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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1. Background to the Problem 

 

Anthropogenic alteration of the global environment is a principal interest confronting the world 

today, and this issue will maintain its significance in the future, as decisions made within this 

century will affect future generations to come. Human adaptation of natural resources to meet 

our needs impacts hydrology on both an atmospheric and terrestrial level. Humans have 

historically altered the global environment primarily through the conversion of native land to 

agricultural and urban land and through the atmospheric release of greenhouse gases from 

burning fossil fuels. Throughout the coming decades, agricultural expansion and intensification, 

urban growth, and natural resource extraction will likely accelerate in response to a growing and 

increasingly wealthy world population. There are multiple consequences for Earth systems, at all 

scales, from anthropogenic alteration of the Earth’s land surface and atmosphere [Kalnay and 

Cai, 2003; Pimm and Raven, 2000; Rose and Peters, 2001; Storck et al., 1998; Werth and 

Avissar, 2002]. Furthermore, scientific concern has been expressed regarding climate change 

impacts on future temperature and precipitation, with emphasis on drought frequency, duration, 

and severity over various regions of the globe [Intergovernmental Panel on Climate Change, 

2001]. Therefore, land use and climate changes are chief concerns facing the world this century, 

and the consequences of land use change may outweigh those from climate change [Sala et al., 

2000; Vörösmarty et al., 2000]. 
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Thus far, much of the research on land-use change consequences has focused on two issues: (1) 

the effects of land-use change on climate [Bonan, 1997; DeFries and Eshleman, 2004; 

Houghton, 1995], and (2) the effects of habitat loss on biodiversity [Sala et al., 2000]. Despite 

the many studies examining the relationships between vegetation, hydrological processes, and 

water quality, the effects of anthropogenic land-use change on hydrology have received little 

attention in land-use change research [Lambin et al., 1999]. Understanding the consequences of 

land-use change on hydrological processes represents an opportunity for academic inquiry 

[DeFries and Eshleman, 2004]. One such consequence is the changes in water supply from 

altered infiltration, runoff, and groundwater recharge. 

 

Identification and quantification of the hydrological consequences of land-use change are large 

undertakings and are complicated by: 1) the length and continuity of hydrological records; 2) the 

relatively high natural variability of most hydrological systems; 3) the inability to fully, 

“experimentally control” land-use changes in catchments; 4) the relatively small number of 

controlled small-scale experimental studies that have been performed; and 5) the difficulties 

involved in extrapolating results from such controlled small-scale experimental studies to other 

larger, natural systems [DeFries and Eshleman, 2004]. The present understanding of land-use 

change on hydrology is predominately derived from controlled, experimental manipulations of 

the land surface, paired with pre- and post-manipulation observations of hydrological processes 

such as precipitation inputs and streamflow outputs [Bosch and Hewlett, 1982; Harr, 1981, 1986; 

Harr et al., 1975; Hornbeck et al., 1970; Likens et al., 1977; Swank and Crossley, 1988]. While 

an extensive literature on urbanization and agricultural management practices exists, most 

studies are based on analysis of observational data from comparative or case studies [Hollis, 
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1975; Potter, 1991; Rose and Peters, 2001]. The science of the hydrological impacts of land use 

change can benefit from more than this traditional macro-level discernment.  

 

In order to explore land use changes on hydrology, the effects of natural climate variability on 

hydrology must first be understood. Climate change has the potential to increase water scarcity 

in dry regions. This vulnerability to water scarcity has highlighted the need to better understand 

the causes of hydrological variability [Intergovernmental Panel on Climate Change, 2007]. 

Climate and hydrology create an intricately coupled system, as large-scale atmospheric and 

oceanic oscillations produce shifts in precipitation, air temperature, soil moisture, and runoff. 

Drastic and persistent changes in these variables may alter the likelihood of extreme events or 

cause changes in the form of seasonal precipitation. Understanding the natural climate drivers of 

variability in hydrology, particularly at decadal timescales, is of critical importance. At these 

time scales, inter-decadal to multi-decadal oceanic-atmospheric climate oscillations are 

important forcing mechanisms of hydroclimatic variability. The effects of anthropogenic climate 

change will be superimposed upon this natural variability. Detection of consistent phases of these 

natural oscillations and attribution of hydrologic anomalies to these phases are fundamental to 

understanding future climate change, both natural and anthropogenic, and managing water 

resources. 

 

The effects accompanying land use change and climate change, both natural and anthropogenic, 

span all scales. General understandings of some of these effects exist, but regional to local 

effects may vary. The effects on hydrology are not often visible, or they are difficult to 

distinguish. Through examination of drought indices, some of which are designed to capture the 
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hydrological effects of drought (e.g., groundwater recharge, reservoir levels, etc.), a description 

of the effects of natural climate change on groundwater and streamflow in regulated river basins 

may exist. Furthermore, understanding the effects of land use change on hydrology involves 

more than just precipitation inputs and streamflow outputs – effects on groundwater-surface 

water (GW-SW) interactions are very important in such an endeavor as well. 

 

The White Bluffs along the Columbia River, near Locke Island, in south central Washington 

State provide a case study for exploring the effects of climate and land use change on local 

hydrology and, more specifically, GW-SW interactions. The prehistoric and modern landsliding 

activity along the bluffs and the relatively recent land use changes within the Columbia River 

Basin only serve to increase the relevance of this case study to such an area of research. In as 

much as the general subsurface conditions and the GW-SW interactions bear upon understanding 

the stability and mechanics of the landslide, land use changes and dam-induced river stage 

fluctuations directly impact these conditions and interactions. Natural climate change in turn 

influences GW-SW interaction and the broader, regional hydroclimatology. Therefore, in order 

to explore the timing, frequency, and proximal cause of landslide occurrence along the White 

Bluffs, first natural climate variability and then the impacts of land use change on GW-SW 

interaction must be understood.  

 

The research presented herein incorporates three objectives, narrowing from the broad, basin-

scale, temporal and spatial hydroclimatology to the regional landsliding activity and finally to the 

local GW-SW interaction between the bluffs and the river, in order to explore the effects of 

climate and land use change across the multiple scales of impact. Water and its effects are often 
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implicated as causes of slope failure; therefore, the overall research goal of this work is to 

develop a quantitative description of the hydrological conditions of the Locke Island landslide 

and the White Bluffs. Natural climate variability and land use change can increase recharge to 

the groundwater system, which, in turn, can increase storage within the system and discharge 

from the system. The two main research goals of this work are: (1) to understand the impacts of 

climate variability on the regional subsurface conditions, and (2) to understand the impacts of 

land use change on the regional and local subsurface conditions. The Palmer Drought Severity 

Index (PDSI) is used as a measure of subsurface moisture. Since this particular metric can be 

calculated at any spatial scale for which input data exists, two corollary research objectives of 

this work are: (1) to determine how representative regional PDSI values are of finer-scale PDSI 

values, and (2) to determine the conditions that control the differences in PDSI values between 

the two spatial scales. In assessing the impacts of climate variability on regional subsurface 

conditions, two seconday research objectives of this work are: (1) to determine the existence of 

low frequency periods of wetness and dryness over the Pacific Northwest of the United States, 

and (2) to assess solar insolation as a forcing mechanism for any low frequency periods of 

wetness and dryness. In examining the impacts of land use change on regional and local 

subsurface conditions, a secondary research objective of this work is to determine the 

groundwater flow response to changes in subsurface recharge from dam-induced river 

fluctuations, local irrigation wastewater ponds, and increased regional precipitation. 

 

There is evidence that landslides occurred along the White Bluffs in prehistoric times, within the 

last 11,000 years or so [Triangle Associates, Inc., 2003]. There is also evidence of younger 

landslides that were probably active in the last several hundred years [Triangle Associates, Inc., 
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2003]. Modern, active landslide activity along the Bluffs, however, began in the late 1960s, and 

toe erosion by the Columbia River was most likely the major cause of landsliding prior to 

irrigation on the land adjacent to the bluffs [Schuster et al., 1987]. Between 1953 and 1964, 

when irrigation water began to be supplied to the Pasco Basin, the Columbia River Project 

delivered the equivalent of an eight-fold annual increase in water to the area [Schuster et al., 

1987]. Irrigation water is provided to the area approximately six months of the year via an 

extensive network of canals and laterals that deliver water to fields for crop irrigation. 

Wasteways take water from the system and return it to the Columbia River; storage ponds are 

also a part of the irrigation wastewater system [Neff, 1989]. Because most of the canals, laterals, 

wasteways, and wasteway ponds behind the White Bluffs are unlined, seeps from these various 

channels percolate through the soil and recharge the groundwater [Neff, 1989]. Recharge from 

canal seepage and applied irrigation accounted for almost ninety percent of the increase in inflow 

to the groundwater system and the resulting rise in groundwater levels [Drost et al., 1993]. 

Between approximately 1946 and the mid-1980s, groundwater levels rose by an average of 60 m 

(200 ft); this resulted in a seven-fold increase in the annual flow through the groundwater system 

[Drost et al., 1993]. 

 

According to several reports within the last 25 years, modern landsliding of the White Bluffs at 

Locke Island began as a result of irrigation water delivered to unlined wastewater ponds and 

canals behind the bluffs [Bjornstad, 2006; Hays and Schuster, 1987; Nickens et al., 1998; 

Schuster et al., 1987; Triangle Associates, Inc., 2003]. Bjornstad [2006] maintains that the 

wastewater ponds were located over a glaciofluvial sediment-filled paleochannel eroded into the 

Ringold Formation and perpendicular to the bluff face opposite Locke Island. The percolating 
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irrigation water moves downward through the relatively permeable sands of the Hanford 

Formation until it reaches the fine-grained, fluvial-lacustrine Ringold Formation. Bjornstad 

[2006] and Bennett et al. [2002] suggest that the percolating water perches on top of the Ringold 

clays and silts and moves laterally along the old channel. Landslides occur where excess perched 

water seeps out from the paleochannel along the bluff face [Bjornstad, 2006].  

 

Slumping of the White Bluffs adjacent to Locke Island began in the late 1970s, with the majority 

of the landslide movement occurring between 1982 and 1996. Even though the ponds were 

completely drained in the mid-1990s in an attempt to stop the sliding, slumping of the Bluffs 

continued into the mid-2000s [Bjornstad, 2006]. Although the slide has moved up to 24 m (80 ft) 

between 1998 and 2002 [Bennett et al., 2002], the rate of movement at the toe of the landslide 

gradually slowed to the point where there was little movement in the years leading up to 2006 

[Bjornstad, 2006]. Bennett et al. [2002] suggest that the continued presence of the landslide 

debris in its present position is essential for maintaining the stability of the hillside, and the 

erosional loss of the debris to the Columbia River should be taken seriously. 

  

1.2. Structure of Dissertation 

 

The work presented in this dissertation represents a multi-level approach to investigate the 

regional and local hydrological responses to climate fluctuations and land use change in the 

Columbia River Basin, with specific attention given to the role of groundwater and surface water 

in the landslide activity along the White Bluffs adjacent to Locke Island in Washington State. So 
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that the relative importance of land use change on local hydrological responses can be 

understood, the hydrological response to climate fluctuations must first be identified.  

 

Drought indices provide information on the hydrological response to both precipitation and 

temperature on multiple timescales. There are several different drought indices that are routinely 

used in research, water resource management, and drought adaptation and mitigation, and the 

Palmer drought indices are used in this dissertation. Chapter 2 examines the effects of spatial 

resolution on the Palmer drought indices. This suite of drought indices can be calculated at any 

spatial resolution provided the climate and soil information data that serve as inputs to the model 

are available. Regional drought indices are typically used by researchers and policy makers, with 

the assumption that little information is lost in the aggregation. Chapter 2 examines the degree of 

variability between drought indices calculated at different spatial scales and explores the 

advantages gained in using fine-scale data for calculating the Palmer drought indices. This 

information provides insight into the appropriateness of the drought index data used to examine 

the effect of historical climate fluctuations on hydrology in the Columbia River Basin. 

 

Evidence of past landslide activity – within both the last several hundred years and the last 

several thousand years – indicates that climate may have a profound impact on the hydrology 

along the White Bluffs. Chapter 3 uses wavelet analysis to infer longer period climate cycles and 

changes in event periodicity from an existing 2000 year drought dataset. The drought metric 

within this dataset is the Palmer Drought Severity Index (PDSI), which has been reconstructed 

from annually dated tree-ring records. The climate cycles identified within the wavelet analysis 

are indicative of wet and dry periods within the Columbia River Basin; extensive wet and dry 
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periods can produce intense hydrological responses, especially with regard to soil moisture and 

recharge. Results from this regional analysis provide a background against which to assess the 

relationship between local groundwater fluxes and relatively recent landslide activity along the 

White Bluffs.  

 

Agriculture – specifically irrigated agriculture – has grown tremendously within the Columbia 

River Basin in the last half-century. Networks of canals and wasteways transport irrigation water 

behind the bluffs. Recent landslide activity at Locke Island has been attributed to the creation of 

ponds behind the bluff. Chapter 4 uses a two-dimensional finite element model to simulate the 

head changes and hence changes in groundwater fluxes at the toe of the landslide in response to 

stream stage variation, pond recharge, and increased precipitation recharge. Results from this 

chapter provide information on the relative importance of stream stage, irrigation wastewater 

ponds, and precipitation regimes in landslide activity. 

 

Finally, this dissertation concludes with a synthesis of the work. Chapter 5 draws inferences from 

the results contained in Chapters 2-4 and attempts to identify the roles of climate fluctuations and 

land use change in landslide activity. There is some speculation on how the whole system 

functions. 
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CHAPTER 2 

 

 

 

DROUGHT PLANNING AND MANAGEMENT: USING HIGH SPATIAL RESOLUTION AS 

PART OF THE SOLUTION1 

 

 

 

2.1. Introduction 

 

Water scarcity is a frequent problem in many parts of the world [Intergovernmental Panel on 

Climate Change, 2008]. As population grows, and agriculture, industry, and energy use expand, 

competition for water between demand-side sectors will continue to increase. Projected effects of 

climate change may combine with these stresses to reduce water availability in some parts of the 

world and simultaneously offset large increases in water demands in other parts of the world 

[Fung et al., 2011]. Moreover, given projected climate warming and precipitation changes for 

the twenty-first century, drought is likely to worsen in the future [Dai, 2011; Meehl et al., 2007; 

Sheffield and Wood, 2008]. Drought exacerbates water scarcity [Riebsame et al., 1991]. Drought 

affects virtually all climate zones, and drought is an aggravating phenomenon in that it impacts 

many sectors of society, often reaching beyond the area that is physically experiencing drought. 

It is therefore imperative that scientists and policy makers to quantify drought for analysis, 

monitoring, agricultural planning, and emergency planning and preparedness. 

 

Drought indices are routinely used to quantify drought. These indices assimilate large quantities 

of data on rainfall, snowpack, streamflow, and other water supply indicators into a 

                                                 
1 This chapter of the dissertation has been previously published as Duncan, L. L., D. Perrone, J. H. Jacobi, and G. M. 

Hornberger (2015). Drought planning and management: Using high spatial resolution as part of the solution. 

Environmental Science & Technology, 49(5), 2639-2647. 
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comprehensible big picture of moisture availability. The Palmer Index [Palmer, 1965] is a 

popular group of drought indices. The term “Palmer Index” collectively refers to three indices: Z 

Index, Palmer Drought Severity Index (PDSI), and Palmer Hydrological Drought Index (PHDI). 

The index numbers signify, in terms of moisture, the departure of the weather for a particular 

month and year from the average climate of that month. The Z Index reflects the monthly, short-

term soil moisture anomaly. The PDSI is a meteorological measure of drought, whereas the 

PHDI is a hydrological measure of drought. The primary distinction between the PDSI and PHDI 

is their beginning and ending times of a dry spell. With the PDSI, a spell is considered to have 

ended when the drought-inducing meteorological conditions end [Palmer, 1965]. With the PHDI, 

however, a spell does not end until the environment recovers from the drought [Palmer, 1965].  

 

Drought indices can be calculated and analyzed at a range of spatial scales. For example, 

regional values of the Palmer Index are one of the key parameters that make up the current US 

Drought Monitor scheme [Svoboda et al., 2002]. Studies have used regional values of the Palmer 

Index within probability models, such as Markov chain models [Lohani and Loganathan, 1997; 

Lohani et al., 1998; Steinemann, 2003] and dyadic wavelet transforms and neural networks [Kim 

and Valdés, 2002], to characterize and forecast drought. Regional drought values have also been 

used to examine drought frequency and duration [Kim et al., 2002; Soulé, 1992], probe the 

spatial and temporal characteristics of drought [Diaz, 1983; Eder et al., 1987; Jones et al, 1996; 

Karl and Koscielny, 1982; Klugman, 1978; Skaggs, 1975], and investigate teleconnection 

patterns to drought [Özger et al., 2009; Piechota and Dracup, 1996; Rajagopalan et al., 2000; 

Stahl and Demuth, 1999]. The PDSI has been used extensively to study dry and pluvial periods 

at multiple spatial scales and to place recent and historical events within the context of the 
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historical drought record [Briffa et al.., 1994; Dai, 2011; Dai et al., 1998; Dai et al., 2004; Heim, 

2002; Karl and Quayle, 1981; Palmer, 1965; van der Schrier et al., 2006a; van der Schrier et al., 

2006b; van der Schrier et al., 2007]. Studies have also calculated PDSI using global climate 

models to assess future drought scenarios [Burke et al., 2006; Dubrovsky et al., 2009; Kothavala, 

1999; Mavromatis, 2007]. 

 

Heterogeneity and variability in variables required for drought quantification manifest 

themselves at a range of scales. Precipitation is frequently intermittent and discontinuous, with 

rainfall events forming discrete zones of cumulation across often small areas. Likewise, soil 

types and properties exhibit a stunning degree of heterogeneity at the catchment and regional 

scales. Despite this variability and the fact that drought indices can be calculated at a range of 

spatial scales, regional index values are most commonly used for research and real-time drought 

assessments. Such aggregation leads to a loss of detail. Variation is subsumed in the aggregate, 

and the high-frequency characteristics of the fine-scale components are damped. The spatial 

resolution of national drought monitors and forecasts is a particular challenge for water resource 

managers. One respondent to a 2005 survey of water managers protested the use of general 

climate forecasts for regional areas specifically because of the lack of local information: “…it 

can rain in one [watershed], but not in the next…Unless I know what’s going to happen in exact 

places I can’t use the forecasts” [Rayner et al., 2005]. The degree to which spatial variability 

matters in quantifying drought is not clear. Just how different are drought indices calculated at 

different spatial scales; and are they different enough that it matters to planners?  
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This paper serves two purposes: (1) to determine how representative regional drought indices are 

of finer-resolution drought indices, and (2) to determine the conditions that control the 

differences in spatial patterns between the two scales. To accomplish these objectives, drought is 

quantified at both regional and finer-resolutions. Spatial and temporal patterns of differences in 

drought between the two scales are then statistically examined, and the relationships that 

determine these differences are parsed. The Pacific Northwest US, including most of the 

Columbia River Basin, serves as the study area, due to the sharp contrast in climate across the 

region. This analysis is confined to the Palmer Index, as it is used by a diverse group of people, 

including scientists and policy makers, to monitor and assess wet and dry conditions in both the 

US and other parts of the world [Briffa et al., 1994; Burke et al., 2006; Dai, 2011; Dai et al., 

1998; Dubrovsky et al., 2009; Hu and Willson, 2000;  Jones et al., 1996; Kim and Valdés, 2003; 

Kim et al., 2002; Kogan, 1995; Kothavala, 1999; Mavromatis, 2007; Sakamoto, 1978; Szinell et 

al., 1998]. Finer-resolution drought is quantified with a high resolution grid. To measure regional 

drought, the climate division classification system is employed. Divisional boundaries cover the 

entire area of the state and they often, but not always, coincide with county boundaries. Although 

the climate division classification system is based only partially on climate considerations 

[Guttman and Quayle, 1996], numerous studies have employed the divisional spatial scale in 

using the Palmer drought indices to analyze drought [Davis and Rappaport, 1974; Karl, 1986a; 

Karl, 1986b; Karl and Heim, 1990; Karl et al., 1987; Karl et al., 2012; Keyantash and Dracup, 

2002; Klugman, 1978; Lohani and Loganathan, 1997; Özger et al., 2009; Skaggs, 1975; Soulé, 

1992; Whittemore et al., 1989]. While this particular regional classification system is unique to 

the US, regional classification systems in general are common throughout the world. 

 



35 

 

2.2. Data and Methods 

 

2.2.1. Overview of the Palmer Drought Model 

 

The Palmer drought model incorporates antecedent precipitation and moisture supply and 

demand into a hydrologic accounting system [Palmer, 1965]. The model requires only 

temperature, precipitation, and a soil water holding capacity (available water capacity, AWC, in 

the Palmer notation). Palmer's method begins with a water balance, which uses a two-layered 

model for soil moisture computations; the division of AWC between the two soil layers and the 

transfer of moisture between the layers are part of the model specifications [Alley, 1984]. Air 

temperature is used to calculate potential evapotranspiration (PET), generally using 

Thornthwaite's method [Thornthwaite, 1948; Willmott and Rowe, 1985; Wilm et al., 1944], 

which then becomes part of the water balance computations. Palmer used what he called a 

Climatologically Appropriate for Existing Conditions (CAFEC) precipitation quantity to 

calculate the “normal” moisture for a particular month. The moisture departure from “normal” 

for a particular month can subsequently be computed. A weighting factor is used to adjust these 

departures from normal precipitation with the intent that values would be comparable across 

space and time. The weighted departure is the Z Index. The calculation proceeds by computing 

three intermediate indices and a probability term. The intermediate indices quantify an incipient 

wet spell, an incipient dry spell, and the existing wet or dry spell, which is also called the PHDI; 

a probability term quantifies the beginning and ending of dry or wet periods. The drought 

severity for a particular month depends on the moisture anomaly (Z Index) for that month and on 

the drought severity for both preceding and succeeding months. Palmer used a backtracking 
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procedure, dependent upon the probability term, to assign one of the three intermediate indices as 

the PDSI. This procedure and the rules employed are not trivial [Alley, 1984]. When information 

on future drought severity is not available, an operational version of the PDSI, the Palmer 

Modified Drought Index (PMDI), is available for real-time drought monitoring [Heddinghaus 

and Sabol, 1991], and this variation is used in the US Drought Monitor scheme.  

 

2.2.2. Study Area 

 

Our study area includes all or part of five northwestern US states - Idaho, Montana, Oregon, 

Washington, and Wyoming (Figure 2.1). Since the US climate division classification system is 

used to quantify regional drought, climate divisions within these states that also contained a large 

proportion of the Columbia River basin were selected as the areal extent of this study. The area is 

bounded by the Rocky Mountains to the east, and the Cascade Mountains and low-lying valleys 

to the west. 

 

The region's mountains create sharp spatial contrasts in climate. The Cascade Mountains create a 

barrier between the maritime climate influences to the west and the continental climate 

influences to the east. Climate west of the Cascades is characterized by mild temperatures 

throughout the year, with abundant winter rains and dry summers. Sunshine and dry conditions 

become more common east of the Cascades, and annual and daily temperature ranges are 

considerably greater. While most of the entire region's precipitation occurs in just half of the year 

(October through March), a greater fraction of precipitation east of the Cascades falls in the 

warm half of the year, particularly in May and June [Mote et al., 2003]. Although precipitation 
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exhibits the greatest seasonality west of the Cascades, summer precipitation to the west is only 

slightly greater than that to the east [Mote et al., 2003]. 

 

 

Figure 2.1 | Study area map 

 

2.2.3. Data 

 

University of Delaware (UDEL) 1900-2010 gridded monthly air temperature [Matsuura and 

Willmott, 2012a] and precipitation [Matsuura and Willmott, 2012b] data were obtained from the 

Physical Sciences Division of the Earth Science Research Laboratory at the National Oceanic 
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and Atmospheric Administration (http://www.esrl.noaa.gov/psd/, accessed April 11, 2013). The 

gridded monthly air temperature data were created by interpolating monthly averages of station 

air temperature to a 0.5° by 0.5° latitude/longitude grid, where the grid nodes are centered on the 

0.25°. The gridded fields were estimated from monthly weather-station averages using a 

combination of spatial interpolation methods [Matsuura and Willmott, 2012a]. The gridded 

monthly precipitation data were created by interpolating station values of monthly total raingage-

measured precipitation to a 0.5° by 0.5° latitude/longitude grid, where the grid nodes are 

centered on the 0.25° [Matsuura and Willmott, 2012b]. Climatologically aided interpolation 

[Willmott and Robeson, 1995] was used to estimate the monthly total precipitation fields 

[Matsuura and Willmott, 2012b]. 

 

Although monthly temperature and precipitation data for climate divisions can be obtained from 

the National Climatic Data Center (NCDC), in order to be consistent, these divisional values 

were determined using the gridded, high resolution UDEL dataset.  Gridded temperature and 

precipitation data (1900-2010) were aggregated, using area-weighted averages, to the climate 

division scale. Latitudes at climate division centroids were obtained from the NCDC. 

 

AWC data from the National Resources Conservation Service (NRCS) state soil geographic 

(STATSGO) database were obtained from the Earth System Science Center at The Pennsylvania 

State University (http://www.soilinfo.psu.edu/, accessed August 23, 2013) [Miller and White, 

1998]. The AWC data were then aggregated, using area-weighted averages, to both the climate 

division scale and the 0.5° by 0.5° grid. 

 

http://www.esrl.noaa.gov/psd/
http://www.soilinfo.psu.edu/
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The monthly Z Index, PDSI, and PHDI for the 26 climate divisions and 344 grid boxes were 

calculated using a tool [Jacobi et al., 2013] that requires only average monthly temperature and 

precipitation, latitude, and AWC. The tool allows the user to choose between the Hamon 

[Hamon, 1963] and Thornthwaite [Thornthwaite, 1948; Willmott and Rowe, 1985; Wilm et al., 

1944] methods of calculating PET and the period used in calibrating certain variables derived 

from the water balance. For this analysis, the Thornthwaite method was used to calculate PET. 

This PET calculation method is not without caveats; for example, the Thornthwaite method has 

been shown to have a tendency to overestimate PET in the summer and at high latitudes [Amatya 

et al., 1995]. Sheffield and Wood [2012] argue that PDSI based on Thornthwaite PET is too 

temperature sensitive and a Penman-style PET model should be used instead. Still, the 

Thornthwaite method of calculating PET may be reasonably accurate for temperate climates 

[Rosenberry et al., 2004], and this method is used in practice throughout the United States and 

globally. The Thornthwaite method is also simple, requiring only measurements of air 

temperature, which is advantageous when long historical records of radiation data are not 

available. The entire period of record was chosen to calibrate water balance variables. 

 

2.2.4. Quantifying Differences 

 

The two sample Kolmogorov-Smirnov (K-S) test is used to determine how much the regional 

drought indices differ from the finer-resolution drought indices. This statistical test is 

advantageous, as it makes no assumption about the distribution of the data – i.e., it is non-

parametric and distribution free. The K-S test compares the equality of the two empirical 

cumulative distribution functions (EDFs), and it is sensitive to differences in both location and 
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shape of the EDFs. Of interest is not only how much the regional and finer-resolution drought 

indices differ from each other but whether the two are different enough that it matters (e.g., to 

water managers and planners). Therefore, grid and climate division PDSI are mapped for a 

specific month and year, which helps to visualize the differences in spatial variability that can 

arise, specifically during a dry period. 

 

Cumulative distribution functions for grid and climate division Z Index, PDSI, and PHDI were 

developed from the historical data. The two-sample K-S test was applied to the two EDFs, which 

were estimated from the calculated climate division drought index series (𝑥11, 𝑥12, ⋯ , 𝑥1𝑚) and 

the calculated grid drought index series (𝑥21, 𝑥22, ⋯ , 𝑥2𝑛). The maximum difference, 𝐷𝑚𝑛, 

between the two EDFs is the K-S statistic, 

 

 𝐷𝑚𝑛 = max
𝑥

|𝐹𝑚(𝑥1) − 𝐹𝑛(𝑥2)|. (2.1) 

 

                    

 

If the K-S statistic 𝐷𝑚𝑛 is larger than the critical value, 

 

 

 𝐷𝑚𝑛 > [
1

2
(

1

𝑚
+

1

𝑛
) 𝑙𝑛 (

𝛼

2
)]

1

2

, (2.2) 

 

 

the null hypothesis is rejected at the 𝛼 × 100% significance level. For this analysis, 𝛼 was set to 

0.05. 

 

The K-S test, however, is predicated on the assumption of independent sampling. Plots of 

autocorrelation functions for the 78 climate division drought indices showed significant 
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autocorrelation. Ljung-Box Q-tests for autocorrelation at lags of one, five, and nine were 

conducted on residual time series calculated from the same data. Results from these tests suggest 

that there is significant autocorrelation at all lags in the residuals at the 5% significance level. 

 

The assumption of independent sampling is important, since it is essential for determining the 

critical values at the 𝛼 × 100% significance level [Semenov and Welham, 2004]. Serial 

correlation in the data, such as that in the drought indices, causes the effective sample size or 

effective number of degrees of freedom to be smaller than the data sample size used in the test. 

When the data sample sizes 𝑚 and 𝑛 are used to determine the critical value for the test at a 

given significance level, the critical value is then smaller than the one anticipated under the 

independent sampling assumption. This causes the K-S test to reject the null hypothesis more 

often than expected at a given significance level. Therefore, instead of using the values of the K-

S statistic 𝐷𝑚𝑛 estimated from the assumed probability distributions, determining valid critical 

values of the K-S statistic with resampling tests or Monte Carlo tests [Wilks, 1995] may offer a 

potential solution [Qian et al., 2004]. 

 

The critical values of the K-S statistic 𝐷𝑚𝑛 were estimated through resampling tests for each of 

the 584 grid box-climate division pairs. Three resampling tests were performed for every grid 

box-climate division pair - one each for the Z Index, PDSI, and PHDI.  Following the 

methodology of Qian et al. [2004], the resampling procedure involved: (1) pooling the 111-year 

grid box observations for each drought index and the corresponding 111-year climate division 

observations for each drought index to form a 222-year data pool; (2) randomly selecting a year 

from the 222-year data pool without replacement 111 times to form a 111-year mixed sample; 
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(3) pooling the remaining 111-year data to form the second mixed sample; (4) computing the K-

S statistic 𝐷𝑚𝑛 from the EDFs estimated from the two 111-year mixed samples; (5) repeating 

steps two through four 1000 times to obtain 1000 values of 𝐷𝑚𝑛; (6) taking the 95th percentile of 

the 1000 values of 𝐷𝑚𝑛  as the K-S statistic at the 5% significance level. This significance level 

is the probability of a Type I error. The critical values of 𝐷𝑚𝑛 determined through resampling 

were used to either reject or fail to reject the null hypothesis of the K-S tests. 

 

2.2.5. Understanding Spatial Differences 

 

Multiple linear regression is used to examine the conditions that control the spatial patterns of 

differences between the grid and climate division drought. Average positive and negative 

differences between the grid and climate division drought indices serve as predictors, since 

differences between drought indices can be either positive or negative and the numbers of 

positive and negative differences are similar in magnitude. Histograms are used to determine the 

fraction of grid and climate division pairs that experience large positive and negative PDSI and 

PHDI differences with varying frequency. 

 

Three drought index time series are associated with each grid box and each climate division: Z 

Index, PDSI, and PHDI; and there are 584 different grid box-climate division pairs. Differences 

between the grid box Z Index time series and climate division Z Index time series were 

calculated for each pair, by subtracting the climate division value from the grid box value. These 

differences were either positive or negative. Positive differences in Z Index were averaged for 

each pair, and negative differences in Z Index were averaged for each pair. This process was 
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repeated for the PDSI and PHDI. This resulted in 584 average positive differences and 584 

average negative differences for each of the three drought indices. Average positive and negative 

precipitation and temperature differences for each grid box-climate division pair were calculated 

in the same way. AWC differences for each pair were calculated by subtracting the climate 

division value from the grid box value. Note that AWC differences are not averages, since there 

is only one AWC value for each grid box and only one AWC value for each climate division. 

 

Multiple linear regression was used to model the relationship between the average positive and 

negative drought index differences (𝑦𝑖1, 𝑦𝑖2, ⋯ , 𝑦𝑖𝑛) and temperature, precipitation, and AWC 

differences (𝑥𝑖1, 𝑥𝑖2, ⋯ , 𝑥𝑖𝑝). Formally, the model given 𝑛 observations is 

 

 𝑦𝑖𝑛 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 + 𝜀𝑖, (2.3) 

 

 

for 𝑖 = 1, 2, ⋯ , 𝑛, where 𝛽0,  𝛽1,  𝛽2, ⋯ ,  𝛽𝑝 are unknown coefficients to be estimated by 

𝑏0, 𝑏1, 𝑏2, ⋯ , 𝑏𝑝 and 𝜀1, 𝜀2, ⋯ , 𝜀𝑛 are independent random variables each with zero mean and 

unknown variance. Six response variables (𝑚 = 6) were used in this analysis: average positive Z 

Index, average negative Z Index, average positive PDSI, average negative PDSI, average 

positive PHDI, and average negative PHDI. Four predictors (𝑝 = 4) were used in this analysis: 

average temperature difference, average precipitation difference, AWC difference, and one 

constant. Response variables and predictors each contained 584 observations (𝑛 = 584). 

 

The relationships between drought indices and temperature, precipitation, and AWC can be 

looked at in a slightly different way, in order to supplement the multiple linear regression. The 



44 

 

PDSI, temperature, and precipitation time series, as well as the difference in AWC, are analyzed 

for two grid box-climate division pairs: (1) one that experiences small average positive (and 

negative differences (i.e., between -1 and 1), and (2) one that experiences large average positive 

differences (i.e., ≥ 2) and large average negative differences (i.e., ≤ -2). 

 

The differences between the grid box drought time series and climate division drought time 

series were also used to create histograms. For each grid box-climate division pair, the number of 

differences in the grid box and climate division PDSI where the absolute value was greater than 

or equal to two was counted; the same was done for differences in the grid box and climate 

division PHDI. This resulted in 584 numbers, one for each grid box-climate division pair. These 

raw numbers were then converted to percentages of total historical time (111 years). The 

percentages of total time were binned to create two histograms – one for differences in PDSI, 

and one for differences in PHDI. 

 

Average difference between grid and climate division PDSI values for historically dry, wet, and 

near normal periods were also calculated. These periods are defined by, first, calculating a 

weighted average PDSI value for the entire study area using climate division PDSI values and 

climate division areas as weights. Dry periods are classified as PDSI values less than or equal to 

-2; wet periods are classified as PDSI values greater than or equal to 2; and near normal periods 

are classified as PDSI values between -2 and 2. Differences are calculated by subtracting the 

climate division PDSI value from the grid box PDSI value and taking the absolute value. 
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2.3. Results 

 

The resampled K-S test rejects the null hypothesis that both the grid box and climate division Z 

Index data are generated from the same distribution for 81 of the 584 pairs at the 95% 

significance level (Table 2-1). Similarly, the test rejects the null hypothesis that the PDSI and 

PHDI values come from the same distribution for 412 and 416 pairs, respectively (Table 2-1). As 

expected, resampling decreases the number of times that the K-S test rejects the null hypothesis 

for all three indices; the reductions in number of rejections, while considerable at the 99% 

significance level, are small at the 95% significance level (Table A-1 in Appendix A). 

 

Table 2.1 | Resampled Two-Sample K-S Test Results 

Drought Index p-value Number (%) of Grid Box-Climate Division 

Pairs for which the Null Hypothesis is Rejected 

Z p<0.01 53 (9%) 

p<0.05 81 (14%) 

PDSI p<0.01 187 (32%) 

p<0.05 412 (71%) 

PHDI p<0.01 180 (31%) 

p<0.05 416 (71%) 

Notes:  The K-S test returns a test decision for the null hypothesis that the two data samples are from the same 

continuous distribution; the test either rejects or fails to reject the null hypothesis. Numbers and percentages of grid 

box-climate division pairs where p<0.05 also include those where p<0.01. 

 

The resampled K-S tests yield three common groups of test decisions among the grid box-

climate division pairs. In one group, the test fails to reject the null hypothesis for all three 

drought indices. The medians of the pair distributions in this group are very close to the same, 
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and the tails of the distributions are similar in density (Figure 2.2a – 2.2c). In another group, the 

test rejects the null hypothesis for the PDSI and PHDI only. Z Index distributions for pairs in this 

group are similar (Figure 2.2d), while PDSI and PHDI distributions may reflect shifts in the 

median (Figure 2.2e) or changes in densities near the tails (Figure 2.2e and 2.2f). In the last 

group, the test rejects the null hypothesis for all three drought indices. EDFs in this group may be 

remarkably different, showing large shifts in the medians (Figure 2.2g – 2.2i). In addition to 

tangible differences in probability distributions, drought at the coarser, climate division scale and 

drought at the finer, grid box scale are spatially different (Figure 2.3a and 2.3b). 

 

 
Figure 2.2 | EDFs of historical monthly Z, PDSI, and PHDI for the grid box-climate division 

pairs highlighted in Figure 4. The K-S test rejects the null hypothesis for (e-i). 
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Figure 2.3 | Map of a) May 2001 PDSI calculated at the climate division spatial resolution and 

b) May 2001 PDSI calculated at the 0.5° by 0.5° latitude/longitude spatial resolution. 

 

There are no obvious spatial patterns in the resampled K-S test results for PDSI and PHDI 

(Figure 2.4a and 2.4b). A map of the resampled K-S test results for the Z Index is not shown due 

to the small number of grid box-climate division pairs where the null hypothesis is rejected 

(Table 2.1). The resampled K-S test results for PDSI and PHDI, however, are spatially congruent 

with average positive and negative differences in grid box and climate division PDSI and PHDI 

(Figure 2.5a – 2.5d). The null hypothesis is rejected for much of the far eastern portion of the 

study area, particularly grid box-climate division pairs along the Rocky Mountains, and along the 
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southern periphery. Similarly, average positive and negative drought index differences tend to be 

larger in magnitude and can exceed ±2. The resampled K-S test fails to reject the null hypothesis 

for much of the interior of the study area, where average positive and negative index differences 

tend to be smaller in magnitude. 

 

For monthly PDSI and PHDI, the difference between the grid box value and the climate division 

value is greater than or equal to two between zero and sixty percent of the time. Forty-nine 

percent of grid box-climate division pairs experience PDSI differences greater than or equal to 

two at least thirty percent of the time (Figure 2.6a). Similarly, fifty-six percent of grid box-

climate division pairs experience PHDI differences greater than or equal to two at least thirty 

percent of the time (Figure 2.6b). 

 

There are no direct correlations between average drought index differences and average 

temperature and precipitation differences or AWC differences, as evidenced by low coefficient 

of determination values (Table A.1 in Appendix A). While these are not predictive relationships, 

some are significant. Average temperature and precipitation differences are significant (p<0.01) 

for both average positive and negative differences in all three drought indices. AWC is 

significant (p<0.05) for average negative PDSI and PHDI differences only. For one of the grid 

box-climate division pairs where average positive and negative differences are large, the 

difference in AWC is small, while both temperature and precipitation values vary – at times 

drastically – between the grid and climate division (Figure A.1 in Appendix A). For one of the 

grid box-climate division pairs where average positive and negative differences are small, the 

difference in AWC is quite large; and, while temperature and precipitation values vary between 
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the grid and climate division, precipitation values are much closer for this pair (Figure A.2 in 

Appendix A), where average positive and negative differences are small, than the previous pair 

(Figure A.1 in Appendix A), where average positive and negative differences are large. 

 

 
Figure 2.4 | Maps of resampled two-sample K-S test results for (a) PDSI and (b) PHDI. Grid 

boxes and climate division outlined in color correspond to those identified in Figure 2. 
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Figure 2.5 | Maps of (a) average positive PDSI difference, (b) average negative PDSI difference, 

(c) average positive PHDI difference, and (d) average negative PHDI difference. 
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Figure 2.6 | Histograms of (a) percentages of monthly PDSI differences where the absolute 

value is ≥ 2 and (b) percentages of monthly PHDI differences where the absolute value is ≥ 2. 

 

2.4. Discussion 

 

Drought is most commonly quantified by calculating drought indices at regional spatial scales. 

These regional index values are largely used for both research and real-time drought 

assessments, with the assumption that little important information is lost in regionalizing drought 

indices. The results from this study provide an indication of how representative regional drought 

indices are of finer-resolution drought indices, spatially, temporally, and in terms of statistical 

probability. Our analysis goes a step further by examining the relationships that determine the 

spatial patterns in differences between regional and finer-resolution drought indices. 

 

In general, the regional values of the cumulative Palmer drought indices (i.e., PDSI and PHDI) 

do not represent the finer-resolution values very well. The disparities between regional and finer-
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resolution drought indices are reflected in the EDFs (Figure 2.2a – 2.2i), where the K-S test 

rejects the null hypothesis that the two data samples are from the same distribution for most 

PDSI and PHDI pairs (Table 2.1). The Z Index, unlike both the PDSI and PHDI, is not a 

cumulative index; it depends on the moisture departure from “normal” precipitation and a 

weighting factor [Alley, 1984]. Therefore, periodic large differences between the regional and 

finer-resolution Z Index do not accumulate; systematic large differences, however, are possible 

and indicate systematic large differences are present between the regional and finer-resolution 

data that are used to calculate drought. Conversely, PDSI and PHDI depend on current moisture 

anomalies and preceding and succeeding drought severities [Alley, 1984]. These indices, 

therefore, respond more slowly to changing conditions and allow differences between local and 

regional values to propagate over extended periods of time. Resampling only slightly decreases 

the number of times the null hypothesis is rejected for all three indices at the 95% significance 

level (Table 2.1), which suggests that most of the differences in grid and climate division 

drought index distributions are not due to autocorrelation within the data itself. This indicates 

that the shifts in medians and differences in tail densities between the grid and climate division 

EDFs (Figure 2.2e – 2.2i) are due to real differences in grid and climate division drought index 

values. 

 

The resampled K-S test tends to reject the null hypothesis where average positive and negative 

differences between grid and climate division drought indices are the largest (Figures 2.4 and 

2.5). The Palmer drought model uses only temperature, precipitation, and AWC in assigning a 

drought severity class. Therefore, differences between grid and climate division drought indices 

must be due to differences in one or some combination of these input variables. The multiple 
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linear regression results indicated no direct correlation between average drought index 

differences and average temperature and precipitation differences or AWC difference (Table A-2 

in Appendix A). The PDSI and PHDI are cumulative indices, while temperature and 

precipitation reflect conditions at specific points in time. Therefore, differences in grid box and 

climate division drought indices at specific points in time do not precisely correlate to 

differences in temperature or precipitation at the same points in time. For whatever reason, there 

are localities within climate divisions that systematically or periodically deviate from the average 

climate division drought index. While the relationships between drought indices and 

temperature, precipitation, and AWC are not predictive, some relationships are significant. Other 

studies have also shown PDSI and PHDI to be sensitive to precipitation [Guttman, 1991; Hu and 

Willson, 2000], temperature [Guttman, 1991; Hu and Willson, 2000], and AWC [Karl, 1983]. 

 

Although regional limitations may prevent a direct generalization of some of these results to 

other regions in the world, this study sheds light on the effects of regionalizing drought indices. 

Calculating drought indices at finer resolutions has appeal from both a statistical perspective and 

a spatial resolution perspective. Median index values, modes, and extreme index value 

probabilities may significantly vary from regional to finer resolutions. These distributional shifts 

give rise to average differences in drought index values, which are related to average differences 

in precipitation and temperature, and, to a lesser extent, differences in AWC. Finer resolution 

drought index surfaces provide a much more detailed view of meteorological conditions, which 

is of greater importance in planning and mitigation. For example, variability in land use and 

water demand-side sectors necessitates localized climate information so that drought and pluvial 

risks can be better understood and managed by stakeholders. Subsequently, the availability of 
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gridded data, often at finer-resolutions, and easy-to-use drought calculators [e.g., Jacobi et al., 

2013], make such analyses straightforward. 

 

Drought is a particularly vexing phenomenon - one that is common to virtually all regions of the 

world. Not only do the effects of drought ripple through many different sectors of society, but, in 

our globalized society, they often reach beyond the area that is physically experiencing drought. 

Realistically quantifying drought, then, is prudent to both scientists and policy makers. Results 

presented in this paper suggest that it may be useful to calculate drought at finer resolutions in 

order to better capture a more detailed picture of moisture availability, since a significant amount 

of information tends to be lost between regional and finer-resolution drought indices. 
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CHAPTER 3 

 

 

 

EVIDENCE OF SOLAR FORCING OF HYDROCLIMATE CYCLES IN THE COLUMBIA 

RIVER BASIN FOR THE PAST 2000 YEARS 

 

 

3.1. Introduction 

 

Recent droughts in western North America are among the most severe on record [Cook et al., 

2004; Seager, 2007; Luebehusen, 2014]. Drought increases the competition for limited water 

resources, as population grows, and agriculture, industry, and energy use expand. The 

competition for water resources provides the motivation to improve our understanding of the 

long-term moisture balance, so that we can better plan for future drought and pluvial periods. 

Similarly, the vulnerability of regions to the adverse effects of water scarcity due to climate 

change precipitates the urgent need to better understand causes of variability in the hydrological 

cycle [Intergovernmental Panel on Climate Change, 2007], particularly drought. 

 

It has become apparent that drought over North America is not random, but is heavily influenced 

by cyclical climate patterns. The ocean forcing phenomenon that has attracted most attention has 

been the El Niño Southern Oscillation (ENSO). El Niño conditions typically occur every three to 

seven years [Cane, 1986], and, while ENSO effects on local to regional climate can be severe, 

the impacts are typically transient, varying from several months to slightly more than a year. 

Low-frequency climate variability, however, has shown remarkable persistence relative to that 

attributed to ENSO events. Recent studies suggest that ENSO teleconnections with North 

American climate are strongly dependent on the phase of the Pacific Decadal Oscillation (PDO) 
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[Mantua et al., 1997], such that the conventional ENSO patterns are only valid during years in 

which ENSO and PDO extremes are in phase with each other [Dettinger et al., 1998; Gershunov 

and Barnett, 1999; Gershunov et al., 1999; McCabe and Dettinger, 1999; Wise, 2010; Brown, 

2011]. During moderate to strong positive (warm) phases of the PDO and ENSO (El Niño), the 

Pacific Northwest region is relatively dry. During moderate to strong negative (cool) phases of 

the PDO and ENSO (La Niña), more storms track across the Pacific Northwest, bringing above 

average amounts of precipitation to the region. Changes between these two phases of the PDO 

have occurred at bi-decadal (23-28 year) and pentadecadal (50-70 year) timescales over the past 

century [MacDonald and Case, 2005; Shen et al., 2006]. Hidalgo [2004], McCabe et al. [2010], 

and Huang et al. [2005] have contended that both Pacific and Atlantic decadal variability 

contribute substantially to the low-frequency modulation of wetness and dryness over North 

America. 

 

While ENSO and, to a lesser degree, Pacific and Atlantic multi-decadal oscillations are well 

represented in observational records, longer period centennial scale climate cycles are not. Since 

the early Holocene, summer insolation has gradually decreased from values greater than present, 

while winter insolation has gradually increased from values less than present [Anderson, 2012]. 

Climate model studies suggest that these changes may have influenced the variability and 

intensity of ENSO [Bartlein et al., 1998; Kutzbach et al., 1998; Harrison et al., 2003; Cane, 

2005; Diffenbaugh et al., 2006]. Several well-known late Holocene climate transitions are also 

known to have occurred prior to the transition from the Little Ice Age during the late 19th and 

early 20th centuries: the transition into the Medieval Climate Anomaly (~AD 800) during the late 
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Holocene glaciation that followed peak summer solar insolation, and the transition into the Little 

Ice Age from the Medieval Climate Anomaly (~AD 1300). 

 

The mechanisms responsible for these cycles and transitions and their impacts on climate and 

hydrological systems need to be determined in order to improve our understanding of longer-

term climate change. Variability in radiation emitted from the Sun has been suggested as a 

possible driver of lower frequency climate cycles [Horiuchi et al., 2008; Knudsen et al., 2009]. 

Peaks in 10Be and 14C cosmogenic isotope records at ≈88 and 208-212 years correspond to the 

Gleissberg and Suess solar cycles [Knudsen et al., 2009]. The change in solar irradiance of 

~0.1%, however, is often regarded as too small to affect climate [Rind et al., 2008]. Yet 

amplification mechanisms by which slight changes in solar irradiance can affect climate have 

been proposed [Haigh, 2009]. 

 

Most knowledge of pre-instrumental-period drought comes from annually dated tree-ring records 

that allow precise regional comparison and data synthesis [Cook et al., 1999; Cook et al., 2004; 

Knapp et al., 2004; Gedalof et al., 2005]. Here, an approximately 2000 year drought dataset, 

reconstructed from paleoclimate records, is examined for longer period climate cycles and 

changes in event periodicity. The drought record is further analyzed in conjunction with a 

reconstructed total solar irradiance dataset that covers much of the Holocene. The aim here is to 

assess solar insolation as a forcing mechanism for longer periods of wetness and dryness over the 

northwestern United States. Documenting decadal- to century-scale aridity patterns over several 

millennia will improve knowledge of drought frequency and duration, and improve our 
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understanding of how these characteristics respond to long-term changes in oceanic- and solar-

forcing. 

 

3.2. Data 

 

3.2.1. Study Area  

 

This study includes 25 of the 286 grid points contained in the summer drought reconstruction 

dataset of Cook et al. [2008] (Figure 2.1). This area encompasses all of the U. S. states Idaho, 

Oregon, and Washington, and parts of California, Montana, Nevada, Utah, and Wyoming. Each 

grid box is 2.5° latitude by 2.5° longitude. The U.S. grid points are based on inverse distance 

weighted single-station Palmer Drought Severity Index (PDSI) records estimated from the U.S. 

historical climatology network of homogeneous monthly temperature and precipitation data 

[Cook et al., 1999]. The PDSI data cover the period 1900-1990 at all locations. 

 

3.2.2. Drought Data 

 

The time period of coverage varies over the area. For grid boxes 25, 32, 33, 43, 44, and 55, the 

summer drought reconstructions date from AD 530 to AD 2006. For grid boxes 68, 83, and 99, 

the summer drought reconstructions date from AD 359 to AD 2006. For grid boxes 34, 35, 45, 

46, 56, 57, 58, 69, 70, 71, 84, 85, 86, 100, 101, and 102, the summer drought reconstructions 

date from AD 0 to AD 2006. The drought metric used is the summer average (June-July-August) 

PDSI – the PDSI is a widely used tool for assessing water balance [Cook et al., 2004]. 



59 

 

 
Notes: The black outline encloses the grid points used in this analysis. This figure has been adapted from 

http://www.ncdc.noaa.gov/paleo/image/pdsi2004-gridpoint-map.jpg, accessed February 7, 2014. 
Figure 3.1 | PDSI Grid for Cook et al. [2008] Drought Reconstructions in Canada, United States, 

and Mexico. 

 

The method used to reconstruct the PDSI grid from tree rings is the point-by-point regression 

(PPR) method [Cook et al., 1999], which has been proven to be a robust method for 

reconstructing past drought [Zhang et al., 2004]. The tree-ring chronology network used for 

PDSI reconstruction over North America is composed of 835 annually-resolved records. These 

chronologies cover the past 245 to 2,000 years, and all end on or after AD 1979. It should be 

noted that the large range of ages results in a declining number of tree-ring chronologies being 

available as candidate predictors for PDSI reconstruction as one goes back in time. For 

http://www.ncdc.noaa.gov/paleo/image/pdsi2004-gridpoint-map.jpg
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information regarding the impact of this decline on the fidelity of the resulting grid point 

reconstructions, the reader is referred to the supporting online material of Cook et al. [2004]. For 

a detailed explanation of how the PDSI reconstructions were updated to AD 2006, the reader is 

again referred to the supporting online material of Cook et al. [2004] and Cook et al. [2008]. 

 

3.2.3. Solar Data 

 

A reconstructed record of total solar irradiance [Steinhilber et al., 2009a] was also used in this 

study. Total solar irradiance is based on a composite described in Steinhilber et al. [2008] using 

cosmogenic radionuclide 10Be data from the Greenland Ice core Project (GRIP) [Vonmoos et al., 

2006] and South Pole [McCracken et al., 2004] ice cores, and neutron monitor count rates 

[Usoskin et al., 2005] from the worldwide neutron monitor network. The data, then, represent 

both hemispheres and are measured in different archives. Atmospheric mixing, transport, and 

deposition affect the 10Be concentration of an ice sample; to some extent these “system effects” 

can be corrected. The reader is referred to Steinhilber et al. [2012] for further details. The 

reconstructed total solar irradiance data are 40-year running means and are re-sampled to a 5-yr 

time resolution. While the dataset dates back approximately 9300 years, only the record 

coincident with the reconstructed PDSI data is used in this analysis. 
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3.3. Methods 

 

3.3.1. Determining Periodic Oscillations  

 

Following the method outlined in Torrence and Compo [1998], wavelet power spectra of the 

detrended reconstructed PDSI data were derived for the 25 grid boxes under investigation. The 

wavelet transform can be used to analyze time series that contain non-stationary power at many 

different frequencies [Daubechies, 1990]. The wavelet power spectra were computed by 

convolving each of the 25 PDSI time series with a scaled and translated version of a mother 

wavelet. Given equal time spacing 𝛿𝑡 in a time series 𝑋𝑛 (𝑛 = 0,1, … , 𝑁 − 1), a wavelet 

function, 𝜓0(𝜂) (𝜂 is a non-dimensional time parameter), must have zero mean and be localized 

in both time and frequency space [Farge, 1992]. A Morlet wavelet was chosen as the mother 

wavelet, due to its extensive applications in studies involving hydroclimatic time series analysis. 

Also, Morlet wavelets provide adequate time and superior frequency resolution compared to 

other wavelet types [Labat, 2005; Soniat et al., 2006]. 

 

Following Torrence and Compo [1998], the Morlet wavelet is characterized by a Gaussian 

modulated plane wave: 

 

 
𝜓0(𝜂) = 𝜋−1 4⁄ 𝑒𝑖𝜔0𝜂𝑒−𝜂2 2⁄ , 

(3.1) 

where 𝜔0is the non-dimensional angular frequency, here taken to be six to satisfy the 

admissibility condition [Farge, 1992]. 
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Torrence and Compo [1998] define the continuous wavelet transform of a discrete sequence 𝑋𝑛 

as the convolution of 𝑋𝑛 with a scaled and translated version of 𝜓0(𝑛): 

 

 
𝑊𝑛(𝑠) = ∑ 𝑋𝑛′

𝑁−1

𝑛′=0

𝜓 ∗ [
(𝑛′ − 𝑛)𝛿𝑡

𝑠
], 

(3.2) 

 

where 𝑊𝑛(𝑠) are the wavelet transform coefficients, 𝜓 is the normalized wavelet, 𝑠 is the 

wavelet scale, 𝑛 is the localized time index, 𝑛′ is the translated time index, and (∗) indicates the 

complex conjugate. Although it is possible to compute the wavelet transform using (2), it is 

considerably faster to do the calculations in Fourier space. The reader is referred to Torrence and 

Compo [1998] for the mathematical representations of the Fourier space calculations. 

 

Because time series are finite in length, errors will occur at the beginning and end of the wavelet 

power spectrum. The time series in this study are padded with sufficient zeroes to bring the total 

length, 𝑁, of the time series up to the next-higher power of two, which both limits the edge 

effects and speeds up the Fourier transform [Torrence and Compo, 1998]. Padding with zeroes, 

however, introduces discontinuities at the endpoints and, at larger scales, decreases the amplitude 

near the edges [Torrence and Compo, 1998]. In order to delineate the region of the wavelet 

spectrum in which edge effects become important, the cone of influence (COI) is also calculated 

for the 25 PDSI time series. 

 

Significance levels are determined for each of the 25 wavelet spectra using Monte Carlo 

methods, in order to isolate significant periods. It is assumed that different realizations of the 
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geophysical process – in this study, drought – will be randomly distributed about some expected 

background, and the actual spectrum can be compared against this random distribution. For this 

analysis, red noise (increasing power with decreasing frequency) is chosen as the appropriate 

background spectrum, and 95% is chosen as the confidence level. 

 

Following Torrence and Compo [1998], the time-average wavelet spectrum over all the local 

wavelet spectra gives the global wavelet spectrum 

 

 
𝑊̅2(𝑠) =

1

𝑁
∑|𝑊𝑛(𝑠)|2

𝑁−1

𝑛=0

. 
(3.3) 

 

It has been shown that the global wavelet spectrum provides an unbiased and consistent 

estimation of the true power spectrum of a time series [Percival, 1995]. It also has been 

suggested that the global wavelet spectrum can provide a useful measure of the background 

spectrum, against which peaks in the local wavelet spectra could be tested [Kestin et al., 1998]. 

Once the 25 wavelet power spectra were calculated, the global wavelet spectra were computed. 

Scales with large global wavelet spectrum values were considered to contribute more spectral 

energy. While scales with small global wavelet spectrum values may contribute less spectral 

energy globally, these scales may still contribute large spectral energy locally [Torrence and 

Compo, 1998]. The global wavelet spectrum values, therefore, were used in concert with the 

continuous wavelet spectra to identify scales within the reconstructed PDSI time series with high 

potential of periodic signals. All wavelet spectra and associated cones of influence, confidence 
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levels, and global wavelet spectra were computed using the software provided by Torrence and 

Compo [1998]2. 

 

3.3.2. Linking Periodic Oscillations 

 

It is often desirable to examine together two time series that may be expected to be linked in 

some way. It is of specific interest to consider whether regions in time-frequency space with 

large common power have a consistent phase relationship, which may suggest a causal 

relationship between the two time series [Grinsted et al., 2004]. The two time series used in this 

analysis are the reconstructed PDSI and total solar irradiance data. Because the total solar 

irradiance record is a re-sampled time series from 40-year running means, 40-year running 

means were calculated for each of the 25 reconstructed PDSI time series, and the PDSI running 

means were then re-sampled at the same 5-yr time resolution.  

 

The cross wavelet transform was constructed from the two continuous wavelet transforms using 

the software provided by Grinsted et al. [2004]3, which exposes their common power and 

relative phase in time-frequency space. The cross wavelet transform of two time series 𝑥𝑛 and 𝑦𝑛 

is defined as 𝑊𝑋𝑌 = 𝑊𝑋𝑊𝑌∗, where ∗ denotes complex conjugation; the cross wavelet power 

can be further defined as |𝑊𝑋𝑌|, where the complex argument arg(𝑊𝑥𝑦) can be interpreted as 

the local relative phase between 𝑥𝑛 and 𝑦𝑛 in time-frequency space [Grinsted et al., 2004]. The 

                                                 
2 A MATLAB software package by Torrence and Compo [1998] for performing the wavelet transform can be found 

at URL: http://www.paos.colorado.edu/research/wavelets/ (accessed February 7, 2014).  

3 A MATLAB software package by Grinsted et al. [2004] for performing the cross wavelet transform and wavelet 

coherence can be found at URL: http://www.pol.ac.uk/home/research/waveletcoherence/ (accessed February 7, 

2014). 

http://www.paos.colorado.edu/research/wavelets/
http://www.pol.ac.uk/home/research/waveletcoherence/
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theoretical distribution of the cross wavelet power of two time series with background power 

spectra 𝑃𝑘
𝑋 and 𝑃𝑘

𝑌 is given in Torrence and Compo [1998] and Grinsted et al. [2004] as  

 

 
𝐷 (

|𝑊𝑛
𝑋(𝑠)𝑊𝑛

𝑌∗(𝑠)|

𝜎𝑋𝜎𝑌
< 𝑝) =

𝑍𝑣(𝑝)

𝑣
√𝑃𝑘

𝑋𝑃𝑘
𝑌 , 

(3.4) 

 

where 𝑍𝑣(𝑝) is the confidence level associated with the probability 𝑝 for a probability density 

function defined by the square root of the product of two 𝜒2 distributions. In this study the 95% 

confidence level is used.  

 

While the cross wavelet transform exposes areas with high common power, it is also valuable to 

measure the coherence of the cross wavelet transform in time frequency space. The wavelet 

coherence acts as a localized correlation coefficient between the two time series in time 

frequency space. Grinsted et al. [2004], following Torrence and Webster [1999], define the 

wavelet coherence of two time series, 𝑥𝑛 and 𝑦𝑛, as 

 

 𝑅𝑛
2(𝑠) =

|𝑆(𝑠−1𝑊𝑛
𝑋𝑌(𝑠))|

2

𝑆(𝑠−1|𝑊𝑛
𝑋(𝑠)|2) ∙ 𝑆(𝑠−1|𝑊𝑛

𝑌(𝑠)|2)
 , (3.5) 

 

where 𝑆 is a smoothing operator with a footprint similar to that of the mother wavelet used. 

Grinsted et al. [2004] define the smoothing operator 𝑆 as 

 

 
𝑆(𝑊) = 𝑆𝑠𝑐𝑎𝑙𝑒(𝑆𝑡𝑖𝑚𝑒(𝑊𝑛(𝑠))), 

(3.6) 
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where 𝑆𝑠𝑐𝑎𝑙𝑒 denotes smoothing along the wavelet scale axis and 𝑆𝑡𝑖𝑚𝑒 denotes smoothing along 

the wavelet time axis. For the Morlet wavelet Grinsted et al. [2004], following Torrence and 

Webster [1999], give the smoothing operator as 

 

 
𝑆𝑡𝑖𝑚𝑒(𝑊)|𝑠 = (𝑊𝑛(𝑠) ∗ 𝑐1

−𝑡2 2𝑠2⁄
)|

𝑠
, 

(3.7) 

 
𝑆𝑡𝑖𝑚𝑒(𝑊)|𝑠 = (𝑊𝑛(𝑠) ∗ 𝑐2 ∏(0.6 𝑠))|

𝑛
, 

(3.8) 

 

 

where 𝑐1 and 𝑐2 are normalized constants and ∏ is the rectangle function. The factor 0.6 is the 

empirically derived scale decorrelation length for the Morlet wavelet [Torrence and Compo, 

1998]. The statistical significance level of the wavelet coherence is estimated using Monte Carlo 

methods [Grinsted et al., 2004]. The wavelet coherence was calculated using the software 

provided by Grinsted et al. [2004]4. 

 

3.4.  Results 

 

Several peaks are evident in the reconstructed PDSI records. A broad peak at 6-8 years emerges 

in the continuous wavelet transform plots and global wavelet spectra (Figure 3.2) for much of the 

western half of the study area. This period range corresponds to ENSO. This frequency band is 

particularly noticeable around AD 600 (Figures 3.2 and 3.3) and again between the late 16th and 

17th centuries (Figures 3.2-3.4). The continuous wavelet transform plots and global wavelet 

                                                 
4 A MATLAB software package by Grinsted et al. [2004] for performing the cross wavelet transform and wavelet  

coherence can be found at URL: http://www.pol.ac.uk/home/research/waveletcoherence/ (accessed February 7, 

2014).  

http://www.pol.ac.uk/home/research/waveletcoherence/
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spectra for a small number of the extreme northern and northeastern grid boxes indicate a peak at 

40-48 years (Figure 3.3). This period range is somewhat similar to shorter periods of low-

frequency Pacific and Atlantic Ocean variation. A peak at 96-128 years appears in the 

continuous wavelet transform plots and global wavelet spectra (Figures 3.2-3.4) for most all of 

the study area grid boxes. This period range partially characterizes North Pacific variability, and 

it also corresponds to that of the Gleissburg solar cycle. A peak at 224-256 years emerges 

(Figure 3.4) for several of the grid boxes with a 2006-year record; however, locally, these 

periods emerge both inside and outside the COI. This period range is similar to that of the Suess 

solar cycle. 

 

From the cross wavelet transforms of the re-sampled PDSI and reconstructed total solar 

irradiance, large sections of common power exist on wavelengths varying from ~64-256 years 

(Figures 3.5 and 3.6). There is significant common power in the ~192-256 year band from AD 

300 to AD 800 and from AD 1150 to AD 1650 (Figures 3.5 and 3.6). There is also significant 

common power in the ~96-160 year band from AD 900 to AD 1400 (Figures 3.5 and 3.6). For 

there to be a simple cause and effect relationship between the two phenomena, it is expected that 

oscillations are phase locked. The cross wavelet transforms show that PDSI and total solar 

irradiance are in-phase across much of the low-frequency sectors with significant common 

power. At low-frequency scales outside the areas with significant power the phase relationship is 

also predominately in-phase.  

 

Compared with the cross wavelet transforms, a smaller section of the squared wavelet coherence 

stands out as being significant, and most of these areas show an in-phase relationship between 
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the re-sampled PDSI and reconstructed total solar irradiance (Figures 3.7 and 3.8). Oscillations 

in total solar irradiance are manifested in the PDSI on wavelengths varying from ~64-256 years. 

Since both time series are re-sampled from 40-year running means, the low-frequency scales 

from ~96-256 are of more interest here. There is significant coherence in the ~128-256 year band 

from AD 750 to AD 1500 (Figures 3.7 and 3.8). 

 

Notes: The black dotted outline on the continuous wavelet spectrum represents the COI. The 5% significance level 

against red noise is shown as a thin red contour on the continuous wavelet spectrum. The dashed red line on the 

global wavelet spectrum denotes the 95% confidence level.  

Figure 3.2 | Detrended reconstructed PDSI time series (top), continuous wavelet spectrum 

(bottom), and global wavelet spectrum (right) for grid number 32 of the Cook et al. [2008] 

dataset.  
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Notes: The black dotted outline on the continuous wavelet spectrum represents the COI. The 5% significance level 

against red noise is shown as a thin red contour on the continuous wavelet spectrum. The dashed red line on the 

global wavelet spectrum denotes the 95% confidence level.  

Figure 3.3 | Detrended reconstructed PDSI time series (top), continuous wavelet spectrum 

(bottom), and global wavelet spectrum (right) for grid number 68 of the Cook et al. [2008] 

dataset. 
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Notes: The black dotted outline on the continuous wavelet spectrum represents the COI. The 5% significance level 

against red noise is shown as a thin red contour on the continuous wavelet spectrum. The dashed red line on the 

global wavelet spectrum denotes the 95% confidence level.   

Figure 3.4 | Detrended reconstructed PDSI time series (top), continuous wavelet spectrum 

(bottom), and global wavelet spectrum (right) for grid number 85 of the Cook et al. [2008] 

dataset. 
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Notes: The thin black represents the COI. The 5% significance level against red noise is shown as a thick contour. 

The relative phase relationship is shown as arrows (with in-phase pointing right and anti-phase pointing left). 

Figure 3.5 | Cross wavelet transform of the re-sampled PDSI time series for grid  number 85 of 

the Cook et al. [2008] dataset and the reconstructed total solar irradiance record of Steinhilber et 

al. [2009]. 
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Notes: The thin black represents the COI. The 5% significance level against red noise is shown as a thick contour. 

The relative phase relationship is shown as arrows (with in-phase pointing right and anti-phase pointing left). 
Figure 3.6 | Cross wavelet transform of the re-sampled PDSI time series for grid  number 101 of 

the Cook et al. [2008] dataset and the reconstructed total solar irradiance record of Steinhilber et 

al. [2009]. 
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Notes: The thin black represents the COI. The 5% significance level against red noise is shown as a thick contour. 
Figure 3.7 | Squared wavelet coherence between the re-sampled PDSI time series for grid 

number 85 of the Cook et al. [2008] dataset and the reconstructed total solar irradiance record of 

Steinhilber et al. [2009]. 
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Notes: The thin black represents the COI. The 5% significance level against red noise is shown as a thick contour. 

Figure 3.8 | Squared wavelet coherence between the re-sampled PDSI time series for grid  

number 101 of the Cook et al. [2008] dataset and the reconstructed total solar irradiance record 

of Steinhilber et al. [2009]. 

 

3.5. Discussion 

 

Results demonstrate that low-frequency drought and pluvial cycles, both at multidecadal and 

centennial timescales, are persistent features of regional climate in the Pacific Northwest. Nelson 

et al. [2011], using a 6000-year lake sediment record from the Pacific Northwest, identify a 

strong periodicity in the 16-64 year band during the middle Holocene that gradually weakened 

around BC 2050. Results here also confirm a weakened periodicity in the 16-64 year band in the 
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last 2000 years. While the centennial (72-128 year) band appears insignificant throughout much 

of the 6000-year lake sediment record of Nelson et al., [2011], this component also exhibits the 

greatest average power in the last millennium. This same centennial band, however, appears 

globally significant in the PDSI reconstructions throughout the last 2000 years for much of the 

Pacific Northwest. A ~220-year period is also evident for many of the longer (i.e., 2000-year) 

Pacific Northwest drought records. Similarly, a 2100-year salinity and aridity proxy record from 

a lake in the northern Great Plains, shows statistically significant periodicities of ~400, 200, 130, 

and 100 years [Yu and Ito, 1999]. 

 

Nelson et al. [2011] have shown that the average duration of multi-decadal wet and dry cycles in 

the Pacific Northwest has increased in the last millennium. This transition to lower frequency 

and longer duration wet and dry cycles is coincident with increasing summer drought magnitudes 

between AD 900 and AD 1300 [Cook et al., 2004]; although, evidence from lake sediments in 

both the Pacific Northwest [Steinman et al., 2012] and the northern Colorado Rocky Mountains 

[Anderson et al., 2011] indicate wetter winters during this period. While it is possible that the 

lake sediment oxygen isotope data and the tree-ring based PDSI data demonstrate individual 

seasonal responses to climate, the relatively limited number of older tree-ring chronologies, 

combined with the uncertainty in low frequency variance derived from tree ring data analysis 

[Jones et al., 2009] could also contribute to the differences between the two records [Steinman et 

al., 2012].  

 

Research suggests the transitions to lower frequency drought and pluvial cycles were driven by 

changes in the tropical and extratropical Pacific [Nelson et al., 2011] and, consequently, Atlantic 
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oceans [Trouet et al., 2009]. Other analyses and modeling by Mann et al. [2005] suggest that 

both solar and volcanic forcing may have precipitated these transitions – e.g., increased solar 

output and a reduction in volcanic activity could have both initiated and maintained the medieval 

warming. Results here support the idea that low frequency multidecadal wet and dry cycles are 

strongly linked to solar insolation. The predominately phase-locked oscillations in reconstructed 

total solar irradiance and tree-ring reconstructed PDSI suggest a causal relationship between the 

two phenomena at centennial timescales. The in-phase relationship between solar insolation and 

PDSI found in this study may appear counterintuitive at first glance – increased insolation would 

seem to produce drier conditions and, consequently, negative PDSI values, rather than positive 

PDSI values. This in-phase relationship, however, may be explained through connections 

between solar insolation, tropical ocean response, and the Pacific Northwest hydroclimate. There 

is a tendency toward La Niña conditions in response to increased solar forcing on longer 

timescales; similarly, there is a tendency toward El Niño conditions in response to decreased 

solar forcing [Mann et al., 2005]. La Niña conditions (and increased solar radiative forcing) 

generally coincide with wetter conditions (positive PDSI values) in the Pacific Northwest, while 

El Niño conditions (and decreased solar radiative forcing) generally coincide with drier 

conditions (negative PDSI values) in the Pacific Northwest. Yu and Ito [1999] also found solar 

minima to be in phase with drought periods in the northern Great Plains. It should be noted that 

reconstructed summer PDSI values are used in this study, and climate responds to solar 

variability with distinct seasonality – due to the increased latitudinal gradient of solar energy 

input during the winter, dynamical processes are larger in winter than in summer [Lean, 2010]. 

Therefore, wavelet correlation values may be expected to be higher between winter PDSI and 

total solar irradiance. 
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Drought is an established facet of regional climate for most parts of the world; in western North 

America, drought has become a familiar issue. It is clear that drought is cyclical in nature, and 

dry and wet periods have been linked to both oceanic and solar forcing. ENSO is the dominant 

control on interannual climate variability worldwide, and it has a well-understood impact on 

western North American climate. Lower-frequency modes of variability and their connections to 

ENSO are less well-understood, but their impacts – due to the long periods associated with these 

events – are potentially much more disruptive. Improved understanding of the long-term 

behavior of drought and pluvial cycles and how the hydroclimate responds to large and gradual 

forcing mechanisms, such as solar insolation, are among the most important issues in reducing 

uncertainty in climate change projections. The drought data from the Pacific Northwest 

document changing drought cycles in the region over the last 2000 years that were likely driven 

by solar insolation and the associated evolution of ENSO, thus confirming the long-term 

sensitivity of the region to solar activity. Therefore, long-term changes in solar insolation and its 

associated effects on the ENSO system are likely to have a large impact on drought, water 

availability, people and economies in the region.
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CHAPTER 4 

 

 

 

THE RELATIVE INFLUENCE OF LAND USE CHANGE AND CLIMATE FLUCTUATIONS 

ON LANDSLIDE ACTIVITY AT LOCKE ISLAND 

 

 

4.1. Introduction 

 

Landslides are among the most common and powerful natural hazards, reshaping large swaths of 

landscapes across the world. Almost 4 million km2 of land and 300 million people across the 

globe are exposed to landslides [Dilley et al., 2005] (Figure 4.1). Each year landslides cause 

thousands of deaths and injuries (Figure 4.2) and billions of dollars in economic losses, and the 

occurrence of landslide disasters certainly has the potential to increase. This is predominately a 

result of the growing exposure of people and infrastructure to landslides, spurred by land use 

change and urbanization. Recent studies directed toward understanding the effect of human-

induced land use changes on slope stability have shown that, in populated areas, human impacts 

on the environment contribute significantly to the initiation and reactivation of landslides [e.g., 

Bruschi et al., 2013; Meusburger and Alewell, 2008; Vanacker et al., 2003]. Moreover, climate 

change – both natural and anthropogenic – may alter the intensity, frequency, and location of 

landslide hazard areas through altering precipitation patterns. It is well established that intense or 

prolonged rainfall can trigger slope movements [Caine, 1980; Cannon and Ellen, 1985; Crozier, 

1986], and more frequent high-intensity rainfall events and higher winter precipitations may 

increase the risk for landslides [Parriaux, 2011]. Increased recharge – whether from intense or 

prolonged rainfall or land use change – and subsequent groundwater flow are some of the most 

important landslide triggering factors [Johnson and Sitar, 1990; van Asch et al., 1999].   
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Notes: The data used to create this map comes from the Global Landslide Catalog, which is currently available at: 

http://ojo-streamer.herokuapp.com/ (accessed July 8, 2015). This image was created by NASA’s Goddard Space 

Flight Center and is available for download at: http://svs.gsfc.nasa.gov/goto?11854 (accessed July 8, 2015).  
Figure 4.1 | A map of the locations of 5,741 rainfall-triggered landslides from 2007-2013. 

 

Increasing pore water pressures decreases the soil cohesion in the subsurface and shear strength 

of the soil, which may cause the driving forces to overcome the resisting forces on a hillslope 

and activate a landslide [Iverson, 2000; Wieczorek, 1996]. 

 

Landslides are often secondary natural hazards, and the difference between landslide trigger and 

primary causes or pre-dispositions is important here. A landslide trigger is a sudden event 

[Wieczorek, 1996] that changes the force equilibrium in a slope and leads to failure, and it can be 

natural or anthropogenic. Landslides, however, do not always occur instantaneously; large deep-

seated landslides can also develop slowly over a long period of time. Pre-dispositions are 

geological, hydrogeological, hydrological, chemical, mechanical, biological, geomorphological 

characteristics of a slope that are crucial for stability. Most pre-disposing factors do not suddenly 

http://ojo-streamer.herokuapp.com/
http://svs.gsfc.nasa.gov/goto?11854
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Notes: The data used to create this map comes from the Global Landslide Catalog, which is currently available at 

http://ojo-streamer.herokuapp.com/ (accessed July 8, 2015). This image was created by NASA’s Goddard Space 

Flight Center and is available for download at http://svs.gsfc.nasa.gov/goto?11854 (accessed July 8, 2015). 
Figure 4.2 | A map of the distribution and number of fatalities associated with 5,741 rainfall-

triggered landslides from 2007-2013. 

 

change, but they may change over a longer period of time. Long-term predispositions include 

slope angle, slope aspect, slope shape (i.e., convex or concave topography), altitude, vegetation, 

climate, and rock and soil type (i.e., lithology, tectonic activity, and structure). Other pre-

dispositions, especially those related to hydrology, can change more rapidly; examples include 

permeability and soil saturation (as related to snowmelt, long-term precipitation, and 

evapotranspiration). The term “landslide cause” is often used for long-term processes leading to 

slope instabilities [Sowers, 1979], and Cruden and Varnes [1996] distinguish between 

geological, morphological, physical, and human causes. It is often impossible, however, to 

isolate a single cause of slope failure [Duncan and Wright, 2005]. Various processes operate 

simultaneously, and it is the interaction between several factors that leads to slope failure. 

http://ojo-streamer.herokuapp.com/
http://svs.gsfc.nasa.gov/goto?11854
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Nevertheless, it is important to evaluate the relative importance of potential causes and to 

consider the potential for changes with time [Duncan and Wright, 2005]. 

 

Changes in climate and land use pose a risk to stability of slopes along the White Bluffs of the 

Columbia River in south-central Washington State, but the direction and relative magnitude of 

these impacts are still a point of debate for local Native American tribes and government 

agencies. The Locke Island landslide complex along the eastern channel of the Columbia River 

and opposite the Hanford Nuclear Reservation is of particular interest to all parties. The erosion 

of Locke Island, which is under the United Sates Department of Energy stewardship, has been 

attributed to the landslide encroachment into the river channel and subsequent flow stricture 

[Bjornstad, 2006]. This erosion has removed substantial volumes of sediment from the island, 

which contains cultural resources. The material is re-distributed downstream and interferes with 

salmon spawning habitat along the Columbia River [Mueller and Geist, 1999].  

 

Modern landsliding in the vicinity of Locke Island began in the late 1970s and continued into the 

early 1980s [Chugh and Schuster, 2003]. Additionally, there is evidence of younger landslides 

along the White Bluffs that occurred both in the last several hundred years and in the last 11,000 

years [Triangle Associates, Inc., 2003]. Much of this modern landsliding activity has been 

attributed to irrigation water delivered to unlined wastewater ponds and canals behind the bluffs 

[Nickens et al., 1998; Schuster et al., 1987; Triangle Associates, Inc., 2003]. Longer-term 

climate changes, however, can have a significant impact on slope stability, as may be indicated 

by the younger and prehistoric landslides along the bluffs [Triangle Associates, Inc., 2003]. 
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Even though there is no doubt that land use has a significant effect on the likelihood of landslides 

[Glade, 2003; Petley et al., 2007; Tasser et al., 2003], the influence of irrigation from the 

conversion to farmland has received little attention in the literature. Overall, it is not clear if this 

particular change in land use has a significant influence on the occurrence of landslides, or its 

relative importance compared to natural factors. For land managers and policymakers the 

assessment of the impact of human-induced changes is necessary in order to take preventative 

measures. Unfortunately, the effect of anthropogenic changes on landslide activity is difficult to 

quantify, and few studies exist that relate actual impacts of human-induced changes with trends 

in landsliding [Meusurger and Alewell, 2008].  

 

The primary method of studying trends in landslide occurrence involves application of 

physically-based slope stability models, where parameters are adjusted to simulate former 

climate and land use conditions [Claessens et al., 2006; Collison et al., 2000; Schmidt and 

Dikau, 2004, Vanacker et al., 2003]. This study uses a variation on this approach due to the lack 

of most of the physical parameters related to the modeling of slope stability. Water influences 

slope stability in many ways (e.g., decreasing suction, positive pore water pressure, and seepage 

forces all reduce the shear strength of soil), and its effects are often implicated as causes of 

failure. Therefore, we use a numerical modeling framework to examine key features of 

hydrological conditions. The goals here are to evaluate the relative importance of land use 

change and climate change on landslide activity along the White Bluffs at Locke Island and to 

determine possible causes for the temporal variation. Of particular relevance to understanding 

the hydrological context for the initial failure and the longer-term stability of the Locke Island 

landslide are the subsurface recharge and flow conditions and the groundwater-river exchanges 

before and during the period of landslide movement to its current configuration. Given the 
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compelling connections between the initial failure of the landslide and irrigation water delivered 

to unlined wastewater ponds and canals behind the bluffs and the continued seepage from the 

bluffs, subsurface recharge is of particular interest in this modeling effort. Therefore, the 

groundwater response to recharge from the wastewater ponds and precipitation is examined, both 

separately and in conjunction with changes in river stage. Interpretations of modeling results are 

aimed at providing a physically-based understanding of the processes contributing to the initial 

failure and the longer-term stability of the landslide. 

 

4.2. Methods 

 

4.2.1. Elements of the Work 

 

The size of the Columbia River and the need to understand conditions over large distances 

require the use of a numerical modeling framework to describe key features of the hydrological 

conditions. A two-dimensional variably-saturated flow finite element model (FEM) is used to 

describe the subsurface recharge, flow conditions, and the groundwater-river exchanges along 

the White Bluffs and landslide. Geologic cross-sections [Bennett et al., 2002] of the recent (circa 

2002) bluff-landslide configuration aided in the development of the conceptual model. Existing 

discharge records, groundwater level records, groundwater recharge studies, and geologic logs 

from drill holes [Bennett et al., 2002] on the landslide and White Bluffs served as the basis for 

the selection of model parameters.  
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4.2.2. Site Description 

 

Locke Island is located in the Hanford Reach of the Columbia River, in south-central 

Washington State, approximately 40 km (25 mi) upstream of Richland, Washington. The 

Hanford Reach of the River, an approximately 50 km section situated between Priest Rapids 

Dam and the backwater influence of Lake Wallula near the City of Richland, is considered the 

only “free-flowing” portion of the river (outside of the estuary) where water-surface slopes are 

not influenced by a downstream control structure. The Columbia River at Locke Island is 

bordered on its western bank by a low relief area of the Hanford Nuclear Reservation, and it is 

bordered on its eastern bank by the steep White Bluffs. Locke Island is roughly located in the 

center of the Columbia River; it is approximately 3.5 km in length and is generally about 375 m 

wide. While the western channel of the River is relatively uniform over the length of Locke 

Island, the eastern channel varies significantly, due to the large Locke Island landslide complex, 

which originated from the White Bluffs. 

 

4.2.2.1. Dimensionality of Landslide Activity 

 

There is evidence that landslides occurred along the White Bluffs in prehistoric times, within the 

last 11,000 years or so [Triangle Associates, Inc., 2003]. There is also evidence of younger 

landslides that were probably active in the last several hundred years [Triangle Associates, Inc., 

2003]. Modern, active landslide activity along the Bluffs, however, began in the late 1960s. The 

total area of landsliding in the vicinity of Locke Island is about 68 ha; 59 ha of this area consist 

of landslides less than forty years old [Schuster et al., 1989]. The Locke Island landslide can be 
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described as a series of landslides with fused boundaries [Schuster et al., 1987, 1989], where the 

individual landslides occurred from the late 1970s to early 1980s [Chugh and Schuster, 2003]. 

The total volume of these modern landslides is estimated at 12 million m3 [Schuster et al., 1989]. 

In the Locke Island area, irrigation wastewater ponds were established in large local depressions 

behind the bluffs, within 2 km of the river, to enhance habitat for wildlife. The water supply to 

these ponds was terminated when landslide activity on the bluff face became obvious in the early 

1980s. In an attempt to stop slumping, the ponds were completely drained in the middle of the 

following decade. 

 

4.2.2.2. Climate and Land Use Characteristics 

 

The climate of south-central Washington is arid; average annual precipitation along the White 

Bluffs area is about 180 mm (7 in) [Schuster et al., 1989]. Irrigation in the area began during the 

period 1953-1964. Irrigation water is provided to the area approximately six months of the year 

via an extensive network of canals and laterals that deliver water to fields for crop irrigation. 

Water flows through wasteways that take water from the system and return it to the Columbia 

River; storage ponds are also a part of the wastewater system [Neff, 1989]. Because most of the 

canals, laterals, wasteways, and ponds behind the White Bluffs are unlined, seeps from these 

various channels percolate through the soil and recharge the groundwater [Neff, 1989]. Almost 

ninety percent of the increase in inflow to the groundwater system and the resulting rise in 

groundwater levels has been attributed to recharge from canal seepage and applied irrigation 

[Drost et al., 1993]. Between about 1950 and the mid-1980s, groundwater levels rose by an 
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average of 60 m (200 ft); this resulted in a seven-fold increase in the annual flow through the 

groundwater system during this time period [Drost et al., 1993]. 

 

4.2.2.3. Site Geology 

 

Located along the western boundaries of Franklin and Grant Counties, the Bluffs begin in the 

south at Ringold, Washington and extend to the north where they end at the northward bend of 

the Columbia River. The tops of the bluffs range from approximately 45 m (150 ft) to more than 

150 m (500 ft) above the Columbia River [Triangle Associates, Inc., 2003]. Above Locke Island, 

the steep faces of the Bluffs drop straight down to the river; further to the south, the bluffs step 

down to terrace remnants and eventually onto a floodplain of moderate relief. The White Bluffs 

are composed of approximately three geologic layers. The base layer consists of the Columbia 

River Basalt Group and slopes generally toward the river [Triangle Associates, Inc., 2003]. The 

middle Ringold Formation consists of a mixture of loosely consolidated claystones, siltstones, 

and sandstones that lie horizontally, sloping about one degree toward the river [Triangle 

Associates, Inc., 2003]. This middle layer, up to 180 m (600 ft) deep in some places, can form 

steep natural slopes, such as those overlooking Locke Island, as a result of vertical and lateral 

erosion caused by the river [Triangle Associates, Inc., 2003]. The topmost layer consists of 

additional deposits of fine-grained sediments and gravel beds; these sediments are 

unconsolidated, uncemented, and highly transmissive for the flow of water [Triangle Associates, 

Inc., 2003].  

 



87 

 

Site-specific data for the Locke Island landslide include drill logs with interpretation of the site 

geology and regional and local groundwater conditions. The F-F’ transect, one of the five 

geologic cross-sections detailed by Bennett et al. [2002], was chosen to approximate the current 

landslide configuration (Figure 4.3). This transect intersects the approximate location where the 

irrigation wastewater ponds were known to exist and two wells, each with water-level data. The 

base layer (Tb) at this transect, as interpreted from drill logs, consists of black to gray, fine-

grained, olivine basalt and belongs to the Columbia River Basalt Group [Bennett et al., 2002]. 

The middle Ringold Formation consists of two subunits here. The bottom- most Ringold subunit 

(Trlc) consists of differentially cemented sands and is composed primarily of fine to medium 

sand with silt and some clay [Bennett et al., 2002]. The top-most Ringold subunit (Trlb) consists 

of blue/gray fat clay [Bennett et al., 2002]. Quaternary glaciofluvial sediments (Qgf) composed 

primarily of silt and sand with some lean clay intervals overlay the Ringold Formation; an 

exposure of this Qgf layer can be observed directly on top of the Trlb  subunit of the Ringold 

Formation in the Locke Island landslide scarp area [Bennett et al., 2002]. The top-most eolian 

sand geologic layer (Qe) consists of wind-blown deposits composed of silt and sand; in general, 

this layer ranges from 3-6 m (10-20 ft) in thickness [Bennett et al., 2002]. The landslide material 

(Qls) is composed of Ringold, glaciofluvial, and eolian deposits in a mixture of gravel, sand, silt, 

and clay [Bennett et al., 2002].
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       Figure 4.3 | Generalized F-F’ transect, as adapted from Bennett et al. [2002]. 
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4.2.3. Model Development 

 

Problems that involve transient groundwater flow with a free surface in the saturated zone are 

difficult to solve analytically. The treatment of such problems is often simplified through a set of 

assumptions proposed by Dupuit; these assumptions, however, ignore the presence of surface of 

seepage. The Dupuit assumptions led to the general flow equation for two-dimensional 

unconfined flow, the Boussinesq equation, which has been extensively treated in the literature 

[e.g., Bear et al., 1968].  

 

Consequently, an exact traditional model describing time-dependent unconfined saturated-

unsaturated groundwater flow [Bear, 1972] was used in this modeling effort. The equation used 

to describe this model is from Neuman and Witherspoon [1971]: 

 

 

𝜕

𝜕𝑥𝑖
(𝐾𝑟𝐾𝑖

𝜕ℎ

𝜕𝑥𝑖
) = (𝑆𝑤𝑆𝑠 + 𝐶(𝜓))

𝜕ℎ

𝜕𝑡
 , 

(4.1) 

 

where 

 𝑥𝑖  horizontal and vertical directions, respectively [L]; 

 𝐾𝑖  principal components of the hydraulic conductivity tensor, aligned 

collinear with the 𝑥 and 𝑧 direction [LT-1]; 

 𝐾𝑟  relative permeability, assumed to be a scalar function of water saturation  

   [LT-1]; 

 𝑆𝑤  water saturation, which varies between zero for dry conditions and one for 

   saturated conditions [dimensionless]; 
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 𝑆𝑠  specific storage [L-1]; 

 𝜓 pressure head, defined as  𝜓 = ℎ − 𝑧 [L]; 

 𝜙  porosity [dimensionless]; 

 𝐶  specific moisture capacity, defined as 𝐶(𝜓) = 𝜙
𝑑𝑆𝑤

𝑑𝜓
 [L-1]; 

 ℎ  hydraulic head [L]; 

 𝑡  time [T]. 

 

4.2.3.1. Groundwater Flow Model 

 

The equation (4.1) used to describe subsurface water flow for this problem can be re-written 

using the notation of Cooley and Westphal [1974]: 

 

 

𝜕

𝜕𝑥
(𝐾𝑟𝐾𝑥𝑥

𝜕ℎ

𝜕𝑥
) +

𝜕

𝜕𝑧
(𝐾𝑟𝐾𝑧𝑧

𝜕ℎ

𝜕𝑧
) = (𝑆𝑤𝑆𝑠 + 𝜙

𝑑𝑆𝑤

𝑑𝜓
)

𝜕ℎ

𝜕𝑡
 , 

(4.2) 

 

where 

 𝑥, 𝑧  horizontal and vertical directions, respectively [L]; 

 𝐾𝑥𝑥, 𝐾𝑧𝑧 principal components of the hydraulic conductivity tensor, aligned 

collinear with the 𝑥 and 𝑧 directions, respectively [LT-1]; 

 𝐾𝑟  relative permeability, assumed to be a scalar function of water saturation  

   [LT-1]; 

 𝑆𝑤  water saturation, which varies between zero for dry conditions and one for 

   saturated conditions [dimensionless]; 



91 

 

 𝑆𝑠  specific storage [L-1]; 

 𝜙  porosity [dimensionless]; 

 ℎ  hydraulic head [L]; 

 𝜓 pressure head, defined as  𝜓 = ℎ − 𝑧 [L]; 

 𝑡  time [T]. 

 

Additional functional relationships are needed to interrelate values of pressure head, relative 

permeability, and water saturation. Relationships between pressure head and water saturation and 

between water saturation and relative permeability are nonlinear and vary substantially for 

different soil and rock types [Gu, 2007]. The relationship used to relate values of pressure head 

and relative permeability can be specified as [Brooks and Corey, 1966; Brutsaert, 1966; Cooley 

and Westphal, 1974] 

 

 
𝑆𝑤𝐷 =

𝐴

(−𝜓𝑐 + 𝐴)
, 

(4.3) 

       

and 

     

 
𝐾𝑟 = (𝑆𝑤𝐷)𝑑, 

(4.4) 

 

where 𝑆𝑤𝐷 is the normalized water saturation, defined by 

       

 
𝑆𝑤𝐷 =

𝑆𝑤 − 𝑆𝑟

1 − 𝑆𝑟
, 

(4.5) 
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𝐴, 𝑐, and 𝑑 are empirical parameters, and 𝑆𝑟 is the residual, non-moving, water saturation.  

 

By incorporating Equation (4.5), Equation (4.2) can be written in a form more convenient for 

computations: 

 

 

𝜕

𝜕𝑥
(𝐾𝑟𝐾𝑥𝑥

𝜕ℎ

𝜕𝑥
) +

𝜕

𝜕𝑧
(𝐾𝑟𝐾𝑧𝑧

𝜕ℎ

𝜕𝑧
) = [(𝑆𝑤𝐷 + 𝐹)𝑆𝑓 + 𝑆𝑦

𝑑𝑆𝑤𝐷

𝑑𝜓
]

𝜕ℎ

𝜕𝑡
 , 

(4.6) 

 

where 

 

 
𝐹 =

𝑆𝑟

1 − 𝑆𝑟
, 

(4.7) 

 
𝑆𝑓 = (1 − 𝑆𝑟)𝑆𝑠, 

(4.8) 

 
𝑆𝑦 = (1 − 𝑆𝑟)𝜙, 

(4.9) 

 

and 𝑆𝑦 is the specific yield.  

 

To develop an appreciation of the physical meaning of the empirical parameters 𝐴, 𝑐, and 𝑑, 

Winter [1983] examined the functions in Equations (4.2), (4.3), and (4.4) for a number of 

different values of these parameters. The pore size distribution of the media affects the 

relationship between pressure head and water saturation [Brooks and Corey, 1966]. For example, 

if 𝐴 = 1, the water retention curve has a shape characteristic of a relatively uniform sand 

[Winter, 1983]. As progressively larger values of 𝐴 are considered (at the same value of 𝑐), the 



93 

 

curve is vertically stretched [Winter, 1983]. Variation in the parameter 𝑐, however, has a large 

effect on the sharpness of water retention curve. The smaller the value of 𝑐 (at the same value of 

𝐴), the less sharp is the water retention curve [Winter, 1983]. Smaller values of 𝑐 are 

characteristic of curves for increasingly finer-grained and more poorly sorted porous media 

[Winter, 1983]. For example, if 𝑐 = 2, the curve has an “S” shape characteristic of silty loams 

and silty clay loams [Brooks and Corey, 1966]. The exponent in the approximation of the 

relationship between water saturation and relative permeability (𝑑 in Equation (4.4)) is directly 

related to the pore size distribution of the porous media [Winter, 1983]. Brooks and Corey [1966] 

show that based on laboratory analysis of many different types of rock samples, the exponent 

almost always is between three and four. The smaller the value of 𝑑, the closer to linear is the 

relationship; the curve for 𝑑 = 1 is a straight line [Winter, 1983]. 

 

For simplicity, hysteresis is neglected in Equations (4.3) and (4.5). The origin and assumptions 

underlying Equations (4.4) and (4.5) are given by Brooks and Corey [1966]. Equation (4.2) also 

contains several simplifications, as discussed by Cooley [1971]: air movement is assumed to be 

without resistance; the effects of total stress changes at a point caused by changing saturation are 

neglected; and the effects of variable formation compressibility caused by deformation and 

changing saturating are neglected. 

 

4.2.3.2. Selection of Water Retention Parameters and Hydraulic Properties 

 

Soil parameters were prescribed on the basis of soil texture information gathered from existing 

geologic logs [Bennett et al., 2002] of nine drill holes on the White Bluffs and two drill holes on 
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the Locke Island landslide. Holes were drilled between January 14, 1998 and April 11, 1998 on 

the bluffs and between April 15, 1999 and April 20, 1999 on the landslide [Bennett et al., 2002]. 

The soil texture information contained in the existing geologic logs was derived from lab tests on 

samples from varying intervals. Average soil texture parameters (i.e., percent sand, percent silt, 

and percent clay) for each geologic layer were calculated using a weighted average of soil 

texture parameters from all drill logs; the interval length of each sample was used as the 

weighting factor. The computer program ROSETTA5 [Schaap et al., 2001] was used to estimate 

van Genuchten water retention parameters [van Genuchten, 1980] and saturated hydraulic 

conductivities, as well as unsaturated hydraulic conductivity parameters based on the pore-size 

model of Mualem [1976] (Table 4-1). Initial finite element model results, however, indicated that 

the ROSETTA-estimated saturated hydraulic conductivity values were too small to accommodate 

the increased flow from a doubling of recharge from precipitation. Therefore, saturated hydraulic 

conductivity values were multiplied by a factor of 1.4273. This multiplier and the associated 

upslope, fixed head boundary condition were arrived at through several trial-and-error 

simulations, such that a doubling of recharge from precipitation resulted in an approximate 

doubling of the groundwater flux at the toe of the landslide.  Accurate measurements of specific 

storage are obtained from multiple well interference tests in the field; however, no field data 

were found in the literature on specific storage or porosity for any of the media considered in this 

study. Under such circumstances, specific storage and porosity values for each geologic unit 

were estimated from representative values in the literature of these parameters for various 

geologic materials. All geologic units were assigned the same value for specific storage based on 

the representative values of specific storage for various geologic materials [Domenico and 

                                                 
5 The ROSETTA program comes with a graphical user interface, and can be downloaded from the United States 

Salinity Laboratory website: http://www.ussl.ars.usda.gov/, accessed May 15, 2013.  

http://www.ussl.ars.usda.gov/
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Mifflin, 1965] as reported in Batu [1998] (Table 4-1). Soil texture information from the geologic 

logs was used to obtain ranges of representative porosity values for the various materials found 

within each geologic unit [Das, 2008; Hough, 1969; VSS, 1999]; the porosity ranges were 

averaged for each of the different materials found within each unit, and an average porosity value 

was calculated for each geologic unit (Table 4-1). 

 

Table 4.1 | ROSETTA estimated van Genuchten water retention parameters and saturated 

hydraulic conductivity for each geologic unit 

Geologic 

Unit 

Qe Qgf Qls Trlb Trlc 

𝜶 0.5773 0.6055 0.5359 0.5048 0.5733 

𝒏 1.8754 1.5736 1.2595 1.1593 1.6588 

𝜽𝒔 0.4366 0.4713 0.4861 0.4934 0.4396 

𝜽𝒓 0.0422 0.0421 0.1026 0.1051 0.0371 

𝑲𝒙𝒙 0.1786 0.1004 0.0341 0.0248 0.1389 

𝑲𝒛𝒛 0.0179 0.0100 0.0034 0.0025 0.0139 

𝑺𝒔 0.0001 0.0001 0.0001 0.0001 0.0001 

𝝓 0.3617 0.3850 0.3908 0.4900 0.3500 

Notes:  ROSETTA was not used to estimate the values for specific storage (𝑆𝑠) and porosity (𝜙). In absence of field 

data in the literature on specific storage for any of the media considered in this study, all geologic units were 

assigned the same value for specific storage based on the representative values of specific storage for various 

geologic materials [Domenico and Mifflin, 1965] as reported in Batu [1998]. Average porosity values for each 

geologic unit were calculated using representative values of porosity [Das, 2008; Hough, 1969; VSS, 1999] for the 

different geologic materials within each geologic unit as determined from drill logs. 

 

The ROSETTA program implements five hierarchical pedotransfer functions (PTFs) for the 

estimation of water retention, and the saturated and unsaturated hydraulic conductivity. As a 
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result of the hierarchy in PTFs, the program can estimate van Genuchten water retention 

parameters and the saturated hydraulic conductivity using textural classes only and in 

combination with more extended input data (e.g., bulk density and one or two water retention 

points) [Schaap et al., 2001]. The Brooks and Corey [1966] soil water retention model was used 

within the groundwater model, as fewer stability problems than with the van Genuchten model 

have been noted by others (e.g., Gu, 2007). Therefore, soil moisture characteristic curves were 

created for each of the five geologic units using the van Genuchten water retention parameters 

for each unit prescribed by ROSETTA. The retention function is given by [van Genuchten, 1980] 

 

 
𝜃(ℎ) = 𝜃𝑟 +

𝜃𝑠 − 𝜃𝑟

[1 + (𝛼ℎ)𝑛]1−
1

𝑛

 , 
(4.10) 

 

where 

 𝜃(ℎ)  measured volumetric water content (cm3 cm-3) at the suction h (cm, taken 

positive for increasing suctions) [L3L-3]; 

 𝜃𝑟  residual water content (cm3 cm-3) [L3L-3]; 

 𝜃𝑠  saturated water content (cm3 cm-3) [L3L-3]; 

 𝛼  parameter related to the inverse of the air entry suction (>0, in cm-1) 

[L-1]; 

 𝑛  parameter that is a measure of the pore-size distribution (> 1) 

[dimensionless]. 

 

Combination of Equation (4.10) with the pore-size model of Mualem [1976] produces the 

following closed-form equation for unsaturated hydraulic conductivity [van Genuchten, 1980] 
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 𝐾(𝑆𝑤𝐷) = 𝐾0𝑆𝑤𝐷
𝐿 {1 − [1 − 𝑆𝑤𝐷

𝑛

𝑛−1]
1−

1

𝑛

}

2

, (4.11) 

 

where  

 𝐾0  a fitted matching point at saturation (cm day-1) [LT-1]; 

 𝐿  an empirical parameter that is normally assumed to be 0.5 

[dimensionless]; 

and the normalized water content or effective saturation, 𝑆𝑤𝐷, is computed as 

 

 
𝑆𝑤𝐷 =

𝜃(ℎ) − 𝜃𝑟

𝜃𝑠 − 𝜃𝑟
 . 

(4.12) 

 

Through direct substitution of the expression for the normalized water content given in Equation 

(4.3) in place of 𝑆𝑤𝐷 in Equation (4.12), the volumetric water content, 𝜃(ℎ), can be computed as 

 

 
𝜃(ℎ) = (

𝐴

−𝜓𝑐 + 𝐴
) (𝜃𝑠 − 𝜃𝑟) + 𝜃𝑟  

(4.13) 

 

using the Brooks and Corey [1966] soil water retention model. For each of the five geologic 

units, the parameters 𝐴 and 𝑐 were adjusted such that the soil moisture characteristic curve based 

on the Brooks and Corey [1966] soil water retention model best fit the soil moisture 

characteristic curve based on the van Genuchten [1980] soil water retention model (Table 4-2). 

Saturated and residual water contents (𝜃𝑠 and 𝜃𝑟, respectively) for each unit were set to those 

values prescribed by ROSETTA (Table 4-2).  



98 

 

 

Table 4.2 | Estimated Brooks and Corey [1980] water retention parameters 

Geologic Unit 𝑨 𝒄 𝜽𝒓 𝜽𝒔 

Qe 3.6 1.2 0.0422 0.4366 

Qgf 5.0 0.9 0.0421 0.4713 

Qls 7.5 0.5 0.1026 0.4861 

Trlb 8.0 0.4 0.1051 0.4934 

Trlc 3.7 0.9 0.0371 0.4396 

Notes:  The values for the residual water content (𝜃𝑟) and the saturated water content (𝜃𝑠) are those prescribed by 

ROSETTA. 

 

4.2.3.3. Finite Element Discretization 

 

The cross-sectional flow region is divided into a network of subregions when using the finite 

element discretization scheme, and it is convenient to adopt a network composed of triangular 

elements. In general, the purpose of this discretization scheme is to divide the system into an 

appropriate number and arrangement of elements such that the exact solution can be adequately 

approximated. 

 

The shape or basis functions for linear triangular elements are specified by the dimensionless 

triangular coordinates, each having the value of unity at one node, the value of zero at all other 

nodes, and linearly varying values within the element. Hornberger and Wiberg [2005] give a full 

explanation of the relationship between the local triangular coordinate system and the global 
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coordinate system of the cross-section. The global and triangular coordinates can be related by 

the equation: 

 

 
[
1
𝑥
𝑧

] = [

1 1 1
𝑥𝑖 𝑥𝑗 𝑥𝑘

𝑧𝑖 𝑧𝑗 𝑧𝑘

] [

𝜉𝑖

𝜉𝑗

𝜉𝑘

]. 
(4.14) 

 

where the subscripted 𝑥’s and 𝑦’s refer to nodal coordinate values and the subscripted 𝜉’s refer 

to nodal basis functions. The basis functions can be expressed mathematically as: 

 

 
𝜉𝑖 =

(𝑥𝑗𝑧𝑘 + 𝑥𝑘𝑧𝑗) + (𝑧𝑗 − 𝑧𝑘)𝑥 + (𝑥𝑘 − 𝑥𝑗)𝑧

2Δe
, 

(4.15) 

 
𝜉𝑗 =

(𝑥𝑘𝑧𝑖 + 𝑥𝑖𝑧𝑘) + (𝑧𝑘 − 𝑧𝑖)𝑥 + (𝑥𝑖 − 𝑥𝑘)𝑧

2Δe
, 

(4.16) 

 
𝜉𝑘 =

(𝑥𝑖𝑧𝑗 + 𝑥𝑗𝑧𝑖) + (𝑧𝑖 − 𝑧𝑗)𝑥 + (𝑥𝑗 − 𝑥𝑖)𝑧

2Δe
, 

 

 

where Δ𝑒 is the area of the element. 

 

4.2.3.4. Numerical Solution 

 

The corners of the triangular elements are specified as nodal points; 𝑥𝑖, 𝑥𝑗, and 𝑥𝑘 are the space 

coordinates for each node. Each node is associated with a unique subregion of the entire flow 

region, containing all elements in its vicinity. Also, for general subscript 𝑛, each node is 
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associated with a global coordinate function or linear basis function, 𝜉𝑛(𝑥𝑖). Galerkin’s finite 

element method was used to determine approximate solutions to Equation (4.1) under the 

appropriate initial and boundary conditions. The time derivative 𝜕ℎ 𝜕𝑡⁄  in Equation (4.1) is 

routinely replaced by 𝜕ℎ𝑁 𝜕𝑡⁄ . In the case of unsaturated flow, however, Neuman [1973] 

experienced difficulty in obtaining numerical convergence with this replacement; he obtained a 

much more stable solution by defining the nodal values of the time derivatives, 𝜕ℎ𝑛 𝜕𝑡⁄ , as 

weighted averages of 𝜕ℎ 𝜕𝑡⁄  over the entire flow region (i.e., all elements, 𝑒) according to: 

 

 
𝜕ℎ𝑛

𝜕𝑡
= 

∑ ∫ (𝑆𝑤𝑆𝑠 + 𝐶)
𝜕ℎ

𝜕𝑡
𝜉𝑛 𝑑𝑥 𝑑𝑧

Ω𝑒𝑒

 

, (4.14) 

   ∑ ∫ (𝑆𝑤𝑆𝑠 + 𝐶)𝜉𝑛 𝑑𝑥 𝑑𝑧      

Ω𝑒𝑒

 

 

where Ω𝑒 is the functional over the entire flow region (or simply the sum of the functional over 

all elements 𝑒). It is also assumed that 𝐾𝑖, 𝜙, and 𝑆𝑠 are constant in each element, while 𝐾𝑟, 𝐶, 

and 𝑆𝑤 vary linearly according to  

 

 
𝐾𝑟 = 𝐾𝑟𝑙

(𝜓)𝜉𝑙
𝑒 , 

(4.15) 

 
𝐶 = 𝐶𝑙(𝜓)𝜉𝑙

𝑒 , 
(4.16) 

 
𝑆𝑤 = 𝑆𝑤𝑙

(𝜓)𝜉𝑙
𝑒 , 

(4.17) 

  

where 𝑙 represents the corners of the triangle [Neuman, 1973]. This technique of using functional 

representations of system properties has also been used by Pinder et al. [1973]. 
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The resulting set of finite element equations for groundwater flow can be written in matrix form 

as 

 

 
𝐴{ℎ} + 𝐵 {

𝜕ℎ

𝜕𝑡
} + 𝐸 = 0, 

(4.18) 

 

where A and B are 𝑛 × 𝑛 matrices and 𝐸 is a vector of length 𝑛. The matrices are expressed as: 

 

 
𝐴𝑖𝑗 = ∑ ∫ [𝐾𝑥𝑥𝑙

𝜉𝑙

𝜕𝜉𝑖

𝜕𝑥

𝜕𝜉𝑗

𝜕𝑥
 + 𝐾𝑧𝑧𝑙

𝜉𝑙

𝜕𝜉𝑖

𝜕𝑧

𝜕𝜉𝑗

𝜕𝑧
] 𝑑𝑥 𝑑𝑧

Ω𝑒
𝑒

 

       = ∑
1

12∆
[(∑ 𝐾𝑥𝑥𝑙

3

𝑙=1

) 𝑏𝑖𝑏𝑗 + (∑ 𝐾𝑧𝑧𝑙

3

𝑙=1

) 𝑐𝑖𝑐𝑗] ,

𝑒

 

(4.19) 

 
𝐵𝑖𝑗 = ∑ ∫ (𝑆𝑤𝑙

𝑆𝑠 + 𝐶𝑙)𝜉𝑙𝜉𝑖 𝑑𝑥 𝑑𝑧
Ω𝑒

𝑒

 

       = ∑
∆

12
{[(∑ 𝑆𝑤𝑙

3

𝑙=1

) 𝑆𝑤𝑙
] 𝑆𝑠 + (∑ 𝐶𝑙

3

𝑙=1

) + 𝐶𝑖} ,

𝑒

 

(4.20) 

 

for 𝑖 = 𝑗; 

 

 
𝐵𝑖𝑗 = 0, 

(4.21) 

 

for 𝑖 ≠ 𝑗; and 
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𝐸𝑖 = ∑ [ ∫ 𝑞𝜉𝑖 𝑑Γ

Γ𝑒

+ ∫ 𝐾𝑧𝑧𝑙
𝜉𝑙

𝜕𝜉𝑖

𝜕𝑧
 𝑑𝑥 𝑑𝑧 − ∫ 𝑄𝑖𝜉𝑖 𝑑𝑥 𝑑𝑧

Ω𝑒Ω𝑒

]

𝑒

 

       = ∑ [
(𝑞𝑛𝐿𝑒)𝑖

2
+ (∑ 𝐾𝑧𝑧𝑙

3

𝑙=1

)
𝑐𝑖

6
− ∫ 𝑄𝑖𝜉𝑖 𝑑𝑥 𝑑𝑧

Ω𝑒

] ,

𝑒

 

(4.22) 

 

where 𝑏𝑖 and 𝑐𝑖 are element dimensions, Δ are element areas, and 𝑞𝑛 is the normal flux across the 

side of length 𝐿𝑒 of any element, including nodal point 𝑖. A given flux, 𝑄𝑖, can be specified at 

any internal source or sink node and is zero at all other nodes. The matrix 𝐵𝑖𝑗 is a diagonal 

matrix as a result of the averaging process given by Equation (4.20). The Darcy fluxes can be 

expressed as: 

 
𝑞𝑥 = − ∑ (𝐾𝑥𝑥𝑙

𝜉𝑙

𝜕𝑁𝑗

𝜕𝑥
ℎ𝑗)

𝑒

 

       = − ∑
1

6Δ
[(∑ 𝐾𝑥𝑥𝑙

3

𝑙=1

) 𝑏𝑗ℎ𝑗] .

𝑒

 

(4.23) 

 

The time-derivative in Equation (4.1) can be approximated using a finite difference scheme. 

Neuman [1973] recommends using a backward difference scheme rather than a time-centered 

scheme in the analysis of variably saturated flow systems. Implementing a fully implicit 

backward difference scheme in terms of ℎ in Equation (4.18) produces 

 

 
(𝐴𝑖𝑗

𝑘 +
1

∆𝑡𝑘
𝐵𝑖𝑗

𝑘 ) ℎ𝑖
𝑘+1 =

1

∆𝑡𝑘
𝐵𝑖𝑗

𝑘 ℎ𝑖
𝑘 − 𝐸𝑖

𝑘, 
(4.24) 

 



103 

 

where 𝑘 indicates the time 𝑡𝑘 and ∆𝑡𝑘 = 𝑡𝑘+1 − 𝑡𝑘. The Douglas-Jones predictor-corrector 

method [Douglas and Jones, 1963] for solving Equation (4.19) is described by the predictor 

equation 

 

 
(𝐴𝑖𝑗

𝑘 +
1

∆𝑡𝑘/2
𝐵𝑖𝑗

𝑘 ) ℎ𝑖
𝑘+1/2

=
1

∆𝑡𝑘/2
𝐵𝑖𝑗

𝑘 ℎ𝑖
𝑘 − 𝐸𝑖

𝑘, 
(4.25) 

 

and the corrector equation 

 

 
(𝐴𝑖𝑗

𝑘+1/2
+

1

∆𝑡𝑘
𝐵𝑖𝑗

𝑘+1/2
) ℎ𝑖

𝑘+1 =
1

∆𝑡𝑘
𝐵𝑖𝑗

𝑘+1/2
ℎ𝑖

𝑘 − 𝐸𝑖
𝑘+1/2

. 
(4.26) 

 

4.2.3.5. Finite Element Mesh and Initial and Boundary Conditions 

 

A triangular finite element mesh with 8,495 nodes and 16,057 elements was generated for use in 

the numerical simulations. The initial pressure heads at each computational node for each 

simulation were established using a steady state solution with time-constant boundary conditions. 

Boundary and initial conditions used for Equation (4.2) are given as 

 

 
ℎ = ℎ𝑐 on 𝐵𝑐,     𝑡 > 0 (4.21) 

 
𝑞𝑛𝑡 = 𝑞𝑡 on 𝐵𝑡,     𝑡 > 0 (4.22) 

 
𝑞𝑛𝑝 = 𝑞𝑝 on 𝐵𝑝,     𝑡 > 0  

 
ℎ = ℎ𝑟 on 𝐵𝑟,     𝑡 > 0 (4.23) 

 
ℎ = ℎ0 in 𝐷,     𝑡 = 0 (4.24) 
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where ℎ𝑐 is the hydraulic head specified on exterior boundary segment 𝐵𝑐 and depends upon the 

river stage, 𝑞𝑛𝑡 is the precipitation recharge normal to the exterior boundary segment 𝐵𝑡, 𝑞𝑡 is the 

specified normal precipitation recharge, 𝑞𝑛𝑝 is the pond recharge normal to the exterior boundary 

segment 𝐵𝑝, 𝑞𝑝 is the specified normal pond recharge,ℎ𝑟 is the hydraulic head specified on 

exterior boundary segment 𝐵𝑟, and ℎ0 is the initial head distribution of the solution domain 𝐷 

(Figure 4.4). For simulations where pond recharge was not considered 𝑞𝑛𝑝 = 𝑞𝑡. Segments of the 

exterior boundary 𝐵𝑏 and 𝐵𝑙 are no-flow boundaries (Figure 4.4). A special type of specified 

head boundary condition is the seepage face. The pressure head is atmospheric (𝜓 = 0) along a 

seepage face so that 

  

 
ℎ = 𝑧 on 𝐵𝑠,     𝑡 ≥ 0 (4.25) 

        

where 𝐵𝑠 is the segment of the exterior boundary along which a seepage face can develop 

(Figure 4.4). The location of the seepage face is generally not know a priori and is established 

during the course of solution of the problem. A seepage face was allowed to develop along the 

part of exterior boundary segment 𝐵𝑠 above the river stage that was saturated at the previous time 

step; these nodes were assigned a hydraulic head equal to the elevation head. The possible effects 

of evapotranspiration were ignored here to simplify the model formula. Nodes on exterior 

boundary segment 𝐵𝑠 above the river stage and seepage face were assigned no-flow boundary 

conditions. 
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Notes: Legend entries correspond to boundary delineations used in Equations (4.21-4.25). The letter D in the 

interior of the figure refers to the solution domain. 
Figure 4.4 | Boundary assignments for the domain of numerical solution. 

 

4.2.3.6. Simulation Descriptions 

 

Five different flow simulations, including a base simulation, were used in this study. All river 

stage data used in the simulations was obtained from the United States Geological Survey’s 

(USGS) National Water Information System (NWIS) for USGS site number 12472800, the 

Columbia River below Priest Rapids Dam, Washington. Recharge rates used in the simulations 

were estimated from Hanford Site recharge rates. On the Hanford Site opposite the Locke Island 

landslide complex, recharge ranges from a general low of 1.5 mm/yr for areas with a natural 

shrub-steppe vegetation cover to a high of 52 cm/yr for unvegetated areas [Last et al., 2006], 

with the natural recharge rate estimated at 17.2 mm/yr [Rockhold et al., 2009].  
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The base simulation was used to compare the effects of changes in river stage and recharge on 

groundwater flow within the study area. For this simulation, the precipitation recharge was held 

constant at 7.4905 × 10−6 ft/hr or 20 mm/yr, which is on the high end of the estimated natural 

recharge rate across the river on the Hanford Site [Rockhold et al., 2009]. Pond recharge was not 

considered for this simulation, and the hydraulic head above the river channel was held constant 

at 386.34 ft above sea level (ASL), as this number incorporates the long-term average in river 

stage. The hydraulic head at the upslope boundary was held constant at 527.65 ft ASL. This is a 

reasonable estimate, considering recent water level data from wells in the area and estimates of 

pre-development water level altitudes nearby. The water level altitude in one of the wells along 

cross section F-F’ of Bennett et al. [2002] was 638.0 ft in October of 2007 [USBR, personal 

communication]. Similarly, in March 1986, water table altitudes along the White Bluffs in areas 

directly to the south of the study area, were 600-700 ft [Drost et al., 1993]. Pre-development (i.e., 

prior to 1950) water table altitudes in the same area were estimated at below 400 ft [Drost et al., 

1997].  

 

The second simulation examined the effect of transient (short-term) changes in river stage on 

groundwater flow. The precipitation recharge was held constant at 7.4905 × 10−6 ft/hr or 20 

mm/yr. The hydraulic head at the upslope boundary was held constant at 527.65 ft ASL. Pond 

recharge was not considered for this simulation, and river stage was allowed to fluctuate hourly 

for a period of one week (October 1-8, 2007).  

 

The third simulation examined the effect of the seasonal hydrograph on groundwater flow. The 

precipitation recharge was held constant at 7.4905 × 10−6 ft/hr or 20 mm/yr. The hydraulic 
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head at the upslope boundary was held constant at 527.65 ft ASL. Pond recharge was not 

considered for this simulation. River stage was allowed to fluctuate daily for a period of one year 

(October 1, 2007-October 1, 2008).  

 

The fourth simulation examined the effect of pond recharge on groundwater flow. The 

precipitation recharge was held constant at 7.4905 × 10−6 ft/hr or 20 mm/yr. The hydraulic 

head above the river channel was held constant at 386.34 ft above sea level (ASL). The hydraulic 

head at the upslope boundary was held constant at 527.65 ft ASL. The simulation was run for a 

period of twenty years, as this provides a fair estimate of the length of time that the wastewater 

ponds behind the White Bluffs were in operation and allows for a return to steady state 

conditions. Pond recharge was held constant at 7.4905 × 10−5 ft/hr or 20 cm/yr for the first 10 

years of the simulation period; this recharge value is close to the high end of the recharge range 

for unvegetated areas on the Hanford S40 site [Last et al., 2006]. Pond recharge was limited to 

precipitation recharge for the last 10 years of the simulation period. 

 

The fifth simulation examined the effect of climate fluctuations – specifically increases in 

precipitation and subsequent recharge – on groundwater flow. The hydraulic head above the river 

channel was held constant at 386.34 ft ASL. The precipitation recharge was held constant at 

1.4981 × 10−5 ft/hr or 40 mm/yr, which represents an approximate two-fold increase in the 

estimated natural recharge rate across the river on the Hanford Site [Rockhold et al., 2009]. If 

precipitation is assumed to scale proportionally with recharge, then this increased recharge rate 

and associated annual precipitation would be approximately equivalent to the annual 

precipitation of Spokane, Washington. The increased recharge rate used in this simulation is an 
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intentional overestimate, used primarily to elicit a change in groundwater flow. In fact, global 

climate models predict only small changes in annual precipitation (relative to variability) and 

show increases and decreases depending on the models, which project a change of -4% to +14% 

for the 2050s (relative to 1950-1999) [Snover et al., 2013]. To more realistically simulate a 

change in climate, both precipitation recharge and the fixed head boundary condition were 

altered from the base simulation. The hydraulic head at the upslope boundary was held constant 

at 658.65 ft ASL. Since the precipitation recharge was doubled for this simulation, the upslope 

boundary value was fixed such that the groundwater flux into the system was approximately 

double that of the base simulation. The simulation was run until a steady state was reached. 

 

4.3. Results  

 

Groundwater tends to move horizontally across the study area. The general direction of 

groundwater flow is toward the Columbia River, the major area of discharge for the study area 

(Figure 4.5). In addition to horizontal flow, there is also vertical flow in the groundwater system. 

Vertical flow is upward under the river, along the major discharge area, and flow is upward 

along the toe of the landslide (Figure 4.5). Groundwater flow does not greatly deviate from this 

general pattern for any of the five simulations considered herein (Figures 4.5, 4.8-4.10).  

   

Changes in river stage are most evident close to the river along the landslide (Table 4-3). 

Specific discharge normal to the seepage face increases with falling river stage and decreases 

with rising river stage (Figures 4.6 and 4.7). The largest changes in hourly river stage are 

between three and four feet, while the largest changes in daily river stage are near six feet. The 
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largest increases in specific discharge normal to the bank occur in response to changes in hourly 

and daily river stage (Table 4-3). While specific discharge normal to the seepage face at the toe 

of the landslide can increase more than 700 percent from the base condition, these transient 

fluctuations most likely do not propagate any considerable length into the bank.  

 

Increased recharge at the irrigation wastewater ponds does not change the general groundwater 

flow field (Figure 4.8). In fact, specific discharge normal to the seepage face at the toe of the 

landslide actually decreases about one percent (Table 4-3). This additional recharge does raise 

the water table approximately half a foot beneath the ponds.  

 

The majority of the water flux into the system enters through the upslope boundary. A two-fold 

increase in precipitation recharge and the subsequent rise in fixed head at this upslope boundary 

cause the specific discharge at the toe of the landslide to approximately double (Table 4-3). 

Unlike the dramatic, albeit short-term, increases in specific discharge induced by river stage 

fluctuations, this change in specific discharge represents a more permanent increase. 

 

4.4. Discussion 

 

Water influences slope stability in many ways (e.g., decreasing suction, positive pore water 

pressure, and seepage forces all reduce the shear strength of soil), and its effects are often 

implicated as causes of failure. Increased recharge – whether from climate fluctuations or land 

use change – and subsequent groundwater flow not only trigger landslides, but can pre-dispose 

slopes to failure. Sowers [1979] characterized the precarious matter of assigning causes of slope 
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failure: “Often the final factor [that produces failure] is nothing more than a trigger that sets a 

body of earth in motion that was already on the verge of failure.” 

 

Consistent with this notion, the relative importance of potential causes of landsliding at Locke 

Island has been evaluated here. The majority of the groundwater flux into the study area comes 

from upslope; therefore, the specific discharge at the toe of the landslide is governed by regional 

changes to the groundwater system. Localized recharge at the irrigation wastewater ponds does 

not have much of an effect on groundwater fluxes at the toe of the landslide. In fact, specific 

discharge normal to the bank slightly decreases with increased recharge at the ponds. This result 

is counterintuitive, and it may be an artifact of the numerical model. The associated increase in 

water table altitude, however, may slow the flux by decreasing the hydraulic gradient.  

 

Both land use change and climate fluctuations can bring about regional changes to the 

groundwater system. The two-fold increase in precipitation simulated in this study resulted in a 

doubling of the specific discharge normal to the seepage face at the landslide toe.  Drost et al. 

[1997] report a seven-fold increase in annual flow through the groundwater system from pre-

development time to 1986, with recharge from canal seepage and applied irrigation accounting 

for about 85 percent of this increase. The groundwater system adjusted to this increased flow by 

increasing storage of water in the ground (which equated to higher water levels) and increasing 

the discharge rate from the system [Drost et al., 1997]. While results from the finite element 

simulation with increased recharge from irrigation wastewater ponds behind the bluffs at Locke 

Island indicate only a modest increase in groundwater levels, irrigation application and the 

network of water conveyance structures behind the White Bluffs are spatially extensive. 
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Therefore, the significant increase in flow throught the groundwater system reported by Drost et 

al. [1997] is more like the scenario presented in this study where recharge from precipitation is 

doubled. 

 

Groundwater discharge from the White Bluffs, in the form of springflows and seepage faces, has 

been identified as the major cause of the many landslides that started around 1970 [Schuster and 

Hays, 1984] . The irrigation wastewater ponds behind the White Bluffs at Locke Island have 

been implicated as the source of this groundwater and subsequent cause of the Locke Island 

landslide activity [Nickens et al., 1998; Schuster et al., 1987; Triangle Associates, Inc., 2003]. 

Results from this study indicate that the regional groundwater system has a much larger 

influence on groundwater fluxes along the river bank. The White Bluffs is the only significant 

non-irrrigated area in the vicinity where the water table is shallow (i.e., within 20 ft of land 

surface for at least part of the year) [Drost et al., 1997]. Seepage from irrigation water 

conveyances and direct water application behind the bluffs is the most likely cause for increased 

regional groundwater flow. This increase in groundwater flow is most probably the largest single 

pre-disposing factor for slope failure at Locke Island.  

 

This study is not without limitations. The stratigraphy, soil parameters, aquifer properties, 

recharge rates, and boundary conditions are all estimates derived from existing data and reports. 

Every attempt was made to characterize the system with both accuracy and parsimony. Still, as 

with most groundwater models, exactness is rarely achieved. Heterogeneity in the Ringold 

Formation in the study area, in conjunction with irrigation, has been implicated as a cause of 

landsliding at Locke Island in other studies. Heterogeneity in the White Bluffs at Locke Island 
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was upheld to the extent that the drill logs contained in Bennett et al. [2002] allowed. The finite 

element model developed herein did not allow for the development of multiple seepage faces; a 

single seepage face was allowed to develop along that part of the river bank above the stream 

stage, if it was saturated at the previous time step. While this study does not show that local 

recharge from the irrigation wastewater ponds significantly affects discharge at the toe of the 

landslide, local variations in framework and model parameters may produce different results.  

 

In keeping with Sowers [1979] philosophy, attempting to decide the ultimate cause of the 

landsliding activity at Locke Island is technically incorrect. Factors that influence the regional 

groundwater system are most likely to predispose the White Bluffs at Locke Island to failure. 

Others have documented the drastic increase in groundwater flow through the regional system 

from irrigation [e.g., Drost et al., 1993; Drost et al., 1997]. Fluctuations in climate, such as 

intense or prolonged rainfall, also have the ability to alter regional groundwater flow. These 

sustained increases in specific discharge along the river bank can position the bluffs for 

landsliding activity. Large changes in river stage, such as from hydroelectric generation, can 

increase specific discharge at the toe of the landslide more than regional increases in 

groundwater flow; however, these increases tend to be short-lived. The irrigation wastewater 

ponds behind the bluffs at Locke Island or the large fluctuations in river stage as a result of dam 

regulation may have provided the final factor or trigger that set the predisposed bluff in motion, 

but all potential causes are influential. 

 

The potential for changes in contributing factors with time is also important [Duncan and 

Wright, 2005]. Global climate models predict only small changes in annual precipitation (relative 
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to variability) and show increases and decreases depending on the models, which project a 

change of -4% to +14% for the 2050s (relative to 1950-1999) [Snover et al., 2013]. The total 

recharge from applied irrigation will undoubtedly increase if irrigated acreage is increased, but 

the recharge rate will probably decrease as irrigators become more efficient. If existing irrigation 

water conveyances are improved for efficiency (e.g., lined), the recharge rate will decrease as 

well. Changes in river stage here are most dependent on power generation, which depends on 

many speculative trends. Hydrographs of wells in the White Bluffs area indicate a mixture of 

equilibrium conditions and rising and falling water levels [Drost et al., 1997; Triangle and 

Associates, Inc., 2003]. Regional recharge to the groundwater system from irrigation and 

precipitation is likely the largest influence on achieving and maintaining a state of equilibrium 

for the slopes along the eastern boundary of the Columbia River, below the Big Bend of the 

Columbia River and the city of Richland, Washington.
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Table 4.3 | Specific Discharge Maxima from Finite Element Model  

Precipitation 

Recharge 

(mm/yr) 

Pond Recharge 

(mm/yr) 

River Stage 

(ft ASL) 

Upslope Fixed 

Total Head 

Boundary 

Condition 

(ft) 

Maximum Normal 

Component of 

Specific Discharge 

(𝒒𝒏𝒎𝒂𝒙) 

(ft/hr) 

Percent Change in 

𝒒𝒏𝒎𝒂𝒙 

20 --- 386.34 527.65 0.0137 --- 

20 --- Fluctuates Hourly 527.65 0.1183 764% 

20 --- Fluctuates Daily 527.65 0.1183 764% 

20 200 386.34 527.65 0.0136 -1% 

40 --- 386.34 658.65 0.0279 104% 
Notes:  The maximum normal component (i.e., normal to the element face) of the specific discharge, 𝑞𝑛𝑚𝑎𝑥 , is given for each of the five different simulations. 

The percent change between 𝑞𝑛𝑚𝑎𝑥  for the base case (highlighted in red text) and 𝑞𝑛𝑚𝑎𝑥for each simulation are reported. 
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Figure 4.5 | Groundwater flow field for base simulation; thick black line represents the water table, and contours represent lines of 

constant total hydraulic head.
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Figure 4.6 | Hourly normal component of specific discharge at seepage face element along the 

river channel at the toe of the landslide and hourly river stage for October 1, 2007 through 

October 7, 2007. 
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Figure 4.7 | Daily normal component of specific discharge at seepage face element along the 

river channel at the toe of the landslide and daily river stage for October 1, 2007 through 

September 30, 2008. 
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Figure 4.8 | Groundwater flow field for pond recharge simulation, at the end of the 10-year recharge application period; thick black 

line represents the water table, and contours represent lines of constant head.
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Figure 4.9 | Groundwater flow field for the pond recharge simulation, at the end of the 20 year simulation (10 years after the cessation 

of pond recharge); thick black line represents the water table, and contours represent lines of constant head.
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Figure 4.10 | Groundwater flow field for the climate fluctuation simulation (i.e., two-fold increase in recharge from precipitation); 

thick black line represents the water table, and contours represent lines of constant head.
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CHAPTER 5 

 

 

 

SYNTHESIS 

 

 

The White Bluffs along the Columbia River, near Locke Island, in south central Washington 

State are a microcosm of the hydrological consequences of land-use change and climate 

fluctuations; the hydrological consequences here have even initiated natural hazards. Over the 

last 125 years, much of the area in south-central Washington has been converted from rangeland 

and dryland farming to one of the major agricultural areas of the United States. Landsliding 

along the bluffs, however, is not limited to modern activity; there is evidence that landslides 

occurred here within the last 11,000 years, with some activity in the last several hundred years 

[Triangle Associates Inc., 2003]. Therefore, climate fluctuations and river mechanics are also 

important pre-disposing factors to slope failure. Prior to irrigation of the land adjacent to the 

bluffs, toe erosion by the Columbia River has been implicated as the major cause of landsliding 

[Schuster et al., 1987]; and a wetter climate has been suggested as the likely cause of landsliding 

here in prehistoric times [Triangle Associates, Inc., 2003]. 

 

It is often impossible to isolate a single cause of slope failure [Duncan and Wright, 2005]. 

Various processes operate simultaneously, and it is the interaction between several factors that 

lead to slope failure. Attempting to assign an ultimate cause to the landsliding activity at Locke 

Island may be not only incorrect but uninformative. Increased recharge and subsequent 

groundwater flow are some of the most important landslide triggering factors [Johnson and Sitar, 

1990; van Asch et al., 1999]; these factors are thought to be two of the key hydrological 
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consequences of land use change and climate fluctuations. Therefore, it is important to evaluate 

the relative importance of climate and land use change in increasing recharge and groundwater 

flow, and to consider the potential for changes with time. Only then can the hydrological 

processes operating along the White Bluffs be integrated into a framework for understanding 

both the initiation and continuation of slope failure here. 

 

Factors that influence the regional groundwater system are most likely to predispose the White 

Bluffs at Locke Island to failure. Others [e.g., Drost et al., 1993; Drost et al., 1997] have 

established the dramatic increase in the annual flow through the groundwater system since pre-

development time (circa 1950), with groundwater levels rising by an average of 60 m (200 ft). 

Groundwater modeling results here indicate that an increase in regional recharge from sustained 

increases in precipitation can have a similar effect. This study uses a Palmer drought index 

reconstructed from paleoclimate data to examine the presence of such persistent climate features. 

While this gridded dataset is fairly coarse in resolution, results from chapter two of this study 

indicate that spatial resolution of the Palmer drought index has a small effect on the overall 

magnitude of the index in the Hanford Reach of the Columbia River. Results from wavelet 

analyses of the Palemr drought index derived from paleoclimate data demonstrate that low-

frequency drought and pluvial cycles, both at multidecadal and centennial timescales, are 

persistent features of regional climate in the Pacific Northwest. Moreover, Nelson et al. [2011] 

has shown that the average duration of multidecadal wet and dry cycles in the Pacific Northwest 

has increased in the last millennium. The groundwater system responds to these cyclical wet 

(dry) cycles by increasing (decreasing) the storage of water in the ground, which equate to higher 

(lower) water levels, and increasing (decreasing) the discharge rate from the system. Similar 
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responses to changes in recharge from irrigation application and seepage from irrigation water 

conveyances [Drost et al., 1997]. These fluctuations in climate and changes in land use certainly 

pre-dispose the White Bluffs to failure and, therefore, may be considered an important cause of 

landsliding activity. 

 

Seepage from the numerous unlined canals and ponds in the irrigation district is cumulative, and 

this increased recharge to the groundwater system is superimposed upon changes to recharge 

produced by climate fluctuations. It has been suggested that the modern landsliding along the 

Bluffs at Locke Island is a result of irrigation water delivered to unlined wastewater ponds 

behind the bluffs [Bjornstad, 2006; Hays and Schuster, 1987; Nickens et al., 1998; Schuster et 

al., 1987; Triangle Associates, Inc., 2003]. Results from groundwater modeling here indicate that 

this single set of unlined ponds do not significantly affect groundwater discharge at the landslide. 

While, alone, these ponds do not seem to be an important cause of slope failure, given the 

coincident timing of formation of these ponds and landslide initiation, these ponds may have 

been the trigger that set the pre-disposed bluffs in motion. 

 

The wastewater ponds behind the bluffs at Locke Island were completely drained in the mid-

1990s in an attempt to stop the landsliding, but slumping of the Bluffs continues [Bjornstad, 

2006]. The rate of movement at the toe of the landslide has gradually slowed from as much as 6 

m (20 ft) per year in 1998 to the point where there has been little movement in the years leading 

up to 2006 [Bjornstad, 2006]. Bennett et al. [2002] suggest that the continued presence of the 

landslide debris in its present position is essential for maintaining the stability of the hillside. 

Results from groundwater modeling here indicate that large daily and hourly fluctuations in river 
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stage (as produced by upstream dam operations) can induce very large changes in discharge at 

the toe of the landslide. Increasing pore water pressures and subsequent decreases in soil 

cohesion and shear strength facilitate erosion and can initiate failure. Therefore, changes in the 

position of landslide debris due to erosional loss to the Columbia River or local, small-scale 

slumping should be taken seriously. 

 

The effects accompanying land use change and climate change, both natural and anthropogenic, 

span all scales. The effects on hydrology are not often visible or are difficult to distinguish. 

Hydrological records are relatively short (especially when analyzing records for climate signals) 

and discontinuous. Most hydrological systems are naturally highly variable, and real land use 

changes cannot be fully, experimentally controlled within catchments. Land use change and 

climate fluctuations work simultaneously to alter hydrological processes. The hydrological 

consequences are in some instances cumulative, as observed in the groundwater system in south-

central Washington. Furthermore, the hydrological consequences of land use change and climate 

fluctuations can produce secondary natural hazards, such as the massive landslides along the 

White Bluffs in south-central Washington. Therefore, land use and climate changes are chief 

concerns facing the world this century. Given the impressive changes in land use over such a 

relatively short geologic period, the consequences of land use change may very well outweigh 

those from climate change [Sala et al., 2000; Vörösmarty et al., 2000].  
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APPENDIX A 

 

 

KOLMOGORV-SMIRNOV TEST AND MULTIPLE LINEAR REGRESSION RESULTS 

 

This Appendix contains the initial two-sample Kolmogorov-Smirnov (K-S) test results; multiple 

linear regression coefficient estimates; and PDSI, temperature, and precipitation time series for 

two grid box-climate division pairs (described in Chapter 2, Section 2.3). 

 

A.1. Initial Two-Sample K-S Test  

 

Table A.1 | Initial Two-Sample K-S Test Results  

Drought Index p-value 

Number (%) of Grid Box-Climate Division 

Pairs for which the Null Hypothesis is 

Rejected 

Z 
p<0.01 79 (14%) 

p<0.05 96 (16%) 

PDSI 
p<0.01 394 (67%) 

p<0.05 445 (76%) 

PHDI 
p<0.01 402 (69%) 

p<0.05 447 (77%) 

Notes: The K-S test returns a test decision for the null hypothesis that the two data samples are from the same 

continuous distribution; the test either rejects or fails to reject the null hypothesis. Numbers and percentages of grid 

box-climate division pairs where p<0.05 also include those where p<0.01. 
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A.2. Multiple Linear Regression  

 

Table A.2 | Multiple Linear Regression Coefficient Estimates 

Response 

Variables 

Coefficient Estimates, 𝒃, for Predictors 

R2 

𝑏𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝐴𝑊𝐶 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

+Z 

Difference 
-0.0100‡ -0.0631‡ 0.0165 0.1381 

-Z 

Difference 
0.0117‡ 0.0841‡ -0.0227 0.1836 

+PDSI 

Difference 
-0.0131‡ -0.0949‡ 0.0256 0.1674 

-PDSI 

Difference 
0.0176‡ 0.1491‡ -0.0446† 0.2013 

+PHDI 

Difference 
-0.0112‡ -0.0969‡ 0.0286 0.1534 

-PHDI 

Difference 
0.0189‡ 0.1466‡ -0.0447† 0.2070 

Notes: Drought index differences, temperature differences, and precipitation differences are all average differences. 

Average differences are calculated by, first, subtracting the climate division value from the grid box value, and, 

second, averaging the differences. In the case of drought index differences, positive and negative differences are 

averaged separately to create two response variables per index. ‡p<0.01. †p<0.05. 
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A.3. PDSI, Temperature, and Precipitation Time Series 

 

 
Notes: For this grid box-climate division pair, the average positive difference was ≥ 2, and the average negative 

difference was ≤ -2. 

Figure A.1 | For the grid box located at +45.25, -115.75 and Idaho climate division 4: a) PDSI 

time series; b) temperature time series, and c) precipitation time series. 
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Notes: For this grid box-climate division pair, the average positive and negative differences were between -1 and 1. 
Figure A.2 | For the grid box located at +42.25, -11.25 and Idaho climate division 10: a) PDSI 

time series; b) temperature time series, and c) precipitation time series.  
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APPENDIX B 

 

CONTINUOUS WAVELET, CROSS WAVELET, AND WAVELET COHERENCE PLOTS 

 

 

This Appendix contains the additional continuous wavelet transform, cross wavelet transform, 

and wavelet coherence plots for the grid boxes within the study area (described in Chapter 2, 

Sections 2.2.1-2.2.2).  
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B.1. Additional Continuous Wavelet Transform Plots 

 

Notes: The black dotted outline on the continuous wavelet spectrum represents the COI. The 5% significance level 

against red noise is shown as a thin red contour on the continuous wavelet spectrum. The dashed red line on the 

global wavelet spectrum denotes the 95% confidence level.  

Figure B.1 | Detrended reconstructed PDSI time series (top), continuous wavelet spectrum 

(bottom), and global wavelet spectrum (right) for grid number 25 of the Cook et al. [2008] 

dataset. 
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Notes: The black dotted outline on the continuous wavelet spectrum represents the COI. The 5% significance level 

against red noise is shown as a thin red contour on the continuous wavelet spectrum. The dashed red line on the 

global wavelet spectrum denotes the 95% confidence level. 
Figure B.2 | Detrended reconstructed PDSI time series (top), continuous wavelet spectrum 

(bottom), and global wavelet spectrum (right) for grid number 33 of the Cook et al. [2008] 

dataset. 
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Notes: The black dotted outline on the continuous wavelet spectrum represents the COI. The 5% significance level 

against red noise is shown as a thin red contour on the continuous wavelet spectrum. The dashed red line on the 

global wavelet spectrum denotes the 95% confidence level. 
Figure B.3 | Detrended reconstructed PDSI time series (top), continuous wavelet spectrum 

(bottom), and global wavelet spectrum (right) for grid number 34 of the Cook et al. [2008] 

dataset. 
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Notes: The black dotted outline on the continuous wavelet spectrum represents the COI. The 5% significance level 

against red noise is shown as a thin red contour on the continuous wavelet spectrum. The dashed red line on the 

global wavelet spectrum denotes the 95% confidence level. 
Figure B.4 | Detrended reconstructed PDSI time series (top), continuous wavelet spectrum 

(bottom), and global wavelet spectrum (right) for grid number 35 of the Cook et al. [2008] 

dataset. 
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Notes: The black dotted outline on the continuous wavelet spectrum represents the COI. The 5% significance level 

against red noise is shown as a thin red contour on the continuous wavelet spectrum. The dashed red line on the 

global wavelet spectrum denotes the 95% confidence level. 
Figure B.5 | Detrended reconstructed PDSI time series (top), continuous wavelet spectrum 

(bottom), and global wavelet spectrum (right) for grid number 43 of the Cook et al. [2008] 

dataset. 
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Notes: The black dotted outline on the continuous wavelet spectrum represents the COI. The 5% significance level 

against red noise is shown as a thin red contour on the continuous wavelet spectrum. The dashed red line on the 

global wavelet spectrum denotes the 95% confidence level. 
Figure B.6 | Detrended reconstructed PDSI time series (top), continuous wavelet spectrum 

(bottom), and global wavelet spectrum (right) for grid number 44 of the Cook et al. [2008] 

dataset. 
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Notes: The black dotted outline on the continuous wavelet spectrum represents the COI. The 5% significance level 

against red noise is shown as a thin red contour on the continuous wavelet spectrum. The dashed red line on the 

global wavelet spectrum denotes the 95% confidence level. 
Figure B.7 | Detrended reconstructed PDSI time series (top), continuous wavelet spectrum 

(bottom), and global wavelet spectrum (right) for grid number 45 of the Cook et al. [2008] 

dataset. 
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Notes: The black dotted outline on the continuous wavelet spectrum represents the COI. The 5% significance level 

against red noise is shown as a thin red contour on the continuous wavelet spectrum. The dashed red line on the 

global wavelet spectrum denotes the 95% confidence level. 
Figure B.8 | Detrended reconstructed PDSI time series (top), continuous wavelet spectrum 

(bottom), and global wavelet spectrum (right) for grid number 46 of the Cook et al. [2008] 

dataset. 
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Notes: The black dotted outline on the continuous wavelet spectrum represents the COI. The 5% significance level 

against red noise is shown as a thin red contour on the continuous wavelet spectrum. The dashed red line on the 

global wavelet spectrum denotes the 95% confidence level. 
Figure B.9 | Detrended reconstructed PDSI time series (top), continuous wavelet spectrum 

(bottom), and global wavelet spectrum (right) for grid number 55 of the Cook et al. [2008] 

dataset. 
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Notes: The black dotted outline on the continuous wavelet spectrum represents the COI. The 5% significance level 

against red noise is shown as a thin red contour on the continuous wavelet spectrum. The dashed red line on the 

global wavelet spectrum denotes the 95% confidence level. 
Figure B.10 | Detrended reconstructed PDSI time series (top), continuous wavelet spectrum 

(bottom), and global wavelet spectrum (right) for grid number 56 of the Cook et al. [2008] 

dataset. 
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Notes: The black dotted outline on the continuous wavelet spectrum represents the COI. The 5% significance level 

against red noise is shown as a thin red contour on the continuous wavelet spectrum. The dashed red line on the 

global wavelet spectrum denotes the 95% confidence level. 
Figure B.11 | Detrended reconstructed PDSI time series (top), continuous wavelet spectrum 

(bottom), and global wavelet spectrum (right) for grid number 57 of the Cook et al. [2008] 

dataset. 
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Notes: The black dotted outline on the continuous wavelet spectrum represents the COI. The 5% significance level 

against red noise is shown as a thin red contour on the continuous wavelet spectrum. The dashed red line on the 

global wavelet spectrum denotes the 95% confidence level. 
Figure B.12 | Detrended reconstructed PDSI time series (top), continuous wavelet spectrum 

(bottom), and global wavelet spectrum (right) for grid number 58 of the Cook et al. [2008] 

dataset. 
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Notes: The black dotted outline on the continuous wavelet spectrum represents the COI. The 5% significance level 

against red noise is shown as a thin red contour on the continuous wavelet spectrum. The dashed red line on the 

global wavelet spectrum denotes the 95% confidence level. 
Figure B.13 | Detrended reconstructed PDSI time series (top), continuous wavelet spectrum 

(bottom), and global wavelet spectrum (right) for grid number 69 of the Cook et al. [2008] 

dataset. 
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Notes: The black dotted outline on the continuous wavelet spectrum represents the COI. The 5% significance level 

against red noise is shown as a thin red contour on the continuous wavelet spectrum. The dashed red line on the 

global wavelet spectrum denotes the 95% confidence level. 
Figure B.14 | Detrended reconstructed PDSI time series (top), continuous wavelet spectrum 

(bottom), and global wavelet spectrum (right) for grid number 70 of the Cook et al. [2008] 

dataset. 



161 

 

 
Notes: The black dotted outline on the continuous wavelet spectrum represents the COI. The 5% significance level 

against red noise is shown as a thin red contour on the continuous wavelet spectrum. The dashed red line on the 

global wavelet spectrum denotes the 95% confidence level. 
Figure B.15 | Detrended reconstructed PDSI time series (top), continuous wavelet spectrum 

(bottom), and global wavelet spectrum (right) for grid number 71 of the Cook et al. [2008] 

dataset. 
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Notes: The black dotted outline on the continuous wavelet spectrum represents the COI. The 5% significance level 

against red noise is shown as a thin red contour on the continuous wavelet spectrum. The dashed red line on the 

global wavelet spectrum denotes the 95% confidence level. 
Figure B.16 | Detrended reconstructed PDSI time series (top), continuous wavelet spectrum 

(bottom), and global wavelet spectrum (right) for grid number 83 of the Cook et al. [2008] 

dataset. 
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Notes: The black dotted outline on the continuous wavelet spectrum represents the COI. The 5% significance level 

against red noise is shown as a thin red contour on the continuous wavelet spectrum. The dashed red line on the 

global wavelet spectrum denotes the 95% confidence level. 
Figure B.17 | Detrended reconstructed PDSI time series (top), continuous wavelet spectrum 

(bottom), and global wavelet spectrum (right) for grid number 84 of the Cook et al. [2008] 

dataset. 
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Notes: The black dotted outline on the continuous wavelet spectrum represents the COI. The 5% significance level 

against red noise is shown as a thin red contour on the continuous wavelet spectrum. The dashed red line on the 

global wavelet spectrum denotes the 95% confidence level. 
Figure B.18 | Detrended reconstructed PDSI time series (top), continuous wavelet spectrum 

(bottom), and global wavelet spectrum (right) for grid number 86 of the Cook et al. [2008] 

dataset. 
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Notes: The black dotted outline on the continuous wavelet spectrum represents the COI. The 5% significance level 

against red noise is shown as a thin red contour on the continuous wavelet spectrum. The dashed red line on the 

global wavelet spectrum denotes the 95% confidence level. 
Figure B.19 | Detrended reconstructed PDSI time series (top), continuous wavelet spectrum 

(bottom), and global wavelet spectrum (right) for grid number 99 of the Cook et al. [2008] 

dataset. 
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Notes: The black dotted outline on the continuous wavelet spectrum represents the COI. The 5% significance level 

against red noise is shown as a thin red contour on the continuous wavelet spectrum. The dashed red line on the 

global wavelet spectrum denotes the 95% confidence level. 
Figure B.20 | Detrended reconstructed PDSI time series (top), continuous wavelet spectrum 

(bottom), and global wavelet spectrum (right) for grid number 100 of the Cook et al. [2008] 

dataset. 
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Notes: The black dotted outline on the continuous wavelet spectrum represents the COI. The 5% significance level 

against red noise is shown as a thin red contour on the continuous wavelet spectrum. The dashed red line on the 

global wavelet spectrum denotes the 95% confidence level. 
Figure B.21 | Detrended reconstructed PDSI time series (top), continuous wavelet spectrum 

(bottom), and global wavelet spectrum (right) for grid number 101 of the Cook et al. [2008] 

dataset. 
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Notes: The black dotted outline on the continuous wavelet spectrum represents the COI. The 5% significance level 

against red noise is shown as a thin red contour on the continuous wavelet spectrum. The dashed red line on the 

global wavelet spectrum denotes the 95% confidence level. 
Figure B.22 | Detrended reconstructed PDSI time series (top), continuous wavelet spectrum 

(bottom), and global wavelet spectrum (right) for grid number 102 of the Cook et al. [2008] 

dataset. 
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B.2. Additional Cross Wavelet Transform Plots 

 

 
Notes: The thin black represents the COI. The 5% significance level against red noise is shown as a thick contour. 

The relative phase relationship is shown as arrows (with in-phase pointing right and anti-phase pointing left). 
Figure B.23 | Cross wavelet transform of the re-sampled PDSI time series for grid  number 25 of 

the Cook et al. [2008] dataset and the reconstructed total solar irradiance record of Steinhilber et 

al. [2009]. 



170 

 

 
Notes: The thin black represents the COI. The 5% significance level against red noise is shown as a thick contour. 

The relative phase relationship is shown as arrows (with in-phase pointing right and anti-phase pointing left). 
Figure B.24 | Cross wavelet transform of the re-sampled PDSI time series for grid  number 32 of 

the Cook et al. [2008] dataset and the reconstructed total solar irradiance record of Steinhilber et 

al. [2009]. 
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Notes: The thin black represents the COI. The 5% significance level against red noise is shown as a thick contour. 

The relative phase relationship is shown as arrows (with in-phase pointing right and anti-phase pointing left). 
Figure B.25 | Cross wavelet transform of the re-sampled PDSI time series for grid  number 33 of 

the Cook et al. [2008] dataset and the reconstructed total solar irradiance record of Steinhilber et 

al. [2009]. 
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Notes: The thin black represents the COI. The 5% significance level against red noise is shown as a thick contour. 

The relative phase relationship is shown as arrows (with in-phase pointing right and anti-phase pointing left). 
Figure B.26 | Cross wavelet transform of the re-sampled PDSI time series for grid  number 34 of 

the Cook et al. [2008] dataset and the reconstructed total solar irradiance record of Steinhilber et 

al. [2009]. 
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Notes: The thin black represents the COI. The 5% significance level against red noise is shown as a thick contour. 

The relative phase relationship is shown as arrows (with in-phase pointing right and anti-phase pointing left). 
Figure B.27 | Cross wavelet transform of the re-sampled PDSI time series for grid  number 35 of 

the Cook et al. [2008] dataset and the reconstructed total solar irradiance record of Steinhilber et 

al. [2009]. 
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Notes: The thin black represents the COI. The 5% significance level against red noise is shown as a thick contour. 

The relative phase relationship is shown as arrows (with in-phase pointing right and anti-phase pointing left). 
Figure B.28 | Cross wavelet transform of the re-sampled PDSI time series for grid  number 43 of 

the Cook et al. [2008] dataset and the reconstructed total solar irradiance record of Steinhilber et 

al. [2009]. 
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Notes: The thin black represents the COI. The 5% significance level against red noise is shown as a thick contour. 

The relative phase relationship is shown as arrows (with in-phase pointing right and anti-phase pointing left). 
Figure B.29 | Cross wavelet transform of the re-sampled PDSI time series for grid  number 44 of 

the Cook et al. [2008] dataset and the reconstructed total solar irradiance record of Steinhilber et 

al. [2009]. 
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Notes: The thin black represents the COI. The 5% significance level against red noise is shown as a thick contour. 

The relative phase relationship is shown as arrows (with in-phase pointing right and anti-phase pointing left). 
Figure B.30 | Cross wavelet transform of the re-sampled PDSI time series for grid  number 45 of 

the Cook et al. [2008] dataset and the reconstructed total solar irradiance record of Steinhilber et 

al. [2009]. 
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Notes: The thin black represents the COI. The 5% significance level against red noise is shown as a thick contour. 

The relative phase relationship is shown as arrows (with in-phase pointing right and anti-phase pointing left). 
Figure B.31 | Cross wavelet transform of the re-sampled PDSI time series for grid  number 46 of 

the Cook et al. [2008] dataset and the reconstructed total solar irradiance record of Steinhilber et 

al. [2009]. 
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Notes: The thin black represents the COI. The 5% significance level against red noise is shown as a thick contour. 

The relative phase relationship is shown as arrows (with in-phase pointing right and anti-phase pointing left). 
Figure B.32 | Cross wavelet transform of the re-sampled PDSI time series for grid  number 55 of 

the Cook et al. [2008] dataset and the reconstructed total solar irradiance record of Steinhilber et 

al. [2009]. 
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Notes: The thin black represents the COI. The 5% significance level against red noise is shown as a thick contour. 

The relative phase relationship is shown as arrows (with in-phase pointing right and anti-phase pointing left). 
Figure B.33 | Cross wavelet transform of the re-sampled PDSI time series for grid  number 56 of 

the Cook et al. [2008] dataset and the reconstructed total solar irradiance record of Steinhilber et 

al. [2009]. 
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Notes: The thin black represents the COI. The 5% significance level against red noise is shown as a thick contour. 

The relative phase relationship is shown as arrows (with in-phase pointing right and anti-phase pointing left). 
Figure B.34  | Cross wavelet transform of the re-sampled PDSI time series for grid  number 57 

of the Cook et al. [2008] dataset and the reconstructed total solar irradiance record of Steinhilber 

et al. [2009]. 
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Notes: The thin black represents the COI. The 5% significance level against red noise is shown as a thick contour. 

The relative phase relationship is shown as arrows (with in-phase pointing right and anti-phase pointing left). 
Figure B.35 | Cross wavelet transform of the re-sampled PDSI time series for grid  number 58 of 

the Cook et al. [2008] dataset and the reconstructed total solar irradiance record of Steinhilber et 

al. [2009]. 
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Notes: The thin black represents the COI. The 5% significance level against red noise is shown as a thick contour. 

The relative phase relationship is shown as arrows (with in-phase pointing right and anti-phase pointing left). 
Figure B.36 | Cross wavelet transform of the re-sampled PDSI time series for grid  number 68 of 

the Cook et al. [2008] dataset and the reconstructed total solar irradiance record of Steinhilber et 

al. [2009]. 
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Notes: The thin black represents the COI. The 5% significance level against red noise is shown as a thick contour. 

The relative phase relationship is shown as arrows (with in-phase pointing right and anti-phase pointing left). 
Figure B.37 | Cross wavelet transform of the re-sampled PDSI time series for grid  number 69 of 

the Cook et al. [2008] dataset and the reconstructed total solar irradiance record of Steinhilber et 

al. [2009]. 
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Notes: The thin black represents the COI. The 5% significance level against red noise is shown as a thick contour. 

The relative phase relationship is shown as arrows (with in-phase pointing right and anti-phase pointing left). 
Figure B.38 | Cross wavelet transform of the re-sampled PDSI time series for grid  number 70 of 

the Cook et al. [2008] dataset and the reconstructed total solar irradiance record of Steinhilber et 

al. [2009]. 



185 

 

 
Notes: The thin black represents the COI. The 5% significance level against red noise is shown as a thick contour. 

The relative phase relationship is shown as arrows (with in-phase pointing right and anti-phase pointing left). 
Figure B.39 | Cross wavelet transform of the re-sampled PDSI time series for grid  number 71 of 

the Cook et al. [2008] dataset and the reconstructed total solar irradiance record of Steinhilber et 

al. [2009]. 
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Notes: The thin black represents the COI. The 5% significance level against red noise is shown as a thick contour. 

The relative phase relationship is shown as arrows (with in-phase pointing right and anti-phase pointing left). 
Figure B.40 | Cross wavelet transform of the re-sampled PDSI time series for grid  number 83 of 

the Cook et al. [2008] dataset and the reconstructed total solar irradiance record of Steinhilber et 

al. [2009]. 
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Notes: The thin black represents the COI. The 5% significance level against red noise is shown as a thick contour. 

The relative phase relationship is shown as arrows (with in-phase pointing right and anti-phase pointing left). 
Figure B.41 | Cross wavelet transform of the re-sampled PDSI time series for grid  number 84 of 

the Cook et al. [2008] dataset and the reconstructed total solar irradiance record of Steinhilber et 

al. [2009]. 
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Notes: The thin black represents the COI. The 5% significance level against red noise is shown as a thick contour. 

The relative phase relationship is shown as arrows (with in-phase pointing right and anti-phase pointing left). 
Figure B.42 | Cross wavelet transform of the re-sampled PDSI time series for grid  number 86 of 

the Cook et al. [2008] dataset and the reconstructed total solar irradiance record of Steinhilber et 

al. [2009]. 
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Notes: The thin black represents the COI. The 5% significance level against red noise is shown as a thick contour. 

The relative phase relationship is shown as arrows (with in-phase pointing right and anti-phase pointing left). 
Figure B.43 | Cross wavelet transform of the re-sampled PDSI time series for grid  number 99 of 

the Cook et al. [2008] dataset and the reconstructed total solar irradiance record of Steinhilber et 

al. [2009]. 
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Notes: The thin black represents the COI. The 5% significance level against red noise is shown as a thick contour. 

The relative phase relationship is shown as arrows (with in-phase pointing right and anti-phase pointing left). 
Figure B.44 | Cross wavelet transform of the re-sampled PDSI time series for grid  number 100 

of the Cook et al. [2008] dataset and the reconstructed total solar irradiance record of Steinhilber 

et al. [2009]. 
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Notes: The thin black represents the COI. The 5% significance level against red noise is shown as a thick contour. 

The relative phase relationship is shown as arrows (with in-phase pointing right and anti-phase pointing left). 
Figure B.45 | Cross wavelet transform of the re-sampled PDSI time series for grid  number 102 

of the Cook et al. [2008] dataset and the reconstructed total solar irradiance record of Steinhilber 

et al. [2009]. 
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B.3. Additional Wavelet Coherence Plots 

 

 
Notes: The thin black represents the COI. The 5% significance level against red noise is shown as a thick contour. 
Figure B.46 | Squared wavelet coherence between the re-sampled PDSI time series for grid  

number 25 of the Cook et al. [2008] dataset and the reconstructed total solar irradiance record of 

Steinhilber et al. [2009]. 
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Notes: The thin black represents the COI. The 5% significance level against red noise is shown as a thick contour. 
Figure B.47 | Squared wavelet coherence between the re-sampled PDSI time series for grid  

number 32 of the Cook et al. [2008] dataset and the reconstructed total solar irradiance record of 

Steinhilber et al. [2009]. 
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Notes: The thin black represents the COI. The 5% significance level against red noise is shown as a thick contour. 
Figure B.48 | Squared wavelet coherence between the re-sampled PDSI time series for grid  

number 33 of the Cook et al. [2008] dataset and the reconstructed total solar irradiance record of 

Steinhilber et al. [2009]. 
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Notes: The thin black represents the COI. The 5% significance level against red noise is shown as a thick contour. 
Figure B.49 | Squared wavelet coherence between the re-sampled PDSI time series for grid  

number 34 of the Cook et al. [2008] dataset and the reconstructed total solar irradiance record of 

Steinhilber et al. [2009]. 
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Notes: The thin black represents the COI. The 5% significance level against red noise is shown as a thick contour. 
Figure B.50 | Squared wavelet coherence between the re-sampled PDSI time series for grid  

number 35 of the Cook et al. [2008] dataset and the reconstructed total solar irradiance record of 

Steinhilber et al. [2009]. 
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Notes: The thin black represents the COI. The 5% significance level against red noise is shown as a thick contour. 
Figure B.51 | Squared wavelet coherence between the re-sampled PDSI time series for grid  

number 43 of the Cook et al. [2008] dataset and the reconstructed total solar irradiance record of 

Steinhilber et al. [2009]. 
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Notes: The thin black represents the COI. The 5% significance level against red noise is shown as a thick contour. 
Figure B.52 | Squared wavelet coherence between the re-sampled PDSI time series for grid  

number 44 of the Cook et al. [2008] dataset and the reconstructed total solar irradiance record of 

Steinhilber et al. [2009]. 
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Notes: The thin black represents the COI. The 5% significance level against red noise is shown as a thick contour. 
Figure B.53 | Squared wavelet coherence between the re-sampled PDSI time series for grid  

number 45 of the Cook et al. [2008] dataset and the reconstructed total solar irradiance record of 

Steinhilber et al. [2009]. 
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Notes: The thin black represents the COI. The 5% significance level against red noise is shown as a thick contour. 
Figure B.54 | Squared wavelet coherence between the re-sampled PDSI time series for grid  

number 46 of the Cook et al. [2008] dataset and the reconstructed total solar irradiance record of 

Steinhilber et al. [2009]. 



201 

 

 
Notes: The thin black represents the COI. The 5% significance level against red noise is shown as a thick contour. 
Figure B.55 | Squared wavelet coherence between the re-sampled PDSI time series for grid  

number 55 of the Cook et al. [2008] dataset and the reconstructed total solar irradiance record of 

Steinhilber et al. [2009]. 
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Notes: The thin black represents the COI. The 5% significance level against red noise is shown as a thick contour. 
Figure B.56 | Squared wavelet coherence between the re-sampled PDSI time series for grid  

number 56 of the Cook et al. [2008] dataset and the reconstructed total solar irradiance record of 

Steinhilber et al. [2009]. 
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Notes: The thin black represents the COI. The 5% significance level against red noise is shown as a thick contour. 
Figure B.57 | Squared wavelet coherence between the re-sampled PDSI time series for grid  

number 57 of the Cook et al. [2008] dataset and the reconstructed total solar irradiance record of 

Steinhilber et al. [2009]. 
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Notes: The thin black represents the COI. The 5% significance level against red noise is shown as a thick contour. 
Figure B.58 | Squared wavelet coherence between the re-sampled PDSI time series for grid  

number 58 of the Cook et al. [2008] dataset and the reconstructed total solar irradiance record of 

Steinhilber et al. [2009]. 
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Notes: The thin black represents the COI. The 5% significance level against red noise is shown as a thick contour. 
Figure B.59 | Squared wavelet coherence between the re-sampled PDSI time series for grid  

number 68 of the Cook et al. [2008] dataset and the reconstructed total solar irradiance record of 

Steinhilber et al. [2009]. 
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Notes: The thin black represents the COI. The 5% significance level against red noise is shown as a thick contour. 
Figure B.60 | Squared wavelet coherence between the re-sampled PDSI time series for grid  

number 69 of the Cook et al. [2008] dataset and the reconstructed total solar irradiance record of 

Steinhilber et al. [2009]. 
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Notes: The thin black represents the COI. The 5% significance level against red noise is shown as a thick contour. 
Figure B.61 | Squared wavelet coherence between the re-sampled PDSI time series for grid  

number 70 of the Cook et al. [2008] dataset and the reconstructed total solar irradiance record of 

Steinhilber et al. [2009]. 
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Notes: The thin black represents the COI. The 5% significance level against red noise is shown as a thick contour. 
Figure B.62 | Squared wavelet coherence between the re-sampled PDSI time series for grid  

number 71 of the Cook et al. [2008] dataset and the reconstructed total solar irradiance record of 

Steinhilber et al. [2009]. 
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Notes: The thin black represents the COI. The 5% significance level against red noise is shown as a thick contour. 
Figure B.63 | Squared wavelet coherence between the re-sampled PDSI time series for grid  

number 83 of the Cook et al. [2008] dataset and the reconstructed total solar irradiance record of 

Steinhilber et al. [2009]. 
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Notes: The thin black represents the COI. The 5% significance level against red noise is shown as a thick contour. 
Figure B.64 | Squared wavelet coherence between the re-sampled PDSI time series for grid  

number 84 of the Cook et al. [2008] dataset and the reconstructed total solar irradiance record of 

Steinhilber et al. [2009]. 
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Notes: The thin black represents the COI. The 5% significance level against red noise is shown as a thick contour. 
Figure B.65 | Squared wavelet coherence between the re-sampled PDSI time series for grid  

number 86 of the Cook et al. [2008] dataset and the reconstructed total solar irradiance record of 

Steinhilber et al. [2009]. 
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Notes: The thin black represents the COI. The 5% significance level against red noise is shown as a thick contour. 
Figure B.66 | Squared wavelet coherence between the re-sampled PDSI time series for grid  

number 99 of the Cook et al. [2008] dataset and the reconstructed total solar irradiance record of 

Steinhilber et al. [2009]. 
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Notes: The thin black represents the COI. The 5% significance level against red noise is shown as a thick contour. 
Figure B.67 | Squared wavelet coherence between the re-sampled PDSI time series for grid  

number 100 of the Cook et al. [2008] dataset and the reconstructed total solar irradiance record 

of Steinhilber et al. [2009]. 
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Notes: The thin black represents the COI. The 5% significance level against red noise is shown as a thick contour. 
Figure B.68 | Squared wavelet coherence between the re-sampled PDSI time series for grid  

number 101 of the Cook et al. [2008] dataset and the reconstructed total solar irradiance record 

of Steinhilber et al. [2009]. 
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APPENDIX C 

 

FINITE ELEMENT GROUNDWATER MODEL CODE 

 

 

This Appendix contains the MATLAB code for the finite element groundwater model. 

 

 

C.1. MATLAB Code for Finite Element Groundwater Model 

 

% MATLAB code to solve the transient groundwater flow equation using  

% the finite element method. The work was done as part of a Ph.D.  

% project at Vanderbilt University from 2009-2017. 

  

% Authors: Leslie Lyons Duncan, George Hornberger 

% Corresponding Author: Leslie Lyons Duncan  

% (leslie.l.duncan@gmail.com) 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% DEFINITION OF VARIABLES  

% NOTE: UNITS ARE GIVEN IN [BRACKETS] AND MATRIX DIMENSIONS ARE GIVEN  

% IN (PARENTHESES) WHERE APPLICABLE. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% MAIN SCRIPT (fem_main.m) % % % % % % % % % % % % % % % % % % % % % %  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% 

% NOTES:     The variable params is composed of data contained within  

% the external data file params_ROSETTA.in produced by  

% ROSETTA. ROSETTA is a USDA program that uses properties  

% from surrogate soil data (such as texture data and bulk  

% density) to estimate these hydraulic properties: (1) water  

% retention parameters according to van Genuchten (1980);  

% (2) saturated hydraulic conductivity; and (3) unsaturated  

% hydraulic conductivity parameters according to van  

% Genuchten (1980) and Mualem (1976). The van Genuchten  

% unsaturated soil hydraulic properties estimated from %

 ROSETTA were used to estimate the relatedparameters (i.e.,  

% A anc c) for the Cooley and Westphal (1974) model to  

% define unsaturated soil hydraulic properties.  

%            M = NUMBER OF ELEMENTS 
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%            N = NUMBER OF NODES 

%            U = NUMBER OF DIFFERENT GEOLOGIC UNITS 

% 

% Av:        Empirical parameter used to interrelate values of pressure 

%            head, relative permeability, and water saturation (1xU) 

% alpha:     Basis function coefficients for nodes i, j, and k for all  

%            elements (Mx3) 

% beta:      Basis function coefficients for nodes i, j, and k for all  

%            elements (Mx3) 

% beti:      Beta value for node i of element number elem (1x1) 

% betj:      Beta value for node j of element number elem (1x1) 

% betk:      Beta value for node k of element number elem (1x1) 

% cv:        Empirical parameter used to interrelate values of pressure 

%            head, relative permeability, and water saturation (1xU) 

% d:         Empirical parameter used to interrelate values of pressure 

%            head, relative permeability, and water saturation (1x1) 

% delt:      Element area of element number elem (1x1) 

% delta:     Element areas for all elements (Equation (11.3) on pg. 11- 

% 3 of Hornberger and Wiberg (2005)) (Mx1) 

% delta_t:   Time step [HR] 

% dSedp:     The first derivative of effective saturation with respect  

% to pressure head (dSe/dpsi in Equation (5) of Cooley  

% (1983))  

% dum:       Dummy variable used to calculate ksat 

% elem:      Element number  

% F:         Left-hand vector - i.e., the global coefficient matrix  

% plus the time derivative term matrix (NxN) 

% FF:        Dummy variable from Equation (6) of Cooley (1983) used to 

%            calculate zeta 

% G:         Global coefficient matrix (NxN) 

% gamma:     Basis function coefficients for nodes i, j, and k for all  

%            elements (Mx3) 

% h:         Total hydraulic head [FT] (Nx1) 

% h_half:    Prediction of total hydraulic head at 1/2 time step  

% (Douglas and Jones (1963)) [FT] 

% h_old:     Hydraulic head at each of N nodes at the previous time  

% step [FT] (Nx1)           

% i:         Node i value of element number elem (1x1) 

% j:         Node j value of element number elem (1x1) 

% k:         Node k value of element number elem (1x1) 

% kr:        Relative permeability, which is assumed to be a scalar  

% function of water saturation (Sw) (Equation (3) of Cooley  

% (1983)) [FT/HR] (Nx1) 

% Kx:        Horizonatal saturated hydraulic conductivity in element  

% number order [FT/HR] (Mx1) 

% Kz:        Vertical saturated hydraulic conductivity in element 

% number order [FT/HR] (Mx1) 

% ln_pnd:    Distance between pond boundary nodes [FT] 

% ln_top:    Distance between top boundary nodes (includes pond nodes)  

% [FT]  

% lx_pnd:    Difference between x coordinate values for pond boundary  

% nodes [FT] 
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% lx_top:   Difference between x coordinate values for top boundary  

% nodes [FT] 

% lz_pnd:   Difference between z coordinate values for pond boundary  

% nodes [FT] 

% lz_top:   Difference between z coordinate values for top boundary  

% nodes [FT] 

% n:         Porosity in element number order [DIMENSIONLESS] (Mx1)  

% P:         Time derivative term matrix (NxN) 

% param:     Empirical parameters (i.e., A, c, and d) used to  

% interrelate values of pressure head, relative 

% permeability, and water saturation (Cooley, 1983; Cooley  

% and Westphal, 1974) (Ux3) 

% params:    van Genuchten parameter alpha (related to inverse of air  

% entry suction; row 1), van Genuchten parameter n (related  

% to pore size distribution; row 2), van Genuchten parameter  

% theta_s (saturated moisture content; row 3), van Genuchten 

% parameter theta_r (residual moisture content; row 4),  

% horizontal saturated hydraulic conductivity (row 5),  

% vertical saturated hydrualic conductivity (row 6),  

% specific storage (row 7), and porosity (row 8); there are  

% 5 columns which correspond to each different geologic unit  

% (10xU) 

% ph:        Pressure head at each of N nodes at the previous time step  

% [FT] (Nx1) 

% ph_init:   Pressure head at each of N nodes, as determined from  

% steady state model [Nx1]  

% pptr:      Hourly precipitation recharge data within simulation time 

%            [FT/HR] (tx1) 

% RHS:       Right-hand vector (Nx1) 

% Se:        Effective saturation 

% Sf:        Dummy variable from Equation (7) of Cooley (1983) used to 

%            calculate zeta 

% seepf:     Seepage face nodes at or below the river stage 

% seepface:  Seepage face nodes - i.e., all nodes along the river bank  

% that are at or below the water table 

% sface:     Seepage face nodes above the river stage 

% stage:     Hourly river stage data within simulation time [FT ASL]  

% (tx1) 

% Sr:        Residual, or non-moving, water saturation in element  

% number order [DIMENSIONLESS] (Mx1) 

% Ss:        Specific storage in element number order [1/FT] (Mx1)   

% Sw:        Water saturation (varies between 0 for dry condtions and 1  

% for saturated conditions) 

% Sy:        Specific yield [DIMENSIONLESS] 

% t:         Number of time steps (and total simulatioin time) [HR]a 

% tt:        Elapsed time within simulation [HR] 

% zeta:      First term of time derivative in Equation (5) of Cooley  

% (1983) 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% FUNCTIONS % % % % % % % % % % % % % % % % % % % % % % % % % % % % %  
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

% get_mesh.m % % % % % % % % % % % % % % % % % % % % % % % % % % % % %  

% 

% NOTES:     This function reads external data files produced by a mesh 

%            generation software. These data files contain information 

%            regarding mesh connectivities, soil type identities, and 

%            boundary condition assignments. 

%            M = Number OF ELEMENTS 

%            N = NUMBER OF NODES 

% 

% coordin:   Node number (column 1), x coordinate (column 2), z  

% coordinate (column 3), and boundary condition assignment  

% (column 4) for each of N nodes (Nx4) 

% ele2nd:    Elements attached to each N node (Nx10); see comments in  

% lines 70-73 of getmesh.m 

% frst:      Node i (for element) or x coordinate, in feet, (for node)  

% for each data entry ((M+N)x1) 

% frth:      Index specifying geologic unit type for each element  

% (index is zero for each node) ((M+N)x1) 

% ind:       Index specifying the data entry type - i.e., E3T for 

% element or ND for node - within 2D_Mesh_data.2dm ((M+N)x1) 

% ndbnk:     Nodes on seepage face boundary (i.e., nodes between stream  

% and no flux boundary), sorted in ascending x coordinate  

% order 

% ndbtm:     Nodes on bottom boundary of mesh (i.e., z coordinate = 0),  

%            sorted in ascending x coordinate order    

% ndlft:     Nodes on left boundary (i.e., x coordinate = minimum),  

% sorted in descending z coordinate order 

% ndpnd:     Nodes on pond boundary of mesh, sorted in ascending x 

%            coordinate order 

% ndrgt:     Nodes on right boundary of mesh (i.e., x coordinate =  

% maximum), sorted in ascending z coordinate order 

% ndstm:     Nodes on stream boundary of mesh (i.e., nodes in stream  

%            channel), sorted in ascending x coordinate order 

% ndtop:     Nodes on top boundary of mesh, sorted in ascending x  

% coordinate order (includes nodes on pond boundary of mesh) 

% nele2nd:   Number of elements attached to each N node (Nx1) 

% nelem:     Number of elements (1x1) 

% nnodes:    Number of nodes (1x1) 

% node:      Nodes numbered in ascending order (Nx1) 

% nodes:     i, j, and k nodes for each of M elements (Mx3) 

% nodexz:    x (column 1) and z (column 2) coordinates for each of N  

% nodes (Nx2) 

% num:       Element or node number for each data entry ((M+N)x1) 

% scnd:      Node j (for element) or z coordinate, in feet, (for node)  

% for each data entry ((M+N)x1) 

% soilid:    Index specifying geologic unit type for each of M elements  

%            (Mx1) 

% temp:      Temporary variable used to sort boundary nodes in  

% ascending order, based either on the the x or z  
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% coordinates 

% thrd:     Node k (for element) or placeholder - i.e., zero - (for  

% node) for each data entry  ((M+N)x1) 

  

% SeD.m % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 

% 

% NOTES:     This function calculates the effective saturation from  

% pressure head and the empirical parameters A, c, and d  

% (Cooley, 1983; Cooley and Westphal, 1974). 

%            N = NUMBER OF NODES 

%            U = NUMBER OF GEOLOGIC UNITS 

% 

% A:         Empirical parameter, for each of U geologic units, used to  

%            interrelate values of pressure head, relative  

% permeability, and water saturation repeated N times in  

% adjoining columns (NxU) 

% c:         Empirical parameter, for each of U geologic units, used to  

%            interrelate values of pressure head, relative  

% permeability, and water saturation repeated N times in  

% adjoining columns (NxU) 

% nr:        Number of rows in the variable param (equal to the number  

% of geologic units) 

% ph:       Pressure head at each of N nodes at the previous time step 

% [FT] (Nx1) 

% phm:      Matrix of pressure head at each of N nodes at the previous 

% time step repeated in adjoining columns for each of U  

% geologic units [FT] (NxU) 

% Se:       Effective saturation at each of N nodes for each of U 

% geologic units (NxU) 

  

% dSedp.m % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %  

% 

% NOTES:     This function calculates the first derivative of effective 

%            saturation (Se) with respect to pressure head (ph). This 

%            function uses pressure head and the empirical parameters %

 A, c, and d (Cooley, 1983; Cooley and Westphal, 1974). 

%           N  = NUMBER OF NODES 

%           U = NUMBER OF GEOLOGIC UNITS 

% 

% A:         Empirical parameter, for each of U geologic units, used to  

%            interrelate values of pressure head, relative  

% permeability, and water saturation repeated N times in  

% adjoining columns (NxU) 

% c:         Empirical parameter, for each of U geologic units, used to  

%            interrelate values of pressure head, relative  

% permeability, and water saturation repeated N times in  

% adjoining columns (NxU) 

% dSedp:    The first derivative of effective saturation with respect  

% to pressure head (dSe/dpsi in Equation (5) of Cooley  

% (1983)) at each of N nodes for each of U geologic units  

% (NxU) 
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% nr:        Number of rows in the variable param (equal to the number  

%            geologic units) 

% ph:        Pressure head at each of N nodes at the previous time step 

% [FT] (Nx1) 

% phm:       Matrix of pressure head at each of N nodes at the previous  

% time step repeated in adjoining columns for each of U  

% geologic units [FT] (NxU)      

  

% krelt.m % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %  

% 

% NOTES:     This function calculates the relative permeability, which  

% is assumed to be a scalar function of water saturation  

% (Sw). This function uses pressure head and the empirical  

% parameters A, c, and d (Cooley, 1983; Cooley and Westphal,  

% 1974). 

%            N = NUMBER OF NODES 

%            U = NUMBER OF GEOLOGIC UNITS 

% 

% A:         Empirical parameter, for each of U geologic units, used to  

%            interrelate values of pressure head, relative  

% permeability, and water saturation repeated N times in  

% adjoining columns (NxU) 

% c:        Empirical parameter, for each of U geologic units, used to  

%           interrelate values of pressure head, relative permeability 

% permeability, and water saturation repeated N times in  

%            adjoining columns (NxU) 

% d:         Empirical parameter used to interrelate values of pressure 

%            head, relative permeability, and water saturation repeated  

%            N times in adjoining U columns (NxU) 

% kr:        Relative permeability, which is assumed to be a scalar  

% function of water saturation (Sw), at each of N nodes for  

% each of U geologic units (NxU) (Equation (3) of Cooley  

%  (1983)) (NxU) 

% ph:        Pressure head at each of N nodes at the previous time step  

% [FT] (Nx1) 

% phm:       Matrix of pressure head at each of N nodes at the previous  

% time step repeated in adjoining columns for each of U  

% geologic units [FT] (NxU)  

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% REFERENCES % % % % % % % % % % % % % % % % % % % % % % % % % % % % %  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

% Brooks, R. H., and A. T. Corey (1966). Properties of porous media 

% affecting fluid flow. J. Irrig. Drain. Div. Am. Soc. Civ. Eng. 

% 92(IR2): 61-68. 

 

% Cooley, R. L. (1983). Some neew procedures for numerical solution of 

% variably saturated flow problems. Water Resour. Res. 19(5):1271- 

% 1285. 
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% Cooley, R. L. and J. A. Westphal (1974). An evaluation of the theory 

% of ground-water and river-water interchange, Winnemucca Reach of the 

% Humboldt River, Nevada. Hydrol. Water Resour. Publ. 19, 74 pp., 

% Cent. For Water Resour. Res., Univ. of Nev., Reno. 

  

% Douglas, J. J. and B. F. Jones (1963). On predictor-corrector method 

% for non-linear paraboloc differential equations. J. SIAM, 11: 195 

% 204. 

  

% Hornberger, G. and P. Wiberg (2005). Numerical Methods in the 

% Hydrological Sciences. AGU, Washington, DC. 

  

% Mualem, Y. (1976). A new model predicting the hydraulic conductivity 

% of unsaturated porous media. Water Resour. Res. 12: 513-522. 

  

% van Genuchten, M. Th. (1980). A closed-form equation for predicting 

% the hydraulic conductivity of unsaturated soils. Soil Sci. Am. J. 

% 44: 892-898. 

  

%% MATLAB CODE 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% BEGIN % % % % % % % % % % % % % % % %  % % % % % % % % % % % % % % %  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

tic 

clear all; 

clc; 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% READ IN EXTERNALLY CREATED MESH % % % % % % % % % % % % % % % % % %  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

[nodexz nodes nnodes nelem nbnd nbes belnd bnode bdrynode ndbnk ...  

 ndbtm ndlft ndrgt ndstm ndtop Neumann channd nchand eletobn ...   

 nchanes elechan ele2nd nele2nd soilid tbnode] = getmesh_test; 

  

clearvars coordin ndbtm ndlft ele2nd nele2nd 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% DEFINE UNSATURATED AND SATURATED SOIL HYDRAULIC PROPERTIES 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

fid = fopen('params_ROSETTA.in'); 

CC = textscan(fid,'%s %f %f %f %f %f','headerlines',1); 

params(:,1) = CC{1,2}; 

params(:,2) = CC{1,3}; 

params(:,3) = CC{1,4}; 

params(:,4) = CC{1,5}; 
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params(:,5) = CC{1,6}; 

  

clearvars CC 

  

dum = ones(nelem,1); 

  

% Assign residual water saturation based on geologic unit type 

Sr(:,1) = dum*params(4,1); 

Sr(soilid == 2,1) = dum(soilid == 2)*params(4,2); 

Sr(soilid == 3,1) = dum(soilid == 3)*params(4,3); 

Sr(soilid == 4,1) = dum(soilid == 4)*params(4,4); 

Sr(soilid == 5,1) = dum(soilid == 5)*params(4,5); 

  

% Hydraulic conductivity values are multiplied by 1.4273, since 

% initial groundwater model results indicated that original hydraulic 

% conductivity values were too small to push desired rate of water 

% through the domain. 

% Assign horizontal hydraulic conductivity, Kx, based on geologic unit 

% type 

Kx(:,1) = dum*params(5,1)*1.4273; 

Kx(soilid == 2,1) = dum(soilid == 2)*params(5,2)*1.4273; 

Kx(soilid == 3,1) = dum(soilid == 3)*params(5,3)*1.4273; 

Kx(soilid == 4,1) = dum(soilid == 4)*params(5,4)*1.4273; 

Kx(soilid == 5,1) = dum(soilid == 5)*params(5,5)*1.4273; 

  

% Assign vertical hydraulic conductivity, Kz, based on geologic unit 

% type 

Kz(:,1) = dum*params(6,1)*1.4273; 

Kz(soilid == 2,1) = dum(soilid == 2)*params(6,2)*1.4273; 

Kz(soilid == 3,1) = dum(soilid == 3)*params(6,3)*1.4273; 

Kz(soilid == 4,1) = dum(soilid == 4)*params(6,4)*1.4273; 

Kz(soilid == 5,1) = dum(soilid == 5)*params(6,5)*1.4273; 

  

% Assign specific storage, Ss, based on geologic unit type 

Ss(:,1) = dum*params(7,1); 

Ss(soilid == 2,1) = dum(soilid == 2)*params(7,2); 

Ss(soilid == 3,1) = dum(soilid == 3)*params(7,3); 

Ss(soilid == 4,1) = dum(soilid == 4)*params(7,4); 

Ss(soilid == 5,1) = dum(soilid == 5)*params(7,5); 

  

% Assign porosity, pors, based on geologic unit type 

pors(:,1) = dum*params(8,1); 

pors(soilid == 2,1) = dum(soilid == 2)*params(8,2); 

pors(soilid == 3,1) = dum(soilid == 3)*params(8,3); 

pors(soilid == 4,1) = dum(soilid == 4)*params(8,4); 

pors(soilid == 5,1) = dum(soilid == 5)*params(8,5); 

  

% Assign Cooley and Westphal empirical parameter A based on geologic 

% unit type 

A(:,1) = dum*6; 

A(soilid == 2,1) = dum(soilid == 2)*3.1; 
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A(soilid == 3,1) = dum(soilid == 3)*2; 

A(soilid == 4,1) = dum(soilid == 4)*2.2; 

A(soilid == 5,1) = dum(soilid == 5)*3.4; 

  

% Assign Cooley and Westphal empirical parameter A based on geologic 

% unit type 

c(:,1) = dum*1.2; 

c(soilid == 2,1) = dum(soilid == 2)*0.7; 

c(soilid == 3,1) = dum(soilid == 3)*0.3; 

c(soilid == 4,1) = dum(soilid == 4)*0.2; 

c(soilid == 5,1) = dum(soilid == 5)*0.8; 

  

% Assign van Genuchten parameter alpha based on geologic unit type 

alpha(:,1) = dum*params(1,1); 

alpha(soilid == 2,1) = dum(soilid == 2)*params(1,2); 

alpha(soilid == 3,1) = dum(soilid == 3)*params(1,3); 

alpha(soilid == 4,1) = dum(soilid == 4)*params(1,4); 

alpha(soilid == 5,1) = dum(soilid == 5)*params(1,5); 

  

% Assign van Genuchten parameter n based on geologic unit type.  

n(:,1) = dum*params(2,1); 

n(soilid == 2,1) = dum(soilid == 2)*params(2,2); 

n(soilid == 3,1) = dum(soilid == 3)*params(2,3); 

n(soilid == 4,1) = dum(soilid == 4)*params(2,4); 

n(soilid == 5,1) = dum(soilid == 5)*params(2,5); 

  

alphav = params(1,:); 

nv = params(2,:); 

% Calculate air entry pressure using van Genuchten parameters alpha 

% and n. 

hae = ((1-(1./nv)).^(1./nv))./alphav;  

  

Av = [6; 3.1; 2; 2.2; 3.4]; 

cv = [1.2; 0.7; 0.3; 0.2; 0.8]; 

d = repmat(2,5,1); % This exponent almost always is between 3 and 4  

% (Brooks and Corey, 1966). However, Gu (2008) uses 

% 2.       

param = [Av cv d hae']; 

FF = Sr./(1-Sr); % Equation (6) of Cooley (1983) 

Sf = (1-Sr).*Ss; % Equation (7) of Cooley (1983) 

Sy = (1-Sr).*pors; % Equation (8) of Cooley (1983) 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% LOAD DATA % % % % % % % % % % % % % % % % % % % % % % % % % % % % %  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

% Set hourly river stage for 10 years 

% BASE, CLIMATE, AND POND SIMULATIONS 

stage = ones(3652*24,1)*386.3400;  

  

% Set hourly precipitation recharge for 10 years    
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% BASE, WEEKLY HYDROGRAPH, AND ANNUAL HYDROGRAPH SIMULATIONS 

pptr = ones(3652*24,1)*7.4905*10^(-6); % base precipitation recharge 

 % rate of 20 mm/yr  

% CLIMATE SIMULATION - i.e., INCREASED RECHARGE FROM PRECIPITATION 

% pptr = ones(3652*24,1)*(7.4905*(10^(-6))*2); % double the 

%    % precipitation 

% % recharge rate of 

%                                              % 20 mm/yr  

 

% POND SIMULATION 

% pptr = ones(3652*2*24,1)*7.4905*10^(-6); % base precipitation 

% % recharge rate of 20 

%                                          % mm/yr (for 20 years) 

 

% % Set hourly pond recharge for 20 years - 10x the "normal" 

% % precipitation recharge rate of 20 mm/yr for the first 10 years and 

% % zero thereafter 

% pondr = [ones(3652*24,1)*7.4905*10^(-5); zeros(3652*24,1)]; 

                                        

% Load steady state head data - this serves as the initial 

% condition for the dynamic model 

% BASE SIMULATION 

ph_init = load('h.nonlinear_LI_newmesh_RGT527-65_Kx1-4'); 

h_old = ph_init + nodexz(:,2); 

% CLIMATE SIMULATION - i.e., INCREASED RECHARGE FROM PRECIPITATION 

% ph_init = load('h.nonlinear_LI_newmesh_RGT658-65_Kx1-4'); 

% h_old = ph_init + nodexz(:,2); 

% WEEKLY HYDROGRAPH, ANNUAL HYDROGRAPH, AND POND SIMULATIONS 

% h_init = load('h_out_Lesmesh_pptr_anisohetero_9-26-16_RGT527-65_Kx1-

4.txt'); 

% h_init = reshape(h_init,nnodes,length(h_init)/nnodes); 

% h_old = h_init(:,end); 

  

delta_t = 1; 

t = length(pptr); 

  

clearvars h_init 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% CALCULATE TOP ELEMENT DIMENSIONS (USED TO CALCULATE NORMAL RECHARGE)  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

temp = [ndbnk(end); ndtop];  % Add an extra node for the beginning of 

  % the Neumann (i.e., flux) boundary nodes 

  % vector so that the lengths of the top    

  % boundary elements can be calculated. 

                             % NOTE: This may have to be changed 

  % depending on the particular mesh and    

  % boundary conditions, 

                              

lx_top = diff(nodexz(temp,1)); 
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lz_top = diff(nodexz(temp,2)); 

ln_top = sqrt(lz_top.^2 + lx_top.^2); 

  

clearvars temp 

  

% POND SIMULATION 

% ndpnd = ndtop(nodexz(ndtop,1)>8000 & nodexz(ndtop,1)<8800); 

% temp = ndtop(nodexz(ndtop,1)>=8000 & nodexz(ndtop,1)<=8800); 

%  

% lx_pnd = diff(nodexz(temp,1)); 

% lz_pnd = diff(nodexz(temp,2)); 

% ln_pnd = sqrt(lz_pnd.^2 + lx_pnd.^2); 

%  

% clearvars temp 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% PRE-ASSIGN VARIABLE MATRICES % % % % % % % % % % % % % % % % % % % %  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

% This improves computation speed. 

G = zeros(nnodes,nnodes); 

hs = zeros(1,t); 

P = zeros(nnodes,nnodes); 

RHS = zeros(nnodes,1); 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% FLOW SIMULATION % % % % % % % % % % % % % % % % % % % % % % % % % %  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

for ii = 1:(t/2) 

    disp(['ii = ',num2str(ii),'/',num2str(t)]) 

     

    % Set river stage at time step ii  

    hs(ii) = stage(ii); 

     

    % Determine seepage face 

    seepface = ndbnk(h_old(ndbnk) >= nodexz(ndbnk,2)); 

    seepf = ndbnk(nodexz(ndbnk,2) <= hs(ii)); 

     

    % Hydraulic Properties and Associated Terms from Cooley and  

    % Westphal Model (Cooley, 1983; Cooley and Westphal, 1974) 

    ph = h_old - nodexz(:,2); 

    Se = SwD_hetero(param,ph); 

    dSep = dswdp_hetero(param,ph); 

    kr = krelt_hetero(param,ph); 

     

    G = zeros(nnodes,nnodes); 

    P = zeros(nnodes,nnodes); 

    F = zeros(nnodes,nnodes); 

    RHS = zeros(nnodes,1); 
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    for elem = 1:nelem 

        % Retrieve i, j, and k node values for element number elem 

   % from the mesh connectivity table. 

        i = nodes(elem,1); 

        j = nodes(elem,2); 

        k = nodes(elem,3); 

         

        % Retrieve i, j, and k beta values for element number elem. 

        beti = nodexz(j,2)-nodexz(k,2); 

        betj = nodexz(k,2)-nodexz(i,2); 

        betk = nodexz(i,2)-nodexz(j,2); 

         

        % Retrieve i, j, and k gamma values for element number elem. 

        gami = nodexz(k,1)-nodexz(j,1); 

        gamj = nodexz(i,1)-nodexz(k,1); 

        gamk = nodexz(j,1)-nodexz(i,1); 

         

        % Retrieve delta value for element number elem. 

        delt = (nodexz(i,1)*nodexz(j,2)-nodexz(j,1)*nodexz(i,2)) + ... 

               (nodexz(k,1)*nodexz(i,2)-nodexz(i,1)*nodexz(k,2)) + ... 

               (nodexz(j,1)*nodexz(k,2)-nodexz(k,1)*nodexz(j,2)); 

         

         % Calculate average relative permeability (KR) from i, j, and  

   % k nodal values of relative permeability (kr) for element  

   % number elem. Assign horizontal hydraulic conductivity (KX) 

 % and vertical hydraulic conductivity (KZ) from ROSETTA  

 % parameter estimates for element number elem. 

        KR = (kr(i)+kr(j)+kr(k))/3;  

        KX = Kx(elem); 

        KZ = Kz(elem); 

        zeta = (Se(:,soilid(elem)) + FF(elem))*Sf(elem); 

                    

        % Add the element values to the global coefficient matrix  

 % (Equation (11.8) of Hornberger and Wiberg (2005)). 

        G(i,i) = G(i,i) + KR*KX*beti*beti/(4*delt) + ...  

 KR*KZ*gami*gami/(4*delt); 

        G(i,j) = G(i,j) + KR*KX*beti*betj/(4*delt) + ...  

 KR*KZ*gami*gamj/(4*delt); 

        G(i,k) = G(i,k) + KR*KX*beti*betk/(4*delt) + ...  

 KR*KZ*gami*gamk/(4*delt); 

        G(j,i) = G(j,i) + KR*KX*betj*beti/(4*delt) + ...  

 KR*KZ*gamj*gami/(4*delt); 

        G(j,j) = G(j,j) + KR*KX*betj*betj/(4*delt) + ...  

 KR*KZ*gamj*gamj/(4*delt); 

        G(j,k) = G(j,k) + KR*KX*betj*betk/(4*delt) + ...  

 KR*KZ*gamj*gamk/(4*delt); 

        G(k,i) = G(k,i) + KR*KX*betk*beti/(4*delt) + ...  

 KR*KZ*gamk*gami/(4*delt); 

        G(k,j) = G(k,j) + KR*KX*betk*betj/(4*delt) + ...  

 KR*KZ*gamk*gamj/(4*delt); 

        G(k,k) = G(k,k) + KR*KX*betk*betk/(4*delt) + ...  
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 KR*KZ*gamk*gamk/(4*delt); 

              

        % Add the element values to the time derivative term matrix 

        % (Box 11.1 of Hornberger and Wiberg (2005)). 

        P(i,i) = 1*delt/12*((2*zeta(i)+zeta(j)+zeta(k)) + ... 

                 Sy(elem)*(2*dSep(i,soilid(elem))+ ...  

 dSep(j,soilid(elem))+ dSep(k,soilid(elem)))); 

        P(j,j) = 1*delt/12*((zeta(i)+2*zeta(j)+zeta(k)) + ... 

                 Sy(elem)*(dSep(i,soilid(elem))+ ...  

 2*dSep(j,soilid(elem))+ dSep(k,soilid(elem)))); 

        P(k,k) = 1*delt/12*((zeta(i)+zeta(j)+2*zeta(k)) + ... 

                 Sy(elem)*(dSep(i,soilid(elem))+ ...  

 dSep(j,soilid(elem))+ 2*dSep(k,soilid(elem)))); 

        P(i,j) = 0; 

        P(i,k) = 0; 

        P(j,i) = 0; 

        P(j,k) = 0; 

        P(k,i) = 0; 

        P(k,j) = 0; 

    end  

     

    % Set right-hand side of groundwater flow equation and solve. 

    % NOTE: All zero-flux (no-flow) boundaries are "natural" - i.e.,  

 % there is no extra work necessary in setting the right hand side  

 % vector. 

    F = G + 2*P/delta_t; 

    RHS = 2*P*h_old/delta_t; 

     

    % Set fixed head boundary condition for right-hand, upslope nodes. 

    % Boundary Conditions with matrix notation 

    [nRows,~] = size(F); 

    ndrgt_fh = ndrgt(nodexz(ndrgt,2) <= 527.65); 

    RHS(ndrgt_fh) = 527.65; 

    diagIdx = (ndrgt_fh - 1).*(nRows + 1) + 1; 

    F(ndrgt_fh,:) = 0; 

    F(diagIdx) = 1; 

     

    % Set fixed head boundary condition for river channel nodes. 

    % Boundary Conditions with matrix notation 

    RHS(ndstm) = hs(ii); 

    diagIdx = (ndstm - 1).*(nRows + 1) + 1; 

    F(ndstm,:) = 0; 

    F(diagIdx) = 1; 

     

    % Set fixed head boundary condition for seepage face nodes that  

    % are below the river stage. 

    % Boundary Conditions with matrix notation 

    RHS(seepf) = hs(ii); 

    diagIdx = (seepf - 1).*(nRows + 1) + 1; 

    F(seepf,:) = 0; 

    F(diagIdx) = 1; 
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    % Set fixed head boundary condition for seepage face nodes (if any  

    % exist) that are above the river stage. Note that the pressure  

 % head at seepage face nodes is 0. 

    if length(seepface) > length(seepf) 

        sface = seepface(nodexz(seepface,2) - hs(ii) > 0); 

        % Boundary Conditions with matrix notation 

        RHS(sface) = nodexz(sface,2); 

        diagIdx = (sface - 1).*(nRows + 1) + 1; 

        F(sface,:) = 0; 

        F(diagIdx) = 1; 

    end 

     

    % Set Neumann boundary (i.e., flux boundary) condition for nodes 

 % on top of hillslope. 

    % Boundary Conditions with matrix notation 

    pptrn = pptr(ii).*(lx_top./ln_top); 

    RHS(ndtop(1)) = RHS(ndtop(1)) + pptrn(1) + pptrn(2)/2; 

    RHS(ndtop(2:length(ndtop)-2)) = RHS(ndtop(2:length(ndtop)-2)) ...  

 + pptrn(2:(end-2))./2 + ... 

 pptrn(3:(end-1))./2; 

    RHS(ndtop(end-1)) =  RHS(ndtop(end-1)) + pptrn(end-1)/2 + ...  

 pptrn(end)/2; 

    RHS(ndtop(end)) = RHS(ndtop(end)) + pptrn(end)/2; 

     

%     % Set Neumann boundary (i.e., flux boundary) condition for pond 

%     % nodes on top of hillslope. 

%     temp = pondr(ii) - pptr(ii); 

%     pondrn = temp.*(lx_pnd./ln_pnd); 

%     clearvars temp 

%     RHS(ndpnd(1)) = RHS(ndpnd(1)) + pondrn(1) + pondrn(2)/2; 

%     RHS(ndpnd(2:length(ndpnd)-1)) = RHS(ndpnd(2:length(ndpnd)-1))... 

%       + pondrn(2:(end-2))./2 + ... 

%                                     pondrn(3:(end-1))./2; 

%     RHS(ndpnd(end)) =  RHS(ndpnd(end)) + pondrn(end) + ...  

% pondrn(end-1)/2; 

     

    % Solve the groundwater flow equation. 

    h_half = sparse(F)\RHS; 

     

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Corrector to advance to the next time step (Douglas and Jones  

% (1963)) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

     

    % Pre-assign matrices to improve computation speed. 

    G = zeros(nnodes,nnodes); 

    F = zeros(nnodes,nnodes); 

    P = zeros(nnodes,nnodes); 

    RHS = zeros(nnodes,1); 
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    % Hydraulic Properties and Associated Terms from Cooley and  

    % Westphal Model (Cooley, 1983; Cooley and Westphal, 1974) 

    ph = h_half - nodexz(:,2); 

    Se = SwD_hetero(param,ph); 

    dSep = dswdp_hetero(param,ph); 

    kr = krelt_hetero(param,ph); 

     

    % Determine seepage face. 

    seepface = ndbnk(h_half(ndbnk) >= nodexz(ndbnk,2)); 

    seepf = ndbnk(nodexz(ndbnk,2) <= hs(ii)); 

     

    for elem = 1:nelem 

        % Retrieve i, j, and k node values for element number elem  

   % from the mesh connectivity table. 

        i = nodes(elem,1); 

        j = nodes(elem,2); 

        k = nodes(elem,3); 

         

        % Retrieve i, j, and k beta values for element number elem. 

        beti = nodexz(j,2)-nodexz(k,2); 

        betj = nodexz(k,2)-nodexz(i,2); 

        betk = nodexz(i,2)-nodexz(j,2); 

         

        % Retrieve i, j, and k gamma values for element number elem. 

        gami = nodexz(k,1)-nodexz(j,1); 

        gamj = nodexz(i,1)-nodexz(k,1); 

        gamk = nodexz(j,1)-nodexz(i,1); 

         

        % Retrieve delta value for element number elem. 

        delt = (nodexz(i,1)*nodexz(j,2)-nodexz(j,1)*nodexz(i,2)) + ... 

               (nodexz(k,1)*nodexz(i,2)-nodexz(i,1)*nodexz(k,2)) + ... 

               (nodexz(j,1)*nodexz(k,2)-nodexz(k,1)*nodexz(j,2)); 

            

        % Calculate average relative permeability (KR) from i, j, and  

 % k nodal values of relative permeability (kr) for element  

 % number elem. Assign horizontal hydraulic conductivity (KX)  

 % and vertical hydraulic conductivity (KZ) from ROSETTA  

 % parameter estimates for element number elem. 

        KR = (kr(i)+kr(j)+kr(k))/3;  

        KX = Kx(elem); 

        KZ = Kz(elem);      

         

        zeta = (Se(:,soilid(elem)) + FF(elem))*Sf(elem); 

         

        % Add the element values to the global coefficient matrix  

   % (Equation (11.8) of Hornberger and Wiberg (2005)). 

        G(i,i) = G(i,i) + KR*KX*beti*beti/(4*delt) + ... 

 KR*KZ*gami*gami/(4*delt); 

        G(i,j) = G(i,j) + KR*KX*beti*betj/(4*delt) + ... 

 KR*KZ*gami*gamj/(4*delt); 
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        G(i,k) = G(i,k) + KR*KX*beti*betk/(4*delt) + ... 

 KR*KZ*gami*gamk/(4*delt); 

        G(j,i) = G(j,i) + KR*KX*betj*beti/(4*delt) + ... 

 KR*KZ*gamj*gami/(4*delt); 

        G(j,j) = G(j,j) + KR*KX*betj*betj/(4*delt) + ... 

 KR*KZ*gamj*gamj/(4*delt); 

        G(j,k) = G(j,k) + KR*KX*betj*betk/(4*delt) + ... 

 KR*KZ*gamj*gamk/(4*delt); 

        G(k,i) = G(k,i) + KR*KX*betk*beti/(4*delt) + ... 

 KR*KZ*gamk*gami/(4*delt); 

        G(k,j) = G(k,j) + KR*KX*betk*betj/(4*delt) + ... 

 KR*KZ*gamk*gamj/(4*delt); 

        G(k,k) = G(k,k) + KR*KX*betk*betk/(4*delt) + ... 

 KR*KZ*gamk*gamk/(4*delt); 

              

        % Add the element values to the time derivative term matrix 

        % (Box 11.1 of Hornberger and Wiberg (2005)). 

        P(i,i) = 1*delt/12*((2*zeta(i)+zeta(j)+zeta(k)) + ... 

                 Sy(elem)*(2*dSep(i,soilid(elem))+ ... 

 dSep(j,soilid(elem))+ dSep(k,soilid(elem)))); 

        P(j,j) = 1*delt/12*((zeta(i)+2*zeta(j)+zeta(k)) + ... 

                Sy(elem)*(dSep(i,soilid(elem))+ ... 

 2*dSep(j,soilid(elem)) + dSep(k,soilid(elem)))); 

        P(k,k) = 1*delt/12*((zeta(i)+zeta(j)+2*zeta(k)) + ... 

                 Sy(elem)*(dSep(i,soilid(elem))+ ... 

 dSep(j,soilid(elem))+ 2*dSep(k,soilid(elem)))); 

        P(i,j) = 0; 

        P(i,k) = 0; 

        P(j,i) = 0; 

        P(j,k) = 0; 

        P(k,i) = 0; 

        P(k,j) = 0; 

    end  

     

    % Set right-hand side of groundwater flow equation. 

    % NOTE: All zero-flux (no-flow) boundaries are "natural" - i.e.,  

    % there is no extra work necessary in setting the right hand side  

    % vector. 

    F = G + P/delta_t; 

    RHS = P*h_half/delta_t; 

     

    % Set fixed head boundary condition for right-hand, upslope nodes. 

    % Boundary Conditions with matrix notation 

    [nRows,~] = size(F); 

    ndrgt_fh = ndrgt(nodexz(ndrgt,2) <= 527.65); 

    RHS(ndrgt_fh) = 527.65; 

    diagIdx = (ndrgt_fh - 1).*(nRows + 1) + 1; 

    F(ndrgt_fh,:) = 0; 

    F(diagIdx) = 1; 

     

    % Set fixed head boundary condition for river channel nodes. 
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    % Boundary Conditions with matrix notation 

    RHS(ndstm) = hs(ii); 

    diagIdx = (ndstm - 1).*(nRows + 1) + 1; 

    F(ndstm,:) = 0; 

    F(diagIdx) = 1; 

     

    % Set fixed head boundary condtion for seepage face nodes that are  

    % below the river stage. 

    % Boundary Conditions with matrix notation 

    RHS(seepf) = hs(ii); 

    diagIdx = (seepf - 1).*(nRows + 1) + 1; 

    F(seepf,:) = 0; 

    F(diagIdx) = 1; 

     

    % Set fixed head boundary condition for seepage face nodes (if any  

    % exist) that are above the river stage. Note that the pressure  

    % head at seepage face nodes is 0. 

    if length(seepface) > length(seepf) 

        sface = seepface(nodexz(seepface,2) - hs(ii) > 0); 

        % Boundary Conditions with matrix notation 

        RHS(sface) = nodexz(sface,2); 

        diagIdx = (sface - 1).*(nRows + 1) + 1; 

        F(sface,:) = 0; 

        F(diagIdx) = 1; 

    end 

    

    % Set Neumann boundary (i.e., flux boundary) condition for nodes   

    % on top of hillslope. 

    % Boundary Conditions with matrix notation 

    pptrn = pptr(ii).*(lx_top./ln_top); 

    RHS(ndtop(1)) = RHS(ndtop(1)) + pptrn(1) + pptrn(2)/2; 

    RHS(ndtop(2:length(ndtop)-2)) = RHS(ndtop(2:length(ndtop)-2)) ... 

 + pptrn(2:(end-2))./2 + ... 

 pptrn(3:(end-1))./2; 

    RHS(ndtop(end-1)) =  RHS(ndtop(end-1)) + pptrn(end-1)/2 + ... 

 pptrn(end)/2; 

    RHS(ndtop(end)) = RHS(ndtop(end)) + pptrn(end)/2; 

     

%     % Set Neumann boundary (i.e., flux boundary) condition for pond  

%     % nodes on top of hillslope. 

%     temp = pondr(ii) - pptr(ii); 

%     pondrn = temp.*(lx_pnd./ln_pnd); 

%     clearvars temp 

%     RHS(ndpnd(1)) = RHS(ndpnd(1)) + pondrn(1) + pondrn(2)/2; 

%     RHS(ndpnd(2:length(ndpnd)-1)) = RHS(ndpnd(2:length(ndpnd)-1))... 

% + pondrn(2:(end-2))./2 + ... 

%                                     pondrn(3:(end-1))./2; 

%     RHS(ndpnd(end)) =  RHS(ndpnd(end)) + pondrn(end) + ... 

%  pondrn(end-1)/2; 

  

    % Solve groundwater flow equation. 
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    h = sparse(F)\RHS; 

     

    % Assign the total head values at time step t as the previous 

    % total head values at time step t+1. 

    h_old = h; 

         

    % Output the total head values at each time step t to the same  

    % text file.  

    % NOTE: THIS CONCATENATES THE VALUES AT 12:00 AM EACH DAY  

    % VERTICALLY - i.e., THE VALUES AT TIME STEP t OCCUPY ROWS 1  

    % THROUGH N, THE VALUES AT TIME STEP t+1 OCCUPY ROWS N+1 THROUGH  

    % 2N, etc. 

    if ii == 1 

        FIDh = fopen('h_out.txt','w'); 

        fprintf(FIDh,'%6.12f\n',h_old); 

        fclose(FIDh); 

    elseif rem((ii-1),24) == 0 

        FIDh = fopen('h_out.txt','a'); 

        fprintf(FIDh,'%6.12f\n',h_old); 

        fclose(FIDh); 

    else 

        continue 

    end 

     

end 

toc 

 

 

 


