
ii

INVESTIGATING THE COGNITIVE PROCESSING OF EXPERIENCE FOR DECISION

MAKING IN ROBOTS: ACCOUNTING FOR INTERNAL STATES AND APPRAISALS

By

Stephen Michael Gordon

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Electrical Engineering

May, 2009

Nashville, TN

Approved:

Professor Kazuhiko Kawamura

Professor D. Mitchell Wilkes

Professor Gautam Biswas

Professor Nilanjan Sarkar

Professor Megan Saylor

ii

ACKNOWLEDGEMENTS

I would like to thank everyone that helped me during my graduate studies, whether it was

assistance at school, or in the many other aspects of my life. This has been a difficult, yet very

rewarding, process and it would not have been possible without the help of everyone.

First of all I would like to thank my fiancé, Meghan Bates whose never ending support

kept me going many times when I thought my own resolve would fail. She has helped me focus

on what is important and I cannot thank her enough. I would also like to thank my brother who,

though he is an English major, has somehow managed to read (through his own studies) many of

the same books that were the inspiration for this work. Discussing these topics with him gave me

the unique ability to have an “outsider’s opinion” as my research progressed. I must also thank

my parents whose constant sacrifice, support, and guidance enabled me to develop the tools

necessary to be in this position.

I would like to thank all of the students (both past and present) at the Center for

Intelligent Systems (CIS). Not only did their prior work, and current knowledge, provide the

backdrop for this research, but their friendship made it enjoyable. In particular, Erdem Erdemir,

Jonathan Hunter, Juan Rojas, Chris Costello, Palis Ratanaswasd, Joe Hall, Katherine Fleming,

Huan Tan, Xi Luo, Sean Thornton, Albert Spratley, and Will Dodd.

Extra special thanks must go to Flo Wahidi, who is truly the angel of the CIS. No one

works as hard as she does and has such a positive impact on the day-to-day workings of the lab.

Her help, support, and seemingly endless availability of suggestions cannot be acknowledged

enough.

I would like to thank my advisor Dr. Kazuhiko Kawamura (Dr. K). He challenged me to

think outside of the box, and to consider problems from new and intriguing directions. Without

his confidence and guidance, this research would simply not have been possible.

And, I am appreciative of my committee members who offered guidance and

thoughtfulness during the writing and implementation of research. My topic involves several

fields of study which has been both rewarding and challenging and I appreciate their input. I

would also like to thank Dr. Carl Frankel whose help and guidance really spurred and inspired

this work.

iii

TABLE OF CONTENTS

 Page

ACKNOWLEDGEMENTS ... ii

LIST OF TABLES .. vii

LIST OF FIGURES ... ix

Chapter

I. INTRODUCTION ..1

Motivation ...1
The Importance of Emotion ..2

Area of Investigation...3
Contribution of Work ..4
Organization of Dissertation ...5

II. OVERVIEW OF COGNITIVE ROBOTICS..6

Components of Cognitive Systems ...7
Short-Term Memory, Attention, and Working Memory7
Procedural, Episodic, and Semantic Long-Term Memory8
Executive Processes ..10

Cognitive Architectures ..12
Symbol Processing Systems ...12
Connectionist Approaches ..14
Recent Hybrid Approaches ...15

III. OVERVIEW OF SEQUENTIAL ROBOTIC DECISION-MAKING PROCESSES18

Markov Decision Processes ..18
Methods to Solve Markov Decision Processes ...19
Partially Observable Markov Decision Processes ..20

Real-Time Search..21
Anytime Algorithms ...25

Learning Functional Models ...27
Function Approximators ...28

iv

IV. OVERVIEW OF PSYCHOLOGICAL EMOTION RESEARCH, EMOTION
 PROCESSES, AND ROBOT EMOTION SYSTEMS ...31

Basic Emotions ...32
Emotion Processing: Architectural Views and Processing Models35

Levels of Information Processing ...35
Processing Models ..37
Affect as an Information Carrying Component ..39
Appraisals and Functions ..43

Robot Emotions ..47
Control System Approaches ...48
Architectural Approaches ...50

V. RESEARCH METHODOLOGY..53

Motivation and Focus ...53
Cognitive Processing of Experience and Episodic Memory54

ISAC Cognitive Architecture ..55
Component Descriptions ...56
Flow of Information Through the ISAC Architecture58
Flow of Control through the ISAC Architecture ..59
Learning Processes within the ISAC Architecture59

Outline of the Approach..60
Dynamic Situation Representation ...64

Input/Output ..66
Implementation: Weight Learning ..66
Validation and Evaluation: Weight Learning ...67
Implementation: Conceptual Clustering ...70
Validation and Evaluation: Conceptual Clustering.......................................72

Relational Mapping ...74
Input/Output ..76
Implementation: Self-Organizing Maps ...76
Validation and Evaluation: Self-Organizing Maps79

Urgency ...81
Input/Output ..83
Implementation: Bayesian Networks ..83
Validation and Evaluation: Bayesian Networks ...84
Implementation: Performance Profiles ...86
Validation and Evaluation: Performance Profiles ..87

Fit ..88
Input/Output ..88
Implementation ...88
Validation and Evaluation...91

Planning ..91
Input/Output ..92
Implementation ...92

v

Validation and Evaluation...95
System Integration ..96

VI. EXPERIMENTAL DESIGN, RESULTS, AND DISCUSSION98

Experimental Hypothesis and Assumptions ...98
Overview of Grocery Bagging: Experimental Layout ..100

Hardware ...101
Groceries ...102
Software ..104

State Representation..105
Behavioral Repertoire ...107
Overview and Description of Simulation Experiments ..108

Experiment Design..109
Performance Measures ..112

Experiment 1: Domain Knowledge Using Random Experience115
Experiment Description ..115
Results and Discussion ...117

Experiment 2: Domain Knowledge Using Self-Guided Experience132
Experiment Description ..132
Results and Discussion for the Fixed Weight and High Action Cost
Condition...133
Results and Discussion for the Non-Fixed Weight and High Action
Cost Condition ..139
Results and Discussion for the Fixed Weight and Low Action Cost
Condition...145
Results and Discussion for the Non-Fixed Weight and Low Action
Cost Condition ..149

Experiment 3: Urgency Appraisal Learning Using Self-Guided Experience155
Experiment Description ..155
Results and Discussion for Urgency Appraisals ...156

Experiment 4: Fit Appraisal Learning Using Self-Guided Experience162
Experiment Description ..162
Results and Discussion ...163

ISAC Integrated Experiments ...167
Experiment Design ...167
ISAC Experiment 1: Integration of Knowledge and Processes
Developed in Simulation ..175
Experimental Procedure..178
Results and Discussion for ISAC Experiment 1 ...181
ISAC Experiment 2: Integrated Cognitive Control Experiment184
Experimental Condition and Assumptions ...184
Experimental Procedure..186
Results and Discussion ...187

Final Discussion of Results ...190

vi

VII. CONCLUSIONS AND FUTURE WORK..196

 Summary of Contribution of Work ...198
 Further Directions ...199

Appendix

A. LIST OF MAJOR COMPONENTS, CLASSES, FUNCTIONS, AND

VARIABLES ..203

B. DESCRIPTION OF COMPONENTS AND IMPLEMENTATIONS209

REFERENCES ...214

vii

LIST OF TABLES

Table Page

1. Sample Percept Representation...63

2. Sample Groceries ..64

3. Classification Scheme Used to Reward Sets ..68

4. 30 Randomly Generated Sets of Groceries with Evaluations68

5. Weight Values ...69

6. Classification Scheme Used to Reward Sets ..69

7. Weight Values ...70

8. Classification Using Learned Weights (Both Trials) ..70

9. Weight Values ...72

10. Final Classification Scheme Using Pruned Tree ..73

11. Weight Values ...73

12. Five Symbol/Evaluation Sets with 25% Random Noise...79

13. Storing Performance Profiles ..86

14. Groceries and Attributes ...103

15. Allowable 1st Order Logic Elements...106

16. Evaluation Signals ..107

17. Behavior List with Pre- and Postconditions..108

18. GrocerySet-A ..110

19. GrocerySet-B ..110

20. Weight Values for Fixed Condition ..116

viii

21. Final Clusters Using Pruned Tree and Fixed Weights ..116

22. Final Clusters Using Pruned Tree and Uniform Weights117

23. Learned Attribute Weights ..124

24. Final Learned Partition Using 100 Episodes ..125

25. Learned Attribute Weights ..129

26. Final Learned Partition Using 100 Episodes ..130

27. Final Partition Using GrocerySet-A ..137

28. Final Partition Using GrocerySet-B ..138

29. Final Learned Partition using 700 Episodes (30% Occurrence)143

30. Learned Partition (25% Occurrence) ..143

31. Learned Partition (25% Occurrence) ..143

32. Constraint (1) Errors as a Result of Misclassification ..165

33. Learned Attribute Weights ..190

34. Final Partition Using GrocerySet-A ..190

ix

LIST OF FIGURES

Figure Page

1. Flow of Information to the Various Memory Systems ...9

2. General Layout of Early Production Systems (i.e., ACT-R and Soar
 [Anderson and Lebiere, 1998] [Newell, 1990]) ..12

3. Basic Model of 3x3 Architecture ..17

4. State Space, S, with Local Search Window ..22

5. CogAff Architectural Schema [Sloman, 2001a] ...36

6. Information Processing Model by Ortony, et al., [2004] ..37

7. Flow Chart of Emotion System [Frijda and Moffat, 1994]38

8. Traditional View of Emotion as a Response to an Event [Russell, 2003]40

9. Model of Emotion Arising as Patterns of Core Mechanisms (adapted from
 [Russell, 2003]) ...41

10. Core Affect as Two-dimensional Signal [Russell, 2003] ...42

11. Dual View of Emotion-Based Control Using Automatic and Controlled
 Processes ...43

12. Proposed Representations of Affect-Based Utility Functions by
 (a) Kahneman and Tversky [1979] and (b) Cacioppo and Bernston [1999]46

13. The ISAC Cognitive Architecture ..56

14. Block Diagram for the Implemented Control System ..62

15. If-Then Version of Equation (15) ..67

16. Example Concept Hierarchy for “Foods” ...70

17. Resulting Partition for Sample Groceries Using Weight Values (Table 9)72

18. Combined Symbolic and Numeric SOM ..77

x

19. Self-Organized Map of Symbol Strings ..80

20. Self-Organized Map of Size 15 x 15 for Numeric Evaluations80

21. Computed Distance Matrix Using Input String “blets” ..80

22. Dimensions and Bin Distribution for Conveyor Belt ...85

23. Learned Transition Model, i.e., P(Bini | Bini-1) ...85

24. Grocery Distribution at t = {5, 20, 40, 46} Seconds ...86

25. Pseudo-code for the Recursive Plan() Algorithm ..93

26. Revised View of Implemented Control System..97

27. Experimental Layout for Grocery Bagging (Developed by Huan Tan)100

28. ISAC Humanoid Robot [Kawamura, et al., 2008] ..101

29. Conveyor-Bin-Camera System ...102

30. GUI for Grocery Bagging Simulation...105

31. Preset Rules for Constraints (1) and (2) ..113

32. Appraisal Errors with Increased Training for the Fixed Weight, High Cost
 Condition and Random Experience ..118

33. Total Errors Per Trial on Constraints (1) and (2) for the Fixed Weight, High
 Cost Condition and Random Experience ..119

34. Number of Bags Used Per Trial for the Fixed Weight, High Cost Condition
 and Random Experience ...119

35. Appraisal Errors with Increased Training for the Non-Fixed Weight, High
 Cost Condition and Random Experience ..122

36. Total Errors Per Trial on Constraints (1) and (2) for the Non-Fixed Weight,
 High Cost Condition and Random Experience ...122

37. Number of Bags Used Per Trial for the Non-Fixed Weight, High Cost
 Condition and Random Experience ..123

38. Learned Weights with Increased Training for the Non-Fixed, High Cost
 Condition and Random Experience ..124

xi

39. Appraisal Errors with Increased Training for the Fixed Weight, Low Cost
 Condition and Random Experience ..126

40. Total Errors Per Trial on Constraints (1) and (2) for the Fixed Weight, Low
 Cost Condition and Random Experience ..127

41. Number of Bags Used Per Trial for the Fixed Weight, Low Cost Condition
 and Random Experience ...127

42. Appraisal Errors with Increased Training for the Non-Fixed Weight, Low Cost
 Condition and Random Experience ..128

43. Total Errors Per Trial on Constraints (1) and (2) for the Non-Fixed
 Weight, Low Cost Condition and Random Experience ..128

44. Number of Bags Used Per Trial for the Non-Fixed Weight, Low Cost
 Condition and Random Experience ..129

45. Learned Weights with Increased Training for the Non-Fixed, Low Cost
 Condition and Random Experience ..130

46. Evaluation Graphs for Episodes Generated with GrocerySet-A for the Fixed
 Weight, High Cost Condition and Self-Guided Experience135

47. Breakdown of Error Rate and Rate of Occurrence for Bags with Different
 Amounts of Groceries for the Fixed Weight, High Cost Condition and
 Self-Guided Experience ..136

48. Evaluation Graphs for Episodes Generated with GrocerySet-B for the Fixed
 Weight, High Cost Condition and Self-Guided Experience137

49. Evaluation Graphs for Episodes Generated with GrocerySet-A for the
 Non-Fixed, High Cost Condition and Self-Guided Experience..............................140

50. Breakdown of Error Rate and Rate of Occurrence for Bags with Different
 Amounts of Groceries for the Non-Fixed Weight, High Cost Condition and
 Self-Guided Experience ..140

51. Learned Weights with Increased Training for the Non-Fixed Weight, High
 Cost Condition and Self-Guided Experience ..141

52. Percent Difference Between the Learned Weight Values During Training and
 the Weight Means for the Non-Fixed Weight, High Cost Condition and
 Self-Guided Experience ..142

xii

53. Evaluation Graphs for Episodes Generated with GrocerySet-B for the
 Non-Fixed, High Cost Condition and Self-Guided Experience..............................144

54. Constraint (1) Appraisal Error Rate for the Non-Fixed Weight, High Cost
 Condition and Self-Guided Experience ..145

55. Evaluation Graphs for Episodes Generated with GrocerySet-A for the Fixed
 Weight, Low Cost Condition and Self-Guided Experience146

56. Breakdown of the Error Rate and Rate of Occurrence for Bags with Different
 Amounts of Groceries for the Fixed Weight, Low Cost Condition and
 Self-Guided Experience ..148

57. Evaluation Graphs for Episodes Generated with GrocerySet-B for the Fixed
 Weight, Low Cost Condition and Self-Guided Experience148

58. Evaluation Graphs for Episodes Generated with GrocerySet-A for the
 Non-Fixed Weight, Low Cost Condition and Self-Guided Experience150

59. Breakdown of the Error Rate and Rate of Occurrence for Bags with Different
 Amounts of Groceries for the Fixed Weight, Low Cost Condition and
 Self-Guided Experience ..150

60. Learned Weights with Increased Training for the Non-Fixed Weight, Low Cost
 Condition and Self-Guided Experience ..152

61. Percent Difference Between Maximum Peaks During Weight Training for the
 Non-Fixed Weight, Low Cost Condition and Self-Guided Experience152

62. Evaluation Graphs for Episodes Generated with GrocerySet-B for the
 Non-Fixed, Low Cost Condition...153

63. Comparisons of Deliberation Time Between the Four Domain Knowledge
 Conditions and the Urgency Condition ...158

64. Learned Performance Profiles for Appraising Urgency and Adjusting the
 Search Parameters Depth and Breadth ..159

65. Evaluation Graphs for Episodes Generated with GrocerySet-A for the
 Non-Fixed Weight, High Cost, Urgency Condition ...160

66. Breakdown of the Error Rate and Rate of Occurrence for Bags with Different
 Amounts of Groceries for the Non-Fixed Weight, High Cost, Urgency
 Condition...161

xiii

67. Evaluation Graphs for Episodes Generated with GrocerySet-B for the
 Non-Fixed Weight, High Cost, Urgency Condition ...161

68. Fit Appraisals for Relevance, Utility, and Planning for Each Constraint and
 the Non-Fixed Weight, High Cost, Urgency Condition ...164

69. (a) ISAC Hardware System, and (b) Simulator Environment168

70. Significant Paths within the ISAC Architecture for (a) Relevance, (b) Utility,
 (c) Urgency, and (d) Fit Appraisals ..169

71. System Connections for the Integrated ISAC Experiments173

72. User-Interface for ISAC Arm Control ..174

73. Dimensions and Bin Distribution for Conveyor Belt ...177

74. Learned Transition Model, i.e., P(Bini | Bini-1) Using Hardware Obtained
 Observations ...177

75. ISAC Coping with Three Groceries ..180

76. Performance Results for the ISAC Experiment Using Knowledge Derived from
 Simulation and Trained Bayesian Networks ...182

77. ISAC Interacting with Groceries Using Pre-Recorded Motions.............................183

78. Paths Used for Recording Experience ..185

79. Integrated Cognitive Control Experiment ...188

80. Performance Results for the ISAC Cognitive Control Demo188

1

CHAPTER I

INTRODUCTION

Motivation

Decision making in autonomous systems requires purposive deliberation that utilizes

knowledge of the goal specific value of particular states as well as an understanding of what is

relevant in the current situation. In addition, decision makers embedded in real-world

environments require the ability to balance fast commitment against deliberation to ensure that

system operating frequency keeps pace with that of the surrounding environment. It is therefore

necessary that these systems be able to quickly identify sufficient solutions to the problem at

hand, but this ability is contingent upon a number of other factors. First, these systems must be

able to identify which aspects of the present situation are most relevant to the current goals. This

ability enables weights to be properly assigned that allow feature extraction and concept

formation. Second, such systems must be able to mine utility functions from experience in order

to prioritize and rank potential responses. This involves associating the goal-relevant information

with evaluation signals that indicate goal benefit/harm. Third, such systems must have an

appreciation of their own ability to trade between solution quality and deliberation time, in order

to appropriately portion deliberation given their own resources and the demands imposed on

them by the situation. Finally, because learning is crucial for such an adaptive decision maker,

error tracking must be deployed to facilitate performance monitoring as well as to foster an

understanding of which knowledge systems adequately fit the current task and which require

further training. It is believed that for autonomous systems (e.g., cognitive robots) to make

decisions that reflect an understanding of goal relevance, goal specific situational value, and

urgency pressures, these systems must mine from their own experience the knowledge that will

ultimately be used to inform each of the multi-dimensional evaluation criteria just described.

In robotics, balanced decision making is critical. Robots operate in environments that are

often characterized by complex stochastics and large, or continuous, state spaces. Real-time

decision-making techniques (e.g., LRTA* [Korf, 1990], RTDP [Barto, et al., 1995], D* [Stentz,

1995] and D* Lite [Koenig and Likhachev, 2002]), as well as anytime algorithms [Zilberstein,

1996] [Dean, et al., 1993] [Paquet, et al., 2005], have been successfully applied to robotic

2

systems. However, these methods often require maintaining tabular state-value or heuristic

functions (V(s) and h(s), respectively), which can be prohibitively expensive in large state

spaces. Function approximators have been used, with some success, to reduce the

representational cost of maintaining such functions, but many approximators require preset,

static-sized feature vectors that can omit relevant state information. Furthermore, most real-time

systems do not adjust their performance on a situation-dependent basis, which prohibits learning

adaptations that improve solution quality.

Rather than use static feature vectors, tabular state value and heuristic functions, or preset

performance parameters, it would be preferable to have a system “bootstrap” itself through the

cognitive processing of its own experience. The result of this process should be the derivation of

experience- and task-based dynamic feature mappings that associate situations with task-

dependent appraisals that can be used to internally signal the deliberation process and adaptively

tune control parameters. Such signals should identify and include:

1. What is relevant in the current situation?

2. What utility should be attached to response options in order to achieve the current goals?

3. How urgent is the current situation?

4. How well does the current knowledge and the chosen response fit the situation?

This dissertation describes how current psychological and neuroscientific research on emotion

and emotional processing can be used to inform the design of robots that, through the processing

of their own experience, are capable of such balanced decision making.

The Importance of Emotion

In this research the term emotion is used in a manner similar to that as Sloman [2001a] in

which emotional states are defined as those states that mediate a system’s cognitive processes, or

have the potential for such mediation yet are suppressed by a filter or priority mechanim. While

this definition will be expanded in Chapter IV, it is important to note that, in this respect,

emotion and emotion-based processes are functionally and fundamentally related to goals and the

behaviors necessary to achieve those goals [Frijda, 1986]. Keeping this in mind, it becomes

worthwhile to discuss the importance of emotion in robots because all robots possess goals (even

if only implicitly), and many robots also possess the capacity to arbitrate amongst and perform

3

actions in pursuit of those goals [Fellous and Arbib, 2004]. This is not meant to imply that the

idea of emotion in robots must parallel human-centric concepts of emotion (e.g., the “happy/sad”

states described by Damasio [1994] and Ekman [1992]). Rather, robot emotion should be

investigated from the perspective that certain biological processes are known to facilitate real-

time, adaptive decision making and commitment and that many of these processes have direct

correlates to robot control. Ultimately, the degree of “emotion” possessed by any robot will be,

in part, defined by both the utility and reward structures implicit in that robot’s design, as well as

the levels of architectural control and processing required for that robot to be successful within

its “ecological” niche [Sloman, et al., 2004] [Arbib and Fellous, 2004]. Due to the fundamental

differences between robots and humans, and the goals each pursue, it is highly unlikely that the

final emergent control states, which in humans are often classified as emotions, could be labeled

in robots using the same generic terms. Therefore, while this dissertation discusses emotion, the

key concepts that should be kept in mind are those related to the functional purpose of specific

emotional states, the mechanisms that provide that purpose, and how each mechanism may apply

to robot technology.

Area of Investigation

In biology, the emotion system evolved to enable adaptive, real-time control in complex

environments [Arbib and Fellous, 2004]. This system often operates as an innate reinforcement

mechanism, but also integrates aspects of cognitive decision making with low-level control

[Rolls, 2004] [Damasio, 1994] [Pfister and Böhm, 2008]. The cognitive processing that

subserves emotional states also enhances control by not only forcing innate responses, but by

attaching utilities to actions within the planning cycle, focusing attention, signaling urgency, and

measuring error [Rolls, 1999] [Zeelenberg and Pieters, 2006] [Frijdja, 1986] [Scherer, 1997].

These processes can be both automatic and controlled: automatic operations are often used to

appraise relevance, urgency, or utility, while controlled operation measure error and perform

post hoc evaluations and reflections [Baumeister, et al., 2007] [Richter-Levin, 2004].

Furthermore, some of the evaluations that underlie emotion provide a means to collapse complex

potential outcomes onto a common currency scale that can be used for deliberative cognitive

control (e.g., predicting and planning) [Rolls, 1999] [Slovic, et al., 2003] [Ortony and Turner,

1990]. Here, and throughout this dissertation, the term cognitive control refers to the type of

4

executive control defined by many psychologists and neuroscientists in which top-down

executive processes utilize attention and working memory, planning and internal rehearsal,error

correction, and novelty detection to purposefully respond to complex situations [Posner and

Snyder, 1975] [Botvinick, et al., 2001]. While the influence of emotion on cognitive control, at

times, may yield negative results (e.g., losing one’s temper), research suggests that emotion and

emotion-based processes, as a whole, are more adaptive than maladaptive [Damasio, 1994]

[Bechara, et al., 1997].

This dissertation investigates how theories of emotion and, specifically, the cognitive

processing and appraisals that enable emotion can be applied to a cognitive robot to improve task

performance. The focus of this dissertation is not on the development of a new emotion model

for control or to make the robot externally appear emotional. Innovative work in these areas can

be found in [Arkin, 2004] [Breazeal, 2002] [Breazeal and Brooks, 2004] [Gockley, et al., 2006].

Rather, emotions are approached from the perspective that they provide goal-contingent and

situation-based evaluations of functional importance to the decision-making process. This

involves processing both the current situation and past experience with respect to: what is

relevant and urgent, how much utility should be attached to specific responses, and how well

current knowledge and response capacities fit the situation. There will be three simultaneous

aspects to this approach:

1. Processing and mining experience, stored as episodic memory, for relational information

that can be used to derive situation-based appraisals;

2. Representing the mined relations and appraisals for use in online decision making;

3. Integrating these appraisals within the control process.

Contribution of Work

The contribution of this work will be to investigate how theories of cognitive processing

can be used to mediate decision making in order to enable appropriate online performance in

complex situations. This will entail investigating flexible methods for representing experience,

initially stored as episodic memory. Once represented, it will be important to develop relational

structures that allow the current situation to be matched against experience and associations to be

formed between individual experiences and the various appraisals they entail. These appraisals

must be integrated into decision making in a manner that extends beyond simply inserting utility

5

values. It is necessary to investigate when and how parameters within the decision-making

process should be dynamically tuned in order to facilitate real-time responsiveness while

maintaining adequate solution quality. Finally, because this research is part of a larger study on

robotic cognition, the developed system must be designed around and integrated within a

complex cognitive architecture used for robot control.

Organization of Dissertation

This dissertation begins in Chapter II with a discussion on cognitive robotics, functional

aspects of cognition, and cognitive architectures. The goal of Chapter II is to review the

fundamental concepts of cognitive robotics and cognitive architectures and provide the necessary

backdrop upon which this dissertation research will be developed. Chapter III reviews sequential

decision-making processes, such as MDPs and POMDPs, the methods used to evaluate these

processes, and the techniques for modifying these methods in order to obtain real-time operation.

Whereas Chapter II discusses cognitive robotic control, Chapter III describes specific techniques

by which deliberative, and ultimately cognitive control may be realized, while also presenting

the limitations of current control methods. Chapter IV reviews psychological and neuroscientific

theories on emotions, as well as theories that view emotion as being comprised of specific

appraisals and evaluations based on the cognitive processing of events and concerns. Chapter IV

then describes specific implementations in which theories on emotion have been used within

robotic control applications.

Chapter V combines the discussions of Chapter’s II, III, and IV and describes how ideas

and theories from each chapter may be integrated and used to inform system design. This chapter

then discusses the implemented system and relates each component back to the engineering and

psychological theories used in its design. Chapter V also provides overall system layout, as well

as how the system is specifically realized through the ISAC cognitive architecture [Kawamura, et

al., 2008]. Chapter VI describes the grocery-bagging experiment used to test the developed

system, and presents the results of both simulation and integrated hardware experiments, as well

as the discussion of results. Chapter VII offers final thoughts, and providing directions for future

research. Two appendices conclude this dissertation: Appendix A describes the variables and

functions used to implement the designed system, while Appendix B provides some example

code for using these variables and functions.

6

CHAPTER II

OVERVIEW OF COGNITIVE ROBOTICS

Many well-defined, single task problems have been studied by applying targeted, task-

specific solution methods. In robotics, such examples include grasping [Grupen and Huber,

2005], navigation [Koku, et al., 2003], and obstacle avoidance [Arkin, 1998]. Each example falls

under the general category of techniques known collectively as artificial intelligence (AI): a

scientific discipline which provides the necessary backbone for creating intelligent systems that

can act, react, and adapt in different environments. Research in AI began in the 1950’s with

development of computer systems and computer programs [McCarthy, 1959]. Over the years,

there have been a number of different approaches to the study and creation of artificially

intelligent systems. Early work focused on symbol manipulation and logical computation.

Research has since expanded to include sub-symbolic connectionists systems, reactive systems,

and fuzzy systems, to name a few. Recently, however, a new approach has begun to emerge that

is aimed at investigating how more general, cognitive-level behavior and control may be

produced in “embodied” agents, such as robots. Termed cognitive robotics, this approach focuses

on organizing and understanding how different components can be used to create a functioning

whole, while utilizing psychological and neuroscientific research on biological cognitive systems

to inform system design. Cognitive robotics is not an alternative to AI, but an attempt at the next

step towards more general intelligent systems capable of approaching human cognition.

As this researcher sees it, there are three major tenets to cognitive robotics. These tenets

reflect themes that recur frequently in the literature on artificial cognition and cognitive robotics,

but are by no means intended to be an exhaustive list. The first tenet of cognitive robotics is to

study how the tools developed for targeted AI systems can be integrated and organized in order

to create more adaptive, general-purpose systems. Organization is key in cognitive robotics. The

second tenet is the notion that in order to create artificial cognitive systems, these organized

components should reflect those identified by psychological and neuroscientific research as

necessary (and at times sufficient) for cognitive ability. The third tenet is that a truly cognitive

system must be situated in the real-world, and thus be required to cope with dynamic, unstable,

7

and noisy environments in which appropriate responses must be chosen using limited resources

in a time critical fashion.

One popular method for specifying the organizational scheme for a cognitive robot is

through the use of a cognitive architecture, which diagrams how each cognitive component

integrates and interacts to produce behavior. Yet cognitive architectures need not always be used

for robot control; many architectures have been developed as models for investigating human

cognition, or to implement cognitive abilities on non-robotic system [Anderson, 1983] [Newell,

1990] [Sloman, 2001a]. Furthermore, not all cognitive robotic applications employ full cognitive

architectures; many approaches focus on only a subset of cognitive abilities, and thus limit their

research to less expansive architectural designs [Shanahan, 2006] [Krichmar and Edelman, 2005]

[Beer, 2000].

Components of Cognitive Systems

There are a variety of mechanisms believed to be important for true cognitive

functionality. A few of these include: attention, working memory, long-term memory, and

executive control. While this is not an exhaustive list, it does highlight many of those

components commonly found in the different approaches to artificial cognition. This section

provides a brief discussion of such mechanisms.

Short-Term Memory, Attention, and Working Memory

In order to utilize sensory information, an organism must have a means of actively

maintaining that information for some duration of time once the information has been detected.

The initial buffer that maintains perceptual information in biological cognitive systems is

commonly referred to as sensory memory. All sensor inputs pass through sensory memory; thus,

this buffer is believed to be of unlimited capacity (practically speaking) [Sperling, 1960].

However, retention periods for sensory memory are extremely short, and information not

immediately attended to is “dumped” and forgotten [Purdy and Olmstead, 1984].

Information retained from sensory memory is passed on to short-term memory, a limited

capacity, short-term store. Though it may vary across individuals, the capacity of short-term

memory is believed to be somewhere in the range of seven to nine chunks of information [Miller,

1956]. Due to this limited capacity, short-term memory is able to retain information for much

8

longer periods of time than sensory memory. Research suggests that the retention duration for

short-term memory is in the range of 20-30 seconds, comparably much longer than the 100-300

milliseconds duration of sensory memory [Purdy and Olmstead, 1984].

Closely related to the concept of short-term memory is the notion of working memory.

Both short-term and working memory systems retain and manipulate a finite amount of

information for short periods of time [Gathercole, 1999]; however, working memory is believed

to be specifically involved in the active maintenance and cognitive manipulation of task-relevant

information [Baddeley and Hitch, 1974]. One of the primary roles of working memory is to

maintain information relevant to the current task, so that it can be directly accessed by the

organism’s other cognitive processes. There are two primary paths by which information may

enter working memory: 1) external sensory information via the sensory- and short-term memory

pathways and 2) highly activated or recalled information via long-term memory [Baddeley,

2000]. Each pathway into working memory is modulated by attention, a mechanism that permits

only situation- or task-relevant information to enter. Functionally, working memory is situated at

the three-way intersection of short- and long-term memory and the higher-order cognitive

processes. Thus, working memory is in a unique position to act as the staging ground where

various informational chunks become bound together to affect task performance [Baddeley,

2000].

Procedural, Episodic, and Semantic Long-Term Memory

Figure 1 provides a simple, functional illustration of the flow of information through the

various memory systems. Most of the information that enters this process is eventually forgotten.

However, over time and through attention, rehearsal, and repetition, information in short-term

and working memory can become consolidated in long-term memory, where it may be retained

indefinitely. Like sensory memory, long-term memory is a buffer with unlimited capacity, again,

practically speaking [Landauer, 1986]. But unlike sensory memory, long-term memory is

capable of retaining information for extremely long periods of time, possibly for the remainder

of the organism’s life. Due to its limitless capacity as well as the indefinitely long retention

periods, a critical and practical issue in forming, retaining, and retrieving long-term memories is

structure and organization [Norman, 2002].

9

Figure 1. Flow of Information to the Various Memory Systems

Functionally, long-term memory can be divided into two main groups: procedural and

declarative. Procedural long-term memory stores implicit knowledge related to the performance

of skills, behaviors, or tasks. Examples include: “how to ride a bike” or “how to write your

name”. Research has shown, however, that this knowledge is not limited to motorized skills, but

also extends to such abilities as “reading text in reverse” and “solving puzzles” [Baddeley,

1998]. Procedural memory enables organisms to perform seemingly complex tasks without

having to exert equal amounts of conscious, cognitive control. Acquisition of such ability

requires that information be learned through constant practice and repetition until performance

becomes “automatic”. Procedural memory is part of the adapative mechanisms that enable

organisms to function in dynamic and often dangerous environments without the constant need

for conscious, deliberative control [Logan, 1988] [Schneider, 1999].

Whereas, procedural memory stores implicit knowledge related to performance,

declarative memory stores explicit knowledge for use in planning, rehearsal, and deliberation.

There are two main sub-systems in declarative memory: episodic and semantic [Baddeley, et al.,

2002]. The distinction between these two sub-systems has been suggested to be analogous to the

difference between “remembering” and “knowing” [Tulving, 2002], where episodic memory

stores remembered information, and semantic memory stores known information. According to

Tulving [2002] and Gardiner [2001] remembered information is that which can be recalled

within the context in which it was originally stored. Examples may include: “your wedding day”,

“the day you graduated from school”, or “what you did this morning”. Therefore, episodic

Episodic Semantic

Procedural

Sensory

Memory

Short-Term
Memory

Working

Memory

Long-Term

Memory

Active

Maintenance

Forgotten

Sensory
Input

10

memories, or episodes, are those events that can be recalled in combination with the various

contextual details specifically related to the experienced event. Likewise, knowing that “Paris is

the capital of France” or that “the sum of the square roots of any two sides of an isosceles

triangle is equal to the square root of the remaining side” [Baum, 1900] are examples of semantic

memory, where such information is simply often known, or believed, and the context in which it

was originally stored cannot be recalled. Thus semantic memory retains facts and beliefs learned

or mined from a lifetime of experience, yet not specifically associated with any single

experience.

Episodic memory retains contextualized, subjective episodes from the rememberer’s past

[Tulving, 1983]. This system maintains the “what”, “when”, and “where” of an event [Clayton

and Dickinson, 1998] [Nyberg, et al., 1996]. Therefore, information stored in episodic memory

must be experienced [Nuxoll and Laird, 2004]. A unique property of episodic memory is that it

enables an organism to mentally “travel back in time” [Tulving, 2002] and consciously re-

experience previous events. Such re-experiencing allows organisms to not only re-live the

sequences of events that occurred, but also to “re-feel” the emotions and other internal states

originally felt during those events [Tulving, 2002]. Research suggests, however, that much of the

re-experienced internal information is considerably dampened during recall [Loewenstein, 1996].

Finally, individual episodes within episodic memory have been compared to the idea of

storing reels of footage within the brain, in which different frames can be stored at different

levels of acuity [Tulving, 1983]. Subjectively significant features are typically stored with high

acuity, while other less significant, background features are stored with less acuity, or not at all.

Therefore, it is believed that episodic memory interacts closely with goal setting and evaluation

processes in order to capture the significant details of an event [Burgess, et al., 2002] [Aggleton

and Pearce, 2002]. As previously mentioned, working memory is also believed to interact with

goal setting and deliberative cognitive processes and research suggests that the two systems

(episodic and working memory) interact with each other and are highly related [Baddeley, 2000].

Specific application research has modeled this relation by using the information stored within

working memory as the sole source of information for forming episodes [Nuxoll and Laird,

2004].

11

Executive Processes

Processes with executive functionality are necessary for goal-directed, purposive

behavior. These high-level abilities perform many of the complex aspects of cognitive control,

such as deliberation, planning, outcome monitoring, and anticipation. In addition, executive

processes play a critical role in influencing the behavior of other components, such as working

memory and episodic memory [Baddeley and Hitch, 1974] [Schneider , 1999] [Baddeley, 2000].

However, because executive processes encompass such a wide range of abilities and interact

with various other components these processes are difficult to study alone, and are often studied

in relation to the component processes with which they are believed to interact.

Typical applications tend to generalize executive functionality as planners and decision

makers that operate on abstract symbols and concepts [Anderson, 1983] [Newell, 1990]. This

parallels much of the early work in AI, in which symbol manipulation and symbolic decision

making were highly popular and well studied. But there have been other conceptions of

executive systems as well. Baddeley and Hitch [1974] proposed a central executive that interacts

with working memory, providing resource management and exerting executive control over sub-

components. Baddeley [2000] argued that this conception of a central executive must not be

confused with notions of a control homunculus, or “magic box” within the human brain. Instead,

the central executive should be viewed as a general learning function that is trained to perform as

a meta-manager over sub-component functioning. Other conceptions of an integrated central

executive and working memory system also exist [Schneider, 1999].

From an architectural point-of-view, Sloman [2001a] and Ortony, et al., [2004] both

place executive functioning at the top of the information flow and control hierarchy. This is

comparable to the ideas of Baddely and Hitch [1974] and Schneider [1999], but at a much more

general level. The work of Sloman [2001a] and Ortony, et al., [2004] notes that it is difficult to

conceptualize executive processing as a single component, and therefore the gaps in executive

models must often be filled in as needed when top-down control is required. Such a view is

fundamentally different than the bottom-up control afforded by reactive and hard-wired

components.

12

Cognitive Architectures

Early cognitive architectures were designed with the specification that a working model

of human cognition should be developed independently of the underlying hardware on which the

architecture was implemented [Anderson, 1983] [Newell, 1990]. Therefore, while human

cognition was implemented through the use of expansive neural networks, artificial models were

created using various computing systems that utilized different hardware structures and software

algorithms. Such architectures compartmentalized components, which enabled tests to be

performed on specific functions and system performance to be analyzed under a variety of

conditions.

Symbol Processing Systems

Two of the most well-known cognitive architectures were developed based on the

physical symbol-system hypothesis [Newell and Simon, 1963]. This hypothesis proposed that the

ability to perform symbolic computation and manipulation was both necessary and sufficient for

the creation of artificial cognition. These two architectures are the ACT family of architectures

[Anderson, 1976] [Anderson, 1983], of which ACT-R [Anderson and Lebiere, 1998] is the most

recent, and the Soar family of architectures [Newell, 1990] [Lehman, et al., 2006]. Each

approach is distinct with respect to many of the implementation details, but at a more abstract,

functional level both architectures are laid-out using very similar components: long-term and

working memory, as well as perceptual and actuation systems (Figure 2).

Figure 2. General Layout of Early Production Systems (i.e., ACT-R and Soar [Anderson and
Lebiere, 1998] [Newell, 1990])

Long-Term Memory

Working
Memory

Perception Motor

13

Both ACT-R and Soar are members of a class of architectures known collectively as

production systems, in which procedural if-then rules are used to operate on symbolic data. Each

system perceives the environment and stores the perceptual information in a global working

memory buffer. The contents of working memory are used to activate information in long-term

memory, which may then be recalled and placed in working memory. The procedural rules

operate on the contents of working memory, potentially retrieving new information when

required. Over time, information in working memory also triggers actions, which modify the

environment and thus the process continues.

At a certain level of abstraction both ACT-R and Soar operate in a similar fashion. Below

this level of abstraction, however, the details of each architecture are quite different. ACT-R

divides long-term memory into procedural and declarative systems, in which procedural memory

retains production rules while declarative memory retains semantic information “chunks”

[Anderson and Lebiere, 1998]. Within ACT-R, declarative information is recalled through the

use of a spreading activation network in which each information chunk has an associated

activation value and is connected by weights to all other chunks. If two chunks are strongly

associated, for example “water quenches thirst” and “cups hold water”, then the weight between

these chunks should be high and the presence of one chunk in working memory should cause the

activation and retrieval of the second chunk. Once chunks are retrieved they can be used as

conditionals to trigger production rules or to retrieve more chunks. Production rules either cause

actions to be taken on the environment or chunks to be created/deleted. Learning in ACT-R is

accomplished by modifying the association strengths (i.e., weights) between different chunks, as

well as by updating the cost and reward values associated with each production rule.

Unlike ACT-R, the original Soar system did not differentiate between types of long-term

memory; however, more recent work has divided Soar’s long-term memory into procedural,

episodic, and semantic sub-systems [Lehman, et al., 2006]. Soar is a goal-based system in which

all tasks are formulated as goals that must be met. When Soar is faced with a task, it creates a

problem space for representing the potential states that may arise during task execution. The

problem space describes the effects of performing different operations and actions in the current

state. During deliberation, Soar repeatedly fires production rules using the information in

working memory, and then selects states to pursue using specialized operators. The behavior of

the Soar system can be visualized as movement through the problem space.

14

When an impasse is reached, Soar creates a sub-goal to resolve the impasse and operation

iteratively continues within the problem space for the new sub-goal. Once the sub-goal is

achieved, Soar creates a new production rule to summarize the solution process, and thus

learning is performed. Within the Soar architecture this learning process is known as chunking,

but is conceptually distinct from the chunk representations used in ACT-R.

Soar and ACT-R are some of the most well-known and well studied rule-based cognitive

architectures but there are others, such as EPIC [Keiras and Meyer, 1997] and Prodigy

[Carbonell, et al., 1990]. EPIC is another production rule system that utilizes a global working

memory. However, in place of the basic perceptual and actuation systems that ACT-R and Soar

use, EPIC has a rich set of perceptual-motor peripherals that provide input/output capabilities

and dictate various physical constraints and limitations with which the cognitive system must

cope. EPIC can be viewed as a model of cognition in which performance trade-offs must be

made when multiple tasks are required. Prodigy operates much like Soar in that it is primarily

devoted to the single task of navigating a complex problem-space [Carbonell, et al., 1990]. Two

types of rules are used by Prodigy: domain rules which model action conditions and effects, and

control rules which dictate architecture performance, such as the selection or rejection of states.

Prodigy also deploys explanation-based learning in order to re-use past experience for the current

problem. Within the Prodigy system, this functionality is achieved through case-based

techniques that attempt to solve current problems using previous problems as examples, or

analogies [Veloso and Carbonell, 1993].

Connectionist Systems

The architectures just described were largely based on the physical symbol system

hypothesis and were therefore designed as symbolic production systems. This is due, in no small

part, to the fact that much of early AI was devoted to the study of symbolic approaches for

intelligence. However, symbol manipulation is only one piece of the puzzle. Another equally

important piece is the ability to use and manipulate sub-symbolic information. Sub-symbolic

approaches generally use highly interconnected networks that pass numeric data in an attempt to

re-create some of the vast complexity of the human neural system. Unfortunately, it is extremely

difficult to create full cognitive architectures using purely connectionist systems and, therefore,

these systems have been much less studied than the symbolic approaches. One reason for this

15

may be that complex, interconnected networks provide little discernable insight into how their

performance may be understood from a psychological standpoint.

Additionally, from a more pragmatic engineering point-of-view, full connectionist

systems do not model cognition well because of the large amounts of training examples needed

to learn basic concepts. And once a concept has been learned, the underlying network often

becomes brittle and will not learn new concepts without forgetting the old. There has been,

however, some very interesting research in this area [Thrun and Pratt, 1998].

Brain-based devices (BBDs) [Krichmar and Edelman, 2005] are computational

approaches to cognition that attempt to simulate the functionality of the nervous systems found

in biological agents. BBDs possess neural dynamics and selection principles that allow them to

appropriately adapt to their environment in a manner similar to the dynamic systems approaches

investigated by Beer [1995] [2000]. Because the architectural design of a BBD is based on

current neuroscientific understanding of the brain, these systems offer a unique ability to

compare the results of simulated neural activity to collected experimental data [Krichmar and

Edelman, 2005].

Architecturally BBDs are pure connectionist systems in which functions have, generally,

not been compartmentalized. In other words, there are no separate components designed a priori

to store memories, plan, or perform actions. However, there are different sub-collections of

artificial neurons that are intended to model particular regions of the brain and may thus become

associated with the activities believed to occur in those regions. The connections between

subsystems are loosely structured and are allowed to organize themselves over time. Such self-

organization occurs through active learning in the environment while the BBD is engaged in

behaviors intended for the completion of a task. As the system learns, the connection weights

between different neurons are updated via Hebbian learning [Hebb, 1949], a process that

strengthens connections between simultaneously active neurons and weakens connections

between inactive sets. In addition, a value system is used to modulate active connections when

salient sensory events occur.

Recent Hybrid Approaches

Symbol manipulation and sub-symbolic computation are both useful techniques for the

study of artificial cognition. Therefore, recent approaches to architecture design have begun to

16

study how both techniques can be combined to provide better cognitive models and more

adaptive systems. Such architectures are known as hybrid architectures and have been used to

model the various levels of control believed to be available in humans and other mammals.

Based on the notion of controlled and automatic processing, CAP2 [Schneider and Chein,

2003] is a hybrid architecture that models two levels of control. The first level is composed of

traditional sub-symbolic (e.g., neural networks) functions. This level requires large amounts of

consistent training in order to be effective, but once trained it operates automatically reacting

quickly to stimuli and behaving like a general auto-associative mechanism [Schneider and Chen,

2003]. The second level is the controlled level that performs deliberation and planning. This

level is composed of connected sets of sequential processes that are designed to be functionally

similar to the production-rule processing systems of Soar and ACT-R. In CAP2, the controlled

processes are used in novel situations in which automatic responses have not yet been learned

and, thus, problems must be solved without prior training examples.

A second hybrid cognitive architecture is the RCS (Real-time Control System) approach

of Albus and Barbera, [2004]. Early research using this architecture focused on low-level, real-

time control systems [Barbera, et al., 1979], but has evolved to include production rule systems

and declarative knowledge structures [Albus, 2002]. Unlike some of the other cognitive

architectures that were first proposed as models of cognition and then later used for robot

control, RCS was specifically developed for robotic platforms. All symbols within the world

model of the RCS system are grounded to signals, objects, and states arising in the physical

environment. RCS is organized hierarchically using various functional processing nodes at each

level. Each node consists of five basic elements: behavior generation, world modeling, sensory

processing, value judgment, and knowledge database. Such node design enables RCS to

distribute control while maintaining a strict control hierarchy; both are features required in a

cognitive architecture that marries low-level control operations to high-level cognitive functions

[Albus and Barbera, 2004].

The Comprehensive Human Intelligence and Performance (CHIP) architecture [Shrobe,

et al., 2006] is a multi-level hybrid architecture that provides a good illustration of a three-layer

design that incorporates reactive, deliberative, and reflective control. At each successively higher

layer, the control processes simultaneously become slower and yet capable of handling more

complex problems. In addition to the three layers of control, CHIP also uses the sequential sense-

17

plan-act (SPA) architectural schema common to robotic control systems. The CHIP architecture

can be represented generally using a 3x3 grid as shown in Figure 3.

Figure 3. Basic Model of 3x3 Architecture

CHIP is one of many architectures that trifurcate control in this way [Sloman, 2001a]

[Kawamura, et al., 2008] [Ortony, et al., 2004]. In each of these architectures, the lowest level of

control performs reactive or reflexive responses (e.g., an emergency stop before a collision). The

next level of control varies slightly from architecture to architecture but is generally responsible

for performing simple deliberation or routine skills. This primarily involves control just beyond

that afforded by simple reactions (e.g., following a path or grasping a familiar object) [Ortony, et

al., 2004]. The final layer performs the most complex form of control, which is often some form

of complex deliberation, reflection, or meta-management. This level of control is typically

capable of generating and analyzing plans, arbitrating among abstract response options, biasing

parameters in the lower control levels, and performing post hoc evaluations.

Sense Plan Act

Reaction

Deliberation

Reflection

18

CHAPTER III

OVERVIEW OF SEQUENTIAL ROBOTIC DECISION-MAKING PROCESSES

As mentioned at the beginning of Chapter II, one of the fundamental aspects of cognitive

robotics is organization. Cognitive architectures are organized layouts for robotic control that

specify how components should interact at the macro-level. Each of the cognitive architectures

described in the previous chapter required at least one component for deliberation and planning.

This chapter will begin by describing two popular models used within AI for representing

complex, sequential decision processes: the Markov Decision Process and Partially Observable

Markov Decision Processes. Methods for using these models will be discussed as will methods

that enable real-time performance for each technique by focusing the search through the decision

state space or allowing anytime interrupts. Finally, methods for approximating solutions in large,

or continuous, state spaces will be described.

Throughout this chapter it is important to note that each solution method involves

tradeoffs: standard approaches require large amounts of memory for maintaining tabular state-

value functions, function approximators discretize and reduce the size of the state space but may

possibly ignore relevant information, and real-time search and anytime algorithms require many

performance parameters to be preset as well as, typically, requiring additional and costly

heuristic functions.

Markov Decision Processes

One of the most common techniques for representing sequential decisions in a stochastic

domain is through the mathematical framework known as a Markov Decision Process (MDP).

The standard representation for a MDP is the tuple {S, A, T, R}. Here, S is represents the finite

set of discrete states that an agent can occupy and A represents the set of all actions available to

that agent. The effects of taking action a ∈ A in state s ∈ S are modeled using the state transition

function, T: S x A � S. The transition function maps state-action pairs onto successor states with

a given probability. Typically this function is written as T(s, a, s’) and returns the probability of

occupying state s’ after performing action a in state s. A fundamental assumption of this type of

transition function is that all transitions obey the Markov property: the effects of taking an action

19

depend only on the current state, and not on the entire history of prior states. Finally, R is a

reward function that maps states to a specific numeric reward, R: S � R.

For a given MDP, a policy π is known as a solution to that MDP and determines which

action should be taken in each possible state. Thus, the output of π(s) is an action, a ∈ A, to be

performed in state s. Given a MDP and π, it is possible to determine the expected value for

reaching any state within the S. This value, denoted V(s), is the expected cumulative reward if

policy π is followed indefinitely. V(s) can be found by solving the recursive Bellman equation

given in Equation (1). The parameter γ is a discount factor used to focus V(s) on more immediate

returns.

∑
∈

⋅⋅+=
Ss

sVsssTsRsV
'

)'()'),(,()()(ππ πγ (1)

For every MDP there is at least one policy, π*, that maximizes V(s) such that

)()(*

jj sVsV iππ ≥ , ∀ i, ∀ sj ∈ S. Such a policy is called the optimal policy and is the “best” that

an agent can expect to do given its reward function. Equations (2) and (3) can be used to

determine π*, where at each step actions are chosen to maximize V(s).









⋅⋅+= ∑

∈
∈

Ss
Aa

sVsasTsRsV
'

)'()',,(max)()(γ (2)









⋅= ∑

∈∈ SsAa

sVsasTs
'

)()',,(maxarg)(*π (3)

Methods to Solve Markov Decision Processes

There are two popular, fundamental techniques for solving MDPs: value iteration and

policy iteration [Russell and Norvig, 2003]. Value iteration uses a method known as dynamic

programming [Bellman, 1957] to recursively solve Equation (2). The algorithm begins by

initializing V0(s), ∀s ∈ S, to arbitrary initial values. At each subsequent step, updated values Vi(s)

are determined from Vi-1(s), as shown in Equation (4). Value iteration repeats until the difference

20

∑
∈

−−
Ss

ii sVsV)()(1 falls below a given threshold. Equation (3) can then be used to return the

optimal policy.









⋅⋅+= ∑

∈
−

∈
Ss

i
Aa

i sVsasTsRsV
'

1)'()',,(max)()(γ (4)

Like value iteration, policy iteration is an iterative recursive algorithm. Policy iteration

begins with an arbitrary initial policy π0, but then calculates)(0 sV
π , ∀s ∈ S. The resulting value

function is used to calculate a new policy π1, and this process continues until)()(1 sVsV ii ππ =− ,

∀s ∈ S. At this point, no further improvements are possible and the final πi+1 is optimal.

Partially Observable Markov Decision Processes

Markov Decision Processes are simplified decision models for stochastic domains. In a

MDP only the effects of performing an action are uncertain. However, in many domains it is not

only actions that are uncertain but also observations. This is especially true for robotic

applications. Sensor error, incomplete domain knowledge, and simple deficits in processing

ability can impart a great deal of added uncertainty to the decision-making process. Because the

agent cannot know for certain which state it is in, it must maintain the belief that it is in a

particular state. The current belief state is updated by determining the likelihood of an actual

state given all of the information that has been observed. To incorporate observational

knowledge the traditional MDP framework is extended to: {S, A, T, R, Ω, O}. This

representation, known as a Partially Observable Markov Decision Process (POMDP) [Sondik,

1971] includes the standard MDP model as well as a set of possible observations, Ω, and the

probability model, O, which maps states and actions to observations, O: S x A � Ω. The

techniques for solving POMDPs are mathematically analogous to those for solving MDPs;

however, the additional complexity from including probabilistic observations and belief states

typically exacerbates the computational capabilities of most systems. Solving POMDPs is

PSPACE-hard [Papdimitriou and Tsisiklis, 1987], and therefore POMDPs are usually applied

only to small environments.

21

Real-Time Search

The bulk of current decision-making research in both artificial intelligence and robotics

focuses on the identification of optimal solutions. In other words, given a domain specified as a

MDP the goal is to determine π*. To do this, dynamic programming techniques such as value

iteration and policy iteration are available. When using these techniques agents typically

maintain a tabular list of possible states along with associated values, or actions. Decision

making requires that the agent merely consult these lists and select the best option.

Unfortunately, such a process often requires a considerable amount of computational effort; and

thus the derivation of most optimal policies is performed offline. But if the environmental

stochastics change, then policies computed offline can quickly become sub-optimal leading to

disastrous consequences. Furthermore, as domain complexity increases, the size of the associated

state space tends to increase exponentially. This is known as the “curse of dimensionality”

[Bellman, 1957] and places considerable stress on an agent’s ability to maintain and reference an

optimal policy. While exponential increases in state space size are never desirable, in robotic

applications such increases can be especially problematic due to the need to operate in the real

world in real-time. Therefore, many robotic applications employ real-time algorithms that only

partially search the state space before committing to an action [Korf, 1990] [Paquet, et al., 2005]

[Koenig and Likhachev, 2006].

Real-time search techniques are techniques that enable an agent to operate efficiently

when time-critical decisions are necessary. Many of these techniques either perform a limited

amount of local search before selecting an action or attempt to focus the search on the most

relevant states [Geffner and Bonet, 1998]. For example, consider the state-action space shown in

Figure 4. Using traditional methods an agent, such as a robot, would have to compute an

expected value, V(s), for every state before choosing which action to perform. Such a process

could require several minutes or hours to perform. During this time, the environment may change

requiring either a complete re-computation of a new policy or the continued use of a sub-optimal

policy. However, an agent using real-time search techniques might only focus on the local state-

space (see subset of Figure 4), and compute a partial policy that can be applied immediately.

Such an agent is better suited to cope adaptively with a changing environment.

22

Figure 4. State Space, S, with Local Search Window

A variety of techniques have been proposed to perform real-time search. Each of these

techniques rely on embedded domain knowledge, such as heuristic evaluation functions, and

many still require an explicit listing of state values (i.e., V(s)). For example, one of the simpler

real-time search techniques requires a preset heuristic function, h(s), which it uses to construct

the value function Q(a, s) [Watkins, 1989]. Unlike V(s), Q(a, s) explicitly maintains the expected

value for performing a in s, which combines the cost of performing an action, c(a, s), and a

heuristic estimate h(s). To perform real-time search, actions are chosen to maximize Equation (5)

[Geffner and Bonet, 1998].

Q(a, s) = c(a, s) + h(s) (5)

While computationally simple, this technique does not assure that an agent will

eventually reach its goal. Without performing updates and looking just one step ahead, an agent

may easily become trapped within a local loop. A modification to this approach, proposed in

Korf [1990], allows an agent to avoid such situations by updating the heuristic estimates after

each action. This method, known as Learning Real Time A* (LRTA*), uses the heuristic

function to provide initial estimates for V0(s), but at each time-step, t, Vt(s) is updated using the

known cost value and the previous state value, as shown in Equation (6).

Vt(s) = c(a, s) + Vt-1(sa), (6)

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

23

where

V0(s) = h(s), (7)

sa = Successor(a, s) (8)

In LRTA* actions are still chosen by maximizing the right-hand side of Equation (6), but

performing updates on Vt(s) simultaneously enables an agent to avoid local loops and

performance to converge to optimal as the amount of experience tends to infinity [Korf, 1990].

To determine sa, LRTA* uses a predefined successor function, as shown in Equation (8). This

approach, however, does not incorporate the fact that the effects of actions are often

probabilistic, and thus LRTA* ignores the state transition function developed for MDPs.

A method known as Real-Time Dynamic Programming (RTDP) [Barto, et al, 1995]

extends LRTA* by incorporating expected state values into Equation (6). RTDP is better

equipped to operate in domains modeled with traditional MDPs while still maintaining the real-

time search and optimal convergence properties of LRTA* [Barto, et al., 1995]. The modified

equation for RTDP is shown in Equation (9). As with LRTA*, initial estimates of V0(s) are

provided by the preset heuristic function h(s).

∑
∈

−⋅⋅+=
Ss

tt sVsasTsacsV
'

1)'()',,(),()(γ (9)

The Focused Dynamic A* algorithm, known as D*, is another real-time search technique

that utilizes heuristic knowledge to determine optimal paths through the state space [Stentz,

1995]. D* is designed to cope with environments in which transition costs change over time. The

initial policy determined by D* is developed offline, under the assumption of a static

environment, but as repairs to this policy are needed (due to the failure of the static environment

assumption), D* quickly performs local “patches” by focusing on only the most relevant states.

This is achieved by sweeping backwards from the goal state to the current state, updating just

those states affected by the new information. Due to its efficiency D* has been used on a variety

of robotic platforms [Matthies, et al., 2000] [Thayer, et al., 2000].

An algorithmically similar approach to Stentz’s D* has been developed by Koenig and

Likhachev [2002]. Their approach, known as D* Lite, performs an incremental search and is

based on their notion of lifelong planning, in which cost estimates are carried forward from one

24

search to the next [Koenig and Likhachev, 2001]. Like D*, D* Lite works backwards from the

goal state to the current state and performs updates when the transition cost between states has

changed. More recently, Koenig and Likhachev have proposed another variation on real-time

search known as Real-Time Adaptive A* (RTAA*) [Koenig and Likhachev, 2006]. RTAA* is

an anytime algorithm that performs a depth-limited local search, similar to that depicted in

Figure 4. During look-ahead, heuristic updates are performed using knowledge of the

accumulated transitions costs for particular states. The update procedure is shown in Equation

(10). Here g(s) represents the accumulated cost for reaching state s, and s’ is the next state to be

expanded [Koenig and Likhachev, 2006].

h(s) = g(s’) + h(s’) – g(s) (10)

In addition to being applicable to MDPs, real-time search techniques can also be applied

to POMDPs. A method known as Simple Online Value Iteration (SOVI) is an online search

technique developed by Shani, et al., [2005]. SOVI is an extension of the Heuristic Search Value

Iteration (HSVI) algorithm of Smith and Simmons [2004], which is an offline technique for

finding approximate solutions to POMDPs with large state spaces. Both HSVI and SOVI

maintain upper and lower bounds for the value estimates V(s). In each approach, the upper bound

is used to direct exploration while the lower bound is used to form the current policy. As

experience is acquired, both methods update these bounds to improve performance; however,

SOVI improves over HSVI in that the latter technique uses computationally expensive methods

(such as linear programming) to update these bounds while the former technique relies on

computationally simpler methods. SOVI updates the upper bound on V(s) by directly using the

heuristic function. Updates for the lower bound are determined using depth-limited prioritized

sweeping, a learning method described in Sutton and Barto [2000]. SOVI further decreases

computation time by only focusing on belief states that have been encountered in the current

episode, rather than applying updates to all possible belief states [Shani, et al., 2005].

A similar real-time search technique for POMDPs is the Real-Time Belief Space Search

(RTBSS) method developed by Paquet, et al., [2005]. This is another depth-limited search

technique that relies on heuristic knowledge to direct the search process. In addition to guiding

the search order, RTBSS also uses its heuristic knowledge to prune undesirable branches from

25

the state space. Performing only a local search as well as pruning branches enables RTBSS to

function in highly complex domains while still performing online, deliberative decision making.

But unlike many of the methods discussed thus far, RTBSS does not improve its value estimates

over time. This makes the algorithm heavily dependent on the quality of its task-specific

heuristic function, but also affords RTBSS total flexibility when deployed in previously unseen

environments [Paquet, et al. 2005].

Anytime Algorithms

Anytime algorithms are another approach to real-time decision making that share much in

common with the real-time search techniques just described. An algorithm is said to have the

anytime property when it exhibits a trade-off between the quality of a solution and the time

required to produce that solution [Zilberstein, 1996]. In addition, in any anytime algorithm

solution quality should be a monotonically increasing function of both time and the quality of the

input [Haddawy, 1996] [Dean and Boddy, 1988] [Horvitz, 1987]. In other words, as computation

time increases, the quality of the solution must not decrease. Furthermore, many anytime

algorithms allow computation time to be specified as a parameter or provided as an interrupt

signal. Interruptible anytime algorithms are those that can be stopped at any point and return a

solution, while contract algorithms must know the time allocated for the current decision in

advance [Zilberstein and Russell, 1995].

Naturally, there are various metrics that can be used to measure the quality of a solution

produced by an anytime algorithm. Three such metrics discussed by Zilberstein and Russell

[1995] are: certainty, accuracy, and specificity. Certainty is used to indicate the degree of fit, or

belief, that a particular solution is correct. Anytime algorithms that use this metric should

provide solutions that are more certain to be correct when given more time to find those

solutions. Accuracy is used to indicate the difference between the current “approximate” solution

and the optimal one. As computation time tends towards infinity the difference between the

current solution and the optimal one should converge to zero. Finally, specificity is used to

indicate the level of detail present in the solution. With more time, such algorithms should return

solutions in which finer levels of detail have been filled in [Zilberstein and Russell, 1995].

Research in Haddawy [1996] describes an anytime algorithm that performs a “rational

refinement” of its policy over time using the specificity metric. The system constructs a policy at

26

the most abstract level and at each subsequent iteration the algorithm replaces a portion of the

abstract plan with the next lowest level of abstract information [Haddawy, 1996]. Similarly,

Horsch and Poole [1998] construct an anytime algorithm that continually refines the policy,

represented as a decision tree, through the incremental inclusion of more information. The

approach of Horsch and Poole, however, relies on a heuristic function to avoid considering all

possible extensions to the current decision tree.

The RTBSS algorithm mentioned earlier [Paquet, et al., 2005] is another anytime

algorithm that uses a depth-limited search to focus computation on reachable states. In order to

maintain the monotonically increasing aspect of an anytime algorithm, RTBSS relies heavily on

the preprogrammed heuristic function, h(s). A similar depth-limited search is described by

Dearden and Boutilier [1994] in which planning and action execution are interleaved in order to

limit future searches to only those states that actually occurred as a result of actions. Like

RTBSS, the work of Dearden and Boutilier [1994] assumes the presence of a heuristic function

that provides value estimates for states and enables pruning.

Dean, et al., [1993] developed an anytime algorithm that, in some ways, is a composite of

the approaches of Dearden and Boutilier [1994] and Horsch and Poole [1998]. The approach

taken by Dean, et al., [1993] is to recursively define an envelope of states ε, determine an

optimal policy for the states within ε, and then to add the fringe states (or states that can be

immediately reached from any state within the envelope) to ε. After each expansion, a new

optimal policy is determined using the previous optimal policy and the new states.

As the environments in which robots are deployed become increasingly more complex,

the need for online decision-making methods that can operate under time constraints becomes

crucial. Real-time search techniques and anytime algorithms have proven to be efficient tools for

performing this type of time-critical decision making. These methods have been developed for

both standard MDPs as well as the computationally more complex POMDP framework.

However, with each of these techniques the quality of the results is critically dependent upon the

quality of the heuristic knowledge, and the burden is often on the programmer to provide

appropriate and sufficient heuristic functions. Furthermore, many of these techniques require that

a tabular listing of states be maintained that can later be referenced for necessary value function

information. As environmental complexity continues to increase, accessing such tabular listings

27

will also prove to be infeasible and intractable. It is necessary that more general abstraction and

function approximation methods be developed.

Learning Functional Models

The methods such as value iteration and policy iteration discussed at the beginning of this

chapter assumed that the value function V(s) was known. Some of the later techniques, such as

LRTA* and RTDP, assumed that the system possessed an initial guess for V(s) but then

attempted to learn, during online task execution, a better approximation for this function. These

systems used the observed rewards to update the estimates of V(s) for the current state and

occasionally for a finite number of previous states: 0),,'(|' ≠∈∀ sasTSs . In general,

approaches that use acquired reward observations to update the parameters of the system’s value

estimates are known as reinforcement learning systems.

In reinforcement learning the desire is to learn the value of occupying particular states.

Once this value is known, any of the previously described methods can be used to select the

action that leads to the state with the highest expected value. In order to learn the value function,

states are repeatedly sampled from the environment, rewards are received, and the value function

is updated. Such direct sampling methods are collectively known as Monte Carlo methods, and

are typically used to update the value estimates for the sampled states only [Sutton and Barto,

2000]. On the other end of the spectrum are the dynamic programming techniques that attempt to

recursively update the value estimates using the Bellman equation (Equation 1).

Monte Carlo methods are powerful because they enable online learning in situations in

which it is not feasible to update recursively the value estimate for all states. Dynamic

programming methods are powerful because they make more efficient use of the available data

by “backing up” the new value estimate of state s to all other states that have a non-zero

probability of reaching s. The recursive updates performed in dynamic programming are based

on the intuition that if state s is known to be “good”, then states that reach s with high probability

should also be deemed as “good”. However, it is computationally very expensive to perform an

entire dynamic programming “back up” whenever V(s) changes for a single state. Fortunately, a

method known as temporal difference (TD) learning has been devised that combines the positive

features of both Monte Carlo and dynamic programming techniques [Sutton, 1988] [Sutton and

Barto, 2000].

28

To better understand how TD learning works, one must note that in the Bellman equation

(Equation 1) the value of each state is recursively linked to the value of each of its possible

successor states. Therefore, when a reward is received in a one state, a TD error signal can be

calculated as shown in Equation (11), that reflects the difference between where the agent is and

where the expects to be going. Because at the time of update the actual successor state is

typically known the term {V(s’)} has been used to replace {∑
∈Ss

sVsssT
'

)'()'),(,(π }.

)()'()(sVsVsR −+= γδ (11)

∆V(s) = αδ (12)

In this way, the reward received from a sampled state is used to increment recursively the

value estimate for all states in the state space. The unique feature of TD learning, however, is

that it no longer requires the computationally expensive full recursion through the state space.

Rather, TD learning makes judicious use of the online samples and updates the value estimates

for only those states that have been visited recently. The amount of each update is proportional to

the temporal proximity and transition probability between the sampled state and the current state.

In TD learning, temporal proximity is determined through the use of functions known as

eligibility traces that store the impact a previous state has had on reaching the current state. More

recently visited states have stronger eligibility traces and receive greater updates. An example

eligibility trace is shown in Equation (13), and the augmented update rule is shown in Equation

(14). In Equation (13), λ is a decay factor on the eligibility trace, st is the current state being

sampled and γ is the decay parameter from Equation (1).

Ss
ss

ss

if

if

se

se
se

t

t

t

t

t ∈∀
≠

≠





+
=

−

−
,

'

'

1)'(

)'(
)'(

1

1

γλ

γλ
 (13)

∆V(st) = αδet(st) (14)

Function Approximators

Learning methods such as TD learning enable value estimates and heuristic functions to

be learned using direct sampling methods without the computational overload that comes from

29

using the full recursive, dynamic programming methods. However, the value functions and

heuristic functions discussed up to this point still require tabular listings for all possible states,

which is computationally infeasible in complex environments. Therefore, it is often desirable to

use approximation methods to compress large state spaces to a more compact form. Function

approximators are techniques used to represent, in finite space, state spaces that have continuous

or infinite domains [Szepesvári and Smart, 2004] [Sutton and Barto, 2000].

Function approximators map high-dimensional state spaces into lower-dimensions and

attempt to learn value estimates over the low dimensional space. A simple example of a function

approximator is the mapping that divides a continuous 2D navigable state space into a discrete

grid for mobile robot navigation. Once the state space has been discretized, the robot can attempt

to learn V(s~), Ss
~~ ∈∀ , where S

~
 is the new approximate state space. Therefore, the robot does

not have to learn value estimates associated with every possible location in the continuous and

infinite state space. Instead, the robot learns value estimates for the new state space, S
~

, with the

hope that S
~

 provides an adequate approximation of S.

There are a variety of methods to implement a high-to-low dimensional mapping. In

addition to grids, state features can be histogrammed using pre-defined bins or tile codings can

be used that create multiple overlapping grids [Sutton and Barto, 2000]. Clustering techniques

and nearest neighbor methods can be used to create symbolic classes and assign states to the

nearest class. Interpolation methods can also be used, potentially in conjunction with nearest

neighbor approaches, to create continuous but lower-dimensional representations. Finally,

regression and neural network approaches can be used; often in conjunction with other mappings

that create numeric feature vectors from the current state. Methods such as neural networks

generalize within the value function, while other methods, such as tile coding and linear

interpolation, generalize within the state representation [Sutton and Barto, 2000].

It is known that many reinforcement learning methods that utilize tabular listings for V(s)

will eventually converge to the correct values given sufficient experience [Sutton and Barto,

2000]. However, it is an open question whether many of same techniques retain their

convergence properties when used in conjunction with function approximators [Sutton, 1999].

Several recent studies have investigated the convergence properties of function approximation

methods, proving convergence for various types [Perkins and Precup, 2003] [Melo, et al., 2008]

[Szepesvári and Smart, 2004] [Gordon, 1995].

30

Gordon [1995] provided convergence proofs for a class of function approximators known

as contraction mappings. A contraction mapping is a function f defined over a state space S that

maps points in S onto S, while simultaneously contracting the distance between any two mapped

points by no less than a constant factor α. Such functions have fixed points within S to which the

recursive sequence f(s), f(f(s)), f(f(f(s))), …, will eventually converge at a rate of at least α.

Gordon [1995] proved that when V(s~) is represented using such a contracting function

approximator, value iteration converges to within a finite bound of the optimal value function,

V*(s). In addition, both Gordon [1995] and Szepesvári and Smart [2004] noted that convergence

holds for function approximators that are also merely non-expansion operators, provided that

they meet further constraints, such as being interpolatible [Szepesvári and Smart, 2004].

Examples of contraction mappings are nearest neighbor techniques, linear interpolations, and

state aggregation methods such as grids and tile codings [Sutton and Barto, 2000].

Research in Melo, et al., [2008] investigated the convergence of Q-learning methods

[Watkins, 1989] when used with function approximation. Q-learning is a reinforcement learning

method that learns values, known as Q-values, for state-action sets. The work of Geffner and

Bonet [1998], described earlier, used Q-learning to perform real-time search. Melo, et al., [2008]

show that under certain conditions linear approximation techniques will converge to an optimal

Q-value function given enough experience. Of the conditions they investigate, a particularly

interesting one is that when the discount factor, γ, on future rewards is approximately one, the

learned policy is not likely to generalize well to nearby policies. However, when γ is much less

than one, safe generalization is possible. Therefore, the degree to which the current reward

depends on future states impacts generalization and convergence. Similar results have been

obtained in Perkins and Precup [2003].

There are other types of function approximation methods besides contraction mappings

and linear approximators. Neural network techniques have been used [Tesauro, 1990] as well as

Bayes classifiers [Haykin, 2008]. However, these methods are capable of exaggerating small

differences between points in the state space and convergence has not been proven. Still, these

methods remain extremely important as they often deliver acceptable results in practice.

31

CHAPTER IV

OVERVIEW OF PSYCHOLOGICAL EMOTION RESEARCH, EMOTION PROCESSES,
AND ROBOT EMOTION SYSTEMS

When the words “emotion” and “robot” appear in the same sentence, it seems that the

most common reaction is to fancifully imagine robots that feel “happy” or “sad”, or at least

provide the outward appearance of such feelings. As such, the approach to robot emotions that

has been taken by many researchers has been to design and implement artificial emotions loosely

based on the theoretical concepts of emotional states in humans and to utilize these states for

control. This is a very top-down approach that mirrors, in many ways, the top-down

methodology taken by early AI researchers when they began designing intelligent systems: start

with the meta-level symbols and states; outline the specific signals that should trigger those

states; then determine what changes those states should enact upon the world. In this way,

control is achieved through the use of complex finite state machines (FSMs) in which certain

states have been couched in psychological emotion terms.

As mentioned in Chapter I, this dissertation is going to take a more bottom-up approach

and explore the fundamental components and appraisal processes that enable agents, within the

context of their current goals, to learn (from experience) relations and associations that can later

be deployed to inform and improve performance. Such processes must go beyond the simple

assignment of utilities or the pre-defined switching between control states, and should integrate

into all aspects of control and deliberation. The approach described here is developed using

psychological and neuroscientific research that points to the existence of multiple, fundamental

mechanisms that collectively underlie the high-level control states that have been conceptualized

using FSMs. These include, but are not limited to, the appraisal processes mentioned earlier:

relevance, utility, urgency, and fit. It is believed that the cognitive processing necessary to derive

such appraisals both subserves cognitive control and provides the low-level mechanisms upon

which higher-order states, and eventually those demarcated as emotions (artificial or otherwise),

may be derived.

Whereas the previous two chapters discussed the need for architectural approaches to

cognitive control and the current methods by which robotic systems may perform sequential,

real-time decision making, and function approximation, this chapter investigates how emotions,

32

or more appropriately cognitively processed appraisals and low-level evaluation signals, provide

the information needed for adaptive, intelligent, and real-time control. The discussion begins

with a brief overview of the concepts surrounding basic emotions before describing how

emotions may fit into an architectural view of intelligence. Next, some of the underlying

components and functions that contribute to emotional states are described. Appraisal processes

will then be discussed from the point-of-view that they are fundamental aspects of both the

adaptive purpose and construction of emotion. Throughout this discussion the concepts of

relevance, utility, urgency, and fit will be discussed as they relate to particular theories. Finally,

this chapter concludes with describing current implementations and models of robot emotions.

Basic Emotions

Research into the roles that emotion plays in human cognition has led to numerous

theories postulating and questioning the importance and rational basis of emotional processing.

Indeed, any researcher attempting to wade through the quagmire of terms, frameworks, and

architectures is likely to get quickly bogged down by the numerous and varied details of specific

approaches. This is due, in part, to the fact that as of yet there has been no consensus on what is

actually meant by the terms “emotion” and “affect” [Pfister and Böhm, 2008] [Picard, et al.,

2004] [Barrett, 2006] [Kleinginna and Kleinginna, 1981] [Sloman, 2001b] [DeLancey, 2002].

Fortunately, such confusion does not reside at all levels of emotion research. Taking a step back,

one can identify that a large portion of the literature regarding the influence of emotion on

cognition is, in fact, moving in the same direction. There is considerable consistency across the

multitude of theoretical frameworks with respect to many of the general theories proposed for

emotion. For example, many theories consider that emotion operates in a manner that is

functionally similar to that of utility within the decision sciences. Additionally, while it has long

been accepted that emotion influences behavior and decision making, the notion that such

influences are, on average, more beneficial than detrimental is becoming more prevalent

[Damasio, 1994] [Bechara, et al., 1997] [Rolls, 1999].

Much of the traditional emotion research over the past few decades has focused on well-

known concepts such as the basic emotions suggested by Ekman [1992] [1999]. In his research,

Ekman investigated the universality of specific emotions as they are manifested externally in an

attempt to fortify Darwin’s [1872] claim that certain emotional responses are innate and have

33

been selectively chosen by evolution for their adaptive value. Ekman’s [1992] basic emotions

include “happiness”, “sadness”, “anger”, “fear”, “disgust”, and “surprise”. The labeling of these

emotions as basic, however, raises the interesting question of what constitutes a basic emotion?

Ortony and Turner [1990] argue that for an emotion to be considered basic that emotion must be

present in all humans, homologous in animals, and selectively chosen by evolution. Panksepp

[1998] [2000] provides a similar argument proposing that certain emotions are basic and that

these emotions are identifiable from their homologous and neurobiological origins in all

mammalian species. The notions of homology, natural selection, and neurobiological origins

seem to validate Ekman’s identification of a set of basic emotions; however, Panksepp [1998]

suggests a different set of basic emotions: “seeking”, “rage”, “joy”, “distress”, “care”, “lust”, and

“play”, and then extends these to specific behavioral purposes.

Damasio [1994] [1999], whose research in many ways resembles that of William James

[1884], investigates the connection between somatic states, emotion, and rational decision

making, and also utilizes the concept of basic emotions. He uses the same list as Ekman and

believes that these emotions are biologically determined and, for the most part, automatic.

However, in addition to this set of basic emotions, which he terms primary, Damasio [1994] goes

on to identify a set of secondary emotions that are more socially-derived (e.g., “embarrassment”

and “jealousy”). While Damasio investigates how the notions of primary and secondary

emotions are tied to somatic states and conscious feelings, Sloman [2001b] investigates the

architectural basis for emotions from an information processing point-of-view. As such, Sloman

[2001a] [2001b] proposes three categories of emotions, coinciding with three distinct layers of

control: reaction, deliberation, and meta-management. Primary emotions, such as those

referenced by Damasio [1994] and Ekman [1992], reside at the reactive layer of information

processing. Secondary emotions are formed within the deliberative layer, and tertiary emotions

exist at the reflective, or meta-management, layer. According to Sloman [2001b], these tertiary

emotions are perturbances that involve a loss of meta-control, in which it becomes impossible for

the individual to focus on anything else except for the emotion-eliciting event. Examples include

“infatuation” or extreme “embarrassment”. Other researchers have also proposed emotion

classifications based on either architectural position or cognitive function. A notable example of

this is the OCC model [Ortony, et al., 1988], in which emotions are separated based on the

situation that elicits them and the effect that they have on cognition. Ortony, et al., [1988] believe

34

that emotions constitute valenced reactions to perceptions of the environment, and that these

reactions can be broken into three distinct classes. These classes include reactions concerned

with the consequences of events, the actions of agents, and the aspects of objects.

Yet even though multiple lists of basic emotions can be found within the literature, there

are still the open questions of what is an emotion and what criteria should be used when

classifying emotions? DeLancey [2002] argued that there was probably no scientifically

appropriate class of things referred to by the general term emotion. This view is somewhat

reflected by Sloman, et al., [2004], who suggests that emotion is a cluster concept and that while

it may be possible to identify clear instances of states in which emotion is, or is not, present,

demarcating beyond this requires specific understanding of the types of information processing

being deployed. He offers a general description of an emotional state as an

“…episodic or dispositional state in which a part of it… has detected something which is
either actually interrupting, preventing, disturbing, or modulating one or more processes
which were initiated or would have been initiated independently of this detection, or disposed
to interrupt, prevent, disturb, etc. such processes but currently suppressed by a filter or
priority mechanism” [Sloman, et al., 2004, p. 230].

This provides a definition of emotion from a functional standpoint, but does not help to

differentiate groups of emotions, or identify basic emotions. In order to group emotions, a

similarity/difference criterion is required. Sloman [2001b] proposes differentiation based on

levels of information processing. Ortony and Turner [1990], Panksepp [1998], and Griffiths

[1997] [2004] propose that similarity should be based on homologous and neurobiological

measures. Both views are tractable and approachable; however, from an engineering point-of-

view having more details is always preferable. Frijda [1986] [1995] proposes, like Sloman, that

emotions provide specific information, but continues by suggesting that rather than attempt to

extract functional information from the abstract concepts, it may be more appropriate to study

the constituent processes that form those concepts. Therefore, rather than focusing on high-level

emotional states (e.g., “happy”, “sad”, etc.) it is more appropriate to focus on the goals and

concerns of the individual as well as the types of information-laden signals and appraisals that

would be adaptively useful to an individual with such goals and concerns. If one adopts this

methodology, the idea of emotion or emotion-based processes in robots is not fanciful, but

instead quite practical.

35

Emotion Processing: Architectural Views and Processing Models

Cognitive architectures have been traditionally deployed for tasks that require symbolic

and deliberative decision making. This can be seen in early work with the Soar and ACT-R

models discussed in Chapter II. More recently, researchers have begun to investigate

architectures that extend beyond simple procedural reasoning. This has included integrating

components for reaction and reflection with the standard systems used for deliberation. One

example is the CHIP architecture, also described in Chapter II [Shrobe, et al., 2006].

Furthermore, as researchers begin to understand more about how emotion integrates with

cognition, and those researchers branch from simple theories of basic emotions to functional

theories of causation and influence, it becomes increasingly important to understand how and

where emotion fits into architectural designs and approaches to cognition. One approach

specifically tailored to answering such questions is the CogAff schema of architectures

developed by Sloman [2001a].

Levels of Information Processing

Sloman [2001a] approaches cognitive architecture design from an information processing

point-of-view, and defines CogAff as a collection of information processing mechanisms that are

intended to enable agents to meet their needs in complex, dynamic environments. In this manner,

CogAff (Figure 5) defines a high-level ontology for architectural components and connections.

This architecture is loosely divided into the same type of 3x3 grid, proposed for CHIP.

Horizontally the schema is organized according to the processes of sense-plan-act, while

vertically it is divided into reactive, deliberative, and meta-management layers. A global alarm

system is used to detect situations, or events, that demand urgent attention. As discussed earlier,

each level of processing is capable of different types of emotions.

At the reactive level events trigger highly automatic and innate appraisals that are used in

the representation of simple, basic emotions. This includes appraisals for fight/flight and

pleasure/displeasure. It is important to note that in Sloman’s [2001a] architecture, the emotions

that exist at a particular level are not restricted to that level, but rather are determined based upon

the information processing available at that level. Therefore, in Sloman’s theory, the most basic

emotions are those that are derived from the most basic forms of reactive information processing,

and these typically coincide with the basic emotions proposed by other researchers (e.g.,

36

Damasio [1994] and Ekman [1992]). Moving up the hierarchy, the evaluations that exist at the

deliberative level result from the ability to compare distinct options (in order to choose among

them) and to make basic predictions about the future. As such, the processing available at this

level is implicated in the formation of more complex emotions, such as the secondary emotions

proposed by Damasio [1994]. The information processing that occurs at the meta-management

level results in complex evaluations that involve predictions about the future, reflections about

the past, and reasoning about goal-relevant consequences of actions. Since this layer of control

resides at the top of the hierarchy, intense emotions, which result in the loss of control at this

level, may have disastrous consequences at the lower-levels as well. Finally, all of the processes

at each of the three levels are capable of triggering the alarm mechanism, which in CogAff

signals when rapid redeployment of functional resources is necessary.

Figure 5. CogAff Architectural Schema [Sloman, 2001a]

Like Sloman, Ortony, et al., [2004] also proposed a three-level architecture in which

different types of evaluations and emotions arise at each of the different levels (Figure 6). In

their model the first level is a reactive level and is proposed as the origin of basic evaluations that

determine approach and avoidance tendencies as well as interrupt the higher-levels of control.

These interrupts are analogous to the alarms in the CogAff architectural schema [Sloman, et al.,

2004]. However, Ortony, et al., propose that the signals available at this level are only simple

forms of affect, referred to as proto-affect, which is a two-dimensional signal that assigns values

and valence to stimuli, but is not sufficient for full emotional states. The second level is

responsible for routine control over the execution of well-learned behaviors. This level provides

37

appraisals related to present as well as possible future conditions, and these appraisals are

believed to be the basis for primitive emotions. Therefore, for Ortony, et al., [2004], emotional

states are only realized at the routine level (or above), in which evaluations include basic

predictions about the future.

Figure 6. Information Processing Model by Ortony, et al., [2004]

Both the reactive and routine levels are modeled as having direct connections to sensory

input and motor output. The reflective level, however, neither receives direct sensory input nor

provides direct motor output. This level of processing is responsible for providing biases to each

of the lower levels, and performs symbolic computations concerning past, present, and possible

future events. Ortony, et al., [2004] propose that the processing involved at the reflective level is

relatively slow and most likely implicated in feedback control and analysis, instead of direct

causation of behavior. This is consistent with the feedback control theory proposed by

Baumeister, et al., [2007] and discussed in the next section.

Processing Models

Frijda and Swagerman [1987] propose an architectural design for creating a computer-

based emotion system. This approach is based on the theory that emotions are composed of

numerous components, the most important being the various cognitive processes for appraising

emotion-eliciting events [Frijda, 1986]. Within their model, once an event has been captured and

encoded, relevance appraisals are performed that evaluate the event with respect to the system’s

goals. Next, diagnostic information is extracted that indicates whether the event should be

Environment

Reactive

Routine

Reflective

38

approached or avoided, as well as how much uncertainty should be attached to that event. An

evaluator then determines whether the event requires an urgent response, and establishes a

control precedence signal that assigns priority to the various behavioral responses. Based on

these appraisals, actions are proposed and strategies are adjusted as necessary before the actual

execution of response behaviors is initiated. Throughout this process, a regulation system is used

to evaluate system state and on-going needs. A variation of the model initially developed by

Frijda and Swagerman [1987] is provided in Figure 7.

Figure 7. Flow Chart of Emotion System [Frijda and Moffat, 1994]

Scherer [1981] proposes a component process model of emotion in which emotions are

considered to be episodic responses to events of relevance. Scherer identifies five systems

involved in the emotion process. The first system is similar to those discussed by Sloman

[2001a], Ortony, et al., [2004], and Frijda and Swagerman [1987]. This system performs

information processing on events and evaluates those events through the use of learned

associations (i.e., memory) and forecasting abilities (i.e., prediction). Once the evaluations have

Analyzer
perception and encoding

Comparator
relevance appraisal

Diagnoser
context appraisal

Evaluator
urgency and difficulty

appraisal

Action Readiness Changer

Physiological Changer Action Generation

R
eg

u
la

ti
o

n

Stimulus Event

Relevance

Signal

39

been determined, a supporting system modifies the individual’s internal state, a leading system

plans and selects actions, an acting system performs behavior, and a monitoring system

processes feedback. Though it is intended to be a theory of emotional processes, Scherer’s

[1981] component process model has many of the elements of a simple control architecture (i.e.,

evaluation, planning, execution, and monitoring).

Of the five systems identified in Scherer’s model, the most relevant for this discussion is

the information processing system. In order to perform its evaluations, this system utilizes a

number of appraisals, which Scherer [1981] [1997] refers to as stimulus evaluation checks

(SEC), each of which can be performed at the various levels of processing identified by Sloman

[2001a] and Ortony, et al., [2004]. In Scherer’s theory, there are numerous potential SECs,

however, the primary checks are those for novelty, pleasantness, goal-conduciveness, coping

potential, and compatibility with standards [Scherer, 1997].

Affect as an Information Carrying Component

The high-level approach to designing artificial emotion that was described at the

beginning of this chapter assumes that events trigger emotional states that then impact control.

This idea is conceptually represented in Figure 8. Yet as the discussion has thus far indicated,

multiple levels of processing are often present for complex control and each level is capable of

its own distinct responses. In addition, there are a variety of appraisal-based cognitive processes

that facilitate the development of different emotional states. From an engineering perspective, the

interplay between the multiple levels of processing and each of the various appraisals may be

conceptualized better by mentally rotating Frijda’s model (Figure 7) counterclockwise 90o and

then overlaying it onto the CogAff schema (Figure 5).

Since this dissertation is interested in the bottom-up approach to emotion-based control, it

is necessary to understand the types of low-level signals (and functions) that both enable the

different appraisals and eventually form critical components for those states labeled as

“emotion”. According to Frijda [1995], a key low-level component for appraisals (and thus

emotions) is the notion of affect: a signal that carries aspects of positive/negative evaluation.

40

Figure 8. Traditional View of Emotion as a Response to an Event [Russell, 2003]

The theory of affect as a core mechanism in the construction of emotion has been heavily

investigated by Russell [2003], who, like Frijda [1986], suggests that a number of processes both

precede and constitute (or rather become categorized as) “prototypical” emotions. Figure 9

presents Russell’s model, which has been slightly adapted for this discussion. Conceptually,

Russell’s [2003] model is not unlike that proposed by Frijda and Swagerman [1987]; both

models propose that foundational components are responsible for those influences on cognition

typically attributed to “emotion”. Russell’s model, however, has a much higher degree of

parallelism, and Russell downplays the role of appraisal processes in favor of focusing more on

the notion of core affect. Interestingly though, Russell notes that the combination of core affect

with the other low-level components still results in the formation of basic appraisals, such as

attention-guiding relevance and basic utility.

For Russell, core affect represents a “non-reflective feeling that is an integral blend of

hedonic and arousal values” [Russell, 2003, p. 147]. In this model, core affect is a two-

dimensional, object free, and ever-present internal signal. From an information processing point-

of-view, core affect might be found in both the reactive and deliberative layers. This has been

discussed by Ortony, et al., [2004], who use the terms proto-affect and affect to describe the

signals that arise at these levels of processing. As shown in Figure 10 the two dimensions

comprising Russell’s [2003] notion of core affect are those spanned by {pleasure, displeasure}

and {activation, deactivation}. Similar theories can also be found in the work of Winkielman and

Trujillo [2007], and Larsen and Diener [1992]. Typically, in these theories one dimension is

reserved for valence, or a measure of “good/bad”, while the other is reserved for

“intensity/arousal”.

Event

e.g., danger
Emotion

Subjective Feeling

e.g., afraid

Nonverbal Signal

e.g., face, voice

Autonomic Pattern

Instrumental

Action

e.g., flight

41

Figure 9. Model of Emotion Arising as Patterns of Core Mechanisms (adapted from [Russell,
2003])

Russell [2003] proposes that when arousal is high, core affect is within the foreground of

cognition. He notes, however, that though it may be consciously accessible, core affect is always

just beyond the realm of conscious control. This idea is similar to Damasio’s [1994] conception

of feeling, but does not require the same visceral invocations. Furthermore, because it is a simple

two-dimensional signal that indicates valence and arousal, core affect is also believed to be the

mechanism that provides the common currency discussed by Cabanac [1992], Peters [2006], and

to a certain extent Rolls [1999]. For control purposes, compensation of undesired core affect is

achieved through the use of predictions of future affective states to guide decision making.

Whereas in Russell’s theory core affect is object free, affective quality is linked to an

event and represents the capacity of that event to produce changes in core affect. Therefore,

while core affect is localized within the organism, affective quality is localized within the event.

The combination of these signals results in attributed affect, a mechanism that serves two

purposes in Russell’s theory: to guide attention to a specific object/stimulus, and to provide

direct access to affective quality. Thus core affect provides utility while attributed affect

indicates relevance and enables focusing. Finally, it is worth noting that in Russell’s theory

prototypical emotions, or the basic emotions of Ekman [1992], Damasio [1994], and Panksepp

[1998], arise as the core mechanisms develop and then succumb to categorization and mental

representation.

Prototypical
Emotion

Prototypical
Emotion

Core Affect

Perception of

Affective Quality

Perception of

Affective Quality

Attribution to

Object

Attribution to

Object

Foundational Components/Appraisals

Influences on Cognition & Behavior

Subjective Feeling
e.g., afraid

Subjective Feeling
e.g., afraid

Nonverbal Signal

e.g., face, voice

Nonverbal Signal

e.g., face, voice

Autonomic PatternAutonomic Pattern

Instrumental
Action

e.g., flight

Instrumental
Action

e.g., flight

42

Figure 10. Core Affect as Two-dimensional Signal [Russell, 2003]

Research by Baumeister, et al., [2007] builds on Russell’s theory, but views emotion as a

dual process responsible for feedback control with both controlled and automatic aspects. The

automatic portion of the process is provided by automatic affect, a concept similar to core affect.

The controlled process is the result of the formation of high-level emotional states (Russell’s

prototypical emotions) and is much slower to develop than the relatively processes of automatic

affect. Baumeister, et al., [2007] suggest that the primary role of full-fledged emotions is not to

cause behavior directly, per se, but rather to stimulate post hoc cognitive processing in order to

learn new associations between affect, stimulus, and behavior sets. A modification of Figure 9

that includes the ideas of dual processing and feedback control is shown in Figure 11.

Automatic affect is an extension of core affect in which further cognitive processing has

been added to help differentiate the varying affective responses. Automatic affect guides

decision making by providing quick evaluations that allow potential responses to be structured

according to the individual’s goals and approach/avoidance tendencies. These evaluations also

enable the predictions of possible future emotional states that further aid decision making by

providing weight for each of the different responses [Baumeister, et al., 2007].

ACTIVATION

DEACTIVATION

PLEASUREDISPLEASURE

Sad

Gloomy

Excited

Ebullient

Elated

Happy

Serene

Contented

Placid

Calm

Tired

Lethargic

Upset

Distressed

Tense

Jittery

43

Figure 11. Dual View of Emotion-Based Control Using Automatic and Controlled Processes

Once the decision has been made and the outcome has been observed, the slower

controlled process (i.e., full-fledged emotion) will have developed and can then serve its purpose

of guiding performance evaluation and stimulating cognitive processing. This completes the

feedback loop, altering the evolution of and associations for future appraisals. A similar notion of

control has also been developed in work by Carver and Scheier [1998], in which the feedback

signal is analogous to the error signals of modern control theory. Interestingly, Baumeister, et al.

[2007] note that their feedback model is, essentially, a reinforcement learning model. They

contend, however, that in humans the addition of further cognitive skills buffers and improves

upon the basic abilities of reinforcement learning. In robotics and machine learning, such

buffering could be achieved through techniques such as explanation-based learning [Mitchell,

1997].

Appraisals and Functions

The philosopher Jeremy Bentham [1789] proposed that human decision making was a

form of hedonic calculus. For years this view was discounted, with researchers focusing on

“cold” cognitive processes, rather than “hot” emotions [Slovic, et al., 2003]. However, the tide

has turned and it is now largely accepted that emotion plays an integral role in cognition and

Prototypical

Emotions

Prototypical

Emotions

Foundational Components/Appraisals

Influences on Cognition & Behavior

Feedback Control Based on Reflective Cognitive Processing

44

decision making. The discussion to this point has described what types of information processing

are necessary for the development of general-level appraisals and emotional processes. The

notion of two-dimensional, affect-based signals indicating valence and arousal has been

described, as well as how such signals may contribute to the construction of emotion. The

current section will describe goal-relevant appraisals as they are implicated in the construction of

emotion. The intention is to begin functionally describing emotion from a level below that of the

abstract states commonly referred to as emotional, but above that of the valenced signals, such as

core affect. The following discussion will focus on the concepts of relevance, utility, urgency,

and fit.

Zeelenberg and Pieters [2006] argue that emotion is a powerful force in decision making,

and that emotion has evolved precisely for the production of behavior. They argue that the utility

of specific emotions, and the appraisals that underlie them, is found in their ability to affect

future behavior, and that each appraisal provides a particular function with its own adaptive

value. The primary role of emotion, as they see it, is to serve as motivator. This form of appraisal

is rooted in experience and extracts information related to “how the individual is doing” (with

respect to the current goals) and “what should be done next” [Zeelenberg and Pieters, 2006]. It is

important therefore, that the individual have the ability to determine how well its current

response fits the situation, or whether a new strategy/behavior is required. In addition, Scherer

[1997] suggests that measures of fit enable the individual to determine to what extent certain

events are under control and Frijda [1986] proposes that a primary function of appraisals is to

indicate the degree of fit between responses and events. If a particular response results in the

individual moving closer to its goal, then the degree of fit should likely be very high. Interpreting

such evaluations as error signals yields a view similar to the feedback control theories described

by Carver and Scheier [1998] and Baumeister, et al., [2007].

A motivation-based appraisal has also been proposed by Peters [2006]; however, Peters’

motivation function is more akin to an urgency indicator, which is derived from low-level affect,

and influences the speed at which information is processed. From a functional perspective,

Peters’ motivation appraisal is critical for situated agents; it signals when to start and when to

stop, and ensures that system needs are met in a timely and appropriate fashion. A similar

function, speed, has been described in research by Pfister and Böhm [2008]. Frijda [1986] also

proposes that appraisals for urgency establish changes in control precedence and action

45

readiness, which have a direct impact on control and behavior, and Scherer [1997] suggests that

such measures of urgency are informed by checks of goal-significance and coping potential.

Such low-level urgency-based appraisals are compatible with the process of automatic affect

proposed by Baumeister, et al., [2007], and are also reflected in separate research by Bechara, et

al., [1997] and Loewenstein [1996]; in both theories appraisal-induced visceral states guide and,

occasionally, force behavior. Panksepp’s [1998] evolutionarily primitive affect programs, which

include aspects of the proto-affect signals proposed by Ortony, et al., [2004], and the interrupts

proposed by Sloman [2001a] are also compatible with this notion of urgency-based appraisal.

Frijda [1986], Scherer [1997], Peters [2006], and Pfister and Böhm [2008] all propose

that relevance detection is a critical function of emotion. In Peters’ theory, low-level affective

signals are used to identify pertinent events (i.e., stimuli) that should occupy an individual’s

focus of attention and influence decision making. Scherer [1997] includes relevance within the

goal-significance check and uses this signal to mediate the influence from other SECs. Pfister

and Böhm [2008] propose that certain emotional states have the power to grab one’s attention

and focus it intently on specific causes, events, or possible outcomes. Pfister and Böhm [2008]

also extend the relevance function and argue that the processes for identifying relevance may

actually construe the current situation to match the current emotional state. In other words, such

processes are not only reactive but often proactive as well.

It has been proposed that utility-based signals enable problems to be identified and

behavioral responses to be prioritized [Zeelenberg and Pieters, 2006]. Research by Slovic, et al.,

[2003] proposes that low-level affect acts as a heuristic signal within the decision-making

process. With respect to the individual’s goals, affect aids comparison between different

response options and assigns weights for indicating relative importance. There have been several

theories that specifically propose utility-based appraisals for “emotional” decision making

[Tversky and Kahneman, 1986] [Mellers, et al., 1999] [Mellers, 2000]. However, unlike standard

utility values, which provide specific monetary-type gains, affect-based utilities measure

anticipated pleasure and pain as well as other such hedonic factors. Affect-based utility indicates

preference. In addition, it has been proposed by Kahneman and Tversky [1979] that the mapping

function for hedonic value is non-linear, concave for gains, convex for losses, and has a steeper

slope for losses than for gains. Yet, Cacioppo and Bernston [1999] have noted that the best

representation for signals such as core affect, proto-affect, or automatic affect, may be to define

46

separate functions over both gains and losses. Their research indicates a slight bias towards

positive affect at the zero point, but that negative affect has a steeper slope. Cacioppo and

Bernston [1999] suggest that this produces exploratory behavior in affectively neutral situations,

while enabling stronger reactions to negative versus positive stimuli, which is most likely an

evolutionary advantage that encourages safe exploration. Figure 12 presents the functions

proposed by Kahneman and Tversky [1979] and Cacioppo and Bernston [1999].

The theory that affect provides an information-laden signal for use as utility in the

appraisal process has been proposed by Schwarz and Clore [1988], Peters [2006], Slovic, et al.,

[2003], Pfister and Böhm [2008], and Frijda [1995]. In particular, Schwarz and Clore [1988]

propose the affect-as-information-mechanism (AIM) and contend that affect provides

information related to how an individual “feels” about a situation and that this information

guides decision making. Predictions and projections of future feelings are then used to adjust

responses toward, or away from, particular situations. This type of processing resides at the

deliberative and routine levels of information processing [Sloman, et al., 2004] [Ortony, et al.,

2004] and thus it is conceivable that utility-based appraisals are employed during intense

deliberation, even when the individual has access to specific monetary-type utility information

[Slovic, et al., 2003].

(a) (b)

Figure 12. Proposed Representations of Affect-Based Utility Functions by (a) Kahneman and
Tversky [1979] and (b) Cacioppo and Bernston [1999]

In order for affect to be useful as a utility signal, it is necessary to collapse numerous,

goal-relevant evaluations onto a common scale, or currency [Cabanac, 1992]. By providing a

common currency, affective signals are able to alleviate much of the need for costly and tedious

logical evaluations. This same functionality has been noted by Peters [2006], but can also be

Losses Gains

Value

Activation

S
tr

e
n

gt
h

Negative

Positive

47

found in the neurobiological research of Montague and Berns [2002] and Rolls [2004].

Interestingly, the role of “affect as information” appears to be commonly associated with the idea

of involuntary feelings, while the notion of “affect as common currency” seems to treat affect as

a high-level signal that enables conscious comparisons [Peters, 2006] [Slovic, et al., 2003]

[Bechara, et al., 1997] [Cabanac, 1992].

Appraisals that utilize predictions of future states are based upon the individual’s prior

experience and thoughts relevant to the current situation (which are, in turn, influenced by other

appraisals). However, the individual’s current mood as well as other situation-independent,

incidental appraisals may also affect these predictions [Peters, 2006]. The latter provide

examples of how noise in the appraisal process may lead to inappropriate, or maladaptive,

behavior. Similar theories of how experiences are used to develop predictions of future

emotional states have been invoked by Baumeister, et al., [2007] and Damasio [1994];

Baumeister, et al., through their feedback control theory and Damasio through his somatic

marker hypothesis.

The appraisals that have been discussed here are viewed as part of the bottom-up process

necessary for the development of those states often referred to as emotional. In addition, these

appraisals are critical for appropriate, adaptive, and timely decision making. Relevance detection

enables the individual to identify which goals, events, and stimuli should be focused on and

considered. Utility enables construction of the decision-space and prioritization of the various

response options. Navigation of this decision-space is then achieved by incorporating predictions

of future hedonic and utility-based signals (e.g., goal-relevant utility). Urgency appraisals, based

on the individual’s current goals and needs, impose time constraints on the decision process by

influencing the manner in which the decision-space is searched, as well as specifically signaling

events that demand either urgent attention or immediate action. Finally, appraisals for fit enable

error-tracking and help to reprioritize the decision-space when the chosen strategy (response) is

underperforming. Signals for facilitate post hoc cognitive processing that ultimately improves the

quality of future appraisals and thus performance.

Robot Emotions

There are two general approaches to designing artificial emotions, or emotion-based

processes, for robots. While there can be (and often is) considerable overlap between these

48

approaches, each approach serves as a guide for classifying artificial emotion research. The first

approach is from a functional perspective, in which it is desired to have control signals, and/or

states, that improve task performance along some criteria. In this case, the control signals (i.e.,

situation-based appraisals and low-level affect-based evaluations) are entirely internalized and

are used to improve such measures as autonomy, performance, and adaptability. This is the type

of approach that will be taken in this dissertation, and this section will highlight similar

approaches.

The second approach is aimed at enabling better human-robot interaction by providing

robots with the means to model emotions and, in some cases, display emotional states. While

social interaction is not a concern of the current investigation (and thus these approaches will not

be further discussed), interesting and intriguing research has been conducted in this area. For

example, research by Breazeal [2002] and Gockley, et al., [2006] investigates how artificial

systems equipped with the ability to maintain internal states and display emotion (e.g.,

“smiling”) can improve human-robot interaction. In addition, notable research by Picard [1997],

Picard, et al., [2001], Dautenhahn [2002], and Liu, et al., [2007], investigates methods by which

robots and artificial systems can understand human emotion (and behavior) in order to adapt

themselves to human emotional states and needs.

Control System Approaches

Ahn and Picard [2005] implement a computational framework for “affective-cognitive

learning” and decision making. They define an affective agent as an agent that “has both

cognition and emotion and its motivation can be modeled by reward and that ‘internal reward

from cognition and emotion’ and ‘external reward from the external world’ can explain

motivation in its learning and decision making” [Ahn and Picard, 2005, p. 2]. Similar to the work

of Shanahan [2006] described later, their system uses an internal simulation loop that models

expectation and evaluates internal reward. However, the system designed by Ahn and Picard

[2005] implements emotion solely as an internal reward signal, or utility value. Thus emotion

only alters behavior selection and does not alter the deliberative approach behind such selection.

The emotional states used by Ahn and Picard [2005] are given labels, such as “feeling good” or

“feeling bag”, and utilize an internal bias so that the robot prefers those states in which “feeling

good” is more likely. Through the use of affective-cognitive decision blocks, the robot monitors

49

the external environment and performs internal simulation to identify actions that lead to

desirable emotional states.

Gadanho and Hallam [1998] design an emotion-based control system using four of the

basic emotions proposed by Damasio [1994] and Ekman [1992]: “happy”, “sad”, “fear”, and

“anger”. Each emotional state is assigned an intensity value and the dominant emotion is

determined by the state with the highest associated intensity value, provided that value is above a

pre-defined threshold. The intensity values were derived by monitoring perceptual signals (both

internal and external), such as “battery power”, “collision (bump) detection”, and “amount of

current activity”. The relation between intensity values and emotional states was pre-defined

through specific rule sets that connected intensity to artificial hormones that combined in various

ways to create emotional states. The approach described in Gadanho and Hallam [1998] uses the

derived emotional state to provide reward signals for use in reinforcement learning.

Like Gadanho and Hallam [1998], both Canamero [1997] and Cos-Aguilera, et al., [2005]

develop systems that monitor internal signals related to basic “bodily” needs. Such homeostatic

systems are used as control structures to keep “physiological” variables within a certain range.

The motivation signals arise from the deprivation of those internal variables, and emotions are

treated as control states that indicate the need for compensation. For example, Cos-Aguilera, et

al., [2005] implement a homeostatic system which feeds a set of internal drives that, upon

compensation, provide reward signals that create associations between the deprived internal state

and the behaviors used to compensate that state. The underlying control system is based on

Brooks’ [1986] subsumption architecture; however, the behavioral responses are based on the

current associations rather than a preset behavioral hierarchy. The homeostatic variables used by

Cos-Aguilera, et al. [2003] are “nutrition” (battery power), “stamina” (activity), and

“restlessness” (lack of exploration). The drives are based on these variables and represent desires

such as the “need to find food”, the “need to rest”, or the “need to explore”.

Canamero [1997] explores how low-level signals that measure internal variables in

simulated creatures can be used to create emotion-based control states. These creatures are

placed in a simulated world and are given goals related to surviving in that world. Along with

each internal variable there is an associated motivation signal that indicates which goal should be

pursued. Examples of the internal variables include “aggression”, “cold”, and “fatigue”. There

are six defined emotional states, each of which can be triggered by a specific type of stimulus.

50

Each emotion is modeled as a signal that influences one or more motivations by increasing or

decreasing motivational intensity. In this way, the motivation signals are used as utility signals

for deciding which goal to pursue, while emotion acts as a reward signal for each of the various

goals. The events that trigger each emotion are preset by class type. For example, “achievement

of a goal” causes “happiness”.

Another low-level approach to robot emotion has been investigated by Moshkina and

Arkin [2003]. Their model combines traits, attitudes, moods, and emotions (TAME) as distinct

components in a behavior-based system [Arkin, 2004]. Arkin, who contends that emotions, from

the perspective roboticists, consist of a subset of motivations that can be used to dynamically

modulate ongoing behavior [Arkin and Vachtsevanos, 1990], proposes that the components of

the TAME model should modify behavioral parameters to induce selection of certain behaviors.

Traits and attitudes determine the basic dispositions of the robot; traits are innate, task-specific

responses, while attitudes are learned responses based on consistent and persistent training.

Attitudes are used to signal approach/avoidance tendencies and to prune the decision-space.

Moods are stimulus-independent summaries of previous affective reactions over a temporally

extended window. Emotion is a specific reaction to an event of relevance to the current goals.

The specific emotions in the model of Moshkina and Arkin [2003] are pre-defined and are used

to facilitate quick responses to salient events, as well as provide goal-based evaluation signals

(i.e., utility). While the TAME model is more comprehensive than the models described

previously (i.e., it incorporates decision-space pruning and urgency evaluations), it still relies

heavily on preset emotional states that arise from stimuli in a pre-determined fashion, and

utilizes specifically defined behavioral influences.

Architectural Approaches

While the architectures of Sloman [2001a] and Ortony, et al., [2004] are chiefly

theoretical designs that are intended to provide guidelines for laying out specific architectures,

the approaches by Shanahan [2006], Gadanho [2003], and McCauley and Franklin [1998] are

designed to incorporate emotion and emotion-based processes in realized systems that utilize a

cognitive architecture. Shanahan’s [2006] architecture implements a dual-loop control process

composed of a higher-order executive loop embedded within a first-order reactive loop. The

reactive loop determines responses to environmental stimuli as those stimuli are detected in real-

51

time. In parallel, the higher-order loop operates on the same input, but rehearses potential

decisions and, when necessary, vetoes the first-order reactions. During the rehearsal process,

affect-based salience, or utility, is associated with potential responses and provides interrupt

signals to the first-order system. One intriguing note about Shanahan’s system, however, is that

the affect-based interrupts proceed in a “top-to-bottom” fashion (higher-order loop to first-order

loop), which suggests that the higher-order loop operates at a higher frequency than the first-

order loop. This is counterintuitive to much of the emotion and architectural control discussions

up to this point. The systems of Sloman [2001a] and Ortony, et al., [2004] primarily model

interrupts proceeding in a “bottom-to-top” fashion and feedback control operating “top-to-

bottom”.

Gadanho [2003] extends the type of emotion system proposed by Gadanho and Hallam

[1998] into a full cognitive architecture. Within the architecture, a homeostatic system monitors

the internal state and signals when one or more physiological variables deviate from the (pre-

defined) acceptable range. If deviation occurs, the system pursues the goal of returning the

deviated variable to its acceptable range. Deviation facilitates negative reward, while

compensation facilitates positive reward, as well as association between that reward and the

reward-producing behaviors. Within the system proposed by Gadanho [2003], utility is the

primary appraisal process; however, events interpreted as harmful for goal satisfaction can

trigger basic interrupts. The interrupts are used to re-adjust the focus of attention towards a

different goal and to reset the decision-cycle. While this may be construed as a form of basic

relevance detection, this process only enables goal switching, and does not otherwise modify the

focus of attention or the interpretation and contribution of specific utility values. Finally, the

calculation of utility from the homeostatic variables is performed using externally, pre-defined

rule sets.

Another architecture for emotion was developed by McCauley and Franklin [1998] and

was implemented on a system called “Conscious Mattie” (CMattie) [Franklin, 1997]. This

architecture is loosely based on the Pandemonium Theory of Selfridge [1959]. In their system,

McCauley and Franklin [1998] use a variety of interconnected “codelets” which respond to the

perceived activity of all other codelets by becoming more or less activated. The entire collection

of codelets represents a loose connectionist network in which the activation of one codelet may

influence the activation of others. Furthermore, connections between codelets can be created or

52

destroyed, strengthened or weakened. Emotions are modeled using a set of emotion codelets,

each of which updates the gain value of a vector of four real numbers that represent four of the

basic emotions proposed by Damasio [1994] and Ekman [1992]. Thus, each codelet has a short

pre-defined rule that determines which stimuli initially trigger that codelet.

In order for this system to function properly, CMattie must be actively situated in an

environment and able to detect the changes produced by its actions. Using its emotions, CMattie

learns to recognize and pursue pleasurable states while simultaneously recognizing and avoiding

non-pleasurable states. This is performed using an internal learning mechanism designed to

create associations between internal states and the system’s goals and drives. The learning

mechanism, called unsupervised internal reinforcement [McCauley and Franklin, 1998], differs

from classic reinforcement learning by utilizing a reinforcement signal that is generated

internally, in response to action-related environmental changes. Using an internally generated

signal to provide reward is an emotion-centric concept, and is reflected in much of the research

concerning emotion and robots [Canamero, 1997] [Gadanho and Hallam, 1998] [Gadanho,

2003].

Each of the approaches just described highlights a trend in robotic emotion research: the

desire to use emotion as a utility signal based, typically, on human-centric goals (e.g.,

survivability) and to pre-define emotional states (e.g., “happy”, “sad”, “restless”) and then define

the triggering events for those states. While both the architectural approaches and the control

system approaches consider emotion to be primarily a utility signal, the architectural approaches

do branch slightly into the concepts of relevance and urgency, as these concepts are more of a

concern at the architectural level of control. Unfortunately, the literature is sparse on approaches

that implement other types of appraisals (rather than just utility) as constituent parts of emotional

states. In addition, most approaches seem to be more concerned with how specifically pre-

defined emotional states can improve survival-based autonomy rather than what methods may

improve task- and niche-specific autonomy.

53

CHAPTER V

RESEARCH METHODOLOGY

Motivation and Focus

In order to create robotic systems that can cope with the challenges presented by

complex, dynamic environments it is necessary to take an integrated approach that combines

high-level architectural design with real-time decision-making capabilities. Chapter II discussed

the need for cognitive architectures in order to realize complex, cognitive control. Chapter III

described decision-making approaches for robotic systems and different techniques that enable

those approaches to operate in real-time; either through the use of real-time search methods or

anytime algorithms. Chapter III also highlighted the fact that many systems rely on preset

functions (e.g., heuristic functions [Geffner and Bonet, 1998] [Barto, et al., 1995]), parameters

(e.g., depth and thresholds [Paquet, et al., 2005] [Dean, et al., 1993]), and feature vector

representations [Sutton and Barto, 2000] in order to perform real-time decision making. Chapter

IV described emotion research as well as some fundamental appraisals and signals that are

believed to underlie and precede various emotional states. The appraisals that were focused on

were those of relevance, utility, urgency, and fit.

Each of the aforementioned appraisals serves a basic function, but within engineering

research, utility seems to receive the most attention. This may be due to the fact that utility

enables the comparison, prioritization, and selection of responses. However, for the design of a

cognitive robot embedded in the real world, utility may be necessary but it is not sufficient. In

addition to utility, it is important that a cognitive robot be able to filter the vast number of

perceivable aspects of a situation to identify only those aspects that are the most relevant to the

current goal. Furthermore, because the external environment often imposes time constraints on

decision and action, robots must be able to appraise the current situation with respect to the time

required, and allowed, for deliberation. This includes the ability to adaptively tune the decision-

making process and, as necessary, interrupt ongoing deliberation. Finally, a cognitive robot

composed of such abilities should possess the capacity to assess and evaluate how well its

current knowledge structures fit the situations to which they are being deployed. This type of

self-evaluation is useful when identifying those structures that require further training.

54

This dissertation investigates how the offline cognitive processing of experience can be

used to develop and train the cognitive processes that ultimately appraise relevance, utility,

urgency, and fit. These appraisals are based on psychological theories of emotion and emotional

states, and each appraisal must integrate with the decision-making process, while the decision-

process as a whole must be integrated into a larger cognitive architecture. This chapter describes

the approach taken for the design and implementation of this system, but first it is necessary to

describe what is meant by the phrase “cognitive processing of experience” and to outline how

such processing may be accomplished.

Cognitive Processing of Experience and Episodic Memory

Much of the discussion up to this point has focused on the type of appraisals that may be

useful for cognitive control. While the investigation of these appraisal constitutes a large portion

of this research, both theoretically and empirically, it is necessary to not only understand what

appraisals are necessary and how they can be used to impact control, but also to understand how

such appraisals may be learned through experience, specifically the cognitive processing of

experience.

Chapter II described the different types of long-term memory systems that are believed to

exist. This included discussions of procedural, episodic, and semantic long-term memory. Of

these systems, the most crucial for the current research is episodic memory, the memory system

devoted to the retention and retrieval of an individual’s unique subjective experiences that, when

necessary, can be “re-lived” from the individual’s own auto-centric point-of-view [Tulving,

1983]. Tulving [1983] [2002] refers to this ability as autonoetic consciousness and argues that

this type of memory is unique to humans. Other researchers, such as Clayton et al. [2002] and

Morris [2002], however, loosen Tulving’s restrictions on episodic memory and argue for the

existence of “episodic-like” systems in animals. Their arguments are based on research that

indicates certain animals are able to process situations with respect to remembered contextual

cues. In other words, these animals appear to have the ability to retrieve previously encountered

information related to “what”, “when”, and “where”, and to use this information to impact future

behavior.

Research has shown that food storing birds have the ability to retain not only the specific

locations in which food had been previously stored, but also to appreciate the type of food stored

55

as well as the duration of storage [Clayton, et al., 2002]. In addition, rats have shown the ability

to process visual scenes with respect to spatial context and research suggests that this processing

exhibits its own episodic-like characteristics [Morris, et al., 1990] [Aggleton and Pearce, 2002].

Furthermore, this processing appears to be mediated by the rat’s current goals and needs, a

notion that agrees with human experiments and indicates that the focus of attention and

emotional state may be used both in the creation of episodic memories and in their recall [Kapur,

1999]. This somewhat reflect back to Tulving’s proposal for autonoetic consciousness, whereby

an individual is able to consciously re-experience a previous event and re-live many of the

subsequent details (i.e., thoughts and feelings) of that event. Yet, as noted in Chapter II research

suggests that such recall and re-living is only a dampened form of the actual experience

[Loewenstein, 1996]. It stands to reason, therefore, that if an individual’s current emotional state

mediates which aspects of a situation become encoded into episodic memory, and that

subsequent recollection of that episode informs future deliberation through the re-experiencing

of those previous states, then the process of forming episode and learning situation-based

appraisals is best intertwined.

Within this dissertation, a basic episodic memory system will be used to provide the

experiential database from which the cognitive processing of experience will train each

appraisal. In this context, the phrase “cognitive processing of experience” is used to denote that

the specific algorithms that are applied are both inspired and based on theories of cognitive

processing in humans and animals, in particular the myriad processes required to form, abstract,

associate, and retrieve episodic information that is either stored or indexed by complex relational

patterns within the brain. This point will be further addressed throughout this chapter,

specifically in the section Relational Mapping.

During training, the basic episodic memory system will be used to create an auto-

associative network in which individual episodes have been generalized, abstracted, and linked

with learned appraisals. Partial pattern matching will then be used to retrieve this information.

Finally, the retrieved information will be used to impact deliberation.

ISAC Cognitive Architecture

The architecture used in this research is the ISAC cognitive architecture [Kawamura, et

al., 2008] shown in Figure 13. This architecture has three distinct control loops similar to those

56

described by Shrobe et al. [2006], Sloman [2001], and Ortony, et al. [2004]. These loops provide

reactive, routine, and deliberative control. In addition, there are multiple memory systems, such

as short-term, long-term, and working memory. Of these systems, long-term memory is further

subdivided into the three categories: procedural, episodic, and semantic. Finally, there is a

complex, higher-order Executive Control Agent that (among other things) assigns goals,

generates plans, and selects responses.

-
First-Order

Response
Agent

First-Order

Response
Agent

Executive Control Agent
Perception-Action

Agent

Episodic

Memory

Episodic

Memory

Declarative

/ Semantic
Memory

Declarative

/ Semantic
Memory

Long

Term
Memory

Central
Executive

Agent

Cognitive Control
& Decision

Making System
EnvironmentEnvironment

Sensory

Ego
Sphere

Short

Term

Sensory

Memory

REACTION

Internal

Rehearsal
System

Internal

Rehearsal
System

DELIBERATION & COMMITTMENT

Perceptual

Agents

Arm Agent

Head Agent

Hand Agent

Activator Agents

Attention
Network

Relational Mapping System
Relational Mapping System

Affordance Relations
Affordance Relations

Procedural

Memory

Procedural

Memory

Goals & Motivation
System

Goals
Agent

Affect Agent

Working

Memory
System

Filtering &

Focusing
Agent

Figure 13. The ISAC Cognitive Architecture

Component Descriptions

The Sensory EgoSphere (SES) [Peters, et al., 2001] is a short-term memory system that

integrates multi-modal sensory information. The underlying data structure is designed as a

complex geodesic dome consisting of a set of sparsely interconnected vertices. Within the ISAC

architecture, 1962 are used, however, this number is merely a parameter of the system. The

structure of the SES enables the use of spreading activation networks [Pinker and Mehler, 1988]

that perform spatio-termporal coincidence detection and mediate the salience of each percept.

57

Salience values are used as attentional markers, but also facilitate perceptual binding [Peters, et

al., 2001] [Kawamura, et al., 2008].

The First-Order Response Agent (FRA) [Ratanaswasd, 2007] initiates routine behaviors

without reliance on more complex, high-level control structures. Routine responses are either

preset or learned over time. Currently, routine responses are represented as stored

percept/behavior combinations.

The Working Memory System (WMS) [Gordon and Hall, 2006] implements working

memory in the ISAC architecture. The WMS is designed to integrate and filter perceptual and

procedural information using knowledge of the current goals and situation-based appraisals.

Additionally, the WMS provides the gateway through which the high-level cognitive processes

interact with the low-level perception and action processes. The WMS is currently implemented

through the use of a Working Memory toolkit (WMtk) written in ANSI C++ and using a multi-

layer neural network function approximator [Phillips and Noelle, 2005].

The Long-Term Memory (LTM) system is composed of three distinct parts: procedural,

semantic, and episodic. Procedural LTM retains information related to the performance of

behaviors while semantic LTM retains facts and beliefs about the world. For example, percept

attributes (described in the next section) are stored in semantic LTM, and behavioral control laws

are stored in procedural LTM. Episodic LTM retains linked episodes consisting of state-action-

outcome sets. States (introduced in the next section and described in Chapter VI) are based on

the information stored in the WMS, actions represent the selected and performed behaviors, and

outcomes are the sensed perceptual events, along with appraisals, that result from those

behaviors.

The Relational Mapping System (RMS) maintains abstracted representations of states and

state features and associates these representations with statistically determined evaluation

information (e.g., utility). The contents of the individual relational maps within the Relational

Mapping System are mined from experience (i.e., episodes) and each map enables auto-

associative access and retrieval.

The Affect Agent uses knowledge of the current goals to interpret the evaluations

retrieved from the RMS and adjusts the system’s decision-making strategy accordingly.

Adjustment includes adaptively tuning parameters in the cognitive cycle, and interrupting this

cycle when necessary.

58

The Goals Agent assigns goals to the system. Goals determine the current task and

evaluations. Goal setting is critical for both the cognitive control components and the low-level

perception/action components.

The Central Executive Agent (CEA) [Ratanaswasd, et al., 2006] initiates cognitive

control, plans, and selects responses by utilizing knowledge of the current state (from WMS) and

the current goals (from the Goals Agent). The CEA searches the decision-space and prioritizes

response options. The current “best” plan is maintained within the WMS, so that it may be

rapidly deployed if needed. During planning, interrupt signals are used to halt the planning

process and trigger the activation of the best plan. Interrupts are provided by the Affect Agent, or

by the low-level perception systems.

The Internal Rehearsal System (IRS) [Hall, 2007] [Erdemir, et al., 2008] internally

simulates actions, predicts outcomes, and retrieves evaluations. The IRS uses knowledge of the

current goals to retrieve evaluative information from the Relational Maps. In addition, offline

simulation by the IRS is critical in the development of the Relational Maps.

Flow of Information through the ISAC Architecture

In the ISAC architecture an array of Perceptual Agents are used to detect external stimuli.

These agents operate in parallel and independently perceive and process information. There are

no type restrictions on perceptual agents. As perceptual information is detected that information

is sent to each of the three separate control loops (reactive, routine, and deliberative). This

involves passing information directly to the Activator Agents where reactive responses may be

triggered, to the First-Order Response Agent where routine responses may be triggered, or to the

SES where that information may eventually be used for deliberation.

As information is presented to the SES, the Attention Network employs spreading

activation networks to bind coincidental percepts and flag highly salient percepts. At each node

of the SES, activation values from neighboring nodes are discounted in proportion to their

distance from the original node and summed. The resulting sums indicate salience, which in turn

effects both retention time and the likelihood of that percept being further passed to the WMS.

The flow of information into the Working Memory System (WMS) comes from three

directions: perceptual information is passed in from the SES, behavioral information is passed in

from long-term memory, and evaluative and response information is passed in by the Executive

59

Control Agent (ECA). The flow of information out of the WMS may also take three paths:

behavioral information is passed to the Activator Agents, situation information (percepts and

behaviors) is passed to the ECA, and situation and evaluative information is passed to long-term

memory (for storage). Behavioral information is used to trigger actions, the effects of which are

detected by the Perceptual Agents. Situation and evaluation information is retained in long-term

memory until it is required for offline learning, or recalled by the WMS. Situation information

also initiates (or interrupts) the internal, cognitive, decision cycle. Finally, the information that is

passed to the ECA is used to initiate or interrupt the deliberation process.

Information flows through the ECA in a continuous loop (Figure 13). Deliberation is

initiated in the CEA using incoming information from the WMS. The IRS simulates actions and

retrieves evaluations. The Goals Agent sets goals that effect the interpretation of evaluations, and

the Affect Agent interprets each evaluation and adjusts the decision-making parameters

accordingly. Finally, the response information is sent to the WMS, where it is either added to the

currently forming plan or used to trigger actions directly.

Flow of Control through the ISAC Architecture

As mentioned earlier, there are three levels of control in the ISAC architecture, reactive,

routine, and deliberative. Interaction between these levels is bi-directional: top-to-bottom and

bottom-to-top. The flow of control is mediated by the WMS, as this system provides the primary

interaction between the low-level Perception-Action Agent and the high-level ECA. When

control flows from bottom-to-top, it is through interrupt signals that are based on reactions to

certain stimuli. These reactions may either be preset or learned responses. The interrupt signals

are passed as saliency markers through the Attention Network and WMS. When control proceeds

from top-to-bottom, it is through override signals. These signals interrupt and override all

currently activated routine responses and allow deliberative control to proceed.

Learning Processes within the ISAC Architecture

Learning in the ISAC architecture is accomplished in several ways. First, stored episodes

are mined for relational information that can be used to evaluate situations. This involves

creating representations of the current situation that can be used to access the Relational Maps.

This is primarily an unsupervised task. Second, the IRS performs internal rehearsal to simulate

60

experience and create associations between input states and expected outcomes. Internal

rehearsal, or “mental simulation” is performed offline, and requires that representative states be

appropriately sampled from LTM.

In addition to the learning enabled by the LTM data structures, the WMS uses TD

learning (Chapter III) to identify the correct percepts and actions that should be attended to,

given the current goals. This is accomplished through the use of the Working Memory toolkit

(WMtk) [Phillips and Noelle, 2005]. The inputs to the WMtk are numeric feature vectors that

represent the current state and the list of possible information chunks (e.g., percepts and

behaviors) to which attention can be given. The output is a filtered list of these chunks. The goal

of learning in the WMS is to improve decision making by reducing the number of possibilities

that must be considered.

Outline of the Approach

This dissertation investigates how the offline cognitive processing of experience can

facilitate the derivation of useful online cognitive processes that appraise the current situation

with respect to relevance, utility, urgency, and fit. Each appraisal is based on psychological

emotion research and must integrate with the decision-making process, while the decision-

process as a whole must integrate into the ISAC cognitive architecture. Each appraisal is

developed and trained using the system’s own unique experience, and this experience is stored as

episodes in the system’s episodic memory. The remaining sections of this chapter describe the

approach taken for the design and implementation of the necessary control system, the

algorithms used to learn each appraisal, as well as the integration/instantiation of this control

system within the ISAC architecture.

The approach taken in this research is to design the deliberation process as a sequential

decision maker that recursively searches the decision-space to determine appropriate responses.

The appraisal for relevance will be charged with charged with creating the internal

representations, while the appraisals for utility and urgency will be functions of these learned

representations. The appraisal for fit will be performed post hoc using the observed outcomes of

each behavior. The learning process, as a whole, employs a layered, incremental approach in

which knowledge discovered at the earlier layers is used as a baseline for learning at the later

61

layers. During the planning and search process each successive state will be used to create

representations and trigger appraisals that direct the next step of the search.

Many specific learning algorithms are discussed in the following pages. These algorithms

support two broad types of learning. The first type of learning is aimed at acquiring the necessary

domain knowledge to successfully perform the given task, and involves developing appreciations

of whether certain situations should be approached or avoided. These appreciations are based on

an understanding of the important, perceivable aspects of each situation. This domain knowledge

is primarily contained in the appraisals relevance and utility.

Whereas the domain knowledge enables successful completion of the task, performance-

based knowledge enables the robot to relate its current decision-making capabilities to different

situations in order to adjust aspects of its deliberation to better match its abilities and the

demands imposed by those situations. This is important because robots are required to function

as embedded agents in real-world environments, and those environments often impose strict time

and resource constraints. Therefore, the second type of learning involves acquiring performance-

based knowledge and developing both an understanding of the robot’s capacity to perform the

task, and how well the robot’s knowledge fits the task. In this research, the primary goal of

acquiring performance-based knowledge is to decrease deliberation time in those situations in

which the robot is “confident” in its abilities, and to enable fast commitment when immediate

response is demanded. In addition, performance-based knowledge is also used to enable basic

identification of those (learned) components that are underperforming and require further

training. Performance-based knowledge is primarily contained in the appraisals urgency and fit.

Figure 14 presents the general system layout. The steps involved in processing incoming

stimuli and planning responses are described as follows:

1. Use detected perceptual information to create the basic state representation, si. This

includes current stimuli as well as any reward information related to the previous state,

si-1.

2. Process si, with respect to the current goals, and create a set of feature vectors fi
v that

capture and represent goal-relevant information from si.

3. In parallel:

a. Use fi
v to access relational maps that retain the various utility evaluations ui for si.

62

b. Use fi
v to determine the time afforded for deliberation, or the urgency imposed by

si.

c. Process all rewards to determine if a trained component incorrectly predicted an

evaluation in si-1.

4. In parallel:

a. Use ui to prioritize the potential responses to si.

b. Use the appraisals of time afforded to adjust the search parameters depth and

breadth to ensure timely, yet accurate, responses.

c. Interrupt, if needed, the deliberation process.

5. Select the best action/response, and either:

a. Continue planning by passing si+1 to Step (2).

b. Perform the selected action.

Figure 14. Block Diagram for the Implemented Control System

In the following sections, the primary components of the Deliberation & Planning block,

as they pertain to the current research, are described and the flow of information through this

control system is given. The inputs and outputs of each block are described, along with the

Dynamic
Representation

Urgency
Mapping

Relational
Mapping

Parameter
Setting

Planning Plan Selection
& Execution

Commitment

Online Deliberation,

Monitoring, &
Commitment

Record
Episodes

Situation-Based Control

Environment SituationSituation

Deliberation & Planning

Error Detection
Fit

Evaluation
Diagnosis

Monitoring

63

functional purpose of each block. In addition, the techniques used to achieve that purpose, as

well as experimental validation of those techniques, are presented.

Before describing the flow of information through the system, or the specific techniques

used, however, it is necessary to introduce the basic state representation used for this work as

well as some sample data useful for performing preliminary evaluations of each component.

While a full description of the variables, functions, and signals allowable for each state is

deferred to Chapter VI, the basic state representation can be described using the following three

types of information:

1. Percepts – The representation of percepts includes the location and known attributes for

each percept. An example is shown in Table 1.

2. 1
st
 Order Logic Elements – Information about percepts, their locations and attributes, is

used to create a set of 1st order logic symbols and predicates, such as

Reachable(Percept1) or InBag(Bag0, Percept1).

3. Evaluation Signals – As the state is processed, various signals are added to the state

representation. There are two types of evaluation signals. External signals indicate

rewards, while internal signals indicate appraisals.

a. Rewards – External evaluations of the previous state

b. Appraisals – Internal evaluations of the current state (i.e., relevance, utility,

urgency, and fit)

 Within each state, goals are assumed to be implicit. This assumption, however, can easily

be relaxed by including additional structures within the state representation. The episodic

memory system that is used throughout this dissertation can be conceptualized as a set of

state/action sequences that end at a final state in which the (implicit) goal has been accomplished

or no further corrective action can be taken.

Table 1. Sample Percept Representation

 Percept Location Attributes

 id (x, y, z) name color weight size firmness temperature price type healthy

Throughout the remaining sections of this chapter, it is assumed that the robot has

sufficient initial knowledge, and the basic abilities required, to correctly associate attributes with

64

percepts and formulate logic expressions. It is also assumed that the robot receives external

evaluations (i.e., rewards) either during task performance or immediately after task completion.

This assumption is necessary because these rewards provide the foundation for learning the

different appraisals that, ultimately, guide decision making.

The complete task used to evaluate the implemented system is described in detail in

Chapter VI, however, it is necessary to introduce some sample data that will be used to evaluate

each system component. The sample data consists of 10 groceries, each with a corresponding set

of attributes (as shown in Table 1). Table 2 lists these groceries and their attributes. The grocery

data was collected from a local grocery store. Average measurements were used to assign values

to the attributes color, firmness, and healthy. Attribute type indicates location on the standard

food pyramid [Food Pyramid - MIT]: T1 = “Grains”, T2 = “Vegetables”, T3 = “Fruits”, T4 =

“Dairy”, T5 = “Meats & Proteins”, T6 = “Fats & Sweets”, T7 = “Not a food item”.

Table 2. Sample Groceries

 name color weight (oz) size (in3) firmness temp.(Fo) price ($) type healthy

 soda RED 70 294 hard 75 1.50 T6 NO
 chicken PINK 24 108 hard 32 3.05 T5 YES
 milk WHITE 68.8 160 hard 45 1.67 T4 YES
 cereal BLUE 17 227.5 hard 75 3.15 T1 NO
 potatoes BROWN 80 504 hard 75 3.99 T1 YES
 strawberries MAGENTA 16 140 soft 55 2.30 T3 YES
 bread BROWN 16 325 soft 75 0.89 T1 YES
 rotisserie BROWN 32 160 hard 150 7.99 T5 YES
 eggs YELLOW 24 144 soft 45 1.59 T5 YES
 hot_soup WHITE 12 48 hard 175 3.50 T2 YES

Dynamic Situation Representation

As perceptual information is sensed that information must be transformed into a

representation suitable for the later cognitive processes. In AI and machine learning, such

representations are known as feature vectors and capture the important state information in a

form that can be used by various algorithms. Feature vectors often require preset mappings for

individual states, however as previously described, this research requires that the robot learn

which aspects of the situation are the most relevant to the current goal, and then use that

information to create its own feature vectors that reflect this knowledge. This provides more

adaptability than using preset mappings, and increases the flexibility of the robot to adjust itself

65

more appropriately to different goals. Thus, cognitively processing experience to create flexible

feature mappings is the first step in the appraisal process.

In order to determine which percepts are relevant to the current goals, the robot must

have basic knowledge of the physical attributes for each percept. Given this knowledge, the goal

of the system is to determine statistically which attributes are relevant for the current task, and

which can be ignored. While it is trivially accepted that humans are capable of abstracting

information and creating categories of information to which attention should be given, animal

research indicates that many animals, particularly vertebrates, are also capable of creating object

categories that are mediated, to some extent, by the creature’s current goals [Morris, 2002].

Research suggests that in humans this type of processing is performed by the prefrontal cortex, a

primary site that is believed to be responsible for working memory and attentional focusing

[Gazzaniga, et al., 2002]. As discussed in Chapter II, working memory is responsible for

focusing an individual’s attention on only the most task-relevant information. Various

computational methods have been employed by researchers in an attempt to emulate this ability

in artificial systems. In particular, the production rule system ACT-R models this functionality

through the use of a complex associative network in which chunks of information are

interconnected by weights that mediate association and retrieval [Anderson, 1983] [Anderson

and Lebiere, 1998].

Further research by Phillips and Noelle [2005] implements a feedforward neural network

in which specific chunks of information are selectively attended to and used to complete an

orienting task. Based on task performance, a TD learning algorithm is used to modify the

network weights. This type of training continues until the system learns which information

should be attended to in each of the different situations that may be encountered. It is interesting

to note that the network designed by Phillips and Noelle [2005] learns “what to focus on” and

not “what to do”. Therefore, though network training is based on task performance, the network

itself cannot affect task performance except by altering what information is presented to the

planning system.

While the model of Phillips and Noelle [2005] reflects aspects of the neurological

functioning of working memory, their approach, as well as the approach taken in ACT-R,

assumes that the network is provided a priori with a set of information chunks and that the only

task for the network is to choose from these chunks. Yet, it is difficult to make this assumption in

66

complex environments, and neither system addresses how these chunks, as well as the specific

representations for these chunks, may be acquired by the system rather than preset by the

designer (i.e., engineer). What is needed is the ability to both determine what perceptual

information should constitute a chunk as well as how to re-use chunks when similar perceptual

information is present. To this end, the current research focuses on statistically mining a set of

attribute weights from experience and applying these weights to concept formation via

unsupervised clustering.

Input/Output

The input to this component is the current state representation, si. The output is a set of

symbolic feature vectors, fi
v, that capture relevant information from si. Each fij

v ∈ fi
v is a variably

sized representation of different elements from si, that have been extracted from the 1st order

logic and have had the specific percepts replaced with abstracted perceptual symbols. The

structure of each fij
v assumes that the sequential order of information is important. Therefore, fi

v

represents goal-relevant abstractions of specific state information as it sequentially appears to the

system. The output feature vectors are appended onto the current state representation as part of

the evaluation signals.

Implementation: Weight Learning

In traditional clustering it is often known which attributes are the most important for

categorization. In order to derive appraisals for relevance, however, this dissertation makes no

such assumption. Thus it is necessary to learn which attributes are the most relevant for the

development of goal-oriented clusters, and to what extent those attributes should contribute to

cluster formation. To learn this information, the system employs a weight-learning algorithm that

looks for statistical patterns in individual grocery bags and uses the evaluations for those bags to

increment weights associated with specific attributes. Only grocery bags that contain more than

one grocery are used during training. For each bag Bk, the probability of each attribute P(Ai = Vij |

Bk) is determined and the largest value maxBk = max{ P(Ai = Vij | Bk) } ∀j, is used to update that

attribute’s weight value, as shown in Equation (15). The value Ec is the evaluation for the cth

constraint and can have value [-1, 1], αω is the learning rate, and P(Ai = Vil) is the unconditional

probability over all known groceries of the attribute-value pair with highest bag probability,

67

maxBk, where l = argmax { P(Ai = Vij | Bk) } ∀j. The term 1.0 – P(Ai = Vil) is used to discount the

importance given to highly probable attribute-value pairs.

ωi = ωi + αω * (1 – P(Ai = Vil)) * maxBk * { (1.0 + Ec)/2.0 – ωi } (15)

A more specific form of this update rule is shown in Figure 15. This modified rule only

drives individual weights closer to the desired values when the corresponding attributes appear

with some probability “greater than chance”. If the probability of a specific attribute is below this

value, then the associated weight is driven away from the desired value, Ec. In Figure 15, two

constants, βp and βn, are used to determine the threshold for each update. When βp = βn = 0.0, the

if-then rule shown in Figure 15 is equivalent to the general form shown in Equation (15). Once

the final weights have been obtained, they are normalized on the scale [0, 1] by dividing each

weight by the maximum value over all weights. This is for presentation and comparison purposes

only and does not affect the performance of the clustering algorithm described in the next

section, as it is merely multiplication by a constant scalar.

Figure 15. If-Then Version of Equation (15)

Validation and Evaluation: Weight Learning

To evaluate the weight-learning algorithm, the 10 sample groceries were first split into

three clusters using only the temperature attribute. These clusters are shown in Table 3 and were

derived using a standard k-means algorithm. Next, 30 random sets of groceries were generated

and each set was evaluated using a preset rule that gave reward of –1.0 for all sets in which more

IF

{ (Ec > 0) AND maxBk > βp / N) }

OR IF

{ (Ec < 0) AND maxBk > βn / N) }

THEN

ωi = ω i + αw * (1.0 - P(Ai = Vil)) * maxBk * { (1.0 + Ec)/2.0 – ωi)

ELSE

ωi = ωi + αw * (1.0 - P(Ai = Vil)) * maxBk * { (1.0 - Ec)/2.0 – ωi)

68

than one grocery class was present and +1.0 for sets in which only one grocery class was present.

For this test, the size of each set was constrained to the interval [2, 4]. The 30 sets, along with

evaluations, are shown in Table 4.

Table 3. Classification Scheme Used to Reward Sets

 Class Grocery

 C1 chicken, milk, strawberries,
 eggs
 C2 soda, cereal, potatoes, bread
 C3 rotisserie, hot_soup

The learned weights are shown in Table 5. The temperature attribute is correctly

predicted as the most important for classification. Other attributes, such as color, size, firmness,

price, and healthy also receive non-zero weight; indicating that the particular data (Table 4)

contained additional “hidden” patterns that affected weight assignment. Because the current

system is designed to learn pattern information from its own experience, it is important that the

weight-learning algorithm identify all possible patterns in the input data. This need validates the

current weight-learning algorithm as a suitable approach to identifying basic relevance markers,

i.e., attributes.

Table 4. 30 Randomly Generated Sets of Groceries with Evaluations

 # set evaluation # set evaluation

 1 hot_soup cereal -1 16 hot_soup soda eggs -1
 2 bread strawberries bread -1 17 rotisserie eggs rotisserie cereal -1
 3 potatoes rotisserie -1 18 strawberries milk soda eggs -1
 4 potatoes bread 1 19 chicken bread bread chicken -1
 5 bread potatoes soda 1 20 rotisserie potatoes cereal eggs -1
 6 soda strawberries eggs rotisserie -1 21 chicken bread bread hot_soup -1
 7 eggs eggs milk 1 22 milk bread -1
 8 hot_soup potatoes -1 23 potatoes potatoes cereal 1
 9 strawberries rotisserie -1 24 potatoes cereal bread potatoes 1
 10 hot_soup milk milk bread -1 25 chicken potatoes eggs -1
 11 eggs strawberries hot_soup -1 26 eggs rotisserie eggs -1
 12 hot_soup chicken eggs chicken -1 27 milk rotisserie strawberries -1
 13 eggs eggs cereal -1 28 strawberries hot_soup hot_soup cereal -1
 14 eggs strawberries 1 29 chicken soda hot_soup -1
 15 soda cereal eggs -1 30 rotisserie strawberries cereal milk -1

69

Table 5. Weight Values

 name color weight size firmness temp price type healthy

 0.0 0.27 0.0 0.19 0.43 1.0 0.45 0.0 0.24

The weight learning algorithm treats individual attributes as though the patterns formed

by the attributes are linearly separable, and thus patterns in which it is necessary to create an

intermediate attribute space cannot be detected using the current approach. These include any

patterns, such as the complex XOR pattern, in which multiple attributes can be considered to

combine to form new “meta-level” attributes that predict pattern classification. It is argued,

though, that this limitation does not affect performance of the system as a whole, because many

standard clustering algorithms (such as those used in this dissertation) require an initial fixed

attribute space, prohibiting the dynamic addition of new attributes based on various

combinations/permutations of the original attributes.

Further validation of the weight-learning algorithm is performed by repeating the

previously described test using multiple attributes (price and healthy) to partition the data. The

clusters were created using the approach described in the next subsection, and Table 6 provides

the three clusters obtained. This time, 20 random sets were generated and evaluated using the

same evaluation rule (i.e., “do not mix grocery types”). Table 7 presents the results from two

separate trials (each with 20 different random sets). While in each case the learned weights are

only partially consistent with each other, the weights still identify significant attributes. This is

shown by using both learned weight sets to re-cluster the data; using the same approach that

created the initial clusters (Table 6). The new clusters are shown in Table 8. Even though the

weights vary between trials, and do not identify only the attributes price and healthy, both final

partitions are identical and only differ from the original by switching two groceries (shown in

bold). This is a good example of the importance and appropriateness of experienced-based

learning.

Table 6. Classification Scheme Used to Reward Sets

 Class Grocery

 C1 soda, cereal
 C2 milk, eggs, bread
 C3 chicken, hot_soup, potatoes
 strawberries, rotisserie

70

Table 7. Weight Values

 name color weight size firmness temp price type healthy

 Trial 1 0.0 0.37 0.0 0.22 0.61 0.15 0.71 0.0 1.0
 Trial 2 0.0 0.39 0.35 0.60 0.97 0.57 0.31 0.75 1.0

Table 8. Classification Using Learned Weights (Both Trials)

 Class Grocery

 C1 soda, cereal
 C2 strawberries, eggs, bread
 C3 chicken, hot_soup, potatoes
 milk, rotisserie

Implementation: Conceptual Clustering

Once the attributes have been given symbolic labels and the appropriate weights have

been determined, percepts are partitioned using a variation of the conceptual clustering algorithm

COBWEB [Fisher, 1987]. COBWEB creates a hierarchical class partition, in which individual

clusters are created to simultaneously maximize attribute predictability per cluster, while

minimizing the total number of clusters. The output of the COBWEB algorithm is a hierarchical

concept tree, such as the one shown in Figure 16, in which more general concepts are located

higher in the tree.

Figure 16. Example Concept Hierarchy for “Foods”

Chicken Beef Pork Carrots Tomatoes Oranges Melons Grapes

“Fruits”“Vegetables”“Meats”

“Foods”

71

The COBWEB algorithm begins with a single root node at the top of the tree. As new

observations are incrementally added to the tree, these observations are filtered down from the

root node to the leaf nodes by determining which nodes best predict the attributes for the new

observation. At each node, the basic COBWEB algorithm considers four different operations:

place the observation in the best child node (if there are child nodes below the current node),

create a new child node, split the current node in two, or merge the two best nodes. To determine

which operation to perform, each operation is assigned a utility value, known as Category Utility

(CUk) [Gluck and Corter, 1985], that indicates the “usefulness” of performing that operation at

node k. The standard equation for calculating CUk is shown in Equation (16).











=−== ∑ ∑∑∑

i i j

ijik

j

ijikk VAPCVAPCPCU 22)()|()((16)

Here, P(Ck) is the probability that an observation is a member of class Ck, P(Ai = Vij) is

the probability that attribute Ai has value Vij over the set of observations, and P(Ai = Vij | Ck) is

the conditional probability for that attribute-value pair over just the observations in class Ck.

When the COBWEB algorithm considers each operation, it calculates that CUk as if that

operation had been performed, and then selects the operation that results in the highest CUk.

The modification of the COBWEB algorithm for this dissertation involves modifying the

CUk equation to include the specific attribute weights previously determined. This ensures that

the concepts created by COBWEB reflect goal-relevance. The modified CUk equation is shown

in Equation (17), where ωi is the learned weight for attribute Ai.











=−== ∑ ∑ ∑∑

i i j

ijiik

j

ijiikk VAPCVAPCPCU 22)()|()(ωω (17)

Because the COBWEB algorithm creates a full concept hierarchy, which begins at a root

node (representing all concepts) and eventually branches into leaf nodes (representing the most

specific concepts) it is important to have a means of pruning the tree to identify those concepts

that are the most significant. One technique to do this is to use the CUk value at each level of the

hierarchy (descending from root to leaves) and prune branches below a certain threshold.

72

However, Biswas et al., [1995] note that as one descends from the root node to the leaf nodes,

the values of CUk tend to initially increase before eventually decreasing towards the leaves.

Therefore, Biswas, et al., [1995] suggests that rather than using a preset threshold, branches

should be pruned at the level in which CUk begins to decrease. This is the method used to prune

branches and create the final concepts in this research.

Validation and Evaluation: Conceptual Clustering

Using the weight values shown in Table 9, the modified COBWEB algorithm was used to

cluster the 10 sample groceries. The resulting partitions are shown in Figure 5.8. Beside each

concept node, the corresponding CUk value is displayed. Using the pruning technique adopted

from Biswas, et al. [1995], the pruned concept tree is used to give the final concepts shown in

Table 10. However, here the final concepts have been formed by pruning the partition tree at one

step beyond the maximum CUk values. This is only done to better illustrate concept formation.

Ordinarily, pruning on this tree would result in the three categories {C0, C1, C2}.

Table 9. Weight Values

 name color weight size firmness temp price type healthy

 0.0 0.0 0.0 0.0 0.5 1.0 0.0 0.0 0.25

Figure 17. Resulting Partition for Sample Groceries Using Weight Values (Table 9)

C4

C2C1C0

“Groceries”

C3 C5 C6

bread

soda

cereal

rotisserie

hot_soup

strawberries

eggs

chicken

milk

C7

potatoes

C8

0.235 0.235 0.235

0.114 0.114

0.055 0.055

0.125 0.125

73

Table 10. Final Classification Scheme Using Pruned Tree

 Class Grocery

 C3 bread
 C4 soda, cereal, potatoes
 C1 rotisserie, hot_soup
 C5 strawberries, eggs
 C6 chicken, milk

The COBWEB algorithm provides a simple and intuitive method for classifying

groceries. Furthermore, given an understanding of which attributes are most relevant to the

current task the modified CU equation enables the identification of more specific, goal-relevant

classes. The final partitions are based on probabilistic measures, and can be used to both predict

unknown attributes or to classify previously unseen groceries. A final test of the effectiveness of

this technique is shown by using the pruned partition tree to classify a previously unseen grocery,

oranges. The new grocery and the resulting classification are shown in Table 11.

Table 11. Weight Values

 Grocery Class

 name color weight size firmness temp price type healthy

 oranges ORANGE 64 504 hard 75 4.99 C3 YES C4

Due to the structure of the CUk function, the COBWEB algorithm has a slight bias

towards large classes (i.e., P(Ck)) [Fisher, 1987], and thus tends to create fewer concepts that

incorporate more training instances at the expense of attribute predictability (i.e., P(Ai = Vij |

Ck)). The final categories are still useful concepts, but often occur at lower points in the partition

tree. In this case, the upper portion of the partition tree is reserved for very general concepts that

are relatively few in number. However, this bias is acceptable when the goal is to quickly

identify general classifications that predict task performance. The ultimate goal in this

dissertation, with respect to the concept identification, is not to identify the best natural kinds for

perceptual categorization, but to identify rough partitions that are statistically significant with

respect to the current goal. Finally, because COBWEB is an incremental algorithm that performs

a local hill-climbing search [Fisher, 1987], the final partitions are also sensitive to the initial

order of the input. To alleviate this sensitivity, the Anchored Dissimilarity Order (ADO)

74

algorithm [Biswas, et al., 1995], is used to pre-order groceries before classification. The ADO

algorithm selects the next instance for classification by maximizing distance between that

instance and the previous N instances. In the ADO algorithm, the Hamming distance is used as

the distance metric.

Relational Mapping

Once feature vectors have been created from the current state, these vectors must be used

to retrieve the utility evaluations that guide the deliberation process. These evaluations are

determined by matching each feature vector to internally generated and trained maps where each

point on the map is associated with a different evaluation. The relational maps described here are

implemented as a set of self-organized neural networks that average and retain the individual

feature vectors that have been acquired through experience.

The rational for using the self-organized map technique [Kohonen, 1988] [Kohonen and

Somervuo, 1998] is based on the need to combine individual symbolic relations (i.e., feature

vectors) into a map structure that facilitates organization and association, while linking the

generalized relations to specific appraisals. Additionally, such an auto-associative relational

technique is also supported by the psychology and neuroscience literature. Research indicates

that encoding experience, typically human episodic memory, is based on the ability to auto-

associate different representations of salient, relevant features in the environment as well as the

structural relations composed of those features [Burgess, et al., 2002] [Aggleton and Pearce,

2002]. This research indicates that the hippocampus is a critical structure for memory formation

and retrieval, and that this structure is highly implicated in performing relational pattern

matching [Nadel and Moscovitch, 1997] [Morris, et al., 1990].

Neural research on rats suggests that the ability to perform allocentric spatial processing

is strongly tied to the ability to deploy prior experience for future tasks (often maze navigation,

etc.) [Morris, et al., 1990] [Moser and Moser, 1998]. Such processing combines incoming

perceptual information into spatial arrays (i.e., feature vectors) that reflect the important

arrangements and patterns of information, as it exists in the environment. In humans, however,

this representational ability is believed to extend beyond spatial patterns and include abstracted

temporal, and sequential, patterns of stimuli [Aggleton and Pearce, 2002]. These representations

act as “event codes”, or indexing schemes, to retrieve specific memories or activate specific

75

appraisals [Burgess, et al., 2002] [Marr, 1971]. Therefore, as the current situation is unfolding,

relational representations are formed that both facilitate the encoding of that situation in long-

term memory as well as activate previously encoded representations, which can ultimately

provide access to the various neocortical sites that have been implicated in the storage of long-

term, episodic memory [Burgess, et al., 2002].

Machine intelligence research that focuses on relational structures and self-organizing

maps (SOMs) has been conducted by Provost, et al., [2006], who use self-organizing distinctive

state abstractions (SODA) to learn high-level perceptual features that define distinctive states.

High-level actions that traverse between distinct states are learned, and then policies are

generated using the distinctive states and high-level actions. In addition, research by Martinez, et

al., [1990], Sehad and Touzet [1994], and Smith [2002] also use SOMs to abstract state

representations and learn general policies. Smith [2002] uses SOMs to provide discretized states

and actions, which are then used to implement a standard Q-learning algorithm. One SOM is

used to discretize the continuous input space, while a second SOM is used to form associations

and representations of actions. The Q-values for all state-action pairs are updated when reward is

received for individual sets. The amount of update is determined by the two neighborhood

functions θs(), and θa(), for the state and action SOMS, respectively. Sehad and Touzet [1994]

also use a SOM to implement reinforcement learning, however, their approach involves utilizing

the SOM to optimally organize standard lookup tables. Sehad and Touzet [1994] only use

numeric weight vectors, defined a priori, and store utility evaluations as a member of these

vectors.

There has been research by other groups related to the concept of creating relational maps

to abstract and represent experience [Kawewong, et al., 2008] [Sudo, et al., 2007]. One such

example uses Self-Organizing Incremental Neural Networks (SOINN) [Shen and Hasegawa,

2005] to create basic common patterns and then, hierarchically, form associations between

patterns in order to create more abstract pattern representations. Research by Strosslin, et al.,

[2005] uses recurrent networks to represent navigation information related to location and action.

These networks are trained from experience using Hebbian learning [Hebb, 1949]. A method

described by Kuipers, et al., [2004] uses the well-known, statistical-based SLAM technique

[Thrun, et al., 2005] to derive local maps, while simultaneously developing hierarchical and

topological representations between local map features and actions. However, each of these

76

techniques is primarily focused on localization and navigation of the external environment. The

self-organizing, relational maps described here, focus on abstract goal-relevant situation

representations in order to provide evaluations that ultimately guide search through the decision-

space.

Input/Output

The inputs to the relational maps are the symbolic feature vectors, fi
v, associated with si.

The outputs are a vector of utility signals, ui, and a vector of confidence values, χχχχi, that indicate

whether si should be approached/avoided, and how well fi
v matches the trained map, respectively.

The vectors ui and χχχχi are appended onto the current state representation as part of the evaluation

signals.

Implementation: Self-Organizing Maps

The importance of the relational map is that it generalizes and forms associations

between different episodes (as well as the structural components within those episodes),

maintains basic evaluative information, and if needed enables a constant-sized access cost to the

tabular episodic memories. The specific technique used to implement these relational maps is the

self-organizing map described by [Kohonen, 1988] and [Kohonen and Somervuo, 1998].

A Self Organizing Map (SOM) is a multidimensional neural network that uses

unsupervised learning to generate generalized and associative representations of the input space

[Kohonen, 1988]. SOMs are composed of an interconnected set of vertices, vi, and each vertex

has an associated weight vector wi that represents a complete instance, i.e. feature vector. During

training, the weight vectors are collectively modified by individual training instances, and over

time regions of the map self-organize into basic patterns that reflect the trends in the training

data.

To train a SOM, a distance function is used to match each training instance xi to the

“nearest” vertex. Once vi has been determined all weight vectors in the map are updated using

the update rule shown in Equation (18).

wj = wj + θ(vi, vj, t)* α(t)*(xi – wj) (18)

77

Here, θ(vi, vj, t) is a neighborhood function that determines the amount of update performed at

node vj based on the distance between nodes vj and vi (note: θ(vi, vj, t) = 1.0 ∀i = j). The function

α(t) is the learning rate, and both α(t) and θ(vi, vj, t) are designed to decay over time; a measure

used to ensure convergence.

Though frequently used for numeric data, SOMs are not restricted to such domains. The

key to training a SOM is to have: 1) an appropriate distance function that is defined over the

range and types of inputs, and 2) an update function that can modify the desired representation of

wi. Research in Kohonen and Somervuo [1998] proposed the use of SOMs for symbol strings

and detailed a method for averaging string representations (i.e., symbolic weight vectors). Their

method used the Levenshtein (or edit) distance [Levenshtein, 1966] to determine the minimum

number of insertions, deletions, or substitutions required to transform one string into another.

Dynamic programming was used to find compute an “average” string using all nearest neighbor

training instances defined by a discretized neighborhood function, θd(vi,vj, t).

Self-organizing symbolic feature vectors is only one of the critical aspects of the required

relational maps. It is also necessary to associate evaluative information (utility appraisals), with

each individual relational instance, vi. Therefore, the method for training symbolic SOMs

proposed by Kohonen and Somervuo [1998] has been extended to include additional numeric

dimensions. The technique involves overlaying two SOMs (one symbolic and one numeric), but

treating them (and training them) as a whole. A cross-sectional example is shown in Figure 18.

Here, the numeric weight vector has two dimensions.

Figure 18. Combined Symbolic and Numeric SOM

A
ve

ra
g
ed

 F
V

1

Feature Vectors

Evaluation 1

Evaluation 2

0

0

A
v
er

a
ge

d
 F

V
2

A
ve

ra
g
ed

 F
V

3

A
ve

ra
g
ed

 F
V

4

A
ve

ra
ge

d
 F

V
N

78

Training the hybrid SOM is accomplished by concatenating the feature vectors (from

adjacent vertices) in order to compute an aggregate distance function to identify the nearest

vertices for each training example. Once the appropriate vertices are found, the individual weight

vectors are modified based on their respective counterparts in the current training instance. This

allows both the symbolic map and the numeric map to be trained simultaneously. The aggregate

distance function is shown in Equation (19), where Euclidean() indicates the standard Euclidian

distance. The vector wi is now the concatenated weight vector with components ws
i and wn

i, the

symbolic and numeric portions, respectively. Likewise, xi represents the individual training

instances with symbolic and numeric portions, x
s
i and x

n
i. The values γs and γn are additional

weights that allow preferential status to be assigned to either one of the individual distance

functions. Finally, retrieval is based on matching an input vector to one, or both, of the maps.

This is achieved by setting γs and γn appropriately (e.g., γn = 0 to match only using the symbolic

map).

Dist(wi, xi) = γs * EditDist(ws
i, x

s
i) + γn * Euclidean(wn

i, x
n

i) (19)

The trained SOM is used to provide the appraisal vector ui by matching the feature

vectors fi
v to the symbolic SOM, and setting ui equal to the retrieved numeric vector wi

n.

However, because the EditDist() function only returns discrete values it is often the case that

multiple vertices are “similarly different”. For example, the symbol string “car” is equidistance

from both “cat” and “bar”. Depending on the situation, either match may be acceptable but to

eliminate random behavior and to ensure that the best matches are found, a distance matrix is

calculated using the distance values for each vj ε V and then that matrix is smoothed by averaging

across the N vertices nearest each vi. The distance matrix not only indicates those regions of the

map that best match the input string, but also which specific vertices within those regions are

closest to the input string. The distance to the nearest vertex, using the smoothed distance matrix,

is returned along with the numeric evaluations stored at that vertex. The distance values for each

component of ui are used to create the confidence vector χχχχi as shown in Equation (20), where d is

the individual distance measure and D is the maximum allowable distance (i.e., the size of the

largest stored feature vector).

79

D

d
ik −= 1χ (20)

Validation and Evaluation: Self-Organizing Maps

To evaluate the SOM method for creating relational maps, five sample strings were

generated and assigned numeric values (i.e., evaluations). Training was performed using five

variations of each string in which 25% random noise had been injected (i.e., randomly replacing

a symbol within the string, or replacing the numeric value of that string 25% of the time). The

five sample strings, evaluations, and randomly generated strings are shown in Table 12. These

data were used to train a SOM of size 15 x 15. The trained symbolic SOM is shown in Figure 19

and the numeric SOM is shown in Figure 20. In Figure 20, learned numeric values are indicated

by height. The lower right corner of the map (corresponding to the “neutral” region in Figure 19)

is associated with evaluations of 0.0, the upper right corner (the “worst” region) is associated

with the most negative evaluations, and the upper middle (the “best” region) is associated with

the most positive evaluations. The close proximity of the “best” and “worst” regions is based on

the syntactic similarity between the underlying symbol strings. Finally, the trained SOM is used

to retrieve an evaluation for the string “blets”. The computed distance matrix is shown in Figure

21, and the averaged evaluation from the best matching nodes is 1.99944.

Table 12. Five Symbol/Evaluation Sets with 25% Random Noise

 “worst” “bad” “neutral” “better” “best”

 worsj -2 bad -1 neutall 0 bettei 1 best 2
 worst -2 pay -1 ndutral 0 bntter 1 bjst 2
 aorsr -2 bmd -2 neutbal 0 betcer 1 best 2
 worsd -2 baq -2 seunral 0 bevler 1 bkzt 2
 worst -2 bad -1 nputoah 0 bmtdhr 1 besj 2

80

Figure 19. Self-Organized Map of Symbol Strings

Figure 20. Self-Organized Map of Size 15x15 for Numeric Evaluations

Figure 21. Computed Distance Matrix Using Input String “blets”

bmtdhr bmtdhr bmtdhr bmtdhr best best best best best best best worst worst worst worst

bmtdhr bmtdhr bmtdhr bmtdhr best best best best best best best worst worst worst worst

bmtdhr bmtdhr bmtdhr bmtdhr best best best best best best best worst worst worst worst

bmd bmd bmd bmtdhr best best best best best best best worst worst worst worst

bmd bmd bmd bmd better better better better better better better worst worst worst worst

bmd bmd bmd bmd better better better better better better aorsr aorsr worst worst worst

bmd bmd bmd bmd better better better better better better aorsr aorsr aorsr aorsr aorsr

baq baq baq bmd better better better better better better aorsr aorsr aorsr aorsr aorsr

baq baq baq pay pay better better better better better aorsr aorsr aorsr aorsr aorsr

baq baq baq pay pay pay better better better better aorsr aorsr aorsr aorsr aorsr

baq baq baq pay pay pay pay better better better better aorsral ndutral ndutral ndutral

pay pay pay pay pay pay pay seunral seunral seunral neutbal neutbal ndutral ndutral ndutral

bad bad pay pay pay nputoah neutaal seunral seunral neutaal neutaal neutbal ndutral ndutral ndutral

bad bad bad nputoah nputoah nputoah nputoah nputoah seunral seunral neutaal neutaal neutbal ndutral ndutral

bad bad bad nputoah nputoah nputoah nputoah nputoah seunral seunral neutaal neutaal neutbal ndutral ndutral

0

5

10

15

0

5

10

15

-2

0

2

3.20 3.20 3.20 2.83 2.47 2.10 2.10 2.10 2.10 2.10 2.77 3.43 4.10 4.10 4.10

3.20 3.20 3.20 2.83 2.47 2.10 2.10 2.10 2.10 2.10 2.77 3.43 4.10 4.10 4.10
3.47 3.47 3.38 2.92 2.47 2.10 2.10 2.10 2.10 2.10 2.77 3.43 4.10 4.10 4.10

3.73 3.73 3.64 3.11 2.58 2.13 2.13 2.13 2.13 2.13 2.79 3.44 4.10 4.10 4.10
4.00 4.00 3.91 3.30 2.69 2.17 2.17 2.17 2.17 2.38 3.02 3.67 4.10 4.10 4.10

4.00 4.00 4.00 3.40 2.80 2.20 2.20 2.20 2.20 2.62 3.26 3.89 4.10 4.10 4.10

4.00 4.00 4.00 3.40 2.80 2.20 2.20 2.20 2.20 2.83 3.47 4.10 4.10 4.10 4.10

4.00 4.00 4.11 3.82 3.22 2.51 2.20 2.20 2.20 2.83 3.47 4.10 4.10 4.10 4.10
4.00 4.00 4.22 4.24 3.96 3.13 2.51 2.20 2.20 2.83 3.47 4.10 4.10 4.10 4.10

4.00 4.00 4.33 4.67 4.69 4.07 3.13 2.51 2.20 2.62 3.28 3.92 4.14 4.13 4.13
4.33 4.33 4.56 4.78 5.00 4.69 3.99 3.29 2.90 3.00 3.33 3.76 4.08 4.17 4.17

4.33 4.44 4.67 4.89 4.91 4.72 4.26 3.88 3.49 3.27 3.28 3.59 4.01 4.20 4.20

4.33 4.44 4.58 4.71 4.64 4.46 4.30 4.24 4.18 3.86 3.52 3.50 3.80 4.10 4.20
4.00 4.11 4.27 4.42 4.38 4.19 4.11 4.14 4.17 3.86 3.52 3.40 3.70 4.00 4.20

4.00 4.00 4.07 4.13 4.20 4.20 4.20 4.23 4.27 3.97 3.63 3.30 3.60 3.90 4.20

81

Finally, this SOM technique is also used to represent broader situations as they form

during the episode. Specifically, this includes a representation of the combined number and types

of grocery bags present. However, in this research, rather than force the system to learn goal-

relevant attributes that define useful bag types, a single attribute is used to create these types: the

number of groceries per bag. This choice is also based on the fact that there is a much smaller set

of consistent attributes for grocery bags than for groceries. Using this attribute bag types are

created, which are used to develop feature vector representations that incorporate more

generalized knowledge of the current situation.

So far, the methods to cognitively process and appraise relevance (fuzzy clustering and

feature vector extraction) and utility (SOMs) have been described. Each method relies on a

corpus of experience, in this case episodic memory, and learns the appropriate knowledge

through offline processing. By themselves, these appraisals are sufficient to enable improved

task performance with respect to the task-specific constraints. However, in addition to

performing the task correctly, robots must also perform it in a timely manner (i.e., before

conditions in the environment change) and, when failures occur, be able to identify which

knowledge systems contributed to that failure. Therefore, the next two sections describe

components that focus on evaluating system performance to improve deliberation time and

enable fast commitment, as well as to provide a basic error signal that indicates which

components are not performing correctly and thus which knowledge should not be trusted

because further training is required.

Urgency

In this research, appraisals for urgency determine the amount of time allowed for

deliberation as well as whether or not the current deliberation process should be interrupted.

Interrupt signals are generated in response to actual and expected external conditions. Urgency

appraisals made before deliberation begins are used to adaptively preset the decision-making

parameters depth and breadth, and are inspired from the notion of contract and anytime

algorithms described in Chapter III. Later appraisals (i.e., interrupts) are based on innate

responses to external events, are used to halt deliberation in favor of rapid resource deployment,

and are inspired by Sloman’s [2001] alarm mechanisms. The cognitive processes that enable

these urgency appraisals are trained using offline simulation and rehearsal in order to form

82

relations between input states, deliberation time, search depth and breadth, and expected solution

quality. These processes operate on previously acquired experience to create new internally-

generated experience that can then be matched to future situations.

Internal rehearsal is a mental process that occurs in humans and enables people to

simulate and practice specific behaviors without the need for physical action [Hesslow, 2002].

This type of mental simulation proceeds “as if” the person was actually performing the behavior

and is a critical method by which humans learn. This ability has been accounted for in artificial

systems with the work of Jirenhed, et al., [2001] and Erdemir, et al., [2008], as well as the

architectural research of Shanahan [2006]. In the work of Jirenhed, et al., [2001] and Erdemir, et

al., [2008] a robot uses an “internal world” to rehearse actions and to investigate the

consequences of action. Within this internal world, the robot may either possess a model of the

physical environment a priori, or be required to learn this model or features of the model through

training. The latter is the case in the research conducted by Erdemir, et al. [2008], in which the

robot is required to develop its own understanding of the physical world as well as its ability

within the world; where the robot’s ability is dependent on the robot’s unknown physical

morphology.

Research by Shanahan [2006] takes an architectural approach to internal rehearsal and

models a dual loop process in which routine behaviors are constantly produced in response to

situations, and these behaviors proceed unabated unless interrupted by higher-order cognitive

processes. These higher-order cognitive processes run in parallel to the routine behaviors, but

perform mental simulation of each routine behavioral response before that response is executed

[Shanahan, 2006]. This, however, assumes that the higher-order processes operate at a higher

frequency than the routine behaviors; an assumption that provides a great deal of difficulty to

system developers when applied to physical systems (i.e., robots), a point that has been noted in

research by Hall [2007].

Due to the limitation of the approaches described by Hall [2007], and later Ratanaswasd

[2008] (in which rehearsal must be performed after the system receives a command but before it

executes an action) in this dissertation the rehearsal process is designed as an offline processing

tool. This is similar to the approach used by Erdemir, et al., [2008] where rehearsal is performed

offline and used to develop relational knowledge that can later be deployed online in a time-

efficient manner. First, the robot is allowed to sample its past experience in order to develop a

83

basic state transition model. This model is used when the robot needs to predict specific changes

in the external environment. Second, using basic knowledge about the expected effects of each

action the robot mentally simulates its performance on the task, and then self-evaluates its

performance on the internally-generated experience using the most recently learned appraisals.

The self-evaluation enables the robot, over time, to develop a “sense” of how its performance

should be expected to vary by both situation and deliberation time. While it should be

acknowledged that the learned relevance and utility appraisals may not always reflect the true

appropriateness of the robot’s actions, it is argued that regardless of accuracy these mechanisms

are those that will be used at the next decision-cycle and thus internal rehearsal can, at the very

least, is a form of offline pre-processing in which the robot practices explores its ability to

appreciate how much computational “effort” should later be applied during actual tasks.

Furthermore, this type of internal rehearsal has a bias towards optimistic evaluations of

system performance and ability. This is due to the fact that the relevance and utility appraisals

are trained using the same experience that is later used for rehearsal (i.e., the system is trained

and tested on the same set). While this is a fundamental bias inherent in internal rehearsal, it is

also an acceptable bias for this research because, in the worst case, such a bias can only cause

errors on the task, which then provide new experience to learn from and thus the system’s niche

is ultimately expanded.

Input/Output

The inputs required for the urgency appraisals are the current state si and the feature

vectors fi
v. From these inputs, the system estimates the allowable deliberation time ti

a, the

expected solution quality qi
e, the expected deliberation time ti

e, and the search parameters

necessary to achieve these estimates. If deliberation has already begun, the interrupt signal ii is

generated as needed. Each of the urgency appraisals is appended onto the current state

representation within the evaluation signals.

Implementation: Bayesian Networks

Two methods are used to appraise urgency. The first method employs a Bayesian

network to predict the amount of time until a significant change in si occurs. Significant changes

are defined as those changes that remove action possibilities or reduce actions likelihoods. The

84

specific significant changes used in this research are described in Chapter VI. To identify

significant changes, the Bayesian networks determine the probability distributions over all

possible future states si’ ε S, given si.

Bayesian networks enable probabilistic reasoning through the application of Bayes’ Rule.

These networks use probabilistic models to relate observable “evidence” variables to

unobservable “hidden” variables, and to describe the likelihood of state transitions given

estimations of the previous states. The probabilistic models are often either preset or learned

from observations. There are two basic models used by Bayesian networks. One model retains

the transition probabilities between hidden variables in different states (typically successive

states). The other model retains the probabilities associated with observing each evidence

variable, given knowledge of the hidden variables.

To make predictions with Bayesian networks, it is only necessary to know the transition

model between states. In this research, state transitions are assumed to be 1st order Markov

processes (Chapter III), and thus the current state distributions are only dependent on the

previous states and not the entire history of states. The training data is comprised of states in

which all variables are known and have been sampled from the environment at a rate of 1 Hz.

The rational for this sampling rate is to alleviate the computational cost associated with more

precise predictions by limiting prediction precision to a range more appropriate for the physical

system used in this research. Furthermore, in order for the continuous environment to be

representable within the Bayesian network, the environment must be discretized, which also

reduces the need for more precise measurements. Finally, this sampling rate enables the time

measurements to be made based on the number of prediction steps until a minimum threshold is

reached on state likelihood.

Validation and Evaluation: Bayesian Networks

To evaluate this component, groceries were placed at random on a simulated, moving

conveyor belt. The continuous state space (i.e., the two dimensional locations on the conveyor

belt) was discretized into 16 bins. Two additional bins were also added to represent the position

of groceries that were no longer on the conveyor belt. The bin labels are shown in Figure 22. The

speed of the conveyor was set to 0.033 m/s. Groceries were placed on the conveyor, sample data

85

was generated, and the transition model was trained. Figure 23 presents the trained transition

model.

For this evaluation, significant changes were defined to be “groceries falling off the end

of the conveyor”. Given that a grocery was initially placed at the beginning of the belt, Figure 24

shows the probability estimates for that grocery’s predicted position at times t = {5, 20, 40, 46}

seconds. At time, t = 46 seconds the grocery falls off of the conveyor. At this time, the Bayesian

network predicts that the grocery is in bin 9 (not on the conveyor) with probability 0.71.

Figure 22. Dimensions and Bin Distribution for Conveyor Belt

Figure 23. Learned Transition Model, i.e., P(Bini | Bini-1)

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

1.6 Meters

0
.7

2
 M

et
er

s

Forward

0.800 0.200 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.804 0.196 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.824 0.176 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.820 0.180 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.800 0.200 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.800 0.200 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.800 0.200 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.800 0.200 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.800 0.200 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.810 0.190 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.836 0.164 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.800 0.200 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.800 0.200 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.800 0.200 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.800 0.200 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.800 0.200

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Bini

Bini-1

86

Figure 24. Grocery Distribution at t = {5, 20, 40, 46} Seconds

Implementation: Performance Profiles

The second technique used to appraise urgency requires that the system learn

performance profiles [Zilberstein, 1996] to represent relationships between input state, specific

decision-making parameters, deliberation time, and solution quality. The performance profiles

are generated through offline, internal rehearsal, and require that the system possess some level

of domain knowledge (i.e., relevance and utility). As the domain knowledge improves, the

performance profiles become more useful in reducing deliberation time while preserving solution

quality. The learned profiles enable the system to estimate how “good” it can expect to do, given

the situation. The profiles also enable estimates of deliberation time, given both the current

situation and different decision-making parameters. The format used to store performance

profiles is shown in Table 13.

Table 13. Storing Performance Profiles
 Feature Vectors (fi

v) Depth (d) Breadth (b) Deliberation Time (ti
e) Solution Quality (qi)

 f0
v d0 b0 t0

e q0

 f1
v d1 b1 t1

e q1

 fn

v dn bn tn
e qn

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

t=5

t=20

t=40

t=46

Bins

L
ik

e
li

h
o

o
d

87

Once the system has learned to appraise relevance and utility, episodes and states are

randomly selected and rehearsed (offline) using the learned knowledge. In other words, the

system re-evaluates its past experience, in light of the new knowledge, and forms new plans “as

if” the previous situations were actually occurring (again). During the rehearsal process, the

system uses the stored state information to create new feature vectors (using relevance

appraisals), selectively explores different search parameters d and b, prioritizes responses (using

utility appraisals), and selects actions. For each situation and pair of search parameters, the

system records the time required for deliberation as well as the solution quality obtained during

goal accomplishment, and uses this information to estimate the expected solution quality and

deliberation time for future situations. The solution quality is taken as the total sum of rewards

and cost from the current state to the goal state. The result is internally-generated experience,

that can be stored and that enables extraction of the performance profiles.

During online task performance each set of feature vectors is matched to the data stored

in the performance profiles, and the N best matches are returned. The matches are first pruned by

removing all instances in which the expected deliberation time exceeds the allowable

deliberation time: ti
e > ti

a. Next, the “best” match is selected from the remaining set by

maximizing Equation (21). In this equation, the parameter ξ is used because qi does not grow at

the same rate as ti
a. Empirical tests suggested a value of ξ = 2.0. Finally, the best match is used to

set the search parameters d and b.

a

i

i

t

q
ξ

 (21)

Validation and Evaluation: Performance Profiles

Proper evaluation of this approach requires that all of the implemented components have

been integrated, trained, and used to internally rehearse past experience. Therefore, initial

validation of this component is based on the knowledge that performance profiles are known to

capture the type of performance-based information required by this research [Zilberstein, 1996]

[Zilberstein and Russell, 1995]. Furthermore, accessing each training instance is performed using

the feature vector matching techniques that have already been discussed in the section Relational

Mapping. Filtering the remaining instances (Equation 21), is a simple, greedy search that

88

accounts for all three important measures: solution quality, deliberation time, and similarity

between the current situation and past experience. Final validation of this technique is deferred

until Chapter VI.

Fit

The system developed in this dissertation has multiple, integrated components that each

require individual training. The components are connected in an incremental fashion, and the

learning required to train each component is critically dependent on the output of the previous

(trained) component. Therefore, if any component is improperly trained, system performance, as

a whole, will suffer. The final appraisal implemented in this research, focuses on using feedback

signals, coupled with the expected performance measures provided by ui and χχχχi, to identify those

components that may be underperforming and require further training. This appraisal is based on

the notion of a degree-of-fit between the system’s current knowledge and the situations and tasks

that are encountered. This appraisal is not a primary focus of the current research, and it is not

within the scope of this research to investigate how the system should best use this knowledge to

decrease errors, however, the appraisal for fit is included for completeness with the respect to the

discussions of Chapter IV, and to open the investigation on whether such self-evaluative

information can be extracted using knowledge of the other appraisals processes. In other words,

can the system develop basic appraisals about its appraisals? Ultimately this knowledge would

be most useful for designers and engineers when evaluating the performance of a system

composed of the types of emotion-based processes implemented in this work.

Input/Output

The inputs required to determine fit evaluations are the current state si and the feature

vectors fi
v. In addition, the expected utility appraisals and confidence values from the previous

state are required, ui-1 and χi-1. Using these inputs, a vector of ongoing fit appraisals, φφφφi, is

updated and appended onto the current state representation.

Implementation

The method to evaluate fit requires that the system receive feedback during task

performance. It is preferable that feedback be received immediately after the execution of an

89

action, and in many systems this is the case. However, in this dissertation it is not necessary to

make this assumption. Fit can be evaluated whenever feedback (reward) is received, but it is

necessary that each feedback signal be attributed to a specific portion of the environment. In

other words, the system must know what aspect of the current situation corresponds to each

feedback signal. As external evaluations are received, a feedback matrix ϑ is created. The

dimensions of ϑ are n x m, where n is the number of constraints/dimensions to evaluate and m is

the number of components that have been evaluated. This notation differs slightly from that used

up to this point; thus far, the appraisals ui and χχχχi have been described as vectors of length n

because it has been assumed that between each pair of states only one action has been performed,

and therefore appraisals are only needed that refer to the state component affected by that action.

For fit appraisals, this notation is extended because evaluations need not be received immediately

after an action has been performed it is necessary to incorporate the appraisals for all portions of

the current state. The matrices U and Χ are used instead of the vectors u and χχχχ, and both matrices

have the same dimension as ϑ.

Using the matrices U and ϑ an error matrix E is calculated that reflects pure difference

between the learned utility appraisals and the external evaluations. The calculation of E is shown

in Equation (22). In this equation the confidence matrix Χ is not used to determine appraisal

error, because the confidence values are used in the later calculations for the individual fit

appraisals.

The fit vector φφφφ = [φ1
c φ1

m φ1
p φ2

c φ2
m φ2

p … φn
c φn

m φn
p]T is calculated using the matrix E

and Χ. Each component of φφφφ corresponds to a different component/appraisal combination to

which blame/credit can be potentially applied. Each φc corresponds to a fit appraisal of the goal-

relevant classifications, each φm corresponds to a fit appraisal of the trained relational maps, and

each φm corresponds to a fit appraisal for the planning algorithm (described in the next section).

These values are trained using a specific update rule described by Equations (23-25),

respectively, where each rule is repeated for all values of k.

E = ϑ - U (22)

φj
c = φj

c
 + α * Χjk * (Fc(Ejk) - φj

c) (23)

90

φj
c = φj

c
 + α * (1.0 - Χjk) * (1.0 - φj

m) * Fm(Ejk)

 + α * Χjk * (0.0 - φj
m) * (1.0 – Fm(Ejk)) (24)

φj
p = φj

p
 + α * Χjk * (Fp(Ejk) - φj

p) (25)

In each equation, the term F(Ejk) is used to provide the target value for the weight update

rule. The maximum value of any Ejk is confined to the range [-2, 2], because each utility

appraisal can have a value between [-1, 1]. The function F(Ejk) maps this continuous value to

either 0/1. If the target is 0, then the specific component either performed correctly or should not

be blamed for the error. If the target is 1, then that component performed incorrectly and should

share a portion of the blame for each mistake.

The degree to which each component should receive credit for an error (or be

complimented for a success) is determined primarily by the confidence value Χjk. When Χjk is

high, then the relational map is confident in its appraisal of the current situation. If an error

occurred, it is (most likely) due to either the goal-relevant feature vectors misrepresenting the

current situation, or the planning algorithm choosing a path that should not have been chosen. If

the absolute value of Ejk is greater than 1, then the expected utility evaluation and the final

external evaluation were of opposite sign, and the error is most likely due to the goal-relevant

feature vectors misclassifying the current situation. For example, a dangerous situation has been

represented, through clustering and data compression, as similar to a previous good situation, and

thus the system has failed to separate these situations. If, however, the absolute value of Ejk is

less than 1, then the system knew the correct answer (i.e., the final evaluation and the internal

evaluation shared the same sign), but pursued an incorrect course of action anyways. Reasons

why this may occur are discussed in Chapter VI.

The above explanations cover Equations (23) and (25). Explanation of Equation (24) is

provided by noting that when confidence is low, errors are most likely due to insufficient

experience contained in the relational map or incorrect generalization within the relational map.

The degree with which the map should then be blamed for any errors is proportional to the size

of those errors. If confidence is high, however, then the relational map should receive credit for

any success in proportion the “lack of errors” present in the utility appraisals. Finally, in each of

91

the equations just described, the value of α is used to reduce the credit/blame assignment based

on the amount of risk taken by the system. The rational is that in risky situations, the system is

less likely to know the correct response and thus credit/blame should be reduced accordingly.

Validation and Evaluation

The process of developing fit appraisals requires an integrated system that performs

actions and receives feedback/reward for those actions, while simultaneously forming

expectations of its own performance. Thus initial validation focuses on the equations for

determining the individual fit appraisals. The general form for the update equations is derived

from the well-known regression techniques used to learn basic patterns [Mitchell, 1997] [Witten,

2000]. However, these equations have been slightly modified to reflect the specifics of the

current system. The standard learning rate has been replaced by “risk” factor that reduces the

amount of update in risky situations. In addition, the confidence Χjk is used to mediate which

component receives credit/blame, while the error Ejk is used to determine whether credit or blame

is appropriate and how much should be given. This is intuitively based on knowledge of the

underlying system and the fact that the value Χjk reflects a measure of fit between the situation

and the current knowledge structures, while the value Ejk dictates whether the fit was good or

bad. Experimental validation of this component is deferred until Chapter VI.

Planning

The planning algorithm performs a depth-first search through the current decision space.

The retrieved evaluations from the relational maps are used to order potential responses from

best to worst. The breadth search parameter is used to keep the b best responses, and to prune the

rest. At each planning step the best response is chosen, the state resulting from application of that

response is expanded and then used as the input for the next decision-cycle. Once the maximum

search depth has been exceeded, or there are no more states to expand, the algorithm returns to

the previous depth and expands the next best state. The current best plan is maintained in the

form of a policy over the current search window. If an interrupt signal is generated, or planning

must be stopped, the best plan is returned and used to execute actions.

92

Input/Output

The input to the planning algorithm is the current state si, coupled with utility appraisals

ui, confidence measures χχχχi, search depth d, search breadth b, and any interrupt signals ii. The

output of the planning algorithm is the current best, local policy πL, and the next state si’ to be

expanded. Here si’ is used to denote successive states in the planning process, while si+1 is

reserved for the state that results from the chosen action.

Implementation

The planning algorithm implements a depth-first search through the decision space, S. At

each step of the search, the state with the highest priority is selected and expanded. Expanded

states are passed back to the beginning of the decision-cycle, where they are assigned feature

vectors and appraised with respect to the current goals. The appraisals are then used to determine

the new state’s priority, which ultimately determines when (and if) that state is expanded. The

depth and breadth parameters (d and b) are used to constrain the search to a local window around

si. If the search depth exceeds d, or there are no further states to expand, the algorithm backs up

to the previous depth in which states still remain to be expanded. During the search process, only

the b best states are considered for expansion, the remaining states are pruned from the search.

As states are expanded, the evaluations of those states are used to update a local policy πL,

defined over S. If an interrupt signal i is generated, planning is stopped and πL is used to

determine the response. The current planning algorithm is not a true anytime algorithm due to the

fact that it is only capable of a fixed, one-step lookahead, and thus solution quality may not be a

strict, montonically increasing function of deliberation time. However, as experience increases

and the trained components (i.e., goal-relevant classifications and relational maps) improve, it is

expected that the planning algorithm should begin to approximate this standard anytime

property. Pseudo-code for the recursive portion of the Plan component is shown in Figure 25.

93

Figure 25. Pseudo-code for the Recursive Plan() Algorithm

At each iteration, the current state that should be evaluated and expanded is passed into

the Plan() algorithm. The various appraisals are treated as variables that can be requested and

filled in as necessary. The relevance and utility appraisals, which are contained in the current

feature vectors and the vectors uj and χχχχj, are locally requested for each state as it is encountered

during the planning process. The urgency appraisals {d, b, ii}, however, are considered functions

of the external state and not the internal search process, and therefore these inputs are generated

by the external state and are not products of the search through S.

The first step in the Plan() algorithm is to determine the set of possible actions Ai that

can be performed in response to si. This is done using the PossibleActions() function. Next, Ai is

used by the function SuccessorStates() to determine the set of possible successor states S’ that

would result from applying each action aj ∈ Ai to si. The algorithm then determines whether it

should backup to the previous planning step, or continue forward. Three different checks are

made when determining whether or not to proceed. The algorithm checks whether the maximum

depth d has been exceeded. If the current depth is greater than d, the search is backed up to the

previous search step. The algorithm checks the set of successor states, S’. If S’ is empty, then

Plan(si)

Ai = PossibleActions(si)

S’ = PossibleSuccessors(si, Ai)

if(current_depth > d or Empty(S’) or Interrupt())

return 0

else
For each sj є S’

{ui, χ i} = AppraiseUtility(sj)

ρi = SetPriority(ui, χ i)

Order(S’)

Prune(S’, b)

current_max = -θ
For each sj є S’

ρj = ρj + Factors(aj) * Plan(sj)

if(ρj > current_max)

UpdatePolicy(π L, si, aj)

current_max = ρj

return current_max

94

there are no actions that can be performed and planning is not required in this step. Finally, the

algorithm checks for any pending interrupts to the deliberation process. This last check is

performed using the Interrupt() function.

The Interrupt() function polls the cognitive processes that appraise urgency and check

for significant changes in si. If a significant change has occurred the interrupt signal ii is

generated and deliberation is stopped so that an action may be performed. If the system selects to

continue deliberation, then the algorithm assigns priority values, ρj, to each of the possible

successor states within S’. This requires appraising each sj ε S’ with respect to the current goals.

The values uj and χχχχj are determined using the trained relational maps. The priority values then

determine when, and if, sj should be expanded. To determine ρj a multi-dimensional reward

signal is calculated as shown in Equation (26).

evalj = χχχχj * uj (26)

The priority for each state sj ε S’ is determined by taking the Euclidean distance between

evalj and the preset vector, ψψψψ, that represents the highest values obtainable for each evaljk. The

calculation of ρj is shown in Equation (27).

2

1

2)(







−= ∑

k

jkjkj eval ψρ (27)

Once each sj has been given a priority value, the Order() function arranges S’ from

highest priority to lowest priority, to ensure that the highest priority states are expanded first. The

states with the lowest priority are pruned using the Prune() function. As each remaining sj is

searched, the priority value is modified by adding the weighted sum of the best ρj’ reachable

from sj. During the search, if a successor state with higher priority is found, the function

RevisePlan() is used to update the policy πL.

95

Validation and Evaluation

Experimental validation of the planning component is deferred until Chapter VI, due to

the fact that this component requires an integrated system in order to be tested. However, it is

still appropriate to discuss the rational for this component’s design. As it has been discussed

throughout this dissertation, robotic decision making must be sensitive to real-world constraints,

such as deliberation time and interruption. In addition, rarely are complex environments

encountered in which optimization along a single dimension is sufficient for optimal

performance. Therefore, the planning algorithm used by robot operating in a complex

environment must be capable of exhibiting anytime-like properties, even when knowledge of the

world is insufficient and incomplete.

The implemented planning algorithm must also be designed to appropriately utilize the

various appraisals provided to it, which may extend beyond utility measures, towards adaptive

parameter tuning, interrupts, and relevance detection. In the current planning algorithm,

relevance is captured through the creation of goal-relevant feature vectors that facilitate access

and retrieval from stored relational maps. Utility is used to arbitrate between response options. In

this approach, the learned utility appraisals enable intelligent decision making, however, these

appraisals are modulated not by the likelihood of occurrence, but by their current goal

significance and the degree to which they match (i.e., confidently believed to applicable in) the

current situation. Urgency appraisals enable the system balance fast commitment against

deliberation, as well as to interrupt deliberation when necessary. The planning algorithm can be

adaptively tuned using the parameters depth and breadth, which facilitates deliberation that

respects the potential time-critical nature of different tasks. In addition, because the planning

algorithm maintains the current best plan, in the form of a local policy, deliberation can be

interrupted at any time; a property that facilitates real-time reaction. Finally, though fit is not

explicitly incorporated into the planning process, maintaining a local policy is useful when

retrospectively evaluating performance. It is argued here, and shown through comprehensive

results in Chapter VI, that the implemented planning algorithm utilizes each appraisal to

adaptively improve performance and generate more cognitive behavior.

96

System Integration

A lot of material (components, equations, and algorithms) has been presented in this

chapter. This is necessary to truly investigate the types of emotion-based, cognitive processing

that might be applicable to robots. The appraisals that facilitate the development of emotional

states are not standalone evaluations, but rather a collection of cognitive processes that together

enable appropriate, adaptive behavior. Urgency appraisals can only mediate deliberation if the

system has basic knowledge of its own performance abilities, and such knowledge is intricately

related to situation-based expectations and predictions of utility. Interpreting utility requires that

relevant features of the situation be detected. Therefore in new situations, an adaptable system

must (at minimum) be able to appraise what is relevant in that situation, determine the utility of

individual responses, and be able to adjust its own deliberation time as dictated by its goals and

the situation. With this collection of appraisals, comes the need to evaluate the amount of fit

between each learned component and the new situation. Though it is beyond the scope of this

work, this final appraisal could be used to allow more global adjustments to be made that impact

the nature of the individual relevance, utility, and urgency appraisals. In this research, fit is only

used to identify “problematic” components.

The behavior produced by a complex system with the ability to appraise relevance,

utility, urgency, and fit is rarely optimal, but it should also be equally rarely disastrous (see

Chapter IV). Instead, the behavior induced by the concerted influence of emotion-based

appraisals is often simply sufficient. Proper investigation of how these appraisals may be derived

and utilized to impact behavior requires an understanding of each appraisal’s architectural role

within the cognitive control process. It is argued that the control system that has been described

throughout this chapter is ideally suited for integration within a complex, cognitive architecture,

such as the ISAC architecture. The control system requires a buffer for perceptual and state

information. This is closely related to the ideas of short-term and working memory in the ISAC

architecture. In addition, the creation of goal-relevant dynamic representations (i.e., feature

vectors) is fundamentally linked to relevance appraisals and can be compared to some of the

functions assigned to ISAC’s Working Memory System. In this context, working memory must

interact closely with the current goals to appropriately filter and process incoming stimuli. The

control system utilizes utility to prioritize responses, make predictions, and recursively generate

plans. Higher-order control systems (e.g., those for urgency and fit) also mediate the planning

97

process. In the ISAC architecture, this functionality is captured in the Executive Control Agent,

where planning is performed by the CEA, predictions and evaluations are performed by the IRS

(interacting with the Relational Maps), mediation of the decision cycle is accomplished by the

Affect Agent, and error-tracking is performed by the combination of the Goals Agent, WMS, and

IRS. A graphical representation of how the current control system integrates with the ISAC

architecture is shown in Figures 26.

Figure 26. Revised View of Implemented Control System

Dynamic
Representation

Urgency
Mapping

Relational
Mapping

Parameter
Setting

Planning

Plan Selection
& Execution

Record

Episodes

Environment SituationSituation

Error Detection
Fit

Evaluation

Diagnosis

Perception

Short-Term & Working Memory

Affect Agent

Relat ional

Mapping

Central Executive

Goals Agent

Action

Long- Term Memory

& Internal Rehearsal

-
First-Order

Response

Agent

First-Order

Response
Agent

Executive Control Agent
Perception-Action

Agent

Episodic

Memory

Episodic

Memory

Declarative

/ Semantic

Memory

Declarative
/ Semantic

Memory

Long

Term

Memory

Central
Executive

Agent

Cognitive Control
& Decision

Making System
Environment

Environment

Sensory

Ego

Sphere

Short

Term

Sensory

Memory

REACTION

Internal

Rehearsal
System

Internal

Rehearsal

System

DELIBERATION & COMMITTMENT

Perceptual

Agents

Arm Agent

Head Agent

Hand Agent

Activator Agents

Attention
Network

Relational Mapping System
Relational Mapping System

Affordance Relations
Affordance Relations

Procedural

Memory

Procedural

Memory

Goals & Motivation

System

Goals
Agent

Affect Agent

Working

Memory

System

Filtering &
Focusing

Agent

98

CHAPTER VI

EXPERIMENTAL DESIGN, RESULTS, AND DISCUSSION

Experimental Hypothesis and Assumptions

The implemented control system is designed to use multiple levels of cognitive

processing to derive (from experience) appraisals that usefully and adaptively guide decision

making. To test and evaluate this system, experiments are needed that require the system to

identify what is relevant in the current situation, assign utility as appropriate, manage

deliberation time when urgent action is required, and evaluate the level of fit between the current

knowledge structures and the situation. In addition, the designed experiments should require the

satisfaction of multiple, simultaneous concerns, in order to stress the system’s ability to use its

appraisals to perform balanced decision making. Finally, the experiment must enable specific

evaluation of how well the system:

1. Learns domain knowledge and is able to deploy that knowledge for improved task

performance.

2. Learns goal-relevant classifications that can be used to create useful feature vectors that

capture significant aspects of the situation.

3. Improves on the task with experience derived from both random exploration and planned

exploitation.

4. Uses the learned domain knowledge to develop appreciations of its own performance

ability, including deliberation time and solution quality.

5. Deploys the acquired performance-based knowledge to reduce deliberation time without

sacrificing solution quality.

6. Identifies components that are not performing well, and require further training.

During each experiment, it will be necessary for the system to learn to correctly appraise

each situation along multiple dimensions in order to appropriately balance behavior selection. No

single constraint will be given a priori the status “more important”, therefore while the system

attempts to balance behavior selection, there will be no preset constraints on how such balance is

achieved. This should cause the system to select which constraints it deems to be more

99

important, using some criteria. Furthermore, because many of the algorithms used to implement

the system are unsupervised, system performance may exhibit oscillatory behavior while

simultaneously observing an underlying trend, e.g., improvement or non-improvement. This

should cause the standard performance curves to look oscillatory and, at times, erratic. In

addition, due to the fact that behaviors are preferentially ordered using a one-step lookahead, as

the accuracy of the relational maps increases the system’s initial reactions will become more

accurate. This increase in accuracy should result in the system requiring less time to obtain an

appropriate solution, which will improve performance when appraising urgency and mediating

the deliberation cycle.

Finally, because the system is, by design, an experiential learner, aspects of the behavior

may demonstrate sensitivity to the type of experience encountered as well as the underlying

distributions from which that experience is drawn. In other words, increasing experience may

cause the system to become temporarily trapped in a local niche. Within the niche, performance

should be very accurate, but near the fringes of the niche performance should decrease. The

location of this niche determines, in part, the type of new experiences acquired by the system

(i.e., it will begin to take different paths through the decision space). The new experience should

expand the niche as well as, possibly, shift the location of the niche. Therefore, the system

should improve performance while simultaneously choosing more difficult situations. Each of

the issues just listed are hypotheses on system performance, and are more formally listed as

follows:

1. The system should learn to balance multiple constraints, and in so doing, to select the

most important constraints as a function of the statistical processing of its own

experience.

2. The unsupervised learning performed by the system should cause performance to

oscillate, but this oscillation should be centered about a specific trend (i.e., improving

performance).

3. With increased training, the system’s initial appraisals of a situation will prove to be

more correct, and thus it will be easier to mediate decision making with respect to

deliberation time, which will improve performance on urgency appraisals.

100

4. The learned appraisals will be sensitive to the experience used to train the system, and as

performance improves the system will (through its improved decision making) encounter

more difficult situations, which will act to counterbalance the improved performance.

Overview of Grocery Bagging: Experimental Layout

The experiment used to test the implemented control system is designed based on the

“everyday” task of bagging groceries. In this grocery-bagging experiment, the robot is situated at

the end of a conveyor belt and must successfully bag all groceries that appear on the belt. To the

left and right (and within the robot’s workspace) are tables upon which boxes (grocery bags) are

placed. As groceries are deposited in front of the robot, the robot must place each grocery in a

bag, and in so doing, observe certain constraints. The experimental layout is shown in Figure 27.

Figure 27. Experimental Layout for Grocery Bagging (Developed by Huan Tan)

While bagging groceries, three constraints must be observed to ensure success. These

constraints are:

1. Do not destroy any groceries (e.g., “crush bread with potatoes”, “break eggs with milk”,

“mix hot and cold items”).

2. Do not overload a bag (e.g., “20 lbs of groceries in a single bag”).

3. Do not use too many bags (e.g., “10 groceries and 10 bags”).

An external critic determines whether or not the robot has successfully adhered to these

constraints, and provides reward based on this determination. The specific evaluation functions

used within the critic are listed in section Overview and Description of Simulation Experiments.

101

Hardware

The hardware platform used for this experiment is the ISAC humanoid robot, shown in

Figure 28 [Kawamura, et al., 2008]. ISAC has two 6 Degree-of-Freedom (DOF) arms, powered

by pneumatic air muscles. Proprioceptive sensors attached to each arm joint enable feedback

control of ISAC’s arms. Attached to each arm is a two-fingered, “pincher” gripper that enables

ISAC to grasp simple objects. ISAC has two microphones for sound detection, and a stereovision

head for visual localization and tracking. There are no proprioceptive sensors attached to the

stereovision head; rather four stepper motors are used to enable open-loop pan/tilt control for

each camera.

Figure 28. ISAC Humanoid Robot [Kawamura, et al., 2008]

For the grocery-bagging experiment, two stationary, additional cameras are used to

increase the range of ISAC’s visual tracking system, and to “free up” the stereovision system for

more specific tracking (e.g., tracking the current grocery to be grasped). These cameras are

mounted above the conveyor belt and provide estimates of each grocery’s position on the belt.

Both of the additional cameras are generic, USB webcams.

The conveyor belt used for these experiments is a modified treadmill in which the control

console has been replaced with a computer control program connected via a standard 25-pin

parallel port. Using the computer controller, ISAC can start/stop the conveyor as needed,

however, for these experiments ISAC is not able to further vary the speed of the conveyor. A

collection bin is located at the end of the conveyor belt to collect groceries that have not yet been

bagged. Finally, the entire conveyor-bin-camera system is raised off the ground, in order for

ISAC to be able to reach groceries on the belt. The conveyor-bin-camera system is shown in

Figure 29.

102

Figure 29. Conveyor-Bin-Camera System

Groceries

As described in Chapter V, each grocery has nine different attributes, which are either

symbolic or numeric. A total of 50 groceries are used for this experiment, and are listed in Table

14, however, during experimentation the complete set of groceries will be divided into different

subsets for training and testing purposes. These subsets are presented, when appropriate, later in

this chapter.

Testing and evaluating cognitive robotic systems on a task such as grocery bagging is

difficult because the robot’s morphology and physical constraints often limit the possible

scenarios that can be used for experimentation. Thus simulation analysis is critical for system

evaluation, but ultimately final testing must also involve the type of real-world scenarios that the

robot may potentially encounter. This, however, includes the type of scaffolded simple problems

used in much of modern robotics research. To this end, the groceries used for this dissertation are

brightly colored objects that have been designed to be perceived easily and to afford grasping as

defined by ISAC’s physical attributes. In addition, while the colors listed with the attributes for

each grocery are based on measurements of real groceries, the colors used for grocery detection

have been chosen to make detection easier and, therefore, do not necessarily correspond to the

original attributes. Loosening this restriction alleviates pressure on the Perceptual Agents by

allowing them to associate single colors with objects, and not requiring them to simultaneously

track multiple objects of the same color (e.g., soda, granola, and frozen_pizza). A small handle is

also attached to each grocery to improve its graspability.

103

Table 14. Groceries and Attributes

 name color weight (oz) size (in3) firmness temp.(Fo) price ($) type healthy

 granola RED 10 48 hard 75 2.29 T1 YES
 tissue WHITE 8 252 soft 75 1.45 T7 NA
 soda RED 64 294 hard 75 1.50 T6 NO
 ice_cream BLUE 22.56 70 hard 32 2.99 T4 YES
 frozen_pizza RED 10.5 81 hard 32 1.25 T1 NO
 chicken PINK 24 108 hard 32 3.05 T5 YES
 milk WHITE 68.8 160 hard 45 1.67 T4 YES
 cereal BLUE 17 227.5 hard 75 3.15 T1 NO
 oranges ORANGE 64 504 hard 75 4.29 T3 YES
 potatoes BROWN 80 504 hard 75 3.99 T2 YES
 strawberries MAGENTA 16 140 soft 55 2.30 T3 YES
 bread BROWN 16 325 soft 75 0.89 T1 YES
 rotisserie BROWN 32 160 hard 150 7.99 T5 YES
 eggs YELLOW 24 144 soft 45 1.59 T5 YES
 hot_soup WHITE 12 48 hard 175 3.50 T2 YES
 chips YELLOW 12 378 soft 75 2.68 T6 NO
 yogurt BLUE 24 75 hard 45 1.59 T4 YES
 cookie_dough YELLOW 16 31.5 soft 75 2.50 T6 NO
 frozen_fruit BLUE 48 180 hard 32 7.00 T3 YES
 waffles YELLOW 12 121.5 hard 32 2.79 T1 YES
 frozen_vegetables WHITE 16 96 hard 32 1.19 T2 YES
 cheese PURPLE 8 45 soft 45 2.49 T4 YES
 ketchup RED 32 84 hard 75 1.58 T2 YES
 popcorn BLUE 20 108 hard 75 2.79 T1 NO
 hot_chocolate BLUE 2.25 35 hard 75 1.00 T6 YES
 trash_bags GREEN 48 256 hard 75 10.99 T7 NA
 ziploc_bags BLUE 10 99 hard 75 2.99 T7 NA
 marshmallows WHITE 16 110 soft 75 2.00 T6 NO
 fruit_juice MAGENTA 64 198 hard 75 2.18 T3 NO
 coffee RED 23 180 hard 75 8.41 T7 YES
 tuna BLUE 20 85.75 hard 75 7.39 T5 YES
 cheezits RED 11.5 162 hard 75 2.00 T1 NO
 ritz_chips GREEN 80 189 hard 75 3.00 T1 NO
 vegetable_soup BROWN 18.8 31.25 hard 75 2.50 T2 YES
 choc_cookies BROWN 16 135 hard 75 2.99 T6 NO
 peanut_butter BROWN 28 45 hard 75 2.50 T6 YES
 macNcheese BLUE 7 39.38 hard 75 0.75 T1 NO
 vegetable_oil YELLOW 48 132 hard 75 2.69 T6 NO
 spaghetti BROWN 12 22 hard 75 1.19 T1 YES
 rice WHITE 32 90 hard 75 1.99 T1 YES
 green_beans GREEN 14.5 25 hard 75 0.50 T2 YES
 bagels BROWN 20 72 soft 75 1.99 T1 YES
 ribs BLACK 20 336 hard 150 10.99 T5 NO
 tomatoes RED 20 90 soft 75 2.75 T3 YES
 lettuce GREEN 16 156 hard 60 2.49 T2 YES
 cucumbers GREEN 28 72 hard 50 2.40 T2 YES
 bananas YELLOW 32 216 soft 75 4.00 T3 YES
 cake BROWN 44 549 soft 75 6.99 T6 NO
 ground_beef RED 36.8 120 hard 45 7.57 T5 YES
 teriyaki_bowl BLACK 17 105.88 hard 150 5.29 T5 NO

104

Software

Multiple software components have been developed for this research. In addition to the

implemented control system (Chapter V), components have been written to track groceries,

control the conveyor belt, assign grocery labels to percepts, and evaluate task performance. The

vision software used by ISAC’s Perceptual Agents to identify and track groceries is based on

basic computer vision algorithms implemented with the OpenCV software library [OpenCV]. As

groceries are placed on the conveyor belt, a command interface is used to dynamically assign

grocery labels to the new perceivable objects (i.e., percepts). This enables both groceries and

colors to be re-used if necessary. Using this interface, grocery sequences can be either preset, or

entered at runtime.

Another software component specifically developed for this research, yet independent of

the implemented control system is the external critic that evaluates system performance. This

critic monitors the external state and uses preset evaluation rules to provide feedback to ISAC.

The specific preset rules are discussed in detail in section Overview and Description of

Simulation Experiments. Monitoring the external state is performed through interaction with the

Sensory EgoSphere, as well as monitoring the commands given to the Activator Agents.

Information from the SES informs the critic of the location of specific groceries, while

information from the Activator Agents signals what actions are being performed and, thus, what

postconditions (see section Behavioral Repertoire) to expect.

Finally, a simulation environment has been developed to enable rapid evaluation and

testing of the implemented system, as well as to provide the means to perform multiple,

repeatable experiments in a manner that would simply not be possible with the physical system.

The simulation environment is written in ANSI C++ and uses an existing model of ISAC

[Ratanawasd, 2007] coupled with a model of the conveyor belt to simulate the grocery-bagging

environment. Graphics in the simulation are performed using OpenGL. Experimental trials are

performed by either preloading a stored state, preloading a stored episode, or selecting groceries

from a menu. The simulation environment can be run in two different display modes: fast or

slow. These modes, however, only determine whether (or not) to display the graphical interface.

When the simulation operates in slow mode, graphics are used to display system behavior, but

this mode is primarily for display purposes only, or if a user wants to interactively select

groceries. Graphics are not used when the simulation operates in fast mode. This mode is

105

primarily for comprehensive evaluation and testing purposes. In fast mode, states or episodes

must be preloaded. In both modes, ISAC’s deliberation processes operate at the same speed,

however, in the fast mode actions, and their effects, occur immediately. The graphical display

(slow mode) is shown in Figure 30.

Figure 30. GUI for Grocery Bagging Simulation

State Representation

For this research, the state representation consists of three basic types of information:

Percepts, 1st
 Order Logic Elements, and Evaluation Signals. Goals are not explicitly represented

within the state formulation, but rather are implicitly represented within the deliberation process

as “attractor” states in the decision space, S. In this research, attractor states are those states in

which no further actions can be performed. Excluding goals from the state representation enables

more appropriate system evaluation and testing by eliminating the possibility of dynamic goal

switching during task performance. It should be noted, however, that within the ISAC

architecture goal switching (i.e., switching from “bagging groceries” to another task such as

“greeting people”) can be allowed through the use of the Goals Agent (Chapter V). In this case,

the state representation would need to be extended to incorporate the current goal as well as the

specific evaluation dimensions for that goal.

106

The allowable percepts for this experiment are groceries and grocery bags. The groceries

are listed in Table 14, and are visually detected using color identification. Grocery bags are not

visually tracked, but rather preset locations are input to the system and used to identify specific

bags. Individual grocery bags are differentiated by name (e.g., bag1, bag2, etc.) and, for this

research, it is assumed that grocery bags remain stationary and that groceries and grocery bags

are the only percepts that need to be tracked. Other percepts, such as people (face detection), are

ignored to ease deliberation requirements and enable better comparison across trials. However,

this assumption can be loosened if further logic elements are included that represent the

additional perceptual information for the planning components.

The allowable 1st order logic elements are based on the implicit goal of bagging

groceries, and are presented in Table 15. These elements are used for planning and are

determined from the current percepts as well as the previous state and knowledge of the last

action performed.

Table 15. Allowable 1st Order Logic Elements

 Element Description

 InRightHand(gi) Grocery gi is in ISAC’s right hand

 InLeftHand(gi) Grocery gi is in ISAC’s left hand
 BagEmptyRight(bi) Bag bi is empty on ISAC’s right side
 BagEmptyLeft(bi) Bag bi is empty on ISAC’s left side
 InBag(gi,bj) Grocery gi is in bag bj
 ReachableRight(oi) Object (grocery or bag) oi is reachable
 by ISAC’s right hand
 ReachableLeft(oi) Object (grocery or bag) oi is reachable
 by ISAC’s left hand
 OnConveyor(gi) Grocery gi is on the conveyor belt
 ConveyorTurnedOn true if the conveyor belt is on,
 else false
 BagsEmptyRight true if at least one bag is empty on
 ISAC’s right side, else false

 BagsEmptyLeft true if at least one bag is empty on
 ISAC’s left side, else false

The final components of the current state representation are the Evaluation Signals that

maintain information about the internal appraisals and external rewards. The external rewards are

provided by the critic and are based on the actions taken in previous states. The internal

appraisals are those described thoroughly in Chapter V. Each evaluation signal is listed in Table

16, along with a brief description.

107

Table 16. Evaluation Signals

 Signal Significance

 ωωωω Learned weights for each attribute (relevance)
 ui Utility appraisals

 χχχχi Confidence in each utility appraisal
 ti

a Allowable deliberation time
 ti

e Expected deliberation time
 qi

e Expected solution quality
 ii Interrupt signal

 ϑ Feedback values (matrix)

 φφφφi Fit appraisals

Behavioral Repertoire

For this experiment ISAC requires a complete set of behaviors designed for bagging

groceries. These behaviors are given to ISAC as initial knowledge. With each behavior, an

associated set of preconditions determines whether that behavior is allowable in the current state.

In this context, “allowable” behaviors are those can be considered and attempted by ISAC,

regardless of outcome. For example, the behavior BagGrocery(bagi, groceryj) is allowable if

groceryi is on the conveyor belt and is Reachable(). An object is “reachable” if that object is

within ISAC’s workspace. There are also postconditions associated with each behavior;

however, postconditions are only used for planning, internal rehearsal, and simulation, and are

not used to modify the representation of the current external state. The behaviors, preconditions,

and postconditions are listed in Table 17.

Control and execution of each behavior is performed locally by specific Activator

Agents. In particular, the behaviors BagGroceryLeft(bi,gj) and BagGroceryRight(bi,gj) are

hierarchically composed of the low-level control behaviors ReachToObject(gj), GraspObject(gj),

ReachToBag(bi), ReleaseObject(gj). However in this dissertation, these behaviors have been

abstracted out, to speed decision making. If this were not the case, ISAC would need to learn the

necessary behavioral combinations required for bagging groceries, before learning the appraisals

that are the focus of this research.

108

Table 17. Behavior List with Pre- and Postconditions

 Behavior Preconditions/Postconditions

 TrackGrocery(gi) Pre: OnConveyor(gi) = true

 RequestNewBagLeft() Pre: EmptyBagsLeft = false

 Post: EmptyBagsLeft = true

 ReachableLeft(bnew) = true

 RequestNewBagRight() Pre: EmptyBagsRight = false

 Post: EmptyBagsRight = true

 ReachableRight(bnew) = true

 BagGroceryRight(bi, gj) Pre: OnConveyor(gj) = true
 ReachableRight(gj) = true

 ReachableRight(bi) = true

 Post: OnConveyor(gj) = false

 ReachableRight(gj) = false

 InBag(bi, gj) = true

 BagGroceryLeft(bi, gj) Pre: OnConveyor(gj) = true
 ReachableLeft(gj) = true

 ReachableLeft(bi) = true

 Post: OnConveyor(gj) = false

 ReachableLeft(gj) = false

 InBag(bi, gj) = true

 Wait(gi) Pre: ConveyorTurnedOn = true

 OnConveyor(gi) = true

 Post: ReachableLeft(gi) = true OR
 ReachableRight(gi) = true

 StopConveyor() Pre: ConveyorTurnedOn = true
 Post: ConveyorTurnedOn = false

 StartConveyor() Pre: ConveyorTurnedOn = false

 Post: ConveyorTurnedOn = true

Overview and Description of Simulation Experiments

The simulation environment was used to perform comprehensive evaluation and testing

of the implemented control system. The simulation is designed to mirror the actual grocery-

bagging layout, minus the noise and non-determinism commonly associated with real-world

robotic experiments, typically sensor and actuator error. As previously discussed, the simulation

enables recorded states and episodes to be re-used, which allows experiment repeatability – a

feature not found in most physical robotic experiments. The results presented in the following

sections have been obtained using the simulation environment.

109

Experiment Design

Several simulation experiments have been designed to evaluate and test the implemented

system. These experiments evaluate how well the system learns the appropriate domain

knowledge for the grocery-bagging task, how well the system learns to appraise urgency and

adjust its deliberation, and whether levels of fit can be determined for each component. In these

experiments, the grocery list in Table 14 was divided into two sets GrocerySet-A and

GrocerySet-B, as shown in Tables 18 and 19. The system was only allowed to train using

experience generated from GrocerySet-A, but the system was evaluated and tested using

situations generated from both grocery sets.

The first two experiments were designed to evaluate how well the system learns the

appropriate domain knowledge (i.e., relevance and utility appraisals) to perform the grocery-

bagging task. During these experiments the system cognitively processed experience in order to

extract knowledge related to forming goal-relevant grocery clusters as well as utility evaluations.

At various points during the training process system performance was evaluated, however,

slightly different evaluations were performed based on the manner in which experience had been

acquired.

In the first experiment, experiences (i.e., episodes) were randomly selected from a

database that had been generated previously. To test performance, a set of 30 sample bags, 12

sample states, and 15 full episodes were then generated using groceries from both GrocerySet-A

and GrocerySet-B. The 30 test bags were generated randomly and were presented to the system

one at a time. The 12 test states were composed of finalized sets of grocery bags. During

evaluation and testing the system was required to appraise each bag or state using its current

knowledge. These appraisals were then compared to the known values returned by the external

critic, in order to measure the difference between the learned and correct values.

110

Table 18. GrocerySet-A

 name color weight (oz) size (in3) firmness temp.(Fo) price ($) type healthy
 granola RED 10 48 hard 75 2.29 T1 YES
 tissue WHITE 8 252 soft 75 1.45 T7 NA
 soda RED 64 294 hard 75 1.50 T6 NO
 ice_cream BLUE 22.56 70 hard 32 2.99 T4 YES
 frozen_pizza RED 10.5 81 hard 32 1.25 T1 NO
 chicken PINK 24 108 hard 32 3.05 T5 YES
 milk WHITE 68.8 160 hard 45 1.67 T4 YES
 cereal BLUE 17 227.5 hard 75 3.15 T1 NO
 oranges ORANGE 64 504 hard 75 4.29 T3 YES
 potatoes BROWN 80 504 hard 75 3.99 T2 YES
 strawberries MAGENTA 16 140 soft 55 2.30 T3 YES
 bread BROWN 16 325 soft 75 0.89 T1 YES
 rotisserie BROWN 32 160 hard 150 7.99 T5 YES
 eggs YELLOW 24 144 soft 45 1.59 T5 YES
 hot_soup WHITE 12 48 hard 175 3.50 T2 YES
 chips YELLOW 12 378 soft 75 2.68 T6 NO
 yogurt BLUE 24 75 hard 45 1.59 T4 YES
 frozen_fruit BLUE 48 180 hard 32 7.00 T3 YES
 ziploc_bags BLUE 10 99 hard 75 2.99 T7 NA
 spaghetti BROWN 12 22 hard 75 1.19 T1 YES
 green_beans GREEN 14.5 25 hard 75 0.50 T2 YES
 cucumbers GREEN 28 72 hard 50 2.40 T2 YES
 teriyaki_bowl BLACK 17 105.88 hard 150 5.29 T5 NO
 fruit_juice MAGENTA 64 198 hard 75 2.18 T3 NO
 tuna BLUE 20 85.75 hard 75 7.39 T5 YES

Table 19. GrocerySet-B

 name color weight (oz) size (in3) firmness temp.(Fo) price ($) type healthy
 cookie_dough YELLOW 16 31.5 soft 75 2.50 T6 NO
 waffles YELLOW 12 121.5 hard 32 2.79 T1 YES
 frozen_vegetables WHITE 16 96 hard 32 1.19 T2 YES
 cheese PURPLE 8 45 soft 45 2.49 T4 YES
 ketchup RED 32 84 hard 75 1.58 T2 YES
 popcorn BLUE 20 108 hard 75 2.79 T1 NO
 hot_chocolate BLUE 2.25 35 hard 75 1.00 T6 YES
 trash_bags GREEN 48 256 hard 75 10.99 T7 NA
 marshmallows WHITE 16 110 soft 75 2.00 T6 NO
 coffee RED 23 180 hard 75 8.41 T7 YES
 cheezits RED 11.5 162 hard 75 2.00 T1 NO
 ritz_chips GREEN 80 189 hard 75 3.00 T1 NO
 vegetable_soup BROWN 18.8 31.25 hard 75 2.50 T2 YES
 choc_cookies BROWN 16 135 hard 75 2.99 T6 NO
 peanut_butter BROWN 28 45 hard 75 2.50 T6 YES
 macNcheese BLUE 7 39.38 hard 75 0.75 T1 NO
 vegetable_oil YELLOW 48 132 hard 75 2.69 T6 NO
 rice WHITE 32 90 hard 75 1.99 T1 YES
 bagels BROWN 20 72 soft 75 1.99 T1 YES
 ribs BLACK 20 336 hard 150 10.99 T5 NO
 tomatoes RED 20 90 soft 75 2.75 T3 YES
 lettuce GREEN 16 156 hard 60 2.49 T2 YES
 bananas YELLOW 32 216 soft 75 4.00 T3 YES
 cake BROWN 44 549 soft 75 6.99 T6 NO
 ground_beef RED 36.8 120 hard 45 7.57 T5 YES

111

Unlike the test bags and states, the 15 test episodes were generated by initializing the

decision-space using random grocery selection, and repeatedly allowing the system to form plans

and perform actions. The plan-act process continued until all of the groceries in the initial state

had been bagged. In these 15 test episodes there was a combined total of 119 groceries, or

approximately 8 groceries per episode. The rational for this number was based on empirical tests

that indicated this number was large enough to stress the system, but small enough to enable

timely evaluation. For example, for a state with N groceries and only one bag there are N!

solutions to the grocery-bagging problem. Thus, 8 groceries yields approximately 40,000

solutions. If intermediate states, such as those resulting from a Wait() action, are included the

number of states searched for a solution could increase drastically. Since the system had not yet

learned to appraise urgency and modify its deliberation, the necessarily deeper search through

such a large state space would require prohibitively expensive deliberation costs. In the interest

of time and solvability, each test state was limited to only a few groceries. The actual number of

groceries per episode was selected from a uniform distribution over the range [4, 12].

In the second experiment, the system was trained and evaluated concurrently using its

own acquired experience. This involved sequentially generating random grocery-bagging

episodes, allowing the system to bag groceries using its current knowledge, providing evaluation

feedback, and re-training once every M episodes. Individual episodes were generated by

selecting a small set of groceries (at random), and then placing those groceries on the conveyor

belt. As those groceries were bagged, additional groceries were selected (also at random) and

placed on the conveyor belt. Therefore, at each step of the planning process, the system was

unaware of how many and what type of groceries may appear at the next time step. In between

training epochs the system was exposed to M = 10 episodes generated using only GrocerySet-A

and 10 episodes using only GrocerySet-B. After each set of 20 episodes, the system was re-

trained by incorporating the first 10 episodes (GrocerySet-A) into long-term memory. Evaluation

was then continued using the next 20 episodes (i.e., the episodes which the system has not yet

been exposed).

Once the system has demonstrated the ability to learn the required domain knowledge,

additional experiments were designed to evaluate how well the system learns to appraise urgency

and to adjust deliberation accordingly. In addition, this experiment is also used to evaluate the

system’s ability to appraise fit. During this experiment only the non-fixed, high action cost

112

condition is used, because it is necessary that the system employ all of its appraisals and because

the high action cost should force the system to make more errors, which creates a more

conducive environment for appraising fit.

During each experiment, the size of the relational map for constraints (1) and (2) was set

to 40 x 40 and the size of the relational map for constraint (3) was set to 25 x 25. The difference

in size of these two maps is based on the fact that much more training experience was generated

for the first map. During the experiments in which the system was required to deliberate without

the use of urgency appraisals to adjust the search parameters, a search depth of 3.0 and a breadth

of 1.0 were used. These values were empirically determined during initial tests to adequately

enable the system to evaluate a range of possible responses, while simultaneously allowing

experiments to be performed timely and efficiently.

Performance Measures

Throughout each of the simulated experiments, the same critic was used to evaluate

performance. This critic used preset rules to determine:

1. Number of constraint (1) violations

2. Number of constraint (2) violations

3. Whether constraint (3) has been violated

4. Deliberation time per decision epoch

Constraints (1) and (2) were evaluated on a per bag basis, while constraint (3) was evaluated on

a per episode basis. Pseudo-code for the two preset rules that evaluate constraints (1) and (2) is

shown in Figure 31. These rules were implemented as if-then checks that were based solely on

the contents of each individual bag. These rules returned the value –1 if the constraint was

violated, otherwise the value +1 was returned. The rule for constraint (3), however, was based on

the number of groceries and the number of bags in a single episode, and returned one of a range

of values. The equation for constraint (3) is given in Equation (28), where Num_groceries is the

total number of groceries in the current episode, Num_bags is the total number of bags used in

that episode, and κ1 and κ2 are constants that define the range of values that can be returned.

Throughout these experiments both κ1 and κ2 were set to 1.5. The rational for this selection is

113

that empirical tests showed that such a setting kept the constraint (3) evaluations near the –1/+1

range. Finally, the critic was also used to record the deliberation time during task performance.

Figure 31. Preset Rules for Constraints (1) and (2)

2
1)(*

)3(Constraint κ
κ

−
−

=
iesNum_grocer

Num_bagsiesNum_grocer
 (28)

During evaluation of system performance, six different values were recorded that relate

to the system’s application of its learned domain knowledge. These six values are:

1. E1 – Difference between the external evaluation of constraint (1) and the internal

appraisal for constraint (1), summed over all bags and normalized by the maximum

possible error.

Crusher = Lightweight = Hot = Cold = false

Large_count = Medium_count = Small_count = Total_weight = 0.0

For all groceriesi in bagj

If(firmnessi = hard and weighti > 20.0)
Crusher=true

If(firmnessi = soft and weighti < 30.0)

Lightweight=true
If(tempi > 100.0)

Hot=true

If(tempi < 50.0)
Cold=true

If(sizei > 400.0)
Large_count = Large_count+1

Else If(sizei > 200.0)

Medium_count = Medium_count+1
Else

Small_count = Small_count+1

Total_weight = Total_weight + weighti

Total_count = 2.5*Large_count + 1.5*Medium_count + 0.9 * Small_count

If(Crusher & Lightweight)

Constraint(1)j = -1
Else If(Hot & Cold)

Constraint(1)j = -1

Else
Constraint(1)j = +1

If(Total_weight > 165)
Constraint(2)j = -1

Else If(Total_count > 5)

Constraint(2)j = -1
Else

Constraint(2)j = +1

114

NumBags

uExtEval

E

NumBags

k

kkk

*2

)*(
0

111

1

∑
=

−

=

χ

 (29)

2. E2 – Difference between the external evaluation of constraint (2) and the internal

appraisal for constraint (2), summed over all bags and normalized by the maximum

possible error.

NumBags

uExtEval

E

NumBags

k

kkk

*2

)*(
0

222

2

∑
=

−

=

χ

 (30)

3. E3 – Difference between the external evaluation of constraint (3) and the internal

appraisal for constraint (3), summed over all 15 test states and normalized by the

maximum possible error.

)(*2

)*(

21

0

333

3
κκ

χ

−

−

=
∑

=

NumStates

k

kkk uExtEval

E (31)

4. E4 – Number of errors on constraint (1), summed over all test states per trial.

5. E5 – Number of errors on constraint (2), summed over all test states per trial.

6. E6 – Number of bags used, summed over all test states per trial.

In addition to these recorded values, the learned attribute weights were also recorded in

order to analyze how the learned concepts changed over time. The final grocery classifications

were recorded to evaluate whether or not useful grocery classifications had been formed, and the

trained relational maps were recorded to analyze the types of relations that had been learned.

Finally, deliberation time, search depth and breadth, and the number of states expanded was

recorded for use in the experiments that evaluated urgency.

115

Experiment 1: Domain Knowledge Using Random Experience

Experiment Description

For this experiment 100 episodes were generated at random. The system was repeatedly

trained using increasing amounts of this experience, and performance was evaluated with respect

to the appraisals relevance and utility. Each training episode was generated selecting up to 20

groceries at random, and then allowing ISAC to bag those groceries without any prior knowledge

of the correct appraisal values (i.e., random selection). Due to the fact that behavior selection

was essentially random, a large search depth was not used and, therefore, these episodes could be

generated quickly. All of the groceries used to generate this corpus of experience were selected

from GrocerySet-A. The critic provided feedback at the end of each episode for each of the final

bags (constraints 1 and 2), as well as the entire episode (constraint 3). After each training step,

performance was evaluated using the combination of 30 test bags, 12 test states, and 15 test

episodes. Four different conditions were used for this experiment and five trials were performed

for each condition. The results presented in the following subsection are the averages over these

five trials. The four experimental conditions are listed as follows:

1. Fixed weight set and high action cost

2. Non-fixed weight set and high action cost

3. Fixed weight set and low action cost

4. Non-fixed weight set and low action cost

The rational for having high and low action cost conditions was that high action costs

should force the system to explore more single bag options, or “place more groceries in a bag”.

Increasing the number of groceries per bag should increase the rate of learning by providing

more diverse experiences, but may also interfere with final task performance by outweighing

uncertain appraisals. The high action cost value was set to –0.85 and, therefore, in order to prefer

using a new bag for a new grocery, rather than placing the new grocery in an existing bag, the

system must be highly confident that the latter action will violate one of the constraints. From

Chapter V, Equation (26), shows that possible states are evaluated and preferentially ordered

using the vector evalj = χχχχj * uj, where confidence vector χχχχj is composed of elements bounded by

the interval [0, 1] and the utility vector uj is composed of elements bounded by the interval

[-1, 1]. Thus, only highly confident, correct evaluations will “overrule” the preference for not

116

getting a new bag (additional action). Low action costs, however, enable the system to make

decisions based solely on its learned appraisals and not on innate cost aversion. The low action

cost value was set to –0.05, so that the action of requesting new bags would only be preferred

when considering situations that could possibly have negative value. In the low action cost

condition, confidence values were only used to order the desirability of potential responses.

The rational for implementing the fixed weight conditions was to isolate the process of

learning the relational maps and ease the demand placed on the system’s learning capabilities. In

the non-fixed conditions, the system was required to simultaneously learn the weight values

useful for grouping groceries into useful classes, while then using those classes to generate the

relational maps. As the grocery classifications changed, so did the learned relational maps. While

the non-fixed condition better reflects real world situations in which relevance and utility

information must be learned concurrently, it makes it difficult to assess aspects of the learning

process. Because in many robotic applications some domain knowledge is present, the fixed

weight conditions were used to provide a comparison with the more noisy non-fixed conditions.

The fixed weight values are given in Table 20, and the resulting classification scheme for

GrocerySet-A is given in Table 21. The fixed weights were chosen in such a way that the

resulting classification scheme would separate groceries into groups that do not violate constraint

(1). In other words, if the system were to perform the grocery-bagging task using only the rule

“do not mix types of groceries”, constraint (1) would not be violated.

Table 20. Weight Values for Fixed Condition

 name color weight size firmness temp price type healthy

 0.0 0.0 0.75 0.75 0.75 1.0 0.0 0.0 0.0

Table 21. Final Clusters Using Pruned Tree and Fixed Weights

 Class Grocery

 C0 ice_cream, frozen_pizza,
 yogurt, cucumbers, chicken
 C1 granola, ziploc_bags, tuna
 spaghetti, green_beans
 C2 rotisserie
 C3 hot_soup, teriyaki_bowl
 C4 milk, frozen_fruit
 C5 oranges, potatoes
 C6 soda, cereal, fruit_juice
 C7 tissue, bread, chips
 C8 eggs, strawberries

117

Furthermore, the purpose of the relevance appraisals is to extract important features from

the environment in a manner that enables dimensional reduction and goal-based abstraction of

the current situation. For reference throughout these experiments the grocery clusters that result

from assigning uniform weights to each attribute are listed in Table 22. This table indicates that

without the ability (either innate or learned) to filter state information and focus on the most

goal-relevant features, virtually no reduction is performed.

Table 22. Final Clusters Using Pruned Tree and Uniform Weights

 Class Grocery

 C0 granola
 C1 chips
 C2 rotisserie
 C3 tissue
 C4 oranges, potatoes
 C5 frozen_pizza
 C6 teriyaki_bowl
 C7 eggs
 C8 frozen_fruit
 C9 soda
 C10 bread
 C11 hot_soup
 C12 ziploc_bags
 C13 strawberries
 C14 fruit_juice
 C15 milk
 C16 tuna
 C17 cereal
 C18 green_beans
 C19 chicken
 C20 spaghetti
 C21 ice_cream, yogurt
 C22 cucumbers

Results and Discussion

Figures 32-34 present the results for each performance metric for the fixed, high cost

condition averaged over all five trials. In each figure, the first column indicates system

performance based on random selection. Figure 32 shows that with as little as 30 episodes of

training, the system’s ability to make correct utility appraisals on each constraint improves

approximately 15%. However, after this initial improvement the performance levels off. This

will be discussed at the end of this Experiment 1 section, but for now it is only important to note

the both the initial improvement and subsequent leveling off.

118

Figure 33 presents the number of errors on constraints (1) and (2) during the 15 test

episodes as the system is trained with increasing amounts of random experience. This figure

shows that the total number of errors decreases throughout training. Much of this improvement

can be explained by improvement on constraint (1), while the initial improvement on constraint

(2) is followed by a trend of much slower improvement. This dramatic decrease in constraint (2)

errors is explained by noting, from Figure 34, that the number of bags also increases dramatically

at this stage of learning. Therefore, the system quickly identifies that the solution “throw

everything in one/two bags” is not correct. As the number of bags increases, the ratio of

groceries : bags decreases, which intuitively decreases the likelihood of constraint (2) errors.

Figure 32. Appraisal Errors with Increased Training for the Fixed Weight, High Cost Condition
and Random Experience

These results indicate that the system first learns to reduce the number of groceries per

bag and that as a result the number of errors per trial decreases dramatically. Once this

knowledge has been learned, the system then exhibits slower improvement on constraints (1) and

(2), however, during this improvement the ratio of groceries : bags remains roughly constant. In

other words, the additional improvement does not require further isolating groceries (e.g., one

grocery per bag).

0.51

0.45

0.39

0.35
0.37 0.37 0.36

0.31
0.33 0.33

0.37

0.46
0.44

0.35

0.32

0.34
0.33 0.34

0.31 0.32
0.34 0.34

0.62

0.53

0.39

0.36 0.37
0.36

0.39

0.34
0.32

0.33 0.32

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Random 10 20 30 40 50 60 70 80 90 100

Episodes for Training

A
p

p
ra

is
a
l

E
rr

o
r

a
s
 P

e
rc

e
n

ta
g

e
 o

f
M

a
x
.

Constraint (1) Constraint (2) Constraint (3)

119

Figure 33. Total Errors Per Trial on Constraints (1) and (2) for the Fixed Weight, High Cost
Condition and Random Experience

Figure 34. Number of Bags Used Per Trial for the Fixed Weight, High Cost Condition and
Random Experience

As mentioned previously, the same 15 test states were used for each trial and there was a

combined 119 groceries over all test states. Therefore, while the number of groceries per bag

starts around 3.0, the final ratio hovers around 1.8. While this may seem very low, there are

multiple points to consider when analyzing this performance.

15.6

12.6

9.2 9.2 10

6.4
8

6.8 7 6 6.8

12

3.6

3.6 2.8
3.2

2.8

2.6

1.8
2.6

1.6

2.6

0

5

10

15

20

25

30

Random 10 20 30 40 50 60 70 80 90 100

Episodes for Training

#
 E

rr
o

rs
 p

e
r

T
ri

a
l

Constraint (1) Constraint (2)

39.6

64.8
63

65.4 65.6 66 65.2 65.8 65.2 65.6
63.4

0

10

20

30

40

50

60

70

80

Random 10 20 30 40 50 60 70 80 90 100

Episodes for Training

#
 B

a
g

s
 p

e
r

T
ri

a
l

Constraint (3)

120

1. For 15 tests states and a total of 119 groceries there was an average of ~8 groceries per

trial. As described previously, this number was kept low to enable timely deliberation and

experimentation.

2. The distribution from which the groceries were selected (i.e., GrocerySet-A) was

designed to provide the system with ample opportunities to learn, and thus the number of

potentially dangerous combinations was increased over that which may occur in a typical

grocery store.

3. The simulation environment was designed to mimic the real ISAC robot, and therefore

groceries appearing on one side of the conveyor belt (e.g., ISAC’s left or right side) must

be placed in bags on that side. In other words, while a human grocery-bagger may choose

to reach across their body to grab the “eggs” on the left in order to place them in a bag on

the right, ISAC is incapable of such motions, and can only consider placing the “eggs” in

a bag on the left.

The result is that during this experiment (and those to follow), ISAC was presented with

grocery sets in which there is a larger probability of error than in normal grocery-bagging

situations, the type of deliberation demanded during this experiment required that a low number

of groceries be presented to ISAC, and ISAC’s physical resources limited the grocery

combinations that were possible. Thus a ratio of two groceries per bag is not as low as it seems,

and the fact that this ratio remains constantly above 1.0, while improvement is made on the other

constraints indicates that the system is learning to bag groceries within its grocery-bagging

environment.

However, while the system shows the ability to learn the improvement is gradual and the

question may be asked whether the system’s performance is merely reflecting the fixed grocery

classification scheme with which it has been provided. To investigate this point, it is necessary to

analyze the relational maps that were used to appraise situations. If, in fact, the system only

learned to apply the grocery classification scheme when bagging groceries (i.e., only mix

groceries of the same type), then the relational maps would need to contain a high percentage of

uniform vectors that evaluate close to +1.0, (e.g., C0C0C0 vs. C1C3C2).

The final relational maps, after training on all 100 episodes, were analyzed for each trial.

On average there were approximately 641 nodes in each relational map that contained a vector

121

with more than one element and also evaluated to ~+1.0. The averaged percentage of uniform

vectors in these nodes, across all five experimental trials, was only 10.06%. Further analysis

revealed that nearly 90% of these vectors had a maximum frequency of reoccurrence of any

single element in that vector less than 0.75, 86% of the vectors had a maximum frequency less

than 0.67, and 70% of the vectors had a maximum frequency less than 0.5. Therefore, roughly

2/3 of the positive (+1.0) vectors in the trained relational map contained enough diversity that no

single element of that vector recurred with frequency greater than 50%. Examples of such

vectors include C0C1, C1C3C2, and C5C2C4C5. Further analysis revealed that, on average, there

were 799 nodes in each relational map that contained a vector with more than one element and

also evaluated to ~ –1.0. Of these vectors, approximately 89% had a maximum frequency of less

than 0.5. Given the fact that the system was trained using randomly generated experience, it is

expected that the generalized feature vectors would have a low probability of uniformity, and

this analysis indicates that the there was a high percentage of diverse experience that would not

lead the system towards any one response, or towards merely not mixing grocery types.

Figures 35-37 show the results for each performance metric for the non-fixed, high cost

condition averaged over all five trials. It is important to note, at this point, that the results

presented for the 30 test bags and 12 test states, while unique to each test, are not influenced by

the action cost. Rather, these results are influenced only by the learned weights, grocery

classifications, and trained relational map. These results are presented for the 30 test bags and 12

test states to enable better understanding of system performance during the episodic tests.

Even though the system in this condition was required to simultaneously learn both the

weights necessary to form grocery classifications as well as the relational maps to evaluate bags

and episodes, Figure 35 indicate that appraisal accuracy improved for both bags and episodes at a

rate similar to that for the fixed condition. Figure 36 shows that the system is also able to

improve performance with respect to constraints (1) and (2), however, this improvement was

more gradual. This is explained, in part, by noting the more gradual increase in the number of

bags used, as shown in Figure 37.

122

Figure 35. Appraisal Errors with Increased Training for the Non-Fixed Weight, High Cost
Condition and Random Experience

Figure 36. Total Errors Per Trial on Constraints (1) and (2) for the Non-Fixed Weight, High Cost
Condition and Random Experience

0.51

0.46

0.42

0.33

0.31
0.32 0.31

0.34 0.34 0.34

0.30

0.46

0.43

0.35 0.35
0.33

0.31 0.32 0.32
0.35 0.35

0.33

0.41

0.34

0.30

0.26

0.23 0.23 0.24
0.22

0.25 0.24
0.23

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Random 10 20 30 40 50 60 70 80 90 100

Episodes for Training

A
p

p
ra

is
a
l

E
rr

o
r

a
s
 a

 P
e
rc

e
n

ta
g

e
 o

f
M

a
x
.

Constraint (1) Constraint (2) Constraint (3)

15.6 14.8

12.4

9.6
10.8

9.6
8.2

6.4
7.8 8.2

7.2

12

6

2.8

2.2

3.2

3.2

1.4

1.6

2.6 1.6
1.8

0

5

10

15

20

25

30

Random 10 20 30 40 50 60 70 80 90 100

Episodes for Training

#
 E

rr
o

rs
 p

e
r

T
ri

a
l

Constrant (1) Constraint (2)

123

Figure 37. Number of Bags Used Per Trial for the Non-Fixed Weight, High Cost Condition and
Random Experience

To better understand what is happening in this non-fixed weight condition, it is necessary

to analyze how the weights change as function of the number of training episodes. However, as

discussed in Chapter V, the learned weights may differ drastically even while the learned

concepts are similar. Thus, the weights presented here are not averaged results, but instead those

obtained during the first round of experiments. Figure 38 shows the value for each weight as

training increases. As shown in the figure, while the weight associated with the attribute name

immediately drops to 0.0, and the weight associated with the attribute firmness constantly stays

at 1.0, the remaining weights gradually, and consistently, change. The weights for attributes

weight, price, and healthy (3, 7, and 9) show some leveling off, but weights for the attributes

size, temperature, and type (4, 6, and 8) do not reach a steady state within the training window.

To understand which attributes are consistently considered “more relevant”, Table 23 lists the

weight value for each attribute averaged over all training epochs.

39.6

54.8

63.8

67.2

62 62.6

65.8
67.6

65.2
67.6

70

0

10

20

30

40

50

60

70

80

Random 10 20 30 40 50 60 70 80 90 100

Episodes for Training

#
 B

a
g

s
 p

e
r

T
ri

a
l

Constraint (3)

124

Table 23. Learned Attribute Weights

 Attribute Weight

 firmness 1.0000
 temperature 0.7487

 weight 0.7309
 healthy 0.5992

 price 0.5851
 size 0.5039
 type 0.3726

 color 0.2439
 name 0.0909

Figure 38. Learned Weights with Increased Training for the Non-Fixed, High Cost Condition
and Random Experience

As the weights are continually modified the developed grocery classifications may also

change, which slows down the learning process and can potentially insert a small amount of error

into task performance. The reason for this error can be understood by reviewing Table 24, which

provides the learned grocery clusters after training on all 100 episodes. While, for the most part,

these clusters are similar to those presented in Table 21 for fixed weights, class C1 does mix hot

0 50 100

0

0.2

0.4

0.6

0.8

1

Weight 1

0 50 100

0

0.2

0.4

0.6

0.8

1

Weight 2

0 50 100

0

0.2

0.4

0.6

0.8

1

Weight 3

0 50 100

0

0.2

0.4

0.6

0.8

1

Weight 4

0 50 100

0

0.2

0.4

0.6

0.8

1

Weight 5

0 50 100

0

0.2

0.4

0.6

0.8

1

Weight 6

0 50 100

0

0.2

0.4

0.6

0.8

1

Weight 7

0 50 100

0

0.2

0.4

0.6

0.8

1

Weight 8

0 50 100

0

0.2

0.4

0.6

0.8

1

Weight 9

125

and cold items, which would cause a violation of constraint (1) unless the system specifically

learned not to place more than one C1 grocery into a bag.

Further analysis of the learned clusters investigates the consistency of these clusters

across all five trials for the four training iterations consisting of {70, 80, 90, 100} episodes.

These training epochs were chosen because at this point in the training the amount of experience

should be enough to prevent large fluctuations in the individual weights. During these iteration,

the system only identifies the cluster scheme shown in Table 24, 65% (13/20) of the time. Of the

remaining iterations, five involve breaking class C1 into additional clusters and two involve

creating multiple, seemingly spurious additional clusters. Three of the five times that C1 is split,

the result is a clustering in which constraint (1) would never be broken within a single class.

However, the increased number of grocery clusters also makes it more difficult for the relational

maps to generalize from its limited experience, which may explain why the system resorts to

using more bags.

Table 24. Final Learned Partition Using 100 Episodes

 Class Grocery

 C0 ice_cream, chicken,
 yogurt, cucumbers
 C1 granola, ziploc_bags, tuna
 frozen_pizza, cereal,
 spaghetti, green_beans
 teriyaki_bowl, hot_soup
 C2 rotisserie
 C3 tuna
 C4 milk, frozen_fruit
 C5 oranges, potatoes
 C6 soda, fruit_juice
 C7 tissue, bread
 C8 chips
 C9 eggs
 C10 strawberries

Figures 39-41 show the averaged results for the fixed, low cost condition over all five

trials for each performance metric. Unlike the high cost conditions, the results presented in

Figures 39 and 41 are intriguing in that they more accurately demonstrate what the system is

truly learning. With only 30 episodes of experience, the system makes as few mistakes as it has

at any point in either of the previous two conditions. Simultaneously, though, the system also

126

uses more bags than it in any of the previous conditions. In other words, with little training

experience the system immediately becomes pessimistic and avoids risk (i.e., multiple groceries

in single bags). As the amount of training experience increases, Figure 41 demonstrates that there

is a “slight” reduction in the number of bags used, but that overall this number remains constant.

At the same time, the system continues to improve on constraints (1) and (2). After 100 episodes

of training, the system settles on more bags but fewer constraint (1) and (2) violations.

Whereas in previous conditions the system never had a combined total of constraint (1)

and (2) violations less than 7.6 per 15 test episodes (6.0 and 1.6, respectively), in this trial the

system gets as low as 4.2 (3.6 and 0.6, respectively). Because action cost does not affect training

or learning from random experience, it is concluded that the increased number of errors and

decreased number of bags observed in the earlier conditions are, at least somewhat, a product of

the high action cost, which may filter out the low confidence appraisals that would otherwise

have been correct. In other words, the system “knew better, but did not trust itself”.

Figure 39. Appraisal Errors with Increased Training for the Fixed Weight, Low Cost Condition
and Random Experience

0.51

0.44
0.41

0.36

0.32
0.34

0.33 0.32

0.35
0.33 0.33

0.46

0.42

0.39

0.35
0.37

0.33

0.30
0.32 0.31

0.36

0.31

0.41

0.35

0.27
0.25

0.27

0.24 0.23 0.24
0.22

0.23 0.22

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Random 10 20 30 40 50 60 70 80 90 100

Episodes for Training

A
p

p
ra

is
a
l

E
rr

o
r

a
s
 a

 P
e
rc

e
n

ta
g

e
 o

f
M

a
x
.

Constraint (1) Constraint (2) Constraint (3)

127

Figure 40. Total Errors Per Trial on Constraints (1) and (2) for the Fixed Weight, Low Cost
Condition and Random Experience

Figure 41. Number of Bags Used Per Trial for the Fixed Weight, Low Cost Condition and
Random Experience

Figures 42-44 show the results for each performance metric for the non-fixed, low cost

condition averaged over all five trials. Again, because the system is simultaneously charged with

learning grocery classifications as well as the relational maps that provide utility appraisals, the

results presented in Figures 43 and 44 are more erratic than those presented in Figures 40 and 41.

In addition, as in the previous low cost condition, the system demonstrates immediate learning

15.6

10.8

6.4 6 6.8 6.4 6.8
4.8

5.8 6.4

3.6

12

1.8

0.8
0.6

1.8
0.8

1

0.4

1.8 0.8

0.6

0

5

10

15

20

25

30

Random 10 20 30 40 50 60 70 80 90 100

Episodes for Training

#
 E

rr
o

rs
 p

e
r

T
ri

a
l

Constraint (1) Constraint (2)

39.6

72.8 73.8 74.2
72.8

71.2 70.8
69.6 69

70.6
71.8

0

10

20

30

40

50

60

70

80

Random 10 20 30 40 50 60 70 80 90 100

Episodes for Training

#
 B

a
g

s
 p

e
r

T
ri

a
l

Constraint (3)

128

on constraints (1) and (2), followed by a period of very slow learning. This trend is also present

in Figure 44, which shows that the system initially uses a lot of bags to improve performance,

but slowly begins to decrease the number of bags while maintaining performance on the

constraints (1) and (2). While the steady decrease in the number of bags is not dramatic, it is

noticeable; after initially jumping to an average of 77.6 bags per 15 test episodes, the system

eventually gets this count as low as 69.4.

Figure 42. Appraisal Errors with Increased Training for the Non-Fixed Weight, Low Cost
Condition and Random Experience

Figure 43. Total Errors Per Trial on Constraints (1) and (2) for the Non-Fixed Weight, Low Cost
Condition and Random Experience

0.51

0.41

0.37 0.36 0.35 0.35 0.34

0.30

0.26

0.35

0.29

0.46

0.41

0.38

0.34

0.31

0.34 0.35
0.37

0.32 0.31
0.33

0.41

0.35

0.31

0.28
0.26

0.23 0.23 0.23

0.20 0.21
0.22

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Random 10 20 30 40 50 60 70 80 90 100

Episodes for Training

A
p

p
ra

is
a
l

E
rr

o
r

a
s
 a

 P
e
rc

e
n

ta
g

e
 o

f
M

a
x
.

Constraint (1) Constraint (2) Constraint (3)

15.6

8
9.2

6.4
8.6

6.6 7.4 7.2
8.2

6.8 7.2

12

0.8

1.2

1

1.6

0.4
1 0.8

1.4

1.2 1.2

0

5

10

15

20

25

30

Random 10 20 30 40 50 60 70 80 90 100

Episodes for Training

#
 E

rr
o

rs
 p

e
r

T
ri

a
l

Constraint (1) Constraint (2)

129

Figure 44. Number of Bags Used Per Trial for Non-Fixed Weight, Low Cost Condition and
Random Experience

Figure 45 shows how the weights change during the first trial. As with Figure 38, these

are not averaged values. Again, the weights associated with the name and firmness attributes

immediately reach their final state, however, many of the several of the remaining weights still

exhibit small fluctuations, even at 90 episodes of training. While this fluctuations may influence

concept formation, after 50 episodes of training none of the weights fluctuate by an amount

greater than 20% of their value at the 50 episode mark. Table 25 presents the learned attributes

weights averaged over all five experimental trials, and Table 26 presents the final grocery

clusters. The clusters presented in Table 26 are the same as the one presented in Table 24, and

further analysis reveals that for all five trials and the four training iterations consisting of {70,

80, 90, 100} episodes, these clusters were identified 75% (15/20) of the time. Of the remaining

five iterations, 60% (3/5) divided class C1 into multiple categories while 40% (2/5) divided C4.

Table 25. Learned Attribute Weights

 Attribute Weight

 firmness 1.0000
 temperature 0.7380

 weight 0.7032
 price 0.5801
 healthy 0.4868
 size 0.4160
 type 0.3340
 color 0.2658
 name 0.0909

39.6

77.6

73
75.6

72.2 73 72 73

69.4
71.6 72.2

0

10

20

30

40

50

60

70

80

Random 10 20 30 40 50 60 70 80 90 100

Episodes for Training

#
 B

a
g

s
 p

e
r

T
ri

a
l

Constraint (3)

130

Figure 45. Learned Weights with Increased Training for the Non-Fixed, Low Cost Condition and
Random Experience

Table 26. Final Learned Partition Using 100 Episodes

 Class Grocery

 C0 ice_cream, chicken,
 yogurt, cucumbers
 C1 granola, ziploc_bags, tuna
 frozen_pizza, cereal,
 spaghetti, green_beans
 teriyaki_bowl, hot_soup
 C2 rotisserie
 C3 tuna
 C4 milk, frozen_fruit
 C5 oranges, potatoes
 C6 soda, fruit_juice
 C7 tissue, bread
 C8 chips
 C9 eggs
 C10 strawberries

0 50 100

0

0.2

0.4

0.6

0.8

1

Weight 1

0 50 100

0

0.2

0.4

0.6

0.8

1

Weight 2

0 50 100

0

0.2

0.4

0.6

0.8

1

Weight 3

0 50 100

0

0.2

0.4

0.6

0.8

1

Weight 4

0 50 100

0

0.2

0.4

0.6

0.8

1

Weight 5

0 50 100

0

0.2

0.4

0.6

0.8

1

Weight 6

0 50 100

0

0.2

0.4

0.6

0.8

1

Weight 7

0 50 100

0

0.2

0.4

0.6

0.8

1

Weight 8

0 50 100

0

0.2

0.4

0.6

0.8

1

Weight 9

131

There is one final point that should be discussed for the results just presented; for each

condition the system demonstrates that it is able to learn, but its learning quickly levels out while

there are still many errors in performance. This is especially evident in the performance plots for

all three constraints (i.e., the tests on 30 bags and 12 states). While it is expected that

performance will eventually level off, the results presented thus far level off very quickly even

though there is still much room for improvement. One reason for this may be the “disconnect”

between the random examples used to train the system and the tests used to evaluate the system.

Essentially, when the system learns it extracts weights based on statistical patterns of “good”

and “bad” grocery bags, while simultaneously generalizing these bags for storage in the

relational maps. However, in this experiment all of this generalized experience was initially

generated at random. Once the system begins to learn and performs purposive, deliberate actions

it becomes increasingly unlikely that random experience will provide much useful guidance.

This is due to the fact that the system is no longer performing randomly, and should not expect to

encounter random bags in the future.

The next experiment is designed to investigate system performance using non-random

experience. Initial states are still generated at random, but once completed, each episodes is

iteratively added to the system’s growing corpus of experience (long-term memory), and is

included in the next training phase. Therefore, the system will “learn as it goes”. This allows the

system to develop knowledge structures that are uniquely tailored to the types of situations that it

expects to encounter.

The next experiment will continue to investigate how performance varies with high and

low action costs, as well as with fixed and non-fixed weights. Analyses will be performed on

how the weights changes, what final concepts are formed, and whether the weights and concepts

ever reach a final steady state. The system will only be trained on episodes generated using

GrocerySet-A, but will be simultaneously tested using episodes generated from both grocery sets.

Finally, some concluding thoughts will be offered with respect to the system’s ability to

cognitively process past experience in order to learn domain knowledge, or the appraisals for

relevance and utility.

132

Experiment 2: Domain Knowledge Using Self-Guided Experience

Experiment Description

Unlike the previous experiment in which training was performed using episodes

generated randomly, this experiment allowed the system to have some control over the

generation of its own training experience. Groceries were still selected at random, but after the

system used its current knowledge to complete each grocery-bagging task that experience was

incorporated in the next round of training.

After each training iteration, the system was allowed to perform the grocery-bagging task

for 10 episodes that had been initialized using GrocerySet-A, and 10 episodes that had been

initialized using GrocerySet-B. For each episode the same six values (E1-E6) were recorded as

before, however, in this experiment all of the tests were performed during the acquisition of new

experience and the system was only required to appraise those bags that were encountered during

task performance. Each episode was generated at random by selecting up to six groceries and

placing them on the conveyor belt. As the system performed the grocery-bagging task, new

groceries were selected and also placed on the conveyor belt. This process continued until a

predetermined number of groceries had been selected and bagged. The number of groceries was

predetermined by uniformly selecting from the range [5, 20]. A higher number of groceries could

be used for this experiment because, at any one time, only a maximum of six groceries were

present on the conveyor belt, which restricted the computation cost associated with lengthy

deliberation. The steps for this experiment are listed as follows:

1. Train the system using the current experience in long-term memory.

2. Select the number of groceries N uniformly from the range [5, 20].

3. Set the total number of groceries bagged, total_count = 0.

4. Select 0 < M ≤ min(6, N – total_count) using a uniform distribution.

5. Select M groceries from GrocerySet-A or GrocerySet-B using a uniform distribution and

then place those groceries on the conveyor.

6. Allow the system to bag each of the M groceries.

7. Set total_count = total_count + M.

8. If total_count < N return to Step (4), else go to Step (9).

9. Provide external feedback for the final situation.

133

10. Measure the error between the internal appraisals and the external feedback and record

the number of constraint violations.

11. If GrocerySet-A was used, then add the new episode to long-term memory.

12. Set num_episode = num_episode + 1.0.

13. If num_episode is a factor of 10, add new episodes to long-term memory and go to Step

(1), else go to Step (3)

Results and Discussion for the Fixed Weight and High Action Cost Condition

The same four conditions were used for this experiment as were used for Experiment 1.

However, rather than running multiple trials and then averaging the results, the system was run

through 700 episodes for each of the four conditions. A square filter was then used to smooth the

data in order to analyze the underlying trends. Throughout this experiment the filter width was

set to three training iterations (30 episodes).

Figure 46 presents the results for the fixed, high cost experimental condition, when tested

using GrocerySet-A. Because Figure 46 presents the results for both training and testing with the

same grocery set, these results provide a good indication of what the system has actually learned.

Later in this subsection, the results from testing on GrocerySet-B are presented in order to

investigate one aspect of how the system may generalize to new experience.

Figure 46(a) shows that the number of constraint (1) errors per bag decreases with

training. This decrease is achieved while the system maintains a consistent ratio of groceries per

bag, which is shown in Figure 46(c). In addition, the number of constraint (2) errors per bag

(Figure 46b) does not increase, but rather remains constant after a very slight initial decrease.

Figures 46(d), (e), and (f) show that with increased training the system’s utility appraisals

become more accurate. This is similar to the fixed, high cost condition for Experiment 1 with the

exceptions that in this experiment the system 1) does not level out as quickly, and 2) exhibits

more oscillation along each performance metric. These oscillations should not be interpreted

indications that training with self-guided experience is less effective and that the system learns

less. On the contrary, in the fixed, high cost condition of Experiment 1 the best ratio of constraint

(1) errors to bags is 0.092, which is achieved at 60 episodes of training. Analysis of Figure 46(a)

reveals that performance in Experiment 2 approaches the 0.05 range at multiple points during

training. Furthermore, in Experiment 1 the best ratio of constraint (2) errors to bags is 0.024 (also

134

occurring at the 60 episode mark), and analysis of Figure 46(b) reveals that in Experiment 2

performance oscillates around the 0.025 range.

While in this experiment the system appears to learn more, the performance is also less

consistent. This is evident from the presence of several large oscillations observed in Figures

46(a) and (d), as well as smaller oscillations in each of the remaining figures. Some of this

oscillatory behavior can be explained by the large amount of unsupervised learning performed by

the system, primarily in the generalization that takes place at the symbolic level of the trained

SOMs. However, further explanation may be provided by the fact that the system’s experience is

constantly updating its current knowledge, and thus shaping the new experience that it acquires.

In other words, unlike Experiment 1 in which the system had no control over its own training,

now the training is intricately related to its current knowledge. The result is that the system may

mistakenly pursue a sub-optimal path for several training iterations before the new experience is

able to “outweigh” the old experience that caused pursuit of the sub-optimal path.

In addition, many of the larger oscillations also seem to co-occur. For example, the large

oscillation at the 400 episode mark in Figure 46(d) is mirrored by an oscillation at the same

location in Figure 46(a), which affirms the conclusion that appraisal accuracy does affect task

performance. In addition, smaller oscillations occurring just before the 100 episode mark in both

Figures 46(d) and (e), and are mirrored in the performance plots for both constraints (1) and (2),

as well as the ratio of groceries to bags.

To further analyze system performance, Figure 47 presents additional breakdowns of

system performance. This includes recording the number of bags per episode with two, three,

and four groceries, as well as the error rate on constraints (1) and (2) for each bag type. Figure

47(a) presents the rate at which bags with two, three, or four groceries are generated per episode.

This figure shows that as training increases, the number of bags per episode in which two

groceries are placed steadily increases, while the number of bags with three groceries initially

increases before finally decreasing. The point at which this decrease begins is, intriguingly, at the

same point in which a large “jump” occurs in number of constraint (1) errors. Thus the system is

sensitive to its own experience, and can become “pessimistic” in response to continued

punishment.

135

Figure 46. Evaluation Graphs for Episodes Generated with GrocerySet-A for the Fixed Weight,
High Cost Condition and Self-Guided Experience

Figure 47(a) shows that the number of bags per episode with four groceries remains

roughly constant (with a slight decrease) during training, while Figure 47 as a whole shows that

the rate of occurrence for each bag type decreases as the number of groceries in that bag

increases. However, Figure 47(b) shows that the rate of occurrence is also inversely related to the

rate of constraint (1) violations per bag, and Figure 47(c) shows the same relationship with the

rate of constraint (2) violations per bag. Because the error rate for each bag type decreases with

training, it can be concluded that the system is learning how to combine groceries in order to

better complete the task, but because certain bag types are more risky than others, these bags

cause more errors and are thus explored less. In an experience-based learner such as this, less

exploration means less opportunity to learn, and thus less learning. This is supported by the

results in Figure 47.

136

Figure 47. Breakdown of Error Rate and Rate of Occurrence for Bags with Different Amounts of
Groceries for the Fixed Weight, High Cost Condition and Self-Guided Experience

Figure 48 presents the results for the episodes generated using GrocerySet-B. The system

has not been trained on any of these groceries, but rather must place these groceries in the correct

grocery cluster using the fixed set of weights and the developed grocery partition. Using this

information the system must then associate the resulting feature vectors with the appropriate

sections of the trained relational map. Unlike the results presented for GrocerySet-A, Figure

48(a) shows that the number of constraint (1) violations per bag does not decrease with increased

training, while Figure 48(b) shows that the number of constraint (2) violations only slightly

decreases with training, however, this decrease is most likely explained by a subsequent slight

decrease in the average number of groceries per bag (Figure 48c). Figures 48(d) and (e) suggests

that this lack of improvement is most likely due to incorrect appraisals for constraint (1) and (2).

While the appraisal error does decrease with training, the amount of decrease is dramatically

slower than with GrocerySet-A and the lowest appraisal error rate obtained for GrocerySet-B is

only slightly better than the worst obtained for GrocerySet-A.

137

Figure 48. Evaluation Graphs for Episodes Generated with GrocerySet-B for the Fixed Weight,
High Cost Condition and Self-Guided Experience

One highly possible explanation for this behavior is that the fixed weights do not allow

the system to separate groceries in the manner that it would “prefer”, based on its own

experience, and thus the fixed weight set may not be best when extrapolating to new experience.

In other words, the system may better off creating its own grocery clusters. To examine this

possibility Tables 27 and 28 present the grocery clusters for both grocery sets. For each grocery

set these clusters represent the same concepts, with the only difference being the specific

groceries assigned to each cluster.

Table 27. Final Partition Using GrocerySet-A

 Class Grocery

 C0 ice_cream, frozen_pizza,
 yogurt, cucumbers, chicken
 C1 granola, ziploc_bags, tuna
 spaghetti, green_beans
 C2 rotisserie
 C3 hot_soup, teriyaki_bowl
 C4 milk, frozen_fruit
 C5 oranges, potatoes
 C6 soda, cereal, fruit_juice
 C7 tissue, bread, chips
 C8 eggs, strawberries

138

Table 28. Final Partition Using GrocerySet-B

 Class Grocery

 C0 waffles, frozen_vegetables,
 ground_beef
 C1 ketchup, popcorn, rice,
 hot_chocolate, macNcheese
 vegetable_soup, choc_cookies
 peanut_butter, vegetable_oil
 C2 ribs
 C3 EMPTY
 C4 EMPTY
 C5 EMPTY
 C6 trash_bags, coffee, lettuce
 cheezits, ritz_chips
 C7 cookie_dough, marshmallows
 bagels, tomatoes, bananas,
 cake
 C8 cheese

Inspection of these partitions reveals that the distribution of groceries across clusters is

much less uniform with GrocerySet-B than with GrocerySet-A. In particular, there are no

groceries from GrocerySet-B assigned to the either of the classes {C3, C4, C5}. Intuitively, this

should not matter so long as the final grocery clusters obey the same learned relationships as the

corresponding clusters for GrocerySet-A. For example, if the system has learned that members of

class C0 can always be grouped with other members of class C0 and that members of C8 must be

kept separate from members of C5 for GrocerySet-A, then these relationships must also be true

for GrocerySet-B.

The first test performed to determine if the relationships between clusters are different

was to test the intra-cluster grouping in each cluster: could members of each cluster be mixed?

For this test, nine bags were created for each grocery set using the exact contents in each of the

nine clusters, i.e., bag0 for GrocerySet-B contained the groceries waffles, frozen_vegetables,

ground_beef. For both grocery sets, none of the bags violated constraint (1), and therefore this

constraint was preserved for intra-cluster grouping.

In the second test, the relationship between two of the nine clusters was analyzed. This

test was designed to investigate inter-cluster grouping: if members of one cluster could be

grouped with members of another cluster for GrocerySet-A, does the same relationship hold for

GrocerySet-B? From empirical observation the grocery classes C1 and C7 were chosen based on

the large amounts of groceries in each class, and from the fact that certain groceries in each class

139

were known not to mix well. This test involved creating all sets of bags in which exactly one

member of class C1 and one member of class C7 were present and asking the external critic to

evaluate each bag. For GrocerySet-A there were 15 such bags, of which none caused a constraint

(1) violation. For GrocerySet-B, however, there were 54 such bags, of which 16 (29.6%) caused

a constraint (1) violation. Therefore, using the fixed weights designed for GrocerySet-A, the

system learned relationships that proved contradictory when applied to a fundamentally different

grocery set, GrocerySet-B.

Results and Discussion for the Non-Fixed Weight and High Action Cost Condition

Figure 49 provides the results for the non-fixed, high action cost condition using

GrocerySet-A. As with the fixed, high action cost condition the system exhibits consistency in

the number of groceries per bag while decreasing the number of errors per bag. Like the previous

condition, Figure 49(b) shows that system performance on constraint (2) remains roughly

constant with a very low error rate, and that while there is no noticeable decrease there is also no

increase in the error rate per bag. In addition, Figure 49(a) shows that the error rate on constraint

(1) decreases, but at a slower rate than that observed for the fixed cost condition. This slower rate

of improvement is explained by Figure 49(d), which shows the system has more difficulty

appraising this constraint.

Figure 50 presents the rate of occurrence and error rate for bags with two, three, and four

groceries. As with the Figure 49, the trends shown in Figure 50 are similar to those observed in

the fixed condition: the system steadily selects more two-grocery bags and remains roughly

constant on its selection of the other two bags, while choosing the less risky three-grocery bag

type more often. The order of occurrence (i.e., which bag types occur more frequently) and the

order of error rate (i.e., which bag types are the most dangerous) are the same for both the fixed

and non-fixed conditions, however, the error rate is noticeably higher in the non-fixed versus the

fixed condition.

140

Figure 49. Evaluation Graphs for Episodes Generated with GrocerySet-A for the Non-Fixed,
High Cost Condition and Self-Guided Experience

Figure 50. Breakdown of Error Rate and Rate of Occurrence for Bags with Different Amounts of
Groceries for the Non-Fixed Weight, High Cost Condition and Self-Guided Experience

141

Some of the increases in error rates for this condition may be explained by noting that the

system is required to simultaneously learn relevance appraisals and utility appraisals. Unlike the

previous condition, in this condition the system was required to learn the weights for each

attribute and to use these weights to develop useful grocery partitions. Figure 51 plots the

individual weight values as a function of the number of episodes used for training. As in

Experiment 1, the weight associated with the grocery’s name immediately drops to 0.0, while the

weight associated with firmness of the grocery stays at 1.0. Figure 52 shows how the percent

difference between each weight value and its mean changes with increased training. This figure

indicates that while the individual weight values do oscillate, with increased training these

oscillations generally tend to reduce in magnitude. Interestingly, the weights that exhibit the

most oscillation are those associated with the attributes color, price, and type, which are three

attributes that are not required for grocery bagging. It appears that while these attributes are

believed to be the least relevant (except for name), the system has a very difficult time pushing

these weights to zero. This is explained by referring to Chapter V, and the discussion on how

spurious patterns that are not relevant to the current goal may be hidden in the experience used to

train the system.

Figure 51. Learned Weights with Increased Training for the Non-Fixed, High Cost Condition
and Self-Guided Experience

142

Figure 52. Percent Difference Between the Learned Weight Values During Training and the
Weight Means for the Non-Fixed Weight, High Cost Condition and Self-Guided Experience

Table 29 presents the final grocery clusters after 700 episodes of training. These clusters

are similar to those learned using random experience, however, of the final 30 training epochs

(episodes 400:700) these clusters were only identified ~30% of the time. The remaining training

epochs are nearly uniformly distributed across three additional partitions. Two of these partitions

are presented in Tables 30 and 31. Each differ from the partition presented in Table 29 by just a

small amount, and each occur ~25% of the time. The third partition appears 20% (6/30) of the

time and is an inconsistent partitioning in which class C0 and C1 (Table 29) have been arbitrarily

split into 3-4 new classes, however, of these arbitrary partitions only occur once in the final 15

training epochs and not at all in the final 10 epochs. The take home point regarding these learned

partitions is that for the final 300 episodes (30 training epochs) as the learned weights fluctuate

the system alternates between the three similar classification schemes presented in Tables 29, 30,

and 31, approximately 80% of the time, with the classification scheme of Table 29 occurring

most frequently (30%).

143

Table 29. Final Learned Partition Using
700 Episodes (30% Occurrence)

 Class Grocery

 C0 ice_cream, chicken,
 yogurt, cucumbers
 C1 granola, ziploc_bags,
 frozen_pizza, cereal,
 spaghetti, green_beans
 teriyaki_bowl, hot_soup
 C2 rotisserie
 C3 tuna
 C4 milk, frozen_fruit
 C5 oranges, potatoes
 C6 soda, fruit_juice
 C7 tissue, bread
 C8 chips
 C9 eggs
 C10 strawberries

 Table 30. Learned Partition Table 31. Learned Partition
 (25% Occurrence) (25% Occurrence)
 Class Grocery Class Grocery

 C0 ice_cream, chicken, C0 ice_cream, chicken
 yogurt, cucumbers yogurt, cucumbers
 eggs, tuna
 C1 granola, ziploc_bags, C1 granola, ziploc_bags,
 frozen_pizza, cereal, frozen_pizza, cereal,
 spaghetti, green_beans spaghetti, green_beans,
 teriyaki_bowl, hot_soup
 C2 rotisserie C2 rotisserie
 C3 tuna C3 teriyaki_bowl
 C4 milk, frozen_fruit C4 milk, frozen_fruit
 C5 oranges, potatoes C5 oranges, potatoes
 C6 soda, fruit_juice C6 soda, fruit_juice
 C7 tissue, bread C7 tissue, bread
 C8 chips C8 chips
 C9 eggs, strawberries C9 strawberries
 C10 hot_soup

The performance measures for the episodes generated from GrocerySet-B are provided in

Figure 53. As in the fixed condition, there is a slight net decrease in the number of groceries per

bag, however, unlike the fixed condition both constraints (1) and (2) show some improvement

with learning. Figure 53(d) and (e) both show that the system exhibits a decrease in appraisal

errors, which explains the improved performance in Figures 53(a) and (b). This is explained

through the results presented in Figures 53(c) and (e), in which the system shows that its ability

to appraise individual grocery bags generated from GrocerySet-B improves at a rate greater than

that for the fixed condition. Furthermore, Figure 54 shows that the appraisal accuracy for

144

GrocerySet-B shows the same trend as that observed for GrocerySet-A. Examination of the final

grocery partitions for GrocerySet-B, corresponding to the learned partition of Table 30, indicates

that the errors which result from applying the relations learned for GrocerySet-A to GrocerySet-B

has been reduced dramatically. This examination focuses on clusters C1 and C7 as these

approximately correspond to the clusters that were used to analyze inter-cluster error rate for the

fixed condition. Whereas in the fixed condition, the inter-cluster error rate was 29.6%, in the

non-fixed condition this value has dropped to 8.3%. Therefore, the system has learned a set of

weights that better enable generalization to new situations and experience than the fixed set of

weights provided for the earlier condition. While this simple analysis does not cover all possible

learned relations, comparisons between Figures 53(d), (e) and 49(d), (e) indicate that this

improvement does extend beyond those relationships that include clusters C1 and C7.

Figure 53. Evaluation Graphs for Episodes Generated with GrocerySet-B for the Non-Fixed,
High Cost Condition and Self-Guided Experience

145

Figure 54. Constraint (1) Appraisal Error Rate for the Non-Fixed Weight, High Cost Condition
and Self-Guided Experience

Results and Discussion for the Fixed Weight and Low Action Cost Condition

This condition investigates the effects of having a lower action cost, which allows the

system to choose actions based only on its learned preferences. There is no significant

punishment for choosing to get a new bag for every grocery that appears on the conveyor belt,

other than the appraisal information provided for constraint (3). Figure 55 presents the results for

the fixed, low cost condition for 700 episodes of training. These results are similar to those

obtained for the fixed, high cost condition, however, the error rate for this condition has been

shifted down and the oscillations are smaller. Figure 55(a) shows that for this condition

performance on constraint (1) is, on average, better than it has been for any of the previous

conditions. However, the ratio of groceries to bags also never approaches that of the fixed, high

cost condition. The most obvious explanation for this behavior is that the lower action cost is not

forcing the system to explore mixing groceries as much as the higher action cost. While such

conservative behavior should have a detrimental effect on learning by providing fewer complex

examples for training, this does not appear to be the case when analyzing the remaining plots of

Figure 55. In these plots the errors rates and appraisal accuracies all show similar trends of

improvement, but that it should be noted that the system is, by design, an experiential learner and

that as it learns from experience the learned knowledge dictates the type of “new” experience it

146

acquires. Therefore, the appraisal accuracy should improve, but this improvement is for a

different type of experience than that encountered in the earlier conditions: experience generated

without the pressure of a high action cost and thus a lower ratio of groceries to bags. The results

presented in Figure 56 validate this explanation by showing that the error rate per bag for each

bag type decreases with experience for all types.

Figure 55. Evaluation Graphs for Episodes Generated with GrocerySet-A for the Fixed Weight,
Low Cost Condition and Self-Guided Experience

Figure 56 shows that the rate of occurrence per episode for bags with two groceries

steadily increases with training, and that the error rate on these bags steadily decreases. In

addition, the rate of occurrence for bags with three and four groceries remains roughly constant,

with the rate of occurrence for the three-grocery bags showing an increase at the end of training.

Simultaneously, the number of errors per bag decreases with training, and thus it should be

concluded that the system is learning to combine groceries in ways that enable the performance

on constraints (1) and (2) to improve. Of these three bag types, the four-grocery bags show the

least improvement but this is explained by noting that the rate of occurrence for these bags is

147

lowest of all bag types across all experimental conditions described thus far. Without the

increased exploration (and subsequent errors) caused by the higher action cost, the system rarely

explores risky situations and learning suffers. Interestingly, the error rate for constraint (2) on

these bags steadily decreases with training. The most likely explanation for this is a crossover

effect when creating bags with four groceries. To understand this effect, it is important to note

that all four-grocery bags were, at on point, three-grocery bags, and that all three-grocery bags

were, at one point, two-grocery bags, etc. If the system learned to appraise constraint (2)

correctly for these earlier bags, then the system would be much more likely to “serendipitously”

appraise the later bags correctly, because of the close proximity of these different bags in feature

space. Furthermore, these extrapolated appraisals are also more likely to be correct for constraint

(2) than for constraint (1) because the addition of a single grocery to a single bag is less likely to

cause a constraint (2) error than a constraint (1) error if the previous bag was evaluated

positively. This is because constraint (2) errors (overloading a grocery bag) are rarely determined

by a single grocery, while constraint (1) errors can swing dramatically based on the inclusion of

a single grocery (e.g., “potatoes with the eggs and bread”).

Figure 57 presents the results from testing the system with GrocerySet-B. As with the

fixed, high cost condition there is only a marginal improvement on the number of constraint (1)

errors per bag. The same explanation is provided as in the previous condition: the fixed weights

(which were not designed for GrocerySet-B) are causing errors when the system attempts to

apply the same learned relationships across grocery sets. This is confirmed by noting the slow

rate of improvement for the appraisal accuracy in this condition, i.e. Figure 57(c).

148

Figure 56. Breakdown of the Error Rate and Rate of Occurrence for Bags with Different
Amounts of Groceries for the Fixed Weight, Low Cost Condition and Self-Guided Experience

Figure 57. Evaluation Graphs for Episodes Generated with GrocerySet-B for the Fixed Weight,
Low Cost Condition and Self-Guided Experience

149

Results and Discussion for the Non-Fixed Weight and Low Action Cost Condition

The final condition for Experiment 2 requires evaluating the system with non-fixed

weights and a low action cost. Learning and improvement on the task should be much more

difficult for this condition than for any other. The earlier non-fixed weight, high action cost

condition indicated that non-fixed weights caused the system to perform (slightly) more errors

than in the fixed condition. However, those results also indicated that the system performed

better when exposed to GrocerySet-B. The earlier fixed, low cost condition indicated that a lower

action cost slowed learning by not forcing the system to explore new options, and thus it is

expected on this condition that the system will exhibit a much slower learning rate than in any

previous condition, but that the system should perform better on GrocerySet-B than when trained

on the fixed, low cost condition.

Figure 58 presents the results for the non-fixed, low cost condition for GrocerySet-A.

This figure shows that the number of constraint (1) errors per bag remains constant as experience

increases, even though the appraisal accuracy for each bag tends to be more correct. An

interesting point about these results is that, while the system does not improve on constraint (1),

its average performance is as good as it has been for any condition except for the fixed, high cost

condition described earlier in Experiment 2.

Further investigation of these results requires analysis of the individual bag types. Figure

59(a) shows that the number of bags per episode with two groceries initially increases and then

levels off, while the number of bags with three and four groceries remain constant throughout

training. Figure 59(b) shows that the rate of constraint (1) errors decreases for bags with two and

four groceries, but that this rate actually increases for bags with three groceries. This

immediately explains why the rate of constraint (1) errors per bag (Figure 58a) remains constant:

the decrease in error rate on two- and four-grocery bags is counterbalanced by the increased error

rate in three-grocery bags.

150

Figure 58. Evaluation Graphs for Episodes Generated with GrocerySet-A for the Non-Fixed
Weight, Low Cost Condition and Self-Guided Experience

Figure 59. Breakdown of the Error Rate and Rate of Occurrence for Bags with Different
Amounts of Groceries for the Fixed Weight, Low Cost Condition and Self-Guided Experience

151

Analysis of how the weights change with increase training does not shed any light on

why system performance does not improve for bags with three groceries. The weight values are

presented in Figure 60. The maximum oscillation/peak as a percentage of the mean is presented

in Figure 61. As with the earlier non-fixed condition, the weight oscillations reduce in amplitude

with increased training except for those attributes that are given a low weight value and are not

relevant to the grocery-bagging task.

The developed partitions that resulted from the learned weight values were the same as

those developed for the high cost condition, however, the distribution across those partitions was

dramatically different. Whereas in the earlier condition three different partitions were created

with an almost uniform distribution, for the current condition the partition presented in Table 29

was only created 10%, while the partition from Table 30 was created 53% of the time, and the

partition presented in Table 31 was created 16.7% of the time. The remaining partitions involved

arbitrarily splitting the larger clusters into multiple smaller clusters. These final three partitions,

however, are not to blame for the poor performance on bags with three groceries. As noted

earlier, these partitions appropriately clustered the groceries so as to reduce the number of

constraint (1) errors within clusters while leaving it to the relational maps to learn the inter-

cluster relationships. With the low action cost and subsequent lower exploration rate, it appear

that the relational maps are simply not learning as well in this condition as in prior conditions.

Figure 62 presents the results of testing the trained system on experience generated from

GrocerySet-B. Figures 62(d) and (e) show that just as in the earlier non-fixed condition, the

system learns to correctly appraise each situation with respect to constraints (1) and (2), but there

is no improvement on these constraints during task performance. The error rate, however, for

constraint (1), as well as the error rate for constraint (2), are consistently lower than they are in

any of the previous conditions. Unfortunately, the ratio of groceries to bags is also lower than it

has been at any other point during these experiments. Thus, the lack of exploration greatly

hinders the ability of the system to improve upon its task performance and the behavior appears

to be unchanged while the appraisals increase in accuracy.

152

Figure 60. Learned Weights with Increased Training for the Non-Fixed Weight, Low Cost
Condition and Self-Guided Experience

Figure 61. Percent Difference Between Maximum Peaks During Weight Training for the Non-
Fixed Weight, Low Cost Condition and Self-Guided Experience

153

Figure 62. Evaluation Graphs for Episodes Generated with GrocerySet-B for the Non-Fixed,
Low Cost Condition

Experiment 2 was designed to evaluate how well the system could extract knowledge

from its own experience and then apply that knowledge to future iterations of the grocery-

bagging task. Throughout each experimental condition, the system was evaluated and the results

indicated that in order for the system to learn it must be forced to explore the wealth of possible

situations available to it. Without this exploration, the system may improve on its ability to

appraise situations, but this improvement is not reflected in it behavior. The rational is that

without exploration, the system has fewer alternatives for it to “prefer”. It should be noted that

the appraisal error that has been measured throughout this experiment was based on the actions

that were actually chosen by the system. In other words, the results presented here only indicate

that appraisal accuracy improves for those situations that the system chooses to explore/pursue.

Certainly, the need for exploration is not a new concept in intelligent robotics, and thus it

should be expected that when the system explores less the learning will suffer. However, it was

not as expected that in order for the system to generalize it must be allowed to develop its own

relevance appraisals. When the identification of goal-relevant features is not rooted in the

system’s own experience, the system runs the risk of creating goal-relevant concepts that are

154

overly specialized to whatever a priori knowledge was provided. If this knowledge is good,

obviously performance will be good as well, but when this knowledge contains errors, the system

is unable to generalize beyond the limited concepts that it was able to form at initialization.

While the generalized performance presented here (GrocerySet-B) did not exhibit the same level

of learning as the non-generalized performance (GrocerySet-A), when the system was allowed to

create its own concepts the performance was better that when the system had to use the preset

concepts.

Enabling the system to develop its own goal-relevant concepts, however, requires that the

system have more flexibility in learning the correct utility appraisals. Throughout Experiment 2,

as well as Experiment 1, the system demonstrates that when it is required to learn goal-relevant

concepts, its utility appraisals do not degrade. In fact, in many of the conditions that have been

discussed, the utility appraisals are as good as, and sometimes better, when the system is allowed

to develop its own notions of relevance.

The results that have been presented thus far require the system to balance multiple

constraints without any a priori knowledge of which constraints are more important. Therefore,

as the system has learned to appraise each situation it must often perform a tradeoff between

conflicting constraints. For example, while the average ratio of groceries to bags remained close

to 2.0 across and throughout all conditions, a simpler solution to the grocery-bagging problem

would have involved merely placing one grocery in each bag. This solution would have reduced

the number of constraint (1) and (2) violations to zero, but the system would have been penalized

by constraint (3). Without knowledge that constraint (1) was, perhaps, the most important, the

system was forced to balance the ratio of groceries to bags with its expected confidence and

appraisals that constraints (1) and (2) would or would not be met. Furthermore, for each grocery

in which the system believed that the best course of action was separation (i.e., one grocery in

one bag), the system necessarily had to create a bag with three groceries in order to maintain

adequate performance on constraint (3) while still protecting the destroyable grocery.

Finally, for each experiment and condition that has been described in this section the

system was allowed to perform a (somewhat) comprehensive search of the possible state space.

This was done without concern for deliberation time. The experiment described in the following

section will test how well the system performs the grocery-bagging task when it is must first

appraise situations for deliberation time (i.e., urgency) and adjust its deliberation parameters

155

accordingly. In this experiment these appraisals are based on the system’s ability to internally

rehearse various situations during offline processing.

Experiment 3: Urgency Appraisal Learning Using Self-Guided Experience

Experiment Description

In this experiment, the system’s ability to intelligently modify its search through the

decision space is evaluated and tested. This includes the urgency appraisals that adaptively preset

the search parameters depth and breadth. The generation of interrupt signals is evaluated during

the experiment on the physical ISAC system. Therefore, this experiment tests the system’s

ability to generate useful performance profiles and to employ these profiles in future grocery-

bagging situations.

The experimental procedure is the same as that used for Experiment 2, with the exception

that a new step (process experience to learn urgency appraisals) has been added. Whereas the

appraisals for relevance and urgency are trained after every 10 episodes, in this experiment the

appraisal for urgency is trained every 100 episodes. The rationale for this discrepancy is the

computation costs associated with internally rehearsing past experience to derive the

performance profiles. At each training epoch only a subset of the possible episodes are used for

training. In this experiment the system selects 10 states at random for every 100 episodes in

episodic memory. This number was chosen because initial tests showed that examining 10% of

past experience was typically sufficient to analyze performance without requiring extensive,

lengthy deliberation.

It is important to recall from Chapter V, that during internal rehearsal each sampled state

is analyzed for a variety of depth and breadth values. Thus each state is analyzed several times

and if too many states are selected the internal rehearsal will be prohibitively slow; as shown in

the following subsection deliberation time can be quite long for some states. During training, the

system repeatedly analyzed the sampled state for all possible search depths (up to three), and for

each 10% breadth (i.e., 10%, 20%, etc.). Here depth is taken to be the number of groceries

bagged, therefore, for a search depth of three the system continues its search until three groceries

have been bagged, or no more groceries can be bagged. Unlike depth, however, breadth is set as

a percentage. Therefore, for a search breadth of 30% only the top 30% responses (i.e., best) are

156

kept at each depth, and the rest are pruned. The modified experimental procedure is listed as

follows:

1. Train the system using the current experience in long-term memory.

2. If num_episode is a factor of 100, then select 0.1 * num_episode episodes and train the

urgency appraisal maps for d = {1, 2, 3} and b = {0.1, 0.2, 0.3, …, 1.0}.

3. Select the number of groceries N uniformly from the range [5, 20].

4. Set the total number of groceries bagged, total_count = 0.

5. Select 0 < M ≤ min(6, N – total_count) using a uniform distribution.

6. Select M groceries from GrocerySet-A or GrocerySet-B using a uniform distribution and

then place those groceries on the conveyor.

7. Allow the system to bag each of the M groceries.

8. Set total_count = total_count + M.

9. If total_count < N return to Step (5), else go to Step (10).

10. Provide external feedback for the final situation.

11. Measure the error between the internal appraisals and the external feedback and record

the number of constraint violations.

12. If GrocerySet-A was used, then add the new episode to long-term memory.

13. Set num_episode = num_episode + 1.0.

14. If num_episode is a factor of 10, add new episodes to long-term memory and go to Step

(1), else go to Step (3).

Results and Discussion for Urgency Appraisals

Rather than re-test the system for all four conditions that have been used thus far, the

urgency appraisals were evaluated for only the non-fixed weight, high action cost condition. The

selection of this condition is based on the discussion from the end of Experiment 2 in which it

was concluded that the non-fixed weights were necessary for generalization and that the high

action cost was necessary for learning. Once the results are obtained for the urgency condition,

those results will be compared to each of the four conditions from Experiment 2 in order to better

understand the possible gains and risks in using internal rehearsal and urgency appraisals.

157

Figure 63 presents the averaged deliberation time for each of the four previous

experimental conditions when tested using GrocerySet-A. This figure also presents the averaged

deliberation time for the new urgency condition. As with Experiment 2, averaging is performed

using a square filter of width 30 episodes, or three training epochs. In each of the four conditions

from Experiment 2 the averaged deliberation time appears centered about a mean, but is also

marked by very large oscillations that occur at random episodes. These oscillations are the result

of the random nature of episode generation and the static nature of the planning algorithm. In

none of the four conditions shown in Figures 63(a)-(d) is the mean deliberation time less than 30

seconds per episode, and it is not uncommon for deliberation to require more than 100 seconds

per episode.

For the urgency condition, however, there is a significant decrease in the mean

deliberation time over the entire experiment. For the first 100 episodes of this experiment, the

system has not yet performed any internal rehearsal and Figure 63(e) shows that before the 100

episode mark, the averaged deliberation time is similar to that of other conditions. After the 100

episode mark, though, the urgency appraisals allow the system to modify its search and a

subsequent decrease in deliberation time is observed. It should be noted that the urgency

appraisals performed during this experiment, are only those appraisals related to maximizing the

solution quality versus the deliberation time. The result of these appraisals is adaptive

modification of the search parameters depth (d) and breadth (b).

158

Figure 63. Comparisons of Deliberation Time Between the Four Domain Knowledge Conditions
and the Urgency Condition

The adjustment of d and b is based on the performance profiles extracted by the system

from the new internally-generated experience (i.e., the mentally simulation). As stated in Chapter

V, the search algorithm that is implemented for this work is not a true anytime algorithm because

final solution quality is not necessarily a strict, monotonically increasing function of time (or the

amount of search). However, the search algorithm does approximate the anytime function with

respect to the system’s internal appraisals and knowledge representations, and this is what is

necessary to perform internal rehearsal in the manner required by this dissertation. The claim that

the search algorithm approximates the anytime property is supported experimentally by the

results presented in Figure 64, which plots the learned performance profiles for each of the six

internal rehearsal epochs. While there are some exceptions, Figure 64 shows that, in general, the

solution quality with respect to the system’s internal appraisals increases with both search depth

and search breadth. Furthermore, the variance across these results can be explained by noting

that:

1. The system does not rehearse the same states at each training epoch

2. The system can only use the most current knowledge, and that this knowledge is derived

through unsupervised learning which necessarily injects some variability.

in
 S

ec
o

nd
s

159

3. These plots, by design, only reflect the percentage of maximum solution quality

achievable and not the actual maximum solution quality.

Figure 64. Learned Performance Profiles for Appraising Urgency and Adjusting the Search
Parameters Depth and Breadth

As this experiment has thus far shown, the system is able to learn through internal

rehearsal an urgency appraisal that allows adjustment of its cognitive response and deliberation

time. However, it is important that the gains in deliberation time not come at the ultimate

expense of solution quality. Due to the nature of the internal rehearsal approach used, which re-

evaluates past experience using the latest learned knowledge, the learned performance profiles

are biased towards being optimistic estimations of solution quality. This bias exists because the

most current knowledge has, by design, been learned from the same experience that is later used

as a baseline for internally generating new “practice” experiences. Furthermore, Figure 63(e)

suggests that this bias does influence parameter setting to an extent, because the improvement in

deliberation time is both very dramatic and immediate; hallmarks of an “optimistic” system.

Such biased influence is only unwelcome, though, if it simultaneously sacrifices solution quality.

160

Figure 65 presents the performance evaluations for this experiment. Figure 65(a) and (b)

show that the final error rate for both constraints (1) and (2) is actually less than that observed in

the non-fixed, high cost condition of Experiment 2. Figure 65(c), however, shows that there is

also a slight decrease in the ratio of groceries to bags, and thus performance is not better on

every constraint. Further analysis of these results also shows that the rate of occurrence of bags

with two or three groceries does not increase, as it has in earlier conditions, but that the error rate

on these bag types does steadily decrease (Figure 66). Additionally, these results show that the

system has a very difficult time avoiding errors on grocery bags with four groceries and that

performance on bags of this type leaves much to be desired.

Figure 65. Evaluation Graphs for Episodes Generated with GrocerySet-A for the Non-Fixed
Weight, High Cost, Urgency Condition

161

Figure 66. Breakdown of the Error Rate and Rate of Occurrence for Bags with Different
Amounts of Groceries for the Non-Fixed Weight, High Cost, Urgency Condition

Figure 67. Evaluation Graphs for Episodes Generated with GrocerySet-B for the Non-Fixed
Weight, High Cost, Urgency Condition

162

Figure 67 presents the results for the episodes generated using GrocerySet-B. As with the

earlier non-fixed conditions the system exhibits the most improvement on its ability to correctly

appraise situations with respect to constraints (1) and (2). However, this figure also indicates that

there is a small improvement on the error rate for both constraints (1) and (2), and unlike the

episodes generated with GrocerySet-A, the ratio of groceries to bags does not decrease. Figures

65-67 indicate that task performance does not suffer dramatically when the system is allowed to

adjust its own search parameters in favor of quicker decision making.

Experiment 4: Fit Appraisal Learning Using Self-Guided Experience

Experiment Description

The final simulation experiment evaluated and tested the system’s ability to monitor the

levels of fit between its current knowledge and abilities and the task that is performed. While

such knowledge could ultimately be used by the robot to mediate the cognitive cycle in a manner

similar to that for urgency appraisals, the purpose in this research is simply to determine which

knowledge structures are performing well and which require further training, or outside

assistance. These appraisals can be viewed as assigning credit/blame when the robot succeeds or

fails at the task; however, this is not merely a static process but is ongoing over a period of

multiple episodes. Fit is only reset when the system retrains its knowledge structures.

For this experiment the fit appraisals were taken from the system trained during

Experiment 3. In other words, the system was not retrained through an additional 700 episodes,

but since the fit appraisals are simply measurements on the system and do not affect

performance, these measurements were taken concurrently as the system was trained and

evaluated in Experiment 3. The rational for choosing the urgency condition is based on the fact

that the measured system had to appraise both relevance and utility, and therefore none of the

earlier fixed conditions could be used. In addition, the system needed to learn well in order for fit

to improve, and thus the low cost conditions were eliminated. These eliminations left the non-

fixed, high cost condition as the one most suitable for this experiment. The urgency condition

was used because the shortened deliberation time forced the system to make quicker decisions,

which is more conducive to evaluating how well the system’s knowledge fits the current

situation.

163

As the system was evaluated and trained during Experiment 3, fit appraisals were made

using the final state from each episode, the internal appraisals for this state, and the external

reward given for that state. Using this information, the matrix E (Chapter V) was determined and

used to update the vector φφφφ. This was repeated for every episode and φφφφ was allowed to

accumulate between training epochs. However, when the individual components were retrained,

φφφφ was reset. The following subsection presents the final fit appraisals for each training epoch.

Results and Discussion

Figure 68 presents the fit values obtained as the system from Experiment 3 was trained

and evaluated. As with the earlier conditions, these results have been filtered using a window

size of three training epochs. Values of fit can range between 0 and 1, with 0 indicating good fit,

and 1 indicating poor fit. However, with these appraisals the individual values are not as

important as the order relative to each other as well as any trends present. These results indicate

that as experience is acquired the fit between the system’s knowledge and planning components

and the new situations to which they are exposed becomes increasingly more accurate, but also

that each component improves at its own rate.

Figure 68(a) presents the fit levels with respect to constraint (1) for the relevance and

utility appraisals and the planning algorithm, i.e., φ1
c, φ1

m
, φ1

p. These appraisals indicate that the

components for relevance and utility improve the most and that a small, nearly constant amount

of error can be attributed to the planning component. It should be noted that the planning

component cannot improve its own performance and that the only aspect of its performance that

changes with experience is the amount of search that it performs (and this is only the case in the

urgency condition). This component is analyzed because as the system is required to balance

multiple constraints this balance is ultimately achieved by the planning algorithm. It is possible

that during deliberation, and in an attempt to balance all three constraints, the planning algorithm

will sacrifice one constraint to preserve the other two. When this happens it is important to

realize that the planning algorithm was the “culprit”.

164

Figure 68. Fit Appraisals for Relevance, Utility, and Planning for Each Constraint and the Non-
Fixed Weight, High Cost, Urgency Condition

Figure 68(a) shows that while the fit between the planning algorithm and success on

constraint (1) remains constant, the planning algorithm is also the least responsible for errors on

this constraint. The results indicate that even though the fit between both the relevance and utility

appraisals and constraint (1) improves with training, these components deserve most of the

blame for errors on this constraint, with the relevance appraisals receiving the lion’s share.

Analysis and verification requires evaluation of the individual episodes, the errors that were

made, and the appraisals that caused those errors.

For this analysis the five training epochs 38, 39, 40, 41, and 42 were used. This window

was chosen because it corresponds to a large “jump” in the fit appraisals for constraint (1).

During these 50 episodes there was a combined total of 29 errors on constraint (1). What was

analyzed with these errors was whether or not they could have been predicted, and if not – why?

This analysis focused first on the individual groceries in each bag and the cluster to which those

groceries belonged, in order to understand whether the grocery classifications caused the error.

165

To do this the groceries that caused each error were extracted and the clusters to which they

belonged were analyzed to determine whether the remaining members of those clusters would

also have caused the error, or was the error caused by an incorrect assignment. This is the same

type of analysis that led to the conclusion in the fixed weight, high cost condition from

Experiment 2 that the fixed weights forced groceries from GrocerySet-B into clusters when they

did not obey the relationship properties of those clusters.

For the 29 errors, 10 were identified as having been caused by incorrect clustering. For

these 10 errors, the groceries, classifications, and “cluster mix ratio” are listed in Table 32. The

cluster mix ratio is a measure of how many pairs of groceries (one from each cluster) obey the

same relationship as those two groceries that caused the error. For example, given two clusters,

each with ten groceries, if nine of the groceries in the first cluster can successfully be mixed (i.e.,

bagged) with all ten groceries from the second cluster then the cluster mix ratio for success is

90%. The remaining grocery in the first cluster does not obey this relationship and would cause

errors during task performance if the relational maps successfully learned the “mix is okay”

relationship.

Table 32. Constraint (1) Errors as a Result of Misclassification

 Grocery 1 Grocery 2 Class 1 Class 2 Cluster Mix Ratio

 eggs oranges C4 C8 16.7%
 eggs oranges C4 C8 16.7%
 eggs hot_soup C5 C0 12.5%
 hot_soup ice_cream C0 C13 15.0%
 eggs tuna C6 C6 22.2%
 milk eggs C0 C6 16.7%
 hot_soup yogurt C0 C6 20.0%
 milk eggs C8 C6 20.0%
 eggs yogurt C6 C6 32.0%
 ice_cream hot_soup C0 C6 20.0%

Table 32 shows an interesting trend: 100% of these errors involved either hot_soup or

eggs. Further analysis revealed that when these two groceries were treated correctly, they were

placed in their own category (sometimes eggs was grouped with strawberries). When this did not

happen, however, these groceries were placed in a category in which they were the outlier. Eggs

were often placed with other “cold” items, yet many of these cold items could be bagged with

heavy items, such as oranges, while eggs could not. Hot_soup was often placed in a large cluster

166

with spaghetti, green_beans, ziploc_bags, granola, and sometimes tuna, but unlike these other

groceries hot_soup could not be bagged with cold items, such as ice_cream.

Of the remaining 19 errors, six involved bags with four or more groceries and a

confidence measure less than 50%. For these bags, the relational map was to blame either

because it did not have enough experience, or because it did not correctly generalize the

experience it had. Because the number of groceries in these bags was so high, however, the risk

associated with these bags kept these errors from substantially modifying fit. In addition, six of

the 29 errors were caused by the planning algorithm. Analysis of these bags revealed that the

relational maps had given appraisals that were, at least approximately, correct but that the

planning algorithm still chose an action that led to that error. Here “approximately correct”

means that the appraisals had the correct sign and was with 0.5 of the true value. Thus these

errors could be attributed to either a lack of search, the high action cost, or “fear” of a worse

alternative. The final seven errors were attributed to the relational map because it failed to

identify the relationship that would have predicted task success. Each of these bags, however,

had three groceries which meant that the target relationship was more complex than in the simple

two grocery case.

Figure 68(b) shows that the level of fit, with respect to constraint (2), between the same

three components and the grocery-bagging task was much better. This should be expected,

however, because the rate of constraint (2) errors was much lower and therefore the system

should appraise fit better. Another conclusion that can be drawn from Figure 68(b) is that when

errors do occur, the blame is almost equally divided amongst all of the components.

Figure 68(c) is intriguing. This figure shows that while the level of fit between the

relevance and utility appraisals and the performance on constraint (3) improves with training, the

fit between the planning algorithm and constraint (3) not only remains constant, but also that the

planning algorithm deserves almost all of the blame for errors on this constraint. To understand

why this is the case, it should be recalled that constraint (3) is evaluated with a fuzzy rule that is

capable of returning values in the range [κ1, κ2), where κ1 and κ2 are parameters set by the

system designer; in this experiment they are set to 1.5. Due to the fuzzy nature of this rule, many

of the values provided by the external critic are actually much less than these limits. Analysis

revealed that it is not uncommon for the system to receive values of ±0.5. Because of this, once

the system learned to appraise all three constraints constraint (3) implicitly became “less

167

important” in most situations. Therefore, when choosing actions, the planning algorithm would

be more likely to pursue paths in which appraisals for constraint (3) have a lower value because

these appraisals are simply outweighed by the ±1.0 values returned by the other utility appraisals.

This also provides more explanation as to why there was no substantial increase in the ratio of

groceries to bags in the earlier experiments.

ISAC Integrated Experiments

Experimental Design

The previous simulation-based experiments have focused on running multiple trials with

large amounts of experience and numerous conditions. Through these experiments, the system

has shown the ability to appraise relevance and identify useful concepts for goal

accomplishment. The system has also learned to appraise utility along the various dimensions

required for bagging groceries, and the system has shown that it can use internal rehearsal to

evaluate its ability for the purpose of developing appreciations of itself. These appreciations were

used to inform deliberation by mediating the cognitive cycle, or to identify for a human user

which components require further training or assistance. In addition, the simulation experiments

used an extended behavioral repertoire that included the Wait(g) behavior, which is not available

with the physical robot. In effect, this behavior enabled the simulated system to select the desired

order in which groceries should be bagged by allowing the system to bypass those groceries on

the conveyor belt that are within reach in favor of groceries that are not yet in reach.

By including the extra Wait(g) behavior, the simulated grocery-bagging task was more

complex with respect to planning. This is due to the fact that this behavior introduced additional

options that then had to be appraised, weighed, and considered. Both the simulated and hardware

experiments required that the system cope with groceries at the front of the conveyor belt, but the

simulated system could also plan for groceries at the end of the belt as well. Therefore, ISAC had

to be deal with groceries in the sequential order in which they appeared and this, simultaneously,

limited the behaviors available to ISAC and eased the computational requirements associated

with planning.

The interaction of a humanoid robot with the real world critically depends on the robot’s

morphology and on its environment. Therefore, simulation is only one aspect of system

validation. The current experiments aimed to evaluate the integration of the cognitive control

168

system described in Chapter V, and conceptually validated in Experiments 1-4, with the ISAC

hardware system and peripheral software components. In particular, the objective is to integrate

the designed control system with ISAC’s Perceptual Agents and Activator Agents in order to

complete the cognitive control process. Figure 69 shows the combined ISAC-Simulator

integrated environment used.

 (a) (b)

Figure 69. (a) ISAC Hardware System, and (b) Simulator Environment

To investigate system integration, each of the components described in Chapter V and

documented in Appendex B (dynamic representations, relational maps, urgency appraisals, and

fit evaluations) were used for these experiments. The operation of these components within the

ISAC architecture can be visualized as a set of control paths through the cognitive architecture,

as shown in Figure 70. Within the ISAC architecture, appraising relevance occurs along the path

shown in Figure 70(a). This path should be considered a “preprocessing” step that filters and

focuses incoming stimuli into a set of task-relevant categories that can then be passed to the

deliberative control loop. Appraising utility occurs along the path shown in Figure 70(b), and

ends in the Central Executive Agent (CEA) which is in charge of comparing options and making

the final decision. Urgency appraisals occur along the path shown in Figure 70(c) and are used to

inform both the CEA and the Affect Agent. While utility and urgency appraisals ultimately end

in the CEA, fit appraisals (Figure 70d) end in the Goals and Motivation System due to the fact

that these appraisals are only used as post hoc processing and evaluative measures.

169

 (a) Relevance Path (b) Utility Path

 (c) Urgency Path (b) Fit Path

Figure 70. Significant Paths within the ISAC Architecture for (a) Relevance, (b) Utility, (c)
Urgency, and (d) Fit Appraisals

Integrating the designed system with the Perceptual Agents requires replacing the

simulated perceptual input with input from the SES. Because the system was originally designed

to operate on the symbolic output of the SES, this integration was a straightforward operation in

which the data on the SES was accessed rather than the data stored in the simulated system. This

can be conceptualized by the function:

GetPercepts(SState s, bool simulation)

{

 if(!simulation)

 ses.Get(s.percepts());

else

 simulator.Get(s.percepts());

}

-
First-Order

Response
Agent

First-Order

Response
Agent

Executive Control Agent
Perception-Action

Agent

Episodic

Memory

Episodic

Memory

Declarative
/ Semantic

Memory

Declarative

/ Semantic
Memory

Long

Term
Memory

Central
Executive

Agent

Cognitive Control
& Decision

Making System
EnvironmentEnvironment

Sensory
Ego

Sphere

Short

Term

Sensory

Memory

REACTION

Internal
Rehearsal

System

Internal

Rehearsal
System

DELIBERATION & COMMITTMENT

Perceptual
Agents

Arm Agent

Head Agent

Hand Agent

Activator Agents

Attention
Network

Relational Mapping System
Relational Mapping System

Affordance Relations
Affordance Relations

Procedural

Memory

Procedural

Memory

Goals & Motivation
System

Goals
Agent

Affect Agent

Working

Memory

System

Filtering &
Focusing

Agent

-
First-Order

Response
Agent

First-Order

Response
Agent

Executive Control Agent
Perception-Action

Agent

Episodic

Memory

Episodic

Memory

Declarative
/ Semantic

Memory

Declarative

/ Semantic
Memory

Long

Term
Memory

Central
Executive

Agent

Cognitive Control
& Decision

Making System
EnvironmentEnvironment

Sensory
Ego

Sphere

Short

Term

Sensory

Memory

REACTION

Internal
Rehearsal

System

Internal

Rehearsal
System

DELIBERATION & COMMITTMENT

Perceptual
Agents

Arm Agent

Head Agent

Hand Agent

Activator Agents

Attention
Network

Relational Mapping System
Relational Mapping System

Affordance Relations
Affordance Relations

Procedural

Memory

Procedural

Memory

Goals & Motivation
System

Goals
Agent

Affect Agent

Working

Memory

System

Filtering &
Focusing

Agent

-
First-Order

Response
Agent

First-Order
Response

Agent

Executive Control Agent
Perception-Action

Agent

Episodic
Memory

Episodic
Memory

Declarative
/ Semantic

Memory

Declarative

/ Semantic
Memory

Long

Term
Memory

Central
Executive

Agent

Cognitive Control
& Decision

Making System
Environment

Environment

Sensory
Ego

Sphere

Short

Term

Sensory
Memory

REACTION

Internal
Rehearsal

System

Internal
Rehearsal

System

DELIBERATION & COMMITTMENT

Perceptual

Agents

Arm Agent

Head Agent

Hand Agent

Activator Agents

Attention
Network

Relational Mapping System
Relational Mapping System

Affordance Relations
Affordance Relations

Procedural
Memory

Procedural
Memory

Goals & Motivation
System

Goals
Agent

Affect Agent

Working

Memory
System

Filtering &
Focusing

Agent

-
First-Order

Response
Agent

First-Order

Response
Agent

Executive Control Agent
Perception-Action

Agent

Episodic

Memory

Episodic

Memory

Declarative

/ Semantic

Memory

Declarative

/ Semantic
Memory

Long

Term
Memory

Central
Executive

Agent

Cognitive Control

& Decision
Making System

Environment
Environment

Sensory

Ego
Sphere

Short
Term

Sensory

Memory

REACTION

Internal

Rehearsal
System

Internal

Rehearsal
System

DELIBERATION & COMMITTMENT

Perceptual

Agents

Arm Agent

Head Agent

Hand Agent

Activator Agents

Attention
Network

Relational Mapping System
Relational Mapping System

Affordance Relations
Affordance Relations

Procedural

Memory

Procedural

Memory

Goals & Motivation

System

Goals
Agent

Affect Agent

Working

Memory
System

Filtering &

Focusing
Agent

170

in which the flag simulation indicates whether the experiment is using real or simulated data, and

the struct s holds the current state (see Appendix A for a description of SState).

Once the perceptual information has been received from the SES, it can be sent in two

directions. The first direction involves sending that information to the Working Memory System

(WMS) where it is filtered and used to create the necessary feature vectors that will later be used

to access the relational maps. As described in Chapter V, in this work the WMS was not

provided a priori with information indicating how percepts should be categorized into goal-

relevant chunks. Therefore, the component for developing dynamic representations had to use

the learned weights to create the goal relevant chunks. This can be seen as an addition to the

Working Memory toolkit (WMtk) described in Chapter V. In the WMtk, chunks were preset by

the system designer; here the chunks are learned from experience. Example code for this

operation is given as follows:

//retrieve goal-relevant weights

double weights[9] = {0};

dynamic_representation.Retrieve(weights);

//group percepts into goal-relevant categories

dynamic_representation.Compress(s.percepts, weights);

//Fill in feature vectors with percepts

std::vector<SFeatureVector> fv;

dynamic_representation.InitializeFeatureVectors(fv, s.percepts);

s.fv = fv;

The second direction involves sending the perceptual information directly to the IRS and Goals

and Motivation System. This enables the identification of interrupts and the development of fit

appraisals. In both cases, only specific perceptual information is monitored. The IRS monitors

grocery positions, and the Goals and Motivation System monitors external feedback. Example

code to implement these operations is as follows:

 std::vector<double> positions[3];

 std::vector<SEvaluation> evaluation;

 for(int i=0;i<s.percepts.size();i++)

 {

 if(s.percepts.at(i).identificationType == m_GrocID)

 {

 positions[0].push_back(s.percepts.xpos);

 positions[1].push_back(s.percepts.ypos);

 positions[2].push_back(s.percepts.zpos);

 }

 else if(s.percepts.at(i).identificationType == m_ExtID)

171

 {

 SEvaluation eval;

 eval.fv = s.percepts.GetFeatureVector();

 eval.r = s.percepts.GetReward();

 evaluation.push_back(eval);

 }

 }

 //IRS

 bool interrupt;

 irs.GetInterrupt(positions, interrupt);

 //Goals and Motivation System

 gms.AppraiseFit(evaluation);

The feature vectors are used to retrieve internal utility appraisals and to facilitate

planning within the CEA. This process involves accessing the relational maps and passing the

retrieved information through the Affect Agent back to the CEA. Once this has been

accomplished the CEA can continue to search through the decision space, or can return the

current best policy. The actual code to perform this recursive search is too long to present here,

but is best summarized using the pseudo-code presented in Figure 25, in which all possible

actions A that may be performed in a given state are used to create the set of possible states S that

may be reached from the current state.

Once the policy has been developed, a behavior must be selected and executed. In this

dissertation, the term behavior is used to indicate the action/motion that ISAC physically

performs. In Chapter V and in the simulation experiments, behaviors have also been referred to

as actions, but for the current experiment, once an action has been selected it is referred to as a

behavior to maintain consistency with previous work on ISAC. In addition, some behaviors may

be composed of sub-actions as described in the section Behavioral Repertoire. The lowest level

of sub-action is referred to as an atomic action. As described earlier, this hierarchy exists to

reduce the computational demands on planning and decision making.

The selection process requires choosing the behavior for the current state, but the

execution process requires integration with the Activator Agents. This integration requires two

steps: 1) parsing the desired behaviors into the properly sequenced atomic actions, and 2)

sending the parsed action commands to the agents in charge of the physical hardware rather than

to the simulated agents. The second step mirrors the straightforward integration between the

172

control system and the Perceptual Agents and can be conceptualized by the simple function

SendAction():

SendAction(CAction action, bool simulation)

{

 if(!simulation)

 activatorAgents.Put(action);

 else

 simulator.Put(action);

}

 The first step requires the use of procedural knowledge for each behavior, in particular

the preconditions and postconditions for each behavior. This step also requires feedback from the

Activator Agents in order to determine when the next behavior should begin. An example is the

behavior BagGroceryRight(b, g) which, as described earlier, could be sequentially composed of

multiple simpler behaviors that for the sake of deliberation time have been hidden from the

planning and decision-making algorithms. Control of this behavior must appreciate that the order

in which this sequence is executed is critical (i.e., ISAC should not reach for the bag before

grasping the grocery) and that one sub-action cannot be initiated until the previous sub-action has

finished. Therefore control of this behavior should be performed using a function similar to:

PerformBehavior(CAction action, bool sim)

{

 std::vector<CAction> action_seq;

 //Get the sequence of actions for the current behavior

m_ProceduralMemory.RetrieveActionSequence(action, action_seq);

//Execute each action in sequence

 for(int i=0;i<action_seq.size();i++)

 {

 SendAction(action_seq.at(i), sim);

 int outcome = SUCCESS;

 while(!Response(action_seq.at(i), sim, outcome))

 {}

 if(outcome != SUCCESS)

 break;

 }

}

where the Response() function awaits confirmation from the Activator Agents that the sub-

action has been completed. Information related to the success/failure of the behavior is stored in

the variable outcome and can be used to stop the behavior at any point during execution if the

previous action was unsuccessful.

173

Communication between the Perceptual Agents, Activator Agents, and the components

housed in the Deliberation & Commitment block was handled using standard TCP/IP sockets, as

shown in Figure 71. The communication between the Perceptual Agents and the Activator

Agents and the hardware was handled using RS232 serial connections or PCI ports. Once

information had been passed to the computer running the remaining software components (i.e.,

Deliberation & Commitment block), inter-computer communication was no longer an issue as

these components were designed as object-oriented classes and were running within the same

main() loop.

Figure 71. System Connections for the Integrated ISAC Experiments

The final integration step for these experiments was the most difficult to perform, and

was important for proper, low-level (i.e., end-effector position) control. This was an integration

step that did not involve any of the components specifically designed for this work. Rather, this

step involved directly integrating the Perceptual and Activator Agents in order to perform the

behaviors necessary to grasp items on the conveyor belt. Currently, there are two basic methods

for executing arm behaviors on ISAC:

1. Joint angle control based on inverse kinematics. In this case, a desired end-effector

position and orientation is input to the system, and inverse kinematics are used to

determine the appropriate joint angles for this pose. The arm can be driven directly to this

point, or can traverse a pre-defined set of waypoints before reaching the final position.

D/A, Encoder,

Digital IO

Pressure

controllers

(Rightarm)

Air Compressor

D/A, Encoder,

Digital IO

I/O card

Pan/Tilt Controller

Pressure

controllers

(Left arm)

RS232

Image Grabber

I/O card

Head Activator

Agents & Camera Perceptual

Agents

Right Arm Activator

Agent

Left Arm Activator

Agent

Deliberation & Commitment

Tcp/Ip PCI

PCI

PCI

“NewGuy”

“Armstrong”

“Octavia”

“Octavia”

174

2. Joint angle control based on pre-recorded files. In this case, the arm is moved through a

pre-defined set of points. These pre-defined points may be either previously recorded

motions, or new interpolated motions, but in either scenario the motion is completely

defined before ISAC begins execution.

Figure 72 illustrates a user-interface (UI) developed to perform basic arm control. This user

interface is based on a neural network controller developed by Ulutas, et al., [2008].

Figure 72. User-Interface for ISAC Arm Control

Each method relies on joint angle information, but differs in the manner in which the

joint angles are determined. In the first case, inverse kinematics are used to derive the joint

angles from desired end-effector cartesian coordinates, while in the second case the joint angles

are loaded directly from a file. Grippers can be used with both control methods. In the first

method, the gripper should be operated (i.e., opened/closed) once the arm has reached the desired

final position. The second method, however, requires that a pause be inserted into the recorded

motion file so that during this pause the grippers may be opened or closed as necessary. Gripper

control was enabled by using the pressure control from ISAC’s outermost “tricep” muscle. This

muscle had been previously disabled, as it was not necessary for control. (NOTE: This is because

the downward motion powered by the triceps was already assisted by gravity and did not require

flexing of the triceps but rather merely the controlled relaxing of the biceps). Therefore, the Arm

Agents were used to control the grippers, and this control function is described in Appendix B.

175

Without direct integration between the Perceptual and Activator Agents the coordinates

used by either of the described methods may not reflect the most recent, or most accurate,

information regarding desired end-effector location. An ideal solution to this problem would be

the implementation of visual-servoing control [Taylor and Kleeman, 2001] [Hosoda and Asada,

1994], however, such control was beyond the scope of this dissertation. A less ideal, but more

practical solution, involves combining the percept’s perceived location with the measured

position of ISAC’s end-effectors. Unfortunately, there is not a linear transformation between

these two coordinate frames because of the different sensors used (cameras and joint encoders),

and thus this technique is associated with a certain amount of error that is a nonlinear function of

object location, color, size, orientation, lighting conditions, and camera angles. Therefore, rather

than attempt to solve these problems within this dissertation, pre-recorded (open-loop) motions

were used to demonstrate the integration between the designed control system and ISAC’s

Activator Agents. The integration between ISAC’s Perceptual and Activator Agents was

reserved for future work.

Finally with respect to system integration, only a subset of ISAC’s information control

pathways was used. Examples of these pathways are provided in Figure 70, but are also

described in Chapter V. The primary control pathways that were not used were those associated

with ISAC’s reactive and routine (1st order response) systems. For these experiments, it was

desired to isolate ISAC’s cognitive control processes (i.e., working memory, central executive,

internal rehearsal, and long-term memory) and therefore the reactive and routine components

were omitted.

Once integration was complete, the components were connected as described in Chapter

V (and shown in Figures 14 and 26). The inputs/outputs for each component were unchanged,

with the exception that the percepts retrieved from the SES were used as the perceptual inputs

rather than the percepts present on the simulated conveyor belt, and that the behavior outputs

were parsed and sent to the Activator Agents rather than to the simulated ISAC system. The code

to implement each component is summarized and described in Appendix B.

ISAC Experiment 1: Integration of Knowledge and Processes Developed in Simulation

The objective of this experiment was to evaluate how well ISAC could deploy the

knowledge learned in simulation, and related to the appraisals for relevance, utility, urgency, and

176

fit, to the grocery-bagging task. Complete system integration was required with the exception

that a pre-recorded motion was used to for the executed behavior. This motion involved reaching

across the conveyor belt, closing the gripper, moving the gripper to a preset location, opening the

gripper, and then returning the arm to the home position. This motion was recorded through

manual teleoperation on ISAC, and the six individual joint angles were stored in an ASCII

character file labeled “motion.txt”. The code method to capture motions is shown in Appendix B.

This motion was executed in lieu of the complex, closed-loop pick and place behavior required

to place groceries in individual bags. Because of the pre-programmed nature of this motion, once

the behavior was completed the planning algorithms were instructed to update the current state

“as if” the motion had been completed correctly. If the grocery was still on the conveyor belt,

then the grocery was removed manually from ISAC’s visual space, so that the task could

continue. This insured that ISAC had to continually plan for more complex situations, by

updating bags regardless of behavior outcome. Because this experiment required the use of the

same external critic that was used in the simulated Experiments 1-4, all of the knowledge learned

in simulation was applied to this task without additional processing. However, because this

experiment used the actual conveyor belt, it was necessary for ISAC to develop additional

appreciations for how long it could deliberate before a decision must be made. This was done

using the Bayesian network approach described in Chapter V. The significant events were

defined to be those states in which groceries were located at the edge of the conveyor belt, i.e.,

about to fall off of the conveyor belt.

For this experiment the conveyor belt was divided into 14 evenly distributed bins, each

10” long, and 10” wide. The rational for these settings was to keep bin size uniform. The

dimensions of the conveyor were 52” x 20”, however, the cameras had an effective viewing area

~70” long at the height of the conveyor. The representation of bins is shown in Figure 73. Bin

positions 7 and 14 corresponded with the end of the conveyor belt (and the floor) for the left and

right sides of the conveyor belt, respectively. The speed of the conveyor belt was set at the

lowest possible setting, which was approximately 0.1 miles per hour. This setting was used to

ease the computational pressure placed on ISAC’s perception algorithms, as robust perception

was not within the scope of this dissertation. As in Chapter V, a sampling rate of one second was

used to measure grocery positions, and the resulting transition model was obtained (Figure 74).

177

Figure 73. Dimensions and Bin Distribution for Conveyor Belt

Figure 74. Learned Transition Model, i.e., P(Bini | Bini-1) Using Hardware Obtained
Observations

Figure 74 indicates that there is much more noise in the measurements taken by the

physical system than the ideal measurements used in Chapter V. This is due to residual noise in

the color tracking algorithms and errors in the frame capture for the individual USB webcams.

The color tracking algorithms employed simple blob detection to identify target colors and

worked very well when the color to be tracked was present in input image. However, if the target

color was not present, these active vision algorithms would occasionally identify background

noise as the target color. This was only a problem when the percepts were not actually present,

but during these situations caused percepts to randomly appear in the input image. A preset

threshold was used to reduce this error by forcing the algorithms to detect a minimum number of

pixels for the target color, and while this worked well it could not completely remove all noise

1 2 3 4 5 6 7

8 9 10 11 12 13 14

50”

2
0
”

Forward

0.500 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.615 0.385 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.500 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.029 0.714 0.200 0.000 0.029 0.000 0.000 0.000 0.029 0.000 0.000 0.000

0.000 0.000 0.000 0.037 0.630 0.333 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.600 0.400 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.074 0.000 0.000 0.037 0.000 0.037 0.704 0.000 0.000 0.000 0.000 0.000 0.000 0.111

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.667 0.333 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.556 0.000 0.444 0.000 0.000 0.000

0.000 0.000 0.000 0.043 0.000 0.000 0.000 0.000 0.043 0.652 0.261 0.000 0.000 0.000

0.000 0.000 0.000 0.033 0.100 0.000 0.000 0.000 0.000 0.000 0.733 0.100 0.033 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.250 0.250 0.500 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.750 0.250

0.000 0.000 0.000 0.000 0.000 0.000 0.050 0.000 0.000 0.000 0.000 0.000 0.000 0.950

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Bini

Bini-1

178

effects. Errors in frame capture were the result of a random latency with the USB device drivers.

All efforts were made to remove this problem, but it was still possible for the USB cameras to

“freeze” for 1-2 seconds. The investigation of this phenomenon identified the device driver

software as the source of the problem, but was unable to fix the problem. Because such noise

could potentially affect the urgency appraisals, ISAC continuously monitor the conveyor belt

while deliberating, and based interrupt generation on the “worst-case scenario”.

During prediction, a preset threshold of 80% was used to signify that a grocery was

“confidently” believed to be in specific bin. This threshold was chosen because empirical tests

suggested 80% was a sufficient value for prediction and such a high value forced ISAC to only

rely on short-term predictions (i.e., 1-2 bins in the future). If the Bayesian networks predicted

that a grocery had an 80% chance of being in either of the next to last bins (i.e., just before the

edge of the conveyor) an interrupt signal was generated, deliberation was stopped, and the

behavior began. Because a pre-recorded motion was used for the behavior, the conveyor belt was

stopped so that this behavior could be performed on a stationary grocery. This also prevented

new groceries from entering ISAC’s workspace (and potentially falling off of the conveyor)

while the pre-recorded behavior was being performed. The conveyor, however, was only stopped

after deliberation had been completed (or interrupted), and ISAC was not allowed to perform any

additional planning during this time period. In other words, during behavior execution (and only

during action execution), ISAC’s cognitive processes were halted while the Activator Agents

executed the desired behavior. This ensured that while ISAC’s cognitive control algorithms had

to cope with changing environments (i.e., conveyor belt on), the Activator Agents could execute

a pre-recorded motion on a stationary environment. The interrupt process generated by the

detection of significant events follows the control path illustrated in Figure 69(c).

Experimental Procedure

The experimental procedure for this experiment is listed as follows:

1. ISAC is allowed to observe the motion of 15 groceries on the conveyor belt in order to

train the Bayesian networks. 15 groceries were chosen because no significant changes

were observed in the Bayesian networks after this amount of training. The Bayesian

networks were trained using the discretized positions of the individual groceries on the

179

conveyor belt. This does not require action, but merely observation and then training on

these observations.

2. N groceries are selected uniformly from the range [5, 10] from the combined grocery set

presented in Table 14. This range was chosen to ensure that ISAC had to cope with a

minimum number of groceries, while keeping expected completion time for episodes

within a reasonable time limit. Furthermore, accrued encoder error limited the number of

times ISAC could successfully and safely perform the pre-recorded motion.

3. Groceries were continuously placed on the conveyor belt at regular intervals so that no

more than three groceries were present at any one time. This was repeated until all

groceries had been presented to ISAC. The size of the conveyor belt dictated that no more

than three groceries be present at any one time. An example is shown in Figure 75.

4. Using knowledge learned from simulation about relevance, utility, urgency, and fit, as

well as the Bayesian networks trained at the beginning of the experiment, ISAC develops

a policy for the perceived state space. This knowledge was represented by the individual

weights learned for perceptual attributes, the grocery clusters developed by these weights,

the trained relational maps, and the stored performance profiles, and was taken directly

from training epochs in Experiment 3. This is described further below. The input to the

Bayesian networks was the perceived location of individual groceries on the conveyor

belt. The policy associated a specific action with each individual state encountered during

the planning process. The action stored by the policy was the action considered to be

best, given the current search.

5. Once deliberation is finished, ISAC bags the groceries using the developed policy by

sending a flag to the Activator Agents that the pre-recorded motion should be executed.

This was done using TCP/IP, as shown in Figure 71.

6. Just as in the simulation experiments, ISAC is provided with external feedback from the

critic related to evaluations of constraints (1), (2), and (3) for specific situation

components (i.e., bags and collections bags).

7. Steps (2) – (5) are repeated for 20 episodes as described below.

In addition to these experimental steps, the Wait(g) behavior from Table 17 was removed

from the list of possible behaviors. This was because the physical conveyor belt did not have a

180

collection bin, and therefore ISAC could not choose to wait for the next grocery in lieu of

bagging the nearest grocery. This ensured that groceries did not fall off of the conveyor belt

because ISAC had chosen to wait and bag another grocery first.

Because this experiment required using all of the learned knowledge structures and

components, i.e., attribute weights, conceptual clustering, relational maps, performance profiles,

and Bayesian networks, how these components were connected was critical for experimental

validity. As percepts were acquired (from the SES) they were used to fill in, or update, the

current state representation. This state representation was described in both this chapter and

Chapter V. The individual c++ variables and structures for the state representation are described

in Appendix A. In addition, Appendix A also describes the classes used to represent percepts and

actions, as well as lists of the major function used to operate on this information.

Figure 75. ISAC Coping with Three Groceries

Once the state had been updated with the latest perceptual information, the state was

passed to the Working Memory System (WMS). In the WMS the conceptual clustering algorithm

(Chapter V) used the learned attribute weights to compress the percepts into the feature vectors

that would be used to retrieve evaluations for the current state. The member functions to do this

are described in Appendix A, while example code is presented in Appendix B. The feature

vectors were then appended to the state representation, and the state was passed to the Executive

Control Agent (ECA). During deliberation utility and urgency appraisals were retrieved from the

relational maps and performance profiles, respectively. This was performed using the processes

described in Chapter V. The necessary functions are described in Appendix A, while example

181

code is presented in Appendix B. Planning was performed by the planning algorithm (Figure 25,

Chapter V), which was instantiated within the CEA. As planning was performed a local policy

was updated that associated specific states with actions. The representation for this policy is

provided in Appendix A. The Bayesian network was used to determine if an interrupt should be

generated. This was performed by making predictions about future states using the perceptual

information stored in the current state. This also required the learned information shown in

Figure 74. Finally, fit appraisals were made by comparing the external feedback (from the

external critic) to the internal appraisals for a given state. Both Appendix A and B describe this

process.

Results and Discussion for ISAC Experiment 1

ISAC was tested and evaluated for 20 episodes using derived knowledge of each

appraisal acquired and used during simulation. This knowledge was stored in the learned

attribute weight values, groceries clusters, relational maps, and performance profiles. In addition,

the newly acquired Bayesian network (specifically Figure 74) was also used for this experiment.

For each episode, a different trained knowledge set was selected from simulation so that error

rates were not a function of a single faulty component. This re-sampling, however, did not

include the Bayesian network, which was the same throughout. This was because the Bayesian

networks were not trained using unsupervised learning while many of the other components

(e.g., clustering and relational maps) were. In this experiment, the simulation-based knowledge

was sequentially selected from the final 20 training epochs of the urgency experiment (i.e.,

Experiment 3). This experiment was chosen because it incorporated all of the appraisals

investigated in this dissertation with the exception of the Bayesian network. Only 20 episodes

were run due to the time constraints associated with using the physical system. Unlike the

simulation experiments, each episode with ISAC took approximately 10 minutes to perform.

This includes experiment set-up time as well as the time for groceries to move down the

conveyor and ISAC to perform the pre-recorded motion (multiple times). The results for these 20

episodes are presented in Figure 76. The same smoothing window that was used in the

simulation experiments (three training epochs) has also been used here. Figure 77 shows images

of ISAC taken during two separate episodes from this experiment.

182

Figure 76 indicates that the knowledge learned in simulation transfers well to the physical

hardware. This is determined by noting that the error rates in Figures 76(a) and (b) are equal to

or better than the error rates shown in Figure 65(a) and (b) for the final 20 training epochs. In

addition, the appraisal error rate for constraints (1) and (2), Figures 76(d) and (e) respectively, is

also better than that shown in Figure 65. The appraisal error rate for constraint (3), however, is

just slightly worse. The fact that simulation knowledge transferred well to the physical hardware

is expected because the system, as designed, is a planning and evaluation system that relies on an

external critic for evaluation, and the external critic was the same for both the simulation and the

experiment. For this experiment, with the exception of the Bayesian networks the operations

performed by the Deliberation & Commitment block were independent of the source of the input

to the system (i.e., either simulation or physical hardware). While the perceptual input for this

experiment was generated from the physical hardware and was less than ideal, it represented by

the same post-perception symbols (i.e., groceries not pixels) that were passed by the SES to the

WMS and into the cognitive cycle. Because the Perceptual Agents were continuously monitoring

the external state, the Bayesian networks was not allowed to accrue, and this did not substantially

affect performance. During these episodes, none of the groceries fell off of the conveyor as a

result of not receiving an interrupt signal.

Figure 76. Performance Results for the ISAC Experiment Using Knowledge Derived from
Simulation and Trained Bayesian Networks

183

 (a) (b)

Figure 77. ISAC Interacting with Groceries Using Pre-Recorded Motions

The primary difference between the simulation and ISAC experiments is in the manner in

which groceries were perceived and actions were performed. While errors in perception and

actuation are frequent issues in robotics research, this experiment showed that the error rate per

bag did not increase over simulation when groceries were tracked using the physical hardware.

However, it is interesting to note that the ratio of groceries : bags is less than it was in

simulation. This is explained by the fact that fewer groceries were used and that groceries had to

be dealt with in the sequential order in which they appeared on the conveyor belt. It was

observed that ISAC preferred to create several bags in which initially very few groceries were

placed. This behavior was frequently observed for approximately the first four-five groceries that

appeared on the belt. Then, if possible, ISAC would attempt to place the new groceries into these

bags. By reducing the combined number of groceries presented to ISAC, this behavior should

result in a lower grocery : bag ratio. This was further compounded because ISAC could only bag

groceries in a fixed, sequential order and thus it could be the case that ISAC would have to create

many bags initially, while waiting on those groceries that could be placed in multiple bags. But

by reducing the number of groceries per bag, perceptual errors actually made the grocery-

bagging task easier, and this could be taken as an explanation on why the error rate was actually

better than in the simulation condition rather than simply equal to it.

The explanation for why the knowledge learned from simulation can be so readily

applied to the physical system is rooted in the fact that the reward rule (which ultimately

184

determined the error rate) was derived by an external critic, and the same critic was used for

simulation and the current hardware experiment. True analysis of this crossover, therefore, must

be reserved for future work in which the appraisals and planning components (the focus of this

dissertation) have been integrated with additional sensors and hardware that can alleviate the

responsibilities and perform the role of the external critic. This could include force and touch

sensors on the grippers as well as more robust vision tracking algorithms for feedback control.

ISAC Experiment 2: Integrated Cognitive Control Experiment

The objective of this experiment is to evaluate integrated cognitive control on ISAC. In

this task, ISAC is required to learn “from scratch” an easier form of the grocery-bagging task,

and then to deploy this knowledge successful completion of future tasks.

Experimental Condition and Assumptions

The reason this experiment used a simpler task (described below) was that the designed

system was based on statistical learning from experience, in which multiple trials were assumed

to be obtainable. As with the first experiment, ISAC was resctricted to 20 episodes and thus

ISAC had to learn from fewer examples. Again, this is due to the fact that each episode took

approximately 10 minutes to perform. The nearly 3.5 hours required to run these experiments

placed stress on the physical system and required nearly static lighting and environmental

conditions to ensure robust color tracking. Coupled with the fact that ISAC’s real world

experiences are often limited to much shorter durations, it was desired to show through this

experiment that ISAC could learn on tasks of the type and duration that may be expected in the

future, i.e., a limited number of episodes. Figure 78 shows the path of information through the

ISAC architecture as experience is placed in episodic memory. The episodic memory system

stores a record of what happened. For ISAC this includes both states and actions, and therefore

information must enter episodic memory from both perception and deliberation, as shown by the

two arrows entering episodic memory in Figure 78. This information is not fused in episodic

memory but rather is stored in the order in which it appears. Once stored, information in episodic

memory can mediate future deliberation through the Relational Mapping System, Internal

Rehearsal System, and the Goals and Motivation System, as shown by the arrow leaving episodic

memory in Figure 78.

185

Figure 78. Paths Used for Recording Experience

 In addition, the following assumptions were made for this experiment:

1. Integration of the Perceptual and Activator Agents (with each other) was not necessary

for ISAC to learn from its experience. This assumption is based on the fact that planning

was performed based on information provided by the Percetual Agents, and that the

external critic provided feedback to the planning system based on the developed plans

and selected behaviors, not on the results of those behaviors.

2. Randomly generated experience was sufficient for learning. The simulation-based

experiments indicated that the system could learn even when groceries were selected at

random.

3. For the sake of evaluating the decision-making and planning techniques, current

behaviors were assumed to be successful, regardless of outcome. Without this

assumption, the task may not grow in complexity. For example, if the first grocery on the

conveyor was “eggs”, it would not matter in which bag the eggs were placed. If physical

system, however, failed to successfully place the eggs in the bag, this failure could not be

attributed to the planning system, but the failure also made the task easier on the next

iteration when, perhaps, the grocery “potatoes” would be considered (i.e., all bags are still

empty because the eggs are on the floor, and thus bag selection is inconsequential). In

this experiment, once a behavior had been selected for a particular grocery, that grocery

was manually removed from the conveyor belt.

-
First-Order

Response
Agent

First-Order
Response

Agent

Executive Control Agent
Perception-Action

Agent

Episodic

Memory

Episodic

Memory

Declarative
/ Semantic

Memory

Declarative
/ Semantic

Memory

Long

Term
Memory

Central
Executive

Agent

Cognitive Control
& Decision

Making System
EnvironmentEnvironment

Sensory
Ego

Sphere

Short

Term

Sensory

Memory

REACTION

Internal

Rehearsal
System

Internal

Rehearsal
System

DELIBERATION & COMMITTMENT

Perceptual

Agents

Arm Agent

Head Agent

Hand Agent

Activator Agents

Attention
Network

Relational Mapping System
Relational Mapping System

Affordance Relations
Affordance Relations

Procedural

Memory

Procedural

Memory

Goals & Motivation
System

Goals
Agent

Affect Agent

Working

Memory

System

Filtering &
Focusing

Agent

186

The simpler version of the grocery-bagging task only required ISAC to sort groceries

using the attributes temperature and healthy, and therefore the evaluation rules used by the

external critic were different than those stated in the earlier section Performance Measures. For

this experiment, ISAC was given negative reward on constraint (1) if, and only if, a bag

contained two groceries of different temperature (see Table 14), and negative reward on

constraint (2) if, and only if, a single bag mixed “healthy” and “nonhealthy” groceries. The

evaluation for constraint (3) was based on the absolute difference between the average number of

groceries per bag and a preset optimum (described in the next section). It is argued here that this

task was easier because each individual constraint was evaluated using only one attribute and this

evaluation was based on the presence/absence of attributes.

The experimental process for the second condition is the same as that listed for the first

experiment, except that the ISAC was allowed to reuse the trained Bayesian networks and that

training was performed every five episodes. This is contrasted with the simulation experiments in

which training was performed every 10 episodes. The allowable behaviors for this experiment

are similar to those listed in Table 17, with the exception that the Wait(gi) behavior was no

longer applicable. The rational for removing Wait(gi) is because the collection area had been

removed to ensure the possibility that groceries could fall off of the conveyor. Finally, the pre-

recorded motions were not used for this experiment due to the lack of integration between the

Perceptual Agents and the Activator Agents. Therefore, groceries were allowed to fall off of the

conveyor belt after ISAC had chosen the bag in which to place them.

Experimental Procedure

The experimental procedure for this experiment is the exact same as it was for the

previous experiment with three exceptions

1. ISAC was allowed to re-use the trained Bayesian network.

2. The remaining components (attribute weights, grocery clusters, and relational maps) were

re-trained every 5 episodes because no learned knowledge was re-used from simulation.

It should be noted that the training in this experiment occurs every 5 episodes rather than

every 10 episodes as was done in simulation. The shorter duration between training steps

was used because only 20 episodes were acquired and a 10 episode training window

would have only evaluated one round of training before the experiment ended. Reducing

187

the training window to 5 episodes allows the system to train itself multiple times during

the experiment, while simultaneously attempting to maximize the amount of new

information included at each training step. Further rational for the training window size

was based on empirical knowledge that had been acquired over many months of testing

and evaluating the learning system.

3. Behaviors were not performed, and therefore groceries were allowed to fall off of the

conveyor belt after ISAC had selected in which bag they should be placed. The rational

for this was because this experiment was testing the system’s ability to plan, not act.

Combined with the difficulties (noted earlier) involving integration between the

Perceptual and Activator Agents, it was desired to leave this complexity for future work.

During this experiment, the same integration between components (specifically the

input/output described in Chapter V) was used as in the previous experiment. Therefore, the

techniques for implementing this experiment are those listed in Appendices A and B. While the

procedure for this experiment differed slightly from the previous experiment, these differences

did not affect component integration.

Results and Discussion

This experiment demonstrated the application of the designed system for cognitive

control on ISAC. ISAC was required to cognitively process its experience to develop internal

appraisals and then had to use those appraisals to improve task performance. As mentioned

previously, the task used for this experiment was a modified form of the grocery-bagging task in

which ISAC had to learn to separate groceries based on temperature (constraint 1) and to

separate healthy and unhealthy groceries (constraint 2). The reward rule for constraint (3) gave

negative reward proportional to the absolute difference between the average number of groceries

per bag and a preset optimum number of groceries per bag. In this experiment, the preset

optimum value was set to 3.0. This value was chosen because it was the closest integer that was

not equal to the grocery : bag ratio from the simulated Experiments 1-4, and was also greater

than 1.0.

Figure 79 shows ISAC performing the cognitive control experiment. The performance

results are presented in Figure 80. These results indicate that ISAC’s performance on this task

188

improved with experience, and that 20 episodes were sufficient for improvements of at least 50%

on constraints (1) and (2). Therefore, while the limitations of the physical hardware dictated that

a task be selected which could be learned quicker, the transition from simulation to the physical

hardware was not so difficult to require a re-design of the learning algorithms. Given a task in

which ISAC was required to not mix groceries with different temperatures or of differing

nutritional value (i.e., healthy vs. nonhealthy), and to only place exactly three groceries in a bag,

ISAC could learn to simultaneously improve on all three constraints.

Figure 79. Integrated Cognitive Control Experiment

Figure 80. Performance Results for the ISAC Cognitive Control Demo

189

It should also be noted that while the task was intended to be simpler to learn, violations

of constraint (1) and (2) occurred with higher frequency during the early stages of this

experiment than in previous experiments, and that this should have a positive effect on learning.

One explanation for this is that the new reward rules naturally had a higher error rate for random

selection than the previous reward rules, which is in part due to the diversity of the attributes in

question and the simplicity of the reward rules. The second explanation is obtained by noting that

in Figure 80, ISAC starts with a grocery : bag ratio of approximately 3.0. This would result in

ISAC not learning any negative evaluations for constraint (3), and subsequently, ISAC could

choose to place increasing more groceries in bags. This is, in fact, the behavior observed. It is not

until the next training iteration (episodes 10-15) that ISAC realizes the mistake in this approach

and is able to take corrective action. Even though the grocery : bag ratio eventually drops back to

the range in which it started, the error rate per bag for both constraints (1) and (2) continues to

decrease. Interestingly, however, the accuracy of ISAC’s appraisals does not improve at the same

rate as the number of errors. The explanation for this is based on the fact that ISAC simply does

not have the amount of experience necessary to learn appropriately fill-in the relational maps,

and thus the improvements in performance are based on the fact that ISAC is learning (from

experience) what not to do rather than what to do. This is supported by Figures 80(a) and (b)

which show that while the error rate per bag has improved dramatically, it is still ~40% for both

constraints, which is only slightly better than chance. In other words, ISAC is learning to avoid

dangerous situations, but still has to guess a lot when selecting actions that might lead to good

situations.

Finally, the learned attribute weights are presented in Table 33 and the learned grocery

clusters is presented in Table 34. These clusters indicate that not only is ISAC capable of

learning a different task (other than that learned in simulation), which involves learning different

utility appraisals, but also that ISAC can learn distinct grocery clusters as well. This validates

that, given a task and experience on that task, the designed system is capable of learning goal-

specific appraisals for relevance, utility, and urgency.

190

Table 33. Learned Attribute Weights

 Attribute Weight

 healthy 1.0000
 temperature 0.9110

 firmness 0.7052
 size 0.6480
 weight 0.5386
 price 0.2243
 type 0.1944
 color 0.0000
 name 0.0000

Table 34. Final Partition Using GrocerySet-A

 Class Grocery

 C0 ice_cream, eggs,
 yogurt, cucumbers, chicken
 strawberries
 C1 granola, ziploc_bags, tuna
 spaghetti, green_beans
 C2 rotisserie
 C3 hot_soup
 C4 teriyaki_bowl
 C5 milk, frozen_fruit
 C6 oranges, potatoes
 C7 soda, cereal, fruit_juice
 C8 tissue
 C9 bread
 C10 chips

Final Discussion of Results

The system, as designed, is complex and expansive. It is argued, however, that such a

design is necessary to investigate the type of intelligent, cognitive behavior that must be realized

if robots are to operate successfully in real-world environments. The approach described in this

dissertation investigates how the cognitive processing of experience can be used to enable

intelligent control at various levels of deliberation and planning. The processing of experience is

based on cognitive and psychological theories of human intelligence, processing, and emotion. In

this dissertation, this processing of experience focuses on a variety of appraisals that have been

identified in biological systems (Chapter IV) and are known to be necessary for artificial systems

(Chapter III). While each appraisal has received attention in the literature, few approaches tie

each of the individual theories together within a full cognitive architecture to affect system

191

performance. Furthermore, it is argued that the system’s unique experience is key to its

development, and that only by the processing of its own experience can it improve in the areas

encountered during its normal routine.

The experiments described in this chapter evaluate and validate this system and its

design, but also point to many areas in which more specific focus is needed. The results show

that the system is capable of learning individual appraisals for relevance, utility, and urgency.

The appraisal for relevance allows the system to create perceptual categories that reflect the goal

significant properties of items. This allows compression of the perceptual space and enables the

dynamic development of useful feature vectors to represent a situation. Experiments 1 and 2

showed that through the processing of experience the system was able to identify what

perceptual attributes should be focused on during task execution. Once these features were

identified, the system was able to create perceptual categories using a well-known and effective

conceptual clustering algorithm. In the fixed weight conditions, these categories resulted in a

64% compression, while in the non-fixed conditions the amount of compression varied between

64% and 56%.

The interplay between the learned attribute weights, the derived grocery clusters, and the

trained relational maps can be viewed as similar to that between the working memory,

representational, and evaluative processes that occur (primarily) within the prefrontal and

orbitofronal cortex, hippocampus, and amygdala [Rolls, 1999] [Braver and Cohen, 2000]

[Richter-Levin, 2004]. In particular, the attribute weights construe the attribute space to reflect

the goal-relevance, or irrelevance, of specific perceptual features. The conceptual clustering

algorithm uses this information to create classes in which goal-relevant attributes are highly

predictable. The result of these two processes is that the system learns what to focus on (i.e.,

what is important about different percepts) and then uses this knowledge to filter incoming

stimuli into goal-relevant sets. While this does not, necessarily, reduce the total number of

percepts that must be considered, it provides a more compact representation for the percepts.

Furthermore, this technique could be used to reduce the total number of percepts considered for

planning through the use of an ‘irrelevant’ perceptual class. Using the compressed perceptual

representation, the relational mapping system learns evaluations for different combinations

between the individual classes. This provides utility appraisals about the current situation, which

can then be used for planning.

192

The relevance-based clustering also provided the system with the ability to generalize to

new percepts. While, expectedly, the results obtained from generalization were not as good as

those obtained in the non-generalized case, the results did indicate that such a method could be

used and that this ability would enable the system to expand beyond the horizons embedded in it

by the programmer. This type of appraisal is critical for systems that could be deployed in

environments in which it is not known a priori what information is important and should be

focused on, and what information should be filtered out. This ability is provided for by the ISAC

cognitive architecture and is partially realized through the work described here.

Experiments 1 and 2 analyze how well the system learns utility appraisals given the

current relevance-based feature vectors. The utility appraisals were based on the identification of

relational information in the environment that could be connected and associated with each other

as well as goal-specific rewards. These experiments showed that as training increased, the

system’s utility appraisals became more accurate, and that the number of errors per bag

simultaneously decreased. For most conditions, the error rate was decreased by about 50%,

however, in the nonfixed weight, low cost condition the reduced exploration and the noise

injected by errors in the derived clusters caused performance on constraint (1) to remain constant

over time rather than exhibiting a net decrease.

The noise injected by the derived clusters was discussed in Experiment 2 and further

described in Experiment 4. While the role of the relational maps is to identify relations between

the derived clusters, errors will exist if there are outliers in each cluster that do not obey the

statistical trends between members of that cluster and the remaining clusters. In Experiment 4 it

was noted that these types of errors occur frequently with the groceries eggs and hot_soup.

Because the system did not have an a priori representation of the desired feature vectors

it was important that the system be able to learn the utility appraisals “from scratch”. In addition,

because the system was an experience-based learner, these appraisals must be derived from and

reflect an episodic long-term memory system. Within humans and other mammals such

processing is believed to take place in an area of the brain known as the hippocampus, which

processes relational and contextual information. The relational maps used in this dissertation are

inspired by this research and are thus situated in the ISAC cognitive architecture at the

“gateway” between the higher cognitive processes and ISAC’s long-term memory systems.

193

Experiment 3 built on the results from Experiments 1 and 2, and showed that through

internal rehearsal the system could develop a basic understanding of its performance and abilities

and use this understanding to modify its deliberation strategy. Using this approach, episodes

were selected at random and re-evaluated using the current knowledge as the reward rule. This

evaluation was performed for a variety of decision-making settings, specifically different depth

and breadth, and for each situation the system recorded how well it believed it could perform on

the task given more, or less, time. The results indicated that the system could achieve a

substantial savings in deliberation time without a prohibitive loss in overall solution quality. The

appraisals were based on the notion of urgency, yet for this experiment, immediate action was

never demanded but rather the system only had to maximize the tradeoff between expected

search time and expected solution quality.

The fourth experiment investigated whether degrees-of-fit could be evaluated for a

system composed of the components and appraisals included in this research. Of the four

fundamental appraisals described throughout this dissertation, fit was the only appraisal that,

when implemented, did not process past experience but instead processed the current experience

using the system’s other internal appraisals and confidence values along with the external

feedback. This experiment showed that a basic fit evaluation could be performed and that this

evaluation provided information regarding credit assignment for task success/failure. This

appraisal was not designed to enable the system to mediate its deliberation or improve its

performance. While there are intriguing potential directions for such a signal, in this research fit

was intended to provide the user with a basic understanding of which component was to blame

when errors were committed and how bad was that component’s performance.

The ISAC experiments demonstrated that the designed system could be integrated with

the physical hardware, but this integration required that additional attention be given to the

input/output processes of perception and arm control, as well as to the separate coupling of these

two systems. Due to the nature of the designed system, the symbolic percepts were the easiest to

integrate, however, there was noise associated with perceptual tracking that, if not continuously

monitored, would cause inappropriate behavior in the form of mistimed interrupts and

deliberation cycles. This is not a fundamental failure of the designed system, because the system

(as designed) mediates deliberation based on the robot’s current best knowledge of the external

state, or the beliefs about that state. Yet, this limitation does currently constrain ISAC to those

194

tasks in which the external state can be continuously monitored. Errors in perception could also

result in false positive grocery identification. If a false positive occurred in ISAC’s workspace,

ISAC would deliberate and plan for an imaginary grocery and then attempt to execute a behavior

on that grocery. The end result made the grocery-bagging task easier along constraints (1) and

(2) by reducing the actual number of groceries per bag (unbeknownst to ISAC).

The use of interrupts also affected task performance during the ISAC experiments. The

interrupts reduced the amount of searching performed by the deliberative process, and thus

lowered the quality of the final solutions. This was primarily observed with respect to constraint

(3), in which fewer groceries were placed in more bags (i.e., ISAC performed less exploration).

This behavior should be expected because the planning algorithm was structured to expand new

states in order of decreasing appraisal values; the states with the highest values were expanded

first. In addition, the system was designed to be an experience-based learner, and thus it should

be natural for the system to have higher utility evaluations for those states that have already been

explored and are deemed “safest”. As the system bootstraps itself, the safest states are those with

a low grocery : bag ratio. When interrupts were generated, the system was naturally forced

towards safe behaviors, and this explains the extremely low error rate on the first ISAC

experiment. But, because constraint (3) was intrinsically designed to punish safe behaviors,

solution quality suffered on this one constraint.

Finally, the integration with ISAC’s hardware and actuation systems was not difficult

from the perspective of issuing behavior commands or reading information from the SES,

however, integration between these components (perception and actuation) was extremely

difficult due to the real-time feedback control issues associated with visual-servoing and the

nonlinear errors associated with translating from the visual coordinate frame to the arm

coordinate frame. Furthermore, the system was designed as a deliberation and planning

algorithm and is not suited to the type of real-time feedback control and monitoring required for

low-level behavior execution. In other words, while the system must continuously monitor the

external state for changes that may affect the next planning step (i.e., interrupts and new states),

it does not monitor the external state for changes that merely effect low-level control parameters

for end-effector position. This is comparable to the notions in psychology that deliberative

control is well suited for cognitive, executive behavior (i.e., attention, deliberation, and planning)

but poorly suited for automatic, procedural behavior (i.e., arm control). Therefore, additional

195

integration between ISAC’s Perceptual and Activator Agents was required (e.g., visual

servoing), but this was beyond the scope of the current research.

Once further system integration has been performed, though, the results presented here

demonstrate that the designed system is able to cognitively process experience in order to

develop internal appraisals and to apply these appraisals for improvement on the task. The

system is able to learn in both simulation environments and environments built for complex,

humanoid robots. While learning and cognitive control on ISAC requires that the task be

tailored, to an extent, to ISAC’s physical capabilities, ISAC was able to learn from its own

experiences, even though they may be few in number.

196

CHAPTER VII

CONCLUSIONS AND FUTURE WORK

The goal of this research was to investigate how mutiple appraisals could be designed and

integrated to enable decision making in a cognitive robot. The appraisals that were the focus of

this work were relevance, utility, urgency, and fit. Learning these appraisals required that the

robot cognitively process its own unique experience, which was stored in episodic, long-term

memory. This research has found that cognitive robot which possessed these tools could learn a

task, by developing its own appreciations of what was relevant for that task, how much utility

should different situations elicit, how much urgency should be attached to each situation, and

whether or not the current knowledge (i.e., learned appraisals) had a good degree-of-fit to the

current task.

A robot designed around the appraisals relevance, utility, urgency, and fit is not per se an

“emotional” robot; however, such a robot does possess some of the “mental underpinnings” that,

in humans, have been argued to develop into emotional states. These underpinnings are based on

the cognitive processing of experience and enable the robot to focus on what is important,

arbitrate amongst competing responses, and respond in a time sensitive manner. These abilities

are present (at least to some extent) in all mammals, which suggest that they may be linked

through evolution to our own notions of human emotion. Fittingly, each of these abilities has

been individually studied within the robotics literature, but what is now necessary is to

implement and integrate these abilities in a cognitively inspired system. Each component should

be trained (as much as possible) from the robot’s unique experience, allowing that robot to

develop its own unique appraisals for the environment in which it is deployed. As research in

cognitive robotics advances, the internal states (including appraisals) will become more complex

and of higher cognitive order, and the systems that utilize such states will be deployed in

increasingly more complex environments. As these systems develop, their internal states will

become more complex and adaptive, as well as more useful in everyday tasks. In fact, many

systems already possess specific internal mechanisms that alone serve some of the same adaptive

purposes as the internal appraisals linked to emotion and described in this dissertation. What is

missing in the literature, however, is an investigation into how these components can be learned

197

from experience and then combined, especially within the framework of a larger cognitive

architecture.

In robotics research there are a vast multitude of challenges that exist today and must

eventually be solved before any autonomous robotic system will ever truly succeed outside of the

laboratory. Within in the myriad challenges are the decision-making issues related to real-time

responsiveness and adaptability. These issues require that the robot possess the ability to filter

and focus on what is relevant in the current situation, develop adaptive, flexible representations

of the environment, evaluate these representations quickly and accurately, and then adjust its

responses based on internal measures of degree-of-fit as well as resource and time demand.

These problems are often simplified in order to focus on optimality and to make tasks more

tractable, however, this simplification risks ignoring the interdependencies between each

problem and the decision-making process as a whole. Robots will eventually need to break from

using preset mappings from state to state representation, and in so doing will need to learn and

represent increasing more complex relational knowledge that has been abstracted out of their

own experiences. Tabular representations will need to be abandoned in favor of more techniques

that favor generalization, re-use, and finite search time. Planning algorithms will constantly need

to be adjusted to meet the resource imposed by the environment.

Because no amount of innate knowledge can completely prepare a system for true non-

deterministic nature of the real world, it is important to continue taking steps towards systems

that can build their knowledge up from experience in increasingly more complex ways. This

requires integration of multiple components that filter and focus, evaluate and interrupt, rehearse,

plan, and meta-manage. Interestingly, as current emotion research continues to evolve it is

beginning to be understood that the control of the higher-order processes is not necessarily done

by an even higher-order processes, but rather much of the control exerted on these processes

actually finds its origins in the evolutionarily older neurological substrates [Sloman, 2001a]

[Richter-Levin, 2004] [Gazzaniga, et al., 2002]. Therefore, part of the solution for adaptable,

flexible robot control must be found in the interplay between the high-level cognitive processes

and the lower-level, internal appraisal mechanisms, neither of which dominates the other.

198

Summary of Contribution of Work

The contribution of this dissertation has been the investigation of theories of cognitive

processing and emotion, and how such theories can be used to mediate decision making in an

artificial, embodied system. This dissertation research has required investigating methods for

flexibly representing experience (as well as the current situation), using this experience to

develop internal evaluations for new states, rehearsing experience to enable appreciations of the

robot’s own ability, and then matching performance against expectations to determine how the

robot’s experience and knowledge compares to that robot’s performance on the current task.

Through this investigation a lot of material has been presented related to neuroscientific and

psychological theories about human cognition and mammalian abilities. The investigation has

led repeatedly and extensively to the areas of emotion and appraisal mechanisms, episodic

memory and relational learning, working memory and filtering and focusing, executive decision

making and meta-management, as well as mental simulation and internal rehearsal. This entire

approach has been framed within a larger cognitive architecture, and the attempt has been made

to ground the various theories (e.g., episodic memory, emotion-based appraisals, alarm

mechanisms and motivation, spotlight, and common currency) in known engineering methods

(e.g., self-organizing maps, function approximators, interrupts and anytime algorithms, goal

significance, and utility).

A cognitive system has been developed that uses each of these techniques to perform an

“everyday” task, that like the simple act of human perception is much more difficult than it

seems. The results have shown that the system is able to develop each of the appraisals

concurrently and that during this process performance on the task improves. The amount of

improvement is predicated on the learning performed by each component. However,

improvement is also based on the amount and type of experience acquired by the system. As the

system acquires experience and learns from that experience, it develops a bias towards pursuing

new experiences that closely match the previous experience. This is due to the fact that the

similar experience is most likely to be appraised correctly, and thus the high confidence in

responses is often enough to outweigh low confident, yet potentially very beneficial alternative

responses. Thus, the robot becomes comfortable in its own environment.

Through the experiments with the physical hardware it was shown that the appraisals

relevance, utility, urgency, and fit are not only necessary for appropriate, adaptive behavior, but

199

can also be integrated with a complete cognitive architecture. While research on cognitive

architectures either investigates deliberative control, or attempts to compartmentalize control

within specific layers, the approach described in this dissertation integrated the appraisal

processes within the recursive, cognitive loop. Therefore, no one component was at the top of the

hierarchy, but rather each component exerted an influence on another, with the combined result

of adaptive cognitive behavior. This behavior was based on the robot’s own experience, as well

as the specific techniques (derived from psychology and neuroscience) to process this

experience. While more work remains to be done within the ISAC cognitive architecture (e.g.,

integrating more robust feedback control between the Perception and Activator Agents), this

research showed that through the cognitive architecture, ISAC could simultaneously learn

multiple appraisals and improve task performance.

Further Directions

The research presented in this dissertation is the first step towards a cognitive robot that

can truly bootstrap itself to learn a complex task. The designed system has only begun to scratch

the surface of the type of appraisals that cacn usefully inform cognitive control and thus there are

many future directions for this work. In addition, each of the appraisals discussed in this

dissertation warrant more comprehensive, individual attention. In particular, the appraisal for

relevance could be expanded to include fuzzy notions of class membership in which individual

percepts may belong to multiple classes to varying extents. This would enable the system to

better track multiple conflicting goals where each goal dictates different internal perceptions of

objects. The attributes used for classification could also be expanded to include inter-attribute

relationships, e.g., weight is only important when size is greater than ‘x’. Such a complex ability

would truly enable the robot to build up notions of goal-relevant classification from scratch and

allow for the type of complex relationships often taken for granted in human decision making.

Furthermore, it would be interesting to investigate whether an associative network could be used

to create the fundamental goal relevant classes. Such an investigation might involve training a

network of interconnected perceptual attributes via Hebbian learning based on the contents of

individual bags and episodes.

The utility appraisals could certainly provide directions for future research. As

highlighted at various points in this dissertation, the ability to access and use generalized

200

abstracted relations is critical for experience-based learning. This dissertation investigated one

type of relation, i.e. sequential, which could be viewed as a constrained form of temporal or

spatial relation. For example, the notion that “potatoes” were placed in the bag after “bread”, but

before “milk” is a temporal interpretation of these relations, while the notion that “potatoes”

were placed on top of “bread”, but under “milk” is spatial interpretation. Other tasks, however,

do not cross over as well and it is currently an open question whether a system, such as the one

described in this dissertation, could bootstrap itself to learn the relationship structure as well as

the relationship content. Coupled with an extended ability to identify goal-relevant classes, such

a system would be capable of learning in a wide variety of environments with comparatively

little pre-programming (or re-programming) on the part of developers and engineers.

Another open question would be whether or not the learned relationships stored within

the Relational Mapping System could be extended to tasks for which they were not originally

defined. This is an extremely complex problem that would also require highly flexible and

reusable identification of goal-relevant classes. Consider, for example, an autonomous robotic

vehicle driving along a crowded city street; it would certainly be advantageous for this system to

understand that “large heavy objects do not go on top of smaller softer objects”. The interesting

question is whether this important relationship could be learned merely by bagging groceries and

then noting the attribute and relationship similarity across tasks? Researchers have begun to ask

such questions (for an excellent review see [Thrun and Pratt, 1998]), however, few employ the

type of complex architectural approach that ultimately may be required.

The process of internal rehearsal to develop appreciations between situations and the

behavioral and cognitive constraints that each affords is also an interesting problem that has

recently seen some very intriguing results [Erdem, et al., 2008] [Sahin, et al., 2007]. As the

environments in which robots are deployed become increasingly more complex, the need for

offline pre-processing to mine a reusable set of easily deployable appreciations and affordances

will become increasingly more important. This necessitates that a full investigation of internal

rehearsal, including its biases and drawbacks, be performed.

The process of appraising fit has only been lightly examined in this dissertation, and the

individual fit appraisals have not been used to mediate control. However, error detection and

error correction are critical for robotic systems [Lyons et al., 1989] [Halder and Sarkar, 2007].

This extends beyond measuring sensor error, and must encompass all aspects of system

201

functionality, including the cognitive processes ultimately responsible for decision making. As

robots find themselves in increasingly more complex situations, it could be disastrous if these

robots were to mistakenly believe that their current knowledge is a good fit to the new tasks.

Much future work also remains to be done on the cognitive architecture used in this

dissertation. The architecture has been an on-going project, and is constantly under revision and

being taken in new directions [Kawamura, et al., 2008]. One such direction being considered is

ubiquitous robotics [Rusu, et al., 2008], in which the architecture enables the robot to plug-and-

play into various sensing and effector-equipped environments. The research described in this

dissertation would be an ideal starting point for such future work because in such environments

the robot would not know a priori what information is going to be presented to it, and thus what

information is relevant for its current goal. As the robot learns what is relevant, the robot will

need to develop relational maps that associate the learned information with goal-based rewards.

It would then be useful for the robot to appreciate relationships between the current situation and

the need for fast commitment and urgency, as well as how well its current knowledge fits the

new sensor suite or effector set that it has acquired.

The system that has been described throughout this dissertation was developed based on

the concepts of emotion and emotion-based appraisals. The discussion and design approached

these issues from the point-of-view that low level “emotional” control would be highly

advantageous for a system required to be adaptive and flexible in real-world environments. This

discussion intentionally focused upon the commonly accepted parallels (at least within

engineering) between emotion and utility, and attempted to describe robotic emotion as the type

of multi-component process envisioned by Frijda [1986], Scherer [1997], Sloman [2001a], and a

host of others. However, this dissertation tried to stop well short of pursuing these emotional

concepts to the full extent with which they are realized in humans, and this necessarily opens the

door for much future work in this area. While it is expected that some of this research will have

immediate and practical uses for modern robots, some directions may best be left to science-

fiction writers.

It is strongly contended that any robotic approach in which the goal of emotion is to

enable more general, adaptive control, must include the robot’s experience and allow the robot to

develop its own internal states. Attempts to create adaptive control mechanisms based on

subjective notion of proto-typical emotions (e.g., “happy/sad” states) are destined for trouble

202

[Damasio, 1994], as robots are fundamentally different than humans, and this is not likely to

change soon. Investigations into how such labeled states may improve human-robot interaction,

however, are very intriguing and warrant future researcher, yet it is argued that this is

conceptually distinct from the type of control and information processing investigated here.

Ultimately, as robot technology advances the control systems that enable these robots to

adaptively function in complex environments will require increasingly more complex systems,

components, and appraisals. These appraisals will perform a multitude of tasks, including but not

limited to: detecting relevance, appraising utility, identifying urgency, and measuring fit. The

continuous and recursive interaction of these signals with the cognitive processes of the system

will define its own set of control states, and within this set will lie the robot’s potential

“emotions”. Some of these states may be familiar to us, while others may be alien, however, each

will share a few common traits with our own concepts of emotion and internal control: each state

(and the signals that underlie it) will be critical for the perceived proper functioning of the

system, and each state will in part have been developed by that system cognitively processing its

own experience.

203

APPENDIX A

LIST OF MAJOR COMPONENTS, CLASSES, FUNCTIONS, AND VARIABLES

State Representation: state.h

States were represented as a C++ structure, SState. This was because states did not

require any member functions, but only state variables. These variables were a combination of

numeric, symbolic, and true/false relationships that were represented by associating enumerated

types with boolean operators. In addition, vectors could be used to represent lists of any of these

types of information. The state structure was designed for this dissertation to have just those

variables described in Chapter VI. The important variables are listed as follows:

1. vector<CPercept> percepts – A list of percepts (described next).

2. vector<string> fv – This is the set of symbolic feature vectors.

3. vector<double> u – This is the corresponding set of numeric utility appraisals.

4. vector<double> x – This is the confidence vector for the numeric utility appraisals.

5. bool flagi – This is the interrupt flag (true = interrupt; false = keep going)

6. int d – This is the search depth

7. double b – This is the search breadth

8. double dt – This is the expected/allowable deliberation time

9. vector<double> r – This is the external reward provided by the critic

There was a separate structure SRelation defined for the individual logical relations. The

variables within this relation are:

1. vector<CPercept> percepts – This is a list of the percepts (described next) that form the

relation.

2. enum type – This is a type identifier for the relation.

3. bool value – This is the true/false value of the relation.

There was also a structure for maintaining the current, local policy, SPolicy. This policy

associated states with actions, and therefore this structure had two variables:

1. SState state – Specific state representation with which a single action is associated.

204

2. CAction action – Action representation (described below) for the specific action

associated with the input state.

This structure was used as a vector, (i.e., vector<SPolicy> policy) so that only one action would

be represented with a single state.

Percept Representation: percept.h, percept.cpp

A C++ class was designed for percepts called CPercept. The member variables for this

class were the individual attributes possible for a percept. For example, weight was a member

variable as was xyz position. Each variable was specified as either numeric or symbolic. There

were three primary member functions for the percept class CPercept:

1. Initialize() – This function initialized the member variables to default values, which

could be set based on the task.

2. GetSemanticInformation(ref) – This function retrieved all known semantic information

for that percept, given a reference pointer. The most common reference pointer is the

percepts name (e.g., “bread”, “potatoes”, etc.) but any information related to the percepts

attributes can be passed through this function.

3. GetRewardInformation(fv, u) – The external reward values provided by the critic were

treated as a type of percept. This function retrieved those values and stored them in the

variables fv and u.

Action Representation: action.h, action.cpp

A C++ class was designed for actions called CAction. The member variables for this class

were:

1. double cost – Cost for performing that action.

2. vector<CPercept> percepts – List of CPercept’s that could be used to represent the

targets of that action.

3. vector<int> subactions – Integer list of any other actions that may hierarchically form

the current action. I.e., CAction(4) may be formed by performing CAction(2), CAction(3),

205

CAction(1) in sequence. Such examples included BagGrocery(b,g) which could also be

written ReachTo(g) � Grasp(g) � ReachTo(b) � Release(g).

4. vector<SRelation> preconditions – Set of true/false relationships that must hold before

that action can be performed.

5. vector<SRelation> postconditions – Set of true/false relationships that should hold after

that action has been performed.

There were two member functions for the class CAction:

1. CheckPossibility(current_state) – This function checked whether the given action could

be performed in the current state.

2. DetermineEffect(current_state, new_state) – This function determined the new state as a

result of applying the given action to the current state.

Episode Memory: episodic_memory.h, episodic_memory.cpp

There was nothing new implemented in the C++ episodic memory class, CEpisodic, for

this dissertation. However, this class is described here because episodic memory was critical for

this research and this description will help the discussion in Appendix B. There was only one

public member function for this class:

1. current_episode – This episodes was a list that recorded every state and action

encountered during the current episode.

The current episode was implemented as a generic structure with two components: SState

and CAction. As described in Chapter’s V and VI, goals were implicit for this dissertation. In

addition, outcomes were implicit in the next state stored in the list. The public member functions

for this class were:

1. AddState(state) – This function added an input state to the current episode.

2. AddAction(action) – This function added an input action to the current episode.

3. SaveEpisode() – Saves the current episode to a file.

4. RetrieveEpisode(id) – Retrieves a specific episode from the saved files.

5. GetNumberOfEpisodes() – Retrieve the number of episodes stored in long-term memory.

206

Working Memory: working_memory.h, working_memory.cpp

For this dissertation, most of the working memory functions were incorporated within the

Dynamic Representation block, which included the functions described for weight learning and

conceptual clustering. However, two critical functions of working memory (CWorking) that

remained were to get the current state from short-term memory, and to maintain the local policy.

The policy was one public variable that was represented as a structure, SPolicy with the

following individual member variables:

1. vector<SState> states – This was a list of states.

2. vector<CAction> actions – This was the associated list of actions for each state.

3. vector<double> u – This was the list of expected utilities for each state.

The public member functions were:

1. GetState(state) – This function retrieved the current information in the short-term

memory buffer

2. UpdatePolicy(state, action, u) – This function updated the current policy with the

information state, action, u.

Weight Learning: weight.h, weight.cpp

The weight learning algorithm was designed to load sets percepts from states along with

associated reward values, and derive the learn what value should be assigned to each perceptual

attribute. The number of percept sets does not have to be preset, however, the number of reward

dimensions does need to be preset. This algorithm was designed as a C++ class CWeight. The

two public member variables were:

1. m_percepts – Vector list of percepts.

2. m_rewards[N] – N dimensional Vector list of associated rewards, where N is the reward

dimension.

The member variables for the weight learning algorithm were:

207

1. Load(file) – Load the sets percepts from a file along with the associated reward values.

The files used for this research were the individual episodes.

2. Train() – Learn the weight values from the percept/reward combinations.

3. Save(file) – Save the learned weights to a file.

Conceptual Clustering: ccluster.h, ccluster.cpp

The conceptual clustering algorithm was a C++ class, CCluster, that implemented the

COBWEB algorithm [Fisher, 1987] using the learned weight values for each percept. The

training instances for this algorithm were the individual percepts used for the experiments

(GrocerySet-A). The algorithm did not require any public member variables, only public

functions. Theses functions were:

1. LoadTrainingInstances(file) – Loaded a set of percepts stored as CPercept.

2. LoadWeights(file) – Load the learned weights.

3. Cluster() – Run the algorithm and develop the clusters.

4. Classify(percept) – Place an input percept in the best cluster and return a number

associated with that cluster.

5. SaveClusters(file) – Save the learned clusters to file. This saves future computation by

alleviating the need to continually re-calculate the clusters.

6. AppendFeatureVector(fv, id) – This function appended a percept’s cluster identification

onto a given feature vector.

Self-Organizing Maps: som.h, som.cpp

The self-organizing map algorithm was implemented as a C++ class CSom. As with the

conceptual clustering algorithm, there were no public member variables associated with this

class, only public member functions. These functions were:

1. LoadTrainingInstance(episode) – This function loaded an entire episode from a file, but

had to be called for each episode needed for learning.

2. Initialize() – This function cleared the current SOM had initialized a new random SOM.

3. LoadSOM(file) – This function loaded a previously saved SOM from a file.

208

4. SaveSOM(file) – This function saved the current SOM to a file.

5. Train() – This function trained the current SOM using the training instances.

6. RetrieveNode(input) – This function retrieved the nearest node for a given input vector,

and returned the complete vector stored at that node.

Urgency: urgency.h, urgency.cpp

The algorithm for determining urgency, stored in class CUrgency, matched the current

state feature vectors to a list of examples stored in a text file. Using this list as a guide, the

algorithm attempted to set the search parameters d and b to maximize solution quality while

minimizing deliberation time. Trained Bayesian networks were used to trigger interrupt flags.

The public member functions are listed as follows:

1. RetrieveMatches(fv, n) – This function retrieves the n best matches from the stored file.

2. SetDepthBreadth(d, b) – This function sets the values d and b based on the stored

matches.

3. LoadTrainingInstance(episode) – This function loads an entire episode from a file, but

must be called for each episode required for training.

4. TrainBayesian() – This function uses the loaded episodes to train a Bayesian network.

5. LoadBayesian(file) – This function loads a Bayesion network from a file.

6. SaveBayesian(file) – This function save the Bayesian network to a file.

7. CheckFlags(state, flag) – This function uses the current state to determine whether an

interrupt should be generated.

8. InternallyRehearse(state) – This function is an exact copy of the planning function given

in Figure 25, but is used here to rehearse situations without continually monitoring the

external states.

9. AppendResults(file) – This function appends the results from the last rehearsal to a file.

209

APPENDIX B

DESCRIPTION OF COMPONENTS AND IMPLEMENTATIONS

Dynamic Representation

This component was used to learn weights and to create clusters, or groups, or percepts

using these weights. Specifically, the percepts that were groups were the individual groceries

described in Table 14. The basic code to perform the training operation is shown as follows:

/***/

CEpisodic epm;

CWeight wgt;

int num_episodes = epm.GetNumberOfEpisodes();

for(int i=0;i<num_episodes;i++)

{

 char file[100] = epm.RetrieveEpisode(i);

 wgt.Load(file);

}

wgt.Train();

wgt.Save(“weights.txt”);

/***/

The code to create the individual clusters is:

/***/

CCluster clstr;

clstr.LoadTrainingInstances(“percepts.txt”);

clstr.LoadWeights(“weights.txt”);

clstr.Cluster();

clstr.SaveClusters(“clusters.txt”);

/***/

The code for classifying percepts using the current clusters is:

/***/

CCluster clstr;

clstr.LoadClusters(“clusters.txt”);

CPercept percept;

percpet.GetSemanticInformation(“bread”); //as an example

int id = clstrs.Classify(percept);

/***/

210

The code snippets described here can be inserted, or used wherever they are needed. The first

two are related to the offline cognitive processing of experience, while the last one deals

performs online appraisals for relevance.

Relational Mapping

This component used experience stored within a traditional episodic memory system (i.e.,

state, action, state, action), to create a relational map that associated sequential aspects of each

episode with goal-dependent reward values. The basic code to train the relational maps is as

follows:

/***/

CEpisodic epm;

CSom som;

som.Initialize();

int num_episodes = epm.GetNumberOfEpisodes();

for(int i=0;i<num_episodes;i++)

{

 char file[100] = epm.RetrieveEpisode(i);

 som.LoadTrainingInstance(file);

}

som.Train();

som.SaveSOM(“som.txt”);

/***/

The code to use the SOM during online task performance is:

/***/

CSom som;

som.Initialize();

som.LoadSOM(“som.txt”);

SState state;

wms.GetState(state);

int id = som.RetrieveNode(state.fv);

som.GetUtilityAppraisal(id, state.u, state.x);

/***/

Urgency

The urgency component used a trained Bayesian network to set the search parameters d

and b, or to generate interrupts flagi (note: the interrupts were referred to as i in the text, but have

been changed to flagi to avoid confusion with the common nomenclature “for(int

i=0;i<somelimit;i++)”). The code used to train the urgency component is:

211

/***/

CEpisodic epm;

CUrgency urg;

int num_episodes = epm.GetNumberOfEpisodes();

for(int i=0;i<num_episodes;i++)

{

 char file[100] = epm.RetrieveEpisode(i);

 urg.LoadTrainingInstance(file);

}

urg.TrainBayesian();

urg.SaveBayesian(“bayes.txt”);

int num_episodes_for_rehearsal = rand()%num_episodes;

for(int i=0;i<num_episodes_for_rehearsal;i++)

{

 char file[100] = epm.RetrieveEpisode(i);

 SState state = epm.current_episode.pop_front();

 urg.InternallyRehearse(state);

 urg.AppendResults(“urgency.txt”);

}

/***/

The code to use the urgency appraisals is:

/***/

CUrgency urg;

urg.LoadBayesian(“bayes.txt”);

SState state;

CWorking wms;

wms.GetState(state);

int d;

double b;

bool flag;

urg.RetrieveMatches(state.fv, 5); //for example

urg.SetDepthBreadth(d, b);

urg.CheckFlags(state, flag);

/***/

Fit

The algorithm for determining fit does not have a separate class, but rather this algorithm

simply uses the functionality provided by the other classes. The code to calculate fit is provided.

For brevity, the fit equations have been omitted.

/***/

SState state;

CWorking wms;

wms.GetState(state);

vector<double> E;

212

for(int i=0;i<state.percepts.size();i++)

{

 if(!strcmp(state.percepts.at(i).name,”External Reward”))

 {

 vector<string> fv;

 vector<double> u;

state.percepts.at(i).GetRewardInformation(fv, u);

 for(int j=0;j<u.size();j++)

 {

 double fit = /* Calculate fit as shown in Chapter V */

 E.push_back(fit);

 }

 }

}

/***/

Communication with the Arm Agent

Standard TCP/IP was used to communicate with the Arm Agent. Through this

communication, the signals that were sent included flags for which behavior to execute. There

were two flags used, one to initiate the pre-recorded motion, and one to shut the arms down at

the end of the experiment. The gripper was closed/opened at preset points during the execution

of the pre-recorded motion. Code to initiate the motion is provided, along with code to shut the

arms down.

/***/

//Initiate the arm behavior

int flag = INITIATE; //#defined to be 1

char msg[255];

sprintf(msg, “%d”, flag);

//send msg to computer at 129.59.72.55 (Octavia) and port 30000

sock.send(msg, “129.59.72.49”, 30000);

/***/

/***/

//Shut the arm down

int flag = SHUTDOWN; //#defined to be 0

char msg[255];

sprintf(msg, “%d”, flag);

//send msg to computer at 129.59.72.55 (Octavia) and port 30000

sock.send(msg, “129.59.72.49”, 30000);

/***/

213

The code to open/close the gripper using the Arm Agent is:

/***/

//example preset position for closing the gripper

double pose1[3] = {-30, 80, 70};

//example preset position for opening the gripper

double pose2[3] = {10, 80, 75};

if(trajectory[0] == pose1[0]

&& trajectory[1] == pose1[1]

&& trajectory[2] == pose1[2])

{

 CloseGripper();

}

if(trajectory[0] == pose2[0]

&& trajectory[1] == pose2[1]

&& trajectory[2] == pose2[2])

{

 OpenGripper(7);

}

/***/

where the functions CloseGripper() and OpenGripper() are designed to activate or deactivate

the pressure valve of one of ISAC’s triceps muscles that has been disconnected from the arm and

connected to the gripper.

Recording motions with the Arm Agent required initializing the arms, and then closing

the valves that connect to the arms, and finally reading the encoder data from the arms (as the

arms were being manually driven through the desired motion).

/***/

InitializeCards(); InitializeAllValves();

Sleep(5000); //msec

ResetLeftEncoders(); ResetRightEncoders();

CloseValves();

Sleep(5000); //msec

ofstream out(“motion.txt”);

getchar();

while(1)

{

 ReadRightEncoders(); RealRightAngles();

 ReadLeftEncoders(); RealLeftAngles();

 out << leftAngles[0] << “ “ << leftAngles[1] << “ “ << leftAngles[2] <<

endl;

 Sleep(50);

} //note: this program must be manually stopped

/***/

214

REFERENCES

[Albus, 2002] J.S. Albus, “4D/RCS, A Reference Model Architecture for Intelligent Unmanned
Ground Vehicles”, in Proceedings of the SPIE 16

th
 International on Aerospace/Defense

Sensing, Simulation, and Controls, 2002

[Albus and Barbera, 2004] J.S. Albus and A.J. Barbera, “RCS: A cognitive architecture for

intelligent multi-agent systems”, in Proceedings of the 5
th

 IFAC/EURON Symposium on

Intelligent Autonomous Vehicles, 2004

[Aggleton and Pearce, 2002] J.P. Aggleton and J.M. Pearce, “Neural Systems Underlying

Episodic Memory: Insights from animal research”, in A. Baddeley, M. Conway, and J.
Aggleton (eds.), Episodic Memory: New directions in Research, Oxford University Press,
New York, 2002

[Ahn and Picard, 2005] H. Ahn and R. Picard, “Affective-Cognitive Learning and Decision

Making: A Motivational Reward Framework For Affective Agents”, The 1st International

Conference on Affective Computing and Intelligent Interaction. Beijing, China. October 22-
24, 2005

[Anderson, 1976] J.R. Anderson, Language, Memory, and Thought, Lawrence Erlbaum

Associates, 1976

[Anderson, 1983] J.R. Anderson, The Architecture of Cognition, Harvard University Press,

Cambridge, 1983

[Anderson and Lebiere, 1998] J.R. Anderson and C. Lebiere, The Atomic Components of

Thought, Lawrence Erlbaum Associates, 1998

[Arbib and Fellous, 2004] M.A. Arbib and J-M. Fellous, “Emotions: From brain to robot”,

Trends in Cognitive Sciences, Vol. 8, No. 12, 2004

[Arkin, 1998] R.C. Arkin, Behavior-Based Robotics, MIT Press, Boston, MA, 1998

[Arkin, 2004] R.C. Arkin, “Moving Up the Food Chain: Motivation and emotion in Behavior-

Based Robots”, in J-M. Fellous and M. Arbib (Eds.), Who Needs Emotions? The Brain
Meets the Robot, Oxford University Press, 2004

[Arkin and Vachtsevanos, 1990] R.C. Arkin and G. Vachtsevanos, “Techniques for Robot

Survivability”, in Proc. 3
rd

 International Symposium on Robotics and Manufacturing, 1990

[Baddeley, 1998] A.D. Baddeley, Human Memory: Theory and practice –Rev. Ed.,Allyn and

Bacon, 1998

215

[Baddeley, 2000] A.D. Baddeley, “The Episodic Buffer: A New Component to Working
Memory?”, Trends in Cognitive Science, Vol. 4, No. 11, 2000

[Baddeley and Hitch, 1974] A.D. Baddeley and G.J. Hitch, “Working Memory”, In G.A. Bower
(Ed.), Recent Advances in Learning and Motivation, Vol. 8, pp. 47-90, Academic Press, New
York, NY., 1974

[Baddeley, et al., 2002] A. Baddeley, M. Conway, and J. Aggleton (Eds.), Episodic memory:

New Directions in Research, Oxford University Press, New York, 2002

[Barbera, et al., 1979] A.J. Barbera, J.S. Albus, and M.L. Fitzgerald, “Hierarchical Control of

Robots Using Microcomputers”, in Proceedings of the 9
th

 International Symposium on

Industrial Robots, 1979

[Barrett, 2006] L.F. Barrett, “Are Emotions Natural Kinds?”, Perspectives on Psychological

Science, Vol. 1, No. 1, pp. 28-58, 2006

[Barto, et al., 1995] A.G. Barto, S.J. Bradtke, and S.P. Singh, “Learning to Act Using Real-Time

Dynamic Programming”, Artificial Intelligence, Vol. 72, No. 1, pp. 81-138, 1995

[Baum, 1900] L.F. Baum, The Wonderful Wizard of Oz, George M. Hill, 1900

[Baumeister, et al., 2007] R.F. Baumeister, K.D. Vohs, C.N. DeWall, and L. Zhang, “How

Emotion Shapes Behavior: Feedback, Anticipation, and Reflection, Rather Than Direct
Causation”, Society for Personality and Social Psychology, Vol. 11, No. 2, pp. 167-203,
2007

[Bechara, et al., 1997] A. Bechara, H. Damasio, D. Tranel, and A.R. Damasio, “Deciding

Advantageously Before Knowing the Advantageous Strategy”, Science, Vol. 275. pp. 1293-
1295, 1997

[Beer, 1995] R. Beer, “A Dynamical Systems Perspective on Agent-Environment Interaction”,

Artificial Intelligence, Vol. 72, pp. 173-215, 1995

[Beer, 2000] R. Beer, “Dynamical Approaches to Cognitive Science”, Trends in Cognitive

Sciences, Vol. 4, No. 3, 2000

[Bellman, 1957] R.E. Bellman, Dynamic Programming, Princeton University Press, Princeton,

NJ, 1957

[Bentham, 1789] J. Bentham, An Introduction to the Principles of Morals and Legislation,

(1948), New York: Hafner Press, 1789

[Bezdek, 1981] J.C. Bezdek, “Pattern Recognition with Fuzzy Objective Function Algorithms”,

Plenum Press, New York, 1981

216

[Biswas, et al., 1995] G. Biswas, J. Weinberg, and C. Li, “ITERATE: A conceptual clustering
scheme for knowledge discovery in databases”, in B. Braunschweig and R. Day (Eds.),
Artificial Intelligence in the Petroleum Industry, Paris, France, Editions Technip, pp. 111-
139, 1995

[Botvinick, et al., 2001] M.M. Botvinick, T.S. Braver, D.M. Barch, C.S. Carter, and J.D. Cohen,

“Conflict Monitoring and Cognitive Control”, Psychological Review, Vol. 108, No. 3, pp.
624-652, 2001

[Braver and Cohen, 2000] T.S. Braver and J.D. Cohen, “On the Control of Control: The Role of

Dopamine in Regulating Prefrontal Function and Working Memory”, In S. Monsell and J.
Driver (Eds.), Control of Cognitive Processes, Vol. 18 of Attention and Performance, chapter
31, pp. 713-737, MIT Press, 2000

[Breazeal, 2002] C. Breazeal, Designing Sociable Robots, The MIT Press, 2002

[Breazeal and Brooks, 2004] C. Breazeal and R.A. Brooks, “Robot Emotion: A functional

perspective”, in J-M. Fellous and M. Arbib (Eds.), Who Needs Emotions? The Brain Meets
the Robot, Oxford University Press, 2004

[Brooks, 1986] R.A. Brooks, “A Robust Layered Control System for a Mobile Robot,” IEEE

Journal of Robotics and Automation, Vol. RA-2, No. 1, pp. 14-23. 1986

[Burgess, et al., 2002] N. Burgess, S. Becker, J.A. King, and J. O’Keefe, “Memory for Events

and Their Spatial Context: Models and experiments”, in A. Baddeley, M. Conway, and J.
Aggleton (eds.), Episodic Memory: New directions in Research, Oxford University Press,
New York, 2002

[Cabanac, 1992] M. Cabanac, “Pleasure: The Common Currency”, Journal of Theoretical

Biology, Vol. 155, pp. 173-200, 1992

[Cacioppo and Bernston, 1999] J.T. Cacioppo and G.G. Bernston, “The Affect System:

Architecture and Operating Characteristics”, Current Directions in Psychological Science,
1999

[Canamero, 1997] D. Canamero, “Modeling Motivations and Emotions as a Basis for Intelligent

Behavior”, Proc. of the First International Symposium on Autonomous Agents, 1997

[Carbonell, et al., 1990] J.G. Carbonell, C. Knoblock and S. Minton “Prodigy: An Integrated

Architecture for Planning and Learning”, in K. VanLehn (Ed.), Architectures for Intelligence,
Erlbaum, 1990

[Carver and Scheier, 1998] C.S. Carver and M.F. Scheier, On the Self-Regulation of Behavior,

New York: Cambridge University Press, 1998

217

[Clayton and Dickinson, 1998] N.S. Clayton and A. Dickinson, “What, Where, and When:
Episodic-Like Memory During Cache Recovery by Scrub Jays”, Nature, Vol. 395, pp. 272-
274

[Clayton, et al., 2002] N.S. Clayton, D.P. Griffiths, N.J. Emery, and A. Dickenson, “Elements of

Episodic Memory in Animals”, in A. Baddeley, M. Conway, and J. Aggleton (eds.), Episodic
Memory: New directions in Research, Oxford University Press, New York, 2002

[Cos-Aguilera, et al 2005] I. Cos-Aguilera, L. Cañamero, G.M. Hayes, and A. Gillies,

“Ecological Integration of Affordances and Drives for Behaviour Selection”, Proc. of

MNAS2005, Edinburgh, 2005

[Damasio, 1994] A. Damasio, Descartes’ Error: Emotion, reason, and the human brain, New

York: Grosset/Putnam, 1994

[Damasio, 1999] A. Damasio, The Feeling of What Happens: Body, Emotion, and the Making of

Consciousness, Heinemann, London, 1999

[Dautenhahn, 2002] K. Dautenhahn, “Design Spaces and Niches of Believable Social Robots”, in

Proceedings of the International Workshop on Robots and Human Interactive

Communication, 2002

[Darwin, 1872] C. Darwin, The Expression of the Emotions in Man and Animals, 1872, New

York: Philosophical Library, 3rd Ed, 1998, with Introduction, 1998

[Dean and Boddy, 1988] T.L. Dean and M. Boddy, “An Analysis of Time-Dependent Planning”,

in Proceedings of the Seventh National Conference on Artificial Intelligence, pp. 49-54, 1988

[Dean, et al., 1993] T. Dean, L. Pack Kaelbling, J. Kirman, and A. Nicholson, “Planning with

Deadlines in Stochastic Domains”, in Proceedings of 11
th

 National Conference on Artificial

Intelligence, pp. 574-579, 1993

[Dearden and Boutilier, 1994] R. Dearden and C. Boutilier, “Integrating Planning and Execution

in Stochastic Domains”, in Proceedings of Tenth Conference on Uncertainty in Artificial

Intelligence, 1994

[DeLancy, 2002] C. DeLancey, Passionate Engines, New York: Oxford University Press, 2002

[Ekman, 1992] P. Ekman, “Are There Basic Emotions?”, Psychological Review, Vol. 99, pp.

550-553, 1992

[Ekman, 1999] P. Ekman, “Basic Emotions”, in T. Dalgeish and M. Power (eds.), Handbook of

Cognition and Emotion, John Wiley and Sons, Ltd., Sussex, UK, 1999

218

[Erdemir, et al., 2008] E. Erdemir, C.B. Frankel, K. Kawamura, S.M. Gordon, S. Thorton, and B.
Ulutas, “Towards a Cognitive Robot that Uses Internal Rehearsal to Learn Affordance
Relations” International Conference on Intelligent Robots and Systems, 2008

[Fellous and Arbib, 2004] J-M. Fellous and M. Arbib (Eds.), Who Needs Emotions? The Brain

Meets the Robot, Oxford University Press, 2004
[Fisher, 1987] D.H. Fisher, “Knowledge Acquistion via Incremental Conceptual Clustering”,

Machine Learning, Vol. 2, pp. 139-172, 1987

[Food Pyramid – MIT] http://web.mit.edu/athletics/sportsmedicine/wcrfoodpyr.html

[Franklin, 1997] S. Franklin, “Global Workspace Agents”, Journal of Consciousness Studies,

Vol. 4, No. 4, pp. 322-334, 1997

[Frijda, 1986] N.H. Frijda, The Emotions, Cambridge University Press, Cambridge, UK, 1986

[Frijda, 1995] N.H. Frijda, “Emotions in Robots”, in H.L. Roitblat and J-A. Meyer (Eds.)

Comparative Approaches to Cognitive Science, MIT Press, Cambridge MA, 1995

[Frijda and Moffat, 1994] N.H. Frijda and D. Moffat, “Modeling Emotion”, Cognitive Studies,

Vol. 1, No. 2, pp. 5-15, 1994

[Frijda and Swagerman, 1987] N.H. Frijda and J. Swagerman, “Can Computers Feel? Theory

and Design of an Emotional System”, Cognition and Emotion, Vol. 1, No. 3, 1987

[Gadanho and Hallam, 1998] S.C. Gadanho and J. Hallam, “Exploring the Role of Emotions in

Autonomous Robot Learning”, Proc. of AAAI Fall Symposium on Emotional Intelligence,
1998

[Gadanho, 2003] S.C. Gadanho, “Learning Behavior Selection by Emotions and Cognition in a

Multi-Goal Robot Task”, Journal of Machine Learning Research, Vol. 4, pp. 385-412, 2003

[Gardiner, 2001] J.M. Gardiner, “Episodic Memory and Autonoetic Consciousness: A First-

person Approach”, Philosophy Transactions Royal Society of London, Vol. 356, pp. 1351-
1361, 2001

[Gathercole, 1999] S.E. Gathercole, “Cognitive Approaches to the Development of Short-Term

Memory”, Trends in Cognitive Science, Vol. 3, No. 11, 1999

[Gazzaniga, et al., 2002] M.S. Gazzaniga, R.B. Irvy, and G.R. Mangun, Cognitive Neuroscience:

The biology of the mind, 2nd Ed., W.W. Norton, New York, 2002

[Geffner and Bonet, 1998] H. Geffner and B. Bonet, “Solving Large POMDPs Using Real-Time

Dynamic Programming”, Working Notes Fall AAAI Symposium on POMDPs, 1998

219

[Gluck and Corter, 1985] M.A. Gluck and J.E. Corter, “Information, Uncertainty, and the Utility
of Categories”, Program of the 7

th
 Annual Conference of the Cognitive Science Society, pp.

283-287, 1985

[Gockley, et al., 2006] R. Gockley, R. Simmons, and J. Forlizzi, “Modeling Affect in Socially

Interactive Robots”, Proc. of 15
th

 Annual IEEE International Workshop on Robot and

Human Interaction, London, UK. 2006

[Gordon, 1995] G.J. Gordon, “Stable Function Approximation in Dynamic Programming”, in

Proceedings of the 12
th

 International Conference on Machine Learning, 1995

[Gordon and Hall, 2006] S.M. Gordon and J.F. Hall, “System Integration with Working Memory

Management for Robotic Behavior Learning”, International Conference on Development and

Learning, 2006

[Griffiths, 1997] P.E. Griffiths, What Emotions Really Are: The Problem of Psychological

Categories, University of Chicago Press, Chicago, 1997

[Griffiths, 2004] P.E. Griffiths, “Emotions as Natural and Normative Kinds”, Philosophy of

Science, Vol. 71, pp. 901-911, 2004

[Grupen and Huber, 2005] R.A. Grupen and M. Huber, “A Framework for the Development of

Robot Behavior”, AAAI Spring Symposium Series: Developmental Robotics, 2005

[Haddawy, 1996] P. Haddawy, “Focusing Attention in Anytime Decision-Theoretic Planning”,

AAAI Spring Symposium on Planning with Incomplete Information for Robot Problems, 1996

[Halder and Sarkar, 2007] B. Halder. and N. Sarkar, “Robust Fault Detection of Robotic

Manipulator”, International Journal of Robotics Research, Vol. 26, No.3, pp. 273-285, 2007

[Hall, 2007] J. Hall, “Internal Rehearsal for a Cognitive Robot Using Collision Detection”, M.S.

Thesis, Vanderbilt University, December 2007

[Haykin, 2008], S. Haykin, Neural Networks and Learning Machines, Pearson Education Inc.,

New Jersey, 2008

[Hebb, 1949] D.O. Hebb, The Organization of Behavior, New York: Wiley, 1949

[Hesslow, 2002] G. Hesslow, “Conscious Thought as Simulation of Behavior and Perception”,

Trends in Cognitive Science, Vol. 6, pp. 242-247, 2002

[Horsch and Poole, 1998] M.C. Horsch and D. Poole, “An Anytime Algorithm for Decision-

Making Under Uncertainty”, in Proceedings of the Fourteenth Conference on Uncertainty in

Artificial Intelligence, Vol. 5, pp. 162-173, 1998

220

[Horvitz, 1987] E.J. Horvitz, “Reasoning About Beliefs and Actions Under Computational
Resource Constraints”, in Proceedings of the 1987 Workshop on Uncertainty in Artificial

Intelligence, 1987

[Hosoda and Asada, 1994] K. Hosoda and M. Asada, “Versatile Visual Servoing without

Knowledge of True Jacobian”, in Proc. IEEE/RSJ International Conference on Intelligent

Robots & Systems, pp. 186-191, 1994

[James, 1884] W. James, “What Is an Emotion?”, Mind, Vol. 19, pp. 188-205, 1884

[Jirenhed, et al., 2001] D.A. Jirenhed, G. Hesslow, and T. Ziemke, “Exploring Internal

Simulation of Perception in Mobile Robots”, Lund University Cognitive Studies, Vol. 86, pp.
107-113, 2001

[Kahneman and Tversky, 1979] D. Kahneman and A. Tversky, “Prospect Theory: An Analysis

of Decision Under Risk”, Econometrica, Vol. 47, pp. 263-291, 1979

[Kalman, 1960] R.E. Kalman, “A New Approach to Linear Filtering and Prediction Problems”,

Journal of Basic Engineering, Vol. 82, No. 1, pp. 35-45, 1960

[Kapur, 1999] N. Kapur, “Syndromes of Retrograde Amnesia: A conceptual and empirical

synthesis”, Psychology Bulletin, Vol. 125, pp. 800-825, 1999

[Kawamura, et al., 2008] K. Kawamura, S.M. Gordon, P. Ratanaswasd, E. Erdemir, and J. Hall,

“Implementation of Cognitive Control for a Humanoid Robot”, International Journal of

Humanoid Robotics, 2008

[Kawewong, et al., 2008] A. Kawewong, Y. Honda, M. Tsuboyama, and O. Hasegawa, “A

Common-Neural-Pattern Based Reasoning for Mobile Robot Cognitive Mapping”, INNS-

NNN Symposia, 2008

[Keiras and Meyer, 1997] D.E. Keiras and D.E. Meyer, “An Overview of the EPIC Architecture

for Cognition and Performance with Application to Human-Computer Interaction”, Human-

Computer Interaction, Vol. 12, pp. 391-438, 1997

[Kleinginna and Kleinginna, 1981] P.R. Kleinginna and A.M. Kleinginna, “A Categorized List

of Emotion Definitions, With Suggestions for a Consensual Definition”, Motivation and

Emotion, Vol. 5, pp. 345-379, 1981

[Koenig and Likhachev, 2001] S. Koenig and M. Likhachev, “Incremental A*”, Neural

Information Processing Systems, 2001

[Koenig and Likhachev, 2002] S. Koenig and M. Likhachev, “D* Lite”, in Proceedings of the

International Conference on Autonomous Agents and Multi-Agent Systems, pp. 476-483,
2002

221

[Koenig and Likhachev, 2006] S. Koenig and M. Likhachev, “Real-Time Adaptive A*”,
Autonomous Agents and Multi-Agent Systems, 2006

[Kohonen, 1988] T. Kohonen, Self-Organization and Associative Memory, New York, Springer-

Verlag, 1988

[Kohonen and Somervuo, 1998] T. Kohonen and P. Somervuo, “Self-Organizing Maps of

Symbol Strings”, Neurocomputing, Vol. 21, pp. 19-30, 1998

[Koku, et al., 2003] A.B. Koku, A. Sekmen, and D.M. Wilkes, “A Novel Approach for Robot

Homing”, in Proceedings of the IEEE Conference on Control Applications, Vol. 2, pp. 1477-
1482, 2003

[Korf, 1990] R.E. Korf, “Real-Time Heuristic Search”, Artificial Intelligence, Vol. 42, pp. 189-

211, 1990

[Krichmar and Edelman, 2005] J.L. Krichmar and G.M. Edelman, “Brain-Based Devices for the

Study of Nervous Systems and the Development of Intelligent Machines”, Artificial Life,
Vol. 11, pp. 63-78, 2005

[Kuipers, et al., 2004] B. Kuipers, J. Modayil, P. Beeson, M. Macmahon, and F. Savelli, “Local

Metrical and Global Topological Maps in the Hybrid Spatial Semantic Hierarchy”, ICRA,
2004

[Landauer, 1986] T.K. Landauer, “How Much do People Remember? Some Estimates of the

Quantity of Learned Information in Long-term Memory”, Cognitive Science, Vol. 10, pp.
477-493, 1986

[Larsen and Diener, 1992] R.J. Larsen and E. Diener, “Promises and Problems with the

Circumplex Model of Emotions”, in M.S. Clark (ed.), Review of Personality and Social

Psychology: Emotion, Vol. 13, pp. 25-50, Newbury Park, CA: Sage

[Lehman, et al., 2006] J.F. Lehman, J. Laird, and P. Rosenbloom, “A Gentle Introduction to

Soar, an Architecture for Human Cognition: 2006 Update”, online at:
http://sitemaker.umich.edu/soar/home, 2006

[Leventshtein, 1966] V.I. Levenshtein, “Binary Codes Capable of Correcting Deletions,

Insertions, and Reversals”, Soviet Physics Doklady, 1966

[Liu, et al., 2007] C. Liu, K. Conn, N. Sarkar, and W. Stone, “Affect Recognition in Robot

Assisted Rehabilitation of Children with Autism Spectrum Disorder”, in Proceedings of

IEEE International Conference on Robotics and Automation, 2007

[Loewenstein, 1996] G. Loewenstein, “Out of Control: Visceral Influences on Behavior”,

Organizational Behavior and Human Decision Processes, Vol 65, No. 3., pp272-292, 1996

222

[Logan, 1988] G.D. Logan, “Toward an Instance Theory of Automatization”, Psychological

Review, Vol. 94, No. 4, pp. 492-527, 1988

[Lyons et al., 1989] D.M. Lyons, R. Vijaykumar, and S.T. Venkataraman, “A Representation of

Error Detection and Recovery in Robot Task Plans”, SPIE Symposium on Advances in

Intelligent Robotics Systems, Intelligent Control and Adaptive Systems, 1989

[Marr, 1971] D. Marr, “Simple Memory: A theory of archicortex”, Phil. Trans. Royal Society of

London, Vol. B 262, pp. 23-81, 1971

[Martinez, et al., 1990] T.M. Martinez, H. Ritter, K.J. Schulten, “Three-Dimensional Neural Net

for Learning Visuomotor Coordination of a Robot Arm”, IEEE Transactions on Neural

Networks, Vol. 1, pp. 131-136, 1990

[Matthies, et al., 2000] L. Matthies, Y. Xiong, R. Hogg, D. Zhu, A. Rankin, B. Kennedy, M.

Herbert, R. Maclachlan, C. won, T. Frost, G. Sukhatme, M. McHenry, and S. Goldberg, “A
Portable, Autonomous, Urban Reconnaissance Robot”, in Proceedings of the International

Conference on Intelligent Autonomous Systems, 2000

[McCarthy, 1959] J. McCarthy, “Programs With Common Sense”, in Proceedings of the

Teedington Conference on the Mechanization of Thought Processes, pp. 756-791, 1959

[McCauley and Franklin, 1998] L. McCauley and S. Franklin, “An Architecture for Emotion”,

AAAI Fall Symposium Emotional and Intelligent: The Tangled Knot of Cognition, 1998

[Mellers, et al., 1999] B. Mellers, A. Schwartz, and Ilana Ritov, “Emotion-Based Choice”,

Journal of Experimental Psychology: General, Vol. 128, No. 3, pp. 332-345, 1999

[Mellers, 2000] B. Mellers, “Choice and the Relative Pleasure of Consequences”, Psychological

Bulletin, Vol. 126, No. 6, pp. 910-924, 2000

[Melo, et al., 2008] F.S. Melo, S.P. Meyn, and M.I. Ribeiro, “An Analysis of Reinforcement

Learning with Function Approximation”, in Proceedings of the 25
th

 International Conference

on Machine Learning, 2008

[Miller, 1956] G.A. Miller, “The Magical Number Seven, Plus or Minus Two: Some Limits on

Our Capacity for Processing Information”, Psychological Review, Vol. 63, pp. 81-97, 1956

[Mitchell, 1997] T. Mitchell, Machine Learning, McGraw Hill, 1997

[Montague and Berns, 2002] R.P. Montague and G.S. Berns, “Neural Economics and the

Biological Substrate of Valuation”, Neuron, Vol. 36, pp. 265-284, 2002

[Morris, 2002] R.G.M. Morris, “Episodic-like Memory in Animals: Psychological criteria, neural

mechanisms and the value of episodic-like tasks to investigate animal models of

223

neurodegenerative disease”, in A. Baddeley, M. Conway, and J. Aggleton (eds.), Episodic
Memory: New directions in Research, Oxford University Press, New York, 2002

[Morris, et al., 1990] R.G.M. Morris, F. Schenk, F. Tweedie, and L.E. Jarrard, “Ibotenate

Lesions of Hippocampus and/or Subiculum: Dissociating Components of Allocentric Spatial
Learning”, European Journal of Neuroscience, Vol. 2, pp. 1016-1028, 1990

[Moser and Moser, 1998] M.B. Moser and E.I. Moser, “Functional Differentiation in the

Hippocampus”, Hippocampus, Vol. 8, pp. 608-619, 1998

[Moshkina and Arkin, 2003] L. Moshkina and R.C. Arkin, “On TAMEing Robots”, in Proc.

IEEE International Conference on Systems, Man, and Cybernetics, Vol. 4, pp. 3949-3959,
2003

[Nadel and Moscovitch, 1997] L. Nadel and M. Moscovitch, “Memory Consolidation,

Retrograde Amnesia and the Hippocampal Complex”, Current Opinions in Neurobiology,
Vol. 7, pp. 217-227, 1997

[Newell, 1990] A. Newell, Unified Theories of Cognition, Harvard University Press, 1990

[Newell and Simon, 1963] A. Newell and H.A. Simon, “GPS: A Program that Simulates Human

Thought”, in E.A. Feigenbaum and J. Feldman, (Eds.) Computers and Thought, McGraw-
Hill, New York. 1963

[Norman, 2002] D.A. Norman, The Design of Everyday Things, Basic Books, New York, 2002

[Nuxoll and Laird, 2004] A. Nuxoll and J. Laird “A Cognitive Model of Episodic Memory

Integrated With a General Cognitive Architecture”, International Conference on Cognitive

Modeling, 2004

[Nyberg, et al., 1996] L. Nyberg, A.R. McIntosh, R. Cabeza, R. Habeb, and E. Tulving, “General

and Specific Brain Regions Involved in Encoding and Retrieval of Events: What, Where, and
When”, Proc. of National Academy Of Science, Vol. 93, pp. 11280-11285, 1996

[OpenCV] http://sourceforge.net/projects/opencvlibrary/

[Ortony and Turner, 1990] A. Ortony and T.J. Turner, “What’s Basic About Basic Emotions?”,

Psychological Review, Vol. 97, pp. 315-331, 1990

[Ortony, et al., 1988] A. Ortony, G.L. Clore, and A. Collins, “The Cognitive Structure of

Emotion”, Cambridge University Press, Cambridge UK, 1988

[Ortony, et al., 2004] A. Ortony, D.A. Norman, and W. Revelle, “Affect and Proto-Affect in

Effective Functioning”, in J-M. Fellous and M. Arbib (Eds.), Who Needs Emotions? The
Brain Meets the Robot, Oxford University Press, 2004

224

[Panksepp, 1998] J. Panksepp, Affective Neuroscience, Oxford: Oxford University Press, 1998

[Panksepp, 2000] J. Panksepp, “Emotions as Natural Kinds Within the Brain”, in M. Lewis and

J.M. Haviland-Jones (eds.), Handbook of Emotions, 2nd Ed., New York: Guilford Press, pp.
137-155, 2000

[Papdimitriou and Tsisiklis, 1987] C. Papadimitriou and J.N. Tsisiklis, “The Complexity of

Markov Decision Processes”, Mathematics of Operations Research, Vol. 12, No. 3, pp. 441-
450, 1987

[Paquet, et al., 2005] S. Paquet, L. Tobin, and B. Chaib-draa, “An Online POMDP Algorithm for

Complex Multiagent Environments”, Autonomous Agents and Multi-Agent Systems, 2005

[Perkins and Precup, 2003] T.J. Perkins and D. Precup, “A Convergent Form of Approximate

Policy Iteration”, in S. Becker, S. Thrun, and K. Obermayer (eds.), Advances in Neural
Information Processing Systems, MIT Press, Cambridge, MA, 2003

[Peters, 2006] E. Peters, “The Functions of Affect in the Construction of Preferences”, in S.

Lichtenstein and P. Slovic (eds.), The Construction of Preference, pp. 454-463, Cambridge
University Press, New York, 2006

[Peters, et al., 2001] R.A. Peters II, K.A. Hambuchen, K. Kawamura, and D.M. Wilkes, “The

Sensory Ego-Sphere as a Short-term Memory for Humanoids”, Proc of the IEEE-RAS Int’l

Conf. on Humanoid Robotics, pp. 451-459, 2001

[Pfister and Böhm, 2008] H. Pfister and G. Böhm, “The Multiplicity of Emotions: A Framework

of Emotional Functions in Decision Making”, Judgment and Decision Making, Vol. 3, No. 1,
pp. 5-17, 2008

[Phillips and Noelle, 2005] J.L. Phillips and D. Noelle, “A Biologically Inspired Working

Memory Framework for Robots”, Proc. of the 27
th

 Annual Conf. of the Cognitive Science

Society, pp. 1750-1755, 2005

[Picard, 1997] R.W. Picard,. Affective Computing, MIT Press, Cambridge, MA., 1997

[Picard, et al., 2004] R.W. Picard, S. Papert, W. Bender, B. Blumberg, C. Brazeal, D. Cavallo, T.

Machover, M. Resnick, D. Roy, and C. Strohecker, “Affective Learning – A Manifesto”, BT

Technology Journal, Vol. 22, No. 4, pp. 253-269, October, 2004

[Pinker and Mehler, 1988] S. Pinker and J. Mehler, Connections and Symbols, Cambridge MA,

MIT Press, 1988

[Posner and Snyder, 1975] M.I. Posner and C.R. Snyder, “Attention and Cognitive Control”, in

R.L. Solso (ed.), Information Processing and Cognition: The Loyola symposium, Hillsdale,
N.J., Erlbaum Associates, 1975

225

[Provost, et al., 2006] J. Provost, B.J. Kuipers, R. Miikkulainen, “Developing Navigation
Behavior Through Self-Organizing Distinctive State Abstraction”, Connection Science, Vol.
18, No. 2, 2006

[Purdy and Olmstead, 1984] J.E. Purdy and K.M. Olmstead, “New Estimate for storage time in

sensory memory”, Percept Mot Skills, Vol. 59, No. 3, pp. 683-686, 1984

[Ratanaswasd, 2007] P. Ratanaswasd, “Implementation of Cognitive Control in a Humanoid

Robot”, Ph.D. Dissertation, Vanderbilt University, December 2007

[Ratanaswasd, et al., 2006] P. Ratanaswasd, C. Garber, and A. Lauf, “Situation-Based Stimuli

Response in a Humanoid Robot”, International Conference on Development and Learning,
2006

[Richter-Levin, 2004] G. Richter-Levin, “The Amygdala, The Hippocampus, and Emotional

Modulation of Memory”, The Neuroscientist, Vol. 9, No. 7, pp. 1-9, 2004

[Rolls, 1999] E.T. Rolls, The Brain and Emotion, Oxford, Oxford University Press, 1999

[Rolls, 2004] E.T. Rolls, “The Functions of the Orbitofrontal Cortex”, Brain and Cognition, Vol.

55, pp. 11-29, 2004

[Russell, 2003] J.A. Russell, “Core Affect and the Psychological Construction of Emotion”,

Psychological Review, Vol. 110, No. 1, pp. 145-172, 2003

[Russell and Norvig, 2003] S. Russell and P. Norvig, Artificial Intelligence: A Modern

Approach, 2nd Edition, Prentice Hall, 2003

[Sahin, et al., 2007] E. Sahin, M. Cakmak, M.R. Dogar, E. Ugur, and G. Ucoluk, “To Afford or

Not to Afford: A new formalization of affordace-based robot control”, Adaptive Behavior,
Vol. 15, No. 4, pp. 447-472, 2007

[Scherer, 1981] K.R. Scherer, “Speech and Emotional States”, in J. Darby (Ed.), Speech

Evaluation in Psychiatry, Grune and Stratton, New York NY, 1981

[Scherer, 1997] K.R. Scherer, “Profiles of Emotion-Antecedent Appraisal”, Cognition and

Emotion, Vol. 11, No. 2, pp. 113-150, 1997

[Schneider, 1999] W. Schneider, “Working Memory in a Multi-Level Hybrid Connectionist

Control Architecture (CAP2)”, in A. Miyake and P. Shah (Eds.) Models of Working
Memory: Mechanisms of active maintenance and executive control, pp 340-374. Cambridge,
UK: Cambridge University Press, 1999

[Schneider and Shiffrin, 1977] W. Schneider and R.M. Shiffrin, “Controlled and Automatic

Human Information Processing: Detection, search, and attention”, Psychological Review,
Vol. 84, pp. 1-66, 1977

226

[Schneider and Chein, 2003] W. Schneider and J.M. Chein, “Controlled and Automatic

Processing: Behavior, Theory, and Biological Mechanisms”, Cognitive Science, Vol. 27, pp.
525-559, 2003

[Schwarz and Clore, 1988] N. Schwarz and G.L. Core, “How Do I Feel About It? The

Informative Function of Affective States”, in K. Fiedler and I. Forgas (eds.), Affect,
Cognition, and Social Behavior, pp. 44-62, Gottingen: Hogrefe, 1988

[Selfridge, 1959] O.G. Selfridge, “Pandemonium: A Paradigm for Learning”, Proc. of the

Symposium on Mechanisation of Thought Process. National Physics Laboratory, 1959

[Sehad and Touzet, 1994] S. Sehad and C. Touzet, “Reinforcement Learning and Neural

Reinforcement Learning”, ESANN, 1994

[Shanahan, 2006] M.P. Shanahan, “A Cognitive Architecture That Combines Internal Simulation

with a Global Workspace”, Consciousness and Cognition, Vol. 15, pp. 433-449, 2006

[Shani, et al., 2005] G. Shani, R.I. Brafman, and S.E. Shimony, “Adaptation for Changing

Stochastic Environments Through Online POMDP Policy Learning”, Workshop on

Reinforcement Learning in Non-Stationary Environments, 2005

[Shen and Hasegawa, 2005] F. Shen and O. Hasegawa, “An Incremental Network for Online

Unsupervised Classification and Topology Learning”, Neural Networks, Vol. 19, No. 1, pp.
90-106, 2005

[Shrobe, et al., 2006] H. Shrobe, P. Winston, J. Tennenbaum, P. Shaftoe, S. Massaquoi, P.

Robertson, B. Williams, I. Eslick, S. Rao, M. Coen, and R. Bobrow, “CHIP: A Cognitive
Architecture for Comprehensive Human Intelligence and Performance”, Electronic Resource:
http://www.darpa.mil/ipto/programs/bica/phase1.htm, 2006

[Sloman, 2001a] A. Sloman, “Varieties of Affect and the CogAff Architecture Schema”, Proc. of

the AISB’01 Symposium on Emotion, Cognition, and Affective Computing, 2001

[Sloman, 2001b] A. Sloman, “Beyond Shallow Models of Emotion”, Cognitive Processing, Vol.

2, No. 1, pp. 177-188, 2001

[Sloman, et al., 2004] A. Sloman, R. Chrisley, and M. Scheutz, “The Architectural Basis of

Affective States and Processes”, in J-M. Fellous and M. Arbib (Eds.), Who Needs Emotions?
The Brain Meets the Robot, Oxford University Press, 2004

[Slovic, et al., 2003] P. Slovic, M. Finucane, E. Peters, and D.G. MacGregor, “The Affect

Heuristic”, in T. Gilovich, D. Griffin, and D. Kahneman (eds.), Intuitive Judgment:
Heuristics and Biases, Cambridge University Press, Cambridge, MA, 2003

227

[Smith and Simmons, 2004] T. Smith and R. Simmons, “Heuristic Search Value Iteration for
POMDPs”, in Proceedings of the 20

th
 Conference on Uncertainty in Artificial Intelligence,

2004

[Smith, 2002] A.J. Smith, “Applications of the Self-Organizing Map to Reinforcement

Learning”, Neural Networks, Vol. 15, pp. 1107-1124

[Sondik, 1971] E.J. Sondik, “The Optimal Control of Partially Observable Markov Decision

Processes”, PhD Thesis, Stanford University, 1971

[Sperling, 1960] G. Sperling, “The Information Available in Brief Visual Presentations”,

Psychological Monographs: General and Applied, Vol. 74, pp. 1-29, 1960

[Stentz, 1995] A. Stentz, “The Focussed D* Algorithm for Real-Time Replanning”, in

Proceeding of International Joint Conference on Robotics and Automation, pp. 3310-3317,
1995

[Strosslin, et al., 2005] T. Strosslin, D. Sheynikhovich, R. Chavariaga, and W. Gerstner, “Robust

Self-Localization and Navigation Based on Hippocampal Place Cells”, Neural Networks,
Vol. 18, No. 9, pp. 1125-1140, 2005

[Sudo, et al., 2008] A. Sudo, M. Tsuboyama, C. Zhang, A. Sato, and O. Hasegawa, “Pattern-

Based Reasoning System Using Self-Incremental Neural Network for Propositional Logic”,
Lecture Notes in Computer Science, Springer Berlin, 2008

[Sutton, 1988] R.S. Sutton, “Learning to Predict by the Method of Temporal Differences”,

Machine Learning, Vol. 3, pp. 9-44, 1988

[Sutton, 1999] R.S. Sutton, “Open Theoretical Questions in Reinforcement Learning”, Lecture

Notes in Computer Science, Vol. 1572, pp. 11-17, 1999

[Sutton and Barto, 2000] R.S. Sutton and A.G. Barto, Reinforcement Learning: An Introduction,

MIT Press, 2000

[Szepesvári and Smart, 2004] C. Szepesvári and W.D. Smart, “Interpolation-Based Q-Learning”,

in Proceedings of the 21
st
 International Conference on Machine Learning, 2004

[Taylor and Kleeman, 2001] G. Taylor and L. Kleeman, “Flexible Self-Calibrated Visual

Servoing for a Humanoid Robot”, in Proc. of Australian Conference on Robotics and

Automation, 2001

[Tesauro, 1990] G. Tesauro, “Neurogammon: A neural network backgammon program”, in

IJCNN Proceedings III, pp. 33-39, 1990

228

[Thayer, et al., 2000] S. Thayer, B. Digney, M. Diaz, A. Stentz, B. Nabbe, and M. Herbert,
“Distributed Robotic Mapping of Extreme Environments”, in Proceedings of the SPIE:

Mobile Robots XV and Telemanipulator and Telepresence Technologies VII, Vol. 4195, 2000

[Thrun and Pratt, 1998] S. Thrun and L. Pratt (Eds.), Learning to Learn, Kluwer Academic

Publishers, 1998

[Thrun, et al., 2005] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics, MIT Press,

Cambridge, 2005

[Tulving, 1983] E. Tulving, Elements of Episodic Memory, Oxford University Press, New York,

1983

[Tulving, 2002] E. Tulving, “Episodic Memory: From Mind to Brain”, Annual Review of

Psychology, Vol. 53, pp. 1-25, 2002

[Tversky and Kahneman, 1986] A. Tversky and D. Kahneman, “Rational Choice and the

Framing of Decisions”, Journal of Business, Vol. 59, No. 4, pp. S251-S278, 1986

[Ulutas, et al., 2008] B. Ulutas, E. Erdemir, and K. Kawamura, “Application of Hybrid

Controller with Non-Contact Impedance to a Humanoid Robot”, 10th International Workshop
on Variable Structure Systems, 2008

[Veloso and Carbonell, 1993] M.M. Veloso and J.G. Carbonell, “Derivational Analogy in

PRODIGY: Automating Case Acquisition, Storage, and Utilization”, Machine Learning, Vol.
10, No. 3, pp 249-278, 1993

[Watkins, 1989] C. Watkins, “Learning from Delayed Rewards”, Dissertation Thesis, University

of Cambridge, England, 1989

[Winkielman and Trujillo, 2007] P. Winkielman and J.L. Trujillo, “Emotional Influence on

Decision and Behavior: Stimuli, States and Subjectivity”, in K. Vohs, R. Baumeister, and G.
Loewenstein (eds.), Do Emotions Help or Hurt Decision Making?, New York: Russell Sage,
2007

[Witten, 2000] I.H. Witten, Data Mining: Practical machine learning tools and techniques with
Java implementations, San Francisco, CA, Morgan Kaufman, 2000

[Zeelenberg and Pieters, 2006] M. Zeelenberg and R. Pieters, “Feeling is for Doing: A Pragmatic

Approach to the Study of Emotions in Economic Behavior”, in D. De Cremer, M.
Zeelenberg, and K. Murnighan (eds.), Social Psychology and Economics, Erlbaum, Mahwah,
NJ, 2006

[Zilberstein, 1996] S. Zilberstein, “Using Anytime Algorithms in Intelligent Systems”, AAAI,

1996

229

[Zilberstein and Russell, 1995] S. Zilberstein and S.J. Russell, “Approximate Reasoning Using
Anytime Algorithms”, in S. Natarajan (ed.), Imprecise and Approximate Computation,
Kluwer Academic Publishers, 1995

