
Skill Transfer between Industrial Robots by Learning from Demonstration

By

Mengtang Li

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Electrical Engineering

May, 2016

Nashville, Tennessee

Approved:

Alan Peters, Ph.D.

Mitchell Wilkes, Ph.D.

To my advisor, my friends and my family without whom I am nothing.

ii

TABLE OF CONTENTS

Page

DEDICATION . ii

LIST OF TABLES . v

LIST OF FIGURES . vi

1 INTRODUCTION . 1

1.1 RELATED WORK . 2

1.2 PROBLEM AND SOLUTION . 3

1.3 SOFTWARE AND HARDWARE . 6

2 SYSTEM DESCRIPTION . 7

2.1 YASKAWA MOTOMAN HP3JC . 7

2.2 UNIVERSAL ROBOT UR5 . 8

2.3 RETHINK ROBOTICS BAXTER . 10

2.4 FORWARD KINEMATICS . 10

2.5 KINECT VISION SYSTEM . 14

2.6 WORKING SYSTEM . 15

3 SYSTEM SETUP . 17

3.1 COLOR OBJECT DETECTION . 17

3.2 ROBOT CALIBRATION . 18

3.3 RIGID BODY TRANSFORMATION . 21

4 ROBOTIC KNOWLEDGE TRANSFER . 24

4.1 LOCALLY WEIGHTED REGRESSION . 24

4.2 DYNAMIC MOVEMENT PRIMITIVES . 26

5 EXPERIMENTS AND ANALYSIS . 31

5.1 REACH AND ALIGN . 31

iii

5.2 FIND COLORED OBJECT . 34

6 CONCLUSION . 41

BIBLIOGRAPHY . 42

iv

LIST OF TABLES

Table Page

2.1 DH parameters for Yaskawa Motoman HP3JC 13

2.2 DH parameters for Universal Robot UR5 13

2.3 DH parameters for Universal Robot Rethink Robotics Baxter 13

3.1 3D coordinates in Kinect Frame(mm) . 18

3.2 Joint Angle Variable (degree) . 21

3.3 3D coordinates in Robot Frame(dm) . 21

5.1 Error between Desired Goal Position/Orientation and Actual Position/Orien-

tation . 34

5.2 Error between Desired Goal Position and Actual Position of UR5 39

5.3 Error between Desired Goal Position and Actual Position of Baxter 40

v

LIST OF FIGURES

Figure Page

1.1 Teach Pendant of Yaskawa Motoman HP3JC 5

2.1 Yaskawa Motoman HP3JC . 8

2.2 Universal Robot UR5 . 9

2.3 Rethink Robotics Baxter . 11

2.4 Denavit Hartenberg Parameters . 12

2.5 A point cloud obtained from Kinect using PCL 15

2.6 System Setup . 16

3.1 Color Detection Flowchart . 17

3.2 Sequence of Movements Used to Calibrate the Robot 19

3.3 Motoman SDK Software Use Interface . 20

3.4 Results of Rigid Body Transformation . 22

4.1 Global Model Regression and Locally Weighted Regression 25

4.2 HP3JC Matlab Simulation . 30

4.3 Learn from Demonstration (Blue) and Apply to New Goals (Red) 30

5.1 Reach and Align, HP3JC . 32

5.2 Reach and Align, UR5 . 33

5.3 Colored Object Reaching, HP3JC . 35

5.4 Mechanism of the Robot Communication via ROS 36

5.5 Colored Object Reaching, UR5 . 37

5.6 Colored Object Reaching, Baxter . 38

vi

Chapter 1

INTRODUCTION

Industry in America depends on robots[1, 2]. Industrial robots are programmable repet-

itive motion machines that can move and/or assemble material objects. Currently they are

programmed manually by a human operator who, using a device called a ”teach pendant”,

guides the robot through the motions necessary to perform a specific task. The motions are

recorded and stored as a program that is run each time the task performed. For a different

robot to preform the same task, it likewise must be programmed manually. This can take

many hours of work. Software that takes the program from one robot and automatically

transforms it into a program for another robot would save much time and could enable

reuse of diverse robots that would otherwise have to be replaced.

The current state-of-art in industrial robots is similar to that of computing in the 1970s

and pre-internet 80s[3]. Then, a number of companies sold their own mainframe computers

that were programmed with proprietary languages and that could not communicate with

computers from other manufacturers[4]. The advent of the PC and the internet changed

that. Over time the hardware has become inexpensive and computers from many different

manufacturers can execute the same programs. Industrial robots today have similar limi-

tations - their control systems are proprietary and robots from different manufacturers are

unable to run the same programs. Moreover, robots that do not have identical form and

dynamics cannot use the same program for the same task. The ability to transfer such pro-

grams, abstracted as skills, would expand the utility of industrial robots[5, 6].

1

1.1 RELATED WORK

The ability to transfer task programs between heterogeneous robots would provide sig-

nificant cost savings to industry, through reduced programming time and concurrent robot

down-time which necessitates halting production, through increasing the usability of older

robots, and by enabling cooperative assembly between robots from different manufactur-

ers. However, a industrial task is complex, consisting of many low-level basic motions.

Maja Mataric[7, 8] defined basis behaviors which are stable and prototypical interactions

that robots or any other creatures use to interact with environment. Basis behaviors are

fundamental building blocks to generate high-level behaviors to finish complex tasks such

as industrial tasks. Once we are able to transfer those fundamental skills or knowledge, we

can transfer complex high-level skills by combining those basic ones.

Researchers have been working on knowledge transfer across heterogeneous robots for

over two decades and they have tried to find out the most accurate and most efficient way to

do so with respect to certain requirements and constraints. One important part of knowledge

transfer is the representation of the robotic knowledge.

One approach is to represent robotic tasks and knowledge symbolically. Abbas and

MacDonald adopted topological task graphs[9]. Konidaris et al. used skill trees[10]. This

method provides control from a higher level other than motion-based representations, while

it assumes the whole system is equipped with enough knowledge about the relationship

between physical behaviors and symbols.

A second approach proposed by R. Grupen [11, 12] relies on a control basis defined by

potential functions, feedback signals and motor parameters. New sensorimotor skills are

learned in this control basis with a reward function R after enough trainings.

Another philosophy is to model knowledge about motion and task. Once those knowl-

edge models have been built, robots are able to not only to learn knowledge from demon-

strations but also to apply what they have learned in new environments and to solve new

problems. Kruger et al.[13] included object-action complexes to encode task knowledge as

2

a function of motion, and Lyons et al. [14] used a port automata model to accomplish the

same thing. Ijspeert et al.[15] adopted a dynamical system representation. A differential

equation that encodes an attractor landscape is proposed to generate new trajectory towards

goal state by nonlinearly transforming this canonical attractor.

1.2 PROBLEM AND SOLUTION

The goal was to design a prototype control architecture for industrial robots which al-

lows multiple heterogeneous robots of different morphologies from different manufacturers

to perform the same task without manually programming each robot separately. The idea

is to systematically decompose a typical industrial task into a small collection of behaviors

that are common to many such tasks. Those basis behaviors may include:

1. Unloaded Manipulator Motions: Reach Toward, Align to Object, Avoid Obstacle,

etc.

2. Object-Constrained Motions: Push, Pull, Place, etc.

3. Perceptual Behaviors: Find Colored Object, Estimate Distance, Visual Servoing, etc.

4. Maintenance Behaviors: Return to Home Position, Calibrate Vision, etc.

Although each basis behavior will have a specific program implementation for each robot,

the inputs must be identical. For example, the ”align” behavior could have the inputs:

object identifier, object grasp or manipulation point, 3D position in the workspace, object

pose. The implementation of the behavior on each robot will differ in code and in motion

parameters. The common inputs enable machine independent skill description. The outputs

of the behaviors are likewise to be identical. This goes beyond data transfer to the physical

result of a behavior. The results of the two robots’ actions should match at the end of each

behavior. This is not absolutely necessary since the task outcome is paramount. However,

3

we are taking this as a design decision: basis behaviors are such that both their inputs and

their outcomes are identical across robots.

the systematic approach is straightforward:

1. First, we used visual servo control. During last few years, cameras that provide depth

information have become available. Kinect is a good example for it and we use it

for 3D reconstruction[16–18] since it is inexpensive and is supported by many open

source libraries. OpenCV library[19] and Point Cloud Library (PCL)[20] allow us to

write a C++ program to reconstruct the 3D world. To guide the robot’s end-effector

to a target object, we used color feature detection. Once this is done, the program is

able to calculate the 3D coordinates of the target object with respect to the Kinect’s

reference frame.

2. The next procedure is to calibrate the industrial robotic arm, a Yaskawa Motoman

HP3JC, to compute the transformation relationship between the Kinect frame and

the robot frame. Kinect frame is the reference frame where we can acquire object’s

3D information. However, it is more straightforward and easier to control the robot

in its own frame. The teach pendant (shown in Figure 1.1) is a handheld device for

programming motions of a robot. We used it to program a calibration job guides

the robot arm to a sequence of positions. Off-the-shelf software like MotoSDK, pro-

vided by Yaskawa Motoman, enabled us to accurately acquire the joint angles of

the robotic manipulator[21, 22]. This makes it easier for us to get the end-effector’s

3D coordinates with respect to robot frame since once we have joint angles we only

need to do the forward kinematics. In order to acquire the end-effector’s 3D coordi-

nate in the Kinect frame, we stick a small red marker on the top of the end-effector.

Then the C++ program we mentioned earlier returns the corresponding 3D coordi-

nates. Once we obtain 2 groups of coordinates, the problem becomes a well-known

rigid body movement problem. There exist plenty of algorithms to help us solve the

problem[23, 24]. We used the Singular Value Decomposition method[25].

4

Figure 1.1: Teach Pendant of Yaskawa Motoman HP3JC

3. Finally, we uesd Ijspeert’s method to transfer the robotic knowledge by learning

attractor landscapes[26, 27]. Dynamic movement primitives (DMPs) are a mathe-

matical method to represent motion primitives which can be combined to generate

complex movements. We used DMPs to model attractor behaviors of the nonlin-

ear robotic systems. A non-linear differential equation is constructed to represent

a single movement which is performed by one of the robotic manipulators and can

be learned by another one. Three articulated industrial manipulators (Yaskawa Mo-

toman HP3JC, Universal Robot UR5 and Rethink Robotics Baxter), were chosen by

us as experimental platforms. HP3JC and UR5 both have 6 joints while Baxter has 7

joints. Two assembly tasks were selected for analysis and implementation.

5

1.3 SOFTWARE AND HARDWARE

The work was done mainly on a PC using the operating system Ubuntu 14.04 LTS

Trusty Tahr[28]. We used the Kinect 1[29] to obtain 3D data. The visual servo system

program was written in C++ using the libraries OpenCV 3.1[30] and PCL 1.7.2[31]. PCL

allows us to process point cloud data and OpenCV allows us to process image data. Matlab

2015a academic license[32] helps us solve the rigid body transformation problem and do

all the computation part of the skill transfer. ROS Indigo[33] was used to communicate be-

tween robots and computers. It provides interprocess communications via a publisher/sub-

scriber model. The 3D information message listener and robot driver programs are written

for ROS in Python 2.7[34]. Yaskawa Motoman HP3JC[35], Universal Robot UR5[36] and

Rethink Robotics Baxter[37] were the three experimental platforms. Since we do not have

a real UR5 or a real Baxter, we used Gazebo 7.0.0[38] to simulate them within ROS.

6

Chapter 2

SYSTEM DESCRIPTION

Since we used three different industrial manipulators as the experimental platforms with

which to devise our robotic skill transfer framework, we needed a middleware framework

that would enable us to send control information to each of the robots. The Robot Operating

System (ROS) [39] provides this. ROS is an efficient collection of tools and libraries that

makes the process of designing and controlling different robots easier.

The visual servo system was another important module of the work. We used it to

guide the HP3JC. There are two main approaches to visual servoing: Position Based Visual

Servo (PBVS)[40–42] and Image Based Visual Servo (IBVS)[43–48]. Generally speaking,

PBVS uses visual data to reconstruct the 3D world and allows researchers to design control

algorithms in Cartesian space. IBVS requires the design of Jacobians for joint control based

on image features acquired directly from a vision systems. we chose the PBVS approach

since it is more straightforward to implement. Moreover it is more intuitive to control a

robot in Cartesian space than by image features in a vision system.

In this chapter, we introduce the system and describe specs of the robots and visual

systems.

2.1 YASKAWA MOTOMAN HP3JC

Since we have a Yaskawa Motoman HP3JC in our lab, we used it as the primary plat-

form on which to learn a set of motions. The HP3JC is a small yet compact, speedy and

flexible industrial manipulator that can be mounted on the floor, ceiling or even wall. It

only needs a little working space. Although it was designed as a welding robot and for

the handling of lightweight materials, its characteristics make it ideal for lab research and

7

Figure 2.1: Yaskawa Motoman HP3JC
(http://www.used-robots.com/images/robots/original/hp3jc-side.jpg)

education. In our set-up the HP3JC is mounted on box which places the robot’s base 55

cm above the ground. Figure 2.1 shows the metric specifications of the Yaskawa Motoman

HP3JC.

2.2 UNIVERSAL ROBOT UR5

A ROS Gazebo simulation of a Universal Robot UR5 was chosen as another exper-

imental platform that we used. Like the HP3JC, the UR5 is a lightweight, flexible and

collaborative robot. It has a wide working space with radius up to 850mm which is larger

than the PH3JC. We used the simulated UR5 in Gazebo as a the ”student robot” to learn

skills from the ”teacher robot” HP3JC. Figure 2.2 shows the metric specifications of the

Universal Robot UR5.

8

Figure 2.2: Universal Robot UR5
(http://www.zacobria.com/universal-robots-zacobria-forum-hints-tips-how-to/script-

client-server-example/)

9

2.3 RETHINK ROBOTICS BAXTER

A ROS Gazebo simulation Rethink Robotics Baxter was the third experimental plat-

form. Baxter has been integrated by many companies in their factories across North Amer-

ica. Baxter enables an important test of our results because each of its two arms has 7 joints

while the former two robots only have 6 joints. The DH parameters are the same for each

arm. For our experiment, we used only one arm. Figure 2.3 shows the metric specifications

of the Rethink Robotics Baxter.

2.4 FORWARD KINEMATICS

Forward kinematics uses the kinematic equations of a robot to calculate the position and

orientation of the robot’s end-effector given specified joint angles. In other words, forward

kinematics translates the joint space to Cartesian space. To calculate the forward kine-

matics and inverse kinematics, we used the famous Denavit Hartenberg parameters (also

known as DH parameters). The DH convention represents each individual homogeneous

transformation of each corresponding joint as the product of four basic transformations[49].

Ti = Rotz,θiTransz,diTransx,aiRotx,αi

=



cosθi −sinθi 0 0

sinθi cosθi 0 0

0 0 1 0

0 0 0 1





1 0 0 0

0 1 0 0

0 0 1 di

0 0 0 1





1 0 0 ai

0 1 0 0

0 0 1 0

0 0 0 1





1 0 0 0

0 cosαi −sinαi 0

0 sinαi cosαi 0

0 0 0 1



=



cosθi −sinθi cosαi sinθi sinαi ai cosθi

sinθi cosθi cosαi −cosθi sinαi ai sinθi

0 sinαi cosαi di

0 0 0 1


(2.1)

10

Figure 2.3: Rethink Robotics Baxter
(http://sdk.rethinkrobotics.com/wiki/Workspace Guidelines)

11

Figure 2.4: Denavit Hartenberg Parameters
(https://www.quora.com/Robotics/What-is-the-best-resthece-to-understand-

Denavit%E2%80%93Hartenberg-parameters)

The fthe key parameters of DH parameters are (see Figure 2.4):

• ai: link length: distance along xi from the intersection of the xi and zi−1 axes to oi

• αi: link twist: the angle from zi−1 to zi measured about xi

• di: link offset: distance along zi−1 from oi−1 to the intersection of the xi and zi−1 axes

• θi: joint angle: the angle from xi−1 and xi measured about zi−1

There is no need to do the matrix multiplication every time. Use the final resulting ma-

trix of Eq 2.1 for every link. Table 2.1 shows the DH parameters of the Yaskawa Motoman

HP3JC. Table 2.2 shows that of Universal Robot UR5 and table 2.3 shows that of Rethink

Robotics Baxter. Note that since we have mounted a JR3 force and torque sensor (45 mm

height) on the top of the end-effector, the link length of link 6 of Yaskawa Motoman HP3JC

is modified. Plugging the corresponding DH values to Eq 2.1 for every link can we get 6 (7

12

for Baxter) homogeneous transformation matrices T1 ∼ T6 with respect to every joint angle

θi. Then we multiply those 6 matrices.

Link θi di ai αi

1 θ1 +0◦ 1.57 0 −90◦

2 θ2−90◦ 0 2.60 90◦

3 θ3 +0◦ 0 0.30 −90◦

4 θ4 +0◦ -2.70 0 90◦

5 θ5 +0◦ 0 0 −90◦

6 θ6 +0◦ -1.35 0 0◦

Table 2.1: DH parameters for Yaskawa Motoman HP3JC

Link θi di ai αi

1 θ1 +0◦ 0.892 0 90◦

2 θ2 +0◦ 0 -4.250 0◦

3 θ3 +0◦ 0 -3.923 0◦

4 θ4 +0◦ 1.092 0 90◦

5 θ5 +0◦ 0.947 0 −90◦

6 θ6 +0◦ 0.823 0 0◦

Table 2.2: DH parameters for Universal Robot UR5

Link θi di ai αi

1 θ1 +0◦ 2.7035 0.690 −90◦

2 θ2 +0◦ 0 0 90◦

3 θ3 +0◦ 3.6435 0.690 −90◦

4 θ4 +0◦ 0 0 90◦

5 θ5 +0◦ 3.7429 0.100 −90◦

6 θ6 +0◦ 0 0 90◦

7 θ7 +0◦ 2.800 0 0◦

Table 2.3: DH parameters for Universal Robot Rethink Robotics Baxter

Ha
b = T1(θ1)T2(θ2)T3(θ3)T4(θ4)T5(θ5)T6(θ6) =

Rotation3x3 Translation3x1

0 1

 (2.2)

The resulting matrix Ha
b is a 4 by 4 matrix. It represents the relationship between ori-

gin base and end-effector. The sub matrix Rotation is a 3 by 3 matrix contains orientation

13

information while vector Translation is a 3 by 1 column vector whose elements are the end-

effector’s 3D coordinates x,y,z. So far, we have found a way to obtain the end-effector’s

coordinates and orientation given the values of joint variables.

2.5 KINECT VISION SYSTEM

Kinect becomes more and more popular among researchers because it is equipped with

an infrared laser depth sensor which can acquire image 3D data under any light conditions.

Kinect releases the burden of calibrating a pair of stereopsis cameras upon researchers

since this procedure is time consuming and sensitive to any slight physical disturbance.

Using the open source PCL, we are able to obtain 3D data returned from the Kinect in the

form of a point cloud[50]. The point cloud is a group of points. Each point has its own

3D coordinate. Additionally, it can also contain RGB color information. Figure 2.5 is an

exemple perspective from Kinect using PCL.

Specifically, we use the following functions:

• opencv :: CvScalar to create a HSV vector

• opencv :: cvCvtColor to convert RGB image into HSV image

• opencv :: cvInRanges to filter images not in a particular range

• opencv :: cvSmooth to smooth images

• pcl :: PointXY ZRGBA to store point cloud data

• pcl :: OpenNIGrabber and pcl :: visualization :: CloudViewer to create a OpenNI

point cloud viewer

• ros :: Publisher to publish message through ROS

14

Figure 2.5: A point cloud obtained from Kinect using PCL

2.6 WORKING SYSTEM

We placed the robot arm at a place where its work space is big enough so there won’t

be any accidental collision. Next, we placed the Kinect at a place where its field of view

is big enough to see all possible movements of the robotic arm (minimum 1.4 meters or

4.5 feet[51]). The system includes a Yaskawa Motoman HP3JC robotic manipulator, a

NXC100 controller, a Kinect visual system and a PC and is shown in Figure 2.6.

15

Figure 2.6: System Setup

16

Chapter 3

SYSTEM SETUP

In this chapter, we describe how to use the Kinect visual system to find a colored object

then to use it to complete the transformation relationship between the Kinect frame and

the robot frame. After this procedure, the system is set up and good to go for the robotic

knowledge transfer.

3.1 COLOR OBJECT DETECTION

To detect a color target like a red marker, the approach is straightforward and simple.

We use it because computer vision is not our focus. The approach flowchart is shown in

Figure 3.1. First of all, we convert the color space from RGB to HSV. The reason is that

HSV color space separates luma from chroma which means HSV separates the intensity

information from color information. Often, the RGB color space is much noisier than HSV

color space. OpenCV provides us with built-in function to accomplish this task. Next, we

specify the desired HSV values and use them to filter the original point cloud. Once this

is done, the resulting point cloud contains only those points whose HSV values are in the

range of the specified color. Then, we just need to calculate the average 3D coordinates of

Figure 3.1: Color Detection Flowchart

17

all points. That yields the target object’s 3D position.


x = 1

N ∑
i=N
i=1 xi

y = 1
N ∑

i=N
i=1 yi

z = 1
N ∑

i=N
i=1 zi

(3.1)

Additionally,since outliers will bias an average, we use a median filter over all the points

in a 5 by 5 by 5, 3D cubic area. Then a ROS channel is selected to publish the 3D position

information so that the robot can read it.

3.2 ROBOT CALIBRATION

This section describes the computation of the transform relationship between the robotic

frame and the vision frame. To acquire the target’s 3D coordinates in the Kinect frame, we

wrote a C++ program that uses OpenCV and PCL. To position the target in the robot’s

frame, we use the teach pendant to program a sequence of movements. Figure 3.2 shows

this procedure. Table 3.1 shows the end-effector’s 3D coordinates in Kinect frame. Since

the Kinect-based vision system can estimate the position of a color object, we stick a red

marker on the top of the end-effector of the robot arm. MotoSDK released by Yaskawa

Motoman can acquire the joint angles of each motion step. Figure 3.3 shows the user-

interface of this software. Once that is done, the next step is to use Eq 2.2 to calculate the

end-effector’s 3D coordinates in the robot frame.

step1 step2 step3 step4 step5 step6 step7 step8 step9 step10
x -219.7 -358.8 -285.3 -37.2 236.3 61.0 111.5 71.6 -13.4 -105.1
y 335.1 174.4 25.9 -60.0 30.8 267.2 337.6 409.9 432.0 414.1
z 1243.7 1189.7 1094.5 995.0 1032.5 1073.0 1116.8 1216.1 1243.7 1243.7

Table 3.1: 3D coordinates in Kinect Frame(mm)

Table 3.2 shows the joint angle variables used for robot calibration.

As previously mentioned before, once the joint angles are known, we can apply Eq 2.1

18

Figure 3.2: Sequence of Movements Used to Calibrate the Robot

19

Figure 3.3: Motoman SDK Software Use Interface

20

θi step1 step2 step3 step4 step5 step6 step7 step8 step9 step10
θ1 -90 -45 0 45 90 -90 -45 0 45 90
θ2 0 0 0 0 0 -70 -70 -70 -70 -70
θ3 0 0 0 0 0 0 0 0 0 0
θ4 0 0 0 0 0 0 0 0 0 0
θ5 0 0 0 0 0 0 0 0 0 0
θ6 0 0 0 0 0 0 0 0 0 0

Table 3.2: Joint Angle Variable (degree)

and Eq 2.2 to compute the target’s 3D coordinates. We plug the joint angles into Eq 2.2

and multiply the 6 matrices. Table 3.3 shows the corresponding 3D coordinates in the robot

frame.

step1 step2 step3 step4 step5 step6 step7 step8 step9 step10
x 0.000 2.864 4.050 2.864 0.000 0.000 -0.947 -1.340 -0.947 0.000
y -4.050 -2.864 0.000 2.864 4.050 1.340 0.947 0.000 -0.947 -1.340
z 4.470 4.470 4.470 4.470 4.470 6.368 6.368 6.368 6.368 6.368

Table 3.3: 3D coordinates in Robot Frame(dm)

3.3 RIGID BODY TRANSFORMATION

Now, we have two groups of coordinates correspond to the same points (say {x1,x2, ...,xn,x∈

ℜ3} and {y1,y2, ...,yn,y ∈ℜ3}). We need to find a rotation matrix R and a translation vec-

tor T to map xi to yi, n = 1,2, ...,n. Note that measurement errors are unavoidable. So the

mapping is not exact. The problem becomes:

min
R∈Ω,d

n

∑
i=1
‖ Rxi +d− yi ‖2 (3.2)

where

Ω = {R | RT R = RRT = I3;det(R) = 1} (3.3)

We used a Singular Value Decomposition method to solve this rigid body transforma-

tion problem[52].

21

Figure 3.4: Results of Rigid Body Transformation

Algorithm 1 using SVD method to solve problem (3.2) with constraint (3.3)

1. x̄ = 1
n ∑

i=n
i=1 xi, ȳ = 1

n ∑
i=n
i=1 yi, xi ∈ℜ3, yi ∈ℜ3

2. A = [x1− x̄, ...,xn− x̄], B = [y1− ȳ, ...,yn− ȳ]

3. C = BAT

4. USV T =C, Singular Value Decomposition of C

5. R =Udiag(1,1,det(UV T))V T , this is the rotation matrix

6. d = ȳ−Rx̄, this is the translation vector

We used Matlab to solve this problem. The coordinates in Table 3.1 are xi and the

coordinates in Table 3.3 are the yi. The results were as follows and shown in Figure 3.4.

R =


−0.4448 0.5112 −0.7354

0.8956 0.2449 −0.3715

−0.0098 −0.8238 −0.5667

 , d =


1065.9

886.8

1124

 (3.4)

RobotCoord = R×KinectCoord +T (3.5)

22

With the rotation matrix R and translation vector T , we are able to send 3D position

command to the Yaskawa Motoman HP3JC within its own frame. First, the C++ visual

servo program calculates the target’s 3D coordinates, KinectCoord, in its own frame and

publishes them on a ROS channel. Then, the NXC100 robot controller subscribes to the

same channel and uses the rotation matrix R and translation vector T to calculate the tar-

get’s 3D coordinates, RobotCoord, in the robot frame.

23

Chapter 4

ROBOTIC KNOWLEDGE TRANSFER

Learning from demonstration is the cornerstone of human education. Here, we use the

similar method to transfer robotic knowledge across heterogeneous robotic platforms.

There exist some major challenges before we are able to fully transfer the knowledge[53].

1. Correspondence: The teacher robot and the student robot are heterogeneous and their

degree of freedom (DoF) or links may not match.

2. Generalization: The student robot must have the ability to generate new knowledge

from what teacher robot has taught since teacher robot cannot demonstrate all possi-

ble movements.

We used Ijspeert’s approach[15, 26, 27] to transfer robotic knowledge by learning at-

tractor landscapes. Dynamical movement primitives are a mathematical method to repre-

sent motion primitives which can be combined to generate complex movements. DMPs are

useful for robotics because. A non-linear differential equation is set up to represent the joint

trajectory of a single movement what was performed by one of the robotic manipulators.

The differential equation and its learned attractor are then used to drive a different robot.

We have chosen three articulated industrial manipulators (Yaskawa Motoman HP3JC, Uni-

versal Robot UR5 and Rethink Robotics Baxter) as experimental platforms. Because we

don’t have a real UR5 or Baxter, we use Gazebo to simulate them.

4.1 LOCALLY WEIGHTED REGRESSION

Most machine learning methods use a single global model to fit all the training data.

Such an approach considers all the data to be equivalent. But what if we know there are

24

Figure 4.1: Global Model Regression and Locally Weighted Regression

query points of interest? It is more rational to emphasize data that is more similar to the

query point and deemphasize data that is not similar to the query point[54]. Figure 4.1

shows a simple example of global model regression and locally weighted regression. While

global model regression uses a single model to fit all training data, locally weighted model

tries to fit the training data in neighborhood regions around those four query points. The

local weighted model emphasizes training data which is closer to the query points.

Many methods exist to calculate the similarity between data points and query points.

The simplest and most common one is the Euclidean distance between data point and query

point.

d(x,q) =
√
‖ x−q ‖ (4.1)

A kernel function ψ() is used to calculate the corresponding weights ωi for a particular

data query point. The simplest and most common one is the Gaussian kernel. The meaning

of Gaussian kernel is straightforward and self explanatory. It emphasizes those points near

the query point and deemphasizes those points far from the query point exponentially.

ψ(d) = e−d2
(4.2)

Locally weighted regression is used to calculate those weights ωi for each kernel func-

tion ψ(s). Its fast speed allows real time computation possible and the calculations are

25

independent for each kernel.

4.2 DYNAMIC MOVEMENT PRIMITIVES

An analytically well-understood damped spring system was chosen to meet the follow-

ing requirements mentioned by Ijspeert: (1) it should be a time independent autonomous

system; (2) it should be able to work in any dimension; (3) it should not contain too many

open parameters to learn; and (4) it should allow real-time computation.

τ v̇ = K(g− x)−Dv+(g− x0) f (4.3)

τ ẋ = v (4.4)

where,

x is the position, x0 is the initial position;

v is the velocity;

g is the goal position;

τ is a scaling factor;

K is the spring Hook constant;

D is the spring damping term such that they system is critically damped;

f is a non-linear function which can be learned to generate any movement trajectory.

Eq 4.3 and Eq 4.4 are the Transformation System Equations. It is clear and straightfor-

ward that if the force term f = 0, a unique point attractor (x,v) = (g,0) is obtained. The

force term is defined as follows to generate various point attractors:

f (s) =
∑

N
i=1 ωiψi(s)

∑
N
i=1 ψi(s)

s(g− x0) (4.5)

ψi(s) = e−(s−ci)
2

(4.6)

26

where,

s is the phase variable, which monotonically decays from 1 towards 0;

ψi(s) are kernel functions. ci are query points;

N is the number of the query points;

ωi are adjustable weights and are learned from demonstration and are able to generate new

desired movement trajectories.

The modulation term s makes the force f effectively vanishes when the goal g is

reached. Another modulation term (g− x0) is used to scale the model due to a change

of the movement.

To meet the requirements mentioned earlier before to build a time-independent au-

tonomous system, we introduce a Canonical System Equation:

τ ṡ =−αs (4.7)

where,

α is constant controlling the canonical system.

The phase variable s gets rid of time dependency and it monotonically decays to 0.

s = 1 means the start of the time evolution and s = 0 means the goal has been reached.

The framework aiming at transferring robotic knowledge by learning from demonstra-

tion is as follows:

Algorithm 2 using DMP method to transfer robotic knowledge

1. The teacher shows the student a single demonstration movement and the trajectory is

recorded. Especially, x(t),y(t) and z(t) are recorded separately. Their corresponding

first derivatives and second derivatives are computed numerically for each time step

since we haven’t found a way to record velocity or acceleration in real time.

27

2. Integrate the canonical system equation

τ ṡ =−αs (4.8)

to obtain the phase variable s to represent the time evolution. s monotonically de-

creases from 1 to 0.

3. Compute

fDemo =
−K(g− x)+Dẋ+ τ ẍ

g− x0
(4.9)

for each time step, where x are the recorded trajectory positions of teacher and x0 is

the initial position, ẋ, ẍ are the corresponding velocities and accelerations.

4. Calculate weights ωi. Locally Weighted Regression (LWR) is used to find weights

ωi for each kernel function ψ(s)i in f . It minimizes the cost function:

J =
P

∑
s=1

ψi(s)[fLearnt(s)−ωis(g− x0)]
2 (4.10)

The solution to this weighted linear regression problem is give by Ijspeert[27]:

ωi =
ET Γi fdemo

ET ΓiE
(4.11)

where,

E =



1(g− x0)

...

s(g− x0)

...

0(g− x0)


, Γi =



ψi(1)

ψi(2)

...

ψi(P)


, ftarget =



fdemo(1)

fdemo(2)

...

fdemo(P)


(4.12)

5. Once those weights ωi are obtained, we can specify the desired initial position x0 and

28

goal position xg and compute

fLearnt =
∑

N
i=1 ωiψi(s)

∑
N
i=1 ψi(s)

s(g− x0) (4.13)

6. After we obtain fLearnt , we can have

ẍ =
K(g− x)−Dẋ+ fLearnt(g− x0)

τ
(4.14)

Integrate it once and twice can we have ẋ and x for the student robot.

This approach has several advantages. First, because f (s) eventually decays to 0 at

the end of a movement, ultimately reaching at the attractor is guranteed. Second, each

dimension is independent with each other. We can compute x,y,z separately and then

combine the three 1D trajectories into a single 3D trajectory. Third, this approach al-

lows the student robots to not only to learn knowledge from demonstrations but also to

apply what they have originally learned into new environments and to plan new trajecto-

ries. With the help of Peter Corke’s matlab robot tool box[55], we can simulate robots

under Matlab. Figure 4.3 shows the ability to generate trajectories to new goals after

learning one single demonstration trajectory. We control the simulated HP3JC to move

at (x,y,z) = (5.887,−2.143,1.566) and use this trajectory as a demonstration. Then we

apply the algorithm we described above to generate new trajectories with 25 different goal

positions.

29

Figure 4.2: HP3JC Matlab Simulation

Figure 4.3: Learn from Demonstration (Blue) and Apply to New Goals (Red)

30

Chapter 5

EXPERIMENTS AND ANALYSIS

Once the experimental platform is setup to work, we test and analyze the system. Since

this experimental platform is only a prototype, the main goal is to demonstrate that the

framework and systems can actually transfer robotic knowledge from one industrial ma-

nipulator to another. Yaskawa Motoman HP3JC is chosen to be the teacher to perform and

demonstrate two simple tasks: (1) Reach and Align; (2) Find Colored Object. Universal

Robot UR5 and Rethink Robotics Baxter are the student robots to learn from those two

tasks. Due to the size of the lab, we do not have enough space for another real industrial

manipulator. Instead, we used Gazebo under Ubuntu to create a simulated UR5 and a sim-

ulated Baxter to accomplish these jobs. Then the accuracy of the knowledge transfer was

evaluated.

5.1 REACH AND ALIGN

To demonstrate the utility and feasibility of the framework, this section tries to transfer

a basic assembly task skill: reach and align.

1. First we use the teach pendant of Yaskawa Motoman HP3JC to program a sequence

of movements. A sequence programmed by a teach pendant consists of joint angles

for each motion step. Figure 5.1 shows those poses of HP3JC.

2. Second, these movements are learned by Universal Robot UR5 using algorithm de-

scribed in Section 4.2 and added into the motion library.

3. Finally, based on starting position x0,y0,z0 and orientation with goal position xg,yg,zg

and orientation, a sequence of dynamic movement primitives are selected to guide

31

Figure 5.1: Reach and Align, HP3JC

the UR5 to the target position and orientation. The end-effector’s orientation is rep-

resented in the form of rotation R submatrix in Eq 3.2. Figure 5.2. shows those poses

of UR5.

In this experiment, HP3JC moved to a series of positions with its end-effector facing

forward all the time. We used the MotoSDK software to obtain its corresponding joint

variables and did the forward kinematics to calculate those movement primitives. Then

UR5 learned from the demonstration and tried to accomplish the same task using similar

32

Figure 5.2: Reach and Align, UR5

33

path trajectory. Table 5.1 shows the testing results. We computed the orientation error and

distance error between HP3JC and UR5.

orientation error = ∑
i

∑
j
|Rg−R| (5.1)

distance error =
√
|xg− x|2 + |yg− y|2 + |zg− z|2 (5.2)

xg x yg y zg z dis error ori error
step1 0.568 0.4702 5.249 5.6468 1.4115 0.8781 0.6726 0
step2 4.301 4.3884 4.371 4.2632 1.331 1.2032 0.1887 0
step3 6.652 6.6673 0.164 0.056 1.304 1.2984 0.1092 0
step4 5.170 5.1087 -3.739 -3.8115 1.334 1.3351 0.095 0
step5 1.397 1.3039 -5.264 -5.2708 1.435 1.4376 0.0934 0
step6 1.384 1.349 -3.804 -3.7443 5.216 5.293 0.1035 0
step7 3.773 3.8253 -2.953 -2.9255 5.24 5.2542 0.0608 0
step8 5.190 5.1985 0.036 0.1161 5.255 5.255 0.0805 0
step9 3.521 3.4564 3.183 3.2328 5.206 5.2154 0.0821 0

step10 1.519 1.475 3.788 3.7902 5.162 5.1619 0.0441 0

Table 5.1: Error between Desired Goal Position/Orientation and Actual Position/Orienta-
tion

From the above results, we can tell that the framework works pretty well for the UR5

to reach at the same positions with same orientations as HP3JC. Although the distance

error is high at the first step, it monotonically decreases along the whole path trajectory.

The orientation error equals to 0 all the time since once we specify the initial orientation

and goal orientation, the sequence of dynamic movement primitives will assign the same

orientation for all steps.

5.2 FIND COLORED OBJECT

This section analyzes another important task to evaluate the framework. Since many in-

dustrial manipulators utilize visual servo systems, we transfers the skill of reaching colored

34

Figure 5.3: Colored Object Reaching, HP3JC

object and the accuracy of the transfer is evaluated.

1. First we use Yaskawa Motoman HP3JC to perform a colored object reaching task

with the Kinect visual servo system. The Kinect servo system computes the colored

object’s 3D coordinates and publishes them on a channel via ROS. Then NXC100

controller subscribes to that channel to acquire the 3D information and calculates the

inverse kinematics to guide the robot to reach that colored object. This step is shown

in Figure 5.3. Figure 5.4 shows the mechanism of the robot communication.

2. Second, these movements are learned by Universal Robot UR5/Rethink Robotics

Baxter and added into the motion library.

3. Third, we create a simulated UR5/Baxter controller to subscribe the 3D coordinate

information on the same channel.

4. Finally, based on the initial position x0,y0,z0 and colored object’s goal position

xg,yg,zg, a sequence of dynamic movement primitives are selected to guide the

UR5/Baxter to the target position. Figure 5.5 shows one sequence of movements of

the student robot UR5. Figure 5.6 shows one sequence of movements of the student

Baxter.

In this experiment, step 1 was done for only once which means the teacher robot

Yaskawa Motoman HP3JC demonstrates the reaching colored object task once. Then step

2∼ 4 were repeated and each time a new different goal position was specified to the student

35

Figure 5.4: Mechanism of the Robot Communication via ROS

robot UR5/Baxter to see how well it can apply what it has learned to solve new challenges.

Table 5.2 and table 5.3 show the corresponding testing results of UR5 and Baxter. We

computed the 3D mismatch errors between the assigned goal positions and the final real

positions.

error =
√
|xg− x|2 + |yg− y|2 + |zg− z|2 (5.3)

From table 5.2 we can tell that the approach works with some errors. It transfers the

colored object reaching skill from the Yaskawa Motoman HP3JC to Universal Robot UR5.

The UR5 learns the path which HP3JC used to reach the target and furthermore it uses a

similar path to reach the colored object placed at different places.

From table 5.3 we can also tell that the approach transfers the colored object reaching

skill from the Yaskawa Motoman HP3JC to Rethink Robotics Baxter with some error.

However, we did notice that sometime the student robot Baxter failed to execute a motion

sequence in the experiment. The reason behind this is that though we generate a trajectory

36

Figure 5.5: Colored Object Reaching, UR5

37

Figure 5.6: Colored Object Reaching, Baxter

for Baxter to reach the object, it cannot rotate some of its joints to some degree due to

geometry constraints(e.g. the elbow can only bend inside). The inverse kinematic solver

doesn’t take these geometry constraints into account.

38

xg x yg y zg z error
demo 6.437 6.437 -0.187 -0.187 1.709 1.709 0
Test1 3.8622 3.9498 -0.1122 -0.0798 1.0254 0.5405 0.4938
Test2 3.8622 3.9498 -0.1122 -0.0798 1.7090 1.2678 0.4510
Test3 3.8622 3.9498 -0.1122 -0.0798 2.3926 1.9940 0.4094
Test4 3.8622 3.9498 -0.1870 -0.1541 1.0254 0.5405 0.4939
Test5 3.8622 3.9498 -0.1870 -0.1541 1.7090 1.2678 0.4510
Test6 3.8622 3.9498 -0.1870 -0.1541 2.3926 1.9940 0.4094
Test7 3.8622 3.9498 -0.2618 -0.2286 1.0254 0.5405 0.4939
Test8 3.8622 3.9498 -0.2618 -0.2286 1.7090 1.2678 0.4510
Test9 3.8622 3.9498 -0.2618 -0.2286 2.3926 1.9940 0.4095

Test10 6.4370 6.4951 -0.1122 -0.0798 1.0254 0.5405 0.4895
Test11 6.4370 6.4951 -0.1122 -0.0798 1.7090 1.2678 0.4462
Test12 6.4370 6.4951 -0.1122 -0.0798 2.3926 1.9940 0.4041
Test13 6.4370 6.4951 -0.1870 -0.1541 1.0254 0.5405 0.4895
Test14 6.4370 6.4951 -0.1870 -0.1541 1.7090 1.2678 0.4462
Test15 6.4370 6.4951 -0.1870 -0.1541 2.3926 1.9940 0.4042
Test16 6.4370 6.4951 -0.2618 -0.2286 1.0254 0.5405 0.4895
Test17 6.4370 6.4951 -0.2618 -0.2286 1.7090 1.2678 0.4462
Test18 6.4370 6.4951 -0.2618 -0.2286 2.3926 1.9940 0.4042
Test19 9.0118 8.9730 -0.1122 -0.0798 1.0254 0.5405 0.4878
Test20 9.0118 8.9730 -0.1122 -0.0798 1.7090 1.2678 0.4443
Test21 9.0118 8.9730 -0.1122 -0.0798 2.3926 1.9940 0.4021
Test22 9.0118 8.9730 -0.1870 -0.1541 1.0254 0.5405 0.4878
Test23 9.0118 8.9730 -0.1870 -0.1541 1.7090 1.2678 0.4444
Test24 9.0118 8.9730 -0.1870 -0.1541 2.3926 1.9940 0.4021
Test25 9.0118 8.9730 -0.2618 -0.2286 1.0254 0.5405 0.4878
Test26 9.0118 8.9730 -0.2618 -0.2286 1.7090 1.2678 0.4444
Test27 9.0118 8.9730 -0.2618 -0.2286 2.3926 1.9940 0.4021

Table 5.2: Error between Desired Goal Position and Actual Position of UR5

39

xg x yg y zg z error
demo 6.437 6.437 -0.187 -0.187 1.709 1.709 0
Test1 9.743 9.6873 -0.500 -0.5251 5.826 5.9763 0.1622
Test2 9.743 9.6873 -0.500 -0.5251 6.326 6.4929 0.1777
Test3 9.743 9.6018 -0.500 -0.5185 6.826 6.9496 0.1885
Test4 9.743 9.6873 0.000 0.000 5.826 5.9763 0.1603
Test5 9.743 9.6873 0.000 0.000 6.326 6.4929 0.1759
Test6 9.743 9.6145 0.000 0.000 6.826 6.9583 0.1845
Test7 9.743 9.6873 0.500 0.5181 5.826 5.9763 0.1613
Test8 9.743 9.6873 0.500 0.5181 6.326 6.4929 0.1768
Test9 9.743 9.6022 0.500 0.5117 6.826 6.9498 0.1879

Test10 10.243 10.1770 -0.500 -0.5225 5.826 5.9586 0.1498
Test11 10.243 9.9779 -0.5000 -0.5084 6.326 6.3609 0.2675
Test12 10.243 9.7732 -0.500 -0.4941 6.826 6.7300 0.4796
Test13 10.243 10.1915 0.000 0.000 5.826 5.9656 0.1488
Test14 10.243 9.9910 0.000 0.000 6.326 6.3681 0.2555
Test15 10.243 9.7850 0.000 0.000 6.826 6.7373 0.4666
Test16 10.243 10.1774 0.500 0.5156 5.826 5.9587 0.1489
Test17 10.243 9.9783 0.500 0.5017 6.326 6.3611 0.2671
Test18 10.243 9.7735 0.500 0.4876 6.826 6.7301 0.4794
Test19 10.743 10.2803 -0.500 -0.4951 5.826 5.7722 0.4658
Test20 10.743 10.1015 -0.500 -0.4835 6.326 6.1653 0.6615
Test21 10.743 9.9152 -0.500 -0.4715 6.826 6.5296 0.8797
Test22 10.743 10.2934 0.000 0.000 5.826 5.7779 0.4521
Test23 10.743 10.1135 0.000 0.000 6.326 6.1714 0.6482
Test24 10.743 9.9262 0.000 0.000 6.826 6.5357 0.8669
Test25 10.743 10.2807 0.500 0.4885 5.826 5.7724 0.4656
Test26 10.743 10.1019 0.500 0.4771 6.326 6.1655 0.6613
Test27 10.743 9.9155 0.500 0.4653 6.826 6.5297 0.8796

Table 5.3: Error between Desired Goal Position and Actual Position of Baxter

40

Chapter 6

CONCLUSION

We set up a working system consisting of a teacher robot Yaskawa Motoman HP3JC, a

NXC100 controller, a Kinect visual system and a PC. We chose Universal Robot UR5 (6

joints) and Rethink Robotics Baxter (7 joints) to be the student robots to learn from demon-

strations performed by the HP3JC. The testing results show that the framework works well

with some errors for both UR5 and Baxter. This leads us to conclude that the framework is

capable of transferring robotic skills across heterogeneous robotic platforms with different

degree of freedom.

However, we did notice that there were still some drawbacks of this prototype frame-

work. The mismatch errors are a little big than expectation. Those errors were mainly

introduced when we calculated the inverse kinematics given the trajectories. Future work

should improve the accuracy of skill transfer. Also, while we were trying to transfer skills

from HP3JC to Baxter, even though we generated a trajectory for Baxter, Baxter sometime

failed to rotate some joints due to its geometry constraints. So Baxter sometimes cannot

use a similar trajectory its teacher used to accomplish a task. Solving inverse kinematics

with special geometry constraints should be another focus in future work.

41

BIBLIOGRAPHY

[1] Michael Stanton-Geddes and Dennis Fravel. U.s. manufacturing companies are global

leaders in industrial robot consumption. USITC Executive Briefings on Trade May

2014, May 2014.

[2] Georg Graetz and Guy Michaels. Robots at work. CEP Discussion Paper, 1335:52,

March 2015.

[3] Bill Gates. A robot in every home. Science American, 2007.

[4] Herman Bruyninckx. Robotics software: The future should be open. IEEE Robotics

and Automation Magazine, pages 9–11, March 2008.

[5] Jacob Huckaby and Henrik I. Christensen. A taxonomic framework for task model-

ing and knowledge transfer in manufacturing robotics. in Proceedings of the Eighth

International Cognitive Robotics Workshop, July 2012.

[6] Jacob Huckaby and Henrik I. Christensen. Toward a knowledge transfer framework

for process abstraction in manufacturing robotics. in Proceedings of International

Conference on Machine Learning 2013 Workshop: Theoretically Grounded Transfer

Learning, June 2013.

[7] Maja Mataric. Designing and understanding adaptive group behavior. Adaptive Be-

havior, pages 51–80, December 1995.

[8] Maja Mataric. Behavior-based control: Examples from navigation, learning, and

group behavior. Journal of Experimental and Theoretical Artificial Intelligence, Sep-

cial issue on Software Architectures for Physical Agents, 9(2-3):323–336, 1997.

[9] T. Abbas and B.A. MacDonald. Generalizing topological task graphs from mul-

tiple symbolic demonstrations in programming by demonstrations (pbd) processes.

42

Robotics and Automation (ICRA), 2011, IEEE International Conference, pages 3816–

3821, May 2011.

[10] Kuindersma Scott Grupen et al Konidaris, George. Robot learning from demonstra-

tion by constructing skill trees. The International Journal of Robotics Research, 2011.

[11] Shiraj Sen Stephen Hart and Roderic Grupen. Generalization and transfer in robot

control. In proceedings of the Eighth International Conference on Epigenetic

Robotics: Modeling Cognitive Development in Robotic Systems, July 2008.

[12] Stephen Hart and Roderic Grupen. Learning generalizable control programs. IEEE

Transactions on Autonomous Mental Development. Special Issue on Representations

and Architectures for Cognitive Systems, July 2010.

[13] Geib C. Piater J. et al Kruger, N. Object-action complexes: Grounded abstrations of

sensory-motor processes. Robotics and Autonomous Systems, 59(10):740–757, 2011.

[14] D.M. Lyons and M.A. Arbib. A formal model of computation for sensory-based

robotics. Robotics and Automation, IEEE Transactions, 5(3):280–293, 1989.

[15] Nakanishi J. Shibata T. et al Ijspeert, A.J. Nonlinear dynamical systems for imitation

with humanoid robots. IEEE International Conference on Humanoid Robots, pages

219–226, 2001.

[16] Y. Wang and Y. Jia. A fusion framework of stereo vision and kinect for high-quality

dense depth maps. Computer Vision-ACCV 2012 Workshop, pages 109–120, 2013.

[17] O. Yilmaz and F. Karakus. Stereo and kinect fusion for continuous 3d reconstruction

and visual odometry. In Electronics, Computer and Computation (ICECCO), 2013

International Conference, pages 115–118, 2013.

[18] Cohen S. Price B. et al Somanath, G. Stereo+kinect for high resolution stereo corre-

spondences. 3D Vision-3DV 2013, 2013 International Conference, pages 9–16, 2013.

43

[19] G. Bradsk and A. Kaehler. Learning OpenCV: Computer Vision with the OpenCV

Library. O’Reilly Media, Inc., 2008.

[20] R. B. Rusu and S. Cousins. 3d is here: Point cloud library (pcl). In IEEE International

Conference on Robotics and Automation (ICRA), May 2011.

[21] Motoman Inc., 805 Liberty Lane, West Carrollton, OH 45449. Motoman NX100

Controller Ethernet Server Function Manual, May 2007.

[22] Motoman Inc., 805 Liberty Lane, West Carrollton, OH 45449. MotoCom SDK Func-

tion Manual, May 2007.

[23] D.W. Eggert A. Lorusso and R.B. Fisher. A comparison of four algorithms for es-

timating 3-d rigid transformations. Technical report 737, Department of Artificial

Intelligence, University of Edinburgh, Edinburgh, Scotland, 1995.

[24] R.B. Fisher D.W. Eggert, A. Lorusso. Estimating 3-d rigid body transformations: A

comparison of four major algorithms. Machine Vision and Applications, 9(5):272–

290, 1997.

[25] T.S. Huang K.S. Arun and S.D. Blostein. Least-squares fitting of two 3-d point sets.

IEEE Trans. Patt. Anal. Machine Intell., 9(698-700), 1987.

[26] J. Nakanishi A. J. Ijspeert and S. Schaal. Learning attractor landscapes for learning

motor primitives. in Advances in Neural Information Processing Systems (NIPS),

15:1547–1554, 2003.

[27] H. Hoffmann et al A. J. Ijspeert, J. Nakanishi. Dynamical movement primitives:

Learning attractor models for motor behaviors. Neural Computation, 2012.

[28] http://releases.ubuntu.com/14.04/.

[29] https://dev.windows.com/en-us/kinect.

44

[30] http://opencv.org/.

[31] http://pointclouds.org/.

[32] http://www.mathworks.com/products/matlab/?refresh=true.

[33] http://wiki.ros.org/indigo.

[34] https://www.python.org/download/releases/2.7/.

[35] https://www.robots.com/motoman/hp3jc.

[36] http://www.universal-robots.com/products/ur5-robot/.

[37] www.rethinkrobotics.com/baxter.

[38] http://gazebosim.org/.

[39] Conley K. Gerkey B. et al Quigley, M. Ros: An open-source robot operating system.

In IEEE International Conference on Robotics and Automation (ICRA), 3:5, 2009.

[40] J. Gallice P. Martinet and D. Khadraoui. Vision based control law using 3d visual

features. in World Automation Congress, Robotics and Manufacturing Systems (WAC

’96), 3:497–502, 1996.

[41] C. C. W. Hulls W. J. Wilson and G. S. Bell. Relative end-effector control using carte-

sian position based visual servoing. IEEE Transactions on Robotics and Automation,

12(5):684–696, 1996.

[42] A. P. Dani N. R. Gans and W. E. Dixon. Visual servoing to an arbitrary pose with

respect to an object given a single known length. in Proceedings of the American

Control Conference (ACC ’08), pages 1261–1267, June 2008.

[43] A. C. Sanderson L. E. Weiss and C. P. Neuman. Dynamic visual servo control of

robots: An adaptive image-based approach. in Proceedings of the IEEE International

Conference on Robotics and Automantion, pages 662–668, 1985.

45

[44] J. T. Feddema and O. R. Mitchell. Vision-guided servoing with feature-baded tra-

jectory generation. IEEE Transactions on Robotics and Automation, 5(5):691–700,

1989.

[45] T. Ebine et al K. Hashimoto, T. Kimoto. Manipulator control with image-based visual

servo. in Proceedings of the 1991 IEEE International Conference on Robotics and

Automantion, pages 2267–2271, April 1991.

[46] Z. Qi and J. E. McInroy. Improved image based visual servoing with parallel robot.

Journal of Intelligent and Robotic Systems, 53(4):359–379, 2008.

[47] N. Guenard et al O. Bourquardez, R. Mahony. Image-based visual servo control of the

translation kinematics of a quadrotor aerial vehicle. IEEE Transaction on Robotics,

25(3):743–749, 2009.

[48] N. Iqbal et al U. Khan, I. Jan. Uncalibrated eye-in-hand visual servoing: An lmi

approach. Industrial Robot, 38(2):130–138, 2011.

[49] Saeed B. Niku. Introduction to Robotics: Analysis, Systems, Applications. Prentics

Hall, July 2001.

[50] Ronald H. Huesman Arkadiusz Sitek and Grant T. Gullberg. Tomographic reconstruc-

tion using an adaptive tetrahedral mesh defined by a point cloud. IEEE Transaction

on Medical Imaging, 25(9), 2006.

[51] Microsoft Corporation, One Microsoft Way, Redmond, WA 98052. Kinect Sensor,

2010.

[52] Inge Soderkvist. Using svd for some fitting problems. Technical report, Lulea Uni-

versity of Technology, 971 87 Lulea, Sweden.

[53] Asfour T. Pastor P., Hoffmann H. and Schaal S. Learning and generalization of motor

46

skills by learning from demonstration. In International Converence on Robotics and

Automation, pages 763–768, 2009.

[54] A W Moore C G Atkeson and S Schaal. Locally weight learning. Artificial Intelli-

gence Review, (11-73), November 1997.

[55] P. I. Corke. Robotics, Vision and Control. Springer, 2011.

47

