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Chapter 1: Introduction 

DMD Epidemiology & Pathophysiology 

Duchenne Muscular Dystrophy (DMD) is a recessive X-linked myopathy that arises from 

mutations in the gene that encodes the protein dystrophin. The progressive, degenerative myopathy 

is characterized largely by muscle weakness and atrophy due to reduced or, more commonly, an 

absence of dystrophin production. 

DMD occurs once in approximately every 3500 live male births, making it the most 

common inherited pediatric muscle disorder. Spontaneous mutations in the dystrophin gene, most 

of which are deletions, lead directly to either a deficiency of dystrophin or the synthesis of a 

functionally impotent version of the protein. Dystrophin is a sarcolemmal protein and is a critical 

component of the dystrophin glycoprotein complex (DGC), also known as the dystrophin-

associated protein complex (DAPC). This protein complex acts to anchor the intracellular 

cytoskeleton with the extracellular matrix in contractile muscle cells.1,2 The dysfunction of this 

protein complex across the cell membrane induces transient local membrane disruptions and 

leakage, leading to an abnormal flow of calcium ions into the cell due to the strong concentration 

gradient that exists across the membrane. Studies have shown that calcium concentrations in 

dystrophic muscle are higher than in healthy muscle.3 This abnormal calcium homeostasis has 

been observed in muscle fibers, sarcoplasmic reticula, and in sub-sarcolemmal free calcium count 

in DMD patients.3 This influx activates calcium-dependent proteases within the cell that further 

alter calcium channel activity, thus creating a pathological positive feedback system. The inability 

for a myocyte to regulate its calcium levels inevitably leads to contraction-induced damage, 

inflammation, and necrosis.4  
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Early disease signs may include mildly delayed motor milestones; some individuals are 

unable to run or jump due to the effects on skeletal muscle. Most boys are diagnosed at 

approximately 5 years of age when the motor inability of affected individuals diverges heavily 

from healthy young boys. Furthermore, most patients lose independent ambulation by age 13.5,6 

Becker muscular dystrophy (BMD) is a milder form of the disease that has both a later onset and 

longer survival, though it is characterized by a dystrophin deficiency rather than an absence. In 

DMD, the patients first experience early weakness in proximal lower limbs muscles, followed by 

shoulder muscles, distal limb muscles, respiratory-related skeletal muscles, and eventually cardiac 

tissue.7 DMD patients also experience autonomic dysfunction at relatively young ages, which has 

been recently suggested to be the driving force for various cardiac complications later in life.8 A 

weakened heart brought about by cardiomyopathy, as seen in DMD, initiates a compensatory 

phenomenon in the body. Sympathetic input to the heart, combined with withdrawal of 

parasympathetic input, increases cardiac output and aids a diseased heart by complementing the 

work required. However, the inability to provide sufficient autonomic compensation would lead 

to a greater onset of cardiac complications and heart failure, prompting targeted heart failure 

therapy.  

DMD Therapy Frontier 

Though there is no established therapy for DMD, there exist promising techniques aimed 

to treat or cure the disease. Gene therapy looks to restore the functional capacity of contractile 

cells by delivering a synthetic copy of the dystrophin gene to affected nuclei in muscle fibers. One 

challenge that presented itself early on was the difficulty in developing a delivery mechanism that 

could encapsulate the large dystrophin cDNA sequence (13 kb).1 In response, researchers have 

developed micro-dystrophin sequences that are designed to repair the specific sequence deletions 
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commonly observed within the affected dystrophin gene. The use of retroviruses, lentiviruses, and 

adenoviruses have shown promise in delivering these synthetic dystrophin genes into muscle cells 

and increasing trans-gene expression and regenerative abilities in young animal models.9 However, 

the immunogenicity of these viral vectors introduce a risk of adverse systemic immune responses 

to treatment, thus limiting their use until immunocompatible methods are developed. Non-viral 

delivery techniques, including unencapsidated plasmids and genome-editing strategies, are also 

being developed to introduce dystrophin cDNA into affected nuclei.10 Stem cell therapies are also 

being heavily investigated as a means of restoring the production of dystrophin with new, healthy 

nuclei in myocytes. The transplantation of both satellite stem cells and bone marrow- / muscle-

derived stem cells to treat muscular dystrophy has been gaining attention in recent years. The use 

of autologous or allogenic stem cell transfers has the potential of providing self-renewing and long-

lasting treatment.10,11 Still, current treatment options are limited to pharmacological intervention, 

including the use of glucocorticoid corticosteroids such as prednisone and deflazacort, which have 

been shown to lead to an improvement in muscle strength and function.5,6,12,13 However, there is 

increasing concern regarding side effects of these commonly used steroids on boys with DMD.13 

Though emerging steroid treatments, such as eplerenone and vamorolone, have shown promising 

improved results in treating DMD14,15, care providers still rely extensively on disease monitoring 

and pharmacological intervention aimed to improve patient quality of life and to increase life 

expectancy.  

Hands-on orthopedic and neuromuscular management usually begin prior to early non-

ambulatory stages of the disease. This includes biannual assessments of function, strength, and 

range of movement, which help define the pharmacological regimen of interventional agents like 

glucocorticoids. Once the patient has begun to lose independence with their daily activities, the 
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monitoring of spinal complications, such as scoliosis or podiatric complications (e.g. foot 

repositioning), is introduced.5,6 However, the improvements in the comprehensive therapeutic 

approaches for pulmonary and cardiac complications are what have made the largest impact on 

DMD life expectancy.  

Without intervention, the life expectancy in patients with DMD is approximately 19 years; 

pulmonary and cardiac therapies have lengthened the life expectancy of DMD patients diagnosed 

today into the fourth decade of life.16,17 Regarding pulmonary pharmacological interventions, 

corticosteroids and idebenone have been used to significantly reduce the decline of spirometric 

(pulmonary system-related) parameters associated with the disease. Furthermore, lung volume 

recruitment techniques, also known as “breath stacking”, have been used to reduce the risk of 

atelectasis, or lung collapse, and slow the rate of decline of lung function. In later stages of the 

disease, scoliosis steroid therapy aimed to reduce muscle inflammation and degeneration is used 

to reduce the restrictive pulmonary effects that result from the spinal complication. Cost-assisted 

devices improve airway clearance and reduce the risk of infections such as pneumonia. Lastly, 

non-invasive mechanical ventilation techniques are used to improve respiratory function during 

sleep to prevent nocturnal adverse events, which could induce respiratory failure.7 Due to these 

advancements in respiratory support and the subsequent longer life expectancy, cardiac 

complications and heart failure have become the leading causes of death in patients with DMD, 

prompting a great need for cardiac management and cardiomyopathy tracking.18  

Cardiomyopathy Associated with DMD 

 While the exact onset of cardiomyopathy varies considerably between patients, cardiac 

complications are usually pervasive across the childhood of a DMD patient.19 Early on, diastolic 

dysfunction and focal fibrosis can occur in the heart; this proceeds to dilated cardiomyopathy 
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(DCM) and is almost always complicated by arrhythmia and heart failure. In late stage DMD, 

occurring in late second decade or third decade, cardiac arrhythmias resemble those in other 

cardiomyopathies such as atrial/ventricular fibrillation and ventricular tachycardia. Arrhythmia 

complications are identified as a potentially major contributor to DMD mortality, though this still 

requires heavy investigation.20 In general, cardiomyopathy associated with DMD is characterized 

by a normal or thinning left ventricular (LV) wall with progressive decline in LV ejection fraction 

(LVEF). The exact mechanisms of this pathophysiology are still under investigation, limiting 

current treatments to remain untargeted and streamlined. One hypothesis for the cause of the 

cardiomyopathy is that the structural integrity of cardiomyocytes is severely compromised due to 

the lack of dystrophin in the DGC. The hemodynamic stress occurring during normal LV function 

would then give rise to tissue damage and deterioration. Another hypothesis proposes that 

dystrophin and the DGC play a role in protein regulation.  

Investigating alternative pharmacological interactions, such as with nitric oxide production 

and transforming growth factor-β (TFGβ), has shown promise for a source of targeted 

pharmacological therapy.21 Also, glucocorticoid steroid therapy has been shown to alter the 

progressive decline in cardiac function in DMD patients.22 Yet it still remains that angiotensin-

converting enzyme (ACE) inhibitors and β-adrenoceptor blockers, or β-blockers, are two more 

commonly used medications aimed at specifically treating cardiac dysfunction. The use of ACE 

inhibitors is well-established to prevent pathologic LV remodeling, dilation, and systolic 

dysfunction.2121 Previous uses of ACE inhibitors in studies with young patients with DMD have 

shown a significant increase in survival rate when ACE inhibitors were used as a prophylactic 

treatment to delay or prevent DCM in DMD.23 Though the use of β-blockers is less well-

established when compared to ACE inhibitors, its use for nonsyndromic asymptomatic cardiac 
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dysfunction has shown success in DMD patients. For example, one study showed higher rates of 

survival and heart failure-free survival when a patient with DMD received β-blockers.24 By 

reducing sympathetic tone, β-blockers work to normalize autonomic regulation of the heart; again, 

this effect has been shown to significantly reduce cardiac-related mortality.25 It is important to note 

that β-blocker treatments have been shown to lower heart rate (HR), which would affect 

characterization of DMD patients’ HR patterns.26  These two medications are not used exclusively; 

one study showed that an ACE inhibitor alone or in combination with a β-blocker showed 

improvement in LV ejection fraction.27 Regardless, the use of ACE inhibitors remains the first-

line therapy once LV dysfunction has developed.20 Clinical guidelines suggest evaluations should 

be performed every two years after disease diagnosis and yearly after ten years of age.21 In order 

to diagnose and characterize the disease at each evaluation, highly sensitive monitoring/detection 

techniques are needed to deliver optimized treatment.  

Assessing Cardiomyopathy Using Medical Imaging 

 Early detection of cardiomyopathy in DMD patients is critical as early protective measures 

can lead to improved cardiac function in later stages of the disease. One study has recently 

proposed a significant relationship between cardiac and skeletal muscle dysfunction in non-

ambulatory DMD patients; this suggests that sensitive monitoring of cardiac function is 

imperative, even when quantities of interest are not cardiac-related.28  Traditionally, clinicians 

have used transthoracic echocardiography (TTE) to measure LVEF to characterize the extent of 

the cardiomyopathy.29, 30 This modality, however, has practical challenges in the DMD patient 

population as TTE rarely detected cardiac defects in the patient’s first decade. Furthermore, the 

modality struggled with small acoustic windows due to DMD complications including scoliosis 

and chest wall adiposity.31, 32 Additionally, although cardiomyopathy is classically defined as 
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having an LVEF <55%, a reduced LVEF occurs only after significant myocardial damage and is, 

therefore, often a late finding in DMD.33  

Alternatively, cardiovascular magnetic resonance (CMR) has proven to be a more sensitive 

detection modality for cardiomyopathy in patients with DMD. One study showed that when using 

CMR, researchers were able to detect myocardial fibrosis in patients where other modalities were 

unable to do so during a standard cardiac evaluation.3333 Another study supported this claim by 

showing that CMR was able to detect early myocardial scarring before LVEF was significantly 

affected by the disease.34 Furthermore, it has also been shown that TTE measurements show poor 

correlation with CMR data and introduce unrecognized LV wall motion abnormalities which could 

negatively impact patient quality of care.35   

 An alternative metric used to characterize DMD cardiomyopathy is quantifying LV wall 

strain. One study demonstrated that in muscular dystrophies, CMR data revealed subtle 

abnormalities in systolic circumferential strain in the LV while there was still no detectable 

fibrosis.36 In fact, myocardial strain analysis has become a well-trusted method of characterizing 

early cardiomyopathy in patients with DMD. One study was able to use myocardial strain analysis 

to detect strain abnormalities in patients who still exhibited normal LVEF.32 This study also 

showed that when used in combination with standard CMR and myocardial delayed enhancement 

(MDE), this strain analysis produced specific, stratified cardiomyopathy characterization in 

patients with DMD.32  

Myocardial Strain Analysis using Spatial Modulation of Magnetization 

 It is believed that if therapy can be initiated at an early stage of the disease by using CMR 

as a screening tool, late stage cardiac dysfunction can be attenuated, though not prevented. This 

would translate to therapy being administered prior to systolic dysfunction and DCM. In the late 
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1980s, researchers fully developed a method of MR tagging called spatial modulation of 

magnetization (SPAMM) that provided a method of tracking motion in moving tissue. In 1989, 

Axel et al. used SPAMM to measure LV wall motion throughout the cardiac cycle.37 Since then, 

SPAMM has become a clinically-used modality that allows clinicians and researchers to measure 

heart wall motion and, therefore, quantify tissue strain.  

 Simple SPAMM sequences contain three main components: RF tipping pulses, 

spatial/tagging gradients, and spoiler gradients. RF tipping pulses applied while using spatial 

gradients vary the magnitude of the longitudinal magnetization of atomic spins sinusoidally with 

respect to position. The subsequent spoiler gradient acts to remove any transverse magnetization 

signal from the image. This sequence produces MR images with an orthogonal grid pattern 

overlaying the image where each grid line represents areas where signal was significantly 

diminished while areas between grid lines correspond to areas of high signal. If multiple images 

are acquired throughout the cardiac cycle, the grid lines can be seen to deform in a manner 

reflecting the movement of the imaged tissue. These grid lines act as markers by providing each 

pixel with a phase value corresponding to its position within the sinusoidally-varying 

magnetization. Strain calculations can then be made by tracking these markers and using their 

displacement information.  

 Other methods of quantifying myocardial strain include both cine phase contrast (cine PC) 

imaging and strain-encoded (SENC) magnetic resonance imaging. Studies qualitatively and 

quantitatively compared these modalities have shown that SPAMM imaging produces similar 

results.38,39  

SPAMM tagging has been proven to be a successful modality to diagnose regional cardiac 

dysfunction associated with DMD. Researchers have shown that abnormal global and segmental 
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circumferential strain values can be detected in boys with DMD who have similar LV volumes 

and LVEF to age- and gender-matched controls.40 A few years later, another study showed similar 

findings, concluding that DMD patients with normal LVEF had reduced peak circumferential 

strain (εcc) at an early age compared to controls. Researchers also observed that εcc was further 

reduced in older patients (>10 years) with normal EF, and even further reduced in older patients 

with reduced LVEF; the oldest patients, who exhibited reduced LVEF and positive indicators for 

myocardial fibrosis, had the lowest εcc.
3232 A third study concluded similar findings in boys with 

DMD; they found that εcc abnormalities progressed during periods where LVEF abnormalities 

were not significant.41 These studies above suggest that εcc measurements may provide a reliable, 

sensitive method of monitoring cardiomyopathy progression in patients with DMD, prior to the 

development of more serious cardiac complications or even heart failure. However, SPAMM 

techniques require sophisticated software to extract quantitative parameters from images, 

including strain.42  

Harmonic Phase Analysis for Myocardial Strain Quantification 

 Harmonic phase analysis (HARP) was developed in the late 1990s by Osman et al.43 This 

group has published multiple studies showing its utility in extracting quantitative spatial 

parameters from SPAMM images and using them to calculate myocardial Lagrangian strain.  

HARP can be used to extract spatial/displacement measurements from tagged MR 

images.43,44,45 Once a SPAMM sequence is performed, a Fourier transform of a single dynamic 

produces a mapping of the spectral peaks of the MR image. These spectral peaks each correspond 

to directionally-specific phase information at particular frequencies. By isolating the signal of a 

single Fourier peak and performing an inverse Fourier transform on the filtered image, the process 

produces a complex image where the calculated angle is called a HARP image. After further 
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processing is performed on the HARP image, Osman et al. shares a method of point tracking using 

these phase markers in order to extract movement parameters from the image.43 However, there 

are some practical challenges that arise from using this pixel tracking methodology, such as image 

registration difficulties due to LV dilation during the cardiac cycle, and artifacts stemming from 

aliasing pixel positioning. In order to overcome these challenges, we have introduced another 

method of interpreting HARP images that has been shown to produce accurate strain quantification 

without using a pixel/fiducial tracking method.  

Bayly et al. describes a “gradient-based” analysis that utilizes the prior work done by 

Osman et al.46 Osman et al. showed that an apparent deformation gradient tensor can be 

constructed using processed HARP images. This gradient tensor is comprised of the X- and Y-

directional derivatives, or gradients, of the HARP images corresponding to the X- and Y-

directional spectral peaks of the Fourier transform of the original SPAMM image.44 Bayly et al. 

eliminates the need for a pixel tracking algorithm by introducing a mathematical relationship that 

uses the undeformed tagging grid’s spatial frequency as a reference parameter for each SPAMM 

image acquired in the cardiac cycle. In other words, rather than requiring an image registration 

approach where Eulerian strain is calculated by using the undeformed image as a reference image, 

this algorithm allows researchers to extract 2D displacement and strain values by comparing the 

deforming SPAMM grid patterns to parameters of the undeformed grid. Though Bayly et al. first 

utilized this method in quantifying strain in traumatic brain injury models46, we believe that this 

approach can be readily applied to accurately quantifying LV Lagrangian strain in patients with 

DMD.  
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Heart Rate Variability in DMD 

 An additional metric we investigated within patients with DMD was heart rate variability 

(HRV) data. HRV analysis is a non-invasive technique that quantifies fluctuations in heart rate 

(HR) that occur naturally due to varied systemic/metabolic demands. For decades, it has been well-

established that changes in autonomic innervation to the heart can be a hallmark of cardiovascular 

complications, including heart failure.47 Since its clinical importance became apparent in the 

1980s, clinicians and researchers have sought to use it as a predictor or indicator for various 

cardiomyopathies. HRV measurements have been well established as a diagnostic tool to patients 

with DMD as well. In most studies, HRV is generally quantified as a single generalized metric by 

using various parameters and statistics acquired by either electrocardiogram (ECG) data or RR-

interval data; these statistics include both time domain metrics as well as frequency domain values. 

Historically, “less” heart rate variability in a patient is a sign that the cardiomyopathy of interest 

is at a more advanced stage.48,49 However, in order to take full advantage of the specificity of 

utilizing HRV and how it applies to patients with DMD, we must dissect cardiac monitoring 

signals and define what a parameter of interest represents physiologically.   

 Spontaneous and rhythmic depolarizations in the sino-atrial node of the heart determine 

HR. The frequency of these depolarizations is, however, largely impacted by the parasympathetic 

and sympathetic divisions of the autonomic nervous system (ANS), each with opposing effects on 

the heart. The vagus nerve provides parasympathetic innervation to the sinus and atrioventricular 

nodes as well as the atrial myocardium. By inhibiting the release of sympathetic neurotransmitter 

and promoting acetylcholine release, vagal stimulation tends to decrease HR and myocardial 

conduction/contractility.50 Sympathetic innervation accelerates HR via epinephrine or 

norepinephrine release. A stable physiological state would include some tonicity from both 
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sympathetic and parasympathetic systems which would allow for rapid control of HR. However, 

it has been shown that both an increase in sympathetic activity and a decrease in parasympathetic 

activity are associated with cardiac complications, including ventricular arrhythmias.51 In order to 

determine if this abnormal behavior is present in DMD patients, we can use HRV analysis software 

to quantify each systems’ contribution to the heart by isolating different frequencies within HR 

power spectrum.52 

 When an individual is at rest, parasympathetic effects dominate the sympathetic effects on 

HR. Each of these innervations vary regarding the speed at which their effects are realized in the 

heart. Parasympathetic activity affects the heart more so on a beat-to-beat basis, while sympathetic 

innervation requires seconds in order for it to achieve peak effects. Also, it has been shown that 

parasympathetic innervation greatly dominates the high frequency (HF) components of the HR 

power spectrum, due to the very short latency periods associated with parasympathetic 

stimulation.53,54 These high-frequency components of HRV correspond to the modulation of vagal 

tone. These modulations, which are also linked to respiration, cause short-term alterations of the 

cycle length of the sinus rhythm.54 Furthermore, it is understood that sympathetic activity is 

associated with reduced parasympathetic activity; the two systems act in a complementary, 

competitive fashion.55 Note that in order to achieve a true measure of the disease state in patients 

with DMD, the effects of β-blockers on HRV must be taken in account. Various studies have 

shown that there exists a measurable difference in heart rate and cardiac function when using β-

blockers.56,57 Though this is the intended effect of the treatment, it would introduce unwanted 

effect variables into the HRV analysis. 

Using the above information we look to quantify the extent of cardiac complications in 

patients with DMD by using the following reasoning. By performing power spectral analysis on 
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HR data, we can measure how great the HF component is of any signal, which would provide a 

measure of parasympathetic innervation.50 The level of parasympathetic activity would then 

provide another measure of sympathetic activity, due to their complementary relationship. 

Therefore, a reduction in the power associated with the HF of a HR signal would reflect reduced 

parasympathetic input, increased sympathetic input, and an increase in the likelihood of cardiac 

complications associated with DMD, including ventricular arrhythmias. Overall, if we acquire RR 

interval data from patients with DMD, and dissect it using established parameters and standards 

optimized for HRV analysis, we could potentially provide an additional measure of disease 

progression or severity.47  

Study Significance on Duchenne Muscular Dystrophy. 

 This study assessed the viability of using a custom strain analysis method to evaluate 

cardiomyopathy in patients with DMD. This method combines the deformation gradient tensor 

construction from Osman et al. with the “gradient-based” analysis by Bayly et al., the latter of 

which was previously performed only on deformation in mild traumatic brain injuries. 

Furthermore, this study also assesses the autonomic contribution and effects on HR data and 

characterizes the relationship between HRV and LV strain. We hypothesized that 1) the 

combination strain analysis technique developed would be correlated with the results achieved 

using commercialized HARP software, and 2) that the results seen would be significantly 

correlated with HRV parameters. The validation of this HARP method could introduce an alternate 

technique to quantify Lagrangian LV strain in both healthy and diseased subjects. Regarding 

patients with DMD, this method has the potential to detect previously unseen cardiomyopathic 

manifestations, which could potentially aid in the development of optimized pharmacological 

management strategies and move towards a more optimized patient care regimen. A significant 
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correlation between the measured strain and the HRV parameters would strengthen the argument 

that HR data or ECG data can be used to predict clinically relevant sequelae without the use of 

resource-intensive imaging techniques. Furthermore, imaging acquisition sessions can pose both 

physical and psychological stress on young boys with DMD; providing an alternate, dependable, 

low-profile form of characterizing cardiomyopathy would contribute to overall patient quality of 

life. With additional investigation in the future, this research has the potential to directly impact 

lives of patients suffering from DMD.  
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Chapter 2: Methods 

 This IRB-approved study was performed retrospectively on data acquired in Vanderbilt 

University Medical Center, Department of Pediatrics, Division of Cardiology. Informed assent and 

consent were obtained before patient participation. 28 boys with DMD were studied (ages 8-21), 

six of whom were taking β-blockers at the time of the study. The patient population’s height 

(112cm-180cm) and weight (22kg-103kg) ranged significantly. The patients’ physical abilities 

also ranged from patients who were still ambulatory to those who were wheelchair-bound. 

Inclusion criteria were defined as: 1) 8-25 years old, 2) able to undergo CMR without 

sedation/anesthesia, and 3) clinical phenotype of DMD confirmed with muscle biopsy or genotype. 

Exclusion criteria were defined as: 1) refusal to participate, 2) renal dysfunction or other 

contraindication to MRI with contrast, and 3) diagnosis of other genetic abnormality in addition to 

DMD.  

SPAMM Acquisition 

Cardiac MRI data included SPAMM-tagged images, acquired throughout the cardiac cycle, 

and balanced steady-state free precession (bSSFP) cine 

images in a short axis stack (latter used for quantification of 

LVEF). All scans were performed on a 1.5T Siemens 

Avanto MR imager with an eight-channel cardiac array 

receiver coil. Each scan lasted between 45-60 minutes and 

did not include contrast agent injections that affected the 

SPAMM acquisition. Each patient had at least one sequence 

of apical, midventricular, and basal short-axis SPAMM-

tagged images taken. All analyses were performed on the 

  
Figure 1. SPAMM-tagged image. 

Short-axis oblique slice through 

chest of DMD patient.  
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midsection slice, as this slice has been reported to produce the most reliable circumferential strain 

results.40,58 The number of images acquired within each cardiac cycle varied from 5-13 images. 

An 8 millimeter-spaced orthogonal tagging pattern was used in each SPAMM image, as seen in 

Figure 1. These images were exported as WinImage IMA files and loaded in MATLAB® to 

perform HARP and strain analysis.  

HARP Analysis 

 HARP analysis allows us to extract spatial parameters from each SPAMM-tagged image 

by isolating the phase information with respect to both the X and Y direction. Each SPAMM image 

was rotated 45 degrees counterclockwise to align the grid pattern in the horizontal (X) and vertical 

(Y) direction. Each image was also cropped to a 

110x110 pixel image centered about the LV. 

Cropping the image reduced the level of noise and 

artifacts that arose from the extraneous signal 

outside of the LV. After preprocessing, a fast 

Fourier transform was taken to reveal the spectral 

peaks of the SPAMM image. Each of these peaks 

represents a harmonic component of the signal in 

the processed SPAMM image. By constructing a 

small region of interest (ROI) filter and centering 

it on the first harmonic X-directional or Y-

directional  peaks, as seen in Figure 2a, the 

image’s X-directional or Y-directional phase 

information was isolated. Optimized filter 

 

 
Figure 2. Isolating the phase angle from 

SPAMM image using fast Fourier transform. 

The fast Fourier transform of the processed 

SPAMM-tagged image with circular filters 

centered on the spectral peaks of interest (top).  

The X-directional phase angle data 

constructed by using ROI1 (bottom, left). The 

Y-directional phase angle data constructed by 

using ROI2 (bottom, right).  

 

ROI2 

ROI1 
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parameters are often debated. These parameters include the 2D spatial dimensions of the filter, as 

well as the roll-off characteristics at the edge of the filter. Since there are other sources of 

randomness to the strain result within and between patients, measuring these parameters’ impact 

using an iterative trial-and-error method is neither practical nor effective. Applying a general linear 

model (GLM) using mixed-effect analysis allowed for comparison of the effects of filter radius 

(Rf) on the strain values produced by the algorithm. Rf was varied from 3 to 7 pixels with a step 

size of one-tenth pixel; HARP analysis was performed on 17 SPAMM-tagged image sequences 

(one per patient available) for each Rf value. This process was performed twice to assure there was 

no bias in the strain measurements within the GLM algorithm. Additionally, each patient’s LVEF 

and age recorded at the time of SPAMM acquisition were included in the design matrix. A Q-Q 

plot was used to assess the distribution of the response variables. Of the distribution options for 

general linear model analysis in MATLAB (i.e. normal, binomial, poisson, gamma, inverse 

gaussian), a normal distribution had the best fit for the data. See Results section for determination 

of Rf effect on strain calculations. The filter used for strain calculations exhibited a Gaussian roll-

off pattern represented by Equation 1. 

𝑅𝐺(𝑝) = 𝛼𝑒
𝑝2

2𝛾2 
       [Eq. 1] 

𝑝 represents the pixel length from the edge of the filter. The radius range and parameters 𝛼 = 1 

and 𝛾 = 2 were chosen to encompass spectral data corresponding to a maximum ~30% strain 

magnitude.  

Measuring the angle of the reverse fast Fourier transform of the segmented first harmonic 

spectral peak produces a wrapped HARP image as seen in the bottom of Figure 2. The pixel 

magnitude in these images range within +/- pi and correspond to the angle of the phase of the 

sinusoidally varying grid tags applied in both the X- and Y- direction. Using the built-in MATLAB 
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function roipoly, an inner ROI of the LV wall was drawn 

for each SPAMM image within each sequence, as shown 

in Figure 3. These ROIs exclude signal from LV chamber 

lining, papillary muscles, and the epicardium.  

 An unwrapping algorithm adapted from an open 

source MATLAB code was then implemented to construct 

a phase angle gradient from each of the wrapped HARP 

images produced.59 Strain analysis 

depends on each pixel containing a 

unique unidirectional phase value in 

order for displacements to be 

measured. By using this unwrapping 

algorithm, these unique phase values 

can be assigned for each pixel in both the X and Y directions. These unwrapped HARP images, 

seen in Figure 4, represent the main product of HARP analysis.  

Strain Analysis 

The built-in MATLAB gradient function was used to calculate the first derivative of the 

unwrapped HARP images with respect to both the X and Y directions. These derivatives are the 

elements of a 2x2 phase vector array defined as in Equation 2. 

∇𝜑(𝑖, 𝑗) =  (
𝑃𝑋𝑋(𝑖, 𝑗) 𝑃𝑋𝑌(𝑖, 𝑗)
𝑃𝑌𝑋(𝑖, 𝑗) 𝑃𝑌𝑌(𝑖, 𝑗)

)       [Eq. 2] 

𝑃𝐴𝐵(𝑖, 𝑗) represents the gradient, or first derivative, of the A-directional unwrapped HARP image 

with respect to the B direction in the pixel in the 𝑖𝑡ℎ row and 𝑗𝑡ℎ column. This pixel-specific phase 

 
Figure 4. Effects of unwrapping algorithm. Wrapped (left) 

and unwrapped (right) image.   

 
Figure 3. LV ROI example.  
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vector array can be used to calculate the deformation gradient tensor for each pixel in any 

SPAMM-tagged image, using Equation 3. 

𝐹(𝑖, 𝑗) ≅  ∇𝜑(𝑖, 𝑗)−1𝑊𝑇       [Eq. 3] 

𝑊 = [𝑤𝑥, 𝑤𝑦] and 𝑤𝑗 is the spatial frequency vector corresponding to the two spectral peaks 

filtered above. Alternatively, 𝑊 can be calculated using Equation 4. 

𝑊 =  (

2𝜋

𝑠𝑥
0

0
2𝜋

𝑠𝑦

)        [Eq. 4] 

𝑠𝑥 = 𝑆/𝑉 where S is the 8 millimeter tag spacing and V is the voxel size in millimeters. This 

gradient-based analysis allows us to then calculate a strain tensor E using Equation 5. 

𝐸 = (𝐹𝑇𝐹 − 𝐼)/2       [Eq. 5] 

F is the constructed deformation gradient tensor and I is a 2x2 identity matrix. Diagonalizing the 

strain tensor for each pixel within the LV provides principal eigenvectors associated with a positive 

Lagrangian radial strain and a negative Lagrangian circumferential strain in the pixel, the latter of 

which was used as the primary measure for strain characterization due to its clinical prevalence. 

After separating the LV wall into 6 segments (anterior, anteroseptal, inferoseptal, inferior, 

inferolateral, anterolateral), the above analysis was repeated beginning with 𝑃𝐴𝐵(𝑁) gradient 

values, or the average 𝑃𝐴𝐵(𝑖, 𝑗) across all pixels within each segment. This analysis was performed 

for each image in each SPAMM sequence. The average global circumferential strain (εcc) was 

calculated for each SPAMM image in the cardiac cycle. The peak εcc, occurring during peak 

systole, was used as our main metric of cardiomyopathy severity, as it is commonly used in clinical 

diagnoses of DMD cardiac complications. In order to validate the above algorithm, the peak εcc 

calculated was directly compared to the peak global Eulerian circumferential strain, acquired using 

clinically trusted software, in each patient (n=28) using a Pearson correlation and regression 
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analysis. The small coordinate scaling within the dimensions of the LV wall allowed for a direct 

correlation between Lagrangian and Eulerian models of circumferential strain.  

Heart Rate Variability Analysis 

 Following cardiac MR acquisition, each patient 

underwent 48-hour Holter monitoring to record beat-to-

beat RR interval data. Holter data were exported into 

Microsoft Excel 2013 where the RR intervals (in 

milliseconds) were extracted and saved as text (.txt) 

files. All .txt files were then loaded into Kubios HRV 

v2.1 to perform HRV analysis. Kubios HRV is able to 

analyze specifiable samples of RR interval data to 

produce both time-domain and frequency-domain 

outputs, the latter of which was used as a primary measure of autonomic functionality. RR interval 

data was sampled according to the standards of measurement, physiological interpretation and 

clinical use, as defined by the Task Force of The European Society of Cardiology and the North 

American Society of Pacing and Electrophysiology.47  10 five-minute samples of RR intervals 

were sampled within a six-hour window beginning the midnight after recording began. Ectopic 

beats, which may occur during the 48-hour period, were avoided by sampling areas where RR 

intervals were steady and consistent. This method of sampling has been shown to maximize 

stability and reproducibility of frequency-domain results. A frequency power spectrum was 

calculated for each five-minute sample using a built-in autoregressive (AR) feature, see Figure 5. 

Each spectrum is then separated into a very low frequency (VLF), low frequency (LF), and high-

 

Figure 5. Kubios Spectrum 

Comparison. Fast Fourier transform 

(FFT) spectrum of RR interval sample 

(top) versus autoregressive (AR) 

spectrum of the same sample (bottom). 
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frequency (HF) component defined as 0-0.04 Hz, 0.04-0.15 Hz, and 0.15-0.4 Hz, respectively. The 

HF power in normalized units (n.u.) was calculated using Equation 6.  

𝐻𝐹[𝑛. 𝑢. ] =
𝐻𝐹[𝑚𝑠2]

𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑤𝑒𝑟 [𝑚𝑠2]−𝑉𝐿𝐹[𝑚𝑠2]
 .       [Eq. 6] 

The median HF power across each of the ten samples was calculated and used as the primary 

metric for measuring the level of autonomic compensation in each DMD patient. This metric will 

be referred to as parasympathetic input-associated power (PIAP). An intraclass correlation 

coefficient was calculated in order to determine the reliability of the sampled time intervals for the 

HRV analysis. Each patient’s 10 five-minute samples were randomly split into two groups. The 

PIAP values from these sample groups were then compared to assure that each set of ten samples 

were reliable data. 

Statistical Analysis Defining Relationship between Variables 

 A Pearson coefficient and linear regression were also used to assess the correlation between 

εcc & PIAP, εcc & LVEF, εcc & age, and PIAP & age. Scatter plots provided visual representation 

of the data trends. Additionally, in order to assess the ability of PIAP values in predicting a less- 

versus more-severely diseased subject, patients were pooled in a “Healthy” and “Disease” category 

based on the following criteria. 

 Table 1. Healthy vs Disease Separation Criteria 

 Healthy  Disease  

LVEF >60% <55% 

εcc Strain >15% <13% 

  

Using LVEF and εcc as separate criteria, PIAP values from each category were compared using a 

Two-Sample t-Test assuming unequal variances. Patients were matched between groups according 

to their age and their use of β-blockers.   
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  Chapter 3: Results 

Filter Radius Optimization 

Implementation of a GLM was used to assess the effect of varying harmonic peak filter 

radius (Rf) on calculated strain (εcc) values. The two iterations of the analysis produced similar 

results; the following reflects the results of using a single εcc set as a response variable. A visual 

representation of the GLM matrices can be seen in Figure 6. A fixed-effect analysis with Rf, LVEF, 

and age (in days) being the effect variables and each εcc set as the response variable showed that 

age and LVEF each had a statistically significant effect on εcc (p<0.005, p<1.0x10-58, respectively). 

However, Rf did not have a significant effect on εcc (p>0.25). Next, a mixed-effect analysis was 

performed with the same effects and responses listed above, but with a patient identifier included 

as a random variable. Both Rf and LVEF had a statistically significant effect on εcc (p<1.0x10-6, 

p<0.005, respectively), while age no longer had a significant p-value associated with εcc (p>0.60). 

The standard errors associated with the intercept, Rf, LVEF, and age were ~0.05, ~0.0001, ~0.008, 

and ~3.0x10-6, respectively. The p-value associated with a constant intercept was non-significant 

A B 
Response Variable (εcc) 

Set 1   Set 2 

Effect Variables  

Rf LVEF Age (days) 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. GLM Matrices Visualization. Visual representation of response variables y (A) and design 

matrix X (B). Each row represents a single run of the strain analysis algorithm on a patient with a 

given filter radius.  A GLM was used to find parameters β such that 𝑦 =  𝑋𝛽. 
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for both the fixed- and mixed-analyses. Note that Rf became significantly associated with εcc, the 

LVEF-associated p-value increased many of orders of magnitude, and the age-associated p-value 

became insignificant when including patient ID as a random variable. The lower and upper 

boundaries of a 95% confidence interval of the effect of Rf (varied from 3-7 pixels) on εcc were     

~ -0.001 and ~ -0.0005, respectively. Note that these values are small and clinically insignificant 

regarding disease characterization. This analysis shows that filter radius had a statistically 

significant effect on εcc, but a clinically insignificant effect on εcc magnitude. Further strain analysis 

was performed using an Rf value of 5 pixels. Again, the filter parameters were chosen to encompass 

spectral data corresponding to a maximum of ~30% strain magnitude.  

Strain Analysis Validation  

 The results of the strain analysis algorithm developed were directly compared to the results 

produced from the same SPAMM-tagged images using a clinically trusted commercial HARP 

software. A scatterplot with the calculated strain values and the corresponding clinically used 

 

Figure 7. Strain Algorithm Comparison. Calculated strain values (horizontal axis) 

versus the corresponding clinically used strain values (vertical axis) for each 

patient.  
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strain values is displayed in Figure 7. From a simple linear regression, the two algorithms’ results 

were seen to be significantly correlated (p = 8.25x10-7). Additionally, the correlation presented an 

R2 value of 0.631 and a Pearson correlation coefficient of 0.783. 

Example Strain Analysis Results & Patient Population Summary  

  Figures 8 and 9 each display results of the myocardial strain analysis that were compared 

to commercially-used HARP software. Figure 8 displays the results for a DMD patient with less 

severe cardiomyopathy, while Figure 9 displays results for a DMD patient with a more severe 

cardiomyopathy, as judged by their peak global strain εcc. The former and latter patients had a 

SPAMM sequence taken of a single cardiac cycle with 10 and 9 dynamics, respectively. 

According to these two figures, at dynamic 1, the heart is in a diastolic state, translating to a 

near-zero strain value. In later dynamics, the heart contracts and enters a systolic state, 

translating to more negative strain values. The heart then relaxes and reenters a diastolic state 

and strain values approach zero. Figure 8 strain values peak at ~ -17% while Figure 9 strain 

values peak at ~ -13%. Note that there are strain values of larger magnitude in dynamics towards 

the end of the SPAMM sequence while most of the heart is exhibiting lower-magnitude strain.  
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Figure 8. Mild-cardiomyopathy state 

strain example results. (Top row) The 

pixel-based strain map for each of ten 

dynamics throughout a single cardiac 

cycle. (Middle row) The corresponding 

segmented strain map for each dynamic 

throughout a single cardiac cycle. 

(Bottom left) Global Lagrangian strain 

over a single cardiac cycle.  
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Figure 9. Severe-cardiomyopathy state 

strain example results. (Top row) The 

pixel-based strain map for each of nine 

dynamics throughout a single cardiac 

cycle. (Middle row) The corresponding 

segmented strain map for each dynamic 

throughout a single cardiac cycle. 

(Bottom left) Global Lagrangian strain 

over a single cardiac cycle. 



27 

 

Example Results of Heart Rate Variability Analysis  

  Figure 10 displays sample results from the Kubios HRV v2.1 software. Each set of spectra 

summarizes the power spectrum density of a five-minute sample taken within a six-hour window 

beginning at the midnight after 

application of the Holter monitor. 

The red, blue, and yellow portions of 

the spectrum represent the VLF, LF, 

and HF regions, respectively. Panel 

A shows data from a patient with less 

severe cardiomyopathy, while Panel 

B shows data from a patient with a 

more severe cardiomyopathy, as 

judged by their PIAP value. Though 

both FFT and AR spectra are seen 

here, the PIAP value extracted from 

each sample is from the AR analysis. 

The PIAP value from the above and 

below set are 73.3 n.u. and 27.8 n.u, 

respectively. These values reflect the 

percentage of power within the 

spectrum that falls under the HF 

range. It is deduced that this value 

 

 

Figure 10. Comparison of HRV results between mild and 

severe cardiomyopathy patients. (A) FFT and AR power 

spectrum density (PSD) results from a patient with less-

severe cardiomyopathy. (B) PSD results from patient with 

more-severe cardiomyopathy. See text for corresponding 

PIAP values. 

A 

B 
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also reflects the magnitude of parasympathetic input to the heart.  

 The PIAP measurements from the two randomly sampled periods of sleep did not differ 

significantly (p=0.51). Furthermore, an intraclass correlation of 0.923 (p<0.001; n=28) supported 

a high reliability of this data.   

Patient Data Comparison 

 Figure 11 displays the comparison summary plots of all patients’ data. The top left plot 

displays the measured peak global strain values versus the measured PIAP values. The two data 

sets were not significantly correlated (Pearson coefficient = -0.180, p= 0.403). This lack of 

statistical significance was consistent when excluding patients who were taking β-blockers at the 

time of the study (Pearson coefficient = -0.144, p= 0.523). The remaining Pearson coefficients and 

p-values for the other three relationships are summarized in Table 2.  
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Table 2. Statistical Significance Summary of Variable Comparison 

 Pearson Correlation Coefficient Linear Regression P-value 

 Including βB Excluding βB Including βB Excluding βB 

εcc vs PIAP -0.18 -0.14 0.40 0.52 

εcc vs LVEF -0.59 -0.56 8.8 x10-4 6.2 x10-3 

εcc vs Age 0.37 0.38 0.051 0.077 

PIAP vs Age -0.45 -0.60 0.026 0.0033 

 

Figure 11. Data Comparison Summary Plots. (Top left) Peak global strain versus PIAP. (Top right) 

Peak global strain versus LVEF. (Bottom left) Peak global strain versus age in days. (Bottom right) 

PIAP versus age in days. These plots include patients who were taking β-blockers at the time of the 

study.    
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Of the four comparisons, only “εcc vs LVEF” and “PIAP vs Age” were significantly 

correlated (both when including or excluding patients on β-blockers). Note that there was an 

increase in significance for “PIAP vs Age” when patients on β-blockers were excluded. Overall, 

excluding patients on β-blockers did not alter the relationships’ significances. 

A Two-Sample t-Test was used to assess the predictability of PIAP. PIAP did not differ 

significantly between patients with LVEF<55% and patients with LVEF>60% (n=5, p=0.16). 

Furthermore, PIAP did not differ significantly between patients with εcc<13% and patients with 

εcc>15% (n=5, p=0.093). Each of these separate groups were matched by age and β-blocker use. 

See Figure 12 for a visualization of these results.  

Lastly, partial correlation analysis showed that PIAP decreased with age (r= -0.39, p<0.05) 

and that εcc and LVEF were significantly correlated (r= -0.54, p<0.005). However, PIAP was not 

correlated with LVEF or εcc. 

    

 

Figure 12. Assessment of PIAP in distinguishing less- and more- severe disease states. (Left) Patients 

were separated based on their LVEF values into a less-severe (LVEF>=60) and more-severe 

(LVEF<=55) cardiomyopathy states. (Right) Patients were separated based on their strain (εcc) values 

into a less-severe (Strain>15%) and more-severe (Strain<13%) cardiomyopathy states. 
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Chapter 4: Discussion 

Myocardial Strain Analysis & Validation 

Before the custom myocardial strain analysis algorithm results could be compared to HRV 

data, it was first validated by directly comparing the results to those of a clinically trusted 

commercial HARP software. Both analyses were performed on the identical SPAMM-tagged 

images for each of the 28 patients. The significant p-value (p = 8.25x10-7) supports the hypothesis 

that the custom myocardial strain analysis is highly effective in calculating clinically relevant 

strain values in these patients. Furthermore, the physiologically accurate pattern in each strain 

result supported this conclusion. It remains, however, that thorough validation of this algorithm 

can only be done if it is directly compared to a gold standard measurement of myocardial 

circumferential strain (e.g. physical fiducial tracking in LV wall). However, determining 

significant correlation between the algorithm’s results and those produced by a clinically-used 

software validates its clinical relevance within this patient sample.   

As seen in Figures 8 and 9, the measured strain values begin and end at a near-zero value 

corresponding to the beginning and end diastolic states of the LV wall. The peak global 

circumferential strain magnitude occurs sometime between these two diastolic states, 

corresponding to the heart’s peak systole. In order to achieve a spatial summary of strain values, 

each strain map from each SPAMM sequence was segmented into six LV wall segments (anterior, 

anteroseptal, inferoseptal, inferior, inferolateral, anterolateral). It can be expected that some 

segments would show lower peak strain magnitudes than others. These regions may correspond to 

regions of more severe cardiac tissue myopathy or higher fibrous tissue partial volume. 

Furthermore, the significant correlation between strain and LVEF, both including and 

excluding patients on β-blockers, validated it as an accurate measure of cardiomyopathy. As stated 
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earlier, LVEF is classically considered a measure of cardiovascular disease; a significant 

correlation with the measured strain values supports the clinical relevance and potential of these 

values. In fact, studies continue to use LVEF not only as a measure of cardiomyopathy, but also 

as a standard to which developing detection methods are compared.60, 61  

The bottom-up creation of a myocardial strain analysis method provided a flexible, 

adaptable framework for assessing cardiomyopathy in these patients. Due to proprietary reasons, 

further investigation into the commercial HARP software beyond its user interface was not an 

option. Therefore, constructing this algorithm with known parameters and relationships allowed 

for significantly increased transparency into the process of extracting strain values from the 

SPAMM-tagged images.  

The implementation of Bayly et al.’s gradient-based analysis46 of Osman et al.’s work on 

deformation gradient tensor construction43 proved to be effective in measuring strain in this study. 

This expands the applicability of Bayly et al.’s method beyond mild traumatic brain injury patients 

and brain MR images and into, potentially numerous, dynamic cardiac applications.  

Heart Rate Variability Analysis  

 The reliability of this analysis was validated by showing a lack of bias between two 

randomly sampled periods of sleep and a significant intraclass correlation coefficient. However, 

further validation and optimization of measuring PIAP would be appropriate. This includes 

optimizing the sampling method and parameters as well as the summary statistic selection. 

As discussed earlier, studies have used both time-domain and frequency-domain 

parameters to assess the overall HRV in patients with DMD. According to the Task Force of the 

European Society of Cardiology and the North American Society of Pacing and Electrophysiology, 

the apparently easy derivation of HRV is what has popularized its use. In reality, the true 
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significance and meaning of the various measures of HRV are more complex than generally 

appreciated which leaves studies prone to incorrect conclusions and extrapolations.4747 The shown 

reliability of PIAP supports the viability of using this measure as a specific, physiologically based 

metric of cardiac electrophysiology.  

Relationship between HRV and Strain 

 To reiterate, we hypothesized that 1) the developed strain analysis technique would be 

correlated with the results achieved using commercialized HARP software, and 2) that the results 

seen would be significantly correlated with HRV parameters. Though this work supports the 

former portion of this hypothesis, the latter requires further research. The original relationship 

between strain and HRV was oriented around nervous system compensation in patients with DMD, 

resulting from a weakened cardiac state. At this point, we are unable to conclude that the strain 

values measured are significantly correlated to the magnitude of either sympathetic or 

parasympathetic input to the heart, as quantified by PIAP. After strain and PIAP were seen to have 

a nonsignificant relationship, they were each compared to patient age in order to compare their 

ability to predict disease severity within the studied age group. Due to the disease’s progressive 

nature, DMD-associated cardiomyopathy is known to become more severe with age; data from 

healthy control subjects are needed to determine if this is a more significant relationship than what 

would be observed in a healthy population.  

 The two-sample t-test revealed that PIAP was an appreciable metric that distinguished the 

more- and less-severe disease states. Though the results are not statistically significant, we 

anticipate that a sample size greater than (n=5) would aid in decreasing the size of the measurement 

error and support PIAP as a promising method of distinguishing between varying severities of 

DMD cardiomyopathy. 
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Study Limitations: Strain Analysis 

 A major limitation of this study is that the circumferential strain measured was assumed to 

not contain any longitudinal component. In other words, the strain magnitudes measured only 

describe tissue displacement within the image slice plane. In reality, a longitudinal component 

would exist and contribute to the true physiological strain magnitude occurring within the LV. As 

this was a retrospective study, there was an inherent limitation to the accessibility of raw data, and 

so it was not possible to analyze multiple slices in the LV midsection to allow for 3-D strain 

estimation.  

Additionally, segmentation of the LV wall via the MATLAB roipoly function introduced 

the possibility of user error by misclassifying LV wall tissue or including ancillary tissue regions 

such as the papillary muscle within the LV lumen. Using automatic segmentation algorithms allow 

for optimized classification of tissue and would significantly expedite the process of isolating the 

LV wall. However, the grid tag pattern on the SPAMM image prevents the use of automatic 

segmentation algorithms as various methods would mistake the grid line as a physiological tissue 

boundary; deciphering between non-smooth artificial signal changes and tissue signal changes can 

quickly become a complicated process to automate. Ideally, an untagged MR image within the 

same frame of reference and field of view taken concurrently to the SPAMM-tagged image would 

provide for a much easier image to use. This would allow researchers to use automatic 

segmentation methods such as seeding methods, K-means classification, or adaptive fuzzy C-

means segmentation on the untagged images and register those to the tagged images to create a 

user input-free method of isolating the LV wall.  

 Another limitation to this study that affected the strain calculations was due to an inherent 

issue with SPAMM acquisition. Due to longitudinal relaxation, the contrast of the grid pattern 
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decreases tremendously from the beginning to the end of 

the SPAMM image sequence, as seen in Figure 13. This 

lack of signal of differentiation introduces image noise that 

varies throughout dynamics. This could alter the HARP 

algorithm’s ability to extract relevant phase angle values 

pixel-to-pixel, introducing error into the strain 

measurements.  

Study Limitations: HRV Analysis 

 The lack of HRV data from control subjects 

prevented the determination of whether or not the observed 

relationship between PIAP and age was more significant 

than what would be observed in healthy individuals. 

Acquiring healthy control data would allow for this 

deciphering and could provide additional support towards 

PIAP being a reliable method of disease characterization. 

Additionally, a major component of sampling R-R 

interval data, as done here, is to avoid sampling regions 

with ectopic heart beats, as these can significantly alter the 

resulting power density spectrum, depending on the length 

of the sampled region. Raw ECG data would be needed in order to locate and effectively avoid 

these abnormal HR regions. The Holter output data provided did not include the ECG signal of 

each patient, but only the R-R intervals. As the R-R intervals can be extracted from raw ECG data, 

collection of this raw data could provide increased accuracy for sampling.  

 

Figure 13. Effect of longitudinal 

relaxation on SPAMM-tagging 

contrast. (Top) First dynamic from 

a SPAMM sequence from 

beginning diastole. (Bottom) Last 

dynamic from same SPAMM 

sequence from end diastole. 
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Next Steps & Final Conclusions 

Investigating the correlation between each of the six segments of the LV wall and PIAP 

values may reveal underlying significance between autonomic compensation and regional strain 

development. Regarding PIAP calculations, optimizing sampling parameters including sample 

duration and time of day could improve the validity and reproducibility of PIAP measurements. 

Furthermore, when separating patients into less- and more- severe disease states, stratifying 

patients based on ambulation would reduce any bias that could arise from an atrophied heart of a 

non-ambulatory patient.  

 The potential significance of this study remains promising. The validation of this 

HARP/strain analysis algorithm provides an alternate technique to quantifying Lagrangian LV 

strain in this patient population. Further optimization of this method can potentially aid in the 

development of improved pharmacological management and patient care regimen for patients with 

DMD. Furthermore, addressing the study limitations previously discussed can potentially define a 

significant correlation between LV circumferential strain and HRV parameters which would 

strengthen the argument that HR data can be utilized to provide clinically-relevant sequelae while 

omitting the need for resource-intensive, and often uncomfortable imaging techniques. Next steps 

of this study may also significantly improve the disease-state results discussed above and would 

support PIAP as a selective cardiomyopathy characterization metric. With further investigation, 

this work has the potential to directly impact both the treatment and quality of life in patients with 

Duchenne Muscular Dystrophy.  
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