to facilitate uptake 27, 100, 101. The lipoproteins naturally distribute to the liver, limiting the 

relevance of these conjugates for non-hepatic pathologies. 

Conjugation of palmitic acid (PA) to siRNA has shown particular promise as a 

modification strategy to improve siRNA stability, cellular penetration, and gene silencing30. PA 

is an endogenous post-transcriptional modification commonly found on membrane-associated 

signaling proteins; while PA is involved in a wide variety of cellular functions, it is especially 

believed to influence protein-membrane interactions as well as protein uptake and intracellular 
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trafficking102-104. Motivated by the inherent effects of PA on membrane binding and 

translocation, PA-modified siRNA has been recently tested as an approach to enhance gene 

silencing in comparison to unmodified siRNA or siRNA conjugated to cholesterol in cancer cell 

lines in vitro25, 30. In these studies, PA conjugation was demonstrated to enhance knockdown of 

siRNA delivered via Lipofectamine 2000 (a commercial transfection reagent with established 

cytotoxicity) and also to enable some gene silencing in the absence of a transfection reagent at 

high (micromolar) doses13, 25. The superior cellular internalization and gene silencing efficacy of 

siRNA-PA relative to siRNA conjugated with cholesterol and various aromatic and lipidic 

moieties29, 30 makes PA a logical choice for further investigation of hydrophobized siRNA. 

Lastly, a unique strategy for in situ conjugation of siRNA has been described by Lau et. 

al., in which maleimide-functionalized siRNA binds endogenously to circulating albumin. This 

conjugation strategy is notable for its simplicity and for its capacity to improve the circulation 

half-life compared to non-functionalized siRNA. However, this strategy for intravenous RNAi 

was not applied to a particular pathology and in proof-of-concept work elicited moderate (~35%) 

gene silencing solely in the heart after four 1 mg/kg doses (the liver, spleen, and aorta were also 

investigated but displayed no significant silencing). This study is highly significant, as it is the 

first to demonstrate in vivo, non-hepatic, carrier-free siRNA silencing. It reveals the immense 

promise of leveraging albumin as an endogenous chaperone for siRNA and motivates further 

investigation tailored to a therapeutic application. 



 23 

 

Figure 2.1. A) Depiction of common cationic delivery vehicles; from left to right, depiction of a liposome as a lipid-

based carrier, depiction of a polymer nanoparticle as a polymer-based carrier, and depiction of a polymer-decorated 

iron oxide nanoparticle as an inorganic-based carrier. B) Depiction of several siRNA conjugates in development; top 

left: siRNA-antibody, middle: siRNA-GalNAc, top right: siRNA-cholesterol, bottom left: siRNA-cationic polymer, 

bottom right: siRNA-RGD. 

 

2.5 Local delivery considerations 

The broad delivery challenges of siRNA, as well as leading strategies to circumvent these 

challenges, have been discussed above. The proposed development of siRNA conjugates for 1) 

local and 2) systemic delivery necessitates further elucidation of the particular barriers and 

advantages characteristic of each situation. 
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Local delivery of siRNA emerged as a logical aim for the first forays into therapeutic 

application of siRNA. Delivering siRNA directly to its site of action circumvents substantial 

systemic delivery barriers, ensures that a sufficient dose reaches the target tissue, and lessens the 

potential for off-target side effects43. For these reasons, many of the first therapeutic applications 

of siRNA tested clinically involved local delivery (primarily topical or injection-based). 

However, initial clinical trials involving local siRNA delivery were largely disappointing and did 

not meet the high expectations of the scientific and medical communities44, 105.  These studies 

revealed unexpected concerns regarding siRNA safety (e.g., therapies based on naked siRNA 

triggered immune responses) and pharmacokinetics43, 44, 55, 105, 106. The advancement of siRNA 

molecular design principles and improved delivery systems have increased the number of 

candidate siRNA therapeutics entering the clinical pipeline, but there is currently a dearth of 

locally delivered siRNA therapeutics in testing relative to systemically delivered formulations43, 

44. An enormous opportunity exists to develop sustained-release, local delivery systems that 

enable both spatial and temporal control of gene silencing. 

 Localized siRNA delivery obviates many of the systemic delivery barriers but also raises 

unique challenges. In topical strategies, epithelial surfaces like the skin act as delivery barriers to 

target cells107. Most depot systems eliminate the dermal barrier by maintaining direct contact 

exists between the local delivery reservoir and the target cells. This scenario highlights a key 

concern for local delivery platforms, that of controlled release. A primary design interest is to 

control the kinetics of siRNA release such that duration of gene silencing can be temporally 

controlled and/or sustained without repeated treatments. Without a mechanism for controlled 

release from the delivery system, siRNA activity has a finite half-life and its activity will 

diminish over time. This is especially important in applications where the siRNA dose cannot be 
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easily reapplied, including delivery from the surface of an implanted device, delivery to sites that 

are not easily accessible and/or would require assistance from a health care professional, or 

delivery from depots that also serve as biodegradable tissue engineering scaffolds108. At sites of 

tissue repair, there is the added challenge of rapid cellular turnover and proliferation as the 

different phases of regeneration proceed; when transfected cells undergo mitosis, the siRNA 

dose is diluted amongst the daughter cells. In this challenging environment, siRNA gene 

suppression has been shown to be maximal at approximately two days post-transfection and to 

disappear almost entirely after one week2, 109. By creating delivery platforms with tunable release 

profiles, gene silencing can be customized for specific therapeutic applications and for sustained 

effect in tissues that are remodeling and/or regenerating. 

Local siRNA delivery systems and their degradation products must also be non-cytotoxic 

and should not interfere with the desired therapeutic response. Materials that degrade into 

biocompatible, resorbable byproducts eliminate the need for physical removal of the delivery 

system. For some systems, the rate at which the material degrades can be used to tune the 

temporal release profile of the siRNA110, 111. Altering the kinetics for diffusion-based release is 

also possible, for example by regulating the delivery system’s crosslinking density and/or 

porosity via synthesis techniques112-114. Of particular interest for regenerative medicine and tissue 

engineering are multifunctional, porous biomaterials that enable controlled siRNA release, 

support cellular ingrowth, and degrade at rates that match de novo tissue formation115-118. 

Therefore, many delivery systems are fabricated using materials with inherent in vivo 

degradation mechanisms; for example, scaffold and microparticle systems are commonly based 

on hydrolytically degradable polyesters such as poly(lactic-co-glycolic acid) (PLGA)112, 113, 117, 

119. However, the degradation products of PLGA acidify the local environment and can result in 
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inflammation, creating impetus for the exploration of other biodegradable systems120, 121. 

Environmentally-responsive systems that respond to cellular stimuli like proteases or reactive 

oxygen species (ROS) offer a promising alternative. For instance, biomaterials incorporating 

polythioketal crosslinkers confer ROS-dependent degradation that produces non-acidic, 

cytocompatible byproducts122, 123.  The material choice for a local delivery depot determines not 

only the degradation rate but also the adherence of cells, their viability and their phenotype. In 

addition, the affinity of an siRNA therapeutic for the material influences release and cellular 

uptake characteristics111. All of these concerns should be considered, with the goal of designing a 

system in which the reservoir and siRNA therapeutic work synergistically to elicit the desired 

cellular response. 

Another approach to engineering delivery systems for spatially confined, efficient 

cellular uptake is to leverage the phenomenon of substrate-mediated uptake118, 124. Substrate-

mediated uptake or “reverse transfection” occurs when nucleic acids immobilized on a material 

surface are internalized by cells adherent to that surface rather than being internalized via 

solution phase endocytosis or pinocytosis. Substrate-mediated delivery concentrates the 

therapeutic at the cell-material interface and can enhance transfection efficiency by 10- to 100-

fold111, 118, 124. This reduces diffusion of the siRNA away from the target site and is also 

especially relevant for tissue regenerative applications where cells adhere and grow within a 

biomaterial that possesses dual functions as a delivery depot and tissue template. 

 In most cases, localized, sustained delivery of siRNA carriers and conjugates requires an 

additional construct to serve as a depot for release of the siRNA therapeutic. To this aim, 

polymer scaffold-based delivery has emerged as a particularly promising option. The use of 

polymer scaffolds to facilitate sustained release of siRNA is a potentially transformative strategy 
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to influence local cellular behavior in tissue regenerative applications. An extensive array of 

polymers and polymer combinations has been explored for scaffold fabrication. Naturally-

derived polymers, such as physiological extracellular matrix (ECM) components and 

polysaccharides (commonly anionic alginate, agarose, dextran, and hyaluronic acid (HA) and 

cationic chitosan), are often utilized because they have inherent cell-adhesion and degradation 

mechanisms. Collagen is a particularly popular ECM biomaterial because it is a fibrous 

extracellular matrix component that is enzymatically degradable125. One of the earliest studies 

that investigated scaffold-mediated delivery as a means to control siRNA release kinetics utilized 

collagen scaffolds loaded with siRNA formulated with provokeM dendrimers126. These scaffolds 

achieved greater than 50% gene silencing at 7 days (using a 200 nM siRNA dose) in in vitro 

studies with fibroblasts, demonstrating the potential for sustained silencing via scaffold-based 

local delivery. 

While natural polymers offer advantages in terms of host cell recognition, using synthetic 

materials enables greater control over a range of scaffold properties, including the pore structure, 

degradation mechanism/rate, and mechanical stiffness/strength. PLGA offers the distinct 

advantage of highly tunable degradation rates, and PLGA scaffolds have been shown to promote 

cellular ingrowth and produce localized and long-term nucleic acid transfection in numerous 

applications118, 127. Poly(ester urethane) (PEUR) scaffolds formed from non-toxic isocyanates, 

such as lysine triisocyanate (LTI), have also been successfully adapted for the sustained delivery 

of a variety of biomacromolecules128-130. Another promising scaffold type is that comprised of 

ROS-responsive poly(thioketal)-urethane (PTK-UR), which have been shown to mediate 

improved tissue ingrowth in comparison to hydrolytically-degradable PEUR versions122. 
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For all scaffold-based delivery applications, it is vital that the vehicle for siRNA’s 

intracellular delivery can be readily incorporated into the bulk delivery depot without significant 

loss of gene silencing activity. Lyophilization of siRNA-loaded poly- and lipo-plexes can reduce 

their activity, primarily because extensive particle aggregation occurs at high concentrations. 

Several stabilization strategies have been developed to maintain gene silencing efficacy post-

fabrication into local delivery systems108, 131-133. For example, siRNA nanoparticles were shown 

to have a 50% activity loss when directly incorporated into PEUR scaffolds. However, when the 

natural sugar trehalose was used as a stabilizing agent, nanoparticle size and activity were 

retained relative to fresh siRNA formulations108, 134. Additionally, siRNA complexed with either 

chitosan or Transit TKO transfection reagent and lyophilized onto the surface of tissue culture 

plates maintained transfection efficiency only when sucrose was utilized as a lyoprotectant132. 

Sucrose stabilization showed similar efficacy as a lyoprotectant of polyplexes of DNA and 

PEI133. These results demonstrate the necessity of carefully optimizing the integration of the 

siRNA intracellular delivery system with the bulk scaffold/depot fabrication method and 

chemistry. 

While local delivery presents novel challenges, it also has inherent advantages over 

systemic delivery that make it the logical choice for translation of siRNA therapies to a subset of 

pathologies. In particular, local delivery of siRNA therapies from a biomaterial scaffold has 

emerged as a promising strategy for applications in regenerative medicine, such as the treatment 

of chronic wounds. 
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2.6 Local siRNA delivery for chronic wound treatment 

Impaired wound healing is a significant healthcare problem in the United States that 

affects more than 6.5 million people135. Patients with diabetes are ten times more likely to suffer 

amputation due to non-healing wounds, and the Center for Disease Control estimates that 1 in 3 

of today’s children will develop diabetes in their lifetime136, 137. It is anticipated that the 

prevalence of problematic skin wounds will parallel the expanding diabetes pandemic. Thus, 

there is an established, growing, and unmet clinical need for improved treatment of chronic 

wounds. 

 In normal wound healing, a coordinated combination of cellular infiltration, proliferation, 

and extracellular matrix deposition directs a transition from the initial inflammatory response at a 

site of injury to the process of tissue regeneration138, 139. Chronic wounds do not complete this 

progression and are often characterized by excessive inflammation, reduced vascularization 

(leading to an ischemic environment), rapid degradation of regenerated tissue, and lack of a 

coordinated cellular response, resulting in incomplete healing4. Impaired wound healing is a 

common long-term complication of diabetes due to a myriad of factors including inferior 

peripheral circulation and a reduction of the levels and response to growth factors5. 

Two cell types that are particularly relevant to wound healing are fibroblasts and 

mesenchymal stem cells. Fibroblasts play a key role in wound remodeling via their proliferation, 

secretion of growth factors, extracellular matrix production, and promotion of angiogenesis138. 

However, fibroblasts isolated from chronic wounds show a decrease in proliferation rate and a 

diminished response to various cytokines138, 140. While the mechanism for this alteration in 

fibroblast behavior has not been identified, this indicates that mere delivery of growth factors 

will be insufficient to fully restore normal fibroblast behavior at the site of chronic wounds. 



 30 

 MSCs are central regulators of wound healing; they modulate the inflammatory response 

and release bioactive factors that influence the migration, proliferation, and phenotype of nearby 

cells. Additionally, the capacity of MSCs to differentiate into various tissue-forming cell types 

endows them with particular value in functional tissue regeneration139. Modulating the 

characteristics and activities of cells essential to the wound healing process, such as  

fibroblasts and MSCs, is a potentially high-impact strategy for chronic wound treatment. 

Due to the complex nature of wound healing, a variety of physiological abnormalities can 

contribute to impaired healing. However, the formation of functional vessel networks is essential 

to the healing process following injury, and dysfunctional wound healing is often characterized 

by delayed or absent angiogenesis3, as the development of stable, functional blood vessels is 

essential to delivering oxygen and nutrients to cells and facilitating long-term tissue viability125, 

138.  Plasmids encoding platelet-derived growth factor (PDGF) or VEGF can promote 

angiogenesis when delivered from PLGA scaffolds, but there is evidence that the upregulation of 

a single growth factor will not be sufficient to stimulate both sprouting and maturation of 

vessels118, 141-143. While delivery of combinations of multiple growth factors can more closely 

recapitulate an environment that stimulates functional vessel formation, these strategies are 

typically complex and expensive144. siRNA provides an attractive alternative because by 

silencing one gene it can influence activity of multiple downstream targets. 

Several functional targets for stimulation of angiogenesis via genetic repression have 

been identified, the most promising among them that of prolyl hydroxylase domain 2 (PHD2). 

PHD2 is an endogenous negative regulator of the transcription factor hypoxia-inducible factor-

1α (HIF-1α)145. Potent inhibition of PHD2 results in a large up-regulation of HIF-1α and its 

downstream genes VEGF, fibroblast growth factor 2 (FGF-2), endothelial nitric oxide synthase 
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(eNOS), angiopoietin (ANGPT), and stromal cell-derived factor 1 (SDF-1)146, 147 (Figure 2.2). 

These factors orchestrate both formation and maturation of vessels and, in the case of SDF-1, 

recruit endothelial progenitors that further promote local vasculogenesis148. Because PHD2 

deficiency stimulates mature blood vessel formation, silencing its expression is of interest both in 

broad tissue engineering applications and in chronic, ischemic skin wounds149. 

 

Figure 2.2. Schematic depiction of prolyl hydroxylase 2 (PHD2) activity in normoxia (left) and hypoxia (right) in a 

normally healing wound. HIF-1: hypoxia inducible factor 1, pVHL = von Hippel Lindau protein, HRE = hypoxia 

responsive element, VEGF = vascular endothelial growth factor, SDF-1 = stromal-derived growth factor 1, PDGF = 

platelet derived growth factor, Ang II = angiotensin II, EPO = erythropoietin, iNOS = inducible nitric oxide 

synthase. 

 

siRNA’s potential role as a broad effector of angiogenesis has prompted its investigation 

as a wound healing therapeutic. The Saadeh group demonstrated proof-of concept work for 
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localized gene silencing in a wound model via an agarose matrix system containing 20 pmols of 

liposomal siRNA transfection complexes150. In this study, therapeutically relevant siRNA were 

not investigated and the ubiquitously expressed, essential mitogen-activated protein kinase 1 and 

lamin A/C genes were used as model targets. Targeting these genes facilitated demonstration of 

the localized nature of the matrix-based silencing and established that the delivery system in 

itself had no adverse effects on the wound healing process. siRNA complexes distributed in the 

agarose matrix were applied to a mouse wound and allowed to gel, then removed at 5 days and 

replaced at 7 days. At day 14, 50-60% silencing of model genes was observed specifically at the 

wound site, with protein-level knockdown observed via immunological staining and Western 

blots at day 14 and 21. However, the necessity for repeated dosing suggests that further 

optimization of the release kinetics could improve this system’s utility. This work demonstrated 

the feasibility of scaffold systems to regulate gene expression locally at wound sites as well as 

other targets150. The Saadeh group leveraged this proof-of-concept work in subsequent studies, 

discussed in detail in later sections, that target relevant genes for therapeutic applications in 

wound healing and related pathologies151-154. 

Previous work in our lab by Nelson et. al. used a PEUR scaffold loaded with 

siRNA/polymer nanoparticle complexes to investigate the impact of silencing PHD2 in a 

subcutaneous model of wound healing108, 134. The system has proven promising due to its 

capacity for tunable, sustained release and prolonged gene silencing. Tuning the release rate was 

possible by adjusting the type of isocyanate used and the amount of excipient added during 

scaffold formulation. Lysine triisocyanate (LTI) contributed to faster release than hexamethylene 

diisocyanate trimer (HDIt), and increasing the percentage of the excipient trehalose (0-5% 

incorporated trehalose was investigated) also promoted faster release108. A broad range of release 
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rates could thus be achieved, with in vitro results showing scaffolds incorporating LTI and 5% 

trehalose released all siRNA nanoparticles in 5 days while scaffolds incorporating HDIt and 0% 

trehalose released only ~5% siRNA nanoparticles over 20 days. Modulating the release rate 

elicited corresponding changes in the in vivo silencing profile. Silencing of a model gene in a 

mouse subcutaneous implant model (with 0.5 nmols siRNA/nanoparticle complexes per scaffold) 

peaked at >90%; scaffolds incorporating LTI and 0% trehalose exhibited silencing at this level at 

35 days but scaffolds incorporating LTI and 5% trehalose resulted in a silencing peak at 5 days 

and <50% silencing at 35 days. To prove the therapeutic utility of this system, siRNA against 

PHD2 was investigated in scaffolds utilizing LTI and 5% trehalose. At 14 days, 80% silencing of 

PHD2 was observed, resulting in greater than 2-fold upregulation of downstream pro-angiogenic 

markers VEGF and fibroblast growth factor (FGF). Silencing PHD2 also increased vascular 

volume within the scaffolds by more than 2-fold and increased mean vascular thickness, 

suggesting that PHD2 silencing may support both angiogenesis and vessel enlargement and 

maturation (Figure 2.3)108. This approach to local PHD2 siRNA delivery shows promise as a 

means of promoting angiogenesis in wound healing and tissue regeneration applications. 

Additionally, the sustained and controllable release from the PEUR scaffolds provides 

motivation to investigate this delivery system in other localized pathologies. 
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Figure 2.3 Sustained silencing of PHD2 increases angiogenesis within PEUR tissue scaffolds. A) Micro-CT images 

visually demonstrate the increased vasculature within the PHD2-NP scaffolds. B) Quantitative analysis of 3D micro-

CT vessel images reveals a significant increase in vascular volume within PHD2-NP-loaded scaffolds relative to 

control scaffolds containing scrambled (SCR) siRNA. *p<0.05. 

 

Vandegrift et. al. subsequently investigated PHD2 silencing as a means to promote 

angiogenesis151. They aimed to improve upon the success rate of acellular dermal matrix (ADM) 

implantation for dermal replacement and reconstruction by promoting incorporation of the ADM 

into the host tissue via vascularization. ADM was loaded with 20 pmol siRNA by soaking in 

siRNA solution. In vitro release of siRNA from ADM occurred almost immediately, with 70% 

released after 1 hour and a maximum of 80% release achieved. However, in a mouse model of a 

cutaneous dorsum wound, siRNA-loaded ADM silenced PHD2 by about 70% at 7 days and 93% 

at 14 days. While the sustained silencing contrasted with the burst release profile, further 

validation of PHD2 silencing was observed based on upregulation of VEGF and FGF mRNA 

expression by 2.3-fold and 4.7-fold, respectively, at 7 days, and VEGF and SDF-1 protein 

expression by 4-fold and 2-fold, respectively, at 14 days. The ADM integration was improved 

A B 
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but not significant; however, this local delivery system further validates the promise of PHD2 

silencing with siRNA as a pro-angiogenic therapy for wound healing. 

The reported therapeutic promise of PHD2 siRNA motivates its further investigation in 

local delivery systems to treat chronic wounds. Establishing effective and long-term gene 

silencing of PHD2 from biomaterial scaffolds while minimizing immunogenic effects is a 

promising approach to improving wound healing outcomes, and scaffold-based delivery of an 

siRNA conjugate has never been investigated. Development of a hydrophobic siRNA conjugate 

that enhances release kinetics and gene silencing from biomaterial scaffolds for applications in 

regenerative medicine and impaired wound healing is a unique and potentially high-impact 

pursuit. 

 

2.7 Systemic delivery considerations 

While local delivery may be a superior strategy for chronic wounds and other suitable 

pathologies, treatment of many disease states necessitates systemic delivery. For example, 

addressing metastatic carcinomas and systemic infections requires broad therapeutic 

distribution155. Additionally, systemic delivery strategies are generally less invasive and more 

easily administered than local therapies, which confer significant advantages in the transition to 

clinical relevancy. However, the obstacles to development of an effective, systemic siRNA 

therapy are numerous and challenging to address. 

First, naked siRNA has extremely poor pharmacokinetic properties for systemic 

administration. The typical systemic delivery route for RNAi therapies is intravenous injection; 

however, injection of unmodified siRNA results in rapid clearance from the bloodstream (naked 
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siRNA has a circulation half-life of less than 2 minutes)73. The short half-life of siRNA is 

attributed primarily to immediate renal filtration, which occurs through the pores of the 

glomerular membrane for molecules of a size less than approximately 5 nm16, 156. siRNA, with a 

hydrodynamic diameter of around 2 nm, is almost completely cleared in its first pass through the 

kidneys and excreted in the urine. Avoiding rapid clearance and prolonging the circulation half-

life is critical to the efficacy of systemic siRNA therapies, as enhancing circulation persistence 

directly increases bioavailability. Further limiting the utility of naked siRNA is its rapid 

degradation by serum nucleases and poor capacity to translocate the cellular membrane. As 

mentioned, unmodified siRNA is unstable and generally incapable of eliciting cellular uptake. 

Therefore, siRNA that avoids rapid clearance remains relatively impotent. There is a myriad of 

intelligently-designed and effective siRNA delivery strategies intended to specifically to enhance 

siRNA’s therapeutic utility in systemic applications, but there remain notable drawbacks to these 

systems. 

By far the most widely investigated, prevalent, and successful strategy for systemic 

delivery of siRNA is that of nanocarrier-mediated delivery. Nanocarriers, which are generally of 

sizes ranging from 20 to hundreds of nanometers, are too large to readily pass through the pore 

of the glomerular membrane and therefore avoid the swift renal clearance characteristic of 

siRNA157. Nanocarriers can also protect siRNA from degradation, and mediate its cellular 

internalization and endosomal escape17, 21, 158. Unfortunately, these distinct advantages are 

associated with significant drawbacks. 

Intravenously-administered siRNA nanocarriers are prone to opsonization by serum 

proteins and activation of the complement cascade, resulting in an innate immune response and 

phagocytosis by monocytes and macrophages159, 160. Compounding this undesirable and rapid 
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clearance, activation of the immune system triggers production of inflammatory cytokines and 

interferons that can lead to undesirable side effects. Cationic surfaces favor rapid protein 

adsorption and therefore are particularly poorly suited for systemic delivery161. Because efficient 

siRNA loading often requires incorporation with a cationic moiety, generation of a neutral or 

anionic outer layer that shields the cationic carrier from serum proteins has emerged as the most 

promising strategy to produce siRNA nanocarriers that can evade recognition by the immune 

system. The gold standard for preparation of “stealthy” nanocarriers is surface modification with 

PEG chains162-166. PEG is an anionic, extremely hydrophilic polymer that adopts an extended 

conformation at the nanocarrier surface and effectively resists protein adsorption. PEGylation of 

both nanoparticles and liposomes has been shown to dramatically enhance their circulation time. 

The optimal PEG length and density varies depending on carrier type; for liposomes, an optimal 

PEG density balances stealth properties with liposomal stability, and longer PEG chains (20 

kDa) were shown to enhance circulation half-life of siRNA micelles relative to shorter chains (5k 

and 10k)167. Tuning the nature of a PEG coating is essential to confer effective shielding. For 

example, PEGylation of siRNA matrix nanoparticles did not confer pharmacokinetic benefits, 

likely due to inconsistent or incomplete PEG covering163. Notably, while PEGylation prolongs 

circulation persistence and reduces immune activation, PEGylated nanocarriers exhibit reduced 

cellular internalization and capacity to induce endosomal escape, essential properties for an 

siRNA delivery vehicle167. This dilemma inspired the development of nanoparticles that can shed 

their PEG layer in response to strategically-chosen external stimuli72. It also motivated the 

investigation of alternative stealth coatings, such as anionic linear polysaccharides and 

zwitterions166. While immense progress has been made in developing design parameters that 
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yield effective and non-immunogenic nanocarriers for systemic delivery, development of a fully 

non-immunogenic nanoparticle delivery vehicle is a challenging and as yet unsolved problem. 

In addition, siRNA nanocarriers are subject to destabilization and disassociation in the 

challenging in vivo environment. siRNA association with delivery vehicles is typically driven by 

electrostatic forces. The presence of charged serum proteins and salts in the bloodstream can 

destabilize nanocarriers over time, and the renal glomerular basement membrane presents a 

particularly stringent stability challenge156, 168. The glomerular basement membrane is 

characterized by a profusion of negatively charged proteoglycans, like heparan sulfate, that can 

rapidly destabilize polyelectrolyte siRNA nanocarriers, resulting in release and clearance of 

siRNA cargo. This challenge has been addressed through modification and optimization of 

delivery vehicle design21, 161. Incorporation of hydrophobic components into siRNA nanocarriers 

has emerged as a capable strategy to improve carrier stability, cellular uptake, and 

cytocompatibility169, 170. For example, siRNA polymer nanoparticles that leverage hydrophobic 

interactions in addition to electrostatic forces demonstrate superior stability, circulation time, and 

gene silencing efficacy21 (Figure 2.4). The ratio of hydrophobic and cationic content was a key 

determinant of these properties. Distinct from hydrophobic modification of the nanocarrier, Oe et 

al. proved that hydrophobization of the siRNA cargo through cholesterol conjugation facilitates 

siRNA loading and enhances the stability of polyion complex micelles22. A promising, but as yet 

uninvestigated, approach to further enhance nanocarrier stability is the combination of 

hydrophobized siRNA cargo with a partially hydrophobic delivery vehicle. 
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Figure 2.4. Schematic depiction of siRNA-loaded nanoparticle (NP) interaction with the glomerular basement 

membrane of the kidney. Left: broad view of a renal capillary after intravenous administration of siRNA NPs. 

Middle: hydrophobically and electrostatically stabilized siRNA NPs resist dissociation. Right: electrostatically 

stabilized siRNA NPs are destabilized by counterions in the renal membrane. PEG-(DMAEMA-co-BMA) refers to 

PEGylated nanoparticles incorporating hydrophobic (BMA; butyl methacrylate) and cationic (DMAEMA; 

dimethylaminoethylmethacrylatez) core components, while PEG-(DMAEMA) refers to PEGylated nanoparticles 

with a solely cationic core. 

 

An alternative option to improve the stability of siRNA nanocarriers is through 

compound formulation strategies or the use of inorganic carrier components. siRNA-

encapsulating nanoparticles fabricated through water-in-oil-in water (W/O/W) emulsion methods 

impart significant pharmacokinetic advantages171 but result in poor loading efficiency, high loss 

of siRNA during fabrication, exposure of siRNA to potentially damaging organic solvents, and 

formation of nanoparticles with high weight ratios of carrier polymer(s) relative to siRNA cargo. 

Covalent crosslinking of nanocarriers subsequent to siRNA loading can also enhance their 

resistance to disassociation and thus their circulation persistence. Often, crosslinks are comprised 
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of cleavable or reducible linkages, affording the opportunity to design stimuli-dependent release 

of siRNA172, 173. Nanocarriers based on inorganic materials (e.g. gold, iron oxide, silica) are 

highly stable and generally avoid the toxicities associated with cationic components of polymeric 

and lipid nanocarriers174. For example, the use of siRNA-coated gold nanoparticles has shown 

promise as a non-toxic and effective gene silencing mechanism in topical applications175. A 

notable issue is that these inorganic carriers remain in the body post-siRNA delivery and the 

impact of accumulation and long-term presence of these particles remains uncertain. 

Further, while properly designed nanocarriers can diminish rapid renal clearance, they 

ultimately exhibit preferential accumulation in the MPS organs of the liver and spleen176. The 

cationic components of siRNA nanocarriers are prone to induction of dose-limiting toxicities in 

these organs13. Engineering delivery vehicles to be biodegradable enhances this biocompatibility, 

as small individual components are amenable to physiological clearance mechanisms. Naturally 

biodegradable PBAE-based siRNA carriers display low cytotoxicity while maintaining gene 

silencing efficacy158. The high modularity and tunability of synthetic polymers allows 

incorporation of biodegradable linkages or components that improve carrier biocompatibility. 

Poly(DMAEMA) is a common component of polymer-based siRNA carriers, and Zhu et al. 

noted that a triblock polymer with poly(DMAEMA) on terminal ends and biodegradable 

poly(caprolactone) spanning the middle was a cytocompatible strategy for siRNA delivery177. 

Another strategy to lessen off-target, toxic effects of siRNA nanocarriers is to target them to the 

specific targeted site. Davis et al. reported the first instance of successful gene silencing in 

humans by a systemically-delivered siRNA therapy using PEGylated cyclodextrin nanoparticles 

decorated with targeting ligands for the transferrin protein, which is upregulated in malignant 

cancer cells178. Another study evaluated delivery of siRNA to subctutaneous flank tumors in 
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mice via PEGylated chitosan nanoparticles αvβ3 integrin bearing tripeptide RGD motifs, 

revealing enhanced therapeutic efficacy for the targeted siRNA nanoparticles179. The αvβ3 

integrin is commonly overexpressed on cancer and nearby endothelial cells and is a typical 

choice for active tumor targeting. Each of these strategies aimed to diminish the prevalence and 

extent of toxic side effects by limiting the exposure of siRNA nanoparticles to healthy tissue. 

However, the transferrin receptor, the αvβ3 integrin, and the vast majority of other proteins 

expressed on cellular surface are not unique to a particular cell type. While protein 

overexpression in disease states is widespread, lower expression levels of healthy or non-targeted 

cells will always result in imperfect targeting accuracy. 

Nanocarriers also exhibit poor penetration of complex tissue architectures; their larger 

size limits their capacity to diffuse through extracellular tissue structures and therefore their 

broad distribution at a target site180. As noted, avoiding renal clearance mediated by filtration 

through pores of the glomerular basement membrane requires a size greater than approximately 5 

nm, with sizes greater than 20 nm more effective at fully circumventing this barrier. However, as 

nanoparticle size increases, nanoparticle capacity to penetrate tissue and achieve internalization 

in target cells diminishes. Previous work using well-defined spherical latex particles revealed 

that, for particles 50 to 500 nm in size, cellular uptake was inversely related to particle size180. 

Alternatively, macrophages may preferentially internalize larger nanoparticles for eventual 

clearance159. Additionally, intravenously injected siRNA nanocarriers typically require 

extravasation to a targeted tissue site. The endothelial barrier in normal vasculature is organized, 

tight, and contains only small pores; while macromolecules like proteins or naked siRNA can 

capably extravasate through these pores, even the smaller nanoparticles are generally incapable 

of doing so180. 
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For this reason, systemic delivery of siRNA nanoparticles has often focused on 

leveraging physiological or pathological variations in the vasculature. In clearance organs like 

the liver and spleen, in situations of inflammation, and at sites of tumors, variations in the 

endothelial barrier allow efficient delivery of molecules of nanoparticle size180. The power of the 

endothelial barrier is evident when exploring systemic RNAi therapies currently in clinical trials; 

all target hepatic pathologies or cancer. Leading the field is Alnylam, which is progressing 

through late-stage clinical trials with multiple siRNA-based strategies for genetically-based liver 

diseases. One of the most advanced along the regulatory pathway is a lipid nanoparticle-based 

siRNA formulation that targets the transthyretin gene for treatment of transthyretin 

amyloidosis181, 182, which is currently in Phase III clinical trials. Though clinical trials of 

Alnylam’s trivalent GalNAc siRNA conjugate for the same indication were recently halted, 

several other clinical trials using this conjugate to address alternate liver disease targets are 

proceeding as planned. 

While Alnylam’s conjugate is specifically designed for liver targeting, development of 

siRNA conjugates capable of circulation persistence could dramatically enhance therapeutic 

penetration and facilitate broad distribution throughout a desired tissue locale. siRNA conjugates 

are by nature much smaller than nanocarriers and could prove more proficient at diffusing 

through pores in the endothelial barrier and through extracellular structures. Unfortunately, 

exploration of systemically-delivered siRNA conjugates has been largely limited to conjugates 

engineered for hepatic distribution23, 183. The albumin-binding conjugate from Lau et al., despite 

its lack of a therapeutic target, provides the sole example of an siRNA conjugate eliciting gene 

silencing in a non-hepatic organ184. Further exploration of conjugate-based, systemic RNAi 

therapies to address a broader range of pathologies is a potentially high-impact pursuit. 
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 The inherent limitations of nanocarrier systems has inspired strategic pursuit of 

intelligently-designed nanocarriers. Regrettably, improvements in nanocarrier systems are often 

accompanied by added synthetic complexity and expense. In contrast, a notable feature of 

clinically-approved nanocarriers is their extreme simplicity. In 1995, Janssen’s Doxil was the 

first nanoparticle delivery vehicle approved for clinical use185. Doxil comprises 

chemotherapeutic Doxorubicin loaded into a PEGylated liposome. Approval of other PEGylated 

liposomal formulations has followed, and inorganic nanoparticles for iron replacement therapies 

and use as imaging agents have also achieved clinical relevancy. The only non-liposomal 

nanoparticle designed for therapeutic delivery is Abraxane, an albumin nanoparticle that binds 

paclitaxel31, 186. These nanoparticles have succeeded by leveraging simple, scalable syntheses and 

non-toxic components. To achieve translation of siRNA therapies, siRNA nanocarriers must 

strike a balance, merging a minimalist, translatable approach with marked improvements in 

siRNA’s pharmacokinetic properties and distribution to the target site. 

 

2.8 Systemic siRNA delivery for cancer treatment 

 The designation of cancer encompasses a multitude of diverse pathologies. While the 

U.S. has made tremendous progress over the past several decades, reducing overall cancer 

mortality rates by 23%, cancer remains the second leading cause of death in the nation187. 

President Barack Obama’s call for an organized and collaborative scientific initiative to spur 

development of revolutionary cancer therapies signifies the immense societal benefit of tackling 

this disease. Because cancer cells are a body’s own cells transformed to behave pathologically, 

cancer is inherently personalized to each patient and variable even amongst similar cancer 
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subtypes6. This presents an extraordinary medical challenge and requires development of diverse 

and innovative treatment approaches. RNAi cancer therapies are a promising option because they 

can silence traditionally “undruggable” targets and because they can be easily tuned through 

sequence modification, addressing the issue of cancer heterogeneity. 

Despite the value of oncological RNAi therapies, the poor pharmacokinetic properties of 

siRNA have severely hindered their successful application. The delivery barriers previously 

discussed remain relevant, but several aspects of cancer physiology that impact therapeutic 

delivery are also notable. Tumor cells are characterized by rapid and unchecked proliferation, 

and their growth can outpace the development and maturation of normal vasculature188, 189. For 

this reason, blood vessels in the vicinity of tumors can be poorly organized, with parts of the 

tumor lacking access to vessel networks. The lack of consistent blood flow to tumor regions can 

result in hypoxia and acidity at these locales190. Additionally, a tumor’s requirement for rapid 

generation of vascular networks can result in disorganized vessels that contain larger gaps (of 

100 to 200 nm in size) in the normally tight endothelial barrier, allowing passage of molecules 

on the scale of nanoparticles. Similarly, the lymphatic vessels at tumor sites can be ill-formed 

and dysfunctional as well, resulting in poor drainage of interstitial fluid and macromolecules 

accumulated therein189, 191. The impaired lymphatic drainage coupled with enhanced vascular 

permeability results in a higher interstitial fluid pressure in tumors compared to the surrounding 

healthy tissue. 

In the 1980s, Maeda et al. noted that the enhanced vascular permeability coupled to the 

poor lymphatic drainage in tumors allowed chemotherapeutic-loaded nanoparticles to 

preferentially distribute to and accumulate at the site of cancer188. This phenomenon, referred to 

as the enhanced permeability and retention (EPR) effect, indicates that design of a better 
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systemic cancer therapy simply requires efficient packaging into a suitably sized (~100 nm) 

nanocarrier, which passively enables superior delivery to tumor while minimizing accumulation 

in healthy tissue. However, the EPR phenomenon as a tumor targeting strategy has recently come 

under intense scrutiny due to the discrepancy observed between pre-clinical and clinical efficacy 

of nanoparticle-based cancer therapeutics188, 191, 192. There is a growing appreciation that amongst 

wildly heterogeneous human cancers, the EPR effect may be selectively or minimally relevant. 

In particular, the widespread “leakiness” of tumor vasculature, a characteristic of simple 

and rapidly-developing mouse tumor models, has likely been exaggerated. Due to time and 

budget constraints, initial, pre-clinical research of cancer therapeutics in vivo is typically 

performed in flank or orthotopic mouse tumors models191. Subcutaneous flank tumors in 

particular have proven to be highly permissive and therefore an inaccurate estimator of the 

therapeutic efficacy of oncological nanotherapies188. Orthtopic tumor models provide a more 

stringent test but the rapid tumor progression characteristic of these models is atypical of human 

cancers193. Another relevant distinction is whether the model is syngeneic or xenograft. 

Syngeneic tumor models necessitate the use of mouse tumor cells, disqualifying the use of cells 

derived from human cancers. However, xenograft models require the use of 

immunocompromised mice to avoid immune rejection; because the immune system is known to 

play an active role in establishing the tumor microenvironment as well as in nanoparticle 

clearance, eliminating the innate immune system compromises the ability to fully evaluate the 

physiological response to a treatment strategy193. Alternate mouse tumor models, like that of the 

patient-derived xenograft (PDX), genetically engineered, or carcinogen-induced models, address 

a variety of these drawbacks194, 195. The PDX model boasts replication of the intratumoral 

complexity, heterogeneity, and genetic diversity of clinical human cancers, and genetically 
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engineered or carcinogen-induced models feature spontaneous tumor development that may 

mitigate differences observed due to excessively rapid tumor growth. However, generation of 

each of these more complex models is expensive, labor-intensive, and time-consuming. 

Therefore, the simpler subcutaneous and orthotopic models continue to dominate in preclinical 

evaluation of cancer therapies. 

The limitations of current mouse tumor models and reliance on the EPR effect observed 

in these models has led to an overestimation of the clinical efficacy of nanoparticle-based cancer 

therapeutics. Critically, a comprehensive review of the literature noted that on average 0.7% of 

an injected dose of nanotherapeutic reached the targeted tumor site. The field of nanomedicine 

has responded to these realizations with efforts to enhance understanding of nanoparticle 

performance in animal models52, 196-198, strategies to normalize tumor vasculature190, and 

systematic investigations into ideal nanoparticle characteristics196, 199. A particular challenge is 

that of penetration through avascular tumor regions and less permeable tumor vessels. The larger 

size of most nanocarrier systems severely limits their accumulation in and broad distribution 

throughout tumor sites16, 200, resulting in poor and/or inhomogeneous efficacy dependent on 

vascular architecture and tissue organization (Figure 2.5). This realization has prompted a recent 

focus on smaller (20-30 nm-sized) nanocarriers196, 201, 202. Smaller, conjugate-based therapeutics 

are another alternative that may allow more homogeneous distribution of therapeutic at the tumor 

site. Indeed, the apparent tissue permeability of the serum protein albumin (hydrodynamic size 

~7.2 nm31) is consistently more than 4-fold greater than that of 100 nm liposomes in a variety of 

mouse models of breast cancer203.  
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Figure 2.5. siRNA-loaded nanoparticles (NPs) often exhibit poor penetration of tumor architecture due to their large 

size. siRNA NPs can also exhibit destabilization in the in vivo environment. 

 

Characterization of the nature and diversity of cancer pathology is ongoing and essential 

to development of successful treatment approaches. For systemic siRNA delivery, nanocarrier-

based strategies remain the norm, and at least six siRNA-loaded nanoparticle therapies are in 

Phase I or II clinical trials for cancer treatment204. These nanocarrier-based treatments are the 

only systemically-delivered, oncological siRNA therapies currently in clinical investigation; 

results to date are inconclusive but unremarkable and dose-limiting toxicities are noted in all 

cases. The current re-evaluation of how to design and utilize an effective nanoparticle-based 
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cancer therapy may inspire further improvement of siRNA nanotherapeutics for oncological 

applications. However, despite the value of improving nanoparticle-based approaches, the 

diversity of human cancers necessitates equivalently diverse delivery approaches6, 205. Smaller, 

long-circulating siRNA conjugates may offer biocompatible alternatives that facilitate more 

homogeneous therapeutic distribution within tumors, thereby enhancing therapeutic efficacy. 
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CHAPTER 3 

 

CONJUGATION OF PALMITIC ACID IMPROVES POTENCY AND LONGEVITY OF 

SIRNA DELIVERED VIA ENDOSOMOLYTIC POLYMER NANOPARTICLES 

Text adapted from: 

Sarett, SM, Kilchrist, KV, Miteva, M, Duvall, CL (2015). Conjugation of Palmitic Acid 

Improves Potency and Longevity of siRNA Delivered via Endosomolytic Polymer 

Nanoparticles. Journal of Biomedical Materials Research Part A, 103. 

3.1 Abstract 

Clinical translation of siRNA therapeutics has been limited by the inability to effectively 

overcome the rigorous delivery barriers associated with intracellular-acting biologics. Here, in 

order to address both potency and longevity of siRNA gene silencing, siRNA conjugated to 

palmitic acid (siRNA-PA) was paired with pH-responsive micellar nanoparticle (NP) carriers in 

order to improve siRNA stability and endosomal escape, respectively. Conjugation to 

hydrophobic PA improved NP loading efficiency relative to unmodified siRNA, enabling 

complete packaging of siRNA-PA at a lower polymer:siRNA ratio. PA conjugation also 

increased intracellular uptake of the nucleic acid cargo by 35-fold and produced a 3.1-fold 

increase in intracellular half-life. The higher uptake and improved retention of siRNA-PA NPs 

correlated to a 2- to 3-fold decrease in gene silencing IC50 in comparison to siRNA NPs in both 

mouse fibroblasts and mesenchymal stem cells for both the model gene luciferase and the 

therapeutically relevant gene PHD2. PA conjugation also increased longevity of silencing 

activity, as indicated by an increase in silencing half-life from 24 hours to 186 hours. Thus, 
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conjugation of PA to siRNA paired with endosomolytic NPs is a promising approach to enhance 

the functional efficacy of siRNA in tissue regenerative and other applications. 

3.2 Introduction 

 Therapeutic application of RNA interference provides the potential to potently and 

specifically suppress transcription factors, subsets of kinases, and other signaling molecules that 

are traditionally considered “undruggable”. Unfortunately, achieving successful in vivo delivery 

of siRNA has proven a complex and difficult challenge, impeding medicinal translation of 

siRNA therapeutics. siRNA has a short half-life due to nuclease susceptibility, rapid renal 

clearance if injected intravenously, and an inability to translocate the membranes that make up 

the outer cell surface and the vesicles of the endolysosomal recycling/degradation pathways12, 47, 

206. Numerous and varied strategies have been developed in attempts to address these delivery 

obstacles, including modifications to the siRNA backbone, the use of lipids and polymers as 

carrier systems, and the conjugation of siRNA to cell-penetrating/cell-binding peptides, 

antibodies, dendrimers, and lipid-like molecules12, 19, 70, 109, 207, 208. Tremendous progress has been 

made, especially in the application of lipid nanoparticles for delivery of siRNA against hepatic 

targets, but widespread medicinal application of siRNA remains a distant goal182, 209. Thus, there 

is a continued need to better elucidate the ideal siRNA chemistry and its potential synergism 

with polymeric- and lipid-based carriers, with the goal of discovering combinations that will 

expand the therapeutic use of siRNA for a broader set of clinical indications. 

Work from our lab and others has focused on diblock copolymers that can package and 

deliver siRNA to the cytoplasm, facilitated by pH-dependent membrane disruptive activity that 

promotes endosomal escape21, 70, 134, 210. In the current work, we sought to improve the 
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performance of siRNA formulations with these promising polymers, with the goal of improving 

efficacy and longevity of action such that functional effects can be achieved at a reduced 

polymer/siRNA dose. Lessening the dose of the carrier is anticipated to be advantageous in 

reducing nonspecific side effects, as high doses of both cationic lipids and polymers can induce 

production of inflammatory cytokines and interferons, global changes in gene expression, and 

toxicity12, 13, 98, 207.  

Hydrophobization of nucleic acid delivery systems has been demonstrated to enhance 

carrier stability and transfection efficiency in a broadly applicable manner19-21, 169. The 

conjugation of hydrophobic moieties to siRNA can increase siRNA nuclease resistance and 

enhance cellular internalization without detrimentally impacting gene silencing activity25, 30. 

Direct conjugation of siRNA to cholesterol and α-tocopherol improves gene silencing efficacy in 

vivo, especially when the target site is the liver and after incubation of the conjugated siRNA 

with lipoproteins24, 28, 211. Conjugation of palmitic acid (PA) to siRNA has shown particular 

promise as a modification strategy to improve siRNA stability, cellular penetration, and gene 

silencing30. PA is an endogenous post-transcriptional modification commonly found on 

membrane-associated signaling proteins. While PA is involved in a wide variety of cellular 

functions, it is especially believed to influence protein-membrane interactions as well as protein 

uptake and intracellular trafficking102-104. Motivated by the inherent effects of PA on membrane 

binding and translocation, PA-modified siRNA has been recently tested as an approach to 

enhance gene silencing in comparison to unmodified siRNA or siRNA conjugated to cholesterol 

in cancer cell lines in vitro25, 30. In these studies, PA conjugation was demonstrated to enhance 

knockdown of siRNA delivered via Lipofectamine 2000 (a commercial transfection reagent with 
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established cytotoxicity) and also to enable some gene silencing in the absence of a transfection 

reagent at high (micromolar) doses13, 25. 

These promising siRNA conjugate results motivated the current study, which was aimed 

at testing siRNA-PA conjugates for delivery via endosomolytic polymer-based nanoparticles and 

at assessing PA conjugates in different cell lines relevant to regenerative medicine applications. 

The ultimate goal of these studies is to enhance the therapeutic potency in order to minimize the 

quantity of polymeric carrier and siRNA required, thus reducing the potential for nonspecific 

effects. We have previously delivered polymeric siRNA nanoparticles from porous, 

biodegradable polyester urethane (PEUR) scaffolds to achieve tunable and potent gene 

silencing108, 134. This approach for local siRNA delivery has shown tremendous potential in 

applications for tissue regeneration, especially through local silencing of prolyl hydroxylase 

domain protein 2 (PHD2) to promote wound healing. PHD2 negatively regulates hypoxia 

inducible factor 1α, a pro-angiogenic transcription factor, and scaffold-based delivery of PHD2 

siRNA activates a pro-angiogenic, pro-proliferation program108, 212, 213. The current studies were 

designed to assess the potential of PA conjugation for enhancing the potency and longevity of 

gene silencing of siRNA for ultimate application in wound healing. 

3.3 Experimental Methods 

Materials: Amine-modified single-stranded DNA (modification at 5’ end) or Dicer substrate 

siRNA (modification at 3’ end) and complementary single-stranded Cy5-modified DNA or 

unmodified Dicer substrate siRNA were obtained from Integrated DNA Technologies 

(Coralville, Iowa). The pGreenFire1-CMV plasmid was obtained from System Biosciences 

(Mountain View, CA), and packaging plasmids pMDLg/pRRE, pRSV-Rev, and pMD2.G were 
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purchased from Addgene (Cambridge, MA). Lipofectamine 2000 and NucBlue Fixed Cell 

ReadyProbes were purchased from Life Technologies (Grand Island, NY). RNEasy spin columns 

were obtained from Qiagen (Venlo, Netherlands), and the iScript cDNA Synthesis Kit from Bio-

Rad (Hercules, CA). NIH-3T3s and HEK-293Ts were obtained from ATCC (Manassas, VA), 

and mouse marrow stromal cells (C57Bl/6-TgNs) were purchased from Jackson Laboratory (Bar 

Harbor, ME). Propylacrylic acid was synthesized as previously reported1,2. All other reagents 

were purchased from Sigma-Aldrich (St. Louis, MO). 

Oligonucleotide-PA Synthesis and Characterization: Single-stranded amine-modified oligo was 

reacted with 100-fold molar excess of PA N-hydroxysuccinimide ester pre-dissolved at 40 mM 

in N,N-dimethylformamide (DMF). The reaction was carried out for 18 hours at room 

temperature in 45% water, 45% isopropyl alcohol, and 10% DMF. The oligo-PA was purified by 

reversed-phase HPLC using a Clarity Oligo-RP column (Phenomenex, Torrence, CA) under a 

linear gradient from 95% water (50 mM triethylammonium acetate), 5% methanol to 100% 

methanol. The conjugate molecular weight was confirmed using MALDI-TOF mass 

spectrometry (Voyager-DE STR Workstation, Grand Island, NY) using 50 mg/mL 3-

hydroxypicolinic acid in 50% water, 50% acetonitrile with 5 mg/mL ammonium citrate as a 

matrix. The yield of the oligo-PA was quantified based on absorbance at 260 nm. The purified 

oligo-PA was annealed to its complementary strand to generate Cy5-modified DNA-PA or 

siRNA-PA. Conjugation and annealing was also confirmed via agarose gel electrophoresis. 

Oligonucleotide-loaded Nanoparticle (NP) Synthesis and Characterization: A diblock 

copolymer composed of a homopolymer of 2-(dimethylamino) ethyl methacrylate (DMAEMA) 

blocked with a random copolymer of DMAEMA, 2-propylacrylic acid (PAA), and butyl 

methacrylate (BMA) was synthesized using reversible addition-fragmentation chain transfer 



 54 

(RAFT) polymerization as described previously70, 134. Assembly of NPs was triggered by 

dissolving polymer in 100% ethanol, followed by slow addition of PBS or water via syringe 

pump. siRNA or DNA (with or without PA) was mixed with NPs and allowed to electrostatically 

condense for 30 minutes. Dynamic light scattering (DLS; Zetasizer Nano-ZS Malvern 

Instruments Ltd., Worcestershire, U.K.) and transmission electron microscopy (TEM; FEI 

Tecnai Osiris, Hillsboro, OR) were used to analyze size and zeta potential of oligo-loaded NPs. 

Gel electrophoresis was used to test loading efficiency at varied amine:phosphate (N:P) ratios. A 

red blood cell hemolysis assay214 was used to determine pH-dependent membrane disruptive 

activity of oligo NPs as a marker for endosomal escape functionality. 

Production of Stable Luciferase-Expressing Cell Lines: To produce lentivirus, the pGreenFire1-

CMV plasmid and packaging plasmids pMDLg/pRRE, pRSV-Rev, and pMD2.G were 

transfected into HEK-293Ts using Lipofectamine 2000. Media was changed after 24 hours and 

supernatant containing lentivirus was collected at 48 and 72 hours. Viral supernatant was added 

directly to NIH-3T3s with 6 μg/mL polybrene or mMSCs with 60 μg/mL protamine sulfate. 

Media was changed after 24 hours. Lentiviral transduction efficiency was evaluated by GFP 

expression as analyzed by flow cytometry (BD LSR II Flow Cytometer, San Jose, CA). 

Luciferase Silencing: NIH-3T3s or mMSCs were treated with siRNA NPs or siRNA-PA NPs; 

the siRNA was either designed against the luciferase gene (luc siRNA) or was a scrambled 

sequence (scr siRNA). Cells were treated in 10% serum for 24 hours before imaging with an 

IVIS 200 imaging system (Caliper Life Sciences, Hopkinton, Massachusetts). Unless otherwise 

noted, an N:P ratio of 4:1 was used. In the investigation on longevity of luciferase silencing, the 

media was changed after 12 hours of treatment to 2% serum to prevent cellular overgrowth. 
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PHD2 Gene Silencing: NIH-3T3s were treated with siRNA NPs or siRNA-PA NPs at an N:P 

ratio of 4:1 as described above except for using prolyl-hydroxylase 2 (PHD2) siRNA. Cells were 

treated in 10% serum for 24 hours and then incubated for 24 hours, and the degree of PHD2 

knockdown was quantified by real time polymerase chain reaction (RT-PCR) using the ΔΔCt 

method and normalizing to glyceraldehyde 3-phosphate dehydrogenase (GAPDH). 

Cellular Uptake and Retention: NIH-3T3s were treated with Cy5-labeled DNA NPs or DNA-PA 

NPs in 10% serum for 12 hours at 12.5 nM. To measure retention with minimal dilution effects 

due to cell proliferation, media was then changed to 2% serum, and cells were cultured for up to 

an additional 72 hours. Intracellular fluorescence was quantified using flow cytometry at 12, 36, 

60, and 84 hours. Extracellular membrane-bound fluorescence was quenched with Trypan Blue. 

For confocal microscopy imaging studies, NIH-3T3s were treated with 25 nM Cy5-labeled DNA 

NPs or DNA-PA NPs in 10% serum for 12 hours before media was changed to 2% serum. Cell 

nuclei were stained with DAPI (using NucBlue Fixed Cell ReadyProbes), and cellular 

fluorescence was imaged using confocal microscopy at 12, 36, and 60 hours. 

To assess the mechanism of uptake of PA-conjugated oligo NPs, NIH-3T3s were pre-

treated for 30 minutes with either Dynasore (5 μM), 5-(N-ethyl-N-isopropyl)amiloride (EIPA) (5 

μM), or cytochalasin D (50 μM), which are inhibitors of clathrin/caveolin-mediated endocytosis, 

macropinocytosis, and caveolin-mediated endocytosis/macropinocytosis, respectively. Cy5-

labeled DNA-PA NPs were then added at 50 nM, and the cells were incubated with both the 

inhibitors and NPs for 4 hours in 10% serum. Intracellular fluorescence was then quantified 

using flow cytometry with extracellular fluorescence quenched with Trypan Blue. 
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3.4 Results 

Synthesis and Characterization of Oligo-PA NPs: PA-conjugated single-stranded oligos were 

successfully purified from the reactants via HPLC, and the desired products were confirmed by 

MALDI-TOF analysis (Figure 3.1) and also by an upward shift of the PA-siRNA band in 

comparison to the unmodified siRNA band on an agarose gel (Figure 3.2). Unmodified siRNA 

showed full loading into the diblock polymer NPs at an N:P ratio of 6:1, while PA-modified 

siRNA was fully loaded at a ratio of 4:1 (Figure 3.2). Oligo-PA NPs were ~10 nm larger than 

unmodified oligo NPs (48 nm vs. 38 nm), as demonstrated by DLS and TEM (Figure 3.3). Zeta 

potential was equivalent between oligo-PA NPs and unmodified oligo NPs. No difference in pH-

dependent membrane disruptive activity (i.e., as a measure of endosomolytic behavior) was 

detected between unmodified oligo NPs and oligo-PA NPs (Figure S3.1). 

 

Figure 3.1. Purification of PA-conjugated oligo. A) HPLC separation of PA-conjugated oligo from unreacted oligo, 

PA-NHS. B) Molecular-weight confirmation by MALDI-TOF mass  spectrometry, normalized to maximum 

intensity for each measurement. 
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Figure 3.2. The siRNA-PA conjugate efficiently loads into NPs at a lower N:P ratio than unmodified siRNA.  

siRNA-PA complexed completely at an N:P ratio of 4:1, unmodified siRNA at 6:1. An upward shift in migration 

time is seen for the PA-modified siRNA, further confirming successful conjugation. 

 

Figure 3.3. Oligo-PA NPs have an approximately 20% larger hydrodynamic diameter than oligo NPs. A) TEM 

images of siRNA NPs and siRNA-PA NPs. B) DLS measurement of DNA NPs (zaverage diameter = 40 nm, PDI = 

0.10) and DNA-PA NPs (zaverage diameter = 48 nm, PDI = 0.07). 

 

Gene Silencing Efficacy of siRNA-PA NPs: The influence of the difference in loading efficiency 

(i.e., N:P ratio required for full packaging) between unmodified and PA-modified siRNA was 

also investigated for gene silencing. While luc NPs showed a significant increase in luciferase 

silencing between a ratio of 4:1 and 6:1, no difference was seen in luc-PA NPs between these 
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two different N:P ratios (Figure 3.4). Greater cytotoxicity, as evaluated by the scrambled 

controls, was seen at 6:1 in comparison to 4:1 demonstrating the impact of achieving more 

efficient loading and activity with a smaller quantity of polymeric carrier (Figure S3.2). Superior 

silencing was detected for luc-PA NPs in comparison to luc NPs at all N:P ratios.  

At a fixed N:P ratio of 4:1, increased gene silencing bioactivity of luc-PA NPs over luc 

NPs was apparent in both mouse fibroblasts (NIH-3T3s) and mMSCs (Figure 3.5). The IC50 was 

calculated based on equation 1 where y is the fraction luciferase activity, x is the concentration in 

nM, and b is a fit parameter. 

Equation 1: 

50

1
1

(1 ( ) )b

y
x

IC


 



 

The IC50 of luc-PA NPs was 2.2-fold and 3.1-fold lower than that of luc NPs in the fibroblasts 

and the mMSCs, respectively, indicating that siRNA conjugation to PA significantly improves 

the gene silencing potency for a given N:P ratio. No significant difference in cytotoxicity was 

seen in the scr NPs compared to the scr-PA NPs. No significant cytotoxicity was seen below a 40 

nM dose of siRNA NPs in the fibroblasts, and no significant cytotoxicity was seen at any of the 

siRNA NP doses tested in the mMSCs. No cytotoxicity was detected for any siRNA-PA NP 

doses tested in the fibroblasts or mMSCs. 
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Figure 3.4. Superior luciferase silencing at a lower N:P ratio using luc-PA siRNA vs. luc siRNA NPs. Increasing 

the N:P ratio above 4:1 did not improve luc-PA NP silencing. These studies were done at 40 nM siRNA treatment 

for 24 hours in NIH-3T3 fibroblasts. Data are normalized to scrambled controls. 

 

Figure 3.5. Luc-PA NPs exhibited superior luciferase silencing vs. luc NPs at a range of doses. A) In NIH-3T3 

fibroblasts, the IC50 of luc NPs was 31.9 nM and of luc-PA NPs was 14.7 nM. B) In mouse MSCs, the IC50 of luc 

NPs was 37.1 nM and of luc-PA NPs was 11.9 nM. *p<0.05 for luc-PA NP silencing in comparison to luc NP 

silencing. Data are normalized to untreated cells. Small relative decreases in signal in NIH-3T3s at higher doses of 

the scr NPs are indicative of mild cytotoxicity. 
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The impact of PA modification on efficiency of silencing of the therapeutically-relevant 

gene PHD2 was also investigated. PHD2-PA NPs significantly enhanced gene silencing in 

comparison to PHD2 NPs when evaluated by RT-PCR (Figure 3.6). In fibroblasts, the IC50 of 

PHD2-PA NPs was 2.3-fold lower than that of PHD2 NPs. These data agree well with the data 

acquired using luc siRNA, confirming that the bioactivity gained through PA conjugation is 

consistent across different siRNAs. 

 

Figure 3.6. PHD2-PA NPs exhibited superior silencing vs. PHD2 siRNA NPs at a range of doses. In NIH-3T3 

fibroblasts, the IC50 of PHD2 NPs was 38.5 nM and of PHD2-PA NPs was 17.0 nM. *p<0.05 for PHD2-PA NP 

silencing in comparison to PHD2 NP silencing. Data are normalized to scrambled controls. 

 

Cellular Uptake and Retention of Oligo-PA NPs: To mechanistically explore the improved 

bioactivity achieved through PA conjugation, the cellular uptake and retention of fluorescently 
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modified DNA NPs or DNA-PA NPs were evaluated by flow cytometry at an N:P of 4:1. The 

intracellular fluorescent intensity of fibroblasts treated with DNA-PA NPs was 35-fold higher 

than those treated with the same dose of DNA NPs (Figure 3.7A). The intracellular half-life of 

the DNA vs. the DNA-PA was also investigated by monitoring the intracellular fluorescence 

over time after treatment removal and fitting the data to equation 2 where y is the fluorescence, 

y0 the initial fluorescence measured at the time of treatment removal, x is the time in hours, and λ 

is related to the half-life t1/2 by equation 3. The intracellular half-life of DNA-PA was found to 

be 3.1-fold higher than that of unmodified DNA. 

Equation 2: ( )

0 ( )xy y e                  Equation 3: 1/2

ln(2)
t


  

In support of the flow cytometry data, confocal microscopy revealed visibly increased 

fluorescence of fibroblasts treated with DNA-PA NPs in comparison to DNA NPs (Figure 3.7B). 

The overexposure of the images depicting DNA-PA NP uptake was necessary to demonstrate the 

uptake of DNA NPs under the same imaging settings and results from the large difference in 

uptake of the fluorescently labeled siRNA between the two treatments. Additionally, microscopy 

images at 0, 24, and 48 hours post-removal of treatment supported the flow cytometry results, 

demonstrating better retention of PA conjugates over time. Importantly, untreated cells showed 

no fluorescence when imaged using the same microscope settings (Figure S3.3). 
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Figure 3.7. A) Intracellular fluorescence was higher and more sustained after treatment with DNA-PA NPs vs. DNA 

NPs. Quantified by flow cytometry in NIH-3T3s, intracellular half-life of Cy5-labeled DNA NPs is 13.2 hours and 

of Cy5-labeled DNA-PA NPs is 40.6 hours. Initial fluorescent intensity of DNA-PA NPs is ~35 times that of DNA 

NPs. Data are normalized to no treatment. B) Confocal microscopy images show increased uptake of DNA-PA NPs 

vs. DNA NPs. Images are at 0, 24, and 48 hours of incubation post-removal of a 12 hour treatment. 

 

Next uptake pathway inhibitors were used to investigate the uptake mechanism of DNA-

PA NPs in fibroblasts. EIPA, an amiloride analog and inhibitor of macropinocytosis, and 

cytochalasin D, which disrupts actin filament formation and thus impedes both caveolae-

mediated uptake and macropinocytosis, significantly inhibited uptake of the DNA-PA NPs 



 63 

(Figure 3.8). Dynasore, which blocks a dynamin GTPase necessary for formation of all clathrin-

coated vesicles and for uptake through caveolae, had no effect on uptake of DNA-PA NPs. 

 

Figure 3.8. Cellular uptake, as measured by intracellular fluorescence, of DNA-PA NPs was inhibited by EIPA and 

cytochalasin D but not Dynasore. Quantified by flow cytometry in NIH-3T3s and normalized to a no inhibitor 

control (set to 100%). EIPA- and cyctochalasin D-treated groups were statistically equivalent and significantly 

different (p<0.05) compared to no inhibitor and Dynasore treatment. 

 

Longevity of Gene Silencing of siRNA-PA NPs: The longevity of gene silencing of luc-PA NPs in 

comparison to unmodified luc NPs was investigated in NIH-3T3 fibroblasts. The duration of 

luciferase silencing with luc-PA NPs was increased in comparison to luc NPs. In cells treated by 

luc NPs, luciferase activity returned to equivalent to that of untreated cells by 72 hours, while 

cells treated with luc-PA NPs exhibited no decrease in silencing between 48 and 72 hours 

(Figure 3.9). After 7 days, cells treated with luc-PA NPs still showed 40% of the silencing effect 

detected at 24 hours (28% overall luciferase silencing in comparison to cells treated with scr-PA 

NPs). Quantification of silencing half-life (based on percentage of silencing measured upon 
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treatment removal at 24 hours) using Equations 2 and 3 revealed a half-life of 24 hours post-

treatment removal for unmodified luc NPs in comparison to 186 hours for luc-PA NPs. This 

functional longevity of action corresponds to the increased intracellular half-life of DNA-PA 

compared to unmodified DNA. 

 

Figure 3.9. Luc-PA NPs silenced more effectively and over an increased duration relative to luc NPs. In NIH-3T3s 

treated at 30 nM, luc NP-treated cells recovered from luciferase knockdown by 72 hours while at 168 hours, luc-PA 

NP-treated cells still showed partial silencing. Normalized to scrambled controls. Luc-PA NP treatments elicited 

statistically greater silencing (p<0.05) than luc NP treatments. 

 

3.5 Discussion 

Direct conjugation of siRNA to targeting ligands, lipophilic moieties, or carrier 

molecules is a promising approach to enhancing knockdown efficacy and/or reducing the need 

for additional transfection reagents28, 88, 215. Palmitic acid has shown particular promise for 

increasing resistance to nuclease degradation, cellular uptake, and gene silencing in initial in 
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vitro tests using commercial lipid-based reagents30. Herein, we have characterized the 

performance of siRNA-PA relative to unmodified siRNA delivered via endosomolytic, polymer-

based NPs that have previously demonstrated efficacy both in vitro and for local scaffold-based 

delivery in vivo70, 108. The goal was to improve the potency and longevity of action of the siRNA 

and to reduce the potential for negative side effects in ultimate scaffold-based siRNA-NP 

delivery applications. 

The siRNA-PA was successfully synthesized using a one-step reaction and purified using 

HPLC (Figure 3.1). An important advantage of siRNA-PA over unmodified siRNA was its 

improved NP packaging. siRNA-PA completely loaded into the NPs at a 4:1 N:P ratio, while 

unmodified siRNA necessitated a 6:1 ratio for the polymer utilized in these studies (Figure 3.2). 

These data suggest that hydrophobization of siRNA is an efficient means to improve siRNA 

cargo loading and stability of NPs169. Other reports that nanoparticle carriers loaded with lipid-

modified siRNA form particles at lower N:P ratios and with increased stability also support this 

conclusion22, 215, 216. It is posited that interactions among siRNA molecules through the lipophilic 

moieties increase negative charge density by localizing multiple siRNA molecules; this grouping 

is proposed to improve loading by cationic agents215, 217. Additionally, aggregated lipophilic 

moieties contribute to micelle stability216. Another potential contributing factor, in our NP 

carriers in particular, is that the PA molecule may help to anchor the siRNA into the hydrophobic 

micellar nanoparticle core. These hydrophobic interactions could help to reinforce the 

electrostatic interactions between the siRNA and the poly(DMAEMA)-based NP corona. This 

hypothesis is supported by the finding that siRNA-PA NPs had larger hydrodynamic diameter 

than siRNA NPs (Figure 3.3), while unloaded NPs and siRNA NPs were the same size (data not 



 66 

shown). These data suggest that siRNA-PA impacts the overall NP packing, potentially due to 

increased interaction with the NP core. 

Next, siRNA-PA NP silencing of both the model gene luciferase and of the 

therapeutically relevant gene PHD2 was benchmarked against siRNA NPs in fibroblasts. Similar 

studies were also done in MSCs, which have relevance for tissue regenerative applications and 

represent a cell type that is notoriously challenging to transfect208, 218. The first study assessed the 

effects of the N:P ratio used in the NP formulation on luciferase silencing in fibroblasts. At every 

N:P ratio tested for an siRNA dose of 40 nM, siRNA-PA NPs produced significantly greater 

gene silencing than unmodified siRNA NPs (Figure 3.4). The largest improvement in silencing 

by siRNA-PA occurred at the lower N:P ratios of 1:1, 2:1, and 4:1. Beyond a ratio of 4:1, 

increasing the amount of polymer had no significant impact on target knockdown for siRNA-PA 

NPs. Achieving potent silencing with a lower N:P is key to minimizing detrimental treatment 

effects, as a charge ratio of 6:1 began to cause increased cytoxicity in fibroblasts (Figure S3.2). 

The siRNA-PA NPs achieved a high level (more than 70%) of silencing efficacy even at an N:P 

of 1:1, which was superior to unmodified siRNA loaded at a 4:1 N:P ratio (the standard 

formulation condition for this polymeric NP composition)70, 134. 

Gene silencing potency was also compared for the siRNA-PA NPs and unmodified 

siRNA NPs formed at a constant N:P of 4:1. In fibroblasts, the dose of siRNA-PA NPs required 

to achieve 50% gene silencing was consistently two- to three-fold lower than the dose of siRNA 

NPs needed to achieve this effect. The improved potency of siRNA-PA NPs was apparent both 

for the model gene luciferase and for the therapeutically-relevant gene PHD2 (Figure 3.5A, 3.6). 

An even greater increase in gene silencing potency of more than three-fold was observed in 

MSCs (Figure 3.5B). The polymer NPs used here have been shown to be promising for siRNA 
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delivery to MSCs210, while commercial reagents like Lipofectamine and Dharmafect have 

substantial cytotoxicity and low transfection efficiencies103, 210. Our results suggest that there is a 

synergistic effect between this polymeric carrier and PA-siRNA for transfection of MSCs, which 

reinforces findings that PA modification of polymeric carriers enhanced MSC plasmid 

transfection103.  Unlike strategies to increase bioactivity by increasing the polymer:siRNA N:P 

ratio, the siRNA conjugated to PA did not have any impact on cell viability. Because the siRNA-

PA conjugation decreases the amount of polymer needed and also increases the relative potency 

of the siRNA, it has the potential to strongly impact the therapeutic index for polymeric NP 

siRNA formulations. 

In order to better understand the mechanism for the improved gene silencing performance 

of siRNA-PA NPs, cellular uptake and intracellular retention were measured by flow cytometry. 

The results revealed a 35-fold increase in cellular uptake of DNA-PA NPs relative to DNA NPs 

in fibroblasts. This effect is attributable to the presence of PA moieties, which may 

hydrophobically interact with cell membranes. Endogenous PA modification of proteins 

facilitates membrane binding and endocytotic processes102, 104, and the number of lipophilic 

modifications on nucleic acids directly correlates to the level of association with cell 

membranes217. Therefore, the presence of multiple PA moieties on the corona of the NPs may act 

cooperatively to facilitate uptake, in combination with the positive zeta potential of the NPs. 

Previous studies of PA-modified siRNA employing Lipofectamine 2000 as a delivery agent 

showed more modest improvements in cellular uptake relative to the gains achieved herein with 

polymeric NPs25. This discrepancy is likely attributable to differences in the mechanism of 

siRNA complexation or cellular internalization achieved with each type of reagent. For example, 

cholesterol-modified siRNA loaded into cationic polymer micelles also demonstrated moderate 
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cellular uptake enhancement over unmodified siRNA in comparison to the improvement with 

siRNA-PA over siRNA in our system22. However, in this system, lipophilic siRNA was 

packaged in the core of the micelles, whereas our NP carriers load siRNA/siRNA-PA onto the 

micelleplex corona, potentially promoting multivalent PA interactions with the cell membrane. 

Investigation into the uptake mechanism of PA-conjugated oligo NPs revealed a larger 

role for macropinocytotic uptake in comparison to clathrin and caveolin-mediated endocytosis, 

as seen by the lack of uptake inhibition by Dynasore in comparison to EIPA and cytochalasin D 

(Figure 3.8). It is hypothesized that the PA modification facilitates strong uptake enhancement 

by preferentially accessing macropinocytotic pathways; this preferential uptake by 

macropinocytosis could be due to the larger size of the siRNA-PA NPs. Internalization via this 

pathway may also impact siRNA-PA NP intracellular retention and cytoplasmic bioavailability, 

as it is accepted that the endocytotic mechanism has a significant impact on the trafficking and 

ultimate intracellular fate of internalized therapeutics219, 220. For example, macropinosomes are 

believed to be leakier and to provide an easier access point into the cellular cytoplasm220, which 

may enhance the efficiency of endosomal escape and intracellular bioavailability of the siRNA-

PA NPs. These uptake inhibitor data, combined with the belief that PA conjugation improves 

siRNA resistance to degradation25, motivated investigation of intracellular retention (Figure 3.7) 

and longevity of gene silencing (Figure 3.9). Both of these studies suggested significantly greater 

persistence for siRNA-PA NPs relative to siRNA NPs. This effect is anticipated to be impactful 

for regenerative applications where repeat administration of siRNA may not be convenient or 

feasible. 

In conclusion, these studies indicated that siRNA conjugation to PA acts synergistically 

with endosomolytic polymer NP formulations. PA conjugation reduced the required ratio of 
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polymer:siRNA and improved silencing potency, which was relevant across multiple genes and 

cell types relevant to tissue regeneration. Ultimately, the siRNA-PA would significantly reduce 

the ratio of polymer:siRNA as well as the overall dose of siRNA necessary for functional gene 

silencing. Furthermore, PA conjugation significantly improved longevity of silencing of siRNA. 

Thus, utilization of siRNA-PA NPs would facilitate a sustained functional effect with less 

frequent and/or lower doses, effectively broadening the therapeutic index and enhancing the 

probability of success for siRNA applications in tissue engineering. 
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CHAPTER 4 

 

HYDROPHOBIC INTERACTIONS BETWEEN POLYMERIC CARRIER AND PALMITIC 

ACID-CONJUGATED SIRNA IMPROVE PEGYLATED POLYPLEX STABILITY AND 

ENHANCE IN VIVO PHARMACOKINETICS AND TUMOR GENE SILENCING 

Text adapted from: 

Sarett SM, Werfel TA, Chandra I, Jackson MA, Kavanaugh TE, Hattaway ME, Giorgio TD, 

Duvall CL (2016). Hydrophobic Interactions between Polymeric Carrier and Palmitic Acid-

Conjugated siRNA Improve PEGylated Polyplex Stability and Enhance In Vivo 

Pharmacokinetics and Tumor Gene Silencing, Biomaterials, 97. 

4.1 Abstract 

Formation of stable, long-circulating siRNA polyplexes is a significant challenge in 

translation of intravenously-delivered, polymeric RNAi cancer therapies. Here, we report that 

siRNA hydrophobization through conjugation to palmitic acid (siPA) improves stability, in vivo 

pharmacokinetics, and tumor gene silencing of PEGylated nanopolyplexes (siPA-NPs) with 

balanced cationic and hydrophobic content in the core (relative to the analogous polyplexes formed 

with unmodified siRNA, si-NPs). Hydrophobized siPA loaded into the NPs at a lower charge ratio 

(N+:P-) relative to unmodified siRNA, and the siPA-NPs had superior resistance to siRNA cargo 

unpackaging in comparison to si-NPs upon exposure to the competing polyanion heparin and 

serum. In vitro, siPA-NPs increased uptake in MDA-MB-231 breast cancer cells (100% positive 

cells vs. 60% positive cells) but exhibited equivalent silencing of the model gene luciferase relative 

to si-NPs. In vivo in a murine model, the circulation half-life of intravenously-injected siPA-NPs 

was double that of si-NPs, resulting in a >2-fold increase in siRNA biodistribution to orthotopic 
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MDA-MB-231 mammary tumors. The increased circulation half-life of siPA-NPs was dependent 

upon the hydrophobic interactions of the siRNA and the NP core component and not just siRNA 

hydrophobization, as siPA did not contribute to improved circulation time relative to unmodified 

siRNA when delivered using polyplexes with a fully cationic core. Intravenous delivery of siPA-

NPs also achieved significant silencing of the model gene luciferase in vivo (~40% at 24 hours 

after one treatment and ~60% at 48 hours after two treatments) in the murine MDA-MB-231 tumor 

model, while si-NPs only produced a significant silencing effect after two treatments. These data 

suggest that stabilization of PEGylated siRNA polyplexes through a combination of hydrophobic 

and electrostatic interactions between siRNA cargo and the polymeric carrier improves in vivo 

pharmacokinetics and tumor gene silencing relative to conventional formulations comprising only 

electrostatic interactions. 

4.2 Introduction  

Small interfering RNA (siRNA) has the potential to become a transformative class of 

therapeutics due to its ability to potently and specifically silence expression of genes, including 

targets considered to be “undruggable” by conventional small molecule inhibitors. However, 

clinical translation of siRNA therapies has been limited, primarily due to the formidable 

physiological barriers that must be overcome for siRNA to reach its intracellular site of action12, 

43, 47. When delivered intravenously (e.g., for tumor therapy), siRNA molecules are rapidly cleared 

through the kidneys18, 221. If siRNA reaches target cells, it lacks a mechanism to translocate bilayer 

membranes, limiting both cellular uptake and endosomal escape. To combat these myriad 

challenges, lipidic and polymeric carrier systems as well as a variety of siRNA conjugates have 

been developed that feature mechanisms to improve siRNA pharmacokinetics, stability, cellular 

uptake, release, endosomal escape, and/or site-specific targeting21, 22, 24, 25, 70, 72, 76, 78, 88, 222-226. 
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However, clinical efficacy of these delivery systems remains limited, due in large part to a 

preferential distribution to and systemic clearance through the hepatic and renal systems. As 

evidenced by therapies currently in advanced clinical trials, the natural targeting of lipid-based 

nanoparticles to the liver can be leveraged to successfully modulate gene expression in 

hepatocytes, but delivery of siRNA to other target tissues remains a challenge77, 78, 182, 209, 211, 227. It 

is thus of high significance to identify systemic siRNA delivery systems that accumulate at other 

target sites, such as tumors. 

Although the magnitude of the enhanced permeability and retention (EPR) effect in 

spontaneously-formed tumors in humans and large animals is known to be variable, it is accepted 

that for many tumor types, there is a significant correlation between nanocarrier tumor 

accumulation and blood circulation persistence (related to avoidance of clearance through organs 

such as liver and kidney)162, 228-230. Likewise, it has been observed that the magnitude of passive 

tumor uptake of nucleic acid-based nanopolyplexes is directly related to circulation time231, 232. 

Commonly, lipoplex or polyplex nano-formulations designed for intravenous administration are 

PEGylated to impart colloidal stability and to reduce opsonization and clearance by the 

mononuclear phagocyte system (MPS)73, 165, 233, 234. However, siRNA delivered by polyplexes that 

are stabilized solely through electrostatic interactions with polyplex core-forming cationic 

polymers is susceptible to rapid clearance through the kidney. This clearance is due to polyplex 

disassembly triggered by the competing interactions between the cationic polymer and the 

polyanionic heparan sulfates of the glomerular basement membrane (GBM). As a result, 

electrostatically-stabilized or polyion complex nanoparticle formulations impart only minor 

differences in pharmacokinetics (i.e., blood persistence half-life) relative to free siRNA (t1/2 siRNA 

~1 – 2 min, t1/2 siRNA nanoparticles ~3 – 5 min)18, 221, 234-236.  While siRNA-encapsulating 
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nanoparticles fabricated through water-in-oil-in water (W/O/W) emulsion methods impart 

significant pharmacokinetic advantages171, loading of highly anionic and hydrophilic siRNA into 

a hydrophobic core nanoparticle formulation is not very efficient, resulting in loss of expensive 

siRNA during fabrication, exposure of siRNA to potentially damaging organic solvents, and 

formation of nanoparticles with high weight ratios of carrier polymer(s) relative to siRNA cargo.  

The aim of the current report was to increase the stability of PEGylated siRNA polyplexes against 

polyanion-induced disassembly, limiting removal of intravenously-delivered polyplexes from the 

circulation while obviating complex and inefficient siRNA-loaded nanoparticle formulation 

processes. 

Here, we sought to improve pharmacokinetics for tumor applications by developing a 

PEGylated nanopolyplex formulation that is core-stabilized by both electrostatic and hydrophobic 

interactions between the polymeric carrier and the siRNA cargo. We recently developed 

PEGylated, core-loaded siRNA nanopolyplexes (si-NPs) with a combination of both electrostatic 

and hydrophobic stabilization due to the optimized balance of cationic and hydrophobic content 

within the polymer block that forms the polyplex core237. These si-NP formulations comprised 

unmodified siRNA and the diblock polymer poly(ethylene glycol)-b-poly(dimethylaminoethyl 

methacrylate-co-butyl methacrylate) (PEG-b-p(DMAEMA-co-BMA)) with 50 mole percent of 

both cationic DMAEMA and hydrophobic BMA monomer in the core-forming block (polymer 

termed “50B”). Relative to the analogous PEG-b-p(DMAEMA) diblock polymer (termed “0B” 

and characterized by a fully cationic core), the 50B formulation exhibited improved resistance to 

disassembly by heparin sulfates, circulation time, and endosomal escape, as well as superior gene 

silencing bioactivity both in vitro and in vivo. Here, we utilized the 50B polymer for packaging 
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and delivery of hydrophobized siRNA to evaluate the impact of providing both electrostatic and 

hydrophobic interactions between the polymeric carrier and the siRNA cargo.  

To test the hypothesis that a combination of electrostatic and hydrophobic interactions 

between the 50B polymer and siRNA cargo increases formulation stability and performance, we 

compared pharmacokinetics and bioactivity of 50B-based nanopolyplexes loaded with unmodified 

siRNA to those loaded with siRNA conjugated to the hydrocarbon palmitic acid (PA). Conjugation 

of siRNA to lipid-like moieties (e.g. cholesterol, α-tocopherol, and palmitic acid) improves 

stability and enhances cellular uptake of siRNA by increasing the hydrophobicity of the siRNA 

molecule23, 24, 26. Furthermore, conjugation to hydrophobic molecules such as cholesterol or 

palmitic acid (PA) can make siRNA more effective when delivered via polymeric delivery 

carriers22, 23, 25, 101, 238. Similarly, incorporation of hydrophobic components into the polymer carrier 

has been proven to enhance polyplex stability and cellular uptake and transfection of unmodified 

nucleic acids19-21, 169, 216, 239, 240. The Kataoka group has specifically illustrated improvements in 

stability of a polyplex micelle delivery system via separate investigations into cholesterol 

modification of the siRNA molecule or micellar components. The approach in the current work is 

unique in that we investigate the interplay between hydrophobized siRNA and a partially 

hydrophobic polymer nanocarrier (50B), facilitating hydrophobic as well as electrostatic 

interactions between cargo and carrier. To isolate the pharmacokinetic significance of hydrophobic 

interactions between hydrophobized siRNA and the 50B polyplex core versus hydrophobization 

of each component individually, both the 0B (purely cationic) polymer and unmodified siRNA 

were used as controls for in vivo pharmacokinetics studies. This experimental design elucidates 

the functional benefit of dual hydrophobization for improving in vivo stability and target gene 

silencing in an orthotopic triple negative breast cancer (MDA-MB-231) model.  
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4.3 Experimental Methods  

Materials. Amine-modified single-stranded DNA (modification at 5’ end) or RNA (modification 

at 3’ end) and complementary single-stranded Cy5-, Alexa Fluor 488- or Alexa Fluor 546-

modified DNA or unmodified RNA were all obtained from Integrated DNA Technologies 

(Coralville, Iowa). The pGreenFire1-CMV plasmid was obtained from System Biosciences 

(Mountain View, CA), and packaging plasmids pMDLg/pRRE, pRSV-Rev, and pMD2.G were 

purchased from Addgene (Cambridge, MA). Lipofectamine 2000 and NucBlue Fixed Cell 

ReadyProbes were purchased from Life Technologies (Grand Island, NY). CytoTox-ONE 

Homogeneous Membrane Integrity Assay (a lactate dehydrogenase (LDH) assay) was purchased 

from Promega (Madison, WI). PD10 desalting columns were purchased from GE Healthcare 

(Waukesha, WI). Quant-iT RiboGreen RNA Assay Kit was purchased from ThermoFisher 

Scientific (Waltham, MA). All other reagents were purchased from Sigma-Aldrich (St. Louis, 

MO).  

 

Synthesis of 4-Cyano-4-(ethylsulfanylthiocarbonyl)sulfanylpentanoic Acid (ECT) and PEG-ECT. 

The RAFT chain transfer agent ECT was synthesized as previously described, and the R-group of 

the CTA was subsequently conjugated to PEG70, 241. Briefly, dicyclohexylcarbodimide (4 mmol, 

0.82 g) was added to the stirring solution of monomethoxy-poly(ethylene glycol) (Mn = 5000, 2 

mmol, 10 g), ECT (4 mmol, 1.045 g), and DMAP (10 mg) in 50 mL of dichloromethane. The 

reaction mixture was stirred for 48 h. The precipitated cyclohexyl urea was removed by filtration, 

and the dichloromethanane layer was concentrated and precipitated into diethyl ether twice. The 
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precipitated PEG-ECT was washed three times with diethyl ether and dried under vacuum (yield 

∼10g). 1H-NMR (400 MHz CdCl3) revealed 91% substitution of the PEG (data not shown)237. 

 

Polymer Synthesis and Characterization. RAFT polymerization was used to synthesize a 50:50 

[BMA]:[DMAEMA] copolymer using the PEG-ECT macro-CTA. The target degree of 

polymerization was 160, and the monomer plus CTA was 40% weight per volume in dioxane. The 

polymerization reaction was carried out at 70oC for 24 hours using AIBN as the initiator with a 

5:1 [CTA]:[Initiator] molar ratio. A monomer feed ratio of 50:50 mol % or 0:100 mol % 

[BMA]:[DMAEMA] was used (to generate 50B and 0B respectively), and a double alumna 

column was utilized to remove inhibitors from DMAEMA and BMA monomers prior to 

polymerization. The reactions were stopped by removal from heat and exposure of the 

polymerization solution to air. The resulting polymers were precipitated into a co-solvent of 90% 

pentane and 10% diethyl ether. The isolated polymers were vacuum-dried, redissolved in water, 

further purified by dialysis for 24 hours, and lyophilized. Polymers were characterized for 

composition and molecular weight by 1H-NMR spectroscopy (Bruker 400 MHz spectrometer 

equipped with a 9.4 T Oxford magnet). Absolute molecular weight and polydispersity of the 

polymers was determined using DMF mobile phase gel permeation chromatography (GPC, 

Agilent Technologies, Santa Clara, CA, USA) with inline Agilent refractive index and Wyatt 

miniDAWN TREOS light scattering detectors (Wyatt Technology Corp., Santa Barabara, CA, 

USA). 

 

Oligonucleotide-PA Synthesis and Characterization. Single-stranded amine-modified oligo was 

reacted with 100-fold molar excess of PA N-hydroxysuccinimide ester pre-dissolved at 40 mM in 
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N,N-dimethylformamide (DMF). The reaction was carried out for 18 hours at room temperature in 

45% water, 45% isopropyl alcohol, and 10% DMF. The oligo-PA was purified by reversed-phase 

HPLC using a Clarity Oligo-RP column (Phenomenex, Torrence, CA) under a linear gradient from 

95% water (50 mM triethylammonium acetate), 5% methanol to 100% methanol. The conjugate 

molecular weight was confirmed using MALDI-TOF mass spectrometry (Voyager-DE STR 

Workstation, Grand Island, NY) using 50 mg/mL 3-hydroxypicolinic acid in 50% water, 50% 

acetonitrile with 5 mg/mL ammonium citrate as a matrix. The yield of the oligo-PA was quantified 

based on absorbance at 260 nm. The purified oligo-PA was annealed to its complementary strand 

to generate Cy5-, Alexa Fluor 488- or Alexa Fluor 546-modified DNA-PA or siPA. Conjugation 

and annealing was also confirmed via agarose gel electrophoresis. 

 

Assembly and Characterization of siRNA- or siPA-Loaded Polyplex NPs. Polyplex NPs loaded 

with siRNA (si-NPs) or siPA (siPA-NPs) were made by mixing pH 4.0 stock solutions of 50B 

polymer (10 mM buffer, 3.33 mg/mL polymer) and siRNA (50 μM) at N:P ratios of 1, 2, 5, 7, 10, 

or 20. Control polyplexes comprising the 0B polymer (termed si-0B-NPs and siPA-0B-NPs) were 

made according to the same procedure. The final charge ratio was calculated as the molar ratio of 

cationic amines on the DMAEMA (50% are assumed to be protonated at physiologic pH) to the 

anionic phosphates on the siRNA/siPA. After mixing, these solutions were diluted 5-fold to 100 

μL with pH 8.0 phosphate buffer (10 mM) to adjust the final pH to 7.4. After mixing, samples 

were incubated for 30 min, and 100 ng of siRNA/siPA for each sample was loaded onto a 2% 

agarose gel containing ethidium bromide to assess siRNA/siPA packaging efficiency. The gels 

were run at 100 V for 35 min and imaged with a UV transilluminator. Hydrodynamic diameter and 

zeta potential of the polyplex NPs at the N:P ratios described above were measured in triplicate 
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using dynamic light scattering (DLS) (Malvern Zetasizer Nano ZS, Malvern, UK). DLS measures 

were used to evaluate salt stability of polyplex NPs; concentrated NaCl solution was added to si-

NP or siPA-NP solutions in 10 mM phosphate buffer to yield final NaCl concentrations of 0, 0.1, 

0.5, or 1 M where the final solution was 80% phosphate buffer by volume. For the cell uptake 

studies (where no functional effects were studied) DNA and DNA-PA was used as a model 

molecule for siRNA and siPA, respectively. Hereafter, NPs loaded with these molecules are 

referred to as si-NPs and siPA-NPs to avoid confusion. 

 

Cell Culture. Human epithelial breast cancer cells (MDA-MB-231) were cultured in Dulbecco's 

modified Eagle's medium (DMEM, Gibco Cell Culture, Carlsbad, CA) supplemented with 10% 

fetal bovine serum (FBS, Gibco) and 0.1% gentamicin (Gibco). 

 

Production of Stable Luciferase-Expressing MDA-MB-231s. To produce lentivirus, the 

pGreenFire1-CMV plasmid and packaging plasmids pMDLg/pRRE, pRSV-Rev, and pMD2.G 

were transfected into HEK-293Ts using Lipofectamine 2000. Media was changed after 24 hours 

and supernatant containing lentivirus was collected at 48 and 72 hours. Viral supernatant was 

added directly to MDA-MB-231s with 6 μg/mL polybrene. Media was changed after 24 hours. 

Lentiviral transduction and was confirmed by GFP expression as analyzed by flow cytometry (BD 

LSR II Flow Cytometer, San Jose, CA). This was followed by selection with 8 µg/mL puromycin 

for two weeks to eliminate non-transduced cells. 

 

Cellular Uptake. MDA-MB-231s were seeded at 30,000 cells/well in 24-well plates and allowed 

to adhere overnight. After adhering, cells were treated with 100 nM Alexa Fluor 488-labeled si-
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NPs or siPA-NPs in 10% serum for 24 hours.  Lipofectamine was used as a positive control (with 

treatment at 25 nM to minimize toxicity). After 24 h, media with treatments was removed, cells 

were washed with PBS (-/-), trypsinized (0.25%), transferred to microcentrifuge tubes, and 

centrifuged at 420xG for 7 min to pellet the cells. Pellets were re-suspended in 0.4 mL PBS(-/-) 

with 0.04% trypan blue to quench extracellular fluorescence and monitored by FACS 

(FACSCalibur, BD Biosciences, Franklin Lakes, NJ, USA) at excitation wavelength of 488 nm 

and emission wavelength of 519 nm to quantify intracellular delivery. 

 

In Vitro Gene Silencing. MDA-MB-231s were treated with si-NPs or siPA-NPs; the siRNA was 

either designed against the luciferase gene (luc siRNA) or was a scrambled sequence (scr siRNA). 

Cells were seeded at 2,000 cells/well in 96-well black-walled plates and allowed to adhere 

overnight. Cells were then treated in 10% serum for 24 hours at a dose of 100 nM siRNA. After 

24 h, media was replaced with luciferin-containing media (150 g/mL) before imaging with an 

IVIS Lumina III imaging system (Caliper Life Sciences, Hopkinton, Massachusetts) every 24 

hours for 10 days. Fresh low serum media (2% FBS) was replaced after each imaging session, and 

cells were passaged every 3 days. Growth in low serum was used to reduce the confounding 

influence of proliferation and allowed more direct investigation of gene silencing longevity. To 

evaluate treatment cytotoxicity, scr siRNA si-NP treatments were removed at 24 hours and cellular 

bioluminescence was quantified on a Lumina III IVIS (Caliper Life Sciences, Hopkinton, 

Massachusetts) and compared to no treatment as a measure of relative cell number. 

 

Comparison of siRNA and siPA Polyplex Stability. NPs were loaded with Förster Resonance 

Energy Transfer (FRET, using Alexa Fluor 488 and Alexa Fluor 546) pair-labeled doubled-



 80 

stranded 23mers (FRET-NPs). Fluorescent intensity was measured using a microplate reader 

(Tecan Infinite F500, Männedorf, Switzerland) with an excitation wavelength of 488 ± 5 nm. 

Alexa Fluor 488 emission was collected at 519 ± 5 nm, and Alexa Fluor 546 emission was obtained 

at 573 ± 5 nm. FRET was calculated as a ratio of the fluorescent intensity as follows: 

FRET =
𝐼573

𝐼519
 

Because siRNA decomplexation by heparan sulfate-containing glomerular basement membrane in 

the kidney is a primary cause for rapid systemic clearance of polycation-siRNA nanoparticles, the 

stability of FRET-NPs was measured in the presence of 2 to 100 U/mL of heparin sodium salt in 

DPBS18, 221. The fluorescence emission was measured over time following addition of heparin 

sodium salt. The heparin concentration at which the FRET signal was reduced 50% (EC50) for 

siRNA and siPA polyplexes was calculated as according to the following equation where y is the 

FRET ratio, x is the heparin concentration, and b is a fit parameter. 

𝑦 =  
−1

1 + (
𝑥

𝐸𝐶50
)

𝑏 + 1 

The same assay was performed in the presence or absence of 10, 40, and 50% of FBS as well. In 

this study, si-NPs and siPA-NPs were prepared as described above and incubated with either FBS 

or an equal volume of PBS. FRET was calculated according to the equation above, and %FRET 

was calculated at each time point by dividing the FRET ratio of FBS-treated NPs by PBS-treated 

controls. The Quant-iT RiboGreen RNA Assay Kit was used to quantify the amount of unpackaged 

siRNA before and after addition of 100 U/mL heparin for si-NPs, siPA-NPs, si-0B-NPs, and siPA-

0B-NPs. 
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Blood Plasma Pharmacokinetics. Fluorescent (Cy-5-labeled) si-NPs and siPA-NPs were formed 

at an N:P ratio of 10:1 As a comparison, siRNA and siPA were loaded into 0B at a ratio of 10:1. 

NPs were injected into the tail vein of CD-1 mice (4-6 weeks old, Charles Rivers Laboratories, 

Wilmington, MA, USA) at 1 mg/kg. Blood was collected retro-orbitally at 5 min and 10 min post-

injection, not exceeding two collections per animal. After 20 min, animals were sacrificed, and 

blood was immediately collected via cardiac puncture. Blood samples were centrifuged at 2000 G 

for 5 min and 5 μL of plasma was taken from the supernatant and diluted into 95 μL PBS (-/-). 

Fluorescence was measured and quantified on an IVIS Lumina III imaging system (Xenogen 

Corporation, Alameda, CA, USA) at excitation wavelength of 620 ± 5 nm and emission 

wavelength of 670 ± 5 nm (n = 6). A standard curve was generated by measuring the fluorescence 

of the initial fluorescent polyplex solution in PBS (-/-) over the range of 200% to 1.5% of the 

injected dose. The standard curve was utilized in order to calculate the percent of injected dose in 

each blood sample, and the calculated values were used to determine siRNA concentration in the 

plasma at each time point as well as area under the curve (AUC) values (see Table S4.1 for 

equations).  

 

Biodistribution in Tumor-bearing Mice. Athymic nude female mice (4-6 weeks old, Jackson 

Laboratory, Bar Harbor, ME, USA) were injected in each mammary fat pad with 1 x 106 MDA-

MB-231 cells in DMEM:Matrigel (50:50). After 17 days, tumor-bearing mice were injected via 

the tail vein with 1 mg/kg (nucleic acid dose) of fluorescent siNPs or siPA-NPs. After 20 minutes, 

animals were sacrificed and the organs of interest (heart, lungs, liver, spleen, kidneys, and tumors) 

were excised. The fluorescence intensity in the organs was quantified on an IVIS Lumina III 
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imaging system (Xenogen Corporation, Alameda, CA, USA) at excitation wavelength of 620 ± 5 

nm and emission wavelength of 670 ± 5 nm (n = 3 animals, n = 6 tumors). 

 

Target Gene Silencing After Intravenous (I.V.) Injection. Athymic nude female mice (4-6 weeks 

old, Jackson Laboratory, Bar Harbor, ME, USA) were injected in each mammary fat pad with 1 x 

106 MDA-MB-231 cells in DMEM:Matrigel (50:50). After 17 days, tumor-bearing mice were 

injected i.p. with luciferin substrate (150 mg/kg) and imaged for bioluminescence on an IVIS 

Lumina III imaging system (Xenogen Corporation, Alameda, CA, USA) 20 minutes post-injection. 

Next, the mice were injected via the tail vein with 1 mg/kg (siRNA dose) NPs containing either 

luc siRNA / siPA, a scr siRNA / siPA, or saline. Mice were imaged and treated at days 17 and 18 

following tumor cell inoculation and imaged on day 19. Relative luminescence was determined by 

measuring the raw luminescent intensity of each tumor on each day and comparing to the initial 

signal at day 17 (n =10 tumors per group).  

 

Acute Toxicity in Liver and Kidney. Tumor-bearing mice used for in vivo luciferase silencing 

studies were sacrificed on day 20 following tumor cell inoculation (and following treatment with 

1 mg/kg siRNA on days 17 and 18). Blood was collected by cardiac puncture and then centrifuged 

at 2000 G for 5 min. Then, plasma was harvested and tested by the Vanderbilt Translational 

Pathology Shared Resource (TPSR) for systemic levels of alanine aminotransferase (ALT), 

aspartate aminotransferase (AST), and blood urea nitrogen (BUN). 

 

Statistical Methods. The treatment groups were statistically compared using a one way ANOVA 

test coupled with a Tukey means comparison test; a p-value < 0.05 was deemed representative of 
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a significant difference between groups. For all data shown, the arithmetic mean and standard error 

are reported, and the sample size (n) is indicated. 

 

Ethics Statement. The animal studies were conducted with adherence to the guidelines for the care 

and use of laboratory animals of the National Institutes of Health (NIH). All experiments with 

animals were approved by Vanderbilt University's Institutional Animal Care and Use Committee 

(IACUC). 

 

4.4 Results and Discussion 

Polymer and siPA Conjugate Synthesis. A previously reported RAFT polymerization scheme was 

used to synthesize the 50B polymer from a 5 kDa PEG-ECT macro-CTA237. The scheme is 

desirable for its simplicity and scalability, and it consistently yields polymers at target molecular 

weight (MW) with low polydispersity index (PDI). The 50B polymer used here was synthesized 

from the macro-CTA with a final degree of polymerization (DP) of 152 (Target DP: 160) and PDI 

of 1.03 as determined by 1H-NMR and GPC, respectively (Figure 4.1). The RAFT-polymerized 

block monomer composition and MW were quantified by 1H-NMR using characteristic peaks from 

PEG (-O-CH2CH2-, δ 3.65s), BMA (-O-CH2CH2-, δ 3.95s), and DMAEMA (-O-CH2CH2-, δ 

4.05s), showing 49:51 (BMA:DMAEMA) mol% ratio in the polyplex core-forming block and total 

MW of 27,800 Da (including 5kDa PEG). The control 0B polymer was synthesized by the same 

5route and had a 110 DP, 1.16 PDI, 0:100 mol% ratio, an0 d 22,300 Da MW (data not shown).  
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Figure 4.1. A) Synthesis of siPA and product confirmation via MALDI-TOF. B) Synthesis of 50B and GPC 

analysis. C) Schematic of core-loaded siPA-NP and si-NP polyplexes. 

 

Synthesis of siPA-NPs. Single-stranded DNA or RNA was successfully conjugated with PA in a 

one-step reaction and purified from the reactants via HPLC. Isolation of the desired products was 

confirmed by MALDI-TOF analysis (Figure 4.1) and also by shift upward of the free siPA band 

in comparison to the unmodified siRNA band in a gel retardation assay (Figure 4.2). 
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Figure 4.2. siPA is packaged more efficiently and stably with 50B polymer than unmodified siRNA. A) As 

evaluated by gel retardation assay, siPA loads fully at a lower N:P ratio than unmodified siRNA; note that the 

upward shift of siPA compared to siRNA also confirms PA conjugation. B-D) As evaluated by dynamic light 

scattering, siPA-NPs are more stable to elevated salt concentrations (approximately 25 nm smaller) than si-NPs at 

N:P = 10:1. 
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Characterization of si-NPs/siPA-NPs. Unmodified siRNA completely loaded into the PEGylated 

nanopolyplexes at an N:P ratio of 20:1, while siPA was fully loaded at a ratio of 5:1, as 

characterized by gel retardation assays (Figure 4.2A). This result suggests that hydrophobization 

of the siRNA molecule enhances interactions with 50B and improves efficiency of loading into 

NPs. DLS measurements reveal that siPA-NPs are of equivalent size and exhibit enhanced stability 

to elevated salt concentration relative to si-NPs (Figure 4.2B and S4.2). The zeta potential does 

not differ significantly between siPA-NPs and si-NPs, with each displaying a slight negative 

charge which is optimal for intravenous administration (data not shown). 

This result is in agreement with previous reports from our group and others showing that 

lipid-modified siRNA loads more efficiently into nanocarrier systems with completely 

electrostatically-driven siRNA complexation mechanisms22, 215, 238. However, the siPA-NP system 

is unique in that it is the first to elucidate the importance of hydrophobic interactions between 

lipid-modified siRNA and hydrophobized cationic polymer components. We posit that the 

hydrophobization of the siRNA stabilizes the nanoparticles by introducing interaction between the 

lipophilic moieties on different siRNA molecules and, unique to the siPA-NPs, with the 

hydrophobic BMA monomer which is ~50 mol% of the core-forming block of the carrier polymer 

in the current system. This overall result indicates that a combination of electrostatic and 

hydrophobic interactions between siPA and 50B improved its loading efficiency and stability in 

the presence of competing polyelectrolytes (akin to those encountered in systemic administration), 

motivating further characterization of the stability and function of siPA-NPs in biological contexts.   

 

In vitro validation of si-NPs/siPA-NPs. After establishing the improved loading efficiency of siPA 

relative to unmodified siRNA, we characterized the performance of si-NPs and siPA-NPs in vitro 
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(Figure 4.3). Evaluation of the cytotoxicity of each demonstrated greater than 80% cell viability at 

all N:P ratios examined after 24 h (Figure 4.3A), with a trend toward decreased cell number for 

higher N:P ratios. This result confirms that the nanopolyplex system is generally well-tolerated 

but also emphasizes the translational significance of reducing the amount of polymer necessary to 

achieve a therapeutic effect, for example through improved siRNA loading and delivery using a 

lower N:P ratio. 

 

Figure 4.3. In vitro characterization of siPA-NPs vs. si-NPs. A) Both formulations exhibit >80% cell viability at all 

N:P ratios investigated as evaluated by percent difference in luciferase signal from that of no treatment (n = 4). No 

treatments were statistically significantly different from NT. B) siPA-NPs are internalized by cells ~2-fold more 

than si-NPs after 24 hours of treatment (N:P = 10:1, n = 3). Each treatment group is statistically different from all 
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other treatment groups (p<0.05). C) siPA-NPs and si-NPs exhibit increasing luciferase silencing at higher N:P ratios 

but are not significantly different from each other. (n = 4). No statistically significant differences between si-NP and 

siPA-NP treatment at each ratio. D) Both siPA-NPs and si-NPs show prolonged luciferase silencing (over 10 days) 

at an N:P ratio of 10:1 (n = 3). No statistically significant differences between si-NP and siPA-NP treatment at each 

timepoint. For C) and D), all treatment groups are normalized to analogous scrambled siRNA controls to account for 

treatment effect on cell viability; no treatment is averaged each day by measuring luminescent signal of untreated 

cells (n = 3). 

 

Next, the cellular uptake of siPA-NPs was compared to si-NPs. After treatment with siPA-

NPs, nearly 100% of cells were positive for the fluorescently-tagged nucleic acid (Figure S4.3). 

This was equivalent to the percentage positive cells observed after treatment with Lipofectamine® 

2000, a commercial transfection reagent. The corresponding treatment of si-NPs resulted in a cell 

population 60% positive (Figure S4.3), revealing that PA conjugation increased NP cellular 

internalization. This is corroborated by evaluation of the mean fluorescent intensity of treated cells, 

which was approximately 2-fold higher for siPA-NPs compared to si-NPs (Figure 4.3B). Many 

physicochemical and biological factors such as particle size242, 243, surface charge242, shape244, PEG 

density245, particle elasticity246, internalization and trafficking route247, 248, etc., can contribute to 

differences in particle uptake. In our studies, the most obvious difference between the si-NPs and 

siPA-NPs was enhanced stability of siPA-NPs in the presence of serum (Figure S4.4). Therefore, 

it is likely that increased siPA-NP stability in the presence of serum contributes to the observed 

improvement in uptake, although this result may be multifactorial. 

 In in vitro gene knockdown screens, the si-NPs and siPA-NPs both exhibited potent and 

sustained silencing in MDA-MB-231 breast cancer cells (Figure 4.3C, D). For each, a higher level 

of gene silencing was observed as the N:P ratio was increased. Silencing between si-NPs and siPA-

NPs did not differ significantly across the N:P ratios screened, despite the small increase in cell 
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uptake observed for siPA-NPs. This could be due to the enhanced stability of the siPA-NPs, which 

may impede siRNA unpackaging from nanopolyplexes upon cellular internalization249. Although 

increased polyplex stability may limit siRNA intracellular bioavailability in vitro, this potentially 

negative impact is expected to be outweighed by the benefit gained in vivo by increasing 

circulation half-life and cell uptake.  Also of note is the prolonged silencing effect observed in this 

nanoparticle system, using both unmodified siRNA and siPA (Figure 4.3D). A potential factor in 

this sustained effect in vitro is the inherent endosomolytic capability of the 50B polymer carrier; 

by avoiding endosomal degradation and/or trafficking from the cell, endosomolytic carriers have 

been shown to elicit desirable durability of therapeutic action250. The prolonged effect of si-NPs 

and siPA-NPs in vitro, with significant silencing out to 10 days post-treatment, suggests that this 

delivery system achieves a sustained effect that would minimize the need for repeat dosing. 

 

Pharmacokinetics and Biodistribution. Targeting siRNA nanoparticles to cancer targets such as 

solid tumors in vivo is contingent upon the ability to avoid rapid clearance by the liver 

(phagocytosis) and kidneys (polyanionic disassembly), which extends circulation time and 

consequently passive tumor uptake by the EPR effect. Disassembly in the kidney, leading to 

clearance through the urine, is especially detrimental to siRNA polyplex circulation time18. We 

showed previously that 50B-based si-NPs, which have balanced cationic and hydrophobic 

character in the polymeric block that forms the polyplex core, are more resilient to heparin sulfate 

disassembly and have longer circulation than strictly cationic analogues237. These si-NPs are used 

as a benchmark to compare siPA-NPs which incorporate hydrophobicity into both the polymer 

backbone and siRNA molecule. 
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The siPA-NPs have increased stability upon exposure to heparin compared to si-NPs as 

monitored by %FRET over time. Neither si-NPs nor siPA-NPs had reduced %FRET in the 

presence of 2 U/mL heparin, a dose which was previously used to completely disassemble strictly 

cationic polyplexes (Figure S4.5)237. At each dose increasing from 10 – 90 U/mL heparin, siPA-

NPs retained higher %FRET compared to si-NPs throughout the entire time course (180 min) 

(Figure 4.4A and S4.5). Only at the highest heparin dose (100 U/mL) did siPA-NPs and si-NPs 

have similar kinetics of reduction in %FRET over 180 min. An EC50 (indicative of the half 

maximal concentration of heparin necessary to dissociate polyplexes) was calculated at multiple 

time points (30, 60, 90, 120, 150, and 180 min) in order to quantify the dose response of heparin-

dependent disassembly observed over time. The EC50 of siPA-NPs was ~2-fold greater than that 

of si-NPs at each time point analyzed (Table S4.2), meaning that double the concentration of 

heparin was required to disassemble siPA-NPs and suggesting that added hydrophobicity of siPA 

conjugates within siPA-NPs provide increased stability upon exposure to polyanionic challenge 

such as by heparin sulfates found within the GBM. 
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Figure 4.4. Higher stability of siPA-NPs relative to si-NPs corresponds to greater circulation time and increased 

accumulation in tumor tissue. A) siPA-NPs are more stable than si-NPs in the presence of heparin, as evaluated by 

FRET measurements. B) siPA-NPs injected intravenously in mice have a longer circulation half-life than si-NPs. C, 

D) siPA-NPs accumulate more in tumor tissue and in the MPS organs (liver and spleen) than si-NPs in a mouse 

tumor model at 20 minutes following tail vein injection. 

 

 In blood pharmacokinetics experiments, increased fluorescence was detected within blood 

samples collected at each time point (5, 10, and 20 min) from siPA-NPs compared to si-NPs 

(Figure 4.4B). The calculated circulation half-life of siPA-NPs (0.199 h) was ~2-fold greater than 

si-NPs (0.104 h), resulting in ~2-fold increase in area under the curve (AUC), and ~2 fold decrease 

in blood clearance (CL) (Figure 4.4B). The observation of increased circulation persistence is 

especially important due to its correlation with passive tumor accumulation, which was studied in 

athymic nude mice bearing orthotopic xenografts of MDA-MB-231 triple negative breast cancer 
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cells in the mammary fat pad. Biodistribution in major organs of interest (heart, lungs, liver, 

kidneys, and spleen) after i.v. administration of 1 mg/kg nanoparticles (siRNA dose) was 

comparable between siPA-NPs and si-NPs (Figure 4.4C). As a result of decreased renal clearance 

and consequent increased exposure to other organs and tissues, the siPA-NPs exhibited higher 

levels of uptake within MPS organs (liver and spleen) than si-NPs.  Importantly, a 2-fold increase 

in tumor uptake was observed by siPA-NPs (Figure 4.4D), confirming that increased circulation 

time of siPA-NPs translated to increased EPR-based passive tumor uptake. Commonly, active 

targeting ligands such as folic acid, hyaluronic acid, RGD peptide, or transferrin, are used as a 

strategy to increase tumor uptake and retention after i.v. administration236, 251-255. Herein, tumor 

uptake was increased by tuning the core chemistry of polyplexes to increase polyplex stability and 

circulation time. Thus, it is expected that the addition of appropriate targeting ligands in the future 

will further increase tumor concentration due to improved tumor retention.  

The in-depth studies above thoroughly compare the impact of PA-modified vs. unmodified 

siRNA with the hydrophobized 50B carrier. Conjugation of alkyl chains similar to PA has also 

been explored as a strategy to improve pharmacokinetics of therapeutics delivered carrier-free by 

leveraging lipid binding to serum proteins256. However, a comprehensive evaluation of lipid-

modified siRNAs reveals that PA modification is insufficient to elicit serum protein binding and 

gene silencing27. Based on this prior work, we attributed the pharmacokinetic improvement of 

siPA-NPs over si-NPs to their enhanced stability due to the impact of the hydrophobic interactions 

between the PA-modified siRNA and the hydrophobized 50B carrier. To confirm this, we ran a set 

of control experiments using the fully cationic polymeric carrier 0B. We investigated si-0B-NPs 

and siPA-0B-NPs in a subset of studies to rule out the possibility that our observations were driven 

solely by hydrophobization of the siRNA. The degree of siRNA unpackaging in the presence of 



 93 

heparin was evaluated for si-NPs, siPA-NPs, si-0B-NPs, siPA-0B-NPs. In accordance with 

previous reports si-NPs and siPA-NPs were more stable in response to heparin than si-0B-NPs and 

siPA-0B-NPs. siPA-NPs showed an additional enhancement in stability relative to si-NPs that was 

not observed in si-0B-NPs vs. siPA-0B-NPs (Figure S4.6). Significantly, 0B polyplexes loaded 

with siPA did not show any increase in blood circulation half-life relative to 0B polyplexes loaded 

with unmodified siRNA, while siPA increased circulation time approximately 2-fold relative to 

unmodified siRNA in 50B polyplexes (Figure S4.7).  These data confirm that the hydrophobic 

interactions between siPA and the BMA of the 50B NP core are critical to the enhanced stability 

and circulation time observed for siPA-NPs. 

 

Target Gene Silencing and Acute Toxicity In Vivo. To measure the impact of the improved 

pharmacokinetics of siPA-NPs on tumor bioactivity, the in vivo bioluminescence was tracked in 

mice bearing luciferase-expressing MDA-MB-231 orthotopic xenografts of the mammary fat pad 

after i.v. injection (1mg/kg siRNA dose) on days 17 and 18 after transplantation. The relative 

luminescence measured by intravital imaging increased steadily over 48 h (up to 2.5-fold) in mice 

administered saline, si-NP scrambled, and siPA-NP scrambled. Mice administered luciferase si-

NPs did not show a treatment response after the first day, but they showed significant reduction in 

bioluminescence at 48 hours (after 2 consecutive treatments). The mice administered siPA-NPs 

showed a treatment response at both 24 h (after 1 treatment) and 48 hours (after 2 consecutive 

treatments), with significant decreases in bioluminescence compared to saline and scrambled 

controls (Figure 4.5A). Moreover, the bioluminescence of mice administered siPA-NPs did not 

significantly increase above the baseline measure at 0 hours throughout the time course, indicating 

complete inhibition of luminescence associated with tumor growth over the 48 h treatment 
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protocol. These data strongly support the effectiveness of siPA-NPs for effective tumor target gene 

silencing after a single i.v. administration and confirms the functional significance of the increased 

stability, circulation time, and tumor uptake of siPA-NPs. This increase in efficacy is expected to 

be impactful for knockdown of pathological genes, with these results suggesting that siPA-NPs 

would achieve a therapeutic response with a lower dose or fewer administrations relative to si-

NPs. 

 

Figure 4.5. siPA-NPs delivered intravenously silence luciferase in an orthotopic MDA-MB-231 tumor model more 

effectively than si-NPs and cause no significant liver and kidney toxicity. A) Luciferase silencing, compared to 
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scrambled siRNA controls. B) Measurements of liver (ALT and AST) and kidney (BUN) toxicity for si-NP and 

siPA-NPs 48 h after treatments. 

 

 Because there was significant accumulation of siPA-NPs in the liver and kidneys, ALT and 

AST (indicators of liver function / toxicity) and BUN (indicator of kidney function / toxicity) were 

assessed in the treated mice. Blood collected from mice at the time of euthanasia (48 hours after 

the last treatment) showed that systemic levels of ALT, AST, and BUN were not significantly 

elevated by the treatment protocol of si-NPs or siPA-NPs utilized. ALT and AST was increased in 

si-NPs above the mean levels of saline and siPA-NPs, but the increase was not statistically 

significant (Figure 4.5B). 

 

4.5 Conclusions 

The performance of PEG-b-p(DMAEMA-co-BMA) “50B”, which forms siRNA-loaded 

NPs with balanced cationic and hydrophobic core content, can be improved through pairing with 

siPA hydrophobized siRNA. The hydrophobicity of both the polymer and siPA molecule was 

essential to improved polyplex stability, which can be attributed to increased van der Waals 

interactions between carrier and cargo. These interactions facilitated more efficient siPA loading 

into NPs and siPA-NP polyplexes were also more resilient to heparin sulfate-induced 

destabilization. Increased siPA-NP stability, when compared to our benchmark si-NPs, resulted 

in increased blood circulation time and EPR-driven passive uptake into orthotopic tumor 

xenografts after intravenous polyplex injections. The enhanced pharmacokinetics of siPA-NPs 

translated to increased bioactivity of siRNA, as assessed by target gene silencing of the model 

gene luciferase within orthotopic triple negative breast cancer (MDA-MB-231) tumors. Our 

results demonstrate that increasing the strength of associative forces, rather than solely utilizing 
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electrostatic forces that are traditionally leveraged to drive polyplex assembly, can increase both 

polyplex stability and bioactivity in vivo. The data support continued efforts to stabilize siRNA 

NP systems to improve pharmacokinetics and pharmacodynamics of siRNA and increase clinical 

translatability for cancer applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 5 
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LIPOPHILIC SIRNA TARGETS ALBUMIN IN SITU AND PROMOTES 

BIOAVAILABILITY, TUMOR PENETRATION, AND CARRIER-FREE GENE SILENCING  

Text adapted from: 

Sarett SM, Werfel TA, Jackson MA, Kilchrist KV, Brantley-Sieders D, Duvall CL (2017). 

Lipophilic siRNA Targets Albumin in Situ and Promotes Bioavailability, Tumor Penetration, 

and Carrier-Free Gene Silencing. PNAS. Under review. 

 

5.1 Abstract 

Clinical translation of therapies based on small interfering RNA (siRNA) is hampered by 

its comprehensively poor pharmacokinetic properties that necessitate molecule modifications and 

complex delivery strategies. Here, we sought an alternative approach to nanoparticle carriers by 

leveraging the long-lived endogenous serum protein albumin as an siRNA carrier. We synthesized 

siRNA conjugated to a diacyl lipid moiety (siRNA-L2), that rapidly binds albumin in situ. siRNA-

L2, in comparison to unmodified siRNA, exhibited a 5.7-fold increase in circulation half-life 

corresponding to an 8.6-fold increase in bioavailability and markedly reduced renal clearance. 

Benchmarked against leading commercial siRNA nanocarrier (in vivo jetPEI), siRNA-L2 achieved 

19-fold greater tumor accumulation and a 46-fold increase in tumor cell uptake in a mouse 

orthotopic model of human triple negative breast cancer. siRNA-L2 penetrated tumor tissue rapidly 

and homogeneously; 30 minutes after intravenous injection, siRNA-L2 achieved uptake in 99% of 

tumor cells, compared to 60% for jetPEI. Remarkably, siRNA-L2 displayed a tumor:liver 

accumulation ratio of greater than 40:1 vs. less than 3:1 for jetPEI. The improved pharmacokinetic 

properties of siRNA-L2 facilitated significant tumor gene silencing for 10 days after two 

intravenous doses. Proof-of-concept was established in a patient-derived xenograft model, in 
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which jetPEI tumor accumulation was reduced 4-fold relative to the same formulation in the 

orthotopic model. The siRNA-L2 tumor accumulation diminished only 2-fold, suggesting that the 

superior tumor distribution of the conjugate over nanoparticles will be accentuated in clinical 

situations. These data reveal the immense promise of in situ albumin targeting for development of 

translational, carrier-free RNAi-based cancer therapies. 

 

5.2 Significance 

Small interfering RNA (siRNA) has the capacity to silence traditionally undruggable 

targets, but in vivo delivery barriers limit clinical translation of siRNA, especially for non-hepatic 

targets. To date, delivery strategies for RNAi cancer therapies have focused on synthetic 

nanocarriers, but their shortcomings include limited delivery to and variable distribution 

throughout the target site and small therapeutic indices due to non-specific, carrier-associated 

toxicities. A diacyl lipid-modified siRNA can leverage albumin as an endogenous carrier, resulting 

in comprehensively enhanced pharmacokinetic properties that translate to greater quantity and 

homogeneity of tumor accumulation relative to nanocarriers. The albumin-binding siRNA 

conjugate strategy is synthetically simple and safe at high doses, and thus is a translatable and 

potentially transformative option for RNAi oncology therapies. 

 

5.3 Introduction 

Harnessing the therapeutic potential of small interfering RNA (siRNA) hinges upon 

enhancing its pharmacokinetic properties to overcome in vivo delivery barriers. Unmodified 

siRNA exhibits rapid renal clearance from circulation, leading to removal through the urine28 and 

allowing minimal bioavailability in target tissues. Improving delivery of siRNA via encapsulation 
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in nanoparticulate carrier systems has been the principal strategy employed by the field. 

Nanocarriers can improve circulation half-life, resistance to degradation, intracellular uptake, and 

ultimately gene silencing potency22, 73, 178, 257. However, commonly-utilized cationic lipid/polymer 

formulations are complex and expensive to synthesize and can be toxic and/or immunogenic13, 258. 

Additionally, their preferential uptake by clearance organs such as the liver and spleen hinders 

delivery to target tissues73, 159. siRNA conjugates have emerged as an alternative to nanocarrier-

mediated delivery25, 27, 259-262, offering the possibility of improving siRNA pharmacokinetics 

without requiring a more complex delivery vehicle. Alnylam Pharmaceuticals has demonstrated 

high gene silencing potency of a trivalent N-Acetylgalactosamine (GalNAc) siRNA conjugate, 

which binds with high specificity and affinity to the asialoglycoprotein receptor on liver cells77, 78. 

Carrier-free gene silencing has also been achieved in the liver with siRNA-cholesterol 

conjugates27, 28, but the development of siRNA conjugates that efficiently deliver to non-hepatic 

tissues is an unmet need. Here, we developed an siRNA conjugate that leverages endogenous 

albumin as a chaperone. We anticipate that albumin-associated siRNA will show particular 

promise as a cancer therapeutic by extending the circulation time of siRNA, enabling efficient 

tumor tissue penetration, and leveraging the propensity of tumor cells to internalize albumin263, 264. 

 The enhanced permeability and retention (EPR) effect, based upon the high vascular 

permeability and diminished lymphatic drainage at tumor sites, suggests a preferential tumor 

accumulation of particles of nanocarrier size (~100 nm). However, the EPR phenomenon as a 

tumor targeting strategy has recently come under intense scrutiny due to the discrepancy observed 

between pre-clinical and clinical efficacy of nanoparticle-based cancer therapeutics188, 189, 191, 192. 

There is a growing appreciation that amongst wildly heterogeneous human cancers, the EPR effect 

may be only relevant in select tumor or patient subsets. In particular, the widespread “leakiness” 



 100 

of tumor vasculature, a characteristic of rapidly-developing mouse tumor models, has likely been 

exaggerated in its relevance to slower-forming human lesions205. The field of nanomedicine has 

responded to these realizations with efforts to enhance understanding of nanoparticle performance 

in animal models52, 196-198, strategies to normalize tumor vasculature190, systematic investigations 

into ideal nanoparticle characteristics196, 199, and a focus on smaller (20-30 nm-sized) 

nanocarriers196, 201, 202. Despite the promise of these approaches, the diversity of human cancers 

necessitates equivalently diverse delivery approaches6, 205 and opportunity for improvement 

remains, particularly in the area of enhancing uniformity of tumor distribution. Nanoparticles 

typically exhibit concentration of dose near leaky vessels but not within more avascular tumor 

regions16, 200, resulting in inhomogeneous efficacy and higher potential for incomplete remission 

and recurrence. Smaller, long-circulating siRNA conjugates may offer an alternative that creates 

more homogeneous therapeutic distribution within tumors. Indeed, the apparent tissue 

permeability of the serum protein albumin (hydrodynamic size ~7.2 nm31) is consistently more 

than 4-fold greater than that of 100 nm liposomes in a variety of mouse models of breast cancer203. 

Here, we sought to design an siRNA conjugate that ‘hitchhikes’ on long-circulating albumin to 

confer siRNA molecules with an unprecedented combination of circulation persistence and high 

tissue penetration to enable systemic, carrier-free delivery of siRNA for oncological applications. 

In situ targeting of albumin following intravenous delivery is a viable strategy because 

endogenous albumin is the most abundant serum protein (>40 mg/mL) and has a circulation half-

life of about 20 days33. It is also a natural carrier of and has a high affinity for poorly soluble 

lipids31, 33. Albumin has been investigated extensively as a carrier and a conjugate for small 

molecules as well as protein therapeutics; albumin-based therapeutics like Abraxane, Levemir, and 

Optison have achieved clinical relevance31, 32, demonstrating the translatability of this approach. 



 101 

However, to our knowledge, no one has investigated non-covalent, in situ targeting of siRNA to 

albumin for non-hepatic delivery. Previous work has established the utility of interaction of high 

and low density lipoproteins with cholesterol-conjugated siRNA27, 100, 101, 183, 211, but the natural 

trafficking of these lipoproteins concentrates the therapy in the hepatocytes of the liver. The 

potential of albumin-bound siRNA has been minimally explored183, 184 and to our knowledge, 

albumin-bound siRNA has never been investigated as an oncological therapy. In our unique 

strategy, we exploit the capacity of albumin to bind fatty acids by modifying siRNA with a lipidic 

moiety designed for high-affinity albumin binding. The Irvine lab developed and previously 

utilized this hydrophobic modification for in situ albumin targeting of CpG-DNA to promote 

delivery to lymph nodes for vaccine applications265. We pursued modification of siRNA with a 

lipidic albumin-targeting agent rather than alternative albumin-binding molecules like peptide 

domains266 and a truncated Evans blue molecule267 because hydrophobically-modified siRNA 

exhibits improved resistance to nucleases and enhanced cellular internalization25. Thus, the 

strategic choice of modification with an albumin-binding lipid has the potential to confer additional 

advantages in siRNA stability and cell membrane interactions for uptake and endosomal escape in 

addition to circulation persistence, tissue penetration, and biodistribution. To investigate the 

clinical potential of our siRNA conjugate, we examined its efficacy as a systemic RNAi cancer 

therapeutic by evaluating delivery and gene silencing in translationally relevant models of human 

triple negative breast cancer. 

 

5.4 Methods 

Materials. Amine-modified single-stranded DNA (modification at 5’ end) or RNA (modification 

at 3’ end) and complementary single-stranded Cy5-, unmodified DNA or unmodified RNA were 
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obtained from Integrated DNA Technologies (Coralville, Iowa) (for DNA) or GE Dharmacon 

(Lafayette, CO). The pGreenFire1-CMV plasmid was obtained from System Biosciences 

(Mountain View, CA), and packaging plasmids pMDLg/pRRE, pRSV-Rev, and pMD2.G were 

purchased from Addgene (Cambridge, MA). In vivo jetPEI was purchased from VWR 

International (Radnor, PA). 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-

[azido(polyethylene glycol)-2000] (DSPE-PEG2000-azide) was purchased from Avanti Polar 

Lipids (Alabaster, AL). NucBlue Fixed Cell ReadyProbes were purchased from Life Technologies 

(Grand Island, NY). NAP-25 filtration columns were purchased from Fisher Scientific. All other 

reagents were purchased from Sigma-Aldrich (St. Louis, MO).  

 

Oligonucleotide-L2 Synthesis. Single-stranded amine-modified oligo was reacted with 10-fold 

molar excess of dibenzocyclooctyne-PEG4-N-hydroxysuccinimidyl ester (DBCO-PEG4-NHS)) 

pre-dissolved at 25 mM in DMSO. The reaction was carried out for 18 hours at room temperature 

at a 1 mM oligonucleotide concentration in 30% dimethylsulfoxide (DMSO) and 70% phosphate 

buffered saline (PBS) with 8 mM TEA. The product was diluted 3-fold in water and filtered twice 

through NAP-25 columns, lyophilized, and then reacted with 5-fold molar excess of DSPE-

PEG2000-azide for 24 hours at a 0.1 mM oligonucleotide concentration in 50% methanol, 50% 

water. The reaction was dilution and filtered one time through a NAP-25 column and then purified 

with reversed-phase HPLC using a Clarity Oligo-RP column (Phenomenex, Torrence, CA) under 

a linear gradient from 95% water (50 mM triethylammonium acetate), 5% methanol to 100% 

methanol. The conjugate molecular weight was confirmed using MALDI-TOF mass spectrometry 

(Voyager-DE STR Workstation, Grand Island, NY) using 50 mg/mL 3-hydroxypicolinic acid in 

50% water, 50% acetonitrile with 5 mg/mL ammonium citrate as a matrix. The yield of the oligo-
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L2 was quantified based on absorbance at 260 nm. The purified oligo-L2 was annealed to its 

complementary strand to generate Cy5-, unmodified DNA-L2 or siRNA-L2. Conjugation and 

annealing was also confirmed via agarose gel electrophoresis. 

DNA was used as a cost-effective analog for siRNA in imaging studies, and is referred to 

as siRNA/siRNA-L2 in the main text and supplemental figures for simplicity and cohesion (except 

where the figure is intended to show DNA’s comparability to siRNA). DNA/siRNA and DNA-

L2/siRNA-L2 exhibited degradation on similar time scales (Figure S5.3C-D) and DNA-L2 exhibits 

similar albumin binding (Figure S5.2B), validating its use as a model for siRNA-L2. 

 

Oligonucleotide-L2 Characterization. 

Critical micelle concentration of oligo-L2 was assessed fluorescently using Nile red, as described 

previously268, 269. Briefly, different dilutions were prepared from a 1 mg/mL stock solution to 

obtain micelle samples ranging in concentration from 0.0001 to 1 mg/mL. Then, 10 μL of a 1 

mg/mL Nile red stock solution in methanol was added to 1 mL of each sample and incubated 

overnight in the dark at room temperature. The next day, samples were filtered with a 0.45 μm 

syringe filter, and Nile red fluorescence was measured in 96 well plates using a micro plate reader 

(Tecan In- finite 500, Tecan Group Ltd., Mannedorf, Switzerland) at an excitation wavelength of 

535± 20 nm and an emission wavelength of 612± 25 nm. The CMC was defined, as previously 

described270, as the intersection point on the plot of the Nile red fluorescence versus the copolymer 

concentration. 

Degradation of siRNA and siRNA-L2 was assessed by incubation in 60% fetal bovine 

serum (FBS) for 4 hours, 2 hours, 1 hour, 30 minutes, or 15 minutes and evaluation by agarose gel 

electrophoresis with comparison to a control sample in water. 
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Evaluation of Albumin-Binding to Oligo-L2 In Vitro. 

PAGE gel migration assay was used to assess binding of oligo-L2 to bovine serum albumin (BSA). 

4-20% Mini-Protean TGX Precast Gel were run in the Tetra Blotting Module (BioRad, Hercules, 

CA). siRNA, siRNA-L2, DNA, and DNA-L2 were incubated with varying amounts of BSA for 15 

minutes. PAGE gels were stained using GelRed Nucleic Acid Stain (Biotium, Fremont, CA) 

according to manufacturer protocol and imaged under ultraviolet light for visualization of nucleic 

acid migration. Gels were subsequently stained with Coomassie blue to evaluate BSA migration. 

PAGE gel migration assay was used to assess binding of oligo-L2 to albumin in serum. 

siRNA or siRNA-L2 was incubated at 9-fold, 13-fold molar excess BSA and 50%, 75% FBS for 

approximate matching of mass of protein loaded per well. siRNA and siRNA-L2 were imaged 

under ultraviolet light after post-staining with GelRed. Serum proteins were stained with 

Coomassie blue. 

 

Cell Culture. Human epithelial breast cancer cells (MDA-MB-231) were cultured in Dulbecco's 

modified Eagle's medium (DMEM, Gibco Cell Culture, Carlsbad, CA) supplemented with 10% 

fetal bovine serum (FBS, Gibco) and 0.1% gentamicin (Gibco). Luciferase-Expressing MDA-MB-

231s were generated as previously described257. 

 

In Vitro Gene Silencing. MDA-MB-231s were treated with siRNA or siRNA-L2 complexed with 

in vivo jetPEI according to manufacturer protocol. The siRNA was either designed against the 

luciferase gene (luc siRNA) or was a scrambled sequence (scr siRNA). Cells were seeded at 2,000 

cells/well in 96-well black-walled plates and allowed to adhere overnight. Cells were then treated 
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in 10% serum for 24 hours at a dose of 100 or 50 nM siRNA. After 24 h, media was replaced with 

luciferin-containing media (150 g/mL) before imaging with an IVIS Lumina III imaging system 

at 24 and 48 hours. 

 

Evaluation of Albumin-Binding to Oligo-L2 In Vivo. 

Fluorescent (Cy-5-labeled) DNA and DNA-L2 was injected into the tail vein of CD-1 mice (4-6 

weeks old, Charles Rivers Laboratories, Wilmington, MA, USA) at 1 mg/kg. Blood was collected 

at 20 minutes post-injection, and serum was isolated. Serum from mice injected with DNA, DNA-

L2, or saline was evaluated via PAGE gel migration assay was used to assess binding of oligo-L2 

to albumin in vivo. 

 

Tumor Spheroid Penetration In Vitro. 

MCF7 cells (ATCC) were cultured in DMEM supplemented with 1% penicillin-streptomycin and 

10% FBS. Three-dimensional MCF7 spheroid cultures were established as described previously271, 

272. Briefly, cells were grown to 50% confluence in two-dimensional culture. Cells were washed 

twice with trypsin (0.05%, Gibco), trypsin was aspirated, and cells were incubated at 37oC for 10-

15 minutes. Cells were resuspended in growth medium, pipetted to generate single cell 

suspensions, and counted (Bio-Rad TC20 Automated Cell Counter). Single cell suspensions (7,500 

cells/500 μl) were seeded in 8 well chamber slides (Nunc Lab-Tek II) pre-coated with 10 ul growth 

factor-reduced Matrigel (BD Biosciences) in growth media containing 2% growth factor-reduced 

Matrigel and cultured for 5 days. On day 5, cultures were treated with 100-500 nM Cy5-labeled 

DNA, DNA-L2, or DNA complexed with in vivo jetPEI for 4 hours in fresh growth medium. 

Cultures were washed once in PBS and fixed for 2 minutes with BD Cyotfix/Cytoperm solution 
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(BD Biosciences). After aspirating fixative and removing plastic chamber, cultures on slides were 

mounted with ProLong Gold Antifade with DAPI (Molecular Probes) and secured by coverslip. 

Slides were stored at 4oC degrees prior to confocal imaging. Confocal imaging was performed 

using the Nikon C1si+ system on a Nikon Eclipse Ti-0E inverted microscopy base. The PMT HV 

gain, laser power, and display settings were set for maximal SNR based on control biological 

samples such that negative control samples lacking label had no background fluorescence and 

treatment samples had no saturated pixels. Image acquisition and analysis were performed using 

Nikon NIS-Elements AR version 4.30.01. 

 

Blood Plasma Pharmacokinetics. Fluorescent (Cy-5-labeled) DNA and DNA-L2 was injected 

into the tail vein of CD-1 mice (4-6 weeks old, Charles Rivers Laboratories, Wilmington, MA, 

USA) at 1 mg/kg. Prior to injection, the mouse ear was placed on a coverslip on the Nikon C1si+ 

confocal microscope system. An artery within the ear was set in focus and upon injection images 

of the artery were automatically collected every 2 seconds for 30 minutes. After 30 minutes, 

animals were sacrificed. Maximum initial fluorescence of the artery was set to a time of 0 seconds. 

Artery fluorescence was evaluated by quantifying a circular ROI entirely within the vessel. Data 

were fit to a one-phase exponential decay model (equation below) and half-life and area under the 

curve was determined from these fits. 

𝑭𝒍𝒖𝒐𝒓𝒆𝒔𝒄𝒆𝒏𝒄𝒆𝒃𝒍𝒐𝒐𝒅 = 𝑭𝒍𝒖𝒐𝒓𝟎 ∗ 𝒆−𝒌𝒕 

 

Biodistribution in Tumor-bearing Mice. For the orthotopic mouse tumor model, athymic nude 

female mice (4-6 weeks old, Jackson Laboratory, Bar Harbor, ME, USA) were injected in each 

mammary fat pad with 1 x 106 MDA-MB-231 cells in DMEM:Matrigel (50:50). After 21 days, 
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tumor-bearing mice were injected via the tail vein with 1 mg/kg (nucleic acid dose) of fluorescent 

DNA, DNA-L2 or DNA loaded in in vivo jetPEI. After 30 minutes, 24 hours, and 48 hours, animals 

were sacrificed and the organs of interest (heart, lungs, liver, spleen, kidneys, and tumors) were 

excised. The fluorescence intensity in the organs was quantified on an IVIS Lumina III imaging 

system at excitation wavelength of 620 ± 5 nm and emission wavelength of 670 ± 5 nm (n = 3 

animals, n = 6 tumors). Tumor radiance data were fit to a one-phase exponential decay model 

(equation below) and area under the curve was determined from these fits. 

𝑹𝒂𝒅𝒊𝒂𝒏𝒄𝒆𝒕𝒖𝒎𝒐𝒓 = 𝑹𝒂𝒅𝒊𝒂𝒏𝒄𝒆𝟎 ∗ 𝒆−𝒌𝒕 

For the patient-derived xenograft (PDX) mouse tumor model triple-negative line HCI-010 

was transplanted into one inguinal mammary fat pad (surgically cleared of endogenous epithelium) 

of NOD-SCID (Jackson Laboratory) female mice of 3-4 weeks of age194. After approximately 8 

weeks, PDX tumors were harvested, cut to 4 mm x 2 mm pieces, serially transplanted into the 

cleared inguinal mammary fat pads of a new cohort of NOD-SCID female mice, and grown to a 

volume of 300-500 mm3 Tumor-bearing mice were injected via the tail vein with 1 mg/kg (nucleic 

acid dose) of fluorescent DNA-L2 or DNA loaded in in vivo jetPEI. After 24 hours, animals were 

sacrificed and the organs of interest (heart, lungs, liver, spleen, kidneys, and tumors) were excised. 

The fluorescence intensity in the organs was quantified on an IVIS Lumina III imaging system at 

excitation wavelength of 620 ± 5 nm and emission wavelength of 670 ± 5 nm (n = 2 animals, n = 

2 tumors). 

 

Acute Toxicity in Liver and Kidney. CD31 mice were injected with siRNA-L2 (10 mg/kg) or in 

vivo jetPEI-loaded siRNA (1, 2 mg/kg). After 24 hours, blood was collected by cardiac puncture 

and then centrifuged at 2000 G for 5 min. Then, plasma was harvested and tested by the Vanderbilt 
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Translational Pathology Shared Resource (TPSR) for systemic levels of alanine aminotransferase 

(ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN), and creatinine. Organs were 

fixed in formalin, sectioned, and imaged for histological evaluation. 

 

Tumor Distribution In Vivo After Intravenous (i.v.) Injection. For the orthotopic tumor model, 

athymic nude female mice (4-6 weeks old, Jackson Laboratory, Bar Harbor, ME, USA) were 

injected in each mammary fat pad with 1 x 106 MDA-MB-231 cells in DMEM:Matrigel (50:50). 

After 21 days, tumor-bearing mice were injected via the tail vein with saline, 1 or 10 mg/kg 

fluorescent DNA-L2, or 1 mg/kg DNA loaded in in vivo jetPEI. Tumors were excised, and cells 

were isolated from each tumor. A mixture of collagenase and DNAse was used to dissociate cells 

and ammonium-chloride-potassium lysing buffer was used to lyse red blood cells. Uptake of 

fluorescent DNA or DNA-L2 was evaluated by flow cytometry (n = 4 animals, n = 8 tumors). 

Tumor cells were identified as the cell population expressing green fluorescent protein (GFP), 

while the GFP-negative cell population corresponded to native mouse cells. 

 

Target Gene Silencing After i.v. Injection. Athymic nude female mice (4-6 weeks old, Jackson 

Laboratory, Bar Harbor, ME, USA) were injected in each mammary fat pad with 1 x 106 MDA-

MB-231 cells in DMEM:Matrigel (50:50). After tumors reached a size of 50 mm2, tumor-bearing 

mice were injected i.p. with luciferin substrate (150 mg/kg) and imaged for bioluminescence on 

an IVIS Lumina III imaging system 30 minutes post-injection. Next, the mice were injected via 

the tail vein with 10 mg/kg (based on siRNA dose) luciferase-targeting (luc) siRNA or siRNA-L2 

or a scrambled sequence (scr) siRNA-L2. Mice were imaged and treated at days 0 and 1 following 

tumor cell inoculation and imaged on day 2, 3, 4, 7, and 10. Relative luminescence was determined 
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by measuring the raw luminescent intensity of each tumor on each day and comparing to the initial 

signal at day 7 (n =10 tumors per group). Mouse body weight was evaluated at each of these 

timepoints to investigate treatment toxicity. 

 

Statistical Methods. The treatment groups were statistically compared using a one way ANOVA 

test (for non-repeated measures) or a two way ANOVA (for measures repeated at multiple time 

points) coupled with a Tukey means comparison test; a p-value < 0.05 was deemed representative 

of a significant difference between groups. For all data shown, the arithmetic mean and standard 

error are reported, and the sample size (n) is indicated. 

 

Ethics Statement. The animal studies were conducted with adherence to the guidelines for the 

care and use of laboratory animals of the National Institutes of Health (NIH). All experiments with 

animals were approved by Vanderbilt University's Institutional Animal Care and Use Committee 

(IACUC). 

 

 

 

5.5 Results 

Purified siRNA-L2 conjugate binds to albumin. To synthesize siRNA-L2, a single-stranded 

amine-modified siRNA was reacted with an NHS ester/octyne heterobifunctional crosslinker and 

subsequently conjugated with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-

[azido(polyethylene glycol)-2000] (DSPE-PEG2000-azide) to generate siRNA-L2 (Figure 5.1A, 

S5.1A). The fully purified L2 conjugates were obtained by reverse phase chromatography and 
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purity was confirmed by mass spectrometry (Figure 5.1B, S5.1B). Following purification, sense 

strand siRNA-L2 was annealed to the corresponding antisense strand (for imaging studies, the 

antisense strand was Cy5-labeled).  It was confirmed that conjugation of the L2 moiety to siRNA 

did not significantly impact its inherent gene silencing activity, as demonstrated by in vitro 

knockdown evaluation of siRNA and siRNA-L2 delivered via the commercial transfection reagent 

in vivo jetPEI (Figure S5.2A). 

The albumin-binding capacity of siRNA-L2 was confirmed using a non-denaturing PAGE 

gel migration assay (Figure 5.1C, S5.2B). siRNA-L2 alone migrates above the albumin band 

because it exists as a micellar population at the concentration loaded into the gel (0.05 mg/mL, 

while critical micelle concentration is 1.4 μg/mL, Figure S5.2C). As the albumin:siRNA-L2 ratio 

increases, more siRNA-L2 binds to and migrates with albumin. Unmodified siRNA does not bind 

to albumin to any degree at any of the concentrations tested. Binding of L2 conjugates to albumin 

in the presence of complete serum was also evaluated by gel migration assay, revealing preferential 

binding to the albumin component of serum (Figure S5.3A). 
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Figure 5.1. Successfully synthesized and purified siRNA-L2 conjugate binds to albumin. A) Abbreviated structures 

of reactants and final oligonucleotide-L2 conjugate. B) MALDI-TOF mass spectrometry of the original amine-

modified siRNA, the DBCO intermediate, and the L2 conjugate. C) Albumin binding measured by gel stained for 

siRNA (top) and protein (bottom). siRNA-L2 migrates as a micellar population alone and co-migrates with albumin, 

while unmodified siRNA does not migrate with albumin. Note that albumin shows up as multiple bands due to 

running in non-denaturing, native gel conditions. 

 

Albumin-binding of siRNA-L2 enhances circulation time and reduces rapid renal clearance. 

To characterize the in vivo pharmacokinetics of siRNA-L2 in comparison to unmodified siRNA, 

circulation persistence was evaluated in real time using intravital confocal microscopy following 

intravenous (i.v.) injection (see Methods). The circulation half-life (t1/2) of siRNA-L2 was 5.7-fold 

longer than unmodified siRNA (Figure 5.2A-B, Table 5.1). Additionally, the area under the curve, 

a measure of bioavailability of systemically-delivered therapeutics, was 8.6-fold greater for the 

L2-conjugate compared to unmodified oligonucleotide. To evaluate in situ albumin binding, serum 

samples from mice injected with siRNA-L2 (blood collection at 20 minutes post-injection) were 

evaluated via PAGE gel migration assay and revealed the presence of albumin-bound siRNA-L2 

(Figure S5.3B). These data confirm that albumin acts as a chaperone for siRNA-L2 in vivo and 

establish that siRNA-L2 association with albumin confers significant improvements in siRNA 

pharmacokinetics. To support these studies, the time scale of degradation of unmodified and L2-

modified oligonucleotides was investigated. siRNA and siRNA-L2 showed resistance to 

degradation in serum over the pharmacokinetic time frame assessed, and L2 modification imparted 

a slight improvement in resistance to serum degradation (Figure S5.3C-D). 

Biodistribution of siRNA vs. siRNA-L2 was evaluated in excised organs at 20 minutes 

post-injection. For in vivo studies, siRNA-L2 exhibited increased accumulation in almost all 
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organs, likely due to its prolonged circulation time and reduced clearance into the urine in 

comparison to unmodified siRNA (Figure 5.2C). The kidneys were the sole exception, showing 

significantly more unmodified siRNA accumulation (a 1.6-fold greater fraction of the total organ 

radiance) at this early timepoint. This illustrates that using albumin as a natural carrier for siRNA-

L2 allows reduction of acute clearance through the renal route. 

 

 

Figure 5.2. Conjugation of diacyl lipid to oligonucleotides increases circulation half-life and reduces renal 

clearance. A) Cy5-labeled siRNA-L2 and siRNA fluorescence in the blood measured in real time intravitally by 

confocal microscopy after i.v. injection of CD1 mice. B) Representative images of fluorescence in mouse blood 

vessels over time. C) Organ biodistribution of siRNA and siRNA-L2 at 20 minutes. n of 3, standard error shown; 

*** = p<0.001. 
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Table 5.1. Key comparisons of siRNA-L2 vs. siRNA. 

 

siRNA-L2 outperforms a leading in vivo nanoparticle carrier in safety and tumor 

accumulation. The reduction in kidney accumulation and prolonged circulation half-life of 

siRNA-L2 motivated a comparison to commercially available in vivo nanoparticles. Of particular 

interest is the biodistribution profile of siRNA-L2 in comparison to typical nanocarriers, as high 

uptake by mononuclear phagocytic system organs (the liver and the spleen) can result in minimal 

dose accumulation at the target site176. Compared to nanoparticles, siRNA-L2 is expected to avoid 

this off-target accumulation and to more readily penetrate tumor tissue (Figure 5.3) 

 



 114 

 

Figure 5.3. Schematic showing the advantages of diacyl lipid-modified siRNA over traditional nanoparticles (NPs) 

in penetration and accumulation in tumors. 

 

siRNA-L2 was compared to a leading formulation for nanoparticle-based in vivo nucleic 

acid delivery, in vivo jetPEI. In vivo jetPEI nanoparticles (jetPEI NPs) have been used in clinical 

trials and this comparison is a stringent test for therapeutic potential273. Prior to in vivo 

biodistribution studies, non-toxic doses were determined for siRNA-L2 and jetPEI NPs. siRNA-L2 

is expected to avoid the toxic side effects associated with high doses of cationic nanocarriers, 

permitting safe use at higher dosages and potentially expanding the ultimate therapeutic index of 

siRNA drugs. Toxicity was investigated by monitoring mouse body weight and quantifying blood 
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chemistry markers of liver (alanine aminotransferase (ALT) and aspartate aminotransferase 

(AST)) and kidney (blood urea nitrogen (BUN) and creatinine) toxicity. Mice injected with an 

siRNA-L2 dose of 10 mg/kg exhibited normal levels statistically equivalent to those of saline-

injected mice and no change in body weight (Figure S5.4A-E). jetPEI NPs at a dose of 1 mg/kg 

showed no signs of toxicity, but doubling that dose to 2 mg/kg resulted in mortality for 3 of 4 mice 

and showed marked hepatic and renal toxicity in the surviving mouse. These data suggest that 

siRNA-L2 is a safer alternative to nanocarrier-based delivery with the potential for a much broader 

therapeutic index. The maximum tolerated dose (MTD) of 1 mg/kg for in vivo jetPEI and a well-

tolerated dose of 10 mg/kg for siRNA-L2 were used in subsequent studies (MTD not determined 

for siRNA-L2). 

 The biodistribution profile of the L2 conjugate vs. jetPEI NPs was evaluated in a mouse 

orthotopic xenograft tumor model. siRNA-L2 or jetPEI NPs were injected intravenously into 

tumor-bearing mice and organs were evaluated for siRNA accumulation. Comparing the absolute 

radiance in the organs over time from mice treated with jetPEI NPs or siRNA-L2, it is evident that 

the 10 mg/kg treatment of siRNA-L2 significantly enhances accumulation in all of the organs at an 

acute (30 minute) time point (Figure 5.4A, S5.5, S5.6A). Notably, the vast majority of siRNA-L2 

was cleared from all organs excepting the kidneys and tumors by 24 hours (Figure 5.4A, S5.6-7). 

jetPEI NPs, in contrast, create higher proportional delivery to and retention within the mononuclear 

phagocyte system (MPS) clearance organs (the liver and spleen) (Figure 5.4B). 

The in vivo tolerability of high siRNA-L2 doses enables a remarkable increase in tumor 

accumulation (Figure 5.4C, D). The area under the curve of the therapeutic within the tumor was 

19.3-fold higher for siRNA-L2 at 10 mg/kg than for the maximum tolerated dose of jetPEI NPs 

(Table 5.2). Dose-matched siRNA-L2 at 1 mg/kg also outperforms jetPEI NPs in this measure of 
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tumor accumulation by 2.4-fold. Additionally, the fraction of the total organ radiance in the tumors 

is consistently higher for siRNA-L2 at both doses compared to jetPEI NPs, indicating more 

preferential tumor accumulation with siRNA-L2 relative to jetPEI NPs. 

 To further annotate the ability of siRNA-L2 to avoid the typical MPS organ accumulation 

of nanoparticles and accumulate preferentially within tumors, we evaluated the tumor:liver 

radiance ratio. At the 10 mg/kg siRNA-L2 dose, a remarkable tumor:liver accumulation of more 

than 40:1 was observed at both 24 and 48 hours, indicating successful accumulation at a non-

hepatic site (Figure 5.4E, F, Table 5.2).  In contrast, jetPEI NPs displayed a tumor:liver ratio of 

below 3:1, a more than 15-fold decrease compared to siRNA-L2 at 10 mg/kg and also lower than 

that observed for siRNA-L2 at 1 mg/kg (which achieved tumor liver ratio of approximately 15:1). 

 The clear superiority of siRNA-L2 in the orthotopic model motivated investigation in a 

more clinically-relevant patient-derived xenograft (PDX) model of triple negative breast cancer. 

Dose-matched siRNA-L2 and in vivo jetPEI NPs at 1 mg/kg were injected intravenously and 

biodistribution was evaluated at 24 hours. siRNA-L2 attained 4.0-fold greater tumor distribution 

in the PDX model than jetPEI NPs (whereas there was a 2.2-fold increased tumor delivery in the 

dose-matched orthotopic model) at 24 hours (Figure 5.4G-H, S5.8A). Compared to the orthotopic 

model, achieving tumor accumulation in the PDX model was more challenging. The added 

challenge of PDX tumors was more detrimental for jetPEI NPs than siRNA-L2. Total tumor 

accumulation in PDX tumors was 4.3-fold lower than orthotopic tumors for jetPEI NPs while it 

was only reduced by 2.4 fold for siRNA-L2. The lower MPS accumulation of siRNA-L2 relative 

to NPs was consistent in the PDX model, with siRNA-L2 again showing a marked improvement 

in tumor:liver ratio (8:1 vs. 1:1) (Figure S5.8B). 
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Table 5.2. Key comparisons of siRNA-L2 vs. in vivo jetPEI. 

 

siRNA-L2 exhibits homogeneous distribution and high cellular internalization at the tumor 

site. The small size of albumin-bound siRNA-L2 is expected to increase tissue penetration and 

homogeneity of distribution over nanoparticles. Using an in vitro tumor spheroid model, the 

penetration and distribution of siRNA-L2 vs. jetPEI NPs throughout 3D tumor architecture was 

evaluated. The siRNA-L2 showed homogeneous and substantial cell uptake throughout the entirety 

of spheroids, while jetPEI NPs remained localized largely around the edges of the spheroid (Figure 

5.5A). Unmodified siRNA showed improved penetration into the interstitial spaces compared to 

the jetPEI complexes, but exhibited lower overall fluorescence than siRNA-L2 (Figure S5.9A).  To 

complement these results, flow cytometry was used to measure uptake per cell (as quantified by 

mean intracellular fluorescence) in tumor spheroids following siRNA formulation treatment. The 

cellular internalization of siRNA-L2 was 2-fold higher than that of unmodified siRNA, evidencing 

an uptake benefit derived from hydrophobic modification (Figure 5.9B). Compared to jetPEI NPs, 

siRNA-L2 exhibited a greater than 5-fold uptake increase (Figure 5.5B), with 84% of siRNA-L2-

treated cells positive for uptake compared to 27% of jetPEI NP-treated cells (Figure 5.9C-D). 
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Figure 5.4. siRNA-L2 achieves superior delivery to PDX snfd orthotopic tumors. Biodistribution was evaluated 

using a non-toxic dose of 1, 10 mg/kg of siRNA-L2 and the MTD of 1 mg/kg jetPEI NPs. A-F) Orthotopic model: 

A) Absolute organ radiance for siRNA-L2 (10 mg/kg), jet PEI NPs (1 mg/kg). B) Fraction organ radiance for 

siRNA-L2, jetPEI NPs. C) Absolute tumor radiance; exponential decay fits plotted. All treatments are statistically 

different at all timepoints (p<0.05) except that siRNA-L2 (1 mg/kg) does not differ from jetPEI at 48 hours. D) 
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Fraction tumor radiance; ** = p<0.01. E) Tumor:liver ratio reveals a lower proportion in the liver for siRNA-L2 in 

comparison to jetPEI NPs. n = 4, standard error plotted. Ratio for siRNA-L2 at 10 mg/kg is statistically greater than 

jetPEI at 24, 48 hours. F) Representative images depicting accumulation in liver, tumors. G-H) PDX model: G) 

Biodistribution and H) plotted tumor radiance (n = 2) of dose-matched jetPEI NPs and siRNA-L2 at 24 hours. 

Radiance units are photons/s/cm2/sr. 

 

These in vitro tumor spheroid results inspired an investigation of tumor penetration and 

homogeneity of internalization by cells within orthotopic breast tumors in vivo. Following 

intravenous injection of siRNA-L2 or jetPEI NPs, cells were isolated from excised tumors and 

evaluated by flow cytometry for cellular internalization. Tumor cells were identified by expression 

of green fluorescent protein (GFP). siRNA-L2 outperformed jetPEI NPs at both 30 minutes and 24 

hours, with siRNA-L2 at 1 mg/kg displaying 5- and 2-fold increased uptake at respective time 

points and siRNA-L2 at 10 mg/kg showing 45- and 20-fold increased uptake (Figure 5.5C-D, Table 

5.2). At 30 minutes, mice treated with siRNA-L2 at either dose displayed uptake in more than 96% 

of tumor cells, while jetPEI NP-treated mice showed uptake in only 60% of cells (Figure S5.9E). 

The preferential and homogeneous distribution of siRNA-L2 to tumor sites and high uptake by 

tumor cells makes it ideally suited for cancer therapies. 

 

siRNA-L2 elicits sustained silencing in an in vivo tumor model. The promising tumor 

penetration characteristics of siRNA-L2 inspired examination of its gene silencing efficacy in vivo 

in an orthotopic mouse tumor model. After treatment with luciferase-targeted siRNA or siRNA-

L2 at days 0 and 1, luminescence was evaluated over 10 days, where an increase in luminescence 

indicates tumor growth and successful luciferase silencing abrogates the increase in luminescent 

signal. siRNA-L2-treated tumors exhibited significantly reduced tumor luminescence in 
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comparison to tumors treated with unmodified luciferase-targeting siRNA or inactive, control 

siRNA-L2 sequences (Figure 5.4D, S5.10A). Comparing to the scrambled siRNA-L2 control, 

maximum silencing was more than 60% at day 1, with nearly 50% silencing sustained at days 7 

and 10, revealing the prolonged gene silencing capacity of siRNA-L2. No change in mouse body 

weight was observed over the course of treatment, further indicating that siRNA-L2 treatment is 

well-tolerated (Figure S5.10B). 

 

Figure 5.5. siRNA-L2 penetrates tumors and is internalized by tumor cells, resulting in sustained gene silencing in a 

mouse tumor model. A) Representative confocal microscopy images of tumor spheroid penetration and 

internalization. B) Cellular internalization of Cy5-labeled siRNA-L2 or jetPEI NPs loaded with Cy5 siRNA in MCF-

7 tumor spheroids. Treatment at 100 nM, quantified by flow cytometry; n=3, standard error plotted, *** = p<0.001. 
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C) Cellular internalization in tumor cells isolated from orthotopic xenograft mouse tumors after injection of jetPEI 

NPs at 1 mg/kg or siRNA-L2 at 1, 10 mg/kg; n of 6 to 8 tumors. siRNA-L2 treatment at 10 mg/kg exhibited 

statistically greater uptake than all other treatment groups. D) Gene silencing of luciferase-targeted siRNA-L2 

compared to unmodified siRNA in an orthotopic xenograft mouse tumor model; treatment at day 0 and 1 (as 

indicated by arrows) at 10 mg/kg, n of 10. * = p<0.05, ** = p<0.01: Luc-L2 vs. Scr-L2, † = p<0.05, ‡ = p<0.01: Luc-

L2 vs. Luc. Standard error plotted. 

 

5.6 Discussion 

Simple conjugation of a hydrophobic albumin-binding diacyl lipid moiety to siRNA is a 

powerful delivery strategy to improve siRNA pharmacokinetic properties. L2 conjugation 

increases circulation half-life, cellular internalization capacity, and tumor penetration and retention 

of siRNA while simultaneously reducing accumulation in clearance organs. These myriad benefits 

lead to enhanced and prolonged in vivo gene silencing in tumors, supporting siRNA-L2’s potential 

as a cancer therapy that can act on currently undruggable targets. 

 Leveraging albumin as an endogenous nanocarrier is a relatively recent but extremely 

promising strategy to extend the circulation persistence of therapeutics. Clinically relevant 

examples range from Abraxane, an albumin-based nanoparticle that encapsulates Taxol, to 

Levemir, a therapeutic peptide modified to associate non-covalently with endogenous albumin31. 

siRNA, with its high potential medical impact but characteristically short circulation half-life, is 

an ideal candidate to develop with albumin as an in vivo chaperone. Inducing high-affinity binding 

of siRNA to albumin via modification with a lipidic moiety is a logical strategy. Previous work 

has shown siRNA amenable to lipid modifications, which often confer improvements in nuclease 

resistance and cellular internalization without impacting gene silencing23, 25, 27, 238. Conjugation 

with L2 therefore has potential benefits on enhancing molecule stability and uptake while also 
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prompting in situ albumin binding. Notably, this binding is non-covalent and dynamic. In its 

physiological role as a fatty acid carrier, albumin facilitates the cellular uptake of lipids, likely 

through a variety of mechanisms that employ receptors for both albumin and lipid domains274, 275. 

Conjugation of L2 could allow siRNA-L2 to hijack these natural pathways. Additionally, the 

hydrophobic interaction of the L2 moiety with the cellular membrane could encourage siRNA-L2 

to be internalized independent of albumin. 

 L2 modification as an albumin targeting approach is desirable for achieving 

pharmacokinetic improvements while maintaining simplicity and safety. Despite the synthetic 

complexity of nanoparticle systems, siRNA-L2 possesses a circulation half-life above that of non-

crosslinked polyion nanoparticles18, 73 and nearly equivalent to that observed in a relatively 

intricate crosslinked micelle system employing cholesterol-modified siRNA22. Perhaps more 

striking is the complete lack of toxicity observed for siRNA-L2 at doses of 10 mg/kg, which sharply 

contrasts with the reported toxicity and immunogenicity of nanoparticulate carriers and our direct 

evaluation of in vivo jetPEI17, 52. siRNA-L2 couples an improved circulation half-life with a lack 

of dose-limiting side effects, and therefore is anticipated to enable very broad therapeutic windows 

when developed against specific targets. Additionally, we expect that the efficacy of siRNA-L2 

could be further optimized through modifications to enhance in vivo stability and through 

identification of siRNA sequences with extremely potent silencing45, 207. 

 Another associated challenge with nanoparticle delivery systems is their preferential 

accumulation within clearance organs, specifically the liver and spleen159. Accumulation of 

synthetic and toxic/immunogenic nanoparticle components in these organs is the typical cause of 

dose-limiting toxicities. However, siRNA-L2 avoids retention in the MPS organs while also 

exhibiting a significant reduction in the kidney accumulation at 20 minutes, an indicator of rapid 
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renal clearance, associated with unmodified siRNA delivery. This is exemplified by the 

tumor:liver accumulation ratio of more than 40:1 achieved by siRNA-L2. The disparity between 

in vivo jetPEI, with a ratio of less than 3:1, is pronounced. The lack of siRNA-L2 retention in the 

liver is a key advantage over nanoparticulate delivery systems and will allow a greater percentage 

of the injected dose to be retained at its site of action in tumors. The lower tumor:liver ratio 

observed with in vivo jetPEI and nanoparticle systems in the literature is consistent with reported 

challenges in achieving efficient nanoparticle delivery to tumor sites; in a comprehensive analysis 

of nanoparticle delivery to solid tumors, the median injected dose delivered to the tumor site was 

0.7%176. It is notable that even in recent, advanced, and promising nanoparticle systems, including 

those that employ modifications for “stealth” or targeting mechanisms, the ratio of tumor:liver 

accumulation is consistently close to or below 1:122, 174, 257, 276-280. The marked improvement of 

siRNA-L2 in relative tumor accumulation supports its translational promise. 

 There is also a significant tumor penetration benefit of siRNA-L2, likely due to its small 

size relative to nanoparticle carriers. While in vivo jetPEI displays poor penetration of tumor tissue, 

siRNA-L2 distributes homogeneously throughout tumor tissue and achieves consistently high 

uptake in tumor cells. The capacity of siRNA-L2 to offer superior tumor penetration is particularly 

significant given the highly inconsistent nature of clinical tumor vasculature and tissue 

morphology which limits consistent nanoparticle distribution176, 281. Here, we note that the PDX 

mouse model is less permissive than the orthotopic model. PDX models are considered more 

clinically relevant, as they preserve the native tissue architecture of the primary tumor through 

multiple in vivo passages and consistently recapitulate histopathologic and molecular 

characteristics, including drug responses and metastatic potential194. The more challenging nature 

of the PDX model relative to the orthotopic model (which is considered more stringent than the 
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flank model191) aligns with recent discussion suggesting that the permeable nature of commonly-

used mouse tumor models has led to an overestimation of the EPR effect188, 192. While nanocarriers 

like in vivo jetPEI may achieve efficacy in highly vascularized or non-solid tumors188, they lack 

the ability to diffuse throughout the bulk of tumor architecture. Faced with a more difficult delivery 

challenge in the PDX model, siRNA-L2 maintains tumor accumulation better than does in vivo 

jetPEI. As the majority of human solid tumors contain regions of poor vascularization and display 

disparity in vessel permeability188, 191, siRNA-L2’s characteristics and performance imply 

applicability to a much broader range of cancers. A recognition of the limitations of the EPR effect 

and a developing understanding of tumor heterogeneity calls for innovative solutions for systemic 

RNAi cancer therapies. siRNA-L2 deviates enormously from the standard nanoparticle format, and 

its notable advantages should inspire further research into similar conjugate-based strategies. 

 In situ targeting of albumin as an endogenous carrier is a powerful strategy to enhance the 

bioavailability of siRNA and avoid the issues associated with synthetic nanocarriers. siRNA-L2 

surpasses conventional delivery systems in circulation persistence, safety, biodistribution profile, 

and tumor penetration and cellular internalization. Ultimately, siRNA-L2 achieves sustained gene 

silencing in tumors in vivo, providing strong proof-of-concept for therapeutic efficacy. This work 

highlights the immense value of the siRNA-L2 conjugate as a translational and potentially 

transformative approach to improve i.v. RNAi cancer therapies. 
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CHAPTER 6 

TOWARD DEVELOPMENT OF A HYDROPHOBIC SIRNA CONJUGATE FOR LOCAL 

TREATMENT OF CHRONIC WOUNDS 

 

Text partially adapted from: 

Sarett SM, Nelson CE, Duvall CL (2015). Technologies for controlled, local delivery of siRNA. 

Journal of Controlled Release, 218. 

Sarett SM (2014). Conjugation of palmitic acid improves potency and longevity of siRNA 

delivered via endosomolytic polymer nanoparticles. Unpublished master’s thesis, Vanderbilt 

University, Nashville, Tennessee. 

Sarett, SM, Kilchrist, KV, Miteva, M, Duvall, CL (2015). Conjugation of Palmitic Acid 

Improves Potency and Longevity of siRNA Delivered via Endosomolytic Polymer 

Nanoparticles. Journal of Biomedical Materials Research Part A, 103. 

 

6.1 Introduction 

 Due to the complex nature of wound healing, a variety of physiological abnormalities can 

contribute to impaired healing. However, inadequate angiogenesis and the resulting deficiencies 

in oxygen and nutrient delivery to developing tissue have been identified as key problems in 
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chronic wounds. For complex pathologies like impaired wound healing, physiological gene 

inhibition presents a powerful alternative to typical small molecule drugs, as the suppression of a 

strategically selected gene allows for simultaneous modulation of a myriad of downstream 

targets and facilitates a broad and coordinated therapeutic effect. The inhibition of prolyl 

hydroxylase 2 (PHD2) in cells recruited to the site of wound healing has emerged as a powerful 

strategy to promote angiogenesis due to PHD2’s role as a regulator of hypoxia inducible factor-

1α (HIF-1α) activity. Silencing the regulator gene PHD2 through application of PHD2-targeted 

siRNA aids in restoration of a pro-healing environment at sites of impaired wound healing. 

However, development of an effective RNAi-based therapy for local application has been 

frustrated by barriers to siRNA’s cytoplasmic delivery. Previously, our group has established 

long-term and potent in vivo silencing efficacy of PHD2-targeted siRNA delivered from 

polymeric nanoparticles (NPs) loaded into polyester urethane (PEUR) biomaterial scaffolds108, 

134. This delivery platform leverages the advantages of localized and sustained therapeutic 

release to achieve tunable gene silencing that resulted in upregulation of pro-angiogenic genes 

and enhanced blood vessel formation. However, there is a need to optimize this therapeutic 

strategy due to anti-angiogeneic, pro-inflammatory side effects derived from the NP carrier 

(Figure S6.1). These side effects are particularly undesirable at sites of chronic wounds (which 

are often characterized by a state of pathologically increased inflammation) but typical of 

cationic NP carriers. We established that conjugation of palmitic acid (PA) to siRNA reduces the 

dose of cationic nanocarrier required for effective and prolonged gene silencing, endowing 

siRNA-PA NPs with a broader therapeutic index than unmodified siRNA NPs. We will continue 

our evaluation of siRNA-PA NPs, benchmarked against siRNA NPs and delivered from 

polyurethane scaffolds, in a rat model of impaired wound healing. 
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While siRNA-PA NPs are a more biocompatible option than siRNA NPs, the ideal 

siRNA conjugate eliminates the need for a nanocarrier and will likely facilitate more 

homogeneous distribution throughout the site of chronic wounds. A multivalently hydrophobic 

siRNA conjugate is expected to potentiate cellular uptake through multiple simultaneous 

interactions with the cellular membrane; indeed, we have shown that a divalently hydrophobic 

siRNA conjugate achieved higher internalization than the monovalent siRNA-PA molecule. 

Current strategies for coating cell membranes involve “anchoring” to the lipid bilayer via 

hydrophobic interactions, and multivalent interactions have been shown to be far more potent 

than similar monovalent interactions282, 283. We will investigate several strategies for conjugation 

of siRNA to a multivalently hydrophobic polymer, notably “grafting-to” and “grafting-from” 

approaches using reversible addition-fragmentation chain transfer (RAFT) polymerization 

techniques. The novel siRNA-polymer conjugates developed will leverage hydrophobic 

modification of siRNA as a non-toxic strategy to improve siRNA’s pharmacokinetics, advancing 

development of a biocompatible RNAi therapeutic for treatment of chronic wounds. 

 

6.2 Materials and methods 

Materials: Amine-modified single-stranded DNA (modification at 5’ end) or Dicer substrate 

siRNA (modification at 3’ end) and complementary single-stranded Cy5-modified DNA or 

unmodified Dicer substrate siRNA were obtained from Integrated DNA Technologies 

(Coralville, Iowa). Lipofectamine 2000 was purchased from Life Technologies (Grand Island, 

NY). RNEasy spin columns were obtained from Qiagen (Venlo, Netherlands), and the iScript 

cDNA Synthesis Kit from Bio-Rad (Hercules, CA). Macro-Prep High Q Support anionic resin 

was also purchased from Bio-Rad. NIH-3T3s were purchased from Jackson Laboratory (Bar 
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Harbor, ME). Propylacrylic acid was synthesized as previously reported1,2. All other reagents 

were purchased from Sigma-Aldrich (St. Louis, MO). 

Oligonucleotide-PA Synthesis and Characterization: Single-stranded amine-modified oligo was 

reacted with 100-fold molar excess of PA N-hydroxysuccinimide ester pre-dissolved at 40 mM 

in N,N-dimethylformamide (DMF). The reaction was carried out for 18 hours at room 

temperature in 45% water, 45% isopropyl alcohol, and 10% DMF. The oligo-PA was purified by 

reversed-phase HPLC using a Clarity Oligo-RP column (Phenomenex, Torrence, CA) under a 

linear gradient from 95% water (50 mM triethylammonium acetate), 5% methanol to 100% 

methanol. The conjugate molecular weight was confirmed using MALDI-TOF mass 

spectrometry (Voyager-DE STR Workstation, Grand Island, NY) using 50 mg/mL 3-

hydroxypicolinic acid in 50% water, 50% acetonitrile with 5 mg/mL ammonium citrate as a 

matrix. The yield of the oligo-PA was quantified based on absorbance at 260 nm. The purified 

oligo-PA was annealed to its complementary strand to generate Cy5-modified DNA-PA or 

siRNA-PA. Conjugation and annealing was also confirmed via agarose gel electrophoresis. 

Oligonucleotide-loaded Nanoparticle (NP) Synthesis: A diblock copolymer composed of a 

homopolymer of 2-(dimethylamino) ethyl methacrylate (DMAEMA) blocked with a random 

copolymer of DMAEMA, 2-propylacrylic acid (PAA), and butyl methacrylate (BMA) was 

synthesized using reversible addition-fragmentation chain transfer (RAFT) polymerization as 

described previously70, 134. Assembly of NPs was triggered by dissolving polymer in 100% 

ethanol, followed by slow addition of water or PBS via syringe pump. siRNA or DNA (with or 

without PA) was mixed with NPs and allowed to electrostatically condense for 30 minutes. NPs 

were used at this stage directly for cellular uptake studies. For scaffold encapsulation, the 
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excipient trehalose was added at a 60:1 weight ratio to siRNA and incubated with the NPs for 30 

minutes. NPs were then frozen and lyophilized. 

Cellular Uptake: NIH-3T3s were treated with Cy5-labeled DNA or DNA-PA in 10% serum for 

24 hours at 500 nM and with Cy5-labeled DNA or DNA-PA complexed with Lipofectamine 

2000 (according to manufacturer protocol) for 24 hours at 50 nM. Intracellular fluorescence was 

quantified using flow cytometry at 12, 36, 60, and 84 hours. Extracellular membrane-bound 

fluorescence was quenched with Trypan Blue. 

Poly(thioketal urethane) (PTK-UR) Scaffold Synthesis: 100 mg PTK-UR scaffold were prepared 

using reactive liquid molding. Poly(thioketal) polyol284 was added to water, TEGOAMIN33 

catalyst, and the pore opener calcium stearate. These components were then mixed for 30 

seconds at 3300 rpm in a Hauschild DAC 150 FVZ-K SpeedMixer (FlackTek, Inc., Landrum, 

SC). This mixture was added to a micro-centrifuge tube containing the lyophilized 

siRNA/siRNA-PA NPs; siRNA was designed to target PHD2 or was a non-targeted (scrambled) 

control sequence. A homogenous mixture was obtained through another 30 seconds of mixing. 

Next, lysine triisocyanate (LTI) was added and the components were mixed for an additional 30 

seconds. The tubes were exposed to air and the reaction mixture allowed to freely rise and 

harden for at least 2 hours. The targeted index (ratio of isocyanate to hydroxyl equivalents times 

100) was 115, where the number of OH equivalents is calculated from the poly(thioketal) 

polyol’s molecular weight. The amounts of each component for the respective scaffold 

formulations, given as equivalent amounts in parts per hundred parts polyol (PPHP), are 1.5, 2.3, 

4.0, and 36.1 for water, TEGOAMIN33, calcium stearate, and LTI, respectively. 
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Diabetic Rat Excisional Wound Model: All surgical procedures are reviewed and approved by 

Vanderbilt University’s Institutional Animal Care and Use Committee. As previously 

described284, for these animal studies, adult male Sprague-Dawley rats (~350g) will be treated 

with streptozotocin (STZ) at 50mg drug/kg rat and allowed to develop diabetes for 10 days, with 

a blood glucose concentration greater than 300 mg/dL confirming the diabetic state. PTK-UR 

scaffolds loaded with PHD2 or PHD2-PA siRNA NPs will then be implanted in full-dorsal 

excisional wounds, which are used to mimic chronic diabetic ulcers. Scaffolds will be excised 

from euthanized animals at days 4 and 7 to be processed for histology and gene expression 

quantification. 

Evaluation of PHD2 Gene Silencing: Approximately half of each scaffold excised at 4, 7 day 

was stored in RNAlater to preserve mRNA content. RNA was isolated directly from these 

scaffold sections, transcribed into cDNA, and the degree of PHD2 knockdown was quantified by 

real time polymerase chain reaction (RT-PCR) using the ΔΔCt method and normalizing to 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and peptidyl-prolyl cis-trans isomerase B 

(PPIB). 

Synthesis of azide-functionalized chain transfer agent (CTA): The RAFT CTA 4-Cyano-4-

(ethylsulfanylthiocarbonyl)sulfanylpentanoic Acid (ECT) was synthesized as previously 

described70, 241. Azidoethanol was synthesized through reaction of sodium azide (2.4 M in water) 

with 2-bromoethanol (3:1 excess of sodium azide). Azidoethanol was extracted in diethyl ether 

and isolated by rotary evaporation. Immediately following rotary evaporation, azidoethanol was 

coupled to ECT via N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide (EDC) HCl/4-

Dimethylaminopyridine (DMAP) coupling. Azidoethanol:ECT ratio was 1.25:1; EDC HCl was 

at a 2-fold molar excess and DMAP was 7.5% of the molar amount of EDC HCl. Reaction was 
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achieved in dichloromethane (DCM) and ECT-azide was isolated through washing with water 

three times and synthesis was confirmed by H NMR evaluation. 

Polymer synthesis from ECT-azide: ECT-azide was used as a CTA in RAFT polymerization of 

2-methacryloyloxyethyl phosphorylcholine (MPC) and pentafluorophenyl acrylate (PFPA). 

ECT-azide was at a ratio of 5:1 to free radical initiator AIBN. The solvent was methanol and 

monomer concentration was 20% of the total reaction volume. The combination of ECT-azide, 

AIBN, MPC, PFPA, and trioxane in methanol was nitrogen purged and polymerized for 24 hours 

at 65oC. The characteristic trioxane H NMR peak (5.2 ppm) was used to evaluate reaction 

monomer efficiency through comparison of monomer peak area pre- and post-polymerization. 

p(MPC-co-PFPA) polymers were characterized by H NMR and F NMR, where F NMR revealed 

the successful incorporation of PFPA. 

Synthesis of DNA-DBCO: Synthesis of DNA-DBCO is previously described; briefly, single-

stranded DNA-NH2 was reacted with 10-fold molar excess of DBCO-PEG4-NHS in 30% 

dimethylsulfoxide (DMSO) and 70% phosphate buffered saline (PBS) with 8 mM TEA. The 

product was purified by NAP-25 column filtration. 

Reaction of PFPA to dodecylamine: p(MPC-co-PFPA) was dissolved in water and dodecylamine 

was dissolved in DMSO in equal volumes. Solutions were combined, with dodecylamine at a 50-

fold excess to PFPA groups in the polymer. p(MPC-co-12C) was characterized by H NMR and F 

NMR, where disappearance of the F NMR peaks revealed elimination of the PFPA moieties. 

Reaction and purification of p(MPC-co-12C) to DNA-DBCO: DNA-DBCO dissolved in water at 

a 100 μM concentration was reacted to p(MPC-co-12C) dissolved in an equal volume of 

methanol. p(MPC-co-12C) was at a 50-fold excess to DNA-DBCO. The reaction was evaluated 
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through agarose gel electrophoresis, staining with ethidium bromide. The crude reaction mixture 

was purified to eliminate excess polymer through mixing with Macro-Prep High Q Support 

anionic resin chromatography beads. Resin and crude reaction were incubated in water for 30 

minutes on the shaker. Mixture was centrifuged at 3,000 G for 5 minutes and supernatant was 

removed. Bound DNA-DBCO or DNA-p(MPC-co-12C) was eluted from the beads through 

washing with 3 M NaCl. This eluent was filtered through a NAP25 desalting column and 

lyophilized. This product was then purified further through HPLC purification in the Clarity 

Oligo RP column as previously described. 

Reaction of ECT-azide to DNA-DBCO: DNA-DBCO dissolved in water at a 100 μM 

concentration was reacted to ECT-azide dissolved in an equal volume of methanol. ECT-azide 

was at a 50-fold excess to DNA-DBCO. Reaction was evaluated through MALDI mass 

spectrometry. 

 

6.3 Results and discussion 

 In pursuit of a hydrophobic siRNA conjugate for carrier-free efficacy in local, scaffold-

based delivery, we initially investigated siRNA-PA. Given the facile synthesis of siRNA-PA and 

its higher stability relative to unmodified siRNA, we investigated whether the monovalent PA 

modification would be sufficient to induce cellular uptake. Unfortunately, oligonucleotide 

modification with PA was incapable of promoting substantial cellular internalization carrier-free 

even at high (500 nM) doses (Figure 6.1A). Additionally, siRNA-PA in the absence of a 

nanocarrier elicited no significant gene silencing in in vitro evaluations at doses up to 5 μM. 

These results motivated our choice of siRNA-PA NPs, rather than siRNA-PA carrier-free, for 

investigation in vivo. 
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 siRNA or siRNA-PA NPs, targeted to the PHD2 gene, were loaded into PTK-UR 

biomaterial scaffolds; the PTK-UR scaffold formulation was chosen because of its proven 

capacity to facilitate and support tissue ingrowth and wound healing122, 284. Loaded scaffolds 

were implanted at the site of excisional wounds in diabetic rats. Diabetic rats display defective 

closure of excisional wounds, highlighting the importance of diabetic complications in wound 

healing and making this a challenging wound model that replicates aspects of the well-

documented clinical connection of diabetes to impaired wound healing4, 5. In this stringent in 

vivo model, NPs loaded with PA-modified PHD2 siRNA elicited more sustained gene silencing 

than those loaded with unmodified PHD2 siRNA (Figure 6.1B). This promising result confirms 

the greater longevity of siRNA-PA NPs. However, there remains an impetus for establishment of 

potent silencing without the use of a polymer nanocarrier. 

 

Figure 6.1. A) In combination with Lipofectamine 2000 (LF), PA conjugation results in enhanced substantial 

cellular uptake at a 50 nM dose. Carrier-free DNA-PA is not effective at inducing cellular uptake at a dose of 500 

nM (not statistically greater than DNA, while both DNA and DNA-PA carrier-free were statistically lower than both 

LF treatments. B) In a rat diabetic excisional wound model, scaffolds loaded with NPs of PA-modified siRNA-PA 

elicited more prolonged gene silencing compared to those using unmodified PHD2 siRNA (no differences were 

statistically significant). 
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 A multivalently hydrophobic siRNA-polymer conjugate is expected to facilitate enhanced 

interaction with the cellular membrane, leading to improved internalization and therefore gene 

silencing. However, the conjugation of two large macromolecules, like that of siRNA to a 

polymer, is often hampered by low reaction efficiencies and challenging purification procedures 

285, 286. Further complicating the synthesis of a multivalently hydrophobic siRNA-polymer 

conjugate is the solubility disparity that exists between a partially hydrophobic polymer and 

hydrophilic siRNA. Recognition of these difficulties motivated development of a strategy for 

siRNA-polymer synthesis based on efficient “click” conjugation chemistry, a “grafting-to” 

approach (Figure 6.2). 

 

 

Figure 6.2 “Grafting-to” approach for synthesis of a multivalently hydrophobic siRNA-polymer conjugate. An 

azide-functionalized RAFT CTA is used to generate a co-polymer of MPC and PFPA, and the PFPA moieties are 

subsequently replaced with a 12-carbon chain. The polymer, end-functionalized with the azide, is conjugated to 

siRNA-DBCO, 

 

Our approach leverages RAFT co-polymerization of a hydrophilic, zwitterionic monomer 

(MPC) with an amine-reactive monomer (PFPA). The MPC imparts aqueous solubility to the 

polymer while the PFPA can be modified post-polymerization with amine-functionalized lipids, 

endowing the polymer with multiple hydrophobic groups. An azide-functionalized RAFT CTA 
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was synthesized (Figure S6.2) to provide a controlled site for reaction with DBCO-

functionalized siRNA (Figure 5.1, S5.1). 

The first step is RAFT polymerization from the azide-functionalized CTA. Measurement 

of monomer consumption pre- and post-polymerization allows estimation of the polymer 

composition and molecular weight (Figure S6.3). The prototypical polymer candidate was 

characterized to have a molecular weight of ~12,000, with about 80% MPC composition and 

20% PFPA composition (corresponding to 9 reactive sites per polymer). The polymer was 

subsequently reacted to an amine-functionalized 12-carbon lipid, resulting in an azide-

functionalized multivalently hydrophobic polymer (Figure S6.4). This polymer is amenable to 

reaction with the previously-described DBCO-functionalized oligonucleotides. Conjugation of 

DNA-DBCO to the polymer was achieved (Figure 6.4A), though the reaction could not be driven 

to completion and significant conjugate yield necessitated high (50-fold) excesses of the 

polymer. The high polymer excess caused issues in purification of the siRNA-conjugate; the 

similar molecular weights of siRNA and the polymer precluded size-based isolation, and HPLC 

purification methods, while effective at separating DNA-DBCO from DNA-polymer (Figure 

6.4B) did not eliminate residual polymer. 
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Figure 6.3. A “grafting-to” approach allows synthesis of a multivalently hydrophobic DNA-polymer conjugate, as 

evidenced by gels stained for nucleic acids. A) Crude reaction of DNA-DBCO to azide-functionalized polymer; the 

DNA-polymer conjugate migrates much more slowly than DNA-DBCO. B) Fractions from the two main peaks 

observed during HPLC purification; DNA-DBCO comprises the first peak, while the second is the DNA-polymer 

conjugate. Both fractions contained substantial residual unreacted polymer. 

 

 The moderate efficiency and complex purification of the “grafting-to” strategy motivated 

exploration of a “grafting-from” approach (Figure 6.4), which is expected to obviate the central 

purification difficulties. A “grafting-from” approach for siRNA-polymer synthesis has, to date, 

been accomplished only once; an siRNA-based macroinitiator was used in atom transfer radical 

polymerization to polymerize a PEG-based monomer285. Polymerization of a hydrophobic 

monomer from an siRNA-based initiator is a wholly novel pursuit. Due to siRNA’s poor 

solubility in organic solvents and its high cost, we identified a recently-developed technique for 

RAFT polymerization at low volumes in aqueous media as a promising strategy287. Synthesis 

protocols using this technique are in development. Successful implementation of the “grafting-

from” approach would eliminate the purification difficulties inherent in the “grafting-to” 

approach, allowing efficient synthesis of our unique, multivalently hydrophobic siRNA 

conjugate. 
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Figure 6.4 “Grafting-from” approach for synthesis of a multivalently hydrophobic siRNA-polymer conjugate. An 

azide-functionalized RAFT CTA is conjugated to DBCO-functionalized siRNA pre-polymerization. A co-polymer 

of MPC and PFPA is grown from the siRNA-CTA, and the PFPA moieties are subsequently replaced with a 12-

carbon chain. 

 

 

6.4 Conclusions 

 Developing a potent siRNA conjugate for local, scaffold-based delivery has the potential 

to revolutionize the treatment of chronic wounds. Our work demonstrates that a monovalently 

hydrophobic siRNA conjugate does not induce carrier-free gene silencing efficacy, and polymer 

nanocarrier options display undesirable inflammatory side effects. We have synthesized a 

multivalently hydrophobic siRNA-polymer conjugate that could allow for carrier-free gene 

silencing at sites of impaired wound healing. Further investigation of purification strategies in 

the “grafting-to” approach and evaluation of synthesis conditions in the “grafting-from” 

approach will allow characterization of the therapeutic utility of our innovative conjugate in local 

RNAi applications. 
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CHAPTER 7 

SYNOPSIS AND SIGNIFICANCE 

7.1 Summary 

 Almost three decades have passed since the initial discovery of RNAi34, and scientific 

understanding regarding the molecular mechanism and physiological interactions of siRNA, 

ODNs, LNA, and other RNAi effectors has advanced considerably over that time span8. The 

preclinical value of siRNA has been enormous, allowing facile in vitro investigation of the impacts 

of temporal gene knockdown. However, clinical translation of siRNA and other RNAi therapeutics 

has proven extremely challenging288. While numerous antisense ODN therapies have successfully 

navigated clinical trials and become valuable treatment options for niche pathologies289, no 

siRNA-based therapy has achieved clinical relevancy290, 291. Despite the established higher potency 

of siRNA in comparison to ODNs, the formidable in vivo barriers to delivery of siRNA to its site 

of action have complicated and impeded therapeutic development14, 43. The motivation of this work 

was to improve siRNA’s pharmacokinetic properties through covalent conjugation of 

biocompatible, hydrophobic moieties, improving its potency and therapeutic efficacy when 

delivered via local or systemic treatment strategies. These studies investigated strategically-chosen 

siRNA conjugates designed to act synergistically with a delivery platform and with the 

physiological milieu. 
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 In aim 1, siRNA was hydrophobized with PA and evaluated in combination with polymer 

nanoparticle carriers. To address local delivery applications, siRNA-PA was encapsulated in 

nanoparticles of a diblock copolymer with a DMAEMA corona and a core-forming block 

comprising DMAEMA. PAA, and BMA. The DMAEMA corona condenses anionic siRNA and 

the copolymer block stabilizes the nanoparticles and endows endosomal escape properties. These 

nanoparticles are tailored for local delivery applications; the cationic corona promotes cellular 

internalization but results in aggregation, protein adsorption, and rapid clearance in situations of 

intravenous delivery. siRNA-PA-loaded nanoparticles (siRNA-PA NPs) were superior to 

nanoparticles loaded with unmodified siRNA in loading capacity, stability, ability to induce 

cellular uptake, and gene silencing potency and longevity. siRNA-PA’s concentration at the 

nanoparticle surface facilitated hydrophobic interactions between siRNA-PA molecules and with 

the cellular membrane, conferring the distinct advantages observed. 

To tackle the challenges of systemic siRNA delivery, a PEGylated polymer with equivalent 

core content of DMAEMA and BMA was utilized. The PEG corona imparts enhanced circulation 

persistence by shielding the nanoparticles from immune recognition, while the DMAEMA in the 

corona functions to encapsulate siRNA. The BMA component acts to stabilize the nanoparticles 

by facilitating hydrophobic forces between polymer strands. In this delivery system, siRNA-PA 

loads into the nanoparticle core, which allows hydrophobic interactions among siRNA-PA 

molecules and with the BMA component in addition to the electrostatic attractions between 

siRNA-PA and the DMAEMA moieties. These dual interactions endow siPA NPs with enhanced 

loading efficiency, stability in the presence of counterions and serum, and improved cellular 

internalization. In summary, siRNA-PA has proven advantageous in combination with polymer 

nanoparticles optimized for local or systemic delivery. These studies demonstrate the broad 
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pharmacokinetic improvements that can be derived from simple hydrophobic modification of 

siRNA. 

 While aim 1 focuses on synergistic combination of hydrophobized siRNA and polymer 

nanocarriers, aim 2 concentrates on development of hydrophobic siRNA conjugates suited for 

carrier-free delivery. Unfortunately, siRNA-PA proved incapable of eliciting carrier-free gene 

silencing even when localized to target tissues. For situations of local delivery, siRNA conjugated 

to a polymer decorated with multiple hydrophobic moieties is a superior strategy to monovalent 

modification with PA because it enables multivalent hydrophobic interactions with cellular 

membranes. However, the published reports of siRNA-polymer conjugates exclusively utilize 

hydrophilic polymers for siRNA conjugation, with the vast majority of polymers utilized 

consisting of a PEG derivative. This exemplifies the challenging nature of modifying ~10 kDa 

siRNA with another large macromolecule, where steric hindrance and solubility differences can 

create significant issues285, 286. Despite the inherent difficulty of this strategy, siRNA-polymer 

conjugates wherein the polymer is composed of hydrophilic MPC with randomly distributed 

saturated 12-carbon moieties have been synthesized for ultimate incorporation into a scaffold-

based local delivery platform. 

An alternate siRNA conjugate was developed to address systemic delivery considerations. 

siRNA conjugated to the diacyl lipid moiety L2 emerged as a powerful option due to its capacity 

to leverage albumin as an endogenous nanocarrier. In vitro, siRNA-L2 exhibited immediate and 

high-affinity albumin binding as well as enhanced stability, cellular internalization, and 

penetration of tumor tissue architecture. These studies describe the development of two wholly 

novel hydrophobic siRNA conjugates for carrier-free therapeutic application. Due to the 

complexity and toxicity characteristic of nanocarrier systems, conjugate-based strategies are a 
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potentially high-impact pursuit. This work broadens the scope of this field by investigating the 

utility of unique hydrophobic moieties. 

 Aim 3 evaluates the therapeutic potential of leading siRNA conjugate strategies in 

relevant animal disease models. While the multivalently hydrophobic siRNA-polymer conjugate 

remains uniquely promising for local, scaffold-based delivery to the site of chronic wounds, to 

date the challenges in large-scale synthesis and purification of this conjugate have precluded its 

in vivo evaluation. Because siRNA-PA NPs possess a broad therapeutic index in comparison to 

previously used NP-based strategies, this system was instead investigated. PHD2-PA NPs loaded 

into a biomaterial scaffold and implanted in diabetic rat excisional wounds imparted enhanced 

longevity of gene silencing. 

siRNA-L2 was evaluated as a systemic oncological therapy in orthotopic and PDX mouse 

tumor models of triple negative breast cancer. L2 conjugation conferred broad improvement of 

siRNA’s pharmacokinetic properties, increasing circulation time and reducing renal clearance. 

Significantly, siRNA-L2 exhibited no toxicity at ten-fold the maximum tolerated dose of 

commercially available in vivo siRNA nanocarrier jetPEI. Benchmarked against jetPEI, siRNA-

L2 exhibited higher tumor accumulation and penetration and induced potent and sustained gene 

silencing. This is the first reported carrier-free, systemic gene silencing using siRNA at a non-

hepatic pathological site. This work highlights the clinical potential of hydrophobic siRNA 

conjugate-based therapies and siRNA-L2’s particular promise as a potentially revolutionary 

systemic RNAi cancer therapy. 

 Hydrophobic siRNA conjugates are a powerful tool to endow siRNA with the capacity to 

overcome the physiological delivery barriers it faces. These conjugates are highly biocompatible 

and impart stability both in combination with nanocarrier systems and when utilized carrier-free. 
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This work represents the forefront of an exciting and hopefully fruitful avenue of investigation of 

divalent and multivalent hydrophobic modifications to siRNA that leverage aspects of the 

endogenous milieu to confer dramatically enhanced delivery efficacy. 

 

 

7.2 Concerns and Limitations 

 Achievement of the described aims represents major progress toward development of 

effective hydrophobic siRNA conjugates. Yet the stability of the siRNA molecule itself, the lack 

of an endosomal escape mechanism, and the inability to completely eliminate the nanocarrier in 

the local delivery platform merit discussion, as these issues could prove limiting factors to 

therapeutic application of this work. 

 Molecular modification of the siRNA molecule has become a widespread strategy to 

improve siRNA’s resistance to nuclease degradation and reduce the likelihood of silencing non-

targeted genes45, 59, 207. Some of the most common modification strategies are substitution of non-

bridging phosphate-bound oxygen to sulfur (where replacement of a single oxygen or both oxygens 

is a phosphorothioate or phosphorodithioate modification, respectively) and substitution of a 2’-

OH with a 2’-O-methyl or 2’-fluorine. The impact of these modifications on molecule stability can 

be dramatic, but their widespread incorporation can also impede gene silencing efficacy. 

Companies like Alnylam have shown that systematic, high-throughput evaluation of the site and 

nature of molecular modifications, coupled with sequence optimization, can yield highly potent 

and stable siRNA molecules77, 78, 227. Work by the Sood group highlights the potential to leverage 

these molecular modifications for enhanced siRNA activity292, but the optimal choice for siRNA 

modification can be application- and sequence-dependent. A thorough investigation of ideal 
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molecule modification is beyond the scope of this work, but the in vivo stability of the siRNA used 

in this project is likely a limiting factor that could be addressed with this strategy. 

 Further, a requirement for an ideal siRNA therapy that hydrophobization does not directly 

address is the capacity to induce endosomal escape. While hydrophobic siRNA conjugates have 

proven capable of translocating the cellular membrane more readily than unmodified siRNA, their 

ability to disrupt the endosomal membrane and reach the cytoplasm has not been evaluated. The 

established in vitro or in vivo gene silencing efficacy of siRNA conjugates delivered carrier-free 

(e.g. L2, trivalent RGD, cholesterol, palmitic acid, GalNAc conjugates)77, 78, 88, 209 indicates that 

some percentage of these siRNA conjugates achieves delivery to the cytoplasm. However, with 

the exception of highly potent GalNAc-modified siRNA, establishment of significant gene 

silencing with carrier-free delivery necessitates high siRNA doses. Although siRNA-L2 delivery 

results in more than an order of magnitude higher cellular uptake than an established in vivo siRNA 

nanocarrier, the gene knockdown derived from this uptake may be limited by the lack of an 

endosomal escape mechanism and the degradation of a majority of the internalized siRNA before 

it can reach its site of action. Initially, elucidation of the uptake mechanism for siRNA conjugates 

and their capacity to avoid endosomal degradation is required. Subsequent to this growing 

understanding, incorporation of an active means of endosomal escape into promising siRNA 

conjugate-based systems would be a promising avenue of investigation. 

 Notably, incorporation of hydrophobized siRNA into polymer nanoparticles endows the 

delivery platform with the ability to escape the endosome. However, the previously described 

limitations of traditional nanocarriers remain relevant, and the continued need for a polymer 

nanocarrier, even at a reduced dose, is a limitation of the siRNA-PA-based local therapies. siRNA-

PA NPs could not be replaced with a multivalently hydrophobic siRNA-polymer conjugate 
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because of the significant synthesis challenge posed by generation of this conjugate. While 

reasonable conjugation efficiency was achieved in a “grafting-to” strategy, purification difficulties 

confounded further evaluation. A “grafting-from” approach for siRNA-polymer conjugates has to 

date been accomplished only once and with a hydrophilic PEGMA monomer285. A “grafting from” 

approach to generate the desired multivalently hydrophobic siRNA-polymer conjugate is in 

development but a fully characterized siRNA-polymer conjugate is not yet available for in vivo 

evaluation for local delivery applications. Thus, complete elimination of the nanocarrier has yet to 

be validated for treatment of local pathologies. 

 

7.3 Significance 

 Despite the limitations noted above, this work is both innovative and of high value to 

researchers developing the next generation of siRNA delivery strategies. We are the first to show 

the synergistic combination of hydrophobized siRNA and partially hydrophobic polymer 

nanoparticles, elucidating a means for broadening the therapeutic index of traditional siRNA 

nanocarriers. Additionally, while monovalent hydrophobic modification of siRNA has been 

previously investigated, this is the first description of conjugation of divalent and multivalent 

hydrophobic moieties to siRNA. The siRNA-L2 and siRNA-polymer we generated are distinct 

from any previously investigated siRNA conjugates. In particular, siRNA-L2’s capacity to broadly 

enhance siRNA’s carrier-free pharmacokinetic properties provide motivation for evaluation of a 

greater variety of strategically-chosen hydrophobic moieties for siRNA conjugation. 

 siRNA-L2 effected the first reported instance of in vivo carrier-free gene silencing at a non-

hepatic, desired site. siRNA-L2’s high accumulation, broad penetration, and strong cellular uptake 

within tumors after systemic, intravenous delivery is unprecedented. It far surpasses typical 
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nanocarriers and other systemically-delivered siRNA conjugates (e.g. siRNA-cholesterol, siRNA-

GalNAc) in its capacity to deliver preferentially to tumors over the liver. These exciting findings 

position siRNA-L2 as a leading candidate for systemic, oncological RNAi therapies and we hope 

that siRNA-L2’s promise inspires further research into siRNA conjugates capable of carrier-free 

efficacy. 

 

7.4 Future Directions 

Development of a multivalently hydrophobic siRNA conjugates is a strong focus of future 

work. Specifically, current priorities are the identification of an efficient synthesis scheme or 

purification strategy. Subsequent in vitro characterization and evaluation of the siRNA-polymer 

conjugate for stability, cellular uptake, and gene silencing is vital to assess its potential as a carrier-

free therapy. 

 Additionally, the siRNA-L2 conjugate, which already exhibits high potency, is amenable 

to further optimization. The linkage of the siRNA to the divalent lipid moiety is a ~2,000 Da PEG 

spacer. This spacer imparts aqueous solubility to the hydrophobic moiety, facilitating conjugation 

with hydrophilic siRNA. It also reduces the stability of the micellar population that siRNA-L2 

spontaneously forms in aqueous media, allowing destabilization of these micelles in vivo and 

effective albumin binding265. This linker may further effect the pharmacokinetic properties of 

siRNA-L2 and the relative merits and drawbacks of a variety of linker chemistries merit further 

evaluation. For example, a pH-responsive linker that could impart a capacity for endosomal escape 

without detrimentally impacting pharmacokinetic properties could have a high impact on siRNA-

L2’s gene silencing power. 
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 Moreover, modulation of the two 18-carbon lipid tails that comprise the albumin-binding 

piece of the L2 moiety could provide a pharmacokinetic benefit by enabling higher-affinity binding 

of siRNA-L2 with albumin. It has been previously shown that shorter fatty acids (lauric, myristic, 

and palmitic) exhibit preferential binding to albumin over HDL and LDL, while stearic acid 

(comprising 18 carbons) binds HDL and LDL to a larger degree. The low hepatic accumulation 

observed indicates that the L2 moiety preferentially associates with albumin over HDL and LDL; 

however, it is possible that tuning the length of the diacyl lipids will yield further improvement in 

albumin binding and circulation persistence. 

 

7.5 Conclusion 

 Realizing siRNA’s clinical potential has proven a daunting challenge. The excitement 

surrounding RNAi has waxed with predictions of revolutionary medical impacts and waned with 

the realities of obstacles to clinical translation. Yet scientific understanding of siRNA has 

continued to grow, and siRNA therapies are poised for a clinical breakthrough. This work reveals 

that hydrophobization of siRNA is a simple, biocompatible approach to circumvent delivery 

barriers and broaden the therapeutic index of siRNA therapies. We establish a pivotal role for 

hydrophobic siRNA conjugates in the advance of siRNA to medical application.  
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APPENDIX 

A. Supplementary figures 

 

Figure S3.1. DNA vs. DNA-PA NPs showed no significant difference in pH-responsive, membrane-disruptive 

activity, as determined via red blood cell hemolysis assay. 
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Figure S3.2. Significant increase in cytotoxicity using an N:P ratio of 6:1 vs. 4:1. These studies were done at 40 nM 

siRNA treatment for 24 hours in NIH-3T3 fibroblasts. Data are normalized to no treatment controls. *p<0.05 for scr, 

scr-PA NPs at a ratio of 4:1 vs. 6:1. 

 

Figure S3.3. No background fluorescence observed in untreated fibroblasts. Shown is an image of untreated 

fibroblasts using the settings of the reported images showing fluorescence due to DNA NP and DNA-PA NP uptake. 
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Figure S4.1. Characterization of 50B polymer by A) GPC and B) 1H-NMR. 

 

 

 

Figure S4.2. DLS size characterization of siPA-NPs vs. si-NPs at a range of N:P ratios. 
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Figure S4.3. Cell internalization of si-NPs and siPA-NPs at N:P = 10:1 plotted as percent positive cells compared to 

no treatment. Percent positive cells for si-NPs was statistically lower (p<0.05) than other treatments groups. 

 

 

 

 

Table S4.1. Table of pharmacokinetic equations. 
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Figure S4.4. Stability of si-NPs and siPA-NPs in (A) 10%, (B) 40%, and (C) 50% fetal bovine serum (FBS) 

monitored by FRET kinetics. 

 

 

Figure S4.5. Comprehensive panel of FRET-based heparin challenge assay. %FRET signal retained over time after 

exposure to varying concentrations of heparin saline. 
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Table S4.2. EC50 values of heparin-dependent si-NP/siPA-NP dissociation as measured by FRET kinetics. 

 

 

Figure S4.6. PA-modified siRNA contributed to an improvement in stability of 50B polyplexes but not 0B 

polyplexes. As evaluated by a Ribogreen measure of unpackaged siRNA after 100 U/mL heparin addition and 15 

minute incubation time. 
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Figure S4.7. Enhanced circulation time depends upon hydrophobic interactions between siPA and polymer NPs. In 

fully cationic polymer NPs (0B), siPA does not increase A) circulation time half-life or B) area under the curve 

(AUC) relative to unmodified siRNA, while in 50B NPs an increase in both is observed. 

 

 

 

Table S4.3. Table of oligonucleotide sequences. 
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Figure S5.1. A) Full chemical structures of reactants and final product siRNA-L2. Synthesis scheme is two-step; 1) 

siRNA-NH2 + DBCO-PEG4-NHS ester, 2) siRNA-DBCO + DSPE-PEG(2000)-azide. B) HPLC purification of 

DNA-L2 conjugate from reactant precursors. 

 

 

Figure S5.2. A) L2 conjugation does not impact siRNA silencing efficacy. A comparison of siRNA and siRNA-L2 

silencing from in vivo jetPEI at a dose of 100 nM; n of 5, standard error shown. B) Albumin binding of DNA-L2 as 

measured by non-denaturing PAGE gel stained for DNA (top) and BSA (bottom). DNA-L2 migrates as a micellar 

population alone and co-migrates with albumin. Unmodified siRNA does not migrate with albumin. Molar ratio of 

albumin:oligo is indicated. C) Critical micelle concentration of siRNA-L2 as determined via Nile Red assay 



 155 

 

Figure S5.3. A) Evaluation of association of siRNA/siRNA-L2 with BSA or serum albumin in FBS by PAGE gel 

retardation assay. siRNA-L2 alone (far right) migrates as a micellar population. Bound siRNA-L2 migrates in the 

same location when mixed with BSA or FBS, suggesting that siRNA-L2 is associating with the albumin component 

of FBS. Also shown are protein controls of BSA and FBS (left). B) DNA-L2 shows association with albumin in vivo. 

Cy5-labeled siRNA-L2 and siRNA was injected i.v. into CD1 mice and blood was collected after 20 minutes. Serum 

isolated from blood components was evaluated via PAGE gel retardation assay for the presence of Cy5-labeled 

oligonucleotide. Mice injected with siRNA had no Cy5 signal in the serum, but mice injected with siRNA-L2 

showed faint bands corresponding to the unbound DNA-L2 and a stronger band corresponding to albumin-bound 

DNA-L2. C) siRNA and siRNA-L2 degrade over time in 60% FBS at 37oC. siRNA-L2 degrades more slowly than 

siRNA. D) DNA and DNA-L2 degrade over time in 60% FBS at 37oC. DNA-L2 degrades more slowly than DNA. 
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Figure S5.4. Blood chemistry panel and body weight of mice injected with siRNA-L2 (10 mg/kg) or in vivo jetPEI 

loaded with siRNA (1 mg/kg, 2 mg/kg). A) ALT: alanine aminotransferase; B) AST: aspartate aminotransferase; C) 

BUN: blood urea nitrogen; D) Creatinine, (reading for in vivo jetPEI at 2 mg/kg was not measurable). E) Body 

weight pre-injection (day 0) and 24 hours post-injection (day 1). n = 4, standard error is plotted. 3 of 4 mice in the 2 

mg/kg in vivo jetPEI did not survive treatment and could not be included in analysis. 
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Figure S5.5. Representative images of biodistribution to the organs in orthotopic tumor-bearing mice. siRNA-L2 

was evaluated at 1, 10 mg/kg and jetPEI NPs were evaluated at 1 mg/kg. 
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Figure S5.6. In an orthotopic tumor model, absolute radiance per each organ at A) 30 minutes, B) 24 hours, C) 48 

hours. n = 4, standard error plotted. 

 

 

Figure S5.7. In an orthotopic tumor model, fraction of total radiance per each organ at A) 30 minutes, B) 24 hours, 

C) 48 hours. n = 4, standard error plotted. 
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Figure S5.8. In a PDX tumor model, A) absolute radiance per each organ at 24 hours and B) tumor:liver ratio of 

jetPEI NPs and siRNA-L2 in a PDX tumor model after intravenous injection at 1 mg/kg. n = 2, standard error 

plotted. 

 

 

Figure S5.9. A) Representative image of tumor spheroid uptake for siRNA. B) Cellular uptake, as evaluated by flow 

cytometry, of MCF-7 breast cancer cells grown in tumor spheroids. Data are expressed as fold increase in 

fluorescence relative to untreated cells. Treatment with in vivo jetPEI complexes resulted in significantly less uptake 
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than siRNA, while siRNA-L2 achieved the highest uptake. C) Percentage positive cells, as evaluated by flow 

cytometry, of MCF-7 breast cancer cells grown in tumor spheroids. Treatment with in vivo jetPEI complexes 

resulted in significantly fewer positive cells than siRNA and siRNA-L2, consistent with its poor penetration into the 

interior of the tumor spheroids. D) Representative histograms of flow cytometric evaluation of Cy5-labeled siRNA 

uptake by MCF-7 breast cancer cells grown in tumor spheroids. E) Percentage positive cells in tumor cells isolated 

from orthotopic xenograft mouse tumors. n = 6 to 8. n = 3, standard error plotted; ** = p<0.01, ***=p<0.001. 

 

 

Figure S5.10. Mice with orthotopic luciferase-expressing tumors were treated at 10 mg/kg on day 0 and 1. A) 

Representative images of tumor luminescence in mice. B) Mouse body weight; body weight is consistent across 

treatment groups over the course of the experiment. n = 5, standard error is plotted. 
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Figure S6.1. siRNA-loaded polymer nanoparticles (SPNs) induce an inflammatory response and impede 

revascularization. A) While SPNs designed against PHD2 promote higher vascular volume in scaffolds implanted 

subcutaneously in mice, SPNs with a control, scrambled siRNA sequence negatively effect vascularization. B) 

Control, scrambled SPNs induce production of inflammatory cytokine TNF-α in vitro. 

 

 

Figure S6.2. Confirmation of synthesis of azide-functionalized RAFT CTA. A) NMR spectrum of precursor 

azidoethanol. B) NMR spectrum of unmodified RAFT CTA, ECT. C) NMR spectrum of ECT-azide, synthesized via 

hydroxyl to carboxylic acid coupling of azidoethanol and ECT. 
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Figure S6.3. NMR spectra pre-RAFT polymerization (A) and post-polymerization (B) of azide-functionalized CTA 

with MPC and PFPA. Monomer peaks were normalized to trioxane (5.2 ppm) and the disappearance of monomer 

peaks was used to calculate reaction efficiency. 

 

 

Figure S6.4. NMR spectra confirming modification of azide-functionalized co-polymer of MPC and PFPA with 

dodecylamine. The original polymer is characterized by H NMR (A) and F NMR (C). The fluorine peaks in C) 

correspond to the PFPA group. Post-reaction with dodecylamine, the polymer characterized by H NMR (B) shows 

appearance of a peak corresponding to the 12-carbon backbone. Characterized by F NMR (D), the disappearance of 

the fluorine peaks indicates expected disappearance of the PFPA moieties. 
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B. Protocols 

 

Synthesis and validation of siRNA-PA: 

1. Prepare palmitic acid N-hydroxysuccinimide ester (PA-NHS; stored dry for stability) 

solution at 10 mM in N,N-dimethylformamide (DMF; final concentration will be 1 mM in 

reaction)  

2. Dilute siRNA-NH2 to 10 μM in 50% water, 50% isopropyl alcohol 

3. Add PA-NHS solution to the siRNA-NH2 solution in a volume 1/10th that of the total 

volume of the siRNA-NH2 solution 

a. Solution may be cloudy 

• Add diisopropylethyl amine (DIEA) in a volume 1/100th of the total reaction volume 

4. Incubate at room temperature overnight 

5. Prepare PA solution at 10 mM in DMF (final concentration will be 1 mM in reaction) 

6. Add PA solution to the reaction solution in a volume 1/10th that of the total volume of the 

reaction solution 

7. Incubate at room temperature overnight 

8. Prepare PA solution at 10 mM in DMF (final concentration will be 1 mM in reaction) 

9. Add PA solution to the reaction solution in a volume 1/10th that of the total volume of the 

reaction solution 

10. Incubate at room temperature overnight 

11. Dilute the reaction mixture such that it is less than 10% of the total solution volume in 

water 

12. Spin down at maximum centrifuge speed, preferably at 4oC, for 5 minutes 
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13. Take the supernatant and discard the PA collected at the bottom of the tube 

14. Run the supernatant through NAP-25 columns twice 

15. Lyophilize the eluent 

16. Measure yield of the siRNA-PA based on absorbance at 260 nm 

17. Check for elimination of PA and complete reaction by running a small sample (~10 

nmols) on HPLC using the below conditions: 

a. Aqueous mobile phase of 50 mM triethylammonium acetate in water 

b. Organic mobile phase of methanol 

c. Clarity Oligo-RP column 

d. 95% to 0% aqueous phase gradient over 30 minutes 

e. siRNA-PA should elute in a single broad peak between 20-30 minutes; excess PA 

elutes immediately and siRNA-NH2 elutes around 14 minutes 

18. Verify siRNA-PA purity on MALDI using a matrix of 3-hydroxypicolinic acid in 50% 

water, 50% acetonitrile with 5 mg/mL ammonium citrate 

a. Spot sample onto the MALDI grid, let it dry completely, and then spot matrix on 

top and let it dry completely 

b. Molecular weight should be ~7,500 

Formation of siRNA-PA NPs using DMAEMA-b-DMAEMA-co-PAA-co-BMA: 

1. Dissolve polymer (DMAEMA-b-DMAEMA-co-PAA-co-BMA) in a minimal amount of 

100% ethanol 

a. Approximately 10 μL ethanol per 1 mg polymer 

b. Ensure complete dissolution by allowing polymer to sit in ethanol for at least 2 

hours 
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2. Add PBS or water at 8 mL/hr using a syringe pump to form nanoparticles 

a. A typical concentration is 1 mg/mL 

3. Filter nanoparticle solution using a 0.2 μm sterile filter 

4. Spot siRNA-PA in water at 100 μM in an RNAse-free tube 

5. Add nanoparticles such that the ratio of positive charge on the polymer (N) to negative 

charge on the siRNA (P) is at the desired value 

6. Allow nanoparticles to condense with siRNA-PA for 30 minutes 

 

Formation of siPA-NPs using PEG-b-DMAEMA-co-BMA (50B): 

1. Dissolve 50B in a minimal amount of 100% ethanol 

a. Approximately 10 μL ethanol per 1 mg polymer 

b. Ensure complete dissolution by allowing polymer to sit in ethanol for at least 2 

hours 

2. Dilute 50B to a stock solution of 3.33 mg/mL polymer in 10 mM pH 4.0 phosphate buffer 

3. Filter 50B solution using a 0.2 μm sterile filter 

4. Spot siRNA-PA in water at 100 μM in an RNAse-free tube 

5. Add 50B stock solution such that the ratio of positive charge on the polymer (N) to 

negative charge on the siRNA (P) is at the desired value 

6. Allow polymer to condense with siRNA-PA for 30 minutes 

7. Dilute siRNA-PA/50B solution five-fold with10 mM pH 8.0 phosphate buffer to adjust 

the final pH to 7.4 and form nanoparticles 
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Synthesis and validation of siRNA-L2: 

1. Dissolve dibenzocyclooctyne-PEG4-N-hydroxysuccinimidyl ester (DBCO-PEG4-NHS)) 

pre-dissolved at 25 mM in dimethyl sulfoxide (DMSO) 

2. Dissolve lyophilized siRNA-NH2 at 1 mM in PBS with 8 mM triethylamine (TEA) 

3. Add 30% of the final total solution volume of DBCO-PEG4-NHS solution in DMSO to 

the siRNA-NH2 solution 

4. Incubate overnight at room temperature 

5. Dilute the reaction at least three-fold in water 

6. Filter through NAP-25 columns twice 

7. Lyophilize the eluent 

8. Dissolve lyophilized siRNA-DBCO in water at 200 μM 

9. Dissolve DSPE-PEG2000-azide at in methanol at 1 mM 

10. Add an equivalent volume of DSPE-PEG2000-azide solution to siRNA-DBCO solution 

11. React for 24 hours 

12. Add at least 0.5-fold the total reaction volume of water to the reaction solution 

13. Filter through a NAP-25 column 

14. Purify with reverse-phase HPLC using the following conditions: 

a. Aqueous mobile phase of 50 mM triethylammonium acetate in water 

b. Organic mobile phase of methanol 

c. Clarity Oligo-RP column 

i. Ensure column is clean and a guard column is clean and in place 

d. 95% to 25% aqueous phase gradient over 10 minutes followed by 25% to 0% over 

20 minutes 
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e. siRNA-L2 should elute in a single broad peak between 25-30 minutes 

i. The micellar nature of siRNA-L2 can complicate purification; it will 

“stick” in the column 

ii. This can typically be remedied by repetitive runs from 10% to 0% aqueous 

phase, throughout which the siRNA-L2 elutes in “waves” 

15. Collect HPLC fractions corresponding to siRNA-L2 

16. Rotovap and lyophilize fractions 

17. Measure yield of the siRNA-PA based on absorbance at 260 nm 

18. Verify siRNA-L2 purity on MALDI using a matrix of 3-hydroxypicolinic acid in 50% 

water, 50% acetonitrile with 5 mg/mL ammonium citrate 

a. Spot sample onto the MALDI grid, let it dry completely, and then spot matrix on 

top and let it dry completely 

b. Molecular weight should be ~10,000 
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