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INTRODUCTION 

The western United States is a mosaic of diverse vegetation, soils, topography, and 

hydrology.  Today, it is home to a substantial portion of the nation’s agricultural land and 

population.   California alone accounts for 12% of the U.S. population (U.S. Census Bureau 

2016) and agricultural sector output of the U.S. economy (USDA ERS 2016).  As a whole, eight 

of the western states (WA, OR, CA, NV, AZ, UT, NM, ID) contain 23% of the farmed land, 20% 

of the agricultural output, and 21% of the population in the country.  Surface water usage 

constitutes 91% of total water withdrawals for the West (Maupin et al 2010) and is highly 

sensitive to changing precipitation and temperature.  Anthropogenic warming is expected to raise 

global temperatures 1-2°C within the next century (IPCC 2014), potentially increasing 

evaporation rates and taxing crucial surface water resources.  However, future changes in 

precipitation patterns are less certain because of high natural variability within the climate 

system (IPCC 2014).  Given the hydrologic sensitivity, agricultural significance, and high water 

demand in the West, it is critical to understand the mechanisms that have driven past periods of 

drought, and how these are manifested spatially across the West to predict what might possibly 

occur in the future.   

California recently suffered the worst moisture deficit seen in the past 1200 years, as 

indicated by historical and tree ring records (Griffin and Anchukaitis 2014).  The primary driver 

of the severity of the recent drought (2012-2015) is thought to be significantly high temperature 

anomalies leading to higher evaporation rates co-occurring with low, but not unusual, 

precipitation levels (Griffin and Anchukaitis 2014; Diffenbaugh et al., 2015).  The precipitation 

deficit resulted from the formation of a resilient high pressure ridge that diverted moisture north 

of California and much of the western U.S. coast (Swain et al 2014). It is unclear from climate 

models of future scenarios whether similar high pressure ridging and drought is a natural feature 

of the climate system (Seager et al., 2014), or one that will be and has been exacerbated with 

anthropogenic warming (Swain et al., 2014).   Thus, the influence of future warming on drought 

frequency and intensity in the West is uncertain.     

Terrestrial climate archives suggest widespread aridity was a persistent feature of western 

North American climate during the mid-Holocene (8.2-3.5kyr BP) (Thompson et al 1993), a time 

of greater summer insolation and lower winter insolation than present.  Although the boundary 

conditions between the mid-Holocene and the present differ, investigating the driving 

mechanisms of mid-Holocene aridity may shed light on the prospects of drought in a warmer 

world. While general (global) and regional circulation models (GCMs and RCMs, respectively) 

reproduce the sign of temperature patterns during the mid-Holocene, previous model-proxy 

comparisons have suggested that these models have difficulty predicting the precipitation 

changes noted in the proxy record (Diffenbaugh and Sloan 2004, Harrison et al 2014).  However, 

these previous model-proxy comparisons have focused on global model-proxy agreement 

(Harrison et al 2014), used qualitative vs. quantitative comparisons (Thompson et al 1993; Mock 

and Brunelle Daines 1999; Diffenbaugh and Sloan 2004), drawn climate information from a 

single proxy type (Harrison et al 2014), or used too few paleoclimate records to sufficiently 

characterize the western U.S. (Harrison et al 2014; Diffenbaugh and Sloan 2004).  To reconcile 

these issues, I have conducted a systematic comparison of the annual and seasonal precipitation 

and effective moisture results from twelve mid-Holocene GCM simulations to a diverse 

collection of 164 mid-Holocene moisture-sensitive proxy records from the western U.S.  I use 
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the Cohen’s Weighted Kappa Statistic (Кw) to quantitatively assess agreement between the 

model output and proxy records.  I then compare model-proxy agreement with atmospheric 

patterns to determine what large-scale processes likely drove hydroclimatic changes in the 

western U.S. during the mid-Holocene.  The atmospheric patterns seen in the western U.S. 

during the mid-Holocene will help give context to periods of drought observed today and 

expressed by predictive models of future climate change. 

BACKGROUND 

COHMAP, the Cooperative Holocene Mapping Project, was an early effort to 

characterize changes in global climate in response to orbital position and ice sheet growth/decay 

in 3 kyr timeslices from 18 kyr BP to present (Kutzbach and Ruddiman 1993).  This single-

model time slice approach allowed for identification of large scale atmospheric patterns for 

comparison with precipitation and temperature estimates from proxy records.  Thompson et al. 

(1993) compiled a thorough network of Late Glacial and Holocene paleoclimate records from the 

western U.S for comparison with COHMAP’s NCAR CCM atmospheric-only model.  In 

general, the model indicated that atmospheric conditions leading to the observed mid-Holocene 

moisture patterns in the western U.S. included a stronger North Pacific High and an enhanced 

monsoon in the Southwest during the summer (Thompson et al 1993).  However, the CCM 

model had coarse resolution grid cells (4°lat x 7.5°lon., Kutzbach and Ruddiman 1993) which 

could not take into account the topographic complexity of the western U.S. Thompson et al. 

(1993) focused mainly on summer changes, typically excluding discussion of the winter season, 

when the West receives a significant portion of annual precipitation.  Globally, these early 

models were valuable for assessing large scale circulation patterns and general patterns of 

changing atmospheric circulation, but lacked the resolution necessary to properly assess detailed 

moisture changes in the West.   

As computational power rose, models moved forward from atmosphere-only to coupled 

ocean-atmosphere-vegetation models, providing dynamic interactions to variables previously 

prescribed, such as vegetation distribution (Bracconot et al 2012).  Additionally, these newer 

models were run for longer time periods (100+ years [Bracconot et al 2012] vs. 5-10 years 

[Kutzbach and Ruddiman 1993]), allowing analysis of inter-annual and multi-decadal variability.  

The longer model runs especially benefit the Pacific Ocean and western North America because 

ocean-atmosphere interactions such as the El Niño-Southern Oscillation on 2-7 year time scales 

and the Pacific Decadal Oscillation on 20-70 year timescales have significant implications for 

the distribution and amount of precipitation reaching the West (Wise 2010). 

The Paleoclimate Modelling Intercomparison Project (PMIP) emerged from COHMAP.  

PMIP recognized that results from models depended on the parameterization and input given to 

GCMs, and sought to analyze how different models performed in response to the same forcings.  

PMIP has produced several phases of models with increasing complexity, the most recent of 

which is Phase 3, or PMIP3.  For the mid-Holocene simulations, all parameters were identical to 

the pre-industrial control (piControl) simulation except for the orbital parameters (Taylor et al 

2011).  A recent study compared PMIP3 model output from the Last Glacial Maximum (21 ka) 

and mid-Holocene (6 ka) for agreement with speleothem records of precipitation variability from 

around the world, finding that agreement was strongly dependent on the variable being observed 

(Harrison et al 2014).  However, this comparison included only three records from the U.S., and 
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none west of the Rocky Mountains and is therefore insufficient to understand the ability of 

PMIP3 models to simulate proxy-inferred changes in moisture and temperature in this region 

during the mid-Holocene.  Analysis of an RCM of the western U.S. indicates that although 

temperature changes in the mid-Holocene are well-represented in the model, effective moisture 

(precipitation – evaporation) shows poor agreement with the proxy record (Diffenbaugh and 

Sloan 2004).  In this study, I statistically compared a large collection of mid-Holocene moisture-

sensitive proxy records from the western U.S. against PMIP3 GCM simulations to assess 

agreement and to determine potential atmospheric drivers of climate change during the mid-

Holocene. 

METHODOLOGY 

I compiled a network of 164 published moisture-sensitive proxy records from the western 

United States that cover the mid-Holocene (Figure 1, Table 1).  I defined mid-Holocene sites as 

those that were shown to cover the interval  8.0-4.0 kyr BP (6.0 +/- 2.0 kyr BP) by absolute 

dating, or were previously classified as mid-Holocene by Thompson et al (1993).  As some 

proxy records are interpreted to reflect variable moisture conditions through this interval, I 

focused on the period of time closest to 6 kyr BP for comparison with the PMIP3 mid-Holocene 

simulations. The network includes proxies from lake sediments, packrat middens, speleothems, 

and other terrestrial archives of climate change. Based on the authors’ interpretation of each 

proxy site for the mid-Holocene, I classified sites as recording drier (D) conditions, wetter (W) 

conditions, or no change (NC) relative to modern.  

Some locations, such as Vancouver Island, contained many sites within a small area, 

often from a single study (Figure 1).  To prevent the over-representation of densely studied areas, 

I used ArcGIS to outline a 25km radius buffer around each site and combined proxy sites with 

overlapping buffer zones to create a new set of site coordinates manually selected at center of 

overlap (Figure 2).  Buffer zones have been used in previous model-proxy comparisons to reduce 

over-representation of densely studied areas (DiNezio and Tierney 2013).  Because the western 

U.S. is topographically complex, I used a 25km buffer radius (50km separation distance) such 

that local changes in altitude were not oversimplified within the proxy network.  I determined the 

moisture classification for these aggregate sites by counting the number of overlapping sites that 

fall into each category (D/W/NC; Table 2).  In most instances, I was able to use the category of 

the majority of the sites as the classification for the new “buffer site.”  In several cases, conflicts 

between D/W and NC were resolved by selecting either D or W. At two sites, there was an equal 

split of D and W, or a split between D, W, and NC.  In both cases of equal splits, I chose to 

classify the buffer site as NC. The final proxy network (Figure 3) after combining sites contained 

98 geographic coordinates for climate model data extraction with 64 classified as drier, 18 

classified as no change, and 16 classified as wetter relative to preindustrial conditions (Table 3).  
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Table 1:  Proxy Sites Used in κw Analysis 

Location Longitude Latitude 
Moisture 

Classification 
References 

Atlatl Cave -107.9 36.03 Drier 

Betancourt and 

Van Devender 

1981 

Battle Ground Lake -122.49 45.8 Drier 
Barnosky 

1985a 

Blue Lake -114.03 40.5 Drier 

Louderback 

and Rhode 

2009 

Carp Lake -120.88 45.92 Drier 
Whitlock et al 

2000 

Cienega de Camilo -108.57 28.42 Wetter 
Ortega-Rosas 

et al 2008 

Clear Lake -122.84 39.07 Drier Adam 1988 

Estancia Basin -106.62 35.07 Drier 
Menking and 

Anderson 2003 

Eureka View -117.78 37.33 Wetter 
Spaulding 

1980 

Glenmire -122.78 37.99 Drier 
Anderson et al 

2013 

Gold Lake Bog -122.04 43.65 Drier 
Sea and 

Whitlock 1995 

Grays Lake -111.44 43.06 Drier 
Beiswenger 

1991 

Hidden Cave -118.63 39.41 No Change 

Wigand and 

Mehringer 

1985 

Homestead Cave -112.93 41.16 Drier Grayson 2000 

Ice Slough -107.9 42.48 Drier 
Beiswenger 

1991 

Joshua Tree National 

Monument 
-116.18 34.03 Wetter 

Holmgren et al 

2009 

Laguna Babicora -107.82 29.35 Drier Roy et al 2013 

Lake Cahuilla (Salton Basin) -116.05 33.45 Wetter Li et al 2008 

Lake Cochise -109.87 32.17 Drier Waters 1989 

Lake Elsinore -117.35 33.66 Drier 
Kirby et al 

2010 

Little Lake -123.58 44.17 Drier 
Worona and 

Whitlock 1995 
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Table 1:  Proxy Sites Used in κw Analysis 

Location Longitude Latitude 
Moisture 

Classification 
References 

Little Willow Lake -121.39 40.41 Drier West 2003 

Mahoney Lake -119.58 49.28 Drier 
Lowe et al 

1997 

Marble Mountains -115.58 34.66 No Change 
Spaulding 

1980 

McCullough Range -115.17 35.75 Drier 
Spaulding 

1991 

Medicine Lake -121.6 41.58 Drier Starratt 2009 

Mescal Mountain -115.55 35.43 Drier 
Koehler et al 

2005 

Mission Cross Bog -115.48 41.78 Drier 
Thompson 

1984 

Montezuma Well -112 34 Drier 
Davis and 

Shafer 1992 

Owens Lake -117.96 36.44 Drier 
Bacon et al 

2006 

Palomas Basin -107.42 31.17 Wetter 
Castiglia and 

Fawcett 2006 

Pink Panther Cave -105.17 32.08 Wetter 
Asmerom et al 

2007 

Potato Lake -111.35 34.46 Drier Anderson 1993 

Pyramid Lake -119.56 40.06 Drier 
Benson et al 

2002 

Rattlesnake Cave -112.63 43.38 Drier 
Beiswenger 

1991 

Red Rock Lake -105.54 40.08 No Change Maher 1972 

Ruby Lake/Marsh -115.51 40.11 Drier 
Thompson 

1984 

Sacramento Mountains -105.92 32.83 Wetter 
Van Devender 

et al 1984 

San Agustin Plain -108.57 33.97 Drier 
Markgraf et al 

1984 

San Antonio Creek Section -120.49 34.78 Drier 
Anderson et al 

2015 

Sevier Lake -113.13 39 No Change Oviatt 1988 

Sierra Bacha -112.5 29.83 Wetter 

Anderson and 

Van Devender 

1995 

Snowbird Bog -111.92 40.58 Wetter Madsen and 
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Table 1:  Proxy Sites Used in κw Analysis 

Location Longitude Latitude 
Moisture 

Classification 
References 

Currey 1979 

Stewart Bog -105.75 35.67 Drier 

Jimenez-

Moreno et al 

2008 

Tulare Lake -119.75 36 Drier 
Davis et al 

1999 

Turtle Lake -124.96 49.33 No Change 
Brown et al 

2006 

Valleyview -114.72 39.5 Wetter 
Thompson 

1984 

White Mountains -118.33 37.7 Drier 

Jennings and 

Elliot-Fisk 

1993 

Zenkner Valley section -123 46.75 Drier Heusser 1977 

Carlins Cave -115.03 38.3 No Change 
Thompson et al 

1993 

Cub Lake -111.18 44.13 Drier 
Thompson et al 

1993 

Diamond Pond -118.33 43.25 Drier 
Thompson et al 

1993 

Etna -114.62 37.55 No Change 
Thompson et al 

1993 

Fish Lake -118.63 42.73 Drier 
Thompson et al 

1993 

Goose Lake -119.34 48.17 Drier 
Thompson et al 

1993 

Kelowna Bog -119.38 49.93 Drier 
Thompson et al 

1993 

Lake Cleveland -113.65 42.32 Drier 
Thompson et al 

1993 

Lost Trail Pass Bog -113.97 45.75 No Change 
Thompson et al 

1993 

Murphey's rock shelter -116.1 43.2 Drier 
Thompson et al 

1993 

Pinecrest Lake -121.5 50.5 Drier 
Thompson et al 

1993 

Rhodes Canyon -106.75 32.83 Wetter 
Thompson et al 

1993 

Williams Fen -117.58 47.33 Drier 
Thompson et al 

1993 
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Table 1:  Proxy Sites Used in κw Analysis 

Location Longitude Latitude 
Moisture 

Classification 
References 

1 -125.08 48.773 No Change 
 

2 -124.49 47.942 Drier 
 

3 -123.73 48.542 No Change 
 

4 -124.12 49.191 No Change 
 

5 -122.27 49.028 Drier 
 

6 -118.61 48.255 Drier 
 

7 -119.34 48.694 Drier 
 

8 -122.26 47.753 Drier 
 

9 -121.96 46.761 Drier 
 

10 -115.37 48.236 Drier 
 

11 -117.19 48.758 Drier 
 

12 -112.23 46.479 No Change 
 

13 -110.66 44.93 Drier 
 

14 -110.23 44.281 Drier 
 

15 -108.45 45.091 Drier 
 

16 -123.42 42.066 No Change 
 

17 -122.54 41.333 Drier 
 

18 -111.76 42.189 Drier 
 

19 -107.34 39.711 Drier 
 

20 -106.93 38.813 Wetter 
 

21 -109.61 37.596 Wetter 
 

22 -114.11 39.326 No Change 
 

23 -115.15 36.54 Wetter 
 

24 -116.77 38.999 No Change 
 

25 -119.47 38.074 Drier 
 

26 -119.29 37.086 Drier 
 

27 -120.04 38.963 Drier 
 

28 -116.5 35.473 Drier 
 

29 -116.85 34.151 Drier 
 

30 -115.34 31.151 Drier 
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Table 1:  Proxy Sites Used in κw Analysis 

Location Longitude Latitude 
Moisture 

Classification 
References 

31 -114.08 32.439 No Change 
 

32 -113.18 31.98 Wetter 
 

33 -111.47 32.42 Wetter 
 

34 -112.06 36.282 Drier 
 

35 -108.88 31.397 No Change 
 

36 -110.42 31.467 No Change 
 

37 -122.88 44.59 Drier 
 

Table 1: Proxy site locations and moisture classifications for extraction of GCM data.  Italicized site names are sites 

for which I was unable to access the original reference, and proxy interpretations come directly from the 

interpretation in Thompson et al 1993.  Numbered sites are locations which combined multiple proxy records and 

are explained in detail in Table 2. 
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Table 2:  Aggregate Sites and Their Constituents 

Site Number 

(Site Name) 
Longitude Latitude Moisture Class References 

Aggregate 

Confidence 

1 -125.08 48.773 No Change 
 

Robust Effingham 

Island Bog 
-125.32 48.87 No Change Brown et al 2006 

Whyac Lake Bog -124.84 48.67 No Change Brown et al 2006 

2 -124.49 47.942 Drier 
 

Robust 

Hoh River 

Valley Site 
-124.50 47.83 Drier Heusser 1974 

Soleduck Bog -124.47 47.92 Drier Heusser 1973 

Wentworth Lake -124.53 48.01 Drier Heusser 1973 

Wessler Bog -124.50 48.17 Drier Heusser 1973 

3 -123.73 48.542 No Change 
 

Majority 

East Sooke Fen -123.68 48.35 No Change Brown et al 2006 

Heal Lake -123.47 48.53 No Change Brown et al 2006 

Langford Lake -123.53 48.45 No Change Brown et al 2006 

Pixie Lake -124.20 48.60 No Change Brown et al 2006 

Porphyry Lake -123.83 48.91 Drier Brown and Hebda 2003 

Rhamnus Lake -123.72 48.63 No Change Brown et al 2006 

Walker Lake -124.00 48.53 No Change Brown and Hebda 2003 

4 -124.12 49.191 No Change 
 

Robust Boomerang Lake -124.16 49.18 No Change Brown et al 2006 

Enos Lake -124.16 49.28 No Change Brown et al 2006 

5 -122.27 49.028 Drier 
 

Robust 

Marion Lake -122.55 49.31 Drier Mathewes 1973 

Mosquito Lake -122.12 48.77 Drier 
Hansen and Easterbrook 

1974 

Pangborn Bog -122.27 49.00 Drier 
Hansen and Easterbrook 

1974 

Surprise Lake -122.56 49.32 Drier Mathewes 1973 

6 -118.61 48.255 Drier 
 

Robust Simpson's Flatts -118.58 48.33 Drier Thompson et al 1993 

Waitts Lake -118.67 48.17 Drier Thompson et al 1993 

7 -119.34 48.694 Drier 
 

Robust Bonaparte 

Meadows 
-119.06 48.80 Drier Mack et al 1979 

Mud Lake -119.63 48.59 Drier Mack et al 1979 

8 -122.26 47.753 Drier 
 

Robust Hall Lake -122.30 47.82 Drier Thompson et al 1993 

Lake 

Washington 
-122.22 47.67 Drier Leopold et al 1982 

9 -121.96 46.761 Drier 
 

Majority 
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Table 2:  Aggregate Sites and Their Constituents 

Site Number 

(Site Name) 
Longitude Latitude Moisture Class References 

Aggregate 

Confidence 

Davis Lake -122.25 46.58 Drier Barnosky 1981 

Jay Bath -121.77 46.77 Drier Dunwiddie 1986 

Log Wallow -121.75 46.78 Drier Dunwiddie 1986 

Mineral Lake -122.20 46.73 No Change Thompson et al 1993 

Nisqually Lake -122.22 47.00 Drier Thompson et al 1993 

Reflection Pond -121.73 46.77 Drier Dunwiddie 1986 

10 -115.37 48.236 Drier 
 

50/50 McKillop Creek 

Pond 
-115.26 48.15 No Change Mack et al 1983 

Teepee Lake -115.50 48.33 Drier Thompson et al 1993 

11 -117.19 48.758 Drier 
 

Robust Big Meadow -117.42 48.92 Drier Mack et al 1978c 

Hager Lake -116.97 48.60 Drier Mack et al 1978d 

12 -112.23 46.479 No Change 
 

Robust Forest Lake -112.17 46.45 No Change Thompson et al 1993 

Telegraph Creek 

Marsh 
-112.33 46.50 No Change Thompson et al 1993 

13 -110.66 44.93 Drier 
 

50/50 Blacktail Pond -110.60 44.96 Drier Beiswenger 1991 

Gardiners Hole -110.73 44.92 No Change Thompson et al 1993 

14 -110.23 44.281 Drier 
 

Robust 
Buckbean Fen -110.25 44.30 Drier Baker 1976 

Cub Creek Pond -110.25 44.51 Drier 
Waddington and Wright 

1974 

Lilypad Pond -110.25 44.30 Drier Thompson et al 1993 

15 -108.45 45.091 Drier 
 

Robust Big Pryor -108.65 45.13 Drier Lyford et al 2002 

East Pryor -108.25 45.05 Drier Lyford et al 2002 

16 -123.42 42.066 No Change 
 

Conflict 

Type A 

Bolan Lake -123.46 42.02 Drier Briles et al 2005 

Oregon Caves 

National 

Monument 

-123.41 42.10 Wetter Ersek et al 2012 

17 -122.54 41.333 Drier 
 

Robust 
Bluff Lake -122.56 41.35 Drier Mohr et al 2000 

Cedar Lake -122.50 41.21 Drier Mohr et al 2000 

Crater Lake -122.58 41.38 Drier Mohr et al 2000 

18 -111.76 42.189 Drier 
 

Robust 
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Table 2:  Aggregate Sites and Their Constituents 

Site Number 

(Site Name) 
Longitude Latitude Moisture Class References 

Aggregate 

Confidence 

Minnetonka 

Cave 
42.09 -111.52 Drier Lundeen et al 2013 

Swan Lake 42.29 -111.99 Drier Beiswenger 1991 

19 -107.34 39.711 Drier 
 

Robust Bison Lake -107.35 39.77 Drier Anderson 2012 

Yellow Lake -107.35 39.65 Drier Anderson 2012 

20 -106.93 38.813 Wetter 
 

Robust Alkali Lake -106.83 38.75 Wetter Markgraf and Scott 1981 

Keystone Iron 

Bog 
-107.03 38.87 Wetter Fall 1988 

21 -109.61 37.596 Wetter 
 

Robust Allen Cave -109.58 37.78 Wetter Betancourt 1984 

Fishmouth Cave -109.65 37.42 Wetter Betancourt 1984 

22 -114.11 39.326 No Change 
 

Conflict 

Type B 

Council Hall 

Cave 
-114.10 39.33 No Change Thompson 1984 

Lehman Cave -114.22 39.01 Drier Steponaitis et al 2015 

Smith Creek 

Cave 
-114.10 39.33 Wetter Thompson 1984 

23 -115.15 36.54 Wetter 
 

Majority Desert View -115.03 36.63 Wetter Thompson et al 1993 

Sheep Range -115.25 36.58 Wetter Spaulding 1980 

Tule Springs -115.18 36.32 No Change Thompson et al 1993 

24 -116.77 38.999 No Change 
 

Conflict 

Type A 
Gatecliff Shelter -116.78 39.00 Drier Thompson et al 1993 

Gatecliff/June 

Canyon 
-116.75 39.02 Wetter Thompson et al 1993 

25 -119.47 38.074 Drier 
 

Majority 

Kirman Lake -119.50 38.33 Drier Bloom 2006 

Mono Lake -119.01 38.01 No Change Davis 1999 

Siesta Lake -119.66 37.85 Drier 
Brunelle and Anderson 

2003 

Stella Lake -119.58 38.18 Drier Reinemann et al 2009 

Swamp Lake 

Yosemite 
-119.82 37.95 Drier 

Smith and Anderson 

1992 

Tioga Pass Pond -119.27 37.92 No Change Anderson 1990 

26 -119.29 37.086 Drier 
 

50/50 Balsam 

Meadows 
-119.50 37.17 Drier Davis et al 1985 



 14 

Table 2:  Aggregate Sites and Their Constituents 

Site Number 

(Site Name) 
Longitude Latitude Moisture Class References 

Aggregate 

Confidence 

Exchequer 

Meadow 
-119.08 37.00 No Change Thompson et al 1993 

27 -120.04 38.963 Drier 
 

Robust Lake Tahoe -120.02 39.10 Drier Lindstrom 1990 

Osgood Swamp -120.08 38.83 Drier Thompson et al 1993 

28 -116.5 35.473 Drier 
 

Robust 

Ibex -116.33 35.78 Drier Koehler et al 2005 

Nelson Basin -116.73 35.35 Drier Koehler et al 2005 

No Name East -116.57 35.43 Drier Koehler et al 2005 

Silver Lake -116.11 35.34 Drier Kirby et al 2015 

29 -116.85 34.151 Drier 
 

Majority 

Big Bear Lake -116.94 34.26 Drier Kirby et al 2012 

Dry Lake -116.83 34.12 Drier Bird and Kirby 2006 

Lucerne Valley -117.00 34.50 No Change King 1976 

Skunk Cabbage 

Meadow 
-116.65 33.77 No Change Wahl 2002 

Taquitz Meadow -116.65 33.77 Drier Wahl 2002 

30 -115.34 31.151 Drier 
 

50/50 
Laguna Seca 

San Felipe 
-115.25 31.13 Drier Roy et al 2010 

Sierra San 

Pedro Martir 
-115.43 31.14 No Change Holmgren et al 2011 

31 -114.08 32.439 No Change 
 

Robust Tinajas Altas 

Mountains 
-114.05 32.28 No Change Hall et al 1988 

Wellton Hills -114.12 32.60 No Change Thompson et al 1993 

32 -113.18 31.98 Wetter 
 

Robust 
Eagle Eye Mts -113.17 31.88 Wetter 

McAuliffe and Van 

Devender 1998 

Hornaday Mts -113.60 31.98 Wetter Hall et al 1988 

Puerto Blanco 

Mountains 
-112.78 31.97 Wetter Van Devender 1987 

33 -111.47 32.42 Wetter 
 

50/50 Waterman Mts -111.50 32.40 Wetter 
Anderson and Van 

Devender 1991 

Wolcott Peak -111.47 32.45 No Change Thompson et al 1993 

34 -112.06 36.282 Drier 
 Majority 

Bear Lake -112.15 36.37 Drier Weng and Jackson 1999 
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Table 2:  Aggregate Sites and Their Constituents 

Site Number 

(Site Name) 
Longitude Latitude Moisture Class References 

Aggregate 

Confidence 

Chuar Valley -111.92 36.17 Drier Cole 1981 

Fracas Lake -112.24 36.63 Drier Weng and Jackson 1999 

Grandview 

Point 
-111.98 36.00 No Change Cole 1981 

35 -108.88 31.397 No Change 
 Conflict 

Type A Lake Cloverdale -108.83 31.50 Drier Krider 1998 

Peloncillo Mts -108.94 31.31 Wetter Holmgren et al 2006 

36 -110.42 31.467 No Change 
 Conflict 

Type A Cave of the Bells -110.47 31.43 Drier Wagner 2006 

Murray Springs -110.18 31.57 Wetter Mehringer  et al 1967 

37 -122.88 44.59 Drier 
 

50/50 Beaver Lake -123.18 44.55 No Change Walsh et al 2010 

Indian Prairie 

Fen 
-122.58 44.63 Drier Sea and Whitlock 1995 

Table 2:  Sites combined using a 25km buffer radius.  Bold sites are the aggregate locations, and italicized sites are 

the constituents.  Overall, the 37 sites listed here are comprised of 103 individual proxy sites.  See Table 3 for 

description and treatment of conflicts. 
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Table 3:  Criteria for Moisture Classification of Aggregate Sites 

Scenario 
Moisture 

Classification 

Number of 

Occurrences 
Justification 

All sites agree 
Category of 

all sites 
21 Majority rules 

Majority of sites 

agree 

Category of 

majority of 

sites 

6 Majority rules 

50/50 split 

between 

Drier/Wetter and 

No Change 

Drier/wetter 6 Conservative estimate for disagreement 

50/50 split 

between Drier 

and Wetter 

No Change 4 Average of conflict indicates no change 

Equal split 

between Drier, 

Wetter, and No 

Change 

No Change 1 Average of conflict indicates no change 

Table 3:  The scheme used to determine the moisture classification of aggregate sites.  Most aggregate sites’ 

moisture classifications reflect either perfect or a majority agreement between constituent sites. 

Using NCAR Command Language (NCL), I interpolated precipitation (P) and effective 

moisture (EM) values at the coordinates of each of the buffer sites from the output of the mid-

Holocene (6 ka) and Pre-Industrial (0 ka) runs from twelve PMIP3 models (Table 4).  Next, I 

calculated P and EM anomalies between the 6ka and 0ka simulations using the following 

equations: 

 EMt = Pt - Et    (1) 

PAnom = P6ka / P0ka *100  (2) 

 EMAnom = EM6ka / EM0ka *100 (3) 

where EM is effective moisture, P is precipitation, E is evapotranspiration, and the subscript “t” 

is the timeframe of interest (either 6ka or 0ka).  To compare the results of the model to the proxy 

network, I computed the Cohen’s Weighted Kappa (Кw) statistic, which measures categorical 

data agreement between two raters who classify items (sites) into categories (D/W/NC) relative 

to the probability of random agreement (Cohen 1968).  Recent model-proxy intercomparisons 

have used the Кw statistic to analyze the ability of models to reflect precipitation changes during 

the Last Glacial Maximum over the Indo-Pacific (DiNezio and Tierney 2013) and the western 

U.S. (Oster et al 2015).   

Кw is calculated using the following equation: 
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 (4) 

where wij is the weight matrix, xij is the observed matrix, and mij is the matrix of scores expected 

by random chance (Cohen 1968).  Here, I assigned a weight of 1 for complete disagreement (e.g. 

proxy says D and model says W), 0.5 for sites with moderate disagreement (e.g. proxy says NC 

and model says D or W), and 0 for complete agreement (e.g. proxy and model both say D).  To 

test the robustness of agreement between models and proxies, I varied the threshold of change 

required for the model responses to fall into the wetter or drier category from 2-50% and 

calculated 95% confidence limits for the maximum Кw for each model. For example, at a 

threshold of 10%, a model must simulate mid-Holocene precipitation of ≥ 110 % modern for a 

site to be classified as wetter and ≤ 90% for a site to be classified as drier. Values from 91 – 

109% modern were classified as “no change.”  Computed Кw values range from -1 to 1, where -1 

is perfect disagreement, 0 is no agreement greater than random chance, and 1 is perfect 

agreement (Cohen 1968).  I compared the proxy network to modeled P and EM anomaly values 

to generate Кw statistics for both P and EM. 

Table 4:  Model Spatiotemporal Resolution 

Model Name Model ID 

Number of 

Grid Cells 

(Latitude) 

Number of 

Grid Cells 

(Longitude) 

Mid-

Holocene 

simulation 

length 

(years) 

piControl 

simulation 

length 

(years) 

BCC-CSM1-1 BCC 64 128 100 500 

CCSM4 CCSM4 192 288 301 156 

CNRM-CM5 CNRM 128 256 200 850 

CSIRO-MK3-6-0 CSIRO 360 96 192 100 500 

CSIRO MK3L-1-2 CSIRO 312 56 64 500 1000 

FGOALS-G2 FGOALS G2 60 128 686 900 

FGOALS-S2 FGOALS S2 108 128 100 501 

GISS-E2-R GISS 90 144 100 1200 

IPSL-CM5A-LR IPSL 96 96 500 1000 

MIROC-ESM MIROC 64 128 100 630 

MPI-ESM-P MPI 96 192 100 1156 

MRI-CGCM3 MRI 160 320 101 500 

Table 4:  PMIP3 models used in this study.  The model ID is the shorthand code used for each model in this study.  

For reference, the highest resolution model (MRI) has a grid cell size of 1.25°lat x1.25°lon, and the coarsest model 

(CSIRO 312) has a grid cell size of 3.2°lat x 5.6°lon. 
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To analyze pressure system strength and position within each model run, I identified 

model grid cells with maximum and minimum pressures over the Pacific Ocean to locate the 

North Pacific High and Aleutian Low, respectively.  I compared the changes in latitude, 

longitude, sea level pressure, and the pressure difference between the high and low with the Кw 

statistics for each model by 1) utilizing an Akaike information criterion for selecting the 

combination of variables to regress (Bartoń 2014), and then 2) performing a multiple linear 

regression analysis to determine whether the pressure configuration correlated with model 

agreement for P and EM on an annual basis.  I also analyzed wind anomalies at the 250mbar and 

850mbar heights to identify when and where changes in moisture advection may be occurring. 

Additionally, I used the Kw statistic to compare the mid-Holocene proxy network with 

precipitation patterns seen in the modern California drought to determine if modern drought 

spatial patterns are similar to those seen in the mid-Holocene.  Precipitation anomalies for the 

modern drought were calculated using the PRISM (Parameter elevation Regression on 

Independent Slopes Model) total annual precipitation dataset for 2013, the most intense year of 

the drought, using the following equation: 

 PAnom = P2013 / PAverage *100 (5) 

where P2013 is the annual precipitation total for 2013 and PAverage is the PRISM 30-year average 

annual precipitation amount from 1981-2010 (PRISM 2016). 

RESULTS 

THE MID-HOLOCENE MOISTURE PROXY RECORD 

The compiled mid-Holocene proxy network indicates drier conditions over most of the 

study area (Figure 3).  In particular, the Pacific Northwest and Northern Rockies are exclusively 

drier or unchanged at 6ka relative to modern.  California is mostly drier at 6ka, while sites in the 

Great Basin and southern Rockies indicate a mixture of wetter, drier, and unchanged conditions 

relative to present.  Proxies suggest the southwestern U.S., especially at the U.S.-Mexico border 

is wetter at 6ka, although much of Arizona and New Mexico are drier than modern.   

MODEL ANNUAL PATTERNS 

Most models show annual surface air temperatures within +/- 1°C of modern over the 

West and the Pacific Ocean (15-70°N, 150°E-90°W; Figure 4).  However, FGOALS G2 stands 

out because it has annual temperatures between 0-2°C colder than modern conditions over the 

entire domain, including a large band of 2°C or colder anomalies over most of the area above 

50°N.  All models show an increase in annual P at 6ka in the Southwest (Figure 5).  For other 

regions, the P pattern is less consistent among models.  For example, half of the models show 

decreased or unchanged P at 6ka in the Pacific Northwest (FGOALS G2, FGOALS S2, IPSL, 

MIROC, MRI, and MPI), while the other half show an increase in P for the same region (BCC, 

CCSM4, CNRM, CSIRO_360, CSIRO_312, and GISS).  Evaporation is higher in the mid-

Holocene in the Southwest and northwestern Mexico in all models to some degree (Figure 6).  In 

addition, several of the models (e.g. CSIRO_312, IPSL, MIROC, MPI) have a core region of 

increased evaporation values (110-120% modern) that occurs over Arizona, New Mexico, and 

northwestern Mexico.  FGOALS G2 and FGOALS S2 both show decreased evaporation at 6ka 

over most of the study area, which is notably different than all other models. 
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Modelled EM differs substantially among models (Figure 7).  For example, most models 

indicate higher EM in the Southwest, but CCSM4 and MRI have patches of lower or unchanged 

EM.  Three models (FGOALS G2, IPSL, and MPI) are relatively consistent with one another, 

having higher than modern EM in the Southwest and lower than modern EM nearly everywhere 

else.  In particular, FGOALS G2, IPSL, and MPI have exclusively lower or near-modern EM 

above 42°N, whereas all other models have at least some coverage of higher EM in the Pacific 

Northwest and/or northern Rockies. 
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Both FGOALS G2 and MPI have relatively high Кw values for P compared to other 

models (0.270 at the 2% threshold and 0.234 at the 2% threshold, respectively) and tend to agree 

with the proxy record for P in most of the Pacific Northwest and the northern Rockies, as well as 

near the U.S.-Mexico border (Figure 8a). FGOALS G2 and MPI show mixed agreement with the 

proxy network in the northern Great Basin and Rocky Mountains and generally poor agreement 

in most of California and along the Colorado Plateau (Figure 8a). In general, FGOALS G2 

shows better agreement with the proxy network than MPI does between 37°N and 42°N, a region 
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where most proxies indicate drier conditions, suggesting that FGOALS G2 best simulates the 

boundary between the dry north and wet Southwest.  The remaining ten models show little to no 

agreement with the proxy network in Washington, California, and the Colorado Plateau (Figure 

8b).  However, these same ten models show better agreement with locations in the southern 

Great Basin which mainly are classified as NC (Figure 8b). 

 

Overall, Кw values for EM agreement tend to be higher than Кw values for P agreement 

(Table 5).  The models FGOALS G2, IPSL, and MPI have the highest Кw for EM (0.303, 0.279, 

and 0.361, respectively, all at the 2% threshold).  Each of these models shows lower than modern 

EM in the northern U.S. and Pacific Northwest (typically above 40°N) and higher than modern 

EM in the Southwest (Figure 9a). Importantly, these models show excellent agreement with most 

sites in the Pacific Northwest and northern Rockies.  The most noticeable difference between 

these three models is that MPI displays higher EM in California, especially along the coast, than 

IPSL and FGOALS G2.  Some models (BCC, CCSM4, CSIRO_312, and GISS) show very poor 

agreement with the proxy network (Кw for EM = 0.113, -0.016, 0.016, and 0.1208, respectively) 
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resulting from overall higher EM over most of the study area during the mid-Holocene. 

Although, FGOALS G2, IPSL, and MPI all have exclusively lower EM north of 42°N, all other 

models contain at least some areas of higher EM in this region.  Similar to P, there is a clustering 

of non-agreement in most of California and the Colorado Plateau, a pattern that is consistent 

among all models (Figure 9).  There is also strong agreement among all models at the U.S.-

Mexico border and most of northern Mexico where models and proxies indicate wetter 

conditions.  Once again, most of the lower nine models agree relatively well with the proxy 

network in the southern Great Basin where proxy records indicate EM that is similar to modern 

(Figure 9b).   

Table 5:  Кw Results and Proxy Site Agreement 

PRECIPITATION 

Model Max Кw Threshold (%) Agree Weak Disagree Strong Disagree 

FGOALS G2 0.2698 2 57 23 18 

MPI 0.2338 2 42 34 22 

IPSL 0.1649 2 39 39 20 

CSIRO 312 0.1441 10 26 64 8 

MIROC 0.1437 5 29 48 21 

CSIRO 360 0.1429 10 25 63 10 

MRI 0.1231 2 34 44 20 

FGOALS S2 0.1138 4 28 64 6 

CNRM 0.1127 2 23 53 22 

BCC 0.0770 6 21 64 13 

GISS 0.0629 2 28 36 34 

CCSM4 0.0166 10 19 78 1 

EFFECTIVE MOISTURE 

Model Max Кw Threshold (%) Agree Weak Disagree Strong Disagree 

MPI 0.3612 2 56 23 19 

FGOALS G2 0.3032 2 53 25 20 

IPSL 0.2787 2 57 22 19 

GISS 0.1208 40 25 67 6 

CSIRO 360 0.1131 30 26 60 12 

BCC 0.1113 8 24 46 28 

MRI 0.1027 2 41 32 25 

CNRM 0.1003 10 23 68 7 

MIROC 0.0973 6 27 50 21 

FGOALS S2 0.0747 8 22 62 14 

CSIRO 312 0.0163 20 21 66 11 

CCSM4 -0.0157 50 18 78 2 
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Table 5:  Maximum precipitation and effective moisture Кw values and their associated thresholds for each model.  

Cells highlighted in green represent models that perform notably better than other models, typically showing 50% or 

more agreement with the proxy network.  Model names highlighted in either green or purple have Кw values which 

are statistically significant and greater than zero at the 95% confidence interval.  Non-highlighted models were not 

significantly different than zero.   

 

MID-HOLOCENE SEASONAL PATTERNS 

Winter temperature is reduced relative to modern in all models over most or all of the 

study area.  FGOALS G2 has the largest winter temperature decrease (1-2°C cooler than modern; 

Figure 10a) over most of North America, whereas all other models except MRI typically have 

winter temperatures between 0-1°C cooler than modern.  Winter precipitation patterns indicate 

drier than modern conditions over almost the entire study area for FGOALS G2, the highest 

scoring model for P Кw (Figure 10d).  IPSL and MPI show wetter winter conditions in the Pacific 

Northwest (Figure 10e,f). Winter evaporation is consistently lower than modern over the 

majority of North America across all models.  FGOALS G2 is the only model to show lower 
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than modern winter EM conditions over parts of the Pacific Northwest (Figure 10j).  All other 

models show higher mid-Holocene EM in at least the Pacific Northwest.  Models with high Кw 

values for annual EM (FGOALS G2, IPSL, MPI) all exhibit lower mid-Holocene EM than 

modern in California (Figure 10j-l), though CSIRO 360, CSIRO 360, and CNRM also have 

lower EM in California relative to modern. 

Spring temperatures are consistently colder than modern, and FGOALS G2 once again 

has temperatures colder than all other models over much of North.  In all models, large positive 

springtime P anomalies (>120% modern) persist between 20-40°N over the Desert Southwest.  

FGOALS G2, MPI, and IPSL all show a drier springtime Pacific Northwest (Figure 11d-f), and 

the former two models also have a drier northern Rocky Mountain region, similar to the spatial 

patterns seen in the annual P results.  However, this pattern is also present in some models which 

show much lower agreement with the proxy network (FGOALS S2, GISS, BCC).  Evaporation is 

similar across all models, with less evaporation in the northern study area, and increased 

evaporation around the Gulf of California and northwestern Mexico.  Models with high annual 

Кw values for EM (FGOALS G2, IPSL, and MPI) all suggest at least part of the Pacific 

Northwest was drier than modern during the mid-Holocene spring (Figure 11j-l), though other 

models also show partially dry conditions there (BCC, GISS, CNRM).   

All models show an increase in summer temperatures.  FGOALS G2 shows lower or 

near-modern summer evaporation over most of the study area (Figure 12g), while all other 

models (except FGOALS S2) show increased summer evaporation over most or the entire 

region.  The largest increases in summer evaporation occur over the Southwest and northern 

Mexico.  IPSL and MPI show large (>120% modern) increases in P in the Southwest (Figure 

12e,f).  In contrast, FGOALS G2 shows lower summer P conditions relative to modern in almost 

the entire study area, with increased precipitation only occurring offshore of the west coast of 

Mexico (Figure 12d).  Summer P does not show a consistent spatial pattern in models other than 

FGOALS G2, IPSL, and MPI.  Additionally, all models except FGOALS G2 and GISS show 

positive summer EM anomalies over the entire study area relative to modern. 

Autumn temperature, precipitation, and EM anomalies are generally inconsistent among 

all models.  Among FGOALS G2, IPSL, and MPI, temperatures over most of the study area are 

warmer than modern (Figure 13a-c).  FGOALS G2, IPSL, and MPI show lower than modern P in 

the northern Rockies and higher than modern P in northwestern Mexico and the Desert 

Southwest (Figure 13d-f).  FGOALS G2 and MPI, the top performing models for Кw P, also have 

lower than modern P in the Pacific Northwest during the autumn months.  All models except 

MPI and FGOALS G2 indicate higher EM than modern in the Pacific Northwest during the 

autumn months (Figure 13j-l).  MPI and FGOALS G2 also look similar in that they have largely 

drier than modern conditions over most of the study area except for much of California and parts 

of the Southwest.  In contrast to other variables, autumn evaporation is relatively consistent in 

most models.  All models have lower-than or near-modern evaporation in the Pacific Northwest 

and northern Rockies, and all models except GISS and BCC have some extent of positive 

evaporation anomalies (110-120% modern) in the Southwest. 
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ANNUAL SURFACE WIND AND WINTER 250MBAR WIND PATTERNS 

The models that show the best agreement with the proxy network (FGOALS G2, IPSL, 

and MPI) display a distinct boundary between stronger annual westerly winds north of 45°N and 

weaker annual westerly winds between 30-45°N during the mid-Holocene (Figure 14a-c), though 
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these annual anomalies are small (+/- 1m/s).  All other models either do not have this boundary, 

or it is shifted to a different latitude.  Additionally, the center of the North Pacific High (NPH) in 

FGOALS G2, IPSL, and MPI is exclusively characterized by weaker annual westerly winds, 

whereas other models have areas of stronger annual westerly winds over the NPH (Figure 14d-f).   

Winter 250mbar wind vector anomalies in FGOALS G2, MPI, and CSIRO 312 all show 

stronger than modern zonal winds in the northeast Pacific offshore of Canada and weaker than 

modern zonal winds offshore of southern California (Figure 15a-c).  Additionally, FGOALS G2, 

MPI, and CSIRO 312 show stronger than modern poleward winds over the Pacific Ocean and 

stronger than modern equatorward flow along the U.S. West Coast (Figure 15d-f).  These wind 

anomalies coincide with areas of higher than modern sea level pressure and form an anticyclonic 

anomaly centered between 150°W-130°W, offshore of northern California and the Pacific 

Northwest (Figure 16a,c,e), and.  The presence of an anticyclonic anomaly in CSIRO 312 

indicates that such wind patterns are not exclusive to models with high Кw values, though the 

highest scoring models (FGOALS G2 and MPI) have them.   
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ANNUAL REGRESSION RESULTS 

Кw for annual P shows strong correlation with the NPH strength and westerly position, as 

well as the pressure difference between the NPH and AL (R
2
=0.8908, p=0.0001).  The sign of 

the regression model coefficients indicates Кw for annual P is higher when the NPH is shifted to 

the west and has higher absolute sea level pressure, and the pressure difference between the NPH 

and AL is decreased.  This suggests that a weaker pressure contrast and higher sea level pressure 

at both the NPH and AL exert a strong influence on precipitation patterns in western North 

America. 

Кw for annual EM shows slightly weaker correlation with atmospheric pressure variables 

(R
2
=0.8162, p=0.001) than Кw for annual P.  The best regression model of EM Кw has two 

variables that are significant at the 95% CI (NPH and AL sea level pressure).  This model's 

coefficients indicate that EM Кw is highest when the NPH is west shifted (not significant at 95% 

CI) with lower than modern sea level pressure, and the AL has higher than modern sea level 

pressure, resulting in an overall decreased pressure difference.  
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2013 ANNUAL PRECIPITATION VS. MID-HOLOCENE ANNUAL PRECIPITATION 

Compared with the Кw values for PMIP3 model agreement, the model-proxy agreement 

for the observed 2013 P anomalies from the PRISM dataset is the third highest Кw (Кw = 0.172 at 

the 5-6% threshold).  The greatest disagreement between the 2013 P anomalies and the proxy 

network occurs in the southern Great Basin, Desert Southwest, and Rocky Mountains (Figure 

17).  Annual precipitation anomalies for 2013 show strong agreement with the mid-Holocene 

proxy network in the Pacific Northwest and California (29/30 sites in agreement). Thus, although 

the overall Кw value is not high, there is near perfect agreement when comparing the mid-

Holocene proxy record to precipitation anomalies from the 2013 drought at sites where the 

majority of annual precipitation occurs as winter precipitation from the westerly storm track.   

 

DISCUSSION 
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Previous analysis of PMIP3 model simulations of mid-Holocene and Last Glacial 

Maximum climates indicates that models are generally capable of capturing large-scale features 

of paleoclimate, such as the North American Monsoon.  However, the ability of models to 

predict the proper magnitude of change, especially on a regional basis, is still an area in need of 

improvement (Harrison et al 2015). This study, however, suggests that even the sign of change is 

poorly represented and inconsistent among the PMIP3 simulations of mid-Holocene 

hydroclimate in western North America, although some models perform notably better than 

others. 

Regional climate models (RCMs) also show disagreement between moisture-sensitive 

proxy records and simulated mid-Holocene effective moisture (EM) in western North America 

(Diffenbaugh and Sloan 2004), with RCMs indicating wetter than modern conditions over 

northern California and southwestern Oregon and proxy records indicating drier than modern 

conditions.  The same model-proxy disagreement is clearly shown in nine of the twelve PMIP3 

global climate models (GCMs) considered here (Figure 8b). Of these twelve PMIP3 models, 

FGOALS G2 and MPI show the best agreement with the proxy network for the mid-Holocene in 

western North America based on precipitation Кw values.  In particular, both models display 

negative annual precipitation anomalies in the Pacific Northwest and northern Rockies, in 

agreement with proxies that indicate drier mid-Holocene conditions (Figure 18a and 18d). 

FGOALS G2, IPSL, and MPI show good agreement with the proxy network for EM, stemming 

from the prediction of reduced effective moisture in the Pacific Northwest and Northern Rockies 

(Figure 9a).  Most of the PMIP3 models investigated here are producing some combination of 

too much precipitation and not enough evaporation in the northern study area and thus do not 

reflect the increased aridity recorded by the proxy network.  However, each of the three models 

that show good agreement in the Pacific Northwest achieves reduced annual EM through slightly 

different combinations of change in precipitation and evaporation.  For example, MPI combines 

decreased precipitation and increased evaporation in the Pacific Northwest, resulting in overall 

drier conditions during the mid-Holocene (Figure 18a-c) whereas FGOALS G2 predicts 

decreased evaporation and a larger decrease in precipitation to compensate (Figure 18d-f). 

Importantly, the Кw values for EM are consistently higher in FGOALS G2, IPSL, and MPI than 

those for P, indicating a larger number of proxy sites are accurately represented by moisture 

balance rather than precipitation alone. 

Outside of the Pacific Northwest, several areas of disagreement persist across all models.  

For example, all models fail to predict EM in the Sierra Nevada and northern Arizona and New 

Mexico (Figure 9), where proxies indicate drier than modern conditions.  FGOALS G2, IPSL, 

and MPI show excellent agreement at the U.S.-Mexico border where proxies predict wetter mid-

Holocene conditions.  These models, however, show poor agreement north of the border in the 

southwestern US where proxies predict drier conditions (Figure 9a).  This contrast results from 

modeled wet conditions in Arizona and New Mexico, suggesting that the models simulate a more 

expanded mid-Holocene North American Monsoon than is indicated by the proxy record.  This 

may result from relatively coarse resolution topography at the GCM scale (Figure 19), which 

would lead to the stronger monsoon being able to penetrate further northward because it is not 

being blocked by orographic barriers. 
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One potential contributing factor to the model-proxy mismatch might be the short 

duration of model runs.  The models used in this study were run for differing amounts of time 

(Table 4), and only five models are run long enough (200+ years) to capture multiple phases of 

the Pacific Decadal Oscillation (PDO). The PDO is essentially a lower frequency and lower 

magnitude phase of the El Niño-Southern Oscillation (ENSO) and acts on timescales ranging 

from 20-70 years (Minobe 1999).   For the western U.S., cool PDO phases lead to drier 

conditions in the southern half of the study area and wetter conditions in the Pacific Northwest, 

while warm phases result in a wetter southern study area and drier Pacific Northwest (Wise 

2010). The phase of the PDO also has profound impacts on the magnitude of ENSO events, 

serving to amplify El Niño events during positive (warm) PDO phases and dampen El Niño 

events during negative (cool) PDO phases (Wise 2010). Given that a single phase of the PDO 

can last up to 70 years (Minobe 1999), longer runs of all PMIP3 models to allow for multiple 

PDO cycles would mitigate potential bias against a particular phase of the PDO and may 

improve agreement with the proxies. For example, if a simulation is dominated by a cool phase 

PDO, the Pacific Northwest would be wetter than average and the southern portion of the study 

area (California, especially) would be drier than average.  The cool phase PDO could potentially 

raise P in the Pacific Northwest and reduce model-proxy agreement there, and at the same time, 

reduce P in California and increase model-proxy agreement in that region.  However, in this 

analysis, neither P nor EM Кw values correlate strongly with model run time, and thus it is 

unclear if bias toward a single phase of the PDO influenced model results. 
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Despite differences between models, the models that show the best agreement with the 

proxy network for P (FGOALS G2 and MPI) and EM (FGOALS G2, IPSL, and MPI) have some 

similar characteristics.  Each of these three models shows positive annual westerly surface wind 

anomalies north of 45°N and negative westerly surface wind anomalies between 30-45°N at 6ka 

(Figure 14a-c) indicating northward shifted zonal winds relative to modern.  Multivariate results 
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indicate that stronger Кw P agreement corresponds with a strengthened and west-shifted NPH and 

a weaker contrast between the NPH and AL.  The regression models for Кw EM do not have 

correlations as strong as Кw P, but still indicate that a weaker contrast between the NPH and AL 

plays a strong role in EM spatial patterns.  The weaker correlation for Кw EM likely results from 

the influence of other factors, such as insolation-driven temperature enhancing evaporation 

potential.  It is clear that changes in large-scale pressure system dynamics in the Pacific and 

changes in wind strength correspond to changes in spatial patterns of precipitation in the West, 

and changes in evapotranspiration seem to improve the model-proxy agreement based on higher 

Кw EM scores than Кw P scores for FGOALS G2, IPSL, and MPI.  However, there are consistent 

problem areas even for the best scoring models, such as California and the Desert Southwest 

north of the U.S.-Mexico border (Figure 9a). 

Precipitation patterns for 2013 show better agreement with the proxy network than all 

PMIP3 simulations of mid-Holocene precipitation with the exception of FGOALS G2 and MPI.  

During the mid-Holocene, proxy records indicate wetter than modern conditions in the Desert 

Southwest (Figure 3), and these changes were driven by a stronger than modern monsoon season 

due to increased summer insolation (Metcalfe et al 2015). Today, the North American Monsoon 

is not as strong as the mid-Holocene, and therefore, would not be expected to show wetter 

conditions in the Desert Southwest.  Indeed, the 2013 precipitation anomalies and the 6ka proxy 

network show most disagreement in the Desert Southwest and southern Great Basin, while sites 

in the Pacific Northwest and California show almost perfect agreement (29/30 sites; Figure 17).  

Today, the majority of annual precipitation for the Pacific Northwest and California comes from 

the westerly storm track during the winter season.  During the 2013 drought year, a combination 

of 1) weaker westerly winds over the Pacific south of ~50°N; 2) stronger westerly winds over 

Alaska; 3) stronger equatorward flow over the Pacific Northwest; and 4) stronger poleward flow 

on the western flank of the pressure ridge, all acted in tandem to deflect precipitation north of the 

U.S. west coast (see Figure 2.1 in Swain et al., 2014).   

The mid-Holocene winter season is characterized in the CSIRO 312, FGOALS G2, and 

MPI simulations by a combination of greater than modern sea level pressure anomalies and 

250mbar anticyclonic wind vector anomalies offshore of the Pacific Northwest around 140°W 

(Figure 16a,c,e).  The presence of anticyclonic winter wind anomalies and higher sea level 

pressure offshore of the U.S. west coast are strikingly similar to conditions seen in the 2013 

drought year (Seager et al 2014; Swain et al 2014).  However, the latitude of the wind anomalies 

is further south-shifted in the mid-Holocene simulations than what is observed in the 2013 

drought year.  Additionally, the configuration of anticyclonic wind anomalies for MPI is a more 

elongated southwest-northeast trending pattern (Figure 16e), while the modern pressure ridge is 

more symmetrical.  This similarity between the 2013 annual atmospheric configuration and 

simulated configuration during mid-Holocene winters suggests that anticyclonic wind anomalies 

and higher sea level pressure offshore of western North America are important features that lead 

to dry conditions in California in both cases.  Interestingly, the 2013 drought matches the annual 

precipitation pattern seen in the mid-Holocene proxy network perfectly in California (Figure 17), 

while mid-Holocene models consistently fail in this region on an annual basis (Figure 8).  

However, the winter season in the CSIRO 312, FGOALS G2, and MPI mid-Holocene 

simulations displays similar atmospheric conditions to the 2013 drought year, and these models 

successfully simulate drier conditions in California and parts of the Pacific Northwest during the 

winter season (Figure 16).  CSIRO 312 shows poor agreement with the proxy network for annual 
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P despite showing anticyclonic anomalies during mid-Holocene winters, and this results from 

higher than modern P in the spring and autumn seasons over most of the study area.  The strong 

agreement between mid-Holocene proxies and 2013 precipitation anomalies indicates that large 

scale atmospheric patterns which controlled precipitation in 2013 are likely a key component of 

mid-Holocene aridity, although most models do not produce wind and pressure anomalies 

consistent with those seen in 2013.  Nevertheless, the strong agreement between the mid-

Holocene proxy network and 2013 precipitation anomalies in the Pacific Northwest and 

California provides evidence that the mid-Holocene may be a good comparative case study for 

modern droughts, and conversely, the modern drought may provide insight into atmospheric 

drivers of climate during the arid mid-Holocene. 

CONCLUSIONS 

I have compiled an updated network of moisture-sensitive proxy records for western 

North America during the mid-Holocene.  The proxy network indicates drier than modern 

conditions in the Pacific Northwest, California, northern Great Basin, and northern Rocky 

Mountains, while climate was wetter than modern in the Desert Southwest, parts of the southern 

Great Basin, and the Colorado Plateau due to a stronger North American Monsoon.  Using the 

Кw statistic to measure model-proxy agreement, I found that effective moisture (P-E) shows 

better model-proxy agreement than precipitation alone.  I have also established that the models 

that show the closest agreement with the proxy network capture arid conditions in the Pacific 

Northwest during the mid-Holocene, though there are multiple combinations of evaporation and 

precipitation changes that lead to successful agreement with the proxy network.  In the southern 

portion of the study area, topographic complexity may not be adequately captured by GCMs, 

leading to most models simulating much wetter conditions north of the U.S.-Mexico border than 

is evident in the proxy record, possibly resulting from monsoonal moisture penetrating too far 

northward in the models.  Of the twelve models examined here, I find that FGOALS G2, IPSL, 

and MPI best reflect mid-Holocene EM conditions in the western U.S.  The mechanisms driving 

more arid conditions over much of the West include weaker annual westerly winds across the 

Pacific Ocean from 30-45°N, the development of anticyclonic 250mbar wind anomalies offshore 

of the Pacific Northwest during the winter, and increased evaporation rates over much of the 

study area, especially during the summer.  The 2013 drought year shows similar annual 

atmospheric configuration to that observed in the mid-Holocene simulations.  In fact, proxy 

records from regions where precipitation is dominated by winter westerly storms more closely 

match the 2013 drought pattern than the precipitation patterns simulated in mid-Holocene model 

simulations.  The similarities between precipitation patterns seen in paleodroughts and those seen 

today suggests that atmospheric conditions of modern droughts must be better represented in 

climate models in order to properly recreate drought conditions of the mid-Holocene.  

Comparison of the 2013 drought year, mid-Holocene moisture proxies, and GCM simulations for 

6ka reveal that although key differences exist between modern and past droughts, the mid-

Holocene likely provides a good case study for comparison to current conditions in California 

and the Pacific Northwest. 
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