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CHAPTER I 

 

INTRODUCTION 

 

Motivation 

Decision making in autonomous systems requires purposive deliberation that utilizes 

knowledge of the goal specific value of particular states as well as an understanding of what is 

relevant in the current situation. In addition, decision makers embedded in real-world 

environments require the ability to balance fast commitment against deliberation to ensure that 

system operating frequency keeps pace with that of the surrounding environment. It is therefore 

necessary that these systems be able to quickly identify sufficient solutions to the problem at 

hand, but this ability is contingent upon a number of other factors. First, these systems must be 

able to identify which aspects of the present situation are most relevant to the current goals. This 

ability enables weights to be properly assigned that allow feature extraction and concept 

formation. Second, such systems must be able to mine utility functions from experience in order 

to prioritize and rank potential responses. This involves associating the goal-relevant information 

with evaluation signals that indicate goal benefit/harm. Third, such systems must have an 

appreciation of their own ability to trade between solution quality and deliberation time, in order 

to appropriately portion deliberation given their own resources and the demands imposed on 

them by the situation. Finally, because learning is crucial for such an adaptive decision maker, 

error tracking must be deployed to facilitate performance monitoring as well as to foster an 

understanding of which knowledge systems adequately fit the current task and which require 

further training. It is believed that for autonomous systems (e.g., cognitive robots) to make 

decisions that reflect an understanding of goal relevance, goal specific situational value, and 

urgency pressures, these systems must mine from their own experience the knowledge that will 

ultimately be used to inform each of the multi-dimensional evaluation criteria just described.  

In robotics, balanced decision making is critical. Robots operate in environments that are 

often characterized by complex stochastics and large, or continuous, state spaces. Real-time 

decision-making techniques (e.g., LRTA* [Korf, 1990], RTDP [Barto, et al., 1995], D* [Stentz, 

1995] and D* Lite [Koenig and Likhachev, 2002]), as well as anytime algorithms [Zilberstein, 

1996] [Dean, et al., 1993] [Paquet, et al., 2005], have been successfully applied to robotic 
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systems. However, these methods often require maintaining tabular state-value or heuristic 

functions (V(s) and h(s), respectively), which can be prohibitively expensive in large state 

spaces. Function approximators have been used, with some success, to reduce the 

representational cost of maintaining such functions, but many approximators require preset, 

static-sized feature vectors that can omit relevant state information. Furthermore, most real-time 

systems do not adjust their performance on a situation-dependent basis, which prohibits learning 

adaptations that improve solution quality.  

Rather than use static feature vectors, tabular state value and heuristic functions, or preset 

performance parameters, it would be preferable to have a system “bootstrap” itself through the 

cognitive processing of its own experience. The result of this process should be the derivation of 

experience- and task-based dynamic feature mappings that associate situations with task-

dependent appraisals that can be used to internally signal the deliberation process and adaptively 

tune control parameters. Such signals should identify and include:  

1. What is relevant in the current situation? 

2. What utility should be attached to response options in order to achieve the current goals? 

3. How urgent is the current situation? 

4. How well does the current knowledge and the chosen response fit the situation?  

 

This dissertation describes how current psychological and neuroscientific research on emotion 

and emotional processing can be used to inform the design of robots that, through the processing 

of their own experience, are capable of such balanced decision making. 

 

The Importance of Emotion 

In this research the term emotion is used in a manner similar to that as Sloman [2001a] in 

which emotional states are defined as those states that mediate a system’s cognitive processes, or 

have the potential for such mediation yet are suppressed by a filter or priority mechanim. While 

this definition will be expanded in Chapter IV, it is important to note that, in this respect, 

emotion and emotion-based processes are functionally and fundamentally related to goals and the 

behaviors necessary to achieve those goals [Frijda, 1986]. Keeping this in mind, it becomes 

worthwhile to discuss the importance of emotion in robots because all robots possess goals (even 

if only implicitly), and many robots also possess the capacity to arbitrate amongst and perform 
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actions in pursuit of those goals [Fellous and Arbib, 2004]. This is not meant to imply that the 

idea of emotion in robots must parallel human-centric concepts of emotion (e.g., the “happy/sad” 

states described by Damasio [1994] and Ekman [1992]). Rather, robot emotion should be 

investigated from the perspective that certain biological processes are known to facilitate real-

time, adaptive decision making and commitment and that many of these processes have direct 

correlates to robot control. Ultimately, the degree of “emotion” possessed by any robot will be, 

in part, defined by both the utility and reward structures implicit in that robot’s design, as well as 

the levels of architectural control and processing required for that robot to be successful within 

its “ecological” niche [Sloman, et al., 2004] [Arbib and Fellous, 2004]. Due to the fundamental 

differences between robots and humans, and the goals each pursue, it is highly unlikely that the 

final emergent control states, which in humans are often classified as emotions, could be labeled 

in robots using the same generic terms. Therefore, while this dissertation discusses emotion, the 

key concepts that should be kept in mind are those related to the functional purpose of specific 

emotional states, the mechanisms that provide that purpose, and how each mechanism may apply 

to robot technology.   

 

Area of Investigation 

In biology, the emotion system evolved to enable adaptive, real-time control in complex 

environments [Arbib and Fellous, 2004]. This system often operates as an innate reinforcement 

mechanism, but also integrates aspects of cognitive decision making with low-level control 

[Rolls, 2004] [Damasio, 1994] [Pfister and Böhm, 2008]. The cognitive processing that 

subserves emotional states also enhances control by not only forcing innate responses, but by 

attaching utilities to actions within the planning cycle, focusing attention, signaling urgency, and 

measuring error [Rolls, 1999] [Zeelenberg and Pieters, 2006] [Frijdja, 1986] [Scherer, 1997]. 

These processes can be both automatic and controlled: automatic operations are often used to 

appraise relevance, urgency, or utility, while controlled operation measure error and perform 

post hoc evaluations and reflections [Baumeister, et al., 2007] [Richter-Levin, 2004]. 

Furthermore, some of the evaluations that underlie emotion provide a means to collapse complex 

potential outcomes onto a common currency scale that can be used for deliberative cognitive 

control (e.g., predicting and planning) [Rolls, 1999] [Slovic, et al., 2003] [Ortony and Turner, 

1990]. Here, and throughout this dissertation, the term cognitive control refers to the type of 
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executive control defined by many psychologists and neuroscientists in which top-down 

executive processes utilize attention and working memory, planning and internal rehearsal,error 

correction, and novelty detection to purposefully respond to complex situations [Posner and 

Snyder, 1975] [Botvinick, et al., 2001]. While the influence of emotion on cognitive control, at 

times, may yield negative results (e.g., losing one’s temper), research suggests that emotion and 

emotion-based processes, as a whole, are more adaptive than maladaptive [Damasio, 1994] 

[Bechara, et al., 1997].  

This dissertation investigates how theories of emotion and, specifically, the cognitive 

processing and appraisals that enable emotion can be applied to a cognitive robot to improve task 

performance. The focus of this dissertation is not on the development of a new emotion model 

for control or to make the robot externally appear emotional. Innovative work in these areas can 

be found in [Arkin, 2004] [Breazeal, 2002] [Breazeal and Brooks, 2004] [Gockley, et al., 2006]. 

Rather, emotions are approached from the perspective that they provide goal-contingent and 

situation-based evaluations of functional importance to the decision-making process. This 

involves processing both the current situation and past experience with respect to: what is 

relevant and urgent, how much utility should be attached to specific responses, and how well 

current knowledge and response capacities fit the situation. There will be three simultaneous 

aspects to this approach:  

1. Processing and mining experience, stored as episodic memory, for relational information 

that can be used to derive situation-based appraisals; 

2. Representing the mined relations and appraisals for use in online decision making; 

3. Integrating these appraisals within the control process. 

 

Contribution of Work 

The contribution of this work will be to investigate how theories of cognitive processing 

can be used to mediate decision making in order to enable appropriate online performance in 

complex situations. This will entail investigating flexible methods for representing experience, 

initially stored as episodic memory. Once represented, it will be important to develop relational 

structures that allow the current situation to be matched against experience and associations to be 

formed between individual experiences and the various appraisals they entail. These appraisals 

must be integrated into decision making in a manner that extends beyond simply inserting utility 
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values. It is necessary to investigate when and how parameters within the decision-making 

process should be dynamically tuned in order to facilitate real-time responsiveness while 

maintaining adequate solution quality. Finally, because this research is part of a larger study on 

robotic cognition, the developed system must be designed around and integrated within a 

complex cognitive architecture used for robot control. 

 

Organization of Dissertation 

This dissertation begins in Chapter II with a discussion on cognitive robotics, functional 

aspects of cognition, and cognitive architectures. The goal of Chapter II is to review the 

fundamental concepts of cognitive robotics and cognitive architectures and provide the necessary 

backdrop upon which this dissertation research will be developed. Chapter III reviews sequential 

decision-making processes, such as MDPs and POMDPs, the methods used to evaluate these 

processes, and the techniques for modifying these methods in order to obtain real-time operation. 

Whereas Chapter II discusses cognitive robotic control, Chapter III describes specific techniques 

by which deliberative, and ultimately cognitive control may be realized, while also presenting 

the limitations of current control methods. Chapter IV reviews psychological and neuroscientific 

theories on emotions, as well as theories that view emotion as being comprised of specific 

appraisals and evaluations based on the cognitive processing of events and concerns. Chapter IV 

then describes specific implementations in which theories on emotion have been used within 

robotic control applications. 

Chapter V combines the discussions of Chapter’s II, III, and IV and describes how ideas 

and theories from each chapter may be integrated and used to inform system design. This chapter 

then discusses the implemented system and relates each component back to the engineering and 

psychological theories used in its design. Chapter V also provides overall system layout, as well 

as how the system is specifically realized through the ISAC cognitive architecture [Kawamura, et 

al., 2008]. Chapter VI describes the grocery-bagging experiment used to test the developed 

system, and presents the results of both simulation and integrated hardware experiments, as well 

as the discussion of results. Chapter VII offers final thoughts, and providing directions for future 

research. Two appendices conclude this dissertation: Appendix A describes the variables and 

functions used to implement the designed system, while Appendix B provides some example 

code for using these variables and functions.  
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CHAPTER II 

 

OVERVIEW OF COGNITIVE ROBOTICS 

 

Many well-defined, single task problems have been studied by applying targeted, task-

specific solution methods. In robotics, such examples include grasping [Grupen and Huber, 

2005], navigation [Koku, et al., 2003], and obstacle avoidance [Arkin, 1998]. Each example falls 

under the general category of techniques known collectively as artificial intelligence (AI): a 

scientific discipline which provides the necessary backbone for creating intelligent systems that 

can act, react, and adapt in different environments. Research in AI began in the 1950’s with 

development of computer systems and computer programs [McCarthy, 1959]. Over the years, 

there have been a number of different approaches to the study and creation of artificially 

intelligent systems. Early work focused on symbol manipulation and logical computation. 

Research has since expanded to include sub-symbolic connectionists systems, reactive systems, 

and fuzzy systems, to name a few. Recently, however, a new approach has begun to emerge that 

is aimed at investigating how more general, cognitive-level behavior and control may be 

produced in “embodied” agents, such as robots. Termed cognitive robotics, this approach focuses 

on organizing and understanding how different components can be used to create a functioning 

whole, while utilizing psychological and neuroscientific research on biological cognitive systems 

to inform system design. Cognitive robotics is not an alternative to AI, but an attempt at the next 

step towards more general intelligent systems capable of approaching human cognition. 

As this researcher sees it, there are three major tenets to cognitive robotics. These tenets 

reflect themes that recur frequently in the literature on artificial cognition and cognitive robotics, 

but are by no means intended to be an exhaustive list. The first tenet of cognitive robotics is to 

study how the tools developed for targeted AI systems can be integrated and organized in order 

to create more adaptive, general-purpose systems. Organization is key in cognitive robotics. The 

second tenet is the notion that in order to create artificial cognitive systems, these organized 

components should reflect those identified by psychological and neuroscientific research as 

necessary (and at times sufficient) for cognitive ability. The third tenet is that a truly cognitive 

system must be situated in the real-world, and thus be required to cope with dynamic, unstable, 
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and noisy environments in which appropriate responses must be chosen using limited resources 

in a time critical fashion.  

One popular method for specifying the organizational scheme for a cognitive robot is 

through the use of a cognitive architecture, which diagrams how each cognitive component 

integrates and interacts to produce behavior. Yet cognitive architectures need not always be used 

for robot control; many architectures have been developed as models for investigating human 

cognition, or to implement cognitive abilities on non-robotic system [Anderson, 1983] [Newell, 

1990] [Sloman, 2001a]. Furthermore, not all cognitive robotic applications employ full cognitive 

architectures; many approaches focus on only a subset of cognitive abilities, and thus limit their 

research to less expansive architectural designs [Shanahan, 2006] [Krichmar and Edelman, 2005] 

[Beer, 2000].  

 

Components of Cognitive Systems 

There are a variety of mechanisms believed to be important for true cognitive 

functionality. A few of these include: attention, working memory, long-term memory, and 

executive control. While this is not an exhaustive list, it does highlight many of those 

components commonly found in the different approaches to artificial cognition. This section 

provides a brief discussion of such mechanisms.  

 

Short-Term Memory, Attention, and Working Memory 

In order to utilize sensory information, an organism must have a means of actively 

maintaining that information for some duration of time once the information has been detected. 

The initial buffer that maintains perceptual information in biological cognitive systems is 

commonly referred to as sensory memory. All sensor inputs pass through sensory memory; thus, 

this buffer is believed to be of unlimited capacity (practically speaking) [Sperling, 1960]. 

However, retention periods for sensory memory are extremely short, and information not 

immediately attended to is “dumped” and forgotten [Purdy and Olmstead, 1984].  

Information retained from sensory memory is passed on to short-term memory, a limited 

capacity, short-term store. Though it may vary across individuals, the capacity of short-term 

memory is believed to be somewhere in the range of seven to nine chunks of information [Miller, 

1956]. Due to this limited capacity, short-term memory is able to retain information for much 
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longer periods of time than sensory memory. Research suggests that the retention duration for 

short-term memory is in the range of 20-30 seconds, comparably much longer than the 100-300 

milliseconds duration of sensory memory [Purdy and Olmstead, 1984].  

Closely related to the concept of short-term memory is the notion of working memory. 

Both short-term and working memory systems retain and manipulate a finite amount of 

information for short periods of time [Gathercole, 1999]; however, working memory is believed 

to be specifically involved in the active maintenance and cognitive manipulation of task-relevant 

information [Baddeley and Hitch, 1974]. One of the primary roles of working memory is to 

maintain information relevant to the current task, so that it can be directly accessed by the 

organism’s other cognitive processes. There are two primary paths by which information may 

enter working memory: 1) external sensory information via the sensory- and short-term memory 

pathways and 2) highly activated or recalled information via long-term memory [Baddeley, 

2000]. Each pathway into working memory is modulated by attention, a mechanism that permits 

only situation- or task-relevant information to enter. Functionally, working memory is situated at 

the three-way intersection of short- and long-term memory and the higher-order cognitive 

processes. Thus, working memory is in a unique position to act as the staging ground where 

various informational chunks become bound together to affect task performance [Baddeley, 

2000].   

 

Procedural, Episodic, and Semantic Long-Term Memory 

Figure 1 provides a simple, functional illustration of the flow of information through the 

various memory systems. Most of the information that enters this process is eventually forgotten. 

However, over time and through attention, rehearsal, and repetition, information in short-term 

and working memory can become consolidated in long-term memory, where it may be retained 

indefinitely. Like sensory memory, long-term memory is a buffer with unlimited capacity, again, 

practically speaking [Landauer, 1986]. But unlike sensory memory, long-term memory is 

capable of retaining information for extremely long periods of time, possibly for the remainder 

of the organism’s life. Due to its limitless capacity as well as the indefinitely long retention 

periods, a critical and practical issue in forming, retaining, and retrieving long-term memories is 

structure and organization [Norman, 2002].  
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Figure 1. Flow of Information to the Various Memory Systems 

 

Functionally, long-term memory can be divided into two main groups: procedural and 

declarative. Procedural long-term memory stores implicit knowledge related to the performance 

of skills, behaviors, or tasks. Examples include: “how to ride a bike” or “how to write your 

name”. Research has shown, however, that this knowledge is not limited to motorized skills, but 

also extends to such abilities as “reading text in reverse” and “solving puzzles” [Baddeley, 

1998]. Procedural memory enables organisms to perform seemingly complex tasks without 

having to exert equal amounts of conscious, cognitive control. Acquisition of such ability 

requires that information be learned through constant practice and repetition until performance 

becomes “automatic”. Procedural memory is part of the adapative mechanisms that enable 

organisms to function in dynamic and often dangerous environments without the constant need 

for conscious, deliberative control [Logan, 1988] [Schneider, 1999].  

Whereas, procedural memory stores implicit knowledge related to performance, 

declarative memory stores explicit knowledge for use in planning, rehearsal, and deliberation. 

There are two main sub-systems in declarative memory: episodic and semantic [Baddeley, et al., 

2002]. The distinction between these two sub-systems has been suggested to be analogous to the 

difference between “remembering” and “knowing” [Tulving, 2002], where episodic memory 

stores remembered information, and semantic memory stores known information. According to 

Tulving [2002] and Gardiner [2001] remembered information is that which can be recalled 

within the context in which it was originally stored. Examples may include: “your wedding day”, 

“the day you graduated from school”, or “what you did this morning”. Therefore, episodic 
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memories, or episodes, are those events that can be recalled in combination with the various 

contextual details specifically related to the experienced event. Likewise, knowing that “Paris is 

the capital of France” or that “the sum of the square roots of any two sides of an isosceles 

triangle is equal to the square root of the remaining side” [Baum, 1900] are examples of semantic 

memory, where such information is simply often known, or believed, and the context in which it 

was originally stored cannot be recalled. Thus semantic memory retains facts and beliefs learned 

or mined from a lifetime of experience, yet not specifically associated with any single 

experience.  

Episodic memory retains contextualized, subjective episodes from the rememberer’s past 

[Tulving, 1983]. This system maintains the “what”, “when”, and “where” of an event [Clayton 

and Dickinson, 1998] [Nyberg, et al., 1996]. Therefore, information stored in episodic memory 

must be experienced [Nuxoll and Laird, 2004]. A unique property of episodic memory is that it 

enables an organism to mentally “travel back in time” [Tulving, 2002] and consciously re-

experience previous events. Such re-experiencing allows organisms to not only re-live the 

sequences of events that occurred, but also to “re-feel” the emotions and other internal states 

originally felt during those events [Tulving, 2002]. Research suggests, however, that much of the 

re-experienced internal information is considerably dampened during recall [Loewenstein, 1996].  

Finally, individual episodes within episodic memory have been compared to the idea of 

storing reels of footage within the brain, in which different frames can be stored at different 

levels of acuity [Tulving, 1983]. Subjectively significant features are typically stored with high 

acuity, while other less significant, background features are stored with less acuity, or not at all. 

Therefore, it is believed that episodic memory interacts closely with goal setting and evaluation 

processes in order to capture the significant details of an event [Burgess, et al., 2002] [Aggleton 

and Pearce, 2002]. As previously mentioned, working memory is also believed to interact with 

goal setting and deliberative cognitive processes and research suggests that the two systems 

(episodic and working memory) interact with each other and are highly related [Baddeley, 2000]. 

Specific application research has modeled this relation by using the information stored within 

working memory as the sole source of information for forming episodes [Nuxoll and Laird, 

2004].  
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Executive Processes 

Processes with executive functionality are necessary for goal-directed, purposive 

behavior. These high-level abilities perform many of the complex aspects of cognitive control, 

such as deliberation, planning, outcome monitoring, and anticipation. In addition, executive 

processes play a critical role in influencing the behavior of other components, such as working 

memory and episodic memory [Baddeley and Hitch, 1974] [Schneider , 1999] [Baddeley, 2000]. 

However, because executive processes encompass such a wide range of abilities and interact 

with various other components these processes are difficult to study alone, and are often studied 

in relation to the component processes with which they are believed to interact.  

Typical applications tend to generalize executive functionality as planners and decision 

makers that operate on abstract symbols and concepts [Anderson, 1983] [Newell, 1990]. This 

parallels much of the early work in AI, in which symbol manipulation and symbolic decision 

making were highly popular and well studied. But there have been other conceptions of 

executive systems as well. Baddeley and Hitch [1974] proposed a central executive that interacts 

with working memory, providing resource management and exerting executive control over sub-

components. Baddeley [2000] argued that this conception of a central executive must not be 

confused with notions of a control homunculus, or “magic box” within the human brain. Instead, 

the central executive should be viewed as a general learning function that is trained to perform as 

a meta-manager over sub-component functioning. Other conceptions of an integrated central 

executive and working memory system also exist [Schneider, 1999].  

From an architectural point-of-view, Sloman [2001a] and Ortony, et al., [2004] both 

place executive functioning at the top of the information flow and control hierarchy. This is 

comparable to the ideas of Baddely and Hitch [1974] and Schneider [1999], but at a much more 

general level. The work of Sloman [2001a] and Ortony, et al., [2004] notes that it is difficult to 

conceptualize executive processing as a single component, and therefore the gaps in executive 

models must often be filled in as needed when top-down control is required. Such a view is 

fundamentally different than the bottom-up control afforded by reactive and hard-wired 

components.  

 



12 

Cognitive Architectures 

Early cognitive architectures were designed with the specification that a working model 

of human cognition should be developed independently of the underlying hardware on which the 

architecture was implemented [Anderson, 1983] [Newell, 1990]. Therefore, while human 

cognition was implemented through the use of expansive neural networks, artificial models were 

created using various computing systems that utilized different hardware structures and software 

algorithms. Such architectures compartmentalized components, which enabled tests to be 

performed on specific functions and system performance to be analyzed under a variety of 

conditions.  

 

Symbol Processing Systems 

Two of the most well-known cognitive architectures were developed based on the 

physical symbol-system hypothesis [Newell and Simon, 1963]. This hypothesis proposed that the 

ability to perform symbolic computation and manipulation was both necessary and sufficient for 

the creation of artificial cognition. These two architectures are the ACT family of architectures 

[Anderson, 1976] [Anderson, 1983], of which ACT-R [Anderson and Lebiere, 1998] is the most 

recent, and the Soar family of architectures [Newell, 1990] [Lehman, et al., 2006]. Each 

approach is distinct with respect to many of the implementation details, but at a more abstract, 

functional level both architectures are laid-out using very similar components: long-term and 

working memory, as well as perceptual and actuation systems (Figure 2).  

 

 

Figure 2. General Layout of Early Production Systems (i.e., ACT-R and Soar [Anderson and 
Lebiere, 1998] [Newell, 1990]) 
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Both ACT-R and Soar are members of a class of architectures known collectively as 

production systems, in which procedural if-then rules are used to operate on symbolic data. Each 

system perceives the environment and stores the perceptual information in a global working 

memory buffer. The contents of working memory are used to activate information in long-term 

memory, which may then be recalled and placed in working memory. The procedural rules 

operate on the contents of working memory, potentially retrieving new information when 

required. Over time, information in working memory also triggers actions, which modify the 

environment and thus the process continues.  

At a certain level of abstraction both ACT-R and Soar operate in a similar fashion. Below 

this level of abstraction, however, the details of each architecture are quite different.  ACT-R 

divides long-term memory into procedural and declarative systems, in which procedural memory 

retains production rules while declarative memory retains semantic information “chunks” 

[Anderson and Lebiere, 1998]. Within ACT-R, declarative information is recalled through the 

use of a spreading activation network in which each information chunk has an associated 

activation value and is connected by weights to all other chunks. If two chunks are strongly 

associated, for example “water quenches thirst” and “cups hold water”, then the weight between 

these chunks should be high and the presence of one chunk in working memory should cause the 

activation and retrieval of the second chunk. Once chunks are retrieved they can be used as 

conditionals to trigger production rules or to retrieve more chunks. Production rules either cause 

actions to be taken on the environment or chunks to be created/deleted. Learning in ACT-R is 

accomplished by modifying the association strengths (i.e., weights) between different chunks, as 

well as by updating the cost and reward values associated with each production rule.  

Unlike ACT-R, the original Soar system did not differentiate between types of long-term 

memory; however, more recent work has divided Soar’s long-term memory into procedural, 

episodic, and semantic sub-systems [Lehman, et al., 2006]. Soar is a goal-based system in which 

all tasks are formulated as goals that must be met. When Soar is faced with a task, it creates a 

problem space for representing the potential states that may arise during task execution. The 

problem space describes the effects of performing different operations and actions in the current 

state. During deliberation, Soar repeatedly fires production rules using the information in 

working memory, and then selects states to pursue using specialized operators. The behavior of 

the Soar system can be visualized as movement through the problem space. 
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When an impasse is reached, Soar creates a sub-goal to resolve the impasse and operation 

iteratively continues within the problem space for the new sub-goal. Once the sub-goal is 

achieved, Soar creates a new production rule to summarize the solution process, and thus 

learning is performed. Within the Soar architecture this learning process is known as chunking, 

but is conceptually distinct from the chunk representations used in ACT-R.  

Soar and ACT-R are some of the most well-known and well studied rule-based cognitive 

architectures but there are others, such as EPIC [Keiras and Meyer, 1997] and Prodigy 

[Carbonell, et al., 1990]. EPIC is another production rule system that utilizes a global working 

memory. However, in place of the basic perceptual and actuation systems that ACT-R and Soar 

use, EPIC has a rich set of perceptual-motor peripherals that provide input/output capabilities 

and dictate various physical constraints and limitations with which the cognitive system must 

cope. EPIC can be viewed as a model of cognition in which performance trade-offs must be 

made when multiple tasks are required. Prodigy operates much like Soar in that it is primarily 

devoted to the single task of navigating a complex problem-space [Carbonell, et al., 1990]. Two 

types of rules are used by Prodigy: domain rules which model action conditions and effects, and 

control rules which dictate architecture performance, such as the selection or rejection of states. 

Prodigy also deploys explanation-based learning in order to re-use past experience for the current 

problem. Within the Prodigy system, this functionality is achieved through case-based 

techniques that attempt to solve current problems using previous problems as examples, or 

analogies [Veloso and Carbonell, 1993].  

 

Connectionist Systems 

The architectures just described were largely based on the physical symbol system 

hypothesis and were therefore designed as symbolic production systems. This is due, in no small 

part, to the fact that much of early AI was devoted to the study of symbolic approaches for 

intelligence. However, symbol manipulation is only one piece of the puzzle. Another equally 

important piece is the ability to use and manipulate sub-symbolic information. Sub-symbolic 

approaches generally use highly interconnected networks that pass numeric data in an attempt to 

re-create some of the vast complexity of the human neural system. Unfortunately, it is extremely 

difficult to create full cognitive architectures using purely connectionist systems and, therefore, 

these systems have been much less studied than the symbolic approaches. One reason for this 
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may be that complex, interconnected networks provide little discernable insight into how their 

performance may be understood from a psychological standpoint.  

Additionally, from a more pragmatic engineering point-of-view, full connectionist 

systems do not model cognition well because of the large amounts of training examples needed 

to learn basic concepts. And once a concept has been learned, the underlying network often 

becomes brittle and will not learn new concepts without forgetting the old. There has been, 

however, some very interesting research in this area [Thrun and Pratt, 1998].  

Brain-based devices (BBDs) [Krichmar and Edelman, 2005] are computational 

approaches to cognition that attempt to simulate the functionality of the nervous systems found 

in biological agents. BBDs possess neural dynamics and selection principles that allow them to 

appropriately adapt to their environment in a manner similar to the dynamic systems approaches 

investigated by Beer [1995] [2000]. Because the architectural design of a BBD is based on 

current neuroscientific understanding of the brain, these systems offer a unique ability to 

compare the results of simulated neural activity to collected experimental data [Krichmar and 

Edelman, 2005].  

Architecturally BBDs are pure connectionist systems in which functions have, generally, 

not been compartmentalized. In other words, there are no separate components designed a priori 

to store memories, plan, or perform actions. However, there are different sub-collections of 

artificial neurons that are intended to model particular regions of the brain and may thus become 

associated with the activities believed to occur in those regions. The connections between 

subsystems are loosely structured and are allowed to organize themselves over time. Such self-

organization occurs through active learning in the environment while the BBD is engaged in 

behaviors intended for the completion of a task. As the system learns, the connection weights 

between different neurons are updated via Hebbian learning [Hebb, 1949], a process that 

strengthens connections between simultaneously active neurons and weakens connections 

between inactive sets. In addition, a value system is used to modulate active connections when 

salient sensory events occur. 

 

Recent Hybrid Approaches 

Symbol manipulation and sub-symbolic computation are both useful techniques for the 

study of artificial cognition. Therefore, recent approaches to architecture design have begun to 
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study how both techniques can be combined to provide better cognitive models and more 

adaptive systems. Such architectures are known as hybrid architectures and have been used to 

model the various levels of control believed to be available in humans and other mammals.  

Based on the notion of controlled and automatic processing, CAP2 [Schneider and Chein, 

2003] is a hybrid architecture that models two levels of control. The first level is composed of 

traditional sub-symbolic (e.g., neural networks) functions. This level requires large amounts of 

consistent training in order to be effective, but once trained it operates automatically reacting 

quickly to stimuli and behaving like a general auto-associative mechanism [Schneider and Chen, 

2003]. The second level is the controlled level that performs deliberation and planning. This 

level is composed of connected sets of sequential processes that are designed to be functionally 

similar to the production-rule processing systems of Soar and ACT-R. In CAP2, the controlled 

processes are used in novel situations in which automatic responses have not yet been learned 

and, thus, problems must be solved without prior training examples. 

A second hybrid cognitive architecture is the RCS (Real-time Control System) approach 

of Albus and Barbera, [2004]. Early research using this architecture focused on low-level, real-

time control systems [Barbera, et al., 1979], but has evolved to include production rule systems 

and declarative knowledge structures [Albus, 2002]. Unlike some of the other cognitive 

architectures that were first proposed as models of cognition and then later used for robot 

control, RCS was specifically developed for robotic platforms. All symbols within the world 

model of the RCS system are grounded to signals, objects, and states arising in the physical 

environment. RCS is organized hierarchically using various functional processing nodes at each 

level. Each node consists of five basic elements: behavior generation, world modeling, sensory 

processing, value judgment, and knowledge database. Such node design enables RCS to 

distribute control while maintaining a strict control hierarchy; both are features required in a 

cognitive architecture that marries low-level control operations to high-level cognitive functions 

[Albus and Barbera, 2004].  

The Comprehensive Human Intelligence and Performance (CHIP) architecture [Shrobe, 

et al., 2006] is a multi-level hybrid architecture that provides a good illustration of a three-layer 

design that incorporates reactive, deliberative, and reflective control. At each successively higher 

layer, the control processes simultaneously become slower and yet capable of handling more 

complex problems. In addition to the three layers of control, CHIP also uses the sequential sense-
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plan-act (SPA) architectural schema common to robotic control systems. The CHIP architecture 

can be represented generally using a 3x3 grid as shown in Figure 3.  

 

 

Figure 3. Basic Model of 3x3 Architecture 

 

CHIP is one of many architectures that trifurcate control in this way [Sloman, 2001a] 

[Kawamura, et al., 2008] [Ortony, et al., 2004]. In each of these architectures, the lowest level of 

control performs reactive or reflexive responses (e.g., an emergency stop before a collision). The 

next level of control varies slightly from architecture to architecture but is generally responsible 

for performing simple deliberation or routine skills. This primarily involves control just beyond 

that afforded by simple reactions (e.g., following a path or grasping a familiar object) [Ortony, et 

al., 2004]. The final layer performs the most complex form of control, which is often some form 

of complex deliberation, reflection, or meta-management. This level of control is typically 

capable of generating and analyzing plans, arbitrating among abstract response options, biasing 

parameters in the lower control levels, and performing post hoc evaluations. 
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CHAPTER III 

 

OVERVIEW OF SEQUENTIAL ROBOTIC DECISION-MAKING PROCESSES 

 

As mentioned at the beginning of Chapter II, one of the fundamental aspects of cognitive 

robotics is organization. Cognitive architectures are organized layouts for robotic control that 

specify how components should interact at the macro-level. Each of the cognitive architectures 

described in the previous chapter required at least one component for deliberation and planning. 

This chapter will begin by describing two popular models used within AI for representing 

complex, sequential decision processes: the Markov Decision Process and Partially Observable 

Markov Decision Processes. Methods for using these models will be discussed as will methods 

that enable real-time performance for each technique by focusing the search through the decision 

state space or allowing anytime interrupts. Finally, methods for approximating solutions in large, 

or continuous, state spaces will be described.  

Throughout this chapter it is important to note that each solution method involves 

tradeoffs: standard approaches require large amounts of memory for maintaining tabular state-

value functions, function approximators discretize and reduce the size of the state space but may 

possibly ignore relevant information, and real-time search and anytime algorithms require many 

performance parameters to be preset as well as, typically, requiring additional and costly 

heuristic functions.  

 

Markov Decision Processes 

One of the most common techniques for representing sequential decisions in a stochastic 

domain is through the mathematical framework known as a Markov Decision Process (MDP). 

The standard representation for a MDP is the tuple {S, A, T, R}. Here, S is represents the finite 

set of discrete states that an agent can occupy and A represents the set of all actions available to 

that agent. The effects of taking action a ∈ A in state s ∈ S are modeled using the state transition 

function, T: S x A � S. The transition function maps state-action pairs onto successor states with 

a given probability. Typically this function is written as T(s, a, s’) and returns the probability of 

occupying state s’ after performing action a in state s. A fundamental assumption of this type of 

transition function is that all transitions obey the Markov property: the effects of taking an action 
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depend only on the current state, and not on the entire history of prior states. Finally, R is a 

reward function that maps states to a specific numeric reward, R: S � R.  

For a given MDP, a policy π is known as a solution to that MDP and determines which 

action should be taken in each possible state. Thus, the output of π(s) is an action, a ∈ A, to be 

performed in state s. Given a MDP and π, it is possible to determine the expected value for 

reaching any state within the S. This value, denoted V(s), is the expected cumulative reward if 

policy π is followed indefinitely. V(s) can be found by solving the recursive Bellman equation 

given in Equation (1). The parameter γ is a discount factor used to focus V(s) on more immediate 

returns. 
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For every MDP there is at least one policy, π*, that maximizes V(s) such that 
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Methods to Solve Markov Decision Processes 

There are two popular, fundamental techniques for solving MDPs: value iteration and 

policy iteration [Russell and Norvig, 2003]. Value iteration uses a method known as dynamic 

programming [Bellman, 1957] to recursively solve Equation (2). The algorithm begins by 

initializing V0(s), ∀s ∈ S, to arbitrary initial values. At each subsequent step, updated values Vi(s) 

are determined from Vi-1(s), as shown in Equation (4). Value iteration repeats until the difference 
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ii sVsV )()( 1  falls below a given threshold. Equation (3) can then be used to return the 

optimal policy.  
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Like value iteration, policy iteration is an iterative recursive algorithm. Policy iteration 

begins with an arbitrary initial policy π0, but then calculates )(0 sV
π , ∀s ∈ S. The resulting value 

function is used to calculate a new policy π1, and this process continues until )()(1 sVsV ii ππ =− , 

∀s ∈ S. At this point, no further improvements are possible and the final πi+1 is optimal.  

 

Partially Observable Markov Decision Processes 

Markov Decision Processes are simplified decision models for stochastic domains. In a 

MDP only the effects of performing an action are uncertain. However, in many domains it is not 

only actions that are uncertain but also observations. This is especially true for robotic 

applications. Sensor error, incomplete domain knowledge, and simple deficits in processing 

ability can impart a great deal of added uncertainty to the decision-making process. Because the 

agent cannot know for certain which state it is in, it must maintain the belief that it is in a 

particular state. The current belief state is updated by determining the likelihood of an actual 

state given all of the information that has been observed. To incorporate observational 

knowledge the traditional MDP framework is extended to: {S, A, T, R, Ω, O}. This 

representation, known as a Partially Observable Markov Decision Process (POMDP) [Sondik, 

1971] includes the standard MDP model as well as a set of possible observations, Ω, and the 

probability model, O, which maps states and actions to observations, O: S x A � Ω. The 

techniques for solving POMDPs are mathematically analogous to those for solving MDPs; 

however, the additional complexity from including probabilistic observations and belief states 

typically exacerbates the computational capabilities of most systems.  Solving POMDPs is 

PSPACE-hard [Papdimitriou and Tsisiklis, 1987], and therefore POMDPs are usually applied 

only to small environments.  
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Real-Time Search 

The bulk of current decision-making research in both artificial intelligence and robotics 

focuses on the identification of optimal solutions. In other words, given a domain specified as a 

MDP the goal is to determine π*. To do this, dynamic programming techniques such as value 

iteration and policy iteration are available. When using these techniques agents typically 

maintain a tabular list of possible states along with associated values, or actions. Decision 

making requires that the agent merely consult these lists and select the best option. 

Unfortunately, such a process often requires a considerable amount of computational effort; and 

thus the derivation of most optimal policies is performed offline. But if the environmental 

stochastics change, then policies computed offline can quickly become sub-optimal leading to 

disastrous consequences. Furthermore, as domain complexity increases, the size of the associated 

state space tends to increase exponentially. This is known as the “curse of dimensionality” 

[Bellman, 1957] and places considerable stress on an agent’s ability to maintain and reference an 

optimal policy. While exponential increases in state space size are never desirable, in robotic 

applications such increases can be especially problematic due to the need to operate in the real 

world in real-time. Therefore, many robotic applications employ real-time algorithms that only 

partially search the state space before committing to an action [Korf, 1990] [Paquet, et al., 2005] 

[Koenig and Likhachev, 2006].  

Real-time search techniques are techniques that enable an agent to operate efficiently 

when time-critical decisions are necessary. Many of these techniques either perform a limited 

amount of local search before selecting an action or attempt to focus the search on the most 

relevant states [Geffner and Bonet, 1998]. For example, consider the state-action space shown in 

Figure 4. Using traditional methods an agent, such as a robot, would have to compute an 

expected value, V(s), for every state before choosing which action to perform. Such a process 

could require several minutes or hours to perform. During this time, the environment may change 

requiring either a complete re-computation of a new policy or the continued use of a sub-optimal 

policy. However, an agent using real-time search techniques might only focus on the local state-

space (see subset of Figure 4), and compute a partial policy that can be applied immediately. 

Such an agent is better suited to cope adaptively with a changing environment.  
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Figure 4. State Space, S, with Local Search Window 

 

A variety of techniques have been proposed to perform real-time search. Each of these 

techniques rely on embedded domain knowledge, such as heuristic evaluation functions, and 

many still require an explicit listing of state values (i.e., V(s)). For example, one of the simpler 

real-time search techniques requires a preset heuristic function, h(s), which it uses to construct 

the value function Q(a, s) [Watkins, 1989]. Unlike V(s), Q(a, s) explicitly maintains the expected 

value for performing a in s, which combines the cost of performing an action, c(a, s), and a 

heuristic estimate h(s). To perform real-time search, actions are chosen to maximize Equation (5) 

[Geffner and Bonet, 1998]. 

 

Q(a, s) = c(a, s) + h(s)        (5) 

 

While computationally simple, this technique does not assure that an agent will 

eventually reach its goal. Without performing updates and looking just one step ahead, an agent 

may easily become trapped within a local loop. A modification to this approach, proposed in 

Korf [1990], allows an agent to avoid such situations by updating the heuristic estimates after 

each action. This method, known as Learning Real Time A* (LRTA*), uses the heuristic 

function to provide initial estimates for V0(s), but at each time-step, t, Vt(s) is updated using the 

known cost value and the previous state value, as shown in Equation (6). 

 

Vt(s) = c(a, s) + Vt-1(sa),        (6) 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.
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where  

V0(s) = h(s),         (7) 

sa = Successor(a, s)        (8) 

 

In LRTA* actions are still chosen by maximizing the right-hand side of Equation (6), but 

performing updates on Vt(s) simultaneously enables an agent to avoid local loops and 

performance to converge to optimal as the amount of experience tends to infinity [Korf, 1990]. 

To determine sa, LRTA* uses a predefined successor function, as shown in Equation (8). This 

approach, however, does not incorporate the fact that the effects of actions are often 

probabilistic, and thus LRTA* ignores the state transition function developed for MDPs.  

A method known as Real-Time Dynamic Programming (RTDP) [Barto, et al, 1995] 

extends LRTA* by incorporating expected state values into Equation (6). RTDP is better 

equipped to operate in domains modeled with traditional MDPs while still maintaining the real-

time search and optimal convergence properties of LRTA* [Barto, et al., 1995]. The modified 

equation for RTDP is shown in Equation (9). As with LRTA*, initial estimates of V0(s) are 

provided by the preset heuristic function h(s).  
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The Focused Dynamic A* algorithm, known as D*, is another real-time search technique 

that utilizes heuristic knowledge to determine optimal paths through the state space [Stentz, 

1995]. D* is designed to cope with environments in which transition costs change over time. The 

initial policy determined by D* is developed offline, under the assumption of a static 

environment, but as repairs to this policy are needed (due to the failure of the static environment 

assumption), D* quickly performs local “patches” by focusing on only the most relevant states. 

This is achieved by sweeping backwards from the goal state to the current state, updating just 

those states affected by the new information. Due to its efficiency D* has been used on a variety 

of robotic platforms [Matthies, et al., 2000] [Thayer, et al., 2000]. 

An algorithmically similar approach to Stentz’s D* has been developed by Koenig and 

Likhachev [2002]. Their approach, known as D* Lite, performs an incremental search and is 

based on their notion of lifelong planning, in which cost estimates are carried forward from one 
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search to the next [Koenig and Likhachev, 2001]. Like D*, D* Lite works backwards from the 

goal state to the current state and performs updates when the transition cost between states has 

changed. More recently, Koenig and Likhachev have proposed another variation on real-time 

search known as Real-Time Adaptive A* (RTAA*) [Koenig and Likhachev, 2006]. RTAA* is 

an anytime algorithm that performs a depth-limited local search, similar to that depicted in 

Figure 4. During look-ahead, heuristic updates are performed using knowledge of the 

accumulated transitions costs for particular states. The update procedure is shown in Equation 

(10). Here g(s) represents the accumulated cost for reaching state s, and s’ is the next state to be 

expanded [Koenig and Likhachev, 2006].  

 

h(s) = g(s’) + h(s’) – g(s)       (10) 

 

In addition to being applicable to MDPs, real-time search techniques can also be applied 

to POMDPs. A method known as Simple Online Value Iteration (SOVI) is an online search 

technique developed by Shani, et al., [2005]. SOVI is an extension of the Heuristic Search Value 

Iteration (HSVI) algorithm of Smith and Simmons [2004], which is an offline technique for 

finding approximate solutions to POMDPs with large state spaces. Both HSVI and SOVI 

maintain upper and lower bounds for the value estimates V(s). In each approach, the upper bound 

is used to direct exploration while the lower bound is used to form the current policy. As 

experience is acquired, both methods update these bounds to improve performance; however, 

SOVI improves over HSVI in that the latter technique uses computationally expensive methods 

(such as linear programming) to update these bounds while the former technique relies on 

computationally simpler methods. SOVI updates the upper bound on V(s) by directly using the 

heuristic function. Updates for the lower bound are determined using depth-limited prioritized 

sweeping, a learning method described in Sutton and Barto [2000]. SOVI further decreases 

computation time by only focusing on belief states that have been encountered in the current 

episode, rather than applying updates to all possible belief states [Shani, et al., 2005].  

A similar real-time search technique for POMDPs is the Real-Time Belief Space Search 

(RTBSS) method developed by Paquet, et al., [2005]. This is another depth-limited search 

technique that relies on heuristic knowledge to direct the search process. In addition to guiding 

the search order, RTBSS also uses its heuristic knowledge to prune undesirable branches from 



25 

the state space. Performing only a local search as well as pruning branches enables RTBSS to 

function in highly complex domains while still performing online, deliberative decision making. 

But unlike many of the methods discussed thus far, RTBSS does not improve its value estimates 

over time. This makes the algorithm heavily dependent on the quality of its task-specific 

heuristic function, but also affords RTBSS total flexibility when deployed in previously unseen 

environments [Paquet, et al. 2005].  

 

Anytime Algorithms 

Anytime algorithms are another approach to real-time decision making that share much in 

common with the real-time search techniques just described. An algorithm is said to have the 

anytime property when it exhibits a trade-off between the quality of a solution and the time 

required to produce that solution [Zilberstein, 1996]. In addition, in any anytime algorithm 

solution quality should be a monotonically increasing function of both time and the quality of the 

input [Haddawy, 1996] [Dean and Boddy, 1988] [Horvitz, 1987]. In other words, as computation 

time increases, the quality of the solution must not decrease. Furthermore, many anytime 

algorithms allow computation time to be specified as a parameter or provided as an interrupt 

signal. Interruptible anytime algorithms are those that can be stopped at any point and return a 

solution, while contract algorithms must know the time allocated for the current decision in 

advance [Zilberstein and Russell, 1995].  

Naturally, there are various metrics that can be used to measure the quality of a solution 

produced by an anytime algorithm. Three such metrics discussed by Zilberstein and Russell 

[1995] are: certainty, accuracy, and specificity. Certainty is used to indicate the degree of fit, or 

belief, that a particular solution is correct. Anytime algorithms that use this metric should 

provide solutions that are more certain to be correct when given more time to find those 

solutions. Accuracy is used to indicate the difference between the current “approximate” solution 

and the optimal one. As computation time tends towards infinity the difference between the 

current solution and the optimal one should converge to zero. Finally, specificity is used to 

indicate the level of detail present in the solution. With more time, such algorithms should return 

solutions in which finer levels of detail have been filled in [Zilberstein and Russell, 1995]. 

Research in Haddawy [1996] describes an anytime algorithm that performs a “rational 

refinement” of its policy over time using the specificity metric. The system constructs a policy at 
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the most abstract level and at each subsequent iteration the algorithm replaces a portion of the 

abstract plan with the next lowest level of abstract information [Haddawy, 1996]. Similarly, 

Horsch and Poole [1998] construct an anytime algorithm that continually refines the policy, 

represented as a decision tree, through the incremental inclusion of more information. The 

approach of Horsch and Poole, however, relies on a heuristic function to avoid considering all 

possible extensions to the current decision tree.  

The RTBSS algorithm mentioned earlier [Paquet, et al., 2005] is another anytime 

algorithm that uses a depth-limited search to focus computation on reachable states. In order to 

maintain the monotonically increasing aspect of an anytime algorithm, RTBSS relies heavily on 

the preprogrammed heuristic function, h(s). A similar depth-limited search is described by 

Dearden and Boutilier [1994] in which planning and action execution are interleaved in order to 

limit future searches to only those states that actually occurred as a result of actions. Like 

RTBSS, the work of Dearden and Boutilier [1994] assumes the presence of a heuristic function 

that provides value estimates for states and enables pruning. 

Dean, et al., [1993] developed an anytime algorithm that, in some ways, is a composite of 

the approaches of Dearden and Boutilier [1994] and Horsch and Poole [1998]. The approach 

taken by Dean, et al., [1993] is to recursively define an envelope of states ε, determine an 

optimal policy for the states within ε, and then to add the fringe states (or states that can be 

immediately reached from any state within the envelope) to ε. After each expansion, a new 

optimal policy is determined using the previous optimal policy and the new states.   

As the environments in which robots are deployed become increasingly more complex, 

the need for online decision-making methods that can operate under time constraints becomes 

crucial. Real-time search techniques and anytime algorithms have proven to be efficient tools for 

performing this type of time-critical decision making. These methods have been developed for 

both standard MDPs as well as the computationally more complex POMDP framework. 

However, with each of these techniques the quality of the results is critically dependent upon the 

quality of the heuristic knowledge, and the burden is often on the programmer to provide 

appropriate and sufficient heuristic functions. Furthermore, many of these techniques require that 

a tabular listing of states be maintained that can later be referenced for necessary value function 

information. As environmental complexity continues to increase, accessing such tabular listings 
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will also prove to be infeasible and intractable. It is necessary that more general abstraction and 

function approximation methods be developed.  

 

Learning Functional Models 

The methods such as value iteration and policy iteration discussed at the beginning of this 

chapter assumed that the value function V(s) was known. Some of the later techniques, such as 

LRTA* and RTDP, assumed that the system possessed an initial guess for V(s) but then 

attempted to learn, during online task execution, a better approximation for this function. These 

systems used the observed rewards to update the estimates of V(s) for the current state and 

occasionally for a finite number of previous states: 0),,'(|' ≠∈∀ sasTSs . In general, 

approaches that use acquired reward observations to update the parameters of the system’s value 

estimates are known as reinforcement learning systems.  

In reinforcement learning the desire is to learn the value of occupying particular states. 

Once this value is known, any of the previously described methods can be used to select the 

action that leads to the state with the highest expected value. In order to learn the value function, 

states are repeatedly sampled from the environment, rewards are received, and the value function 

is updated. Such direct sampling methods are collectively known as Monte Carlo methods, and 

are typically used to update the value estimates for the sampled states only [Sutton and Barto, 

2000]. On the other end of the spectrum are the dynamic programming techniques that attempt to 

recursively update the value estimates using the Bellman equation (Equation 1). 

Monte Carlo methods are powerful because they enable online learning in situations in 

which it is not feasible to update recursively the value estimate for all states. Dynamic 

programming methods are powerful because they make more efficient use of the available data 

by “backing up” the new value estimate of state s to all other states that have a non-zero 

probability of reaching s. The recursive updates performed in dynamic programming are based 

on the intuition that if state s is known to be “good”, then states that reach s with high probability 

should also be deemed as “good”. However, it is computationally very expensive to perform an 

entire dynamic programming “back up” whenever V(s) changes for a single state. Fortunately, a 

method known as temporal difference (TD) learning has been devised that combines the positive 

features of both Monte Carlo and dynamic programming techniques [Sutton, 1988] [Sutton and 

Barto, 2000]. 
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To better understand how TD learning works, one must note that in the Bellman equation 

(Equation 1) the value of each state is recursively linked to the value of each of its possible 

successor states. Therefore, when a reward is received in a one state, a TD error signal can be 

calculated as shown in Equation (11), that reflects the difference between where the agent is and 

where the expects to be going. Because at the time of update the actual successor state is 

typically known the term {V(s’)} has been used to replace {∑
∈Ss

sVsssT
'

)'()'),(,( π }.  

 

)()'()( sVsVsR −+= γδ        (11) 

∆V(s) = αδ         (12) 

 

In this way, the reward received from a sampled state is used to increment recursively the 

value estimate for all states in the state space. The unique feature of TD learning, however, is 

that it no longer requires the computationally expensive full recursion through the state space. 

Rather, TD learning makes judicious use of the online samples and updates the value estimates 

for only those states that have been visited recently. The amount of each update is proportional to 

the temporal proximity and transition probability between the sampled state and the current state. 

In TD learning, temporal proximity is determined through the use of functions known as 

eligibility traces that store the impact a previous state has had on reaching the current state. More 

recently visited states have stronger eligibility traces and receive greater updates. An example 

eligibility trace is shown in Equation (13), and the augmented update rule is shown in Equation 

(14). In Equation (13), λ is a decay factor on the eligibility trace, st is the current state being 

sampled and γ is the decay parameter from Equation (1).  
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∆V(st) = αδet(st)        (14) 

 

Function Approximators 

Learning methods such as TD learning enable value estimates and heuristic functions to 

be learned using direct sampling methods without the computational overload that comes from 
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using the full recursive, dynamic programming methods. However, the value functions and 

heuristic functions discussed up to this point still require tabular listings for all possible states, 

which is computationally infeasible in complex environments. Therefore, it is often desirable to 

use approximation methods to compress large state spaces to a more compact form. Function 

approximators are techniques used to represent, in finite space, state spaces that have continuous 

or infinite domains [Szepesvári and Smart, 2004] [Sutton and Barto, 2000].  

Function approximators map high-dimensional state spaces into lower-dimensions and 

attempt to learn value estimates over the low dimensional space. A simple example of a function 

approximator is the mapping that divides a continuous 2D navigable state space into a discrete 

grid for mobile robot navigation. Once the state space has been discretized, the robot can attempt 

to learn V( s~ ), Ss
~~ ∈∀ , where S

~
 is the new approximate state space. Therefore, the robot does 

not have to learn value estimates associated with every possible location in the continuous and 

infinite state space. Instead, the robot learns value estimates for the new state space, S
~

, with the 

hope that S
~

 provides an adequate approximation of S. 

There are a variety of methods to implement a high-to-low dimensional mapping. In 

addition to grids, state features can be histogrammed using pre-defined bins or tile codings can 

be used that create multiple overlapping grids [Sutton and Barto, 2000]. Clustering techniques 

and nearest neighbor methods can be used to create symbolic classes and assign states to the 

nearest class.  Interpolation methods can also be used, potentially in conjunction with nearest 

neighbor approaches, to create continuous but lower-dimensional representations. Finally, 

regression and neural network approaches can be used; often in conjunction with other mappings 

that create numeric feature vectors from the current state. Methods such as neural networks 

generalize within the value function, while other methods, such as tile coding and linear 

interpolation, generalize within the state representation [Sutton and Barto, 2000].  

It is known that many reinforcement learning methods that utilize tabular listings for V(s) 

will eventually converge to the correct values given sufficient experience [Sutton and Barto, 

2000]. However, it is an open question whether many of same techniques retain their 

convergence properties when used in conjunction with function approximators [Sutton, 1999]. 

Several recent studies have investigated the convergence properties of function approximation 

methods, proving convergence for various types [Perkins and Precup, 2003] [Melo, et al., 2008] 

[Szepesvári and Smart, 2004] [Gordon, 1995].  
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Gordon [1995] provided convergence proofs for a class of function approximators known 

as contraction mappings. A contraction mapping is a function f defined over a state space S that 

maps points in S onto S, while simultaneously contracting the distance between any two mapped 

points by no less than a constant factor α. Such functions have fixed points within S to which the 

recursive sequence f(s), f(f(s)), f(f(f(s))), …, will eventually converge at a rate of at least α. 

Gordon [1995] proved that when V( s~ ) is represented using such a contracting function 

approximator, value iteration converges to within a finite bound of the optimal value function, 

V*(s). In addition, both Gordon [1995] and Szepesvári and Smart [2004] noted that convergence 

holds for function approximators that are also merely non-expansion operators, provided that 

they meet further constraints, such as being interpolatible [Szepesvári and Smart, 2004]. 

Examples of contraction mappings are nearest neighbor techniques, linear interpolations, and 

state aggregation methods such as grids and tile codings [Sutton and Barto, 2000].  

Research in Melo, et al., [2008] investigated the convergence of Q-learning methods 

[Watkins, 1989] when used with function approximation. Q-learning is a reinforcement learning 

method that learns values, known as Q-values, for state-action sets. The work of Geffner and 

Bonet [1998], described earlier, used Q-learning to perform real-time search. Melo, et al., [2008] 

show that under certain conditions linear approximation techniques will converge to an optimal 

Q-value function given enough experience. Of the conditions they investigate, a particularly 

interesting one is that when the discount factor, γ, on future rewards is approximately one, the 

learned policy is not likely to generalize well to nearby policies. However, when γ is much less 

than one, safe generalization is possible. Therefore, the degree to which the current reward 

depends on future states impacts generalization and convergence. Similar results have been 

obtained in Perkins and Precup [2003]. 

There are other types of function approximation methods besides contraction mappings 

and linear approximators. Neural network techniques have been used [Tesauro, 1990] as well as 

Bayes classifiers [Haykin, 2008]. However, these methods are capable of exaggerating small 

differences between points in the state space and convergence has not been proven. Still, these 

methods remain extremely important as they often deliver acceptable results in practice. 
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CHAPTER IV 

 

OVERVIEW OF PSYCHOLOGICAL EMOTION RESEARCH, EMOTION PROCESSES, 
AND ROBOT EMOTION SYSTEMS 

 

When the words “emotion” and “robot” appear in the same sentence, it seems that the 

most common reaction is to fancifully imagine robots that feel “happy” or “sad”, or at least 

provide the outward appearance of such feelings. As such, the approach to robot emotions that 

has been taken by many researchers has been to design and implement artificial emotions loosely 

based on the theoretical concepts of emotional states in humans and to utilize these states for 

control. This is a very top-down approach that mirrors, in many ways, the top-down 

methodology taken by early AI researchers when they began designing intelligent systems: start 

with the meta-level symbols and states; outline the specific signals that should trigger those 

states; then determine what changes those states should enact upon the world. In this way, 

control is achieved through the use of complex finite state machines (FSMs) in which certain 

states have been couched in psychological emotion terms.  

As mentioned in Chapter I, this dissertation is going to take a more bottom-up approach 

and explore the fundamental components and appraisal processes that enable agents, within the 

context of their current goals, to learn (from experience) relations and associations that can later 

be deployed to inform and improve performance. Such processes must go beyond the simple 

assignment of utilities or the pre-defined switching between control states, and should integrate 

into all aspects of control and deliberation. The approach described here is developed using 

psychological and neuroscientific research that points to the existence of multiple, fundamental 

mechanisms that collectively underlie the high-level control states that have been conceptualized 

using FSMs. These include, but are not limited to, the appraisal processes mentioned earlier: 

relevance, utility, urgency, and fit. It is believed that the cognitive processing necessary to derive 

such appraisals both subserves cognitive control and provides the low-level mechanisms upon 

which higher-order states, and eventually those demarcated as emotions (artificial or otherwise), 

may be derived.  

Whereas the previous two chapters discussed the need for architectural approaches to 

cognitive control and the current methods by which robotic systems may perform sequential, 

real-time decision making, and function approximation, this chapter investigates how emotions, 
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or more appropriately cognitively processed appraisals and low-level evaluation signals, provide 

the information needed for adaptive, intelligent, and real-time control. The discussion begins 

with a brief overview of the concepts surrounding basic emotions before describing how 

emotions may fit into an architectural view of intelligence. Next, some of the underlying 

components and functions that contribute to emotional states are described. Appraisal processes 

will then be discussed from the point-of-view that they are fundamental aspects of both the 

adaptive purpose and construction of emotion. Throughout this discussion the concepts of 

relevance, utility, urgency, and fit will be discussed as they relate to particular theories. Finally, 

this chapter concludes with describing current implementations and models of robot emotions. 

 

Basic Emotions 

Research into the roles that emotion plays in human cognition has led to numerous 

theories postulating and questioning the importance and rational basis of emotional processing. 

Indeed, any researcher attempting to wade through the quagmire of terms, frameworks, and 

architectures is likely to get quickly bogged down by the numerous and varied details of specific 

approaches. This is due, in part, to the fact that as of yet there has been no consensus on what is 

actually meant by the terms “emotion” and “affect” [Pfister and Böhm, 2008] [Picard, et al., 

2004] [Barrett, 2006] [Kleinginna and Kleinginna, 1981] [Sloman, 2001b] [DeLancey, 2002]. 

Fortunately, such confusion does not reside at all levels of emotion research. Taking a step back, 

one can identify that a large portion of the literature regarding the influence of emotion on 

cognition is, in fact, moving in the same direction. There is considerable consistency across the 

multitude of theoretical frameworks with respect to many of the general theories proposed for 

emotion. For example, many theories consider that emotion operates in a manner that is 

functionally similar to that of utility within the decision sciences. Additionally, while it has long 

been accepted that emotion influences behavior and decision making, the notion that such 

influences are, on average, more beneficial than detrimental is becoming more prevalent 

[Damasio, 1994] [Bechara, et al., 1997] [Rolls, 1999]. 

Much of the traditional emotion research over the past few decades has focused on well-

known concepts such as the basic emotions suggested by Ekman [1992] [1999]. In his research, 

Ekman investigated the universality of specific emotions as they are manifested externally in an 

attempt to fortify Darwin’s [1872] claim that certain emotional responses are innate and have 
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been selectively chosen by evolution for their adaptive value. Ekman’s [1992] basic emotions 

include “happiness”, “sadness”, “anger”, “fear”, “disgust”, and “surprise”. The labeling of these 

emotions as basic, however, raises the interesting question of what constitutes a basic emotion? 

Ortony and Turner [1990] argue that for an emotion to be considered basic that emotion must be 

present in all humans, homologous in animals, and selectively chosen by evolution. Panksepp 

[1998] [2000] provides a similar argument proposing that certain emotions are basic and that 

these emotions are identifiable from their homologous and neurobiological origins in all 

mammalian species. The notions of homology, natural selection, and neurobiological origins 

seem to validate Ekman’s identification of a set of basic emotions; however, Panksepp [1998] 

suggests a different set of basic emotions: “seeking”, “rage”, “joy”, “distress”, “care”, “lust”, and 

“play”, and then extends these to specific behavioral purposes. 

Damasio [1994] [1999], whose research in many ways resembles that of William James 

[1884], investigates the connection between somatic states, emotion, and rational decision 

making, and also utilizes the concept of basic emotions. He uses the same list as Ekman and 

believes that these emotions are biologically determined and, for the most part, automatic. 

However, in addition to this set of basic emotions, which he terms primary, Damasio [1994] goes 

on to identify a set of secondary emotions that are more socially-derived (e.g., “embarrassment” 

and “jealousy”). While Damasio investigates how the notions of primary and secondary 

emotions are tied to somatic states and conscious feelings, Sloman [2001b] investigates the 

architectural basis for emotions from an information processing point-of-view. As such, Sloman 

[2001a] [2001b] proposes three categories of emotions, coinciding with three distinct layers of 

control: reaction, deliberation, and meta-management. Primary emotions, such as those 

referenced by Damasio [1994] and Ekman [1992], reside at the reactive layer of information 

processing. Secondary emotions are formed within the deliberative layer, and tertiary emotions 

exist at the reflective, or meta-management, layer. According to Sloman [2001b], these tertiary 

emotions are perturbances that involve a loss of meta-control, in which it becomes impossible for 

the individual to focus on anything else except for the emotion-eliciting event. Examples include 

“infatuation” or extreme “embarrassment”. Other researchers have also proposed emotion 

classifications based on either architectural position or cognitive function. A notable example of 

this is the OCC model [Ortony, et al., 1988], in which emotions are separated based on the 

situation that elicits them and the effect that they have on cognition. Ortony, et al., [1988] believe 
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that emotions constitute valenced reactions to perceptions of the environment, and that these 

reactions can be broken into three distinct classes. These classes include reactions concerned 

with the consequences of events, the actions of agents, and the aspects of objects.  

Yet even though multiple lists of basic emotions can be found within the literature, there 

are still the open questions of what is an emotion and what criteria should be used when 

classifying emotions? DeLancey [2002] argued that there was probably no scientifically 

appropriate class of things referred to by the general term emotion. This view is somewhat 

reflected by Sloman, et al., [2004], who suggests that emotion is a cluster concept and that while 

it may be possible to identify clear instances of states in which emotion is, or is not, present, 

demarcating beyond this requires specific understanding of the types of information processing 

being deployed. He offers a general description of an emotional state as an  

 

“…episodic or dispositional state in which a part of it… has detected something which is 
either actually interrupting, preventing, disturbing, or modulating one or more processes 
which were initiated or would have been initiated independently of this detection, or disposed 
to interrupt, prevent, disturb, etc. such processes but currently suppressed by a filter or 
priority mechanism” [Sloman, et al., 2004, p. 230].  

 
This provides a definition of emotion from a functional standpoint, but does not help to 

differentiate groups of emotions, or identify basic emotions. In order to group emotions, a 

similarity/difference criterion is required. Sloman [2001b] proposes differentiation based on 

levels of information processing. Ortony and Turner [1990], Panksepp [1998], and Griffiths 

[1997] [2004] propose that similarity should be based on homologous and neurobiological 

measures. Both views are tractable and approachable; however, from an engineering point-of-

view having more details is always preferable. Frijda [1986] [1995] proposes, like Sloman, that 

emotions provide specific information, but continues by suggesting that rather than attempt to 

extract functional information from the abstract concepts, it may be more appropriate to study 

the constituent processes that form those concepts. Therefore, rather than focusing on high-level 

emotional states (e.g., “happy”, “sad”, etc.) it is more appropriate to focus on the goals and 

concerns of the individual as well as the types of information-laden signals and appraisals that 

would be adaptively useful to an individual with such goals and concerns. If one adopts this 

methodology, the idea of emotion or emotion-based processes in robots is not fanciful, but 

instead quite practical. 
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Emotion Processing: Architectural Views and Processing Models 

Cognitive architectures have been traditionally deployed for tasks that require symbolic 

and deliberative decision making. This can be seen in early work with the Soar and ACT-R 

models discussed in Chapter II. More recently, researchers have begun to investigate 

architectures that extend beyond simple procedural reasoning. This has included integrating 

components for reaction and reflection with the standard systems used for deliberation. One 

example is the CHIP architecture, also described in Chapter II [Shrobe, et al., 2006]. 

Furthermore, as researchers begin to understand more about how emotion integrates with 

cognition, and those researchers branch from simple theories of basic emotions to functional 

theories of causation and influence, it becomes increasingly important to understand how and 

where emotion fits into architectural designs and approaches to cognition. One approach 

specifically tailored to answering such questions is the CogAff schema of architectures 

developed by Sloman [2001a].  

 

Levels of Information Processing 

Sloman [2001a] approaches cognitive architecture design from an information processing 

point-of-view, and defines CogAff as a collection of information processing mechanisms that are 

intended to enable agents to meet their needs in complex, dynamic environments. In this manner, 

CogAff (Figure 5) defines a high-level ontology for architectural components and connections. 

This architecture is loosely divided into the same type of 3x3 grid, proposed for CHIP. 

Horizontally the schema is organized according to the processes of sense-plan-act, while 

vertically it is divided into reactive, deliberative, and meta-management layers. A global alarm 

system is used to detect situations, or events, that demand urgent attention. As discussed earlier, 

each level of processing is capable of different types of emotions.  

At the reactive level events trigger highly automatic and innate appraisals that are used in 

the representation of simple, basic emotions. This includes appraisals for fight/flight and 

pleasure/displeasure. It is important to note that in Sloman’s [2001a] architecture, the emotions 

that exist at a particular level are not restricted to that level, but rather are determined based upon 

the information processing available at that level. Therefore, in Sloman’s theory, the most basic 

emotions are those that are derived from the most basic forms of reactive information processing, 

and these typically coincide with the basic emotions proposed by other researchers (e.g., 
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Damasio [1994] and Ekman [1992]). Moving up the hierarchy, the evaluations that exist at the 

deliberative level result from the ability to compare distinct options (in order to choose among 

them) and to make basic predictions about the future. As such, the processing available at this 

level is implicated in the formation of more complex emotions, such as the secondary emotions 

proposed by Damasio [1994]. The information processing that occurs at the meta-management 

level results in complex evaluations that involve predictions about the future, reflections about 

the past, and reasoning about goal-relevant consequences of actions. Since this layer of control 

resides at the top of the hierarchy, intense emotions, which result in the loss of control at this 

level, may have disastrous consequences at the lower-levels as well. Finally, all of the processes 

at each of the three levels are capable of triggering the alarm mechanism, which in CogAff 

signals when rapid redeployment of functional resources is necessary. 

 

Figure 5. CogAff Architectural Schema [Sloman, 2001a] 

 

Like Sloman, Ortony, et al., [2004] also proposed a three-level architecture in which 

different types of evaluations and emotions arise at each of the different levels (Figure 6). In 

their model the first level is a reactive level and is proposed as the origin of basic evaluations that 

determine approach and avoidance tendencies as well as interrupt the higher-levels of control. 

These interrupts are analogous to the alarms in the CogAff architectural schema [Sloman, et al., 

2004]. However, Ortony, et al., propose that the signals available at this level are only simple 

forms of affect, referred to as proto-affect, which is a two-dimensional signal that assigns values 

and valence to stimuli, but is not sufficient for full emotional states. The second level is 

responsible for routine control over the execution of well-learned behaviors. This level provides 
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appraisals related to present as well as possible future conditions, and these appraisals are 

believed to be the basis for primitive emotions. Therefore, for Ortony, et al., [2004], emotional 

states are only realized at the routine level (or above), in which evaluations include basic 

predictions about the future. 

 

 

Figure 6. Information Processing Model by Ortony, et al., [2004] 

 

Both the reactive and routine levels are modeled as having direct connections to sensory 

input and motor output. The reflective level, however, neither receives direct sensory input nor 

provides direct motor output. This level of processing is responsible for providing biases to each 

of the lower levels, and performs symbolic computations concerning past, present, and possible 

future events. Ortony, et al., [2004] propose that the processing involved at the reflective level is 

relatively slow and most likely implicated in feedback control and analysis, instead of direct 

causation of behavior. This is consistent with the feedback control theory proposed by 

Baumeister, et al., [2007] and discussed in the next section. 

 

Processing Models 

Frijda and Swagerman [1987] propose an architectural design for creating a computer-

based emotion system. This approach is based on the theory that emotions are composed of 

numerous components, the most important being the various cognitive processes for appraising 

emotion-eliciting events [Frijda, 1986]. Within their model, once an event has been captured and 

encoded, relevance appraisals are performed that evaluate the event with respect to the system’s 

goals. Next, diagnostic information is extracted that indicates whether the event should be 
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approached or avoided, as well as how much uncertainty should be attached to that event. An 

evaluator then determines whether the event requires an urgent response, and establishes a 

control precedence signal that assigns priority to the various behavioral responses. Based on 

these appraisals, actions are proposed and strategies are adjusted as necessary before the actual 

execution of response behaviors is initiated. Throughout this process, a regulation system is used 

to evaluate system state and on-going needs. A variation of the model initially developed by 

Frijda and Swagerman [1987] is provided in Figure 7.  

 

 

Figure 7. Flow Chart of Emotion System [Frijda and Moffat, 1994] 

 

Scherer [1981] proposes a component process model of emotion in which emotions are 

considered to be episodic responses to events of relevance. Scherer identifies five systems 

involved in the emotion process. The first system is similar to those discussed by Sloman 

[2001a], Ortony, et al., [2004], and Frijda and Swagerman [1987]. This system performs 

information processing on events and evaluates those events through the use of learned 

associations (i.e., memory) and forecasting abilities (i.e., prediction). Once the evaluations have 
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been determined, a supporting system modifies the individual’s internal state, a leading system 

plans and selects actions, an acting system performs behavior, and a monitoring system 

processes feedback. Though it is intended to be a theory of emotional processes, Scherer’s 

[1981] component process model has many of the elements of a simple control architecture (i.e., 

evaluation, planning, execution, and monitoring).  

Of the five systems identified in Scherer’s model, the most relevant for this discussion is 

the information processing system. In order to perform its evaluations, this system utilizes a 

number of appraisals, which Scherer [1981] [1997] refers to as stimulus evaluation checks 

(SEC), each of which can be performed at the various levels of processing identified by Sloman 

[2001a] and Ortony, et al., [2004]. In Scherer’s theory, there are numerous potential SECs, 

however, the primary checks are those for novelty, pleasantness, goal-conduciveness, coping 

potential, and compatibility with standards [Scherer, 1997].  

 

Affect as an Information Carrying Component 

The high-level approach to designing artificial emotion that was described at the 

beginning of this chapter assumes that events trigger emotional states that then impact control. 

This idea is conceptually represented in Figure 8. Yet as the discussion has thus far indicated, 

multiple levels of processing are often present for complex control and each level is capable of 

its own distinct responses. In addition, there are a variety of appraisal-based cognitive processes 

that facilitate the development of different emotional states. From an engineering perspective, the 

interplay between the multiple levels of processing and each of the various appraisals may be 

conceptualized better by mentally rotating Frijda’s model (Figure 7) counterclockwise 90o and 

then overlaying it onto the CogAff schema (Figure 5).  

Since this dissertation is interested in the bottom-up approach to emotion-based control, it 

is necessary to understand the types of low-level signals (and functions) that both enable the 

different appraisals and eventually form critical components for those states labeled as 

“emotion”. According to Frijda [1995], a key low-level component for appraisals (and thus 

emotions) is the notion of affect: a signal that carries aspects of positive/negative evaluation. 
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Figure 8. Traditional View of Emotion as a Response to an Event [Russell, 2003] 

 

The theory of affect as a core mechanism in the construction of emotion has been heavily 

investigated by Russell [2003], who, like Frijda [1986], suggests that a number of processes both 

precede and constitute (or rather become categorized as) “prototypical” emotions. Figure 9 

presents Russell’s model, which has been slightly adapted for this discussion. Conceptually, 

Russell’s [2003] model is not unlike that proposed by Frijda and Swagerman [1987]; both 

models propose that foundational components are responsible for those influences on cognition 

typically attributed to “emotion”. Russell’s model, however, has a much higher degree of 

parallelism, and Russell downplays the role of appraisal processes in favor of focusing more on 

the notion of core affect. Interestingly though, Russell notes that the combination of core affect 

with the other low-level components still results in the formation of basic appraisals, such as 

attention-guiding relevance and basic utility.  

For Russell, core affect represents a “non-reflective feeling that is an integral blend of 

hedonic and arousal values” [Russell, 2003, p. 147]. In this model, core affect is a two-

dimensional, object free, and ever-present internal signal. From an information processing point-

of-view, core affect might be found in both the reactive and deliberative layers. This has been 

discussed by Ortony, et al., [2004], who use the terms proto-affect and affect to describe the 

signals that arise at these levels of processing. As shown in Figure 10 the two dimensions 

comprising Russell’s [2003] notion of core affect are those spanned by {pleasure, displeasure} 

and {activation, deactivation}. Similar theories can also be found in the work of Winkielman and 

Trujillo [2007], and Larsen and Diener [1992]. Typically, in these theories one dimension is 

reserved for valence, or a measure of “good/bad”, while the other is reserved for 

“intensity/arousal”. 
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Figure 9. Model of Emotion Arising as Patterns of Core Mechanisms (adapted from [Russell, 
2003]) 
 

Russell [2003] proposes that when arousal is high, core affect is within the foreground of 

cognition. He notes, however, that though it may be consciously accessible, core affect is always 

just beyond the realm of conscious control. This idea is similar to Damasio’s [1994] conception 

of feeling, but does not require the same visceral invocations. Furthermore, because it is a simple 

two-dimensional signal that indicates valence and arousal, core affect is also believed to be the 

mechanism that provides the common currency discussed by Cabanac [1992], Peters [2006], and 

to a certain extent Rolls [1999]. For control purposes, compensation of undesired core affect is 

achieved through the use of predictions of future affective states to guide decision making.  

Whereas in Russell’s theory core affect is object free, affective quality is linked to an 

event and represents the capacity of that event to produce changes in core affect. Therefore, 

while core affect is localized within the organism, affective quality is localized within the event. 

The combination of these signals results in attributed affect, a mechanism that serves two 

purposes in Russell’s theory: to guide attention to a specific object/stimulus, and to provide 

direct access to affective quality. Thus core affect provides utility while attributed affect 

indicates relevance and enables focusing. Finally, it is worth noting that in Russell’s theory 

prototypical emotions, or the basic emotions of Ekman [1992], Damasio [1994], and Panksepp 

[1998], arise as the core mechanisms develop and then succumb to categorization and mental 

representation. 
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Figure 10. Core Affect as Two-dimensional Signal [Russell, 2003] 

 

Research by Baumeister, et al., [2007] builds on Russell’s theory, but views emotion as a 

dual process responsible for feedback control with both controlled and automatic aspects. The 

automatic portion of the process is provided by automatic affect, a concept similar to core affect. 

The controlled process is the result of the formation of high-level emotional states (Russell’s 

prototypical emotions) and is much slower to develop than the relatively processes of automatic 

affect. Baumeister, et al., [2007] suggest that the primary role of full-fledged emotions is not to 

cause behavior directly, per se, but rather to stimulate post hoc cognitive processing in order to 

learn new associations between affect, stimulus, and behavior sets. A modification of Figure 9 

that includes the ideas of dual processing and feedback control is shown in Figure 11.  

Automatic affect is an extension of core affect in which further cognitive processing has 

been added to help differentiate the varying affective responses. Automatic affect guides 

decision making by providing quick evaluations that allow potential responses to be structured 

according to the individual’s goals and approach/avoidance tendencies. These evaluations also 

enable the predictions of possible future emotional states that further aid decision making by 

providing weight for each of the different responses [Baumeister, et al., 2007].  
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Figure 11. Dual View of Emotion-Based Control Using Automatic and Controlled Processes 

 
Once the decision has been made and the outcome has been observed, the slower 

controlled process (i.e., full-fledged emotion) will have developed and can then serve its purpose 

of guiding performance evaluation and stimulating cognitive processing. This completes the 

feedback loop, altering the evolution of and associations for future appraisals. A similar notion of 

control has also been developed in work by Carver and Scheier [1998], in which the feedback 

signal is analogous to the error signals of modern control theory. Interestingly, Baumeister, et al. 

[2007] note that their feedback model is, essentially, a reinforcement learning model. They 

contend, however, that in humans the addition of further cognitive skills buffers and improves 

upon the basic abilities of reinforcement learning. In robotics and machine learning, such 

buffering could be achieved through techniques such as explanation-based learning [Mitchell, 

1997]. 

 

Appraisals and Functions 

The philosopher Jeremy Bentham [1789] proposed that human decision making was a 

form of hedonic calculus. For years this view was discounted, with researchers focusing on 

“cold” cognitive processes, rather than “hot” emotions [Slovic, et al., 2003]. However, the tide 

has turned and it is now largely accepted that emotion plays an integral role in cognition and 
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decision making. The discussion to this point has described what types of information processing 

are necessary for the development of general-level appraisals and emotional processes. The 

notion of two-dimensional, affect-based signals indicating valence and arousal has been 

described, as well as how such signals may contribute to the construction of emotion. The 

current section will describe goal-relevant appraisals as they are implicated in the construction of 

emotion. The intention is to begin functionally describing emotion from a level below that of the 

abstract states commonly referred to as emotional, but above that of the valenced signals, such as 

core affect. The following discussion will focus on the concepts of relevance, utility, urgency, 

and fit. 

Zeelenberg and Pieters [2006] argue that emotion is a powerful force in decision making, 

and that emotion has evolved precisely for the production of behavior. They argue that the utility 

of specific emotions, and the appraisals that underlie them, is found in their ability to affect 

future behavior, and that each appraisal provides a particular function with its own adaptive 

value. The primary role of emotion, as they see it, is to serve as motivator. This form of appraisal 

is rooted in experience and extracts information related to “how the individual is doing” (with 

respect to the current goals) and “what should be done next” [Zeelenberg and Pieters, 2006]. It is 

important therefore, that the individual have the ability to determine how well its current 

response fits the situation, or whether a new strategy/behavior is required. In addition, Scherer 

[1997] suggests that measures of fit enable the individual to determine to what extent certain 

events are under control and Frijda [1986] proposes that a primary function of appraisals is to 

indicate the degree of fit between responses and events. If a particular response results in the 

individual moving closer to its goal, then the degree of fit should likely be very high. Interpreting 

such evaluations as error signals yields a view similar to the feedback control theories described 

by Carver and Scheier [1998] and Baumeister, et al., [2007].  

A motivation-based appraisal has also been proposed by Peters [2006]; however, Peters’ 

motivation function is more akin to an urgency indicator, which is derived from low-level affect, 

and influences the speed at which information is processed. From a functional perspective, 

Peters’ motivation appraisal is critical for situated agents; it signals when to start and when to 

stop, and ensures that system needs are met in a timely and appropriate fashion. A similar 

function, speed, has been described in research by Pfister and Böhm [2008]. Frijda [1986] also 

proposes that appraisals for urgency establish changes in control precedence and action 
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readiness, which have a direct impact on control and behavior, and Scherer [1997] suggests that 

such measures of urgency are informed by checks of goal-significance and coping potential. 

Such low-level urgency-based appraisals are compatible with the process of automatic affect 

proposed by Baumeister, et al., [2007], and are also reflected in separate research by Bechara, et 

al., [1997] and Loewenstein [1996]; in both theories appraisal-induced visceral states guide and, 

occasionally, force behavior. Panksepp’s [1998] evolutionarily primitive affect programs, which 

include aspects of the proto-affect signals proposed by Ortony, et al., [2004], and the interrupts 

proposed by Sloman [2001a] are also compatible with this notion of urgency-based appraisal.  

Frijda [1986], Scherer [1997], Peters [2006], and Pfister and Böhm [2008] all propose 

that relevance detection is a critical function of emotion. In Peters’ theory, low-level affective 

signals are used to identify pertinent events (i.e., stimuli) that should occupy an individual’s 

focus of attention and influence decision making. Scherer [1997] includes relevance within the 

goal-significance check and uses this signal to mediate the influence from other SECs. Pfister 

and Böhm [2008] propose that certain emotional states have the power to grab one’s attention 

and focus it intently on specific causes, events, or possible outcomes. Pfister and Böhm [2008] 

also extend the relevance function and argue that the processes for identifying relevance may 

actually construe the current situation to match the current emotional state. In other words, such 

processes are not only reactive but often proactive as well.  

It has been proposed that utility-based signals enable problems to be identified and 

behavioral responses to be prioritized [Zeelenberg and Pieters, 2006]. Research by Slovic, et al., 

[2003] proposes that low-level affect acts as a heuristic signal within the decision-making 

process. With respect to the individual’s goals, affect aids comparison between different 

response options and assigns weights for indicating relative importance. There have been several 

theories that specifically propose utility-based appraisals for “emotional” decision making 

[Tversky and Kahneman, 1986] [Mellers, et al., 1999] [Mellers, 2000]. However, unlike standard 

utility values, which provide specific monetary-type gains, affect-based utilities measure 

anticipated pleasure and pain as well as other such hedonic factors. Affect-based utility indicates 

preference. In addition, it has been proposed by Kahneman and Tversky [1979] that the mapping 

function for hedonic value is non-linear, concave for gains, convex for losses, and has a steeper 

slope for losses than for gains. Yet, Cacioppo and Bernston [1999] have noted that the best 

representation for signals such as core affect, proto-affect, or automatic affect, may be to define 
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separate functions over both gains and losses. Their research indicates a slight bias towards 

positive affect at the zero point, but that negative affect has a steeper slope. Cacioppo and 

Bernston [1999] suggest that this produces exploratory behavior in affectively neutral situations, 

while enabling stronger reactions to negative versus positive stimuli, which is most likely an 

evolutionary advantage that encourages safe exploration. Figure 12 presents the functions 

proposed by Kahneman and Tversky [1979] and Cacioppo and Bernston [1999].  

The theory that affect provides an information-laden signal for use as utility in the 

appraisal process has been proposed by Schwarz and Clore [1988], Peters [2006], Slovic, et al., 

[2003], Pfister and Böhm [2008], and Frijda [1995]. In particular, Schwarz and Clore [1988] 

propose the affect-as-information-mechanism (AIM) and contend that affect provides 

information related to how an individual “feels” about a situation and that this information 

guides decision making. Predictions and projections of future feelings are then used to adjust 

responses toward, or away from, particular situations. This type of processing resides at the 

deliberative and routine levels of information processing [Sloman, et al., 2004] [Ortony, et al., 

2004] and thus it is conceivable that utility-based appraisals are employed during intense 

deliberation, even when the individual has access to specific monetary-type utility information 

[Slovic, et al., 2003].  

 

 

(a)                   (b) 

Figure 12. Proposed Representations of Affect-Based Utility Functions by (a) Kahneman and 
Tversky [1979] and (b) Cacioppo and Bernston [1999] 
 

In order for affect to be useful as a utility signal, it is necessary to collapse numerous, 

goal-relevant evaluations onto a common scale, or currency [Cabanac, 1992]. By providing a 

common currency, affective signals are able to alleviate much of the need for costly and tedious 

logical evaluations. This same functionality has been noted by Peters [2006], but can also be 
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found in the neurobiological research of Montague and Berns [2002] and Rolls [2004]. 

Interestingly, the role of “affect as information” appears to be commonly associated with the idea 

of involuntary feelings, while the notion of “affect as common currency” seems to treat affect as 

a high-level signal that enables conscious comparisons [Peters, 2006] [Slovic, et al., 2003] 

[Bechara, et al., 1997] [Cabanac, 1992].  

Appraisals that utilize predictions of future states are based upon the individual’s prior 

experience and thoughts relevant to the current situation (which are, in turn, influenced by other 

appraisals). However, the individual’s current mood as well as other situation-independent, 

incidental appraisals may also affect these predictions [Peters, 2006]. The latter provide 

examples of how noise in the appraisal process may lead to inappropriate, or maladaptive, 

behavior. Similar theories of how experiences are used to develop predictions of future 

emotional states have been invoked by Baumeister, et al., [2007] and Damasio [1994]; 

Baumeister, et al., through their feedback control theory and Damasio through his somatic 

marker hypothesis.  

The appraisals that have been discussed here are viewed as part of the bottom-up process 

necessary for the development of those states often referred to as emotional. In addition, these 

appraisals are critical for appropriate, adaptive, and timely decision making. Relevance detection 

enables the individual to identify which goals, events, and stimuli should be focused on and 

considered. Utility enables construction of the decision-space and prioritization of the various 

response options. Navigation of this decision-space is then achieved by incorporating predictions 

of future hedonic and utility-based signals (e.g., goal-relevant utility). Urgency appraisals, based 

on the individual’s current goals and needs, impose time constraints on the decision process by 

influencing the manner in which the decision-space is searched, as well as specifically signaling 

events that demand either urgent attention or immediate action. Finally, appraisals for fit enable 

error-tracking and help to reprioritize the decision-space when the chosen strategy (response) is 

underperforming. Signals for facilitate post hoc cognitive processing that ultimately improves the 

quality of future appraisals and thus performance. 

 

Robot Emotions 

There are two general approaches to designing artificial emotions, or emotion-based 

processes, for robots. While there can be (and often is) considerable overlap between these 
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approaches, each approach serves as a guide for classifying artificial emotion research. The first 

approach is from a functional perspective, in which it is desired to have control signals, and/or 

states, that improve task performance along some criteria. In this case, the control signals (i.e., 

situation-based appraisals and low-level affect-based evaluations) are entirely internalized and 

are used to improve such measures as autonomy, performance, and adaptability. This is the type 

of approach that will be taken in this dissertation, and this section will highlight similar 

approaches.  

The second approach is aimed at enabling better human-robot interaction by providing 

robots with the means to model emotions and, in some cases, display emotional states. While 

social interaction is not a concern of the current investigation (and thus these approaches will not 

be further discussed), interesting and intriguing research has been conducted in this area. For 

example, research by Breazeal [2002] and Gockley, et al., [2006] investigates how artificial 

systems equipped with the ability to maintain internal states and display emotion (e.g., 

“smiling”) can improve human-robot interaction. In addition, notable research by Picard [1997], 

Picard, et al., [2001], Dautenhahn [2002], and Liu, et al., [2007], investigates methods by which 

robots and artificial systems can understand human emotion (and behavior) in order to adapt 

themselves to human emotional states and needs.  

 

Control System Approaches 

Ahn and Picard [2005] implement a computational framework for “affective-cognitive 

learning” and decision making. They define an affective agent as an agent that “has both 

cognition and emotion and its motivation can be modeled by reward and that ‘internal reward 

from cognition and emotion’ and ‘external reward from the external world’ can explain 

motivation in its learning and decision making” [Ahn and Picard, 2005, p. 2]. Similar to the work 

of Shanahan [2006] described later, their system uses an internal simulation loop that models 

expectation and evaluates internal reward. However, the system designed by Ahn and Picard 

[2005] implements emotion solely as an internal reward signal, or utility value. Thus emotion 

only alters behavior selection and does not alter the deliberative approach behind such selection. 

The emotional states used by Ahn and Picard [2005] are given labels, such as “feeling good” or 

“feeling bag”, and utilize an internal bias so that the robot prefers those states in which “feeling 

good” is more likely. Through the use of affective-cognitive decision blocks, the robot monitors 
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the external environment and performs internal simulation to identify actions that lead to 

desirable emotional states.  

Gadanho and Hallam [1998] design an emotion-based control system using four of the 

basic emotions proposed by Damasio [1994] and Ekman [1992]: “happy”, “sad”, “fear”, and 

“anger”. Each emotional state is assigned an intensity value and the dominant emotion is 

determined by the state with the highest associated intensity value, provided that value is above a 

pre-defined threshold. The intensity values were derived by monitoring perceptual signals (both 

internal and external), such as “battery power”, “collision (bump) detection”, and “amount of 

current activity”. The relation between intensity values and emotional states was pre-defined 

through specific rule sets that connected intensity to artificial hormones that combined in various 

ways to create emotional states. The approach described in Gadanho and Hallam [1998] uses the 

derived emotional state to provide reward signals for use in reinforcement learning.  

Like Gadanho and Hallam [1998], both Canamero [1997] and Cos-Aguilera, et al., [2005] 

develop systems that monitor internal signals related to basic “bodily” needs. Such homeostatic 

systems are used as control structures to keep “physiological” variables within a certain range. 

The motivation signals arise from the deprivation of those internal variables, and emotions are 

treated as control states that indicate the need for compensation. For example, Cos-Aguilera, et 

al., [2005] implement a homeostatic system which feeds a set of internal drives that, upon 

compensation, provide reward signals that create associations between the deprived internal state 

and the behaviors used to compensate that state. The underlying control system is based on 

Brooks’ [1986] subsumption architecture; however, the behavioral responses are based on the 

current associations rather than a preset behavioral hierarchy. The homeostatic variables used by 

Cos-Aguilera, et al. [2003] are “nutrition” (battery power), “stamina” (activity), and 

“restlessness” (lack of exploration). The drives are based on these variables and represent desires 

such as the “need to find food”, the “need to rest”, or the “need to explore”. 

Canamero [1997] explores how low-level signals that measure internal variables in 

simulated creatures can be used to create emotion-based control states. These creatures are 

placed in a simulated world and are given goals related to surviving in that world. Along with 

each internal variable there is an associated motivation signal that indicates which goal should be 

pursued. Examples of the internal variables include “aggression”, “cold”, and “fatigue”. There 

are six defined emotional states, each of which can be triggered by a specific type of stimulus. 
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Each emotion is modeled as a signal that influences one or more motivations by increasing or 

decreasing motivational intensity. In this way, the motivation signals are used as utility signals 

for deciding which goal to pursue, while emotion acts as a reward signal for each of the various 

goals. The events that trigger each emotion are preset by class type. For example, “achievement 

of a goal” causes “happiness”.  

Another low-level approach to robot emotion has been investigated by Moshkina and 

Arkin [2003]. Their model combines traits, attitudes, moods, and emotions (TAME) as distinct 

components in a behavior-based system [Arkin, 2004]. Arkin, who contends that emotions, from 

the perspective roboticists, consist of a subset of motivations that can be used to dynamically 

modulate ongoing behavior [Arkin and Vachtsevanos, 1990], proposes that the components of 

the TAME model should modify behavioral parameters to induce selection of certain behaviors. 

Traits and attitudes determine the basic dispositions of the robot; traits are innate, task-specific 

responses, while attitudes are learned responses based on consistent and persistent training. 

Attitudes are used to signal approach/avoidance tendencies and to prune the decision-space. 

Moods are stimulus-independent summaries of previous affective reactions over a temporally 

extended window. Emotion is a specific reaction to an event of relevance to the current goals. 

The specific emotions in the model of Moshkina and Arkin [2003] are pre-defined and are used 

to facilitate quick responses to salient events, as well as provide goal-based evaluation signals 

(i.e., utility). While the TAME model is more comprehensive than the models described 

previously (i.e., it incorporates decision-space pruning and urgency evaluations), it still relies 

heavily on preset emotional states that arise from stimuli in a pre-determined fashion, and 

utilizes specifically defined behavioral influences.  

 

Architectural Approaches 

While the architectures of Sloman [2001a] and Ortony, et al., [2004] are chiefly 

theoretical designs that are intended to provide guidelines for laying out specific architectures, 

the approaches by Shanahan [2006], Gadanho [2003], and McCauley and Franklin [1998] are 

designed to incorporate emotion and emotion-based processes in realized systems that utilize a 

cognitive architecture. Shanahan’s [2006] architecture implements a dual-loop control process 

composed of a higher-order executive loop embedded within a first-order reactive loop. The 

reactive loop determines responses to environmental stimuli as those stimuli are detected in real-
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time. In parallel, the higher-order loop operates on the same input, but rehearses potential 

decisions and, when necessary, vetoes the first-order reactions. During the rehearsal process, 

affect-based salience, or utility, is associated with potential responses and provides interrupt 

signals to the first-order system. One intriguing note about Shanahan’s system, however, is that 

the affect-based interrupts proceed in a “top-to-bottom” fashion (higher-order loop to first-order 

loop), which suggests that the higher-order loop operates at a higher frequency than the first-

order loop. This is counterintuitive to much of the emotion and architectural control discussions 

up to this point. The systems of Sloman [2001a] and Ortony, et al., [2004] primarily model 

interrupts proceeding in a “bottom-to-top” fashion and feedback control operating “top-to-

bottom”. 

Gadanho [2003] extends the type of emotion system proposed by Gadanho and Hallam 

[1998] into a full cognitive architecture. Within the architecture, a homeostatic system monitors 

the internal state and signals when one or more physiological variables deviate from the (pre-

defined) acceptable range. If deviation occurs, the system pursues the goal of returning the 

deviated variable to its acceptable range. Deviation facilitates negative reward, while 

compensation facilitates positive reward, as well as association between that reward and the 

reward-producing behaviors. Within the system proposed by Gadanho [2003], utility is the 

primary appraisal process; however, events interpreted as harmful for goal satisfaction can 

trigger basic interrupts. The interrupts are used to re-adjust the focus of attention towards a 

different goal and to reset the decision-cycle. While this may be construed as a form of basic 

relevance detection, this process only enables goal switching, and does not otherwise modify the 

focus of attention or the interpretation and contribution of specific utility values. Finally, the 

calculation of utility from the homeostatic variables is performed using externally, pre-defined 

rule sets. 

Another architecture for emotion was developed by McCauley and Franklin [1998] and 

was implemented on a system called “Conscious Mattie” (CMattie) [Franklin, 1997]. This 

architecture is loosely based on the Pandemonium Theory of Selfridge [1959]. In their system, 

McCauley and Franklin [1998] use a variety of interconnected “codelets” which respond to the 

perceived activity of all other codelets by becoming more or less activated. The entire collection 

of codelets represents a loose connectionist network in which the activation of one codelet may 

influence the activation of others. Furthermore, connections between codelets can be created or 
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destroyed, strengthened or weakened. Emotions are modeled using a set of emotion codelets, 

each of which updates the gain value of a vector of four real numbers that represent four of the 

basic emotions proposed by Damasio [1994] and Ekman [1992]. Thus, each codelet has a short 

pre-defined rule that determines which stimuli initially trigger that codelet.  

In order for this system to function properly, CMattie must be actively situated in an 

environment and able to detect the changes produced by its actions. Using its emotions, CMattie 

learns to recognize and pursue pleasurable states while simultaneously recognizing and avoiding 

non-pleasurable states. This is performed using an internal learning mechanism designed to 

create associations between internal states and the system’s goals and drives. The learning 

mechanism, called unsupervised internal reinforcement [McCauley and Franklin, 1998], differs 

from classic reinforcement learning by utilizing a reinforcement signal that is generated 

internally, in response to action-related environmental changes. Using an internally generated 

signal to provide reward is an emotion-centric concept, and is reflected in much of the research 

concerning emotion and robots [Canamero, 1997] [Gadanho and Hallam, 1998] [Gadanho, 

2003]. 

Each of the approaches just described highlights a trend in robotic emotion research: the 

desire to use emotion as a utility signal based, typically, on human-centric goals (e.g., 

survivability) and to pre-define emotional states (e.g., “happy”, “sad”, “restless”) and then define 

the triggering events for those states. While both the architectural approaches and the control 

system approaches consider emotion to be primarily a utility signal, the architectural approaches 

do branch slightly into the concepts of relevance and urgency, as these concepts are more of a 

concern at the architectural level of control. Unfortunately, the literature is sparse on approaches 

that implement other types of appraisals (rather than just utility) as constituent parts of emotional 

states. In addition, most approaches seem to be more concerned with how specifically pre-

defined emotional states can improve survival-based autonomy rather than what methods may 

improve task- and niche-specific autonomy. 
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CHAPTER V 

 

RESEARCH METHODOLOGY 

 

Motivation and Focus 

In order to create robotic systems that can cope with the challenges presented by 

complex, dynamic environments it is necessary to take an integrated approach that combines 

high-level architectural design with real-time decision-making capabilities. Chapter II discussed 

the need for cognitive architectures in order to realize complex, cognitive control. Chapter III 

described decision-making approaches for robotic systems and different techniques that enable 

those approaches to operate in real-time; either through the use of real-time search methods or 

anytime algorithms. Chapter III also highlighted the fact that many systems rely on preset 

functions (e.g., heuristic functions [Geffner and Bonet, 1998] [Barto, et al., 1995]), parameters 

(e.g., depth and thresholds [Paquet, et al., 2005] [Dean, et al., 1993]), and feature vector 

representations [Sutton and Barto, 2000] in order to perform real-time decision making. Chapter 

IV described emotion research as well as some fundamental appraisals and signals that are 

believed to underlie and precede various emotional states. The appraisals that were focused on 

were those of relevance, utility, urgency, and fit.  

Each of the aforementioned appraisals serves a basic function, but within engineering 

research, utility seems to receive the most attention. This may be due to the fact that utility 

enables the comparison, prioritization, and selection of responses. However, for the design of a 

cognitive robot embedded in the real world, utility may be necessary but it is not sufficient. In 

addition to utility, it is important that a cognitive robot be able to filter the vast number of 

perceivable aspects of a situation to identify only those aspects that are the most relevant to the 

current goal. Furthermore, because the external environment often imposes time constraints on 

decision and action, robots must be able to appraise the current situation with respect to the time 

required, and allowed, for deliberation. This includes the ability to adaptively tune the decision-

making process and, as necessary, interrupt ongoing deliberation. Finally, a cognitive robot 

composed of such abilities should possess the capacity to assess and evaluate how well its 

current knowledge structures fit the situations to which they are being deployed. This type of 

self-evaluation is useful when identifying those structures that require further training.  
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This dissertation investigates how the offline cognitive processing of experience can be 

used to develop and train the cognitive processes that ultimately appraise relevance, utility, 

urgency, and fit. These appraisals are based on psychological theories of emotion and emotional 

states, and each appraisal must integrate with the decision-making process, while the decision-

process as a whole must be integrated into a larger cognitive architecture. This chapter describes 

the approach taken for the design and implementation of this system, but first it is necessary to 

describe what is meant by the phrase “cognitive processing of experience” and to outline how 

such processing may be accomplished.  

 

Cognitive Processing of Experience and Episodic Memory 

Much of the discussion up to this point has focused on the type of appraisals that may be 

useful for cognitive control. While the investigation of these appraisal constitutes a large portion 

of this research, both theoretically and empirically, it is necessary to not only understand what 

appraisals are necessary and how they can be used to impact control, but also to understand how 

such appraisals may be learned through experience, specifically the cognitive processing of 

experience.  

Chapter II described the different types of long-term memory systems that are believed to 

exist. This included discussions of procedural, episodic, and semantic long-term memory. Of 

these systems, the most crucial for the current research is episodic memory, the memory system 

devoted to the retention and retrieval of an individual’s unique subjective experiences that, when 

necessary, can be “re-lived” from the individual’s own auto-centric point-of-view [Tulving, 

1983]. Tulving [1983] [2002] refers to this ability as autonoetic consciousness and argues that 

this type of memory is unique to humans. Other researchers, such as Clayton et al. [2002] and 

Morris [2002], however, loosen Tulving’s restrictions on episodic memory and argue for the 

existence of “episodic-like” systems in animals. Their arguments are based on research that 

indicates certain animals are able to process situations with respect to remembered contextual 

cues. In other words, these animals appear to have the ability to retrieve previously encountered 

information related to “what”, “when”, and “where”, and to use this information to impact future 

behavior. 

Research has shown that food storing birds have the ability to retain not only the specific 

locations in which food had been previously stored, but also to appreciate the type of food stored 
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as well as the duration of storage [Clayton, et al., 2002]. In addition, rats have shown the ability 

to process visual scenes with respect to spatial context and research suggests that this processing 

exhibits its own episodic-like characteristics [Morris, et al., 1990] [Aggleton and Pearce, 2002]. 

Furthermore, this processing appears to be mediated by the rat’s current goals and needs, a 

notion that agrees with human experiments and indicates that the focus of attention and 

emotional state may be used both in the creation of episodic memories and in their recall [Kapur, 

1999]. This somewhat reflect back to Tulving’s proposal for autonoetic consciousness, whereby 

an individual is able to consciously re-experience a previous event and re-live many of the 

subsequent details (i.e., thoughts and feelings) of that event. Yet, as noted in Chapter II research 

suggests that such recall and re-living is only a dampened form of the actual experience 

[Loewenstein, 1996]. It stands to reason, therefore, that if an individual’s current emotional state 

mediates which aspects of a situation become encoded into episodic memory, and that 

subsequent recollection of that episode informs future deliberation through the re-experiencing 

of those previous states, then the process of forming episode and learning situation-based 

appraisals is best intertwined.  

Within this dissertation, a basic episodic memory system will be used to provide the 

experiential database from which the cognitive processing of experience will train each 

appraisal. In this context, the phrase “cognitive processing of experience” is used to denote that 

the specific algorithms that are applied are both inspired and based on theories of cognitive 

processing in humans and animals, in particular the myriad processes required to form, abstract, 

associate, and retrieve episodic information that is either stored or indexed by complex relational 

patterns within the brain. This point will be further addressed throughout this chapter, 

specifically in the section Relational Mapping.  

During training, the basic episodic memory system will be used to create an auto-

associative network in which individual episodes have been generalized, abstracted, and linked 

with learned appraisals. Partial pattern matching will then be used to retrieve this information. 

Finally, the retrieved information will be used to impact deliberation.  

 

ISAC Cognitive Architecture 

The architecture used in this research is the ISAC cognitive architecture [Kawamura, et 

al., 2008] shown in Figure 13. This architecture has three distinct control loops similar to those 
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described by Shrobe et al. [2006], Sloman [2001], and Ortony, et al. [2004]. These loops provide 

reactive, routine, and deliberative control. In addition, there are multiple memory systems, such 

as short-term, long-term, and working memory. Of these systems, long-term memory is further 

subdivided into the three categories: procedural, episodic, and semantic. Finally, there is a 

complex, higher-order Executive Control Agent that (among other things) assigns goals, 

generates plans, and selects responses.  
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Figure 13. The ISAC Cognitive Architecture 

 

Component Descriptions 

The Sensory EgoSphere (SES) [Peters, et al., 2001] is a short-term memory system that 

integrates multi-modal sensory information. The underlying data structure is designed as a 

complex geodesic dome consisting of a set of sparsely interconnected vertices. Within the ISAC 

architecture, 1962 are used, however, this number is merely a parameter of the system. The 

structure of the SES enables the use of spreading activation networks [Pinker and Mehler, 1988] 

that perform spatio-termporal coincidence detection and mediate the salience of each percept. 
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Salience values are used as attentional markers, but also facilitate perceptual binding [Peters, et 

al., 2001] [Kawamura, et al., 2008].  

The First-Order Response Agent (FRA) [Ratanaswasd, 2007] initiates routine behaviors 

without reliance on more complex, high-level control structures. Routine responses are either 

preset or learned over time. Currently, routine responses are represented as stored 

percept/behavior combinations.  

The Working Memory System (WMS) [Gordon and Hall, 2006] implements working 

memory in the ISAC architecture. The WMS is designed to integrate and filter perceptual and 

procedural information using knowledge of the current goals and situation-based appraisals. 

Additionally, the WMS provides the gateway through which the high-level cognitive processes 

interact with the low-level perception and action processes. The WMS is currently implemented 

through the use of a Working Memory toolkit (WMtk) written in ANSI C++ and using a multi-

layer neural network function approximator [Phillips and Noelle, 2005].  

The Long-Term Memory (LTM) system is composed of three distinct parts: procedural, 

semantic, and episodic. Procedural LTM retains information related to the performance of 

behaviors while semantic LTM retains facts and beliefs about the world. For example, percept 

attributes (described in the next section) are stored in semantic LTM, and behavioral control laws 

are stored in procedural LTM. Episodic LTM retains linked episodes consisting of state-action-

outcome sets. States (introduced in the next section and described in Chapter VI) are based on 

the information stored in the WMS, actions represent the selected and performed behaviors, and 

outcomes are the sensed perceptual events, along with appraisals, that result from those 

behaviors.  

The Relational Mapping System (RMS) maintains abstracted representations of states and 

state features and associates these representations with statistically determined evaluation 

information (e.g., utility). The contents of the individual relational maps within the Relational 

Mapping System are mined from experience (i.e., episodes) and each map enables auto-

associative access and retrieval.  

The Affect Agent uses knowledge of the current goals to interpret the evaluations 

retrieved from the RMS and adjusts the system’s decision-making strategy accordingly. 

Adjustment includes adaptively tuning parameters in the cognitive cycle, and interrupting this 

cycle when necessary.  
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The Goals Agent assigns goals to the system. Goals determine the current task and 

evaluations. Goal setting is critical for both the cognitive control components and the low-level 

perception/action components.  

The Central Executive Agent (CEA) [Ratanaswasd, et al., 2006] initiates cognitive 

control, plans, and selects responses by utilizing knowledge of the current state (from WMS) and 

the current goals (from the Goals Agent). The CEA searches the decision-space and prioritizes 

response options. The current “best” plan is maintained within the WMS, so that it may be 

rapidly deployed if needed. During planning, interrupt signals are used to halt the planning 

process and trigger the activation of the best plan. Interrupts are provided by the Affect Agent, or 

by the low-level perception systems.  

The Internal Rehearsal System (IRS) [Hall, 2007] [Erdemir, et al., 2008] internally 

simulates actions, predicts outcomes, and retrieves evaluations. The IRS uses knowledge of the 

current goals to retrieve evaluative information from the Relational Maps. In addition, offline 

simulation by the IRS is critical in the development of the Relational Maps.  

 

Flow of Information through the ISAC Architecture 

In the ISAC architecture an array of Perceptual Agents are used to detect external stimuli. 

These agents operate in parallel and independently perceive and process information. There are 

no type restrictions on perceptual agents. As perceptual information is detected that information 

is sent to each of the three separate control loops (reactive, routine, and deliberative). This 

involves passing information directly to the Activator Agents where reactive responses may be 

triggered, to the First-Order Response Agent where routine responses may be triggered, or to the 

SES where that information may eventually be used for deliberation.   

As information is presented to the SES, the Attention Network employs spreading 

activation networks to bind coincidental percepts and flag highly salient percepts. At each node 

of the SES, activation values from neighboring nodes are discounted in proportion to their 

distance from the original node and summed. The resulting sums indicate salience, which in turn 

effects both retention time and the likelihood of that percept being further passed to the WMS.  

The flow of information into the Working Memory System (WMS) comes from three 

directions: perceptual information is passed in from the SES, behavioral information is passed in 

from long-term memory, and evaluative and response information is passed in by the Executive 
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Control Agent (ECA). The flow of information out of the WMS may also take three paths: 

behavioral information is passed to the Activator Agents, situation information (percepts and 

behaviors) is passed to the ECA, and situation and evaluative information is passed to long-term 

memory (for storage). Behavioral information is used to trigger actions, the effects of which are 

detected by the Perceptual Agents. Situation and evaluation information is retained in long-term 

memory until it is required for offline learning, or recalled by the WMS. Situation information 

also initiates (or interrupts) the internal, cognitive, decision cycle. Finally, the information that is 

passed to the ECA is used to initiate or interrupt the deliberation process. 

Information flows through the ECA in a continuous loop (Figure 13). Deliberation is 

initiated in the CEA using incoming information from the WMS. The IRS simulates actions and 

retrieves evaluations. The Goals Agent sets goals that effect the interpretation of evaluations, and 

the Affect Agent interprets each evaluation and adjusts the decision-making parameters 

accordingly. Finally, the response information is sent to the WMS, where it is either added to the 

currently forming plan or used to trigger actions directly.  

 

Flow of Control through the ISAC Architecture 

As mentioned earlier, there are three levels of control in the ISAC architecture, reactive, 

routine, and deliberative. Interaction between these levels is bi-directional: top-to-bottom and 

bottom-to-top. The flow of control is mediated by the WMS, as this system provides the primary 

interaction between the low-level Perception-Action Agent and the high-level ECA. When 

control flows from bottom-to-top, it is through interrupt signals that are based on reactions to 

certain stimuli. These reactions may either be preset or learned responses. The interrupt signals 

are passed as saliency markers through the Attention Network and WMS. When control proceeds 

from top-to-bottom, it is through override signals. These signals interrupt and override all 

currently activated routine responses and allow deliberative control to proceed.  

 

Learning Processes within the ISAC Architecture 

Learning in the ISAC architecture is accomplished in several ways. First, stored episodes 

are mined for relational information that can be used to evaluate situations. This involves 

creating representations of the current situation that can be used to access the Relational Maps. 

This is primarily an unsupervised task. Second, the IRS performs internal rehearsal to simulate 
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experience and create associations between input states and expected outcomes. Internal 

rehearsal, or “mental simulation” is performed offline, and requires that representative states be 

appropriately sampled from LTM.  

In addition to the learning enabled by the LTM data structures, the WMS uses TD 

learning (Chapter III) to identify the correct percepts and actions that should be attended to, 

given the current goals. This is accomplished through the use of the Working Memory toolkit 

(WMtk) [Phillips and Noelle, 2005]. The inputs to the WMtk are numeric feature vectors that 

represent the current state and the list of possible information chunks (e.g., percepts and 

behaviors) to which attention can be given. The output is a filtered list of these chunks. The goal 

of learning in the WMS is to improve decision making by reducing the number of possibilities 

that must be considered.  

 

Outline of the Approach 

This dissertation investigates how the offline cognitive processing of experience can 

facilitate the derivation of useful online cognitive processes that appraise the current situation 

with respect to relevance, utility, urgency, and fit. Each appraisal is based on psychological 

emotion research and must integrate with the decision-making process, while the decision-

process as a whole must integrate into the ISAC cognitive architecture. Each appraisal is 

developed and trained using the system’s own unique experience, and this experience is stored as 

episodes in the system’s episodic memory. The remaining sections of this chapter describe the 

approach taken for the design and implementation of the necessary control system, the 

algorithms used to learn each appraisal, as well as the integration/instantiation of this control 

system within the ISAC architecture.  

The approach taken in this research is to design the deliberation process as a sequential 

decision maker that recursively searches the decision-space to determine appropriate responses. 

The appraisal for relevance will be charged with charged with creating the internal 

representations, while the appraisals for utility and urgency will be functions of these learned 

representations. The appraisal for fit will be performed post hoc using the observed outcomes of 

each behavior. The learning process, as a whole, employs a layered, incremental approach in 

which knowledge discovered at the earlier layers is used as a baseline for learning at the later 
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layers. During the planning and search process each successive state will be used to create 

representations and trigger appraisals that direct the next step of the search.  

Many specific learning algorithms are discussed in the following pages. These algorithms 

support two broad types of learning. The first type of learning is aimed at acquiring the necessary 

domain knowledge to successfully perform the given task, and involves developing appreciations 

of whether certain situations should be approached or avoided. These appreciations are based on 

an understanding of the important, perceivable aspects of each situation. This domain knowledge 

is primarily contained in the appraisals relevance and utility.  

Whereas the domain knowledge enables successful completion of the task, performance-

based knowledge enables the robot to relate its current decision-making capabilities to different 

situations in order to adjust aspects of its deliberation to better match its abilities and the 

demands imposed by those situations. This is important because robots are required to function 

as embedded agents in real-world environments, and those environments often impose strict time 

and resource constraints. Therefore, the second type of learning involves acquiring performance-

based knowledge and developing both an understanding of the robot’s capacity to perform the 

task, and how well the robot’s knowledge fits the task. In this research, the primary goal of 

acquiring performance-based knowledge is to decrease deliberation time in those situations in 

which the robot is “confident” in its abilities, and to enable fast commitment when immediate 

response is demanded. In addition, performance-based knowledge is also used to enable basic 

identification of those (learned) components that are underperforming and require further 

training. Performance-based knowledge is primarily contained in the appraisals urgency and fit.  

Figure 14 presents the general system layout. The steps involved in processing incoming 

stimuli and planning responses are described as follows: 

1. Use detected perceptual information to create the basic state representation, si. This 

includes current stimuli as well as any reward information related to the previous state,  

si-1.  

2. Process si, with respect to the current goals, and create a set of feature vectors fi
v that 

capture and represent goal-relevant information from si. 

3. In parallel: 

a. Use fi
v to access relational maps that retain the various utility evaluations ui for si.  
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b. Use fi
v to determine the time afforded for deliberation, or the urgency imposed by 

si. 

c. Process all rewards to determine if a trained component incorrectly predicted an 

evaluation in si-1. 

4. In parallel: 

a. Use ui to prioritize the potential responses to si. 

b. Use the appraisals of time afforded to adjust the search parameters depth and 

breadth to ensure timely, yet accurate, responses. 

c. Interrupt, if needed, the deliberation process. 

5. Select the best action/response, and either: 

a. Continue planning by passing si+1 to Step (2). 

b. Perform the selected action. 

 

 

 

Figure 14. Block Diagram for the Implemented Control System 

 

In the following sections, the primary components of the Deliberation & Planning block, 

as they pertain to the current research, are described and the flow of information through this 

control system is given. The inputs and outputs of each block are described, along with the 
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functional purpose of each block. In addition, the techniques used to achieve that purpose, as 

well as experimental validation of those techniques, are presented.  

Before describing the flow of information through the system, or the specific techniques 

used, however, it is necessary to introduce the basic state representation used for this work as 

well as some sample data useful for performing preliminary evaluations of each component. 

While a full description of the variables, functions, and signals allowable for each state is 

deferred to Chapter VI, the basic state representation can be described using the following three 

types of information: 

1. Percepts – The representation of percepts includes the location and known attributes for 

each percept. An example is shown in Table 1. 

2. 1
st
 Order Logic Elements – Information about percepts, their locations and attributes, is 

used to create a set of 1st order logic symbols and predicates, such as 

Reachable(Percept1) or InBag(Bag0, Percept1).  

3. Evaluation Signals – As the state is processed, various signals are added to the state 

representation. There are two types of evaluation signals. External signals indicate 

rewards, while internal signals indicate appraisals. 

a. Rewards – External evaluations of the previous state 

b. Appraisals – Internal evaluations of the current state (i.e., relevance, utility, 

urgency, and fit) 

 

 Within each state, goals are assumed to be implicit. This assumption, however, can easily 

be relaxed by including additional structures within the state representation. The episodic 

memory system that is used throughout this dissertation can be conceptualized as a set of 

state/action sequences that end at a final state in which the (implicit) goal has been accomplished 

or no further corrective action can be taken. 

 

Table 1. Sample Percept Representation 

 Percept Location Attributes 

 id (x, y, z) name color weight size firmness temperature price type healthy 

 

Throughout the remaining sections of this chapter, it is assumed that the robot has 

sufficient initial knowledge, and the basic abilities required, to correctly associate attributes with 
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percepts and formulate logic expressions. It is also assumed that the robot receives external 

evaluations (i.e., rewards) either during task performance or immediately after task completion. 

This assumption is necessary because these rewards provide the foundation for learning the 

different appraisals that, ultimately, guide decision making.  

The complete task used to evaluate the implemented system is described in detail in 

Chapter VI, however, it is necessary to introduce some sample data that will be used to evaluate 

each system component. The sample data consists of 10 groceries, each with a corresponding set 

of attributes (as shown in Table 1). Table 2 lists these groceries and their attributes. The grocery 

data was collected from a local grocery store. Average measurements were used to assign values 

to the attributes color, firmness, and healthy. Attribute type indicates location on the standard 

food pyramid [Food Pyramid - MIT]: T1 = “Grains”, T2 = “Vegetables”, T3 = “Fruits”, T4 = 

“Dairy”, T5 = “Meats & Proteins”, T6 = “Fats & Sweets”, T7 = “Not a food item”. 

 

Table 2. Sample Groceries 

 name color weight (oz) size (in3) firmness temp.(Fo) price ($) type healthy 

 soda RED 70 294 hard 75 1.50 T6 NO 
 chicken PINK 24 108 hard 32 3.05 T5 YES 
 milk WHITE 68.8 160 hard 45 1.67 T4 YES 
 cereal BLUE 17 227.5 hard 75 3.15 T1 NO 
 potatoes BROWN 80 504 hard 75 3.99 T1 YES 
 strawberries MAGENTA 16 140 soft 55 2.30 T3 YES 
 bread BROWN 16 325 soft 75 0.89 T1 YES 
 rotisserie BROWN 32 160 hard 150 7.99 T5 YES 
 eggs YELLOW 24 144 soft 45 1.59 T5 YES 
 hot_soup WHITE 12 48 hard 175 3.50 T2 YES 

 

 

Dynamic Situation Representation 

As perceptual information is sensed that information must be transformed into a 

representation suitable for the later cognitive processes. In AI and machine learning, such 

representations are known as feature vectors and capture the important state information in a 

form that can be used by various algorithms. Feature vectors often require preset mappings for 

individual states, however as previously described, this research requires that the robot learn 

which aspects of the situation are the most relevant to the current goal, and then use that 

information to create its own feature vectors that reflect this knowledge. This provides more 

adaptability than using preset mappings, and increases the flexibility of the robot to adjust itself 
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more appropriately to different goals. Thus, cognitively processing experience to create flexible 

feature mappings is the first step in the appraisal process.  

In order to determine which percepts are relevant to the current goals, the robot must 

have basic knowledge of the physical attributes for each percept. Given this knowledge, the goal 

of the system is to determine statistically which attributes are relevant for the current task, and 

which can be ignored. While it is trivially accepted that humans are capable of abstracting 

information and creating categories of information to which attention should be given, animal 

research indicates that many animals, particularly vertebrates, are also capable of creating object 

categories that are mediated, to some extent, by the creature’s current goals [Morris, 2002]. 

Research suggests that in humans this type of processing is performed by the prefrontal cortex, a 

primary site that is believed to be responsible for working memory and attentional focusing 

[Gazzaniga, et al., 2002]. As discussed in Chapter II, working memory is responsible for 

focusing an individual’s attention on only the most task-relevant information. Various 

computational methods have been employed by researchers in an attempt to emulate this ability 

in artificial systems. In particular, the production rule system ACT-R models this functionality 

through the use of a complex associative network in which chunks of information are 

interconnected by weights that mediate association and retrieval [Anderson, 1983] [Anderson 

and Lebiere, 1998].  

Further research by Phillips and Noelle [2005] implements a feedforward neural network 

in which specific chunks of information are selectively attended to and used to complete an 

orienting task. Based on task performance, a TD learning algorithm is used to modify the 

network weights. This type of training continues until the system learns which information 

should be attended to in each of the different situations that may be encountered. It is interesting 

to note that the network designed by Phillips and Noelle [2005] learns “what to focus on” and 

not “what to do”. Therefore, though network training is based on task performance, the network 

itself cannot affect task performance except by altering what information is presented to the 

planning system.  

While the model of Phillips and Noelle [2005] reflects aspects of the neurological 

functioning of working memory, their approach, as well as the approach taken in ACT-R, 

assumes that the network is provided a priori with a set of information chunks and that the only 

task for the network is to choose from these chunks. Yet, it is difficult to make this assumption in 
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complex environments, and neither system addresses how these chunks, as well as the specific 

representations for these chunks, may be acquired by the system rather than preset by the 

designer (i.e., engineer). What is needed is the ability to both determine what perceptual 

information should constitute a chunk as well as how to re-use chunks when similar perceptual 

information is present. To this end, the current research focuses on statistically mining a set of 

attribute weights from experience and applying these weights to concept formation via 

unsupervised clustering. 

 

Input/Output 

The input to this component is the current state representation, si. The output is a set of 

symbolic feature vectors, fi
v, that capture relevant information from si. Each fij

v ∈ fi
v is a variably 

sized representation of different elements from si, that have been extracted from the 1st order 

logic and have had the specific percepts replaced with abstracted perceptual symbols. The 

structure of each fij
v assumes that the sequential order of information is important. Therefore, fi

v 

represents goal-relevant abstractions of specific state information as it sequentially appears to the 

system. The output feature vectors are appended onto the current state representation as part of 

the evaluation signals.  

 

Implementation: Weight Learning 

In traditional clustering it is often known which attributes are the most important for 

categorization. In order to derive appraisals for relevance, however, this dissertation makes no 

such assumption. Thus it is necessary to learn which attributes are the most relevant for the 

development of goal-oriented clusters, and to what extent those attributes should contribute to 

cluster formation. To learn this information, the system employs a weight-learning algorithm that 

looks for statistical patterns in individual grocery bags and uses the evaluations for those bags to 

increment weights associated with specific attributes. Only grocery bags that contain more than 

one grocery are used during training. For each bag Bk, the probability of each attribute P(Ai = Vij | 

Bk) is determined and the largest value maxBk = max{ P(Ai = Vij | Bk) } ∀j, is used to update that 

attribute’s weight value, as shown in Equation (15). The value Ec is the evaluation for the cth 

constraint and can have value [-1, 1], αω is the learning rate, and P(Ai = Vil ) is the unconditional 

probability over all known groceries of the attribute-value pair with highest bag probability, 
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maxBk, where l = argmax { P(Ai = Vij | Bk) } ∀j. The term 1.0 – P(Ai = Vil) is used to discount the 

importance given to highly probable attribute-value pairs. 

 

ωi = ωi + αω * (1 – P(Ai = Vil)) * maxBk * { (1.0 + Ec)/2.0 – ωi }  (15) 

 

A more specific form of this update rule is shown in Figure 15. This modified rule only 

drives individual weights closer to the desired values when the corresponding attributes appear 

with some probability “greater than chance”. If the probability of a specific attribute is below this 

value, then the associated weight is driven away from the desired value, Ec. In Figure 15, two 

constants, βp and βn, are used to determine the threshold for each update. When βp = βn = 0.0, the 

if-then rule shown in Figure 15 is equivalent to the general form shown in Equation (15). Once 

the final weights have been obtained, they are normalized on the scale [0, 1] by dividing each 

weight by the maximum value over all weights. This is for presentation and comparison purposes 

only and does not affect the performance of the clustering algorithm described in the next 

section, as it is merely multiplication by a constant scalar.  

 

 

Figure 15. If-Then Version of Equation (15) 

 

Validation and Evaluation: Weight Learning 

To evaluate the weight-learning algorithm, the 10 sample groceries were first split into 

three clusters using only the temperature attribute. These clusters are shown in Table 3 and were 

derived using a standard k-means algorithm. Next, 30 random sets of groceries were generated 

and each set was evaluated using a preset rule that gave reward of –1.0 for all sets in which more 

IF 

{ (Ec > 0)  AND  maxBk > βp / N ) }

OR IF 

{ (Ec < 0)  AND  maxBk > βn / N ) }

THEN

ωi = ω i + αw * ( 1.0 - P(Ai = Vil) ) * maxBk * { (1.0 + Ec)/2.0 – ωi)

ELSE

ωi = ωi + αw * ( 1.0 - P(Ai = Vil) ) * maxBk * { (1.0 - Ec)/2.0 – ωi)
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than one grocery class was present and +1.0 for sets in which only one grocery class was present. 

For this test, the size of each set was constrained to the interval [2, 4]. The 30 sets, along with 

evaluations, are shown in Table 4.  

 

Table 3. Classification Scheme Used to Reward Sets 

 Class Grocery 

 C1 chicken, milk, strawberries,  
  eggs 
 C2 soda, cereal, potatoes, bread 
 C3 rotisserie, hot_soup 

 

 

The learned weights are shown in Table 5. The temperature attribute is correctly 

predicted as the most important for classification. Other attributes, such as color, size, firmness, 

price, and healthy also receive non-zero weight; indicating that the particular data (Table 4) 

contained additional “hidden” patterns that affected weight assignment. Because the current 

system is designed to learn pattern information from its own experience, it is important that the 

weight-learning algorithm identify all possible patterns in the input data. This need validates the 

current weight-learning algorithm as a suitable approach to identifying basic relevance markers, 

i.e., attributes. 

 

Table 4. 30 Randomly Generated Sets of Groceries with Evaluations 

 # set evaluation # set evaluation 

 1 hot_soup cereal  -1 16 hot_soup soda eggs  -1 
 2 bread strawberries bread  -1 17 rotisserie eggs rotisserie cereal  -1 
 3 potatoes rotisserie  -1 18 strawberries milk soda eggs  -1 
 4 potatoes bread  1 19 chicken bread bread chicken  -1 
 5 bread potatoes soda  1 20 rotisserie potatoes cereal eggs  -1 
 6 soda strawberries eggs rotisserie  -1 21 chicken bread bread hot_soup  -1 
 7 eggs eggs milk  1 22 milk bread  -1 
 8 hot_soup potatoes  -1 23  potatoes potatoes cereal  1 
 9 strawberries rotisserie  -1 24 potatoes cereal bread potatoes  1 
 10 hot_soup milk milk bread  -1 25 chicken potatoes eggs  -1 
 11 eggs strawberries hot_soup  -1 26 eggs rotisserie eggs  -1 
 12 hot_soup chicken eggs chicken  -1 27 milk rotisserie strawberries  -1 
 13 eggs eggs cereal  -1 28 strawberries hot_soup hot_soup cereal -1 
 14 eggs strawberries  1 29 chicken soda hot_soup  -1 
 15  soda cereal eggs  -1 30 rotisserie strawberries cereal milk  -1 
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Table 5. Weight Values 

 name color weight size firmness temp price type healthy 

 0.0 0.27 0.0 0.19 0.43 1.0 0.45 0.0 0.24 

 

The weight learning algorithm treats individual attributes as though the patterns formed 

by the attributes are linearly separable, and thus patterns in which it is necessary to create an 

intermediate attribute space cannot be detected using the current approach. These include any 

patterns, such as the complex XOR pattern, in which multiple attributes can be considered to 

combine to form new “meta-level” attributes that predict pattern classification. It is argued, 

though, that this limitation does not affect performance of the system as a whole, because many 

standard clustering algorithms (such as those used in this dissertation) require an initial fixed 

attribute space, prohibiting the dynamic addition of new attributes based on various 

combinations/permutations of the original attributes.  

Further validation of the weight-learning algorithm is performed by repeating the 

previously described test using multiple attributes (price and healthy) to partition the data. The 

clusters were created using the approach described in the next subsection, and Table 6 provides 

the three clusters obtained. This time, 20 random sets were generated and evaluated using the 

same evaluation rule (i.e., “do not mix grocery types”). Table 7 presents the results from two 

separate trials (each with 20 different random sets). While in each case the learned weights are 

only partially consistent with each other, the weights still identify significant attributes. This is 

shown by using both learned weight sets to re-cluster the data; using the same approach that 

created the initial clusters (Table 6). The new clusters are shown in Table 8. Even though the 

weights vary between trials, and do not identify only the attributes price and healthy, both final 

partitions are identical and only differ from the original by switching two groceries (shown in 

bold). This is a good example of the importance and appropriateness of experienced-based 

learning.  

 

Table 6. Classification Scheme Used to Reward Sets 

 Class Grocery 

 C1 soda, cereal 
 C2 milk, eggs, bread 
 C3 chicken, hot_soup, potatoes 
  strawberries, rotisserie 
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Table 7. Weight Values 

 name color weight size firmness temp price type healthy 

 Trial 1 0.0 0.37 0.0 0.22 0.61 0.15 0.71 0.0 1.0 
 Trial 2 0.0 0.39 0.35 0.60 0.97 0.57 0.31 0.75 1.0 

 

 

Table 8. Classification Using Learned Weights (Both Trials) 

 Class Grocery 

 C1 soda, cereal 
 C2 strawberries, eggs, bread 
 C3 chicken, hot_soup, potatoes 
  milk, rotisserie 

 

 

Implementation: Conceptual Clustering 

Once the attributes have been given symbolic labels and the appropriate weights have 

been determined, percepts are partitioned using a variation of the conceptual clustering algorithm 

COBWEB [Fisher, 1987]. COBWEB creates a hierarchical class partition, in which individual 

clusters are created to simultaneously maximize attribute predictability per cluster, while 

minimizing the total number of clusters. The output of the COBWEB algorithm is a hierarchical 

concept tree, such as the one shown in Figure 16, in which more general concepts are located 

higher in the tree.  

 

Figure 16. Example Concept Hierarchy for “Foods” 

 

Chicken Beef Pork Carrots Tomatoes Oranges Melons Grapes

“Fruits”“Vegetables”“Meats”

“Foods”
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The COBWEB algorithm begins with a single root node at the top of the tree. As new 

observations are incrementally added to the tree, these observations are filtered down from the 

root node to the leaf nodes by determining which nodes best predict the attributes for the new 

observation. At each node, the basic COBWEB algorithm considers four different operations: 

place the observation in the best child node (if there are child nodes below the current node), 

create a new child node, split the current node in two, or merge the two best nodes. To determine 

which operation to perform, each operation is assigned a utility value, known as Category Utility 

(CUk) [Gluck and Corter, 1985], that indicates the “usefulness” of performing that operation at 

node k. The standard equation for calculating CUk is shown in Equation (16).  
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Here, P(Ck) is the probability that an observation is a member of class Ck, P(Ai = Vij) is 

the probability that attribute Ai has value Vij over the set of observations, and P(Ai = Vij | Ck) is 

the conditional probability for that attribute-value pair over just the observations in class Ck. 

When the COBWEB algorithm considers each operation, it calculates that CUk as if that 

operation had been performed, and then selects the operation that results in the highest CUk. 

The modification of the COBWEB algorithm for this dissertation involves modifying the 

CUk equation to include the specific attribute weights previously determined. This ensures that 

the concepts created by COBWEB reflect goal-relevance. The modified CUk equation is shown 

in Equation (17), where ωi is the learned weight for attribute Ai.  
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Because the COBWEB algorithm creates a full concept hierarchy, which begins at a root 

node (representing all concepts) and eventually branches into leaf nodes (representing the most 

specific concepts) it is important to have a means of pruning the tree to identify those concepts 

that are the most significant. One technique to do this is to use the CUk value at each level of the 

hierarchy (descending from root to leaves) and prune branches below a certain threshold. 
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However, Biswas et al., [1995] note that as one descends from the root node to the leaf nodes, 

the values of CUk tend to initially increase before eventually decreasing towards the leaves. 

Therefore, Biswas, et al., [1995] suggests that rather than using a preset threshold, branches 

should be pruned at the level in which CUk begins to decrease. This is the method used to prune 

branches and create the final concepts in this research.  

 

Validation and Evaluation: Conceptual Clustering 

Using the weight values shown in Table 9, the modified COBWEB algorithm was used to 

cluster the 10 sample groceries. The resulting partitions are shown in Figure 5.8. Beside each 

concept node, the corresponding CUk value is displayed. Using the pruning technique adopted 

from Biswas, et al. [1995], the pruned concept tree is used to give the final concepts shown in 

Table 10. However, here the final concepts have been formed by pruning the partition tree at one 

step beyond the maximum CUk values. This is only done to better illustrate concept formation. 

Ordinarily, pruning on this tree would result in the three categories {C0, C1, C2}. 

 

Table 9. Weight Values 

 name color weight size firmness temp price type healthy 

 0.0 0.0 0.0 0.0 0.5 1.0 0.0 0.0 0.25 

 

 

Figure 17. Resulting Partition for Sample Groceries Using Weight Values (Table 9) 
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Table 10. Final Classification Scheme Using Pruned Tree 

 Class Grocery 

 C3 bread 
 C4 soda, cereal, potatoes 
 C1 rotisserie, hot_soup 
 C5 strawberries, eggs 
 C6 chicken, milk 

 

 

The COBWEB algorithm provides a simple and intuitive method for classifying 

groceries. Furthermore, given an understanding of which attributes are most relevant to the 

current task the modified CU equation enables the identification of more specific, goal-relevant 

classes. The final partitions are based on probabilistic measures, and can be used to both predict 

unknown attributes or to classify previously unseen groceries. A final test of the effectiveness of 

this technique is shown by using the pruned partition tree to classify a previously unseen grocery, 

oranges. The new grocery and the resulting classification are shown in Table 11.  

 

Table 11. Weight Values 

 Grocery Class 

 name color weight size firmness temp price type healthy  

 oranges ORANGE 64 504 hard 75 4.99 C3 YES C4 

 

 

Due to the structure of the CUk function, the COBWEB algorithm has a slight bias 

towards large classes (i.e., P(Ck)) [Fisher, 1987], and thus tends to create fewer concepts that 

incorporate more training instances at the expense of attribute predictability (i.e., P(Ai = Vij | 

Ck)). The final categories are still useful concepts, but often occur at lower points in the partition 

tree. In this case, the upper portion of the partition tree is reserved for very general concepts that 

are relatively few in number. However, this bias is acceptable when the goal is to quickly 

identify general classifications that predict task performance. The ultimate goal in this 

dissertation, with respect to the concept identification, is not to identify the best natural kinds for 

perceptual categorization, but to identify rough partitions that are statistically significant with 

respect to the current goal. Finally, because COBWEB is an incremental algorithm that performs 

a local hill-climbing search [Fisher, 1987], the final partitions are also sensitive to the initial 

order of the input. To alleviate this sensitivity, the Anchored Dissimilarity Order (ADO) 
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algorithm [Biswas, et al., 1995], is used to pre-order groceries before classification. The ADO 

algorithm selects the next instance for classification by maximizing distance between that 

instance and the previous N instances. In the ADO algorithm, the Hamming distance is used as 

the distance metric. 

 

Relational Mapping 

Once feature vectors have been created from the current state, these vectors must be used 

to retrieve the utility evaluations that guide the deliberation process. These evaluations are 

determined by matching each feature vector to internally generated and trained maps where each 

point on the map is associated with a different evaluation. The relational maps described here are 

implemented as a set of self-organized neural networks that average and retain the individual 

feature vectors that have been acquired through experience.  

The rational for using the self-organized map technique [Kohonen, 1988] [Kohonen and 

Somervuo, 1998] is based on the need to combine individual symbolic relations (i.e., feature 

vectors) into a map structure that facilitates organization and association, while linking the 

generalized relations to specific appraisals. Additionally, such an auto-associative relational 

technique is also supported by the psychology and neuroscience literature. Research indicates 

that encoding experience, typically human episodic memory, is based on the ability to auto-

associate different representations of salient, relevant features in the environment as well as the 

structural relations composed of those features [Burgess, et al., 2002] [Aggleton and Pearce, 

2002]. This research indicates that the hippocampus is a critical structure for memory formation 

and retrieval, and that this structure is highly implicated in performing relational pattern 

matching [Nadel and Moscovitch, 1997] [Morris, et al., 1990].  

Neural research on rats suggests that the ability to perform allocentric spatial processing 

is strongly tied to the ability to deploy prior experience for future tasks (often maze navigation, 

etc.) [Morris, et al., 1990] [Moser and Moser, 1998]. Such processing combines incoming 

perceptual information into spatial arrays (i.e., feature vectors) that reflect the important 

arrangements and patterns of information, as it exists in the environment. In humans, however, 

this representational ability is believed to extend beyond spatial patterns and include abstracted 

temporal, and sequential, patterns of stimuli [Aggleton and Pearce, 2002]. These representations 

act as “event codes”, or indexing schemes, to retrieve specific memories or activate specific 
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appraisals [Burgess, et al., 2002] [Marr, 1971]. Therefore, as the current situation is unfolding, 

relational representations are formed that both facilitate the encoding of that situation in long-

term memory as well as activate previously encoded representations, which can ultimately 

provide access to the various neocortical sites that have been implicated in the storage of long-

term, episodic memory [Burgess, et al., 2002]. 

Machine intelligence research that focuses on relational structures and self-organizing 

maps (SOMs) has been conducted by Provost, et al., [2006], who use self-organizing distinctive 

state abstractions (SODA) to learn high-level perceptual features that define distinctive states. 

High-level actions that traverse between distinct states are learned, and then policies are 

generated using the distinctive states and high-level actions. In addition, research by Martinez, et 

al., [1990], Sehad and Touzet [1994], and Smith [2002] also use SOMs to abstract state 

representations and learn general policies. Smith [2002] uses SOMs to provide discretized states 

and actions, which are then used to implement a standard Q-learning algorithm. One SOM is 

used to discretize the continuous input space, while a second SOM is used to form associations 

and representations of actions. The Q-values for all state-action pairs are updated when reward is 

received for individual sets. The amount of update is determined by the two neighborhood 

functions θs( ), and θa( ), for the state and action SOMS, respectively. Sehad and Touzet [1994] 

also use a SOM to implement reinforcement learning, however, their approach involves utilizing 

the SOM to optimally organize standard lookup tables. Sehad and Touzet [1994] only use 

numeric weight vectors, defined a priori, and store utility evaluations as a member of these 

vectors.  

There has been research by other groups related to the concept of creating relational maps 

to abstract and represent experience [Kawewong, et al., 2008] [Sudo, et al., 2007]. One such 

example uses Self-Organizing Incremental Neural Networks (SOINN) [Shen and Hasegawa, 

2005] to create basic common patterns and then, hierarchically, form associations between 

patterns in order to create more abstract pattern representations. Research by Strosslin, et al., 

[2005] uses recurrent networks to represent navigation information related to location and action. 

These networks are trained from experience using Hebbian learning [Hebb, 1949]. A method 

described by Kuipers, et al., [2004] uses the well-known, statistical-based SLAM technique 

[Thrun, et al., 2005] to derive local maps, while simultaneously developing hierarchical and 

topological representations between local map features and actions. However, each of these 
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techniques is primarily focused on localization and navigation of the external environment. The 

self-organizing, relational maps described here, focus on abstract goal-relevant situation 

representations in order to provide evaluations that ultimately guide search through the decision-

space. 

 

Input/Output 

The inputs to the relational maps are the symbolic feature vectors, fi
v, associated with si. 

The outputs are a vector of utility signals, ui, and a vector of confidence values, χχχχi, that indicate 

whether si should be approached/avoided, and how well fi
v matches the trained map, respectively. 

The vectors ui and χχχχi are appended onto the current state representation as part of the evaluation 

signals.  

 

Implementation: Self-Organizing Maps 

The importance of the relational map is that it generalizes and forms associations 

between different episodes (as well as the structural components within those episodes), 

maintains basic evaluative information, and if needed enables a constant-sized access cost to the 

tabular episodic memories. The specific technique used to implement these relational maps is the 

self-organizing map described by [Kohonen, 1988] and [Kohonen and Somervuo, 1998].  

A Self Organizing Map (SOM) is a multidimensional neural network that uses 

unsupervised learning to generate generalized and associative representations of the input space 

[Kohonen, 1988]. SOMs are composed of an interconnected set of vertices, vi, and each vertex 

has an associated weight vector wi that represents a complete instance, i.e. feature vector. During 

training, the weight vectors are collectively modified by individual training instances, and over 

time regions of the map self-organize into basic patterns that reflect the trends in the training 

data.  

To train a SOM, a distance function is used to match each training instance xi to the 

“nearest” vertex. Once vi has been determined all weight vectors in the map are updated using 

the update rule shown in Equation (18).  

 

wj = wj + θ(vi, vj, t)* α(t)*(xi – wj)         (18) 
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Here, θ(vi, vj, t) is a neighborhood function that determines the amount of update performed at 

node vj based on the distance between nodes vj and vi (note: θ(vi, vj, t) = 1.0 ∀i = j). The function 

α(t) is the learning rate, and both α(t) and θ(vi, vj, t) are designed to decay over time; a measure 

used to ensure convergence.  

Though frequently used for numeric data, SOMs are not restricted to such domains. The 

key to training a SOM is to have: 1) an appropriate distance function that is defined over the 

range and types of inputs, and 2) an update function that can modify the desired representation of 

wi. Research in Kohonen and Somervuo [1998] proposed the use of SOMs for symbol strings 

and detailed a method for averaging string representations (i.e., symbolic weight vectors). Their 

method used the Levenshtein (or edit) distance [Levenshtein, 1966] to determine the minimum 

number of insertions, deletions, or substitutions required to transform one string into another. 

Dynamic programming was used to find compute an “average” string using all nearest neighbor 

training instances defined by a discretized neighborhood function, θd(vi,vj, t). 

Self-organizing symbolic feature vectors is only one of the critical aspects of the required 

relational maps. It is also necessary to associate evaluative information (utility appraisals), with 

each individual relational instance, vi. Therefore, the method for training symbolic SOMs 

proposed by Kohonen and Somervuo [1998] has been extended to include additional numeric 

dimensions. The technique involves overlaying two SOMs (one symbolic and one numeric), but 

treating them (and training them) as a whole. A cross-sectional example is shown in Figure 18. 

Here, the numeric weight vector has two dimensions.  

 

 

Figure 18. Combined Symbolic and Numeric SOM 
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Training the hybrid SOM is accomplished by concatenating the feature vectors (from 

adjacent vertices) in order to compute an aggregate distance function to identify the nearest 

vertices for each training example. Once the appropriate vertices are found, the individual weight 

vectors are modified based on their respective counterparts in the current training instance. This 

allows both the symbolic map and the numeric map to be trained simultaneously. The aggregate 

distance function is shown in Equation (19), where Euclidean( ) indicates the standard Euclidian 

distance. The vector wi is now the concatenated weight vector with components ws
i and wn

i, the 

symbolic and numeric portions, respectively. Likewise, xi represents the individual training 

instances with symbolic and numeric portions, x
s
i and x

n
i. The values γs and γn are additional 

weights that allow preferential status to be assigned to either one of the individual distance 

functions. Finally, retrieval is based on matching an input vector to one, or both, of the maps. 

This is achieved by setting γs and γn appropriately (e.g., γn = 0 to match only using the symbolic 

map). 

 

Dist(wi, xi) = γs * EditDist(ws
i, x

s
i) + γn * Euclidean(wn

i, x
n

i)      (19) 

 

The trained SOM is used to provide the appraisal vector ui by matching the feature 

vectors fi
v to the symbolic SOM, and setting ui equal to the retrieved numeric vector wi

n. 

However, because the EditDist( ) function only returns discrete values it is often the case that 

multiple vertices are “similarly different”. For example, the symbol string “car” is equidistance 

from both “cat” and “bar”. Depending on the situation, either match may be acceptable but to 

eliminate random behavior and to ensure that the best matches are found, a distance matrix is 

calculated using the distance values for each vj ε V and then that matrix is smoothed by averaging 

across the N vertices nearest each vi. The distance matrix not only indicates those regions of the 

map that best match the input string, but also which specific vertices within those regions are 

closest to the input string. The distance to the nearest vertex, using the smoothed distance matrix, 

is returned along with the numeric evaluations stored at that vertex. The distance values for each 

component of ui are used to create the confidence vector χχχχi as shown in Equation (20), where d is 

the individual distance measure and D is the maximum allowable distance (i.e., the size of the 

largest stored feature vector). 
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D

d
ik −= 1χ          (20) 

 

Validation and Evaluation: Self-Organizing Maps 

To evaluate the SOM method for creating relational maps, five sample strings were 

generated and assigned numeric values (i.e., evaluations). Training was performed using five 

variations of each string in which 25% random noise had been injected (i.e., randomly replacing 

a symbol within the string, or replacing the numeric value of that string 25% of the time). The 

five sample strings, evaluations, and randomly generated strings are shown in Table 12. These 

data were used to train a SOM of size 15 x 15. The trained symbolic SOM is shown in Figure 19 

and the numeric SOM is shown in Figure 20. In Figure 20, learned numeric values are indicated 

by height. The lower right corner of the map (corresponding to the “neutral” region in Figure 19) 

is associated with evaluations of 0.0, the upper right corner (the “worst” region) is associated 

with the most negative evaluations, and the upper middle (the “best” region) is associated with 

the most positive evaluations. The close proximity of the “best” and “worst” regions is based on 

the syntactic similarity between the underlying symbol strings. Finally, the trained SOM is used 

to retrieve an evaluation for the string “blets”. The computed distance matrix is shown in Figure 

21, and the averaged evaluation from the best matching nodes is 1.99944. 

 

Table 12. Five Symbol/Evaluation Sets with 25% Random Noise 

 “worst” “bad” “neutral” “better” “best” 

 worsj -2 bad -1 neutall 0 bettei 1 best 2 
 worst -2 pay -1 ndutral 0 bntter 1 bjst 2 
 aorsr -2 bmd -2 neutbal 0 betcer 1 best 2 
 worsd -2 baq -2 seunral 0 bevler 1 bkzt 2 
 worst -2 bad -1  nputoah 0 bmtdhr 1 besj 2 
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Figure 19. Self-Organized Map of Symbol Strings 

 

 

Figure 20. Self-Organized Map of Size 15x15 for Numeric Evaluations 

 

 

Figure 21. Computed Distance Matrix Using Input String “blets” 
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Finally, this SOM technique is also used to represent broader situations as they form 

during the episode. Specifically, this includes a representation of the combined number and types 

of grocery bags present. However, in this research, rather than force the system to learn goal-

relevant attributes that define useful bag types, a single attribute is used to create these types: the 

number of groceries per bag. This choice is also based on the fact that there is a much smaller set 

of consistent attributes for grocery bags than for groceries. Using this attribute bag types are 

created, which are used to develop feature vector representations that incorporate more 

generalized knowledge of the current situation. 

So far, the methods to cognitively process and appraise relevance (fuzzy clustering and 

feature vector extraction) and utility (SOMs) have been described. Each method relies on a 

corpus of experience, in this case episodic memory, and learns the appropriate knowledge 

through offline processing. By themselves, these appraisals are sufficient to enable improved 

task performance with respect to the task-specific constraints. However, in addition to 

performing the task correctly, robots must also perform it in a timely manner (i.e., before 

conditions in the environment change) and, when failures occur, be able to identify which 

knowledge systems contributed to that failure. Therefore, the next two sections describe 

components that focus on evaluating system performance to improve deliberation time and 

enable fast commitment, as well as to provide a basic error signal that indicates which 

components are not performing correctly and thus which knowledge should not be trusted 

because further training is required. 

 

Urgency 

In this research, appraisals for urgency determine the amount of time allowed for 

deliberation as well as whether or not the current deliberation process should be interrupted. 

Interrupt signals are generated in response to actual and expected external conditions. Urgency 

appraisals made before deliberation begins are used to adaptively preset the decision-making 

parameters depth and breadth, and are inspired from the notion of contract and anytime 

algorithms described in Chapter III. Later appraisals (i.e., interrupts) are based on innate 

responses to external events, are used to halt deliberation in favor of rapid resource deployment, 

and are inspired by Sloman’s [2001] alarm mechanisms. The cognitive processes that enable 

these urgency appraisals are trained using offline simulation and rehearsal in order to form 
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relations between input states, deliberation time, search depth and breadth, and expected solution 

quality. These processes operate on previously acquired experience to create new internally-

generated experience that can then be matched to future situations. 

Internal rehearsal is a mental process that occurs in humans and enables people to 

simulate and practice specific behaviors without the need for physical action [Hesslow, 2002]. 

This type of mental simulation proceeds “as if” the person was actually performing the behavior 

and is a critical method by which humans learn. This ability has been accounted for in artificial 

systems with the work of Jirenhed, et al., [2001] and Erdemir, et al., [2008], as well as the 

architectural research of Shanahan [2006]. In the work of Jirenhed, et al., [2001] and Erdemir, et 

al., [2008] a robot uses an “internal world” to rehearse actions and to investigate the 

consequences of action. Within this internal world, the robot may either possess a model of the 

physical environment a priori, or be required to learn this model or features of the model through 

training. The latter is the case in the research conducted by Erdemir, et al. [2008], in which the 

robot is required to develop its own understanding of the physical world as well as its ability 

within the world; where the robot’s ability is dependent on the robot’s unknown physical 

morphology.  

Research by Shanahan [2006] takes an architectural approach to internal rehearsal and 

models a dual loop process in which routine behaviors are constantly produced in response to 

situations, and these behaviors proceed unabated unless interrupted by higher-order cognitive 

processes. These higher-order cognitive processes run in parallel to the routine behaviors, but 

perform mental simulation of each routine behavioral response before that response is executed 

[Shanahan, 2006]. This, however, assumes that the higher-order processes operate at a higher 

frequency than the routine behaviors; an assumption that provides a great deal of difficulty to 

system developers when applied to physical systems (i.e., robots), a point that has been noted in 

research by Hall [2007].  

Due to the limitation of the approaches described by Hall [2007], and later Ratanaswasd 

[2008] (in which rehearsal must be performed after the system receives a command but before it 

executes an action) in this dissertation the rehearsal process is designed as an offline processing 

tool. This is similar to the approach used by Erdemir, et al., [2008] where rehearsal is performed 

offline and used to develop relational knowledge that can later be deployed online in a time-

efficient manner. First, the robot is allowed to sample its past experience in order to develop a 
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basic state transition model. This model is used when the robot needs to predict specific changes 

in the external environment. Second, using basic knowledge about the expected effects of each 

action the robot mentally simulates its performance on the task, and then self-evaluates its 

performance on the internally-generated experience using the most recently learned appraisals. 

The self-evaluation enables the robot, over time, to develop a “sense” of how its performance 

should be expected to vary by both situation and deliberation time. While it should be 

acknowledged that the learned relevance and utility appraisals may not always reflect the true 

appropriateness of the robot’s actions, it is argued that regardless of accuracy these mechanisms 

are those that will be used at the next decision-cycle and thus internal rehearsal can, at the very 

least, is a form of offline pre-processing in which the robot practices explores its ability to 

appreciate how much computational “effort” should later be applied during actual tasks. 

Furthermore, this type of internal rehearsal has a bias towards optimistic evaluations of 

system performance and ability. This is due to the fact that the relevance and utility appraisals 

are trained using the same experience that is later used for rehearsal (i.e., the system is trained 

and tested on the same set). While this is a fundamental bias inherent in internal rehearsal, it is 

also an acceptable bias for this research because, in the worst case, such a bias can only cause 

errors on the task, which then provide new experience to learn from and thus the system’s niche 

is ultimately expanded.  

 

Input/Output 

The inputs required for the urgency appraisals are the current state si and the feature 

vectors fi
v. From these inputs, the system estimates the allowable deliberation time ti

a, the 

expected solution quality qi
e, the expected deliberation time ti

e, and the search parameters 

necessary to achieve these estimates. If deliberation has already begun, the interrupt signal ii is 

generated as needed. Each of the urgency appraisals is appended onto the current state 

representation within the evaluation signals.  

 

Implementation: Bayesian Networks 

Two methods are used to appraise urgency. The first method employs a Bayesian 

network to predict the amount of time until a significant change in si occurs. Significant changes 

are defined as those changes that remove action possibilities or reduce actions likelihoods. The 
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specific significant changes used in this research are described in Chapter VI. To identify 

significant changes, the Bayesian networks determine the probability distributions over all 

possible future states si’ ε S, given si.  

Bayesian networks enable probabilistic reasoning through the application of Bayes’ Rule. 

These networks use probabilistic models to relate observable “evidence” variables to 

unobservable “hidden” variables, and to describe the likelihood of state transitions given 

estimations of the previous states. The probabilistic models are often either preset or learned 

from observations. There are two basic models used by Bayesian networks. One model retains 

the transition probabilities between hidden variables in different states (typically successive 

states). The other model retains the probabilities associated with observing each evidence 

variable, given knowledge of the hidden variables.  

To make predictions with Bayesian networks, it is only necessary to know the transition 

model between states. In this research, state transitions are assumed to be 1st order Markov 

processes (Chapter III), and thus the current state distributions are only dependent on the 

previous states and not the entire history of states. The training data is comprised of states in 

which all variables are known and have been sampled from the environment at a rate of 1 Hz. 

The rational for this sampling rate is to alleviate the computational cost associated with more 

precise predictions by limiting prediction precision to a range more appropriate for the physical 

system used in this research. Furthermore, in order for the continuous environment to be 

representable within the Bayesian network, the environment must be discretized, which also 

reduces the need for more precise measurements. Finally, this sampling rate enables the time 

measurements to be made based on the number of prediction steps until a minimum threshold is 

reached on state likelihood.  

 

Validation and Evaluation: Bayesian Networks 

To evaluate this component, groceries were placed at random on a simulated, moving 

conveyor belt. The continuous state space (i.e., the two dimensional locations on the conveyor 

belt) was discretized into 16 bins. Two additional bins were also added to represent the position 

of groceries that were no longer on the conveyor belt. The bin labels are shown in Figure 22. The 

speed of the conveyor was set to 0.033 m/s. Groceries were placed on the conveyor, sample data 
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was generated, and the transition model was trained. Figure 23 presents the trained transition 

model.  

For this evaluation, significant changes were defined to be “groceries falling off the end 

of the conveyor”. Given that a grocery was initially placed at the beginning of the belt, Figure 24 

shows the probability estimates for that grocery’s predicted position at times t = {5, 20, 40, 46} 

seconds. At time, t = 46 seconds the grocery falls off of the conveyor. At this time, the Bayesian 

network predicts that the grocery is in bin 9 (not on the conveyor) with probability 0.71. 

 

 

Figure 22. Dimensions and Bin Distribution for Conveyor Belt 

 

 

Figure 23. Learned Transition Model, i.e., P(Bini | Bini-1) 
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Figure 24. Grocery Distribution at t = {5, 20, 40, 46} Seconds 

 

Implementation: Performance Profiles 

The second technique used to appraise urgency requires that the system learn 

performance profiles [Zilberstein, 1996] to represent relationships between input state, specific 

decision-making parameters, deliberation time, and solution quality. The performance profiles 

are generated through offline, internal rehearsal, and require that the system possess some level 

of domain knowledge (i.e., relevance and utility). As the domain knowledge improves, the 

performance profiles become more useful in reducing deliberation time while preserving solution 

quality. The learned profiles enable the system to estimate how “good” it can expect to do, given 

the situation. The profiles also enable estimates of deliberation time, given both the current 

situation and different decision-making parameters. The format used to store performance 

profiles is shown in Table 13.  

 
 

Table 13. Storing Performance Profiles 
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Once the system has learned to appraise relevance and utility, episodes and states are 

randomly selected and rehearsed (offline) using the learned knowledge. In other words, the 

system re-evaluates its past experience, in light of the new knowledge, and forms new plans “as 

if” the previous situations were actually occurring (again). During the rehearsal process, the 

system uses the stored state information to create new feature vectors (using relevance 

appraisals), selectively explores different search parameters d and b, prioritizes responses (using 

utility appraisals), and selects actions. For each situation and pair of search parameters, the 

system records the time required for deliberation as well as the solution quality obtained during 

goal accomplishment, and uses this information to estimate the expected solution quality and 

deliberation time for future situations. The solution quality is taken as the total sum of rewards 

and cost from the current state to the goal state. The result is internally-generated experience, 

that can be stored and that enables extraction of the performance profiles.  

During online task performance each set of feature vectors is matched to the data stored 

in the performance profiles, and the N best matches are returned. The matches are first pruned by 

removing all instances in which the expected deliberation time exceeds the allowable 

deliberation time: ti
e > ti

a. Next, the “best” match is selected from the remaining set by 

maximizing Equation (21). In this equation, the parameter ξ is used because qi does not grow at 

the same rate as ti
a. Empirical tests suggested a value of ξ = 2.0. Finally, the best match is used to 

set the search parameters d and b.  

 

a

i

i

t

q
ξ

          (21) 

 
 

Validation and Evaluation: Performance Profiles 

Proper evaluation of this approach requires that all of the implemented components have 

been integrated, trained, and used to internally rehearse past experience. Therefore, initial 

validation of this component is based on the knowledge that performance profiles are known to 

capture the type of performance-based information required by this research [Zilberstein, 1996] 

[Zilberstein and Russell, 1995]. Furthermore, accessing each training instance is performed using 

the feature vector matching techniques that have already been discussed in the section Relational 

Mapping. Filtering the remaining instances (Equation 21), is a simple, greedy search that 
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accounts for all three important measures: solution quality, deliberation time, and similarity 

between the current situation and past experience. Final validation of this technique is deferred 

until Chapter VI.  

 

Fit 

The system developed in this dissertation has multiple, integrated components that each 

require individual training. The components are connected in an incremental fashion, and the 

learning required to train each component is critically dependent on the output of the previous 

(trained) component. Therefore, if any component is improperly trained, system performance, as 

a whole, will suffer. The final appraisal implemented in this research, focuses on using feedback 

signals, coupled with the expected performance measures provided by ui and χχχχi, to identify those 

components that may be underperforming and require further training. This appraisal is based on 

the notion of a degree-of-fit between the system’s current knowledge and the situations and tasks 

that are encountered. This appraisal is not a primary focus of the current research, and it is not 

within the scope of this research to investigate how the system should best use this knowledge to 

decrease errors, however, the appraisal for fit is included for completeness with the respect to the 

discussions of Chapter IV, and to open the investigation on whether such self-evaluative 

information can be extracted using knowledge of the other appraisals processes. In other words, 

can the system develop basic appraisals about its appraisals? Ultimately this knowledge would 

be most useful for designers and engineers when evaluating the performance of a system 

composed of the types of emotion-based processes implemented in this work.   

 

Input/Output 

The inputs required to determine fit evaluations are the current state si and the feature 

vectors fi
v. In addition, the expected utility appraisals and confidence values from the previous 

state are required, ui-1 and χi-1. Using these inputs, a vector of ongoing fit appraisals, φφφφi, is 

updated and appended onto the current state representation. 

 

Implementation 

The method to evaluate fit requires that the system receive feedback during task 

performance. It is preferable that feedback be received immediately after the execution of an 



89 

action, and in many systems this is the case. However, in this dissertation it is not necessary to 

make this assumption. Fit can be evaluated whenever feedback (reward) is received, but it is 

necessary that each feedback signal be attributed to a specific portion of the environment. In 

other words, the system must know what aspect of the current situation corresponds to each 

feedback signal. As external evaluations are received, a feedback matrix ϑ is created. The 

dimensions of ϑ are n x m, where n is the number of constraints/dimensions to evaluate and m is 

the number of components that have been evaluated. This notation differs slightly from that used 

up to this point; thus far, the appraisals ui and χχχχi have been described as vectors of length n 

because it has been assumed that between each pair of states only one action has been performed, 

and therefore appraisals are only needed that refer to the state component affected by that action. 

For fit appraisals, this notation is extended because evaluations need not be received immediately 

after an action has been performed it is necessary to incorporate the appraisals for all portions of 

the current state. The matrices U and Χ are used instead of the vectors u and χχχχ, and both matrices 

have the same dimension as ϑ.  

Using the matrices U and ϑ an error matrix E is calculated that reflects pure difference 

between the learned utility appraisals and the external evaluations. The calculation of E is shown 

in Equation (22). In this equation the confidence matrix Χ is not used to determine appraisal 

error, because the confidence values are used in the later calculations for the individual fit 

appraisals. 

The fit vector φφφφ = [φ1
c φ1

m φ1
p φ2

c φ2
m φ2

p … φn
c φn

m φn
p]T is calculated using the matrix E 

and Χ. Each component of φφφφ corresponds to a different component/appraisal combination to 

which blame/credit can be potentially applied. Each φc corresponds to a fit appraisal of the goal-

relevant classifications, each φm corresponds to a fit appraisal of the trained relational maps, and 

each φm corresponds to a fit appraisal for the planning algorithm (described in the next section). 

These values are trained using a specific update rule described by Equations (23-25), 

respectively, where each rule is repeated for all values of k.  

 

E = ϑ - U         (22) 

 

φj
c = φj

c
 + α * Χjk * ( Fc(Ejk) - φj

c)      (23) 
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φj
c = φj

c
 + α * (1.0 - Χjk) * ( 1.0 - φj

m) * Fm(Ejk)  

 + α * Χjk * ( 0.0 - φj
m) * ( 1.0 – Fm(Ejk))    (24) 

 

φj
p = φj

p
 + α * Χjk * ( Fp(Ejk) - φj

p)      (25) 

 

In each equation, the term F(Ejk) is used to provide the target value for the weight update 

rule. The maximum value of any Ejk is confined to the range [-2, 2], because each utility 

appraisal can have a value between [-1, 1]. The function F(Ejk) maps this continuous value to 

either 0/1. If the target is 0, then the specific component either performed correctly or should not 

be blamed for the error. If the target is 1, then that component performed incorrectly and should 

share a portion of the blame for each mistake.  

The degree to which each component should receive credit for an error (or be 

complimented for a success) is determined primarily by the confidence value Χjk. When Χjk is 

high, then the relational map is confident in its appraisal of the current situation. If an error 

occurred, it is (most likely) due to either the goal-relevant feature vectors misrepresenting the 

current situation, or the planning algorithm choosing a path that should not have been chosen. If 

the absolute value of Ejk is greater than 1, then the expected utility evaluation and the final 

external evaluation were of opposite sign, and the error is most likely due to the goal-relevant 

feature vectors misclassifying the current situation. For example, a dangerous situation has been 

represented, through clustering and data compression, as similar to a previous good situation, and 

thus the system has failed to separate these situations. If, however, the absolute value of Ejk is 

less than 1, then the system knew the correct answer (i.e., the final evaluation and the internal 

evaluation shared the same sign), but pursued an incorrect course of action anyways. Reasons 

why this may occur are discussed in Chapter VI.  

The above explanations cover Equations (23) and (25). Explanation of Equation (24) is 

provided by noting that when confidence is low, errors are most likely due to insufficient 

experience contained in the relational map or incorrect generalization within the relational map. 

The degree with which the map should then be blamed for any errors is proportional to the size 

of those errors. If confidence is high, however, then the relational map should receive credit for 

any success in proportion the “lack of errors” present in the utility appraisals. Finally, in each of 
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the equations just described, the value of α is used to reduce the credit/blame assignment based 

on the amount of risk taken by the system. The rational is that in risky situations, the system is 

less likely to know the correct response and thus credit/blame should be reduced accordingly.  

 

Validation and Evaluation 

The process of developing fit appraisals requires an integrated system that performs 

actions and receives feedback/reward for those actions, while simultaneously forming 

expectations of its own performance. Thus initial validation focuses on the equations for 

determining the individual fit appraisals. The general form for the update equations is derived 

from the well-known regression techniques used to learn basic patterns [Mitchell, 1997] [Witten, 

2000]. However, these equations have been slightly modified to reflect the specifics of the 

current system. The standard learning rate has been replaced by “risk” factor that reduces the 

amount of update in risky situations.  In addition, the confidence Χjk is used to mediate which 

component receives credit/blame, while the error Ejk is used to determine whether credit or blame 

is appropriate and how much should be given. This is intuitively based on knowledge of the 

underlying system and the fact that the value Χjk reflects a measure of fit between the situation 

and the current knowledge structures, while the value Ejk dictates whether the fit was good or 

bad. Experimental validation of this component is deferred until Chapter VI.  

 

Planning 

The planning algorithm performs a depth-first search through the current decision space. 

The retrieved evaluations from the relational maps are used to order potential responses from 

best to worst. The breadth search parameter is used to keep the b best responses, and to prune the 

rest. At each planning step the best response is chosen, the state resulting from application of that 

response is expanded and then used as the input for the next decision-cycle. Once the maximum 

search depth has been exceeded, or there are no more states to expand, the algorithm returns to 

the previous depth and expands the next best state. The current best plan is maintained in the 

form of a policy over the current search window. If an interrupt signal is generated, or planning 

must be stopped, the best plan is returned and used to execute actions. 
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Input/Output 

The input to the planning algorithm is the current state si, coupled with utility appraisals 

ui, confidence measures χχχχi, search depth d, search breadth b, and any interrupt signals ii. The 

output of the planning algorithm is the current best, local policy πL, and the next state si’ to be 

expanded. Here si’ is used to denote successive states in the planning process, while si+1 is 

reserved for the state that results from the chosen action.  

 

Implementation 

The planning algorithm implements a depth-first search through the decision space, S. At 

each step of the search, the state with the highest priority is selected and expanded. Expanded 

states are passed back to the beginning of the decision-cycle, where they are assigned feature 

vectors and appraised with respect to the current goals. The appraisals are then used to determine 

the new state’s priority, which ultimately determines when (and if) that state is expanded. The 

depth and breadth parameters (d and b) are used to constrain the search to a local window around 

si. If the search depth exceeds d, or there are no further states to expand, the algorithm backs up 

to the previous depth in which states still remain to be expanded. During the search process, only 

the b best states are considered for expansion, the remaining states are pruned from the search. 

As states are expanded, the evaluations of those states are used to update a local policy πL, 

defined over S. If an interrupt signal i is generated, planning is stopped and πL is used to 

determine the response. The current planning algorithm is not a true anytime algorithm due to the 

fact that it is only capable of a fixed, one-step lookahead, and thus solution quality may not be a 

strict, montonically increasing function of deliberation time. However, as experience increases 

and the trained components (i.e., goal-relevant classifications and relational maps) improve, it is 

expected that the planning algorithm should begin to approximate this standard anytime 

property. Pseudo-code for the recursive portion of the Plan component is shown in Figure 25.  

 



93 

 

Figure 25. Pseudo-code for the Recursive Plan( ) Algorithm 

 

At each iteration, the current state that should be evaluated and expanded is passed into 

the Plan( ) algorithm. The various appraisals are treated as variables that can be requested and 

filled in as necessary. The relevance and utility appraisals, which are contained in the current 

feature vectors and the vectors uj and χχχχj, are locally requested for each state as it is encountered 

during the planning process. The urgency appraisals {d, b, ii}, however, are considered functions 

of the external state and not the internal search process, and therefore these inputs are generated 

by the external state and are not products of the search through S.  

The first step in the Plan( ) algorithm is to determine the set of possible actions Ai that 

can be performed in response to si. This is done using the PossibleActions( ) function. Next, Ai is 

used by the function SuccessorStates( ) to determine the set of possible successor states S’ that 

would result from applying each action aj ∈ Ai to si. The algorithm then determines whether it 

should backup to the previous planning step, or continue forward. Three different checks are 

made when determining whether or not to proceed. The algorithm checks whether the maximum 

depth d has been exceeded. If the current depth is greater than d, the search is backed up to the 

previous search step. The algorithm checks the set of successor states, S’. If S’ is empty, then 

Plan(si)

Ai = PossibleActions(si)

S’ = PossibleSuccessors(si, Ai)

if(current_depth > d or  Empty(S’)  or  Interrupt( ) )

return 0

else
For each sj є S’

{ui, χ i} = AppraiseUtility(sj)

ρi = SetPriority(ui, χ i)

Order(S’)

Prune(S’, b)

current_max = -θ
For each sj є S’

ρj = ρj + Factors(aj) * Plan(sj)

if(ρj > current_max)

UpdatePolicy(π L, si, aj)

current_max = ρj

return current_max
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there are no actions that can be performed and planning is not required in this step. Finally, the 

algorithm checks for any pending interrupts to the deliberation process. This last check is 

performed using the Interrupt( ) function. 

The Interrupt( ) function polls the cognitive processes that appraise urgency and check 

for significant changes in si. If a significant change has occurred the interrupt signal ii is 

generated and deliberation is stopped so that an action may be performed. If the system selects to 

continue deliberation, then the algorithm assigns priority values, ρj, to each of the possible 

successor states within S’. This requires appraising each sj ε S’ with respect to the current goals. 

The values uj and χχχχj are determined using the trained relational maps. The priority values then 

determine when, and if, sj should be expanded. To determine ρj a multi-dimensional reward 

signal is calculated as shown in Equation (26).  

 

evalj = χχχχj * uj         (26) 

 

The priority for each state sj ε S’ is determined by taking the Euclidean distance between 

evalj and the preset vector, ψψψψ, that represents the highest values obtainable for each evaljk. The 

calculation of ρj is shown in Equation (27).  
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jkjkj eval ψρ        (27) 

 

Once each sj has been given a priority value, the Order( ) function arranges S’ from 

highest priority to lowest priority, to ensure that the highest priority states are expanded first. The 

states with the lowest priority are pruned using the Prune( ) function. As each remaining sj is 

searched, the priority value is modified by adding the weighted sum of the best ρj’ reachable 

from sj. During the search, if a successor state with higher priority is found, the function 

RevisePlan( ) is used to update the policy πL.  
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Validation and Evaluation 

Experimental validation of the planning component is deferred until Chapter VI, due to 

the fact that this component requires an integrated system in order to be tested. However, it is 

still appropriate to discuss the rational for this component’s design. As it has been discussed 

throughout this dissertation, robotic decision making must be sensitive to real-world constraints, 

such as deliberation time and interruption. In addition, rarely are complex environments 

encountered in which optimization along a single dimension is sufficient for optimal 

performance. Therefore, the planning algorithm used by robot operating in a complex 

environment must be capable of exhibiting anytime-like properties, even when knowledge of the 

world is insufficient and incomplete.  

The implemented planning algorithm must also be designed to appropriately utilize the 

various appraisals provided to it, which may extend beyond utility measures, towards adaptive 

parameter tuning, interrupts, and relevance detection. In the current planning algorithm, 

relevance is captured through the creation of goal-relevant feature vectors that facilitate access 

and retrieval from stored relational maps. Utility is used to arbitrate between response options. In 

this approach, the learned utility appraisals enable intelligent decision making, however, these 

appraisals are modulated not by the likelihood of occurrence, but by their current goal 

significance and the degree to which they match (i.e., confidently believed to applicable in) the 

current situation. Urgency appraisals enable the system balance fast commitment against 

deliberation, as well as to interrupt deliberation when necessary. The planning algorithm can be 

adaptively tuned using the parameters depth and breadth, which facilitates deliberation that 

respects the potential time-critical nature of different tasks. In addition, because the planning 

algorithm maintains the current best plan, in the form of a local policy, deliberation can be 

interrupted at any time; a property that facilitates real-time reaction. Finally, though fit is not 

explicitly incorporated into the planning process, maintaining a local policy is useful when 

retrospectively evaluating performance. It is argued here, and shown through comprehensive 

results in Chapter VI, that the implemented planning algorithm utilizes each appraisal to 

adaptively improve performance and generate more cognitive behavior.   
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System Integration 

A lot of material (components, equations, and algorithms) has been presented in this 

chapter. This is necessary to truly investigate the types of emotion-based, cognitive processing 

that might be applicable to robots. The appraisals that facilitate the development of emotional 

states are not standalone evaluations, but rather a collection of cognitive processes that together 

enable appropriate, adaptive behavior. Urgency appraisals can only mediate deliberation if the 

system has basic knowledge of its own performance abilities, and such knowledge is intricately 

related to situation-based expectations and predictions of utility. Interpreting utility requires that 

relevant features of the situation be detected. Therefore in new situations, an adaptable system 

must (at minimum) be able to appraise what is relevant in that situation, determine the utility of 

individual responses, and be able to adjust its own deliberation time as dictated by its goals and 

the situation. With this collection of appraisals, comes the need to evaluate the amount of fit 

between each learned component and the new situation. Though it is beyond the scope of this 

work, this final appraisal could be used to allow more global adjustments to be made that impact 

the nature of the individual relevance, utility, and urgency appraisals. In this research, fit is only 

used to identify “problematic” components.  

The behavior produced by a complex system with the ability to appraise relevance, 

utility, urgency, and fit is rarely optimal, but it should also be equally rarely disastrous (see 

Chapter IV). Instead, the behavior induced by the concerted influence of emotion-based 

appraisals is often simply sufficient. Proper investigation of how these appraisals may be derived 

and utilized to impact behavior requires an understanding of each appraisal’s architectural role 

within the cognitive control process. It is argued that the control system that has been described 

throughout this chapter is ideally suited for integration within a complex, cognitive architecture, 

such as the ISAC architecture. The control system requires a buffer for perceptual and state 

information. This is closely related to the ideas of short-term and working memory in the ISAC 

architecture. In addition, the creation of goal-relevant dynamic representations (i.e., feature 

vectors) is fundamentally linked to relevance appraisals and can be compared to some of the 

functions assigned to ISAC’s Working Memory System. In this context, working memory must 

interact closely with the current goals to appropriately filter and process incoming stimuli. The 

control system utilizes utility to prioritize responses, make predictions, and recursively generate 

plans. Higher-order control systems (e.g., those for urgency and fit) also mediate the planning 
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process. In the ISAC architecture, this functionality is captured in the Executive Control Agent, 

where planning is performed by the CEA, predictions and evaluations are performed by the IRS 

(interacting with the Relational Maps), mediation of the decision cycle is accomplished by the 

Affect Agent, and error-tracking is performed by the combination of the Goals Agent, WMS, and 

IRS. A graphical representation of how the current control system integrates with the ISAC 

architecture is shown in Figures 26.  

 

 

Figure 26. Revised View of Implemented Control System
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CHAPTER VI 

 

EXPERIMENTAL DESIGN, RESULTS, AND DISCUSSION 

 

Experimental Hypothesis and Assumptions 

The implemented control system is designed to use multiple levels of cognitive 

processing to derive (from experience) appraisals that usefully and adaptively guide decision 

making. To test and evaluate this system, experiments are needed that require the system to 

identify what is relevant in the current situation, assign utility as appropriate, manage 

deliberation time when urgent action is required, and evaluate the level of fit between the current 

knowledge structures and the situation. In addition, the designed experiments should require the 

satisfaction of multiple, simultaneous concerns, in order to stress the system’s ability to use its 

appraisals to perform balanced decision making. Finally, the experiment must enable specific 

evaluation of how well the system: 

1. Learns domain knowledge and is able to deploy that knowledge for improved task 

performance. 

2. Learns goal-relevant classifications that can be used to create useful feature vectors that 

capture significant aspects of the situation.  

3. Improves on the task with experience derived from both random exploration and planned 

exploitation. 

4. Uses the learned domain knowledge to develop appreciations of its own performance 

ability, including deliberation time and solution quality. 

5. Deploys the acquired performance-based knowledge to reduce deliberation time without 

sacrificing solution quality.  

6. Identifies components that are not performing well, and require further training.  

 

During each experiment, it will be necessary for the system to learn to correctly appraise 

each situation along multiple dimensions in order to appropriately balance behavior selection. No 

single constraint will be given a priori the status “more important”, therefore while the system 

attempts to balance behavior selection, there will be no preset constraints on how such balance is 

achieved. This should cause the system to select which constraints it deems to be more 
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important, using some criteria. Furthermore, because many of the algorithms used to implement 

the system are unsupervised, system performance may exhibit oscillatory behavior while 

simultaneously observing an underlying trend, e.g., improvement or non-improvement. This 

should cause the standard performance curves to look oscillatory and, at times, erratic. In 

addition, due to the fact that behaviors are preferentially ordered using a one-step lookahead, as 

the accuracy of the relational maps increases the system’s initial reactions will become more 

accurate. This increase in accuracy should result in the system requiring less time to obtain an 

appropriate solution, which will improve performance when appraising urgency and mediating 

the deliberation cycle.  

Finally, because the system is, by design, an experiential learner, aspects of the behavior 

may demonstrate sensitivity to the type of experience encountered as well as the underlying 

distributions from which that experience is drawn. In other words, increasing experience may 

cause the system to become temporarily trapped in a local niche. Within the niche, performance 

should be very accurate, but near the fringes of the niche performance should decrease. The 

location of this niche determines, in part, the type of new experiences acquired by the system 

(i.e., it will begin to take different paths through the decision space). The new experience should 

expand the niche as well as, possibly, shift the location of the niche. Therefore, the system 

should improve performance while simultaneously choosing more difficult situations. Each of 

the issues just listed are hypotheses on system performance, and are more formally listed as 

follows: 

1. The system should learn to balance multiple constraints, and in so doing, to select the 

most important constraints as a function of the statistical processing of its own 

experience. 

2. The unsupervised learning performed by the system should cause performance to 

oscillate, but this oscillation should be centered about a specific trend (i.e., improving 

performance). 

3. With increased training, the system’s initial appraisals of a situation will prove to be 

more correct, and thus it will be easier to mediate decision making with respect to 

deliberation time, which will improve performance on urgency appraisals. 
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4. The learned appraisals will be sensitive to the experience used to train the system, and as 

performance improves the system will (through its improved decision making) encounter 

more difficult situations, which will act to counterbalance the improved performance.  

 

Overview of Grocery Bagging: Experimental Layout 

The experiment used to test the implemented control system is designed based on the 

“everyday” task of bagging groceries. In this grocery-bagging experiment, the robot is situated at 

the end of a conveyor belt and must successfully bag all groceries that appear on the belt. To the 

left and right (and within the robot’s workspace) are tables upon which boxes (grocery bags) are 

placed. As groceries are deposited in front of the robot, the robot must place each grocery in a 

bag, and in so doing, observe certain constraints. The experimental layout is shown in Figure 27.  

 

 

Figure 27. Experimental Layout for Grocery Bagging (Developed by Huan Tan) 

 

While bagging groceries, three constraints must be observed to ensure success. These 

constraints are: 

1. Do not destroy any groceries (e.g., “crush bread with potatoes”, “break eggs with milk”, 

“mix hot and cold items”). 

2. Do not overload a bag (e.g., “20 lbs of groceries in a single bag”). 

3. Do not use too many bags (e.g., “10 groceries and 10 bags”). 

 

An external critic determines whether or not the robot has successfully adhered to these 

constraints, and provides reward based on this determination. The specific evaluation functions 

used within the critic are listed in section Overview and Description of Simulation Experiments.  
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Hardware 

The hardware platform used for this experiment is the ISAC humanoid robot, shown in 

Figure 28 [Kawamura, et al., 2008]. ISAC has two 6 Degree-of-Freedom (DOF) arms, powered 

by pneumatic air muscles. Proprioceptive sensors attached to each arm joint enable feedback 

control of ISAC’s arms. Attached to each arm is a two-fingered, “pincher” gripper that enables 

ISAC to grasp simple objects. ISAC has two microphones for sound detection, and a stereovision 

head for visual localization and tracking. There are no proprioceptive sensors attached to the 

stereovision head; rather four stepper motors are used to enable open-loop pan/tilt control for 

each camera. 

 

Figure 28. ISAC Humanoid Robot [Kawamura, et al., 2008] 

 

For the grocery-bagging experiment, two stationary, additional cameras are used to 

increase the range of ISAC’s visual tracking system, and to “free up” the stereovision system for 

more specific tracking (e.g., tracking the current grocery to be grasped). These cameras are 

mounted above the conveyor belt and provide estimates of each grocery’s position on the belt. 

Both of the additional cameras are generic, USB webcams.  

The conveyor belt used for these experiments is a modified treadmill in which the control 

console has been replaced with a computer control program connected via a standard 25-pin 

parallel port. Using the computer controller, ISAC can start/stop the conveyor as needed, 

however, for these experiments ISAC is not able to further vary the speed of the conveyor. A 

collection bin is located at the end of the conveyor belt to collect groceries that have not yet been 

bagged. Finally, the entire conveyor-bin-camera system is raised off the ground, in order for 

ISAC to be able to reach groceries on the belt. The conveyor-bin-camera system is shown in 

Figure 29.  
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Figure 29. Conveyor-Bin-Camera System 

 

Groceries 

As described in Chapter V, each grocery has nine different attributes, which are either 

symbolic or numeric. A total of 50 groceries are used for this experiment, and are listed in Table 

14, however, during experimentation the complete set of groceries will be divided into different 

subsets for training and testing purposes. These subsets are presented, when appropriate, later in 

this chapter. 

Testing and evaluating cognitive robotic systems on a task such as grocery bagging is 

difficult because the robot’s morphology and physical constraints often limit the possible 

scenarios that can be used for experimentation. Thus simulation analysis is critical for system 

evaluation, but ultimately final testing must also involve the type of real-world scenarios that the 

robot may potentially encounter. This, however, includes the type of scaffolded simple problems 

used in much of modern robotics research. To this end, the groceries used for this dissertation are 

brightly colored objects that have been designed to be perceived easily and to afford grasping as 

defined by ISAC’s physical attributes. In addition, while the colors listed with the attributes for 

each grocery are based on measurements of real groceries, the colors used for grocery detection 

have been chosen to make detection easier and, therefore, do not necessarily correspond to the 

original attributes. Loosening this restriction alleviates pressure on the Perceptual Agents by 

allowing them to associate single colors with objects, and not requiring them to simultaneously 

track multiple objects of the same color (e.g., soda, granola, and frozen_pizza). A small handle is 

also attached to each grocery to improve its graspability.  
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Table 14. Groceries and Attributes 

 name color weight (oz) size (in3) firmness temp.(Fo) price ($) type healthy 

 granola RED 10 48 hard 75 2.29 T1 YES      
 tissue WHITE 8 252 soft 75 1.45 T7 NA       
 soda RED 64 294 hard 75 1.50 T6 NO       
 ice_cream BLUE 22.56 70 hard 32 2.99 T4 YES      
 frozen_pizza RED 10.5 81 hard 32 1.25 T1 NO       
 chicken PINK 24 108 hard 32 3.05 T5 YES      
 milk WHITE 68.8 160 hard 45 1.67 T4 YES      
 cereal BLUE 17 227.5 hard 75 3.15 T1 NO       
 oranges ORANGE 64 504 hard 75 4.29 T3 YES      
 potatoes BROWN 80 504 hard 75 3.99 T2 YES      
 strawberries MAGENTA 16 140 soft 55 2.30 T3 YES      
 bread BROWN 16 325 soft 75 0.89 T1 YES      
 rotisserie BROWN 32 160 hard 150 7.99 T5 YES      
 eggs YELLOW 24 144 soft 45 1.59 T5 YES      
 hot_soup WHITE 12 48 hard 175 3.50 T2 YES      
 chips YELLOW 12 378 soft 75 2.68 T6 NO       
 yogurt BLUE 24 75 hard 45 1.59 T4 YES      
 cookie_dough YELLOW 16 31.5 soft 75 2.50 T6 NO       
 frozen_fruit BLUE 48 180 hard 32 7.00 T3 YES      
 waffles YELLOW 12 121.5 hard 32 2.79 T1 YES      
 frozen_vegetables WHITE 16 96 hard 32 1.19 T2 YES      
 cheese PURPLE 8 45 soft 45 2.49 T4 YES      
 ketchup RED 32 84 hard 75 1.58 T2 YES      
 popcorn BLUE 20 108 hard 75 2.79 T1 NO       
 hot_chocolate BLUE 2.25 35 hard 75 1.00 T6 YES      
 trash_bags GREEN 48 256 hard 75 10.99 T7 NA       
 ziploc_bags BLUE 10 99 hard 75 2.99 T7 NA       
 marshmallows WHITE 16 110 soft 75 2.00 T6 NO       
 fruit_juice MAGENTA 64 198 hard 75 2.18 T3 NO       
 coffee RED 23 180 hard 75 8.41 T7 YES      
 tuna BLUE 20 85.75 hard 75 7.39 T5 YES      
 cheezits RED 11.5 162 hard 75 2.00 T1 NO       
 ritz_chips GREEN 80 189 hard 75 3.00 T1 NO       
 vegetable_soup BROWN 18.8 31.25 hard 75 2.50 T2 YES      
 choc_cookies BROWN 16 135 hard 75 2.99 T6 NO       
 peanut_butter BROWN 28 45 hard 75 2.50 T6 YES      
 macNcheese BLUE 7 39.38 hard 75 0.75 T1 NO       
 vegetable_oil YELLOW 48 132 hard 75 2.69 T6 NO       
 spaghetti BROWN 12 22 hard 75 1.19 T1 YES      
 rice WHITE 32 90 hard 75 1.99 T1 YES      
 green_beans GREEN 14.5 25 hard 75 0.50 T2 YES      
 bagels BROWN 20 72 soft 75 1.99 T1 YES      
 ribs BLACK 20 336 hard 150 10.99 T5 NO       
 tomatoes RED 20 90 soft 75 2.75 T3 YES      
 lettuce GREEN 16 156 hard 60 2.49 T2 YES      
 cucumbers GREEN 28 72 hard 50 2.40 T2 YES      
 bananas YELLOW 32 216 soft 75 4.00 T3 YES      
 cake BROWN 44 549 soft 75 6.99 T6 NO       
 ground_beef RED 36.8 120 hard 45 7.57 T5 YES      
 teriyaki_bowl BLACK 17 105.88 hard 150 5.29 T5 NO       
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Software 

Multiple software components have been developed for this research. In addition to the 

implemented control system (Chapter V), components have been written to track groceries, 

control the conveyor belt, assign grocery labels to percepts, and evaluate task performance. The 

vision software used by ISAC’s Perceptual Agents to identify and track groceries is based on 

basic computer vision algorithms implemented with the OpenCV software library [OpenCV]. As 

groceries are placed on the conveyor belt, a command interface is used to dynamically assign 

grocery labels to the new perceivable objects (i.e., percepts). This enables both groceries and 

colors to be re-used if necessary. Using this interface, grocery sequences can be either preset, or 

entered at runtime. 

Another software component specifically developed for this research, yet independent of 

the implemented control system is the external critic that evaluates system performance. This 

critic monitors the external state and uses preset evaluation rules to provide feedback to ISAC. 

The specific preset rules are discussed in detail in section Overview and Description of 

Simulation Experiments. Monitoring the external state is performed through interaction with the 

Sensory EgoSphere, as well as monitoring the commands given to the Activator Agents. 

Information from the SES informs the critic of the location of specific groceries, while 

information from the Activator Agents signals what actions are being performed and, thus, what 

postconditions (see section Behavioral Repertoire) to expect. 

Finally, a simulation environment has been developed to enable rapid evaluation and 

testing of the implemented system, as well as to provide the means to perform multiple, 

repeatable experiments in a manner that would simply not be possible with the physical system. 

The simulation environment is written in ANSI C++ and uses an existing model of ISAC 

[Ratanawasd, 2007] coupled with a model of the conveyor belt to simulate the grocery-bagging 

environment. Graphics in the simulation are performed using OpenGL. Experimental trials are 

performed by either preloading a stored state, preloading a stored episode, or selecting groceries 

from a menu. The simulation environment can be run in two different display modes: fast or 

slow. These modes, however, only determine whether (or not) to display the graphical interface. 

When the simulation operates in slow mode, graphics are used to display system behavior, but 

this mode is primarily for display purposes only, or if a user wants to interactively select 

groceries. Graphics are not used when the simulation operates in fast mode. This mode is 
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primarily for comprehensive evaluation and testing purposes. In fast mode, states or episodes 

must be preloaded. In both modes, ISAC’s deliberation processes operate at the same speed, 

however, in the fast mode actions, and their effects, occur immediately. The graphical display 

(slow mode) is shown in Figure 30.  

 

 

Figure 30. GUI for Grocery Bagging Simulation 

 

State Representation 

For this research, the state representation consists of three basic types of information: 

Percepts, 1st
 Order Logic Elements, and Evaluation Signals. Goals are not explicitly represented 

within the state formulation, but rather are implicitly represented within the deliberation process 

as “attractor” states in the decision space, S. In this research, attractor states are those states in 

which no further actions can be performed. Excluding goals from the state representation enables 

more appropriate system evaluation and testing by eliminating the possibility of dynamic goal 

switching during task performance. It should be noted, however, that within the ISAC 

architecture goal switching (i.e., switching from “bagging groceries” to another task such as 

“greeting people”) can be allowed through the use of the Goals Agent (Chapter V). In this case, 

the state representation would need to be extended to incorporate the current goal as well as the 

specific evaluation dimensions for that goal.  
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The allowable percepts for this experiment are groceries and grocery bags. The groceries 

are listed in Table 14, and are visually detected using color identification. Grocery bags are not 

visually tracked, but rather preset locations are input to the system and used to identify specific 

bags. Individual grocery bags are differentiated by name (e.g., bag1, bag2, etc.) and, for this 

research, it is assumed that grocery bags remain stationary and that groceries and grocery bags 

are the only percepts that need to be tracked. Other percepts, such as people (face detection), are 

ignored to ease deliberation requirements and enable better comparison across trials. However, 

this assumption can be loosened if further logic elements are included that represent the 

additional perceptual information for the planning components.  

The allowable 1st order logic elements are based on the implicit goal of bagging 

groceries, and are presented in Table 15. These elements are used for planning and are 

determined from the current percepts as well as the previous state and knowledge of the last 

action performed.  

 

Table 15. Allowable 1st Order Logic Elements 

 Element Description 

 InRightHand(gi) Grocery gi is in ISAC’s right hand 

 InLeftHand(gi) Grocery gi is in ISAC’s left hand 
 BagEmptyRight(bi) Bag bi is empty on ISAC’s right side 
 BagEmptyLeft(bi) Bag bi is empty on ISAC’s left side 
 InBag(gi,bj) Grocery gi is in bag bj 
 ReachableRight(oi) Object (grocery or bag) oi is reachable  
  by ISAC’s right hand 
 ReachableLeft(oi)  Object (grocery or bag) oi is reachable  
  by ISAC’s left hand 
 OnConveyor(gi) Grocery gi is on the conveyor belt 
 ConveyorTurnedOn true if the conveyor belt is on,  
  else false 
 BagsEmptyRight true if at least one bag is empty on  
  ISAC’s right side, else false 

 BagsEmptyLeft true if at least one bag is empty on  
  ISAC’s left side, else false 
 

 

The final components of the current state representation are the Evaluation Signals that 

maintain information about the internal appraisals and external rewards. The external rewards are 

provided by the critic and are based on the actions taken in previous states. The internal 

appraisals are those described thoroughly in Chapter V. Each evaluation signal is listed in Table 

16, along with a brief description. 
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Table 16. Evaluation Signals 

 Signal Significance 

 ωωωω Learned weights for each attribute (relevance) 
 ui Utility appraisals 

 χχχχi Confidence in each utility appraisal 
 ti

a Allowable deliberation time 
 ti

e Expected deliberation time 
 qi

e Expected solution quality 
 ii Interrupt signal 

 ϑ Feedback values (matrix) 

 φφφφi Fit appraisals 
 

 

Behavioral Repertoire 

For this experiment ISAC requires a complete set of behaviors designed for bagging 

groceries. These behaviors are given to ISAC as initial knowledge. With each behavior, an 

associated set of preconditions determines whether that behavior is allowable in the current state. 

In this context, “allowable” behaviors are those can be considered and attempted by ISAC, 

regardless of outcome. For example, the behavior BagGrocery(bagi, groceryj) is allowable if 

groceryi is on the conveyor belt and is Reachable( ). An object is “reachable” if that object is 

within ISAC’s workspace. There are also postconditions associated with each behavior; 

however, postconditions are only used for planning, internal rehearsal, and simulation, and are 

not used to modify the representation of the current external state. The behaviors, preconditions, 

and postconditions are listed in Table 17. 

Control and execution of each behavior is performed locally by specific Activator 

Agents. In particular, the behaviors BagGroceryLeft(bi,gj) and BagGroceryRight(bi,gj) are 

hierarchically composed of the low-level control behaviors ReachToObject(gj), GraspObject(gj), 

ReachToBag(bi), ReleaseObject(gj). However in this dissertation, these behaviors have been 

abstracted out, to speed decision making. If this were not the case, ISAC would need to learn the 

necessary behavioral combinations required for bagging groceries, before learning the appraisals 

that are the focus of this research.  
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Table 17. Behavior List with Pre- and Postconditions 

 Behavior Preconditions/Postconditions 

 TrackGrocery(gi) Pre: OnConveyor(gi) = true 

 

 RequestNewBagLeft( ) Pre: EmptyBagsLeft = false 

  Post: EmptyBagsLeft = true  

   ReachableLeft(bnew) = true 

 

 RequestNewBagRight( ) Pre: EmptyBagsRight = false 

  Post: EmptyBagsRight = true 

   ReachableRight(bnew) = true 

 

 BagGroceryRight(bi, gj) Pre: OnConveyor(gj) = true 
   ReachableRight(gj) = true 

   ReachableRight(bi) = true 

  Post: OnConveyor(gj) = false 

   ReachableRight(gj) = false 

   InBag(bi, gj) = true 

 

 BagGroceryLeft(bi, gj) Pre: OnConveyor(gj) = true 
   ReachableLeft(gj) = true 

   ReachableLeft(bi) = true 

  Post: OnConveyor(gj) = false 

   ReachableLeft(gj) = false 

   InBag(bi, gj) = true 

 

 Wait(gi) Pre: ConveyorTurnedOn = true 

   OnConveyor(gi) = true 

  Post: ReachableLeft(gi) = true OR 
   ReachableRight(gi) = true 

 

 StopConveyor( ) Pre: ConveyorTurnedOn = true 
  Post: ConveyorTurnedOn = false 
 
 StartConveyor( ) Pre: ConveyorTurnedOn = false 

  Post: ConveyorTurnedOn = true 

  

 

Overview and Description of Simulation Experiments 

The simulation environment was used to perform comprehensive evaluation and testing 

of the implemented control system. The simulation is designed to mirror the actual grocery-

bagging layout, minus the noise and non-determinism commonly associated with real-world 

robotic experiments, typically sensor and actuator error. As previously discussed, the simulation 

enables recorded states and episodes to be re-used, which allows experiment repeatability – a 

feature not found in most physical robotic experiments. The results presented in the following 

sections have been obtained using the simulation environment.  
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Experiment Design 

Several simulation experiments have been designed to evaluate and test the implemented 

system. These experiments evaluate how well the system learns the appropriate domain 

knowledge for the grocery-bagging task, how well the system learns to appraise urgency and 

adjust its deliberation, and whether levels of fit can be determined for each component. In these 

experiments, the grocery list in Table 14 was divided into two sets GrocerySet-A and 

GrocerySet-B, as shown in Tables 18 and 19. The system was only allowed to train using 

experience generated from GrocerySet-A, but the system was evaluated and tested using 

situations generated from both grocery sets.  

The first two experiments were designed to evaluate how well the system learns the 

appropriate domain knowledge (i.e., relevance and utility appraisals) to perform the grocery-

bagging task. During these experiments the system cognitively processed experience in order to 

extract knowledge related to forming goal-relevant grocery clusters as well as utility evaluations. 

At various points during the training process system performance was evaluated, however, 

slightly different evaluations were performed based on the manner in which experience had been 

acquired.  

In the first experiment, experiences (i.e., episodes) were randomly selected from a 

database that had been generated previously. To test performance, a set of 30 sample bags, 12 

sample states, and 15 full episodes were then generated using groceries from both GrocerySet-A 

and GrocerySet-B. The 30 test bags were generated randomly and were presented to the system 

one at a time. The 12 test states were composed of finalized sets of grocery bags. During 

evaluation and testing the system was required to appraise each bag or state using its current 

knowledge. These appraisals were then compared to the known values returned by the external 

critic, in order to measure the difference between the learned and correct values. 
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Table 18. GrocerySet-A 

 name color weight (oz) size (in3) firmness temp.(Fo) price ($) type healthy 
 granola RED 10 48 hard 75 2.29 T1 YES      
 tissue WHITE 8 252 soft 75 1.45 T7 NA       
 soda RED 64 294 hard 75 1.50 T6 NO       
 ice_cream BLUE 22.56 70 hard 32 2.99 T4 YES      
 frozen_pizza RED 10.5 81 hard 32 1.25 T1 NO       
 chicken PINK 24 108 hard 32 3.05 T5 YES      
 milk WHITE 68.8 160 hard 45 1.67 T4 YES      
 cereal BLUE 17 227.5 hard 75 3.15 T1 NO       
 oranges ORANGE 64 504 hard 75 4.29 T3 YES      
 potatoes BROWN 80 504 hard 75 3.99 T2 YES      
 strawberries MAGENTA 16 140 soft 55 2.30 T3 YES      
 bread BROWN 16 325 soft 75 0.89 T1 YES      
 rotisserie BROWN 32 160 hard 150 7.99 T5 YES      
 eggs YELLOW 24 144 soft 45 1.59 T5 YES      
 hot_soup WHITE 12 48 hard 175 3.50 T2 YES      
 chips YELLOW 12 378 soft 75 2.68 T6 NO       
 yogurt BLUE 24 75 hard 45 1.59 T4 YES      
 frozen_fruit BLUE 48 180 hard 32 7.00 T3 YES      
 ziploc_bags BLUE 10 99 hard 75 2.99 T7 NA 
 spaghetti BROWN 12 22 hard 75 1.19 T1 YES 
 green_beans GREEN 14.5 25 hard 75 0.50 T2 YES 
 cucumbers GREEN 28 72 hard 50 2.40 T2 YES 
 teriyaki_bowl BLACK 17 105.88 hard 150 5.29 T5 NO 
 fruit_juice MAGENTA 64 198 hard 75 2.18 T3 NO 
 tuna BLUE 20 85.75 hard 75 7.39 T5 YES 

 
Table 19. GrocerySet-B 

 name color weight (oz) size (in3) firmness temp.(Fo) price ($) type healthy 
 cookie_dough YELLOW 16 31.5 soft 75 2.50 T6 NO       
 waffles YELLOW 12 121.5 hard 32 2.79 T1 YES      
 frozen_vegetables WHITE 16 96 hard 32 1.19 T2 YES      
 cheese PURPLE 8 45 soft 45 2.49 T4 YES      
 ketchup RED 32 84 hard 75 1.58 T2 YES      
 popcorn BLUE 20 108 hard 75 2.79 T1 NO       
 hot_chocolate BLUE 2.25 35 hard 75 1.00 T6 YES      
 trash_bags GREEN 48 256 hard 75 10.99 T7 NA         
 marshmallows WHITE 16 110 soft 75 2.00 T6 NO             
 coffee RED 23 180 hard 75 8.41 T7 YES      
 cheezits RED 11.5 162 hard 75 2.00 T1 NO       
 ritz_chips GREEN 80 189 hard 75 3.00 T1 NO       
 vegetable_soup BROWN 18.8 31.25 hard 75 2.50 T2 YES      
 choc_cookies BROWN 16 135 hard 75 2.99 T6 NO       
 peanut_butter BROWN 28 45 hard 75 2.50 T6 YES      
 macNcheese BLUE 7 39.38 hard 75 0.75 T1 NO       
 vegetable_oil YELLOW 48 132 hard 75 2.69 T6 NO       
 rice WHITE 32 90 hard 75 1.99 T1 YES      
 bagels BROWN 20 72 soft 75 1.99 T1 YES      
 ribs BLACK 20 336 hard 150 10.99 T5 NO       
 tomatoes RED 20 90 soft 75 2.75 T3 YES      
 lettuce GREEN 16 156 hard 60 2.49 T2 YES   
 bananas YELLOW 32 216 soft 75 4.00 T3 YES      
 cake BROWN 44 549 soft 75 6.99 T6 NO 
 ground_beef RED 36.8 120 hard 45 7.57 T5 YES            
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Unlike the test bags and states, the 15 test episodes were generated by initializing the 

decision-space using random grocery selection, and repeatedly allowing the system to form plans 

and perform actions. The plan-act process continued until all of the groceries in the initial state 

had been bagged. In these 15 test episodes there was a combined total of 119 groceries, or 

approximately 8 groceries per episode. The rational for this number was based on empirical tests 

that indicated this number was large enough to stress the system, but small enough to enable 

timely evaluation. For example, for a state with N groceries and only one bag there are N! 

solutions to the grocery-bagging problem. Thus, 8 groceries yields approximately 40,000 

solutions. If intermediate states, such as those resulting from a Wait( ) action, are included the 

number of states searched for a solution could increase drastically. Since the system had not yet 

learned to appraise urgency and modify its deliberation, the necessarily deeper search through 

such a large state space would require prohibitively expensive deliberation costs. In the interest 

of time and solvability, each test state was limited to only a few groceries. The actual number of 

groceries per episode was selected from a uniform distribution over the range [4, 12]. 

In the second experiment, the system was trained and evaluated concurrently using its 

own acquired experience. This involved sequentially generating random grocery-bagging 

episodes, allowing the system to bag groceries using its current knowledge, providing evaluation 

feedback, and re-training once every M episodes. Individual episodes were generated by 

selecting a small set of groceries (at random), and then placing those groceries on the conveyor 

belt. As those groceries were bagged, additional groceries were selected (also at random) and 

placed on the conveyor belt. Therefore, at each step of the planning process, the system was 

unaware of how many and what type of groceries may appear at the next time step. In between 

training epochs the system was exposed to M = 10 episodes generated using only GrocerySet-A 

and 10 episodes using only GrocerySet-B. After each set of 20 episodes, the system was re-

trained by incorporating the first 10 episodes (GrocerySet-A) into long-term memory. Evaluation 

was then continued using the next 20 episodes (i.e., the episodes which the system has not yet 

been exposed).  

Once the system has demonstrated the ability to learn the required domain knowledge, 

additional experiments were designed to evaluate how well the system learns to appraise urgency 

and to adjust deliberation accordingly. In addition, this experiment is also used to evaluate the 

system’s ability to appraise fit. During this experiment only the non-fixed, high action cost 
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condition is used, because it is necessary that the system employ all of its appraisals and because 

the high action cost should force the system to make more errors, which creates a more 

conducive environment for appraising fit. 

During each experiment, the size of the relational map for constraints (1) and (2) was set 

to 40 x 40 and the size of the relational map for constraint (3) was set to 25 x 25. The difference 

in size of these two maps is based on the fact that much more training experience was generated 

for the first map. During the experiments in which the system was required to deliberate without 

the use of urgency appraisals to adjust the search parameters, a search depth of 3.0 and a breadth 

of 1.0 were used. These values were empirically determined during initial tests to adequately 

enable the system to evaluate a range of possible responses, while simultaneously allowing 

experiments to be performed timely and efficiently. 

 

Performance Measures 

Throughout each of the simulated experiments, the same critic was used to evaluate 

performance. This critic used preset rules to determine: 

1. Number of constraint (1) violations 

2. Number of constraint (2) violations 

3. Whether constraint (3) has been violated 

4. Deliberation time per decision epoch 

 

Constraints (1) and (2) were evaluated on a per bag basis, while constraint (3) was evaluated on 

a per episode basis. Pseudo-code for the two preset rules that evaluate constraints (1) and (2) is 

shown in Figure 31. These rules were implemented as if-then checks that were based solely on 

the contents of each individual bag. These rules returned the value –1 if the constraint was 

violated, otherwise the value +1 was returned. The rule for constraint (3), however, was based on 

the number of groceries and the number of bags in a single episode, and returned one of a range 

of values. The equation for constraint (3) is given in Equation (28), where Num_groceries is the 

total number of groceries in the current episode, Num_bags is the total number of bags used in 

that episode, and κ1 and κ2 are constants that define the range of values that can be returned.  

Throughout these experiments both κ1 and κ2 were set to 1.5. The rational for this selection is 
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that empirical tests showed that such a setting kept the constraint (3) evaluations near the –1/+1 

range. Finally, the critic was also used to record the deliberation time during task performance.  

 

 

Figure 31. Preset Rules for Constraints (1) and (2) 
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During evaluation of system performance, six different values were recorded that relate 

to the system’s application of its learned domain knowledge. These six values are: 

1. E1 – Difference between the external evaluation of constraint (1) and the internal 

appraisal for constraint (1), summed over all bags and normalized by the maximum 

possible error.  

Crusher = Lightweight = Hot = Cold = false 

Large_count = Medium_count = Small_count = Total_weight = 0.0 

For all groceriesi in bagj 

If(firmnessi = hard and weighti > 20.0) 
Crusher=true 

If(firmnessi = soft and weighti < 30.0) 

Lightweight=true 
If(tempi > 100.0) 

Hot=true 

If(tempi < 50.0)  
Cold=true 

If(sizei > 400.0) 
Large_count = Large_count+1 

Else If(sizei > 200.0) 

Medium_count = Medium_count+1 
Else 

Small_count = Small_count+1 

Total_weight = Total_weight + weighti 

Total_count = 2.5*Large_count + 1.5*Medium_count + 0.9 * Small_count 

If(Crusher & Lightweight) 

Constraint(1)j = -1
Else If(Hot & Cold) 

Constraint(1)j = -1

Else 
Constraint(1)j = +1

If(Total_weight > 165) 
Constraint(2)j = -1 

Else If(Total_count > 5) 

Constraint(2)j = -1 
Else 

Constraint(2)j = +1 
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2.  E2 – Difference between the external evaluation of constraint (2) and the internal 

appraisal for constraint (2), summed over all bags and normalized by the maximum 

possible error. 
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3. E3 – Difference between the external evaluation of constraint (3) and the internal 

appraisal for constraint (3), summed over all 15 test states and normalized by the 

maximum possible error.  
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4. E4 – Number of errors on constraint (1), summed over all test states per trial. 

5. E5 – Number of errors on constraint (2), summed over all test states per trial. 

6. E6 – Number of bags used, summed over all test states per trial. 

 

In addition to these recorded values, the learned attribute weights were also recorded in 

order to analyze how the learned concepts changed over time. The final grocery classifications 

were recorded to evaluate whether or not useful grocery classifications had been formed, and the 

trained relational maps were recorded to analyze the types of relations that had been learned. 

Finally, deliberation time, search depth and breadth, and the number of states expanded was 

recorded for use in the experiments that evaluated urgency.   

 



115 

Experiment 1: Domain Knowledge Using Random Experience 

Experiment Description 

For this experiment 100 episodes were generated at random. The system was repeatedly 

trained using increasing amounts of this experience, and performance was evaluated with respect 

to the appraisals relevance and utility. Each training episode was generated selecting up to 20 

groceries at random, and then allowing ISAC to bag those groceries without any prior knowledge 

of the correct appraisal values (i.e., random selection). Due to the fact that behavior selection 

was essentially random, a large search depth was not used and, therefore, these episodes could be 

generated quickly. All of the groceries used to generate this corpus of experience were selected 

from GrocerySet-A. The critic provided feedback at the end of each episode for each of the final 

bags (constraints 1 and 2), as well as the entire episode (constraint 3). After each training step, 

performance was evaluated using the combination of 30 test bags, 12 test states, and 15 test 

episodes. Four different conditions were used for this experiment and five trials were performed 

for each condition. The results presented in the following subsection are the averages over these 

five trials. The four experimental conditions are listed as follows: 

1. Fixed weight set and high action cost 

2. Non-fixed weight set and high action cost 

3. Fixed weight set and low action cost 

4. Non-fixed weight set and low action cost 

 

The rational for having high and low action cost conditions was that high action costs 

should force the system to explore more single bag options, or “place more groceries in a bag”. 

Increasing the number of groceries per bag should increase the rate of learning by providing 

more diverse experiences, but may also interfere with final task performance by outweighing 

uncertain appraisals. The high action cost value was set to –0.85 and, therefore, in order to prefer 

using a new bag for a new grocery, rather than placing the new grocery in an existing bag, the 

system must be highly confident that the latter action will violate one of the constraints. From 

Chapter V, Equation (26), shows that possible states are evaluated and preferentially ordered 

using the vector evalj = χχχχj * uj, where confidence vector χχχχj is composed of elements bounded by 

the interval [0, 1] and the utility vector uj is composed of elements bounded by the interval         

[-1, 1]. Thus, only highly confident, correct evaluations will “overrule” the preference for not 
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getting a new bag (additional action). Low action costs, however, enable the system to make 

decisions based solely on its learned appraisals and not on innate cost aversion. The low action 

cost value was set to –0.05, so that the action of requesting new bags would only be preferred 

when considering situations that could possibly have negative value. In the low action cost 

condition, confidence values were only used to order the desirability of potential responses.  

The rational for implementing the fixed weight conditions was to isolate the process of 

learning the relational maps and ease the demand placed on the system’s learning capabilities. In 

the non-fixed conditions, the system was required to simultaneously learn the weight values 

useful for grouping groceries into useful classes, while then using those classes to generate the 

relational maps. As the grocery classifications changed, so did the learned relational maps. While 

the non-fixed condition better reflects real world situations in which relevance and utility 

information must be learned concurrently, it makes it difficult to assess aspects of the learning 

process. Because in many robotic applications some domain knowledge is present, the fixed 

weight conditions were used to provide a comparison with the more noisy non-fixed conditions. 

The fixed weight values are given in Table 20, and the resulting classification scheme for 

GrocerySet-A is given in Table 21. The fixed weights were chosen in such a way that the 

resulting classification scheme would separate groceries into groups that do not violate constraint 

(1). In other words, if the system were to perform the grocery-bagging task using only the rule 

“do not mix types of groceries”, constraint (1) would not be violated. 

 

Table 20. Weight Values for Fixed Condition 

 name color weight size firmness temp price type healthy 

 0.0 0.0 0.75 0.75 0.75 1.0 0.0 0.0 0.0 

 

Table 21. Final Clusters Using Pruned Tree and Fixed Weights 

 Class Grocery 

 C0 ice_cream, frozen_pizza, 
  yogurt, cucumbers, chicken 
 C1 granola, ziploc_bags, tuna 
  spaghetti, green_beans 
 C2 rotisserie 
 C3 hot_soup, teriyaki_bowl 
 C4 milk, frozen_fruit 
 C5 oranges, potatoes 
 C6 soda, cereal, fruit_juice 
 C7 tissue, bread, chips 
 C8 eggs, strawberries 
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Furthermore, the purpose of the relevance appraisals is to extract important features from 

the environment in a manner that enables dimensional reduction and goal-based abstraction of 

the current situation. For reference throughout these experiments the grocery clusters that result 

from assigning uniform weights to each attribute are listed in Table 22. This table indicates that 

without the ability (either innate or learned) to filter state information and focus on the most 

goal-relevant features, virtually no reduction is performed.  

 

Table 22. Final Clusters Using Pruned Tree and Uniform Weights 

 Class Grocery 

 C0 granola 
 C1 chips 
 C2 rotisserie 
 C3 tissue 
 C4 oranges, potatoes 
 C5 frozen_pizza 
 C6 teriyaki_bowl 
 C7 eggs 
 C8 frozen_fruit 
 C9 soda 
 C10 bread 
 C11 hot_soup 
 C12 ziploc_bags 
 C13 strawberries 
 C14 fruit_juice 
 C15 milk 
 C16 tuna 
 C17 cereal 
 C18 green_beans 
 C19 chicken 
 C20 spaghetti 
 C21 ice_cream, yogurt 
 C22 cucumbers 

 

 

Results and Discussion 

Figures 32-34 present the results for each performance metric for the fixed, high cost 

condition averaged over all five trials. In each figure, the first column indicates system 

performance based on random selection. Figure 32 shows that with as little as 30 episodes of 

training, the system’s ability to make correct utility appraisals on each constraint improves 

approximately 15%. However, after this initial improvement the performance levels off. This 

will be discussed at the end of this Experiment 1 section, but for now it is only important to note 

the both the initial improvement and subsequent leveling off. 
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Figure 33 presents the number of errors on constraints (1) and (2) during the 15 test 

episodes as the system is trained with increasing amounts of random experience. This figure 

shows that the total number of errors decreases throughout training. Much of this improvement 

can be explained by improvement on constraint (1), while the initial improvement on constraint 

(2) is followed by a trend of much slower improvement. This dramatic decrease in constraint (2) 

errors is explained by noting, from Figure 34, that the number of bags also increases dramatically 

at this stage of learning. Therefore, the system quickly identifies that the solution “throw 

everything in one/two bags” is not correct. As the number of bags increases, the ratio of 

groceries : bags decreases, which intuitively decreases the likelihood of constraint (2) errors.  

 

 

Figure 32. Appraisal Errors with Increased Training for the Fixed Weight, High Cost Condition 
and Random Experience 
 

These results indicate that the system first learns to reduce the number of groceries per 

bag and that as a result the number of errors per trial decreases dramatically. Once this 

knowledge has been learned, the system then exhibits slower improvement on constraints (1) and 

(2), however, during this improvement the ratio of groceries : bags remains roughly constant. In 

other words, the additional improvement does not require further isolating groceries (e.g., one 

grocery per bag). 
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Figure 33. Total Errors Per Trial on Constraints (1) and (2) for the Fixed Weight, High Cost 
Condition and Random Experience 

 

 

Figure 34. Number of Bags Used Per Trial for the Fixed Weight, High Cost Condition and 
Random Experience 
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1. For 15 tests states and a total of 119 groceries there was an average of ~8 groceries per 

trial. As described previously, this number was kept low to enable timely deliberation and 

experimentation.  

2. The distribution from which the groceries were selected (i.e., GrocerySet-A) was 

designed to provide the system with ample opportunities to learn, and thus the number of 

potentially dangerous combinations was increased over that which may occur in a typical 

grocery store.  

3. The simulation environment was designed to mimic the real ISAC robot, and therefore 

groceries appearing on one side of the conveyor belt (e.g., ISAC’s left or right side) must 

be placed in bags on that side. In other words, while a human grocery-bagger may choose 

to reach across their body to grab the “eggs” on the left in order to place them in a bag on 

the right, ISAC is incapable of such motions, and can only consider placing the “eggs” in 

a bag on the left. 

 

The result is that during this experiment (and those to follow), ISAC was presented with 

grocery sets in which there is a larger probability of error than in normal grocery-bagging 

situations, the type of deliberation demanded during this experiment required that a low number 

of groceries be presented to ISAC, and ISAC’s physical resources limited the grocery 

combinations that were possible. Thus a ratio of two groceries per bag is not as low as it seems, 

and the fact that this ratio remains constantly above 1.0, while improvement is made on the other 

constraints indicates that the system is learning to bag groceries within its grocery-bagging 

environment. 

However, while the system shows the ability to learn the improvement is gradual and the 

question may be asked whether the system’s performance is merely reflecting the fixed grocery 

classification scheme with which it has been provided. To investigate this point, it is necessary to 

analyze the relational maps that were used to appraise situations. If, in fact, the system only 

learned to apply the grocery classification scheme when bagging groceries (i.e., only mix 

groceries of the same type), then the relational maps would need to contain a high percentage of 

uniform vectors that evaluate close to +1.0, (e.g., C0C0C0 vs. C1C3C2). 

The final relational maps, after training on all 100 episodes, were analyzed for each trial. 

On average there were approximately 641 nodes in each relational map that contained a vector 
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with more than one element and also evaluated to ~+1.0. The averaged percentage of uniform 

vectors in these nodes, across all five experimental trials, was only 10.06%. Further analysis 

revealed that nearly 90% of these vectors had a maximum frequency of reoccurrence of any 

single element in that vector less than 0.75, 86% of the vectors had a maximum frequency less 

than 0.67, and 70% of the vectors had a maximum frequency less than 0.5. Therefore, roughly 

2/3 of the positive (+1.0) vectors in the trained relational map contained enough diversity that no 

single element of that vector recurred with frequency greater than 50%. Examples of such 

vectors include C0C1, C1C3C2, and C5C2C4C5. Further analysis revealed that, on average, there 

were 799 nodes in each relational map that contained a vector with more than one element and 

also evaluated to ~ –1.0. Of these vectors, approximately 89% had a maximum frequency of less 

than 0.5. Given the fact that the system was trained using randomly generated experience, it is 

expected that the generalized feature vectors would have a low probability of uniformity, and 

this analysis indicates that the there was a high percentage of diverse experience that would not 

lead the system towards any one response, or towards merely not mixing grocery types.   

Figures 35-37 show the results for each performance metric for the non-fixed, high cost 

condition averaged over all five trials. It is important to note, at this point, that the results 

presented for the 30 test bags and 12 test states, while unique to each test, are not influenced by 

the action cost. Rather, these results are influenced only by the learned weights, grocery 

classifications, and trained relational map. These results are presented for the 30 test bags and 12 

test states to enable better understanding of system performance during the episodic tests.  

Even though the system in this condition was required to simultaneously learn both the 

weights necessary to form grocery classifications as well as the relational maps to evaluate bags 

and episodes, Figure 35 indicate that appraisal accuracy improved for both bags and episodes at a 

rate similar to that for the fixed condition. Figure 36 shows that the system is also able to 

improve performance with respect to constraints (1) and (2), however, this improvement was 

more gradual. This is explained, in part, by noting the more gradual increase in the number of 

bags used, as shown in Figure 37.   
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Figure 35. Appraisal Errors with Increased Training for the Non-Fixed Weight, High Cost 
Condition and Random Experience 
 

 

Figure 36. Total Errors Per Trial on Constraints (1) and (2) for the Non-Fixed Weight, High Cost 
Condition and Random Experience 
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Figure 37. Number of Bags Used Per Trial for the Non-Fixed Weight, High Cost Condition and 
Random Experience 
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Table 23. Learned Attribute Weights 

 Attribute Weight 

 firmness 1.0000 
 temperature 0.7487 

 weight 0.7309 
 healthy 0.5992 

 price 0.5851 
 size 0.5039 
 type 0.3726 

 color 0.2439 
 name 0.0909 

 

 

Figure 38. Learned Weights with Increased Training for the Non-Fixed, High Cost Condition 
and Random Experience 
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and cold items, which would cause a violation of constraint (1) unless the system specifically 

learned not to place more than one C1 grocery into a bag.  

Further analysis of the learned clusters investigates the consistency of these clusters 

across all five trials for the four training iterations consisting of {70, 80, 90, 100} episodes. 

These training epochs were chosen because at this point in the training the amount of experience 

should be enough to prevent large fluctuations in the individual weights. During these iteration, 

the system only identifies the cluster scheme shown in Table 24, 65% (13/20) of the time. Of the 

remaining iterations, five involve breaking class C1 into additional clusters and two involve 

creating multiple, seemingly spurious additional clusters. Three of the five times that C1 is split, 

the result is a clustering in which constraint (1) would never be broken within a single class. 

However, the increased number of grocery clusters also makes it more difficult for the relational 

maps to generalize from its limited experience, which may explain why the system resorts to 

using more bags.  

 

Table 24. Final Learned Partition Using 100 Episodes 

 Class Grocery 

 C0 ice_cream, chicken, 
  yogurt, cucumbers 
 C1 granola, ziploc_bags, tuna 
  frozen_pizza, cereal,  
  spaghetti, green_beans 
  teriyaki_bowl, hot_soup 
 C2 rotisserie 
 C3 tuna 
 C4 milk, frozen_fruit 
 C5 oranges, potatoes 
 C6 soda, fruit_juice 
 C7 tissue, bread 
 C8  chips 
 C9 eggs 
 C10 strawberries 
 

 

Figures 39-41 show the averaged results for the fixed, low cost condition over all five 

trials for each performance metric. Unlike the high cost conditions, the results presented in 

Figures 39 and 41 are intriguing in that they more accurately demonstrate what the system is 

truly learning. With only 30 episodes of experience, the system makes as few mistakes as it has 

at any point in either of the previous two conditions. Simultaneously, though, the system also 
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uses more bags than it in any of the previous conditions. In other words, with little training 

experience the system immediately becomes pessimistic and avoids risk (i.e., multiple groceries 

in single bags). As the amount of training experience increases, Figure 41 demonstrates that there 

is a “slight” reduction in the number of bags used, but that overall this number remains constant. 

At the same time, the system continues to improve on constraints (1) and (2). After 100 episodes 

of training, the system settles on more bags but fewer constraint (1) and (2) violations.  

Whereas in previous conditions the system never had a combined total of constraint (1) 

and (2) violations less than 7.6 per 15 test episodes (6.0 and 1.6, respectively), in this trial the 

system gets as low as 4.2 (3.6 and 0.6, respectively). Because action cost does not affect training 

or learning from random experience, it is concluded that the increased number of errors and 

decreased number of bags observed in the earlier conditions are, at least somewhat, a product of 

the high action cost, which may filter out the low confidence appraisals that would otherwise 

have been correct. In other words, the system “knew better, but did not trust itself”. 

 

 

Figure 39. Appraisal Errors with Increased Training for the Fixed Weight, Low Cost Condition 
and Random Experience 
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Figure 40. Total Errors Per Trial on Constraints (1) and (2) for the Fixed Weight, Low Cost 
Condition and Random Experience 
 

 

Figure 41. Number of Bags Used Per Trial for the Fixed Weight, Low Cost Condition and 
Random Experience 
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on constraints (1) and (2), followed by a period of very slow learning. This trend is also present 

in Figure 44, which shows that the system initially uses a lot of bags to improve performance, 

but slowly begins to decrease the number of bags while maintaining performance on the 

constraints (1) and (2). While the steady decrease in the number of bags is not dramatic, it is 

noticeable; after initially jumping to an average of 77.6 bags per 15 test episodes, the system 

eventually gets this count as low as 69.4.  

 

 

Figure 42. Appraisal Errors with Increased Training for the Non-Fixed Weight, Low Cost 
Condition and Random Experience 

 

 

Figure 43. Total Errors Per Trial on Constraints (1) and (2) for the Non-Fixed Weight, Low Cost 
Condition and Random Experience 
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Figure 44. Number of Bags Used Per Trial for Non-Fixed Weight, Low Cost Condition and 
Random Experience 
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Table 25. Learned Attribute Weights 

 Attribute Weight 

 firmness 1.0000 
 temperature 0.7380 

 weight 0.7032 
 price 0.5801 
 healthy 0.4868 
 size 0.4160 
 type 0.3340 
 color 0.2658 
 name 0.0909 
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Figure 45. Learned Weights with Increased Training for the Non-Fixed, Low Cost Condition and 
Random Experience 
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There is one final point that should be discussed for the results just presented; for each 

condition the system demonstrates that it is able to learn, but its learning quickly levels out while 

there are still many errors in performance. This is especially evident in the performance plots for 

all three constraints (i.e., the tests on 30 bags and 12 states). While it is expected that 

performance will eventually level off, the results presented thus far level off very quickly even 

though there is still much room for improvement. One reason for this may be the “disconnect” 

between the random examples used to train the system and the tests used to evaluate the system. 

Essentially, when the system learns it extracts weights based on statistical patterns of  “good” 

and “bad” grocery bags, while simultaneously generalizing these bags for storage in the 

relational maps. However, in this experiment all of this generalized experience was initially 

generated at random. Once the system begins to learn and performs purposive, deliberate actions 

it becomes increasingly unlikely that random experience will provide much useful guidance. 

This is due to the fact that the system is no longer performing randomly, and should not expect to 

encounter random bags in the future.  

The next experiment is designed to investigate system performance using non-random 

experience. Initial states are still generated at random, but once completed, each episodes is 

iteratively added to the system’s growing corpus of experience (long-term memory), and is 

included in the next training phase. Therefore, the system will “learn as it goes”. This allows the 

system to develop knowledge structures that are uniquely tailored to the types of situations that it 

expects to encounter.  

The next experiment will continue to investigate how performance varies with high and 

low action costs, as well as with fixed and non-fixed weights. Analyses will be performed on 

how the weights changes, what final concepts are formed, and whether the weights and concepts 

ever reach a final steady state. The system will only be trained on episodes generated using 

GrocerySet-A, but will be simultaneously tested using episodes generated from both grocery sets. 

Finally, some concluding thoughts will be offered with respect to the system’s ability to 

cognitively process past experience in order to learn domain knowledge, or the appraisals for 

relevance and utility. 
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Experiment 2: Domain Knowledge Using Self-Guided Experience 

Experiment Description 

Unlike the previous experiment in which training was performed using episodes 

generated randomly, this experiment allowed the system to have some control over the 

generation of its own training experience. Groceries were still selected at random, but after the 

system used its current knowledge to complete each grocery-bagging task that experience was 

incorporated in the next round of training.  

After each training iteration, the system was allowed to perform the grocery-bagging task 

for 10 episodes that had been initialized using GrocerySet-A, and 10 episodes that had been 

initialized using GrocerySet-B. For each episode the same six values (E1-E6) were recorded as 

before, however, in this experiment all of the tests were performed during the acquisition of new 

experience and the system was only required to appraise those bags that were encountered during 

task performance. Each episode was generated at random by selecting up to six groceries and 

placing them on the conveyor belt. As the system performed the grocery-bagging task, new 

groceries were selected and also placed on the conveyor belt. This process continued until a 

predetermined number of groceries had been selected and bagged. The number of groceries was 

predetermined by uniformly selecting from the range [5, 20]. A higher number of groceries could 

be used for this experiment because, at any one time, only a maximum of six groceries were 

present on the conveyor belt, which restricted the computation cost associated with lengthy 

deliberation. The steps for this experiment are listed as follows: 

1. Train the system using the current experience in long-term memory. 

2. Select the number of groceries N uniformly from the range [5, 20]. 

3. Set the total number of groceries bagged, total_count  = 0. 

4. Select 0 < M ≤ min(6, N – total_count) using a uniform distribution. 

5. Select M groceries from GrocerySet-A or GrocerySet-B using a uniform distribution and 

then place those groceries on the conveyor. 

6. Allow the system to bag each of the M groceries. 

7. Set total_count = total_count + M. 

8. If total_count < N return to Step (4), else go to Step (9). 

9. Provide external feedback for the final situation. 
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10. Measure the error between the internal appraisals and the external feedback and record 

the number of constraint violations.  

11. If GrocerySet-A was used, then add the new episode to long-term memory. 

12. Set num_episode = num_episode + 1.0.  

13. If num_episode is a factor of 10, add new episodes to long-term memory and go to Step 

(1), else go to Step (3) 

 

Results and Discussion for the Fixed Weight and High Action Cost Condition 

The same four conditions were used for this experiment as were used for Experiment 1. 

However, rather than running multiple trials and then averaging the results, the system was run 

through 700 episodes for each of the four conditions. A square filter was then used to smooth the 

data in order to analyze the underlying trends. Throughout this experiment the filter width was 

set to three training iterations (30 episodes).  

Figure 46 presents the results for the fixed, high cost experimental condition, when tested 

using GrocerySet-A. Because Figure 46 presents the results for both training and testing with the 

same grocery set, these results provide a good indication of what the system has actually learned. 

Later in this subsection, the results from testing on GrocerySet-B are presented in order to 

investigate one aspect of how the system may generalize to new experience.  

Figure 46(a) shows that the number of constraint (1) errors per bag decreases with 

training. This decrease is achieved while the system maintains a consistent ratio of groceries per 

bag, which is shown in Figure 46(c). In addition, the number of constraint (2) errors per bag 

(Figure 46b) does not increase, but rather remains constant after a very slight initial decrease. 

Figures 46(d), (e), and (f) show that with increased training the system’s utility appraisals 

become more accurate. This is similar to the fixed, high cost condition for Experiment 1 with the 

exceptions that in this experiment the system 1) does not level out as quickly, and 2) exhibits 

more oscillation along each performance metric. These oscillations should not be interpreted 

indications that training with self-guided experience is less effective and that the system learns 

less. On the contrary, in the fixed, high cost condition of Experiment 1 the best ratio of constraint 

(1) errors to bags is 0.092, which is achieved at 60 episodes of training. Analysis of Figure 46(a) 

reveals that performance in Experiment 2 approaches the 0.05 range at multiple points during 

training. Furthermore, in Experiment 1 the best ratio of constraint (2) errors to bags is 0.024 (also 
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occurring at the 60 episode mark), and analysis of Figure 46(b) reveals that in Experiment 2 

performance oscillates around the 0.025 range.  

While in this experiment the system appears to learn more, the performance is also less 

consistent. This is evident from the presence of several large oscillations observed in Figures 

46(a) and (d), as well as smaller oscillations in each of the remaining figures. Some of this 

oscillatory behavior can be explained by the large amount of unsupervised learning performed by 

the system, primarily in the generalization that takes place at the symbolic level of the trained 

SOMs. However, further explanation may be provided by the fact that the system’s experience is 

constantly updating its current knowledge, and thus shaping the new experience that it acquires. 

In other words, unlike Experiment 1 in which the system had no control over its own training, 

now the training is intricately related to its current knowledge. The result is that the system may 

mistakenly pursue a sub-optimal path for several training iterations before the new experience is 

able to “outweigh” the old experience that caused pursuit of the sub-optimal path. 

In addition, many of the larger oscillations also seem to co-occur. For example, the large 

oscillation at the 400 episode mark in Figure 46(d) is mirrored by an oscillation at the same 

location in Figure 46(a), which affirms the conclusion that appraisal accuracy does affect task 

performance. In addition, smaller oscillations occurring just before the 100 episode mark in both 

Figures 46(d) and (e), and are mirrored in the performance plots for both constraints (1) and (2), 

as well as the ratio of groceries to bags.  

To further analyze system performance, Figure 47 presents additional breakdowns of 

system performance. This includes recording the number of bags per episode with two, three, 

and four groceries, as well as the error rate on constraints (1) and (2) for each bag type. Figure 

47(a) presents the rate at which bags with two, three, or four groceries are generated per episode. 

This figure shows that as training increases, the number of bags per episode in which two 

groceries are placed steadily increases, while the number of bags with three groceries initially 

increases before finally decreasing. The point at which this decrease begins is, intriguingly, at the 

same point in which a large “jump” occurs in number of constraint (1) errors. Thus the system is 

sensitive to its own experience, and can become “pessimistic” in response to continued 

punishment. 
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Figure 46. Evaluation Graphs for Episodes Generated with GrocerySet-A for the Fixed Weight, 
High Cost Condition and Self-Guided Experience 

 

Figure 47(a) shows that the number of bags per episode with four groceries remains 

roughly constant (with a slight decrease) during training, while Figure 47 as a whole shows that 

the rate of occurrence for each bag type decreases as the number of groceries in that bag 

increases. However, Figure 47(b) shows that the rate of occurrence is also inversely related to the 

rate of constraint (1) violations per bag, and Figure 47(c) shows the same relationship with the 

rate of constraint (2) violations per bag. Because the error rate for each bag type decreases with 

training, it can be concluded that the system is learning how to combine groceries in order to 

better complete the task, but because certain bag types are more risky than others, these bags 

cause more errors and are thus explored less. In an experience-based learner such as this, less 

exploration means less opportunity to learn, and thus less learning. This is supported by the 

results in Figure 47. 
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Figure 47. Breakdown of Error Rate and Rate of Occurrence for Bags with Different Amounts of 
Groceries for the Fixed Weight, High Cost Condition and Self-Guided Experience 
 

Figure 48 presents the results for the episodes generated using GrocerySet-B. The system 

has not been trained on any of these groceries, but rather must place these groceries in the correct 

grocery cluster using the fixed set of weights and the developed grocery partition. Using this 

information the system must then associate the resulting feature vectors with the appropriate 

sections of the trained relational map. Unlike the results presented for GrocerySet-A, Figure 

48(a) shows that the number of constraint (1) violations per bag does not decrease with increased 

training, while Figure 48(b) shows that the number of constraint (2) violations only slightly 

decreases with training, however, this decrease is most likely explained by a subsequent slight 

decrease in the average number of groceries per bag (Figure 48c). Figures 48(d) and (e) suggests 

that this lack of improvement is most likely due to incorrect appraisals for constraint (1) and (2). 

While the appraisal error does decrease with training, the amount of decrease is dramatically 

slower than with GrocerySet-A and the lowest appraisal error rate obtained for GrocerySet-B is 

only slightly better than the worst obtained for GrocerySet-A.  
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Figure 48. Evaluation Graphs for Episodes Generated with GrocerySet-B for the Fixed Weight, 
High Cost Condition and Self-Guided Experience 
 

One highly possible explanation for this behavior is that the fixed weights do not allow 

the system to separate groceries in the manner that it would “prefer”, based on its own 

experience, and thus the fixed weight set may not be best when extrapolating to new experience. 

In other words, the system may better off creating its own grocery clusters. To examine this 

possibility Tables 27 and 28 present the grocery clusters for both grocery sets. For each grocery 

set these clusters represent the same concepts, with the only difference being the specific 

groceries assigned to each cluster.  

 

Table 27. Final Partition Using GrocerySet-A 

 Class Grocery 

 C0 ice_cream, frozen_pizza, 
  yogurt, cucumbers, chicken 
 C1 granola, ziploc_bags, tuna 
  spaghetti, green_beans 
 C2 rotisserie 
 C3 hot_soup, teriyaki_bowl 
 C4 milk, frozen_fruit 
 C5 oranges, potatoes 
 C6 soda, cereal, fruit_juice 
 C7 tissue, bread, chips 
 C8 eggs, strawberries 
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Table 28. Final Partition Using GrocerySet-B 

 Class Grocery 

 C0 waffles, frozen_vegetables, 
  ground_beef 
 C1 ketchup, popcorn, rice, 
  hot_chocolate, macNcheese 
  vegetable_soup, choc_cookies 
  peanut_butter, vegetable_oil 
 C2 ribs 
 C3 EMPTY 
 C4 EMPTY 
 C5 EMPTY 
 C6 trash_bags, coffee, lettuce 
  cheezits, ritz_chips 
 C7 cookie_dough, marshmallows 
  bagels, tomatoes, bananas, 
  cake 
 C8 cheese 
 

 

Inspection of these partitions reveals that the distribution of groceries across clusters is 

much less uniform with GrocerySet-B than with GrocerySet-A. In particular, there are no 

groceries from GrocerySet-B assigned to the either of the classes {C3, C4, C5}. Intuitively, this 

should not matter so long as the final grocery clusters obey the same learned relationships as the 

corresponding clusters for GrocerySet-A. For example, if the system has learned that members of 

class C0 can always be grouped with other members of class C0 and that members of C8 must be 

kept separate from members of C5 for GrocerySet-A, then these relationships must also be true 

for GrocerySet-B.  

The first test performed to determine if the relationships between clusters are different 

was to test the intra-cluster grouping in each cluster: could members of each cluster be mixed? 

For this test, nine bags were created for each grocery set using the exact contents in each of the 

nine clusters, i.e., bag0 for GrocerySet-B contained the groceries waffles, frozen_vegetables, 

ground_beef. For both grocery sets, none of the bags violated constraint (1), and therefore this 

constraint was preserved for intra-cluster grouping. 

In the second test, the relationship between two of the nine clusters was analyzed. This 

test was designed to investigate inter-cluster grouping: if members of one cluster could be 

grouped with members of another cluster for GrocerySet-A, does the same relationship hold for 

GrocerySet-B? From empirical observation the grocery classes C1 and C7 were chosen based on 

the large amounts of groceries in each class, and from the fact that certain groceries in each class 
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were known not to mix well. This test involved creating all sets of bags in which exactly one 

member of class C1 and one member of class C7 were present and asking the external critic to 

evaluate each bag. For GrocerySet-A there were 15 such bags, of which none caused a constraint 

(1) violation. For GrocerySet-B, however, there were 54 such bags, of which 16 (29.6%) caused 

a constraint (1) violation. Therefore, using the fixed weights designed for GrocerySet-A, the 

system learned relationships that proved contradictory when applied to a fundamentally different 

grocery set, GrocerySet-B. 

 

Results and Discussion for the Non-Fixed Weight and High Action Cost Condition 

Figure 49 provides the results for the non-fixed, high action cost condition using 

GrocerySet-A. As with the fixed, high action cost condition the system exhibits consistency in 

the number of groceries per bag while decreasing the number of errors per bag. Like the previous 

condition, Figure 49(b) shows that system performance on constraint (2) remains roughly 

constant with a very low error rate, and that while there is no noticeable decrease there is also no 

increase in the error rate per bag. In addition, Figure 49(a) shows that the error rate on constraint 

(1) decreases, but at a slower rate than that observed for the fixed cost condition. This slower rate 

of improvement is explained by Figure 49(d), which shows the system has more difficulty 

appraising this constraint.   

Figure 50 presents the rate of occurrence and error rate for bags with two, three, and four 

groceries. As with the Figure 49, the trends shown in Figure 50 are similar to those observed in 

the fixed condition: the system steadily selects more two-grocery bags and remains roughly 

constant on its selection of the other two bags, while choosing the less risky three-grocery bag 

type more often. The order of occurrence (i.e., which bag types occur more frequently) and the 

order of error rate (i.e., which bag types are the most dangerous) are the same for both the fixed 

and non-fixed conditions, however, the error rate is noticeably higher in the non-fixed versus the 

fixed condition. 
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Figure 49. Evaluation Graphs for Episodes Generated with GrocerySet-A for the Non-Fixed, 
High Cost Condition and Self-Guided Experience 

 

 

Figure 50. Breakdown of Error Rate and Rate of Occurrence for Bags with Different Amounts of 
Groceries for the Non-Fixed Weight, High Cost Condition and Self-Guided Experience 
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Some of the increases in error rates for this condition may be explained by noting that the 

system is required to simultaneously learn relevance appraisals and utility appraisals. Unlike the 

previous condition, in this condition the system was required to learn the weights for each 

attribute and to use these weights to develop useful grocery partitions. Figure 51 plots the 

individual weight values as a function of the number of episodes used for training. As in 

Experiment 1, the weight associated with the grocery’s name immediately drops to 0.0, while the 

weight associated with firmness of the grocery stays at 1.0. Figure 52 shows how the percent 

difference between each weight value and its mean changes with increased training. This figure 

indicates that while the individual weight values do oscillate, with increased training these 

oscillations generally tend to reduce in magnitude. Interestingly, the weights that exhibit the 

most oscillation are those associated with the attributes color, price, and type, which are three 

attributes that are not required for grocery bagging. It appears that while these attributes are 

believed to be the least relevant (except for name), the system has a very difficult time pushing 

these weights to zero. This is explained by referring to Chapter V, and the discussion on how 

spurious patterns that are not relevant to the current goal may be hidden in the experience used to 

train the system.  

 

 

Figure 51. Learned Weights with Increased Training for the Non-Fixed, High Cost Condition 
and Self-Guided Experience 



142 

 

Figure 52. Percent Difference Between the Learned Weight Values During Training and the 
Weight Means for the Non-Fixed Weight, High Cost Condition and Self-Guided Experience 

 

Table 29 presents the final grocery clusters after 700 episodes of training. These clusters 

are similar to those learned using random experience, however, of the final 30 training epochs 

(episodes 400:700) these clusters were only identified ~30% of the time. The remaining training 

epochs are nearly uniformly distributed across three additional partitions. Two of these partitions 

are presented in Tables 30 and 31. Each differ from the partition presented in Table 29 by just a 

small amount, and each occur ~25% of the time. The third partition appears 20% (6/30) of the 

time and is an inconsistent partitioning in which class C0 and C1 (Table 29) have been arbitrarily 

split into 3-4 new classes, however, of these arbitrary partitions only occur once in the final 15 

training epochs and not at all in the final 10 epochs. The take home point regarding these learned 

partitions is that for the final 300 episodes (30 training epochs) as the learned weights fluctuate 

the system alternates between the three similar classification schemes presented in Tables 29, 30, 

and 31, approximately 80% of the time, with the classification scheme of Table 29 occurring 

most frequently (30%). 
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Table 29. Final Learned Partition Using  
700 Episodes (30% Occurrence) 

 Class Grocery 

 C0 ice_cream, chicken, 
  yogurt, cucumbers 
 C1 granola, ziploc_bags,  
  frozen_pizza, cereal,  
  spaghetti, green_beans 
  teriyaki_bowl, hot_soup 
 C2 rotisserie 
 C3 tuna 
 C4 milk, frozen_fruit 
 C5 oranges, potatoes 
 C6 soda, fruit_juice 
 C7 tissue, bread 
 C8  chips 
 C9 eggs 
 C10 strawberries 

 

 Table 30. Learned Partition Table 31. Learned Partition 
  (25% Occurrence)  (25% Occurrence) 
 Class Grocery Class Grocery 

 C0 ice_cream, chicken, C0 ice_cream, chicken 
  yogurt, cucumbers  yogurt, cucumbers 
    eggs, tuna 
 C1 granola, ziploc_bags, C1 granola, ziploc_bags, 
  frozen_pizza, cereal,   frozen_pizza, cereal, 
  spaghetti, green_beans  spaghetti, green_beans, 
  teriyaki_bowl, hot_soup 
 C2 rotisserie C2 rotisserie 
 C3 tuna C3 teriyaki_bowl 
 C4 milk, frozen_fruit C4 milk, frozen_fruit 
 C5 oranges, potatoes C5 oranges, potatoes 
 C6 soda, fruit_juice C6 soda, fruit_juice 
 C7 tissue, bread C7 tissue, bread 
 C8  chips C8 chips 
 C9 eggs, strawberries C9 strawberries 
   C10 hot_soup 

 

The performance measures for the episodes generated from GrocerySet-B are provided in 

Figure 53. As in the fixed condition, there is a slight net decrease in the number of groceries per 

bag, however, unlike the fixed condition both constraints (1) and (2) show some improvement 

with learning. Figure 53(d) and (e) both show that the system exhibits a decrease in appraisal 

errors, which explains the improved performance in Figures 53(a) and (b). This is explained 

through the results presented in Figures 53(c) and (e), in which the system shows that its ability 

to appraise individual grocery bags generated from GrocerySet-B improves at a rate greater than 

that for the fixed condition. Furthermore, Figure 54 shows that the appraisal accuracy for 
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GrocerySet-B shows the same trend as that observed for GrocerySet-A. Examination of the final 

grocery partitions for GrocerySet-B, corresponding to the learned partition of Table 30, indicates 

that the errors which result from applying the relations learned for GrocerySet-A to GrocerySet-B 

has been reduced dramatically. This examination focuses on clusters C1 and C7 as these 

approximately correspond to the clusters that were used to analyze inter-cluster error rate for the 

fixed condition. Whereas in the fixed condition, the inter-cluster error rate was 29.6%, in the 

non-fixed condition this value has dropped to 8.3%. Therefore, the system has learned a set of 

weights that better enable generalization to new situations and experience than the fixed set of 

weights provided for the earlier condition. While this simple analysis does not cover all possible 

learned relations, comparisons between Figures 53(d), (e) and 49(d), (e) indicate that this 

improvement does extend beyond those relationships that include clusters C1 and C7. 

 

 

Figure 53. Evaluation Graphs for Episodes Generated with GrocerySet-B for the Non-Fixed, 
High Cost Condition and Self-Guided Experience 
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Figure 54. Constraint (1) Appraisal Error Rate for the Non-Fixed Weight, High Cost Condition 
and Self-Guided Experience 

 

Results and Discussion for the Fixed Weight and Low Action Cost Condition 

This condition investigates the effects of having a lower action cost, which allows the 

system to choose actions based only on its learned preferences. There is no significant 

punishment for choosing to get a new bag for every grocery that appears on the conveyor belt, 

other than the appraisal information provided for constraint (3). Figure 55 presents the results for 

the fixed, low cost condition for 700 episodes of training. These results are similar to those 

obtained for the fixed, high cost condition, however, the error rate for this condition has been 

shifted down and the oscillations are smaller. Figure 55(a) shows that for this condition 

performance on constraint (1) is, on average, better than it has been for any of the previous 

conditions. However, the ratio of groceries to bags also never approaches that of the fixed, high 

cost condition. The most obvious explanation for this behavior is that the lower action cost is not 

forcing the system to explore mixing groceries as much as the higher action cost. While such 

conservative behavior should have a detrimental effect on learning by providing fewer complex 

examples for training, this does not appear to be the case when analyzing the remaining plots of 

Figure 55. In these plots the errors rates and appraisal accuracies all show similar trends of 

improvement, but that it should be noted that the system is, by design, an experiential learner and 

that as it learns from experience the learned knowledge dictates the type of “new” experience it 
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acquires. Therefore, the appraisal accuracy should improve, but this improvement is for a 

different type of experience than that encountered in the earlier conditions: experience generated 

without the pressure of a high action cost and thus a lower ratio of groceries to bags. The results 

presented in Figure 56 validate this explanation by showing that the error rate per bag for each 

bag type decreases with experience for all types.  

 

 

Figure 55. Evaluation Graphs for Episodes Generated with GrocerySet-A for the Fixed Weight, 
Low Cost Condition and Self-Guided Experience 
 

Figure 56 shows that the rate of occurrence per episode for bags with two groceries 

steadily increases with training, and that the error rate on these bags steadily decreases. In 

addition, the rate of occurrence for bags with three and four groceries remains roughly constant, 

with the rate of occurrence for the three-grocery bags showing an increase at the end of training. 

Simultaneously, the number of errors per bag decreases with training, and thus it should be 

concluded that the system is learning to combine groceries in ways that enable the performance 

on constraints (1) and (2) to improve. Of these three bag types, the four-grocery bags show the 

least improvement but this is explained by noting that the rate of occurrence for these bags is 
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lowest of all bag types across all experimental conditions described thus far. Without the 

increased exploration (and subsequent errors) caused by the higher action cost, the system rarely 

explores risky situations and learning suffers. Interestingly, the error rate for constraint (2) on 

these bags steadily decreases with training. The most likely explanation for this is a crossover 

effect when creating bags with four groceries. To understand this effect, it is important to note 

that all four-grocery bags were, at on point, three-grocery bags, and that all three-grocery bags 

were, at one point, two-grocery bags, etc. If the system learned to appraise constraint (2) 

correctly for these earlier bags, then the system would be much more likely to “serendipitously” 

appraise the later bags correctly, because of the close proximity of these different bags in feature 

space. Furthermore, these extrapolated appraisals are also more likely to be correct for constraint 

(2) than for constraint (1) because the addition of a single grocery to a single bag is less likely to 

cause a constraint (2) error than a constraint (1) error if the previous bag was evaluated 

positively. This is because constraint (2) errors (overloading a grocery bag) are rarely determined 

by a single grocery, while constraint (1) errors can swing dramatically based on the inclusion of 

a single grocery (e.g., “potatoes with the eggs and bread”).  

Figure 57 presents the results from testing the system with GrocerySet-B. As with the 

fixed, high cost condition there is only a marginal improvement on the number of constraint (1) 

errors per bag. The same explanation is provided as in the previous condition: the fixed weights 

(which were not designed for GrocerySet-B) are causing errors when the system attempts to 

apply the same learned relationships across grocery sets. This is confirmed by noting the slow 

rate of improvement for the appraisal accuracy in this condition, i.e. Figure 57(c). 
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Figure 56. Breakdown of the Error Rate and Rate of Occurrence for Bags with Different 
Amounts of Groceries for the Fixed Weight, Low Cost Condition and Self-Guided Experience 

 

 

Figure 57. Evaluation Graphs for Episodes Generated with GrocerySet-B for the Fixed Weight, 
Low Cost Condition and Self-Guided Experience 
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Results and Discussion for the Non-Fixed Weight and Low Action Cost Condition 

The final condition for Experiment 2 requires evaluating the system with non-fixed 

weights and a low action cost. Learning and improvement on the task should be much more 

difficult for this condition than for any other. The earlier non-fixed weight, high action cost 

condition indicated that non-fixed weights caused the system to perform (slightly) more errors 

than in the fixed condition. However, those results also indicated that the system performed 

better when exposed to GrocerySet-B. The earlier fixed, low cost condition indicated that a lower 

action cost slowed learning by not forcing the system to explore new options, and thus it is 

expected on this condition that the system will exhibit a much slower learning rate than in any 

previous condition, but that the system should perform better on GrocerySet-B than when trained 

on the fixed, low cost condition.  

Figure 58 presents the results for the non-fixed, low cost condition for GrocerySet-A. 

This figure shows that the number of constraint (1) errors per bag remains constant as experience 

increases, even though the appraisal accuracy for each bag tends to be more correct. An 

interesting point about these results is that, while the system does not improve on constraint (1), 

its average performance is as good as it has been for any condition except for the fixed, high cost 

condition described earlier in Experiment 2.  

Further investigation of these results requires analysis of the individual bag types. Figure 

59(a) shows that the number of bags per episode with two groceries initially increases and then 

levels off, while the number of bags with three and four groceries remain constant throughout 

training. Figure 59(b) shows that the rate of constraint (1) errors decreases for bags with two and 

four groceries, but that this rate actually increases for bags with three groceries. This 

immediately explains why the rate of constraint (1) errors per bag (Figure 58a) remains constant: 

the decrease in error rate on two- and four-grocery bags is counterbalanced by the increased error 

rate in three-grocery bags.  
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Figure 58. Evaluation Graphs for Episodes Generated with GrocerySet-A for the Non-Fixed 
Weight, Low Cost Condition and Self-Guided Experience 
 

 

Figure 59. Breakdown of the Error Rate and Rate of Occurrence for Bags with Different 
Amounts of Groceries for the Fixed Weight, Low Cost Condition and Self-Guided Experience 
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Analysis of how the weights change with increase training does not shed any light on 

why system performance does not improve for bags with three groceries. The weight values are 

presented in Figure 60. The maximum oscillation/peak as a percentage of the mean is presented 

in Figure 61. As with the earlier non-fixed condition, the weight oscillations reduce in amplitude 

with increased training except for those attributes that are given a low weight value and are not 

relevant to the grocery-bagging task.  

The developed partitions that resulted from the learned weight values were the same as 

those developed for the high cost condition, however, the distribution across those partitions was 

dramatically different. Whereas in the earlier condition three different partitions were created 

with an almost uniform distribution, for the current condition the partition presented in Table 29 

was only created 10%, while the partition from Table 30 was created 53% of the time, and the 

partition presented in Table 31 was created 16.7% of the time. The remaining partitions involved 

arbitrarily splitting the larger clusters into multiple smaller clusters. These final three partitions, 

however, are not to blame for the poor performance on bags with three groceries. As noted 

earlier, these partitions appropriately clustered the groceries so as to reduce the number of 

constraint (1) errors within clusters while leaving it to the relational maps to learn the inter-

cluster relationships. With the low action cost and subsequent lower exploration rate, it appear 

that the relational maps are simply not learning as well in this condition as in prior conditions.   

Figure 62 presents the results of testing the trained system on experience generated from 

GrocerySet-B. Figures 62(d) and (e) show that just as in the earlier non-fixed condition, the 

system learns to correctly appraise each situation with respect to constraints (1) and (2), but there 

is no improvement on these constraints during task performance. The error rate, however, for 

constraint (1), as well as the error rate for constraint (2), are consistently lower than they are in 

any of the previous conditions. Unfortunately, the ratio of groceries to bags is also lower than it 

has been at any other point during these experiments. Thus, the lack of exploration greatly 

hinders the ability of the system to improve upon its task performance and the behavior appears 

to be unchanged while the appraisals increase in accuracy. 
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Figure 60. Learned Weights with Increased Training for the Non-Fixed Weight, Low Cost 
Condition and Self-Guided Experience 

 

 

Figure 61. Percent Difference Between Maximum Peaks During Weight Training for the Non-
Fixed Weight, Low Cost Condition and Self-Guided Experience 
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Figure 62. Evaluation Graphs for Episodes Generated with GrocerySet-B for the Non-Fixed, 
Low Cost Condition 

 

Experiment 2 was designed to evaluate how well the system could extract knowledge 

from its own experience and then apply that knowledge to future iterations of the grocery-

bagging task. Throughout each experimental condition, the system was evaluated and the results 

indicated that in order for the system to learn it must be forced to explore the wealth of possible 

situations available to it. Without this exploration, the system may improve on its ability to 

appraise situations, but this improvement is not reflected in it behavior. The rational is that 

without exploration, the system has fewer alternatives for it to “prefer”. It should be noted that 

the appraisal error that has been measured throughout this experiment was based on the actions 

that were actually chosen by the system. In other words, the results presented here only indicate 

that appraisal accuracy improves for those situations that the system chooses to explore/pursue.  

Certainly, the need for exploration is not a new concept in intelligent robotics, and thus it 

should be expected that when the system explores less the learning will suffer. However, it was 

not as expected that in order for the system to generalize it must be allowed to develop its own 

relevance appraisals. When the identification of goal-relevant features is not rooted in the 

system’s own experience, the system runs the risk of creating goal-relevant concepts that are 
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overly specialized to whatever a priori knowledge was provided. If this knowledge is good, 

obviously performance will be good as well, but when this knowledge contains errors, the system 

is unable to generalize beyond the limited concepts that it was able to form at initialization. 

While the generalized performance presented here (GrocerySet-B) did not exhibit the same level 

of learning as the non-generalized performance (GrocerySet-A), when the system was allowed to 

create its own concepts the performance was better that when the system had to use the preset 

concepts.  

Enabling the system to develop its own goal-relevant concepts, however, requires that the 

system have more flexibility in learning the correct utility appraisals. Throughout Experiment 2, 

as well as Experiment 1, the system demonstrates that when it is required to learn goal-relevant 

concepts, its utility appraisals do not degrade. In fact, in many of the conditions that have been 

discussed, the utility appraisals are as good as, and sometimes better, when the system is allowed 

to develop its own notions of relevance.  

The results that have been presented thus far require the system to balance multiple 

constraints without any a priori knowledge of which constraints are more important. Therefore, 

as the system has learned to appraise each situation it must often perform a tradeoff between 

conflicting constraints. For example, while the average ratio of groceries to bags remained close 

to 2.0 across and throughout all conditions, a simpler solution to the grocery-bagging problem 

would have involved merely placing one grocery in each bag. This solution would have reduced 

the number of constraint (1) and (2) violations to zero, but the system would have been penalized 

by constraint (3). Without knowledge that constraint (1) was, perhaps, the most important, the 

system was forced to balance the ratio of groceries to bags with its expected confidence and 

appraisals that constraints (1) and (2) would or would not be met. Furthermore, for each grocery 

in which the system believed that the best course of action was separation (i.e., one grocery in 

one bag), the system necessarily had to create a bag with three groceries in order to maintain 

adequate performance on constraint (3) while still protecting the destroyable grocery. 

Finally, for each experiment and condition that has been described in this section the 

system was allowed to perform a (somewhat) comprehensive search of the possible state space. 

This was done without concern for deliberation time. The experiment described in the following 

section will test how well the system performs the grocery-bagging task when it is must first 

appraise situations for deliberation time (i.e., urgency) and adjust its deliberation parameters 
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accordingly. In this experiment these appraisals are based on the system’s ability to internally 

rehearse various situations during offline processing. 

 

Experiment 3: Urgency Appraisal Learning Using Self-Guided Experience 

Experiment Description 

In this experiment, the system’s ability to intelligently modify its search through the 

decision space is evaluated and tested. This includes the urgency appraisals that adaptively preset 

the search parameters depth and breadth. The generation of interrupt signals is evaluated during 

the experiment on the physical ISAC system. Therefore, this experiment tests the system’s 

ability to generate useful performance profiles and to employ these profiles in future grocery-

bagging situations.  

The experimental procedure is the same as that used for Experiment 2, with the exception 

that a new step (process experience to learn urgency appraisals) has been added. Whereas the 

appraisals for relevance and urgency are trained after every 10 episodes, in this experiment the 

appraisal for urgency is trained every 100 episodes. The rationale for this discrepancy is the 

computation costs associated with internally rehearsing past experience to derive the 

performance profiles. At each training epoch only a subset of the possible episodes are used for 

training. In this experiment the system selects 10 states at random for every 100 episodes in 

episodic memory. This number was chosen because initial tests showed that examining 10% of 

past experience was typically sufficient to analyze performance without requiring extensive, 

lengthy deliberation.  

It is important to recall from Chapter V, that during internal rehearsal each sampled state 

is analyzed for a variety of depth and breadth values. Thus each state is analyzed several times 

and if too many states are selected the internal rehearsal will be prohibitively slow; as shown in 

the following subsection deliberation time can be quite long for some states. During training, the 

system repeatedly analyzed the sampled state for all possible search depths (up to three), and for 

each 10% breadth (i.e., 10%, 20%, etc.). Here depth is taken to be the number of groceries 

bagged, therefore, for a search depth of three the system continues its search until three groceries 

have been bagged, or no more groceries can be bagged. Unlike depth, however, breadth is set as 

a percentage. Therefore, for a search breadth of 30% only the top 30% responses (i.e., best) are 
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kept at each depth, and the rest are pruned. The modified experimental procedure is listed as 

follows: 

1. Train the system using the current experience in long-term memory. 

2. If num_episode is a factor of 100, then select 0.1 * num_episode episodes and train the 

urgency appraisal maps for d = {1, 2, 3} and b = {0.1, 0.2, 0.3, …, 1.0}.  

3. Select the number of groceries N uniformly from the range [5, 20]. 

4. Set the total number of groceries bagged, total_count  = 0. 

5. Select 0 < M ≤ min(6, N – total_count) using a uniform distribution. 

6. Select M groceries from GrocerySet-A or GrocerySet-B using a uniform distribution and 

then place those groceries on the conveyor. 

7. Allow the system to bag each of the M groceries. 

8. Set total_count = total_count + M. 

9. If total_count < N return to Step (5), else go to Step (10). 

10. Provide external feedback for the final situation. 

11. Measure the error between the internal appraisals and the external feedback and record 

the number of constraint violations.  

12. If GrocerySet-A was used, then add the new episode to long-term memory. 

13. Set num_episode = num_episode + 1.0.  

14. If num_episode is a factor of 10, add new episodes to long-term memory and go to Step 

(1), else go to Step (3). 

 

 

Results and Discussion for Urgency Appraisals 

Rather than re-test the system for all four conditions that have been used thus far, the 

urgency appraisals were evaluated for only the non-fixed weight, high action cost condition. The 

selection of this condition is based on the discussion from the end of Experiment 2 in which it 

was concluded that the non-fixed weights were necessary for generalization and that the high 

action cost was necessary for learning. Once the results are obtained for the urgency condition, 

those results will be compared to each of the four conditions from Experiment 2 in order to better 

understand the possible gains and risks in using internal rehearsal and urgency appraisals.  
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Figure 63 presents the averaged deliberation time for each of the four previous 

experimental conditions when tested using GrocerySet-A. This figure also presents the averaged 

deliberation time for the new urgency condition. As with Experiment 2, averaging is performed 

using a square filter of width 30 episodes, or three training epochs. In each of the four conditions 

from Experiment 2 the averaged deliberation time appears centered about a mean, but is also 

marked by very large oscillations that occur at random episodes. These oscillations are the result 

of the random nature of episode generation and the static nature of the planning algorithm. In 

none of the four conditions shown in Figures 63(a)-(d) is the mean deliberation time less than 30 

seconds per episode, and it is not uncommon for deliberation to require more than 100 seconds 

per episode. 

For the urgency condition, however, there is a significant decrease in the mean 

deliberation time over the entire experiment. For the first 100 episodes of this experiment, the 

system has not yet performed any internal rehearsal and Figure 63(e) shows that before the 100 

episode mark, the averaged deliberation time is similar to that of other conditions. After the 100 

episode mark, though, the urgency appraisals allow the system to modify its search and a 

subsequent decrease in deliberation time is observed. It should be noted that the urgency 

appraisals performed during this experiment, are only those appraisals related to maximizing the 

solution quality versus the deliberation time. The result of these appraisals is adaptive 

modification of the search parameters depth (d) and breadth (b).   
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Figure 63. Comparisons of Deliberation Time Between the Four Domain Knowledge Conditions 
and the Urgency Condition 

 

The adjustment of d and b is based on the performance profiles extracted by the system 

from the new internally-generated experience (i.e., the mentally simulation). As stated in Chapter 

V, the search algorithm that is implemented for this work is not a true anytime algorithm because 

final solution quality is not necessarily a strict, monotonically increasing function of time (or the 

amount of search). However, the search algorithm does approximate the anytime function with 

respect to the system’s internal appraisals and knowledge representations, and this is what is 

necessary to perform internal rehearsal in the manner required by this dissertation. The claim that 

the search algorithm approximates the anytime property is supported experimentally by the 

results presented in Figure 64, which plots the learned performance profiles for each of the six 

internal rehearsal epochs. While there are some exceptions, Figure 64 shows that, in general, the 

solution quality with respect to the system’s internal appraisals increases with both search depth 

and search breadth. Furthermore, the variance across these results can be explained by noting 

that: 

1. The system does not rehearse the same states at each training epoch 

2. The system can only use the most current knowledge, and that this knowledge is derived 

through unsupervised learning which necessarily injects some variability. 
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3. These plots, by design, only reflect the percentage of maximum solution quality 

achievable and not the actual maximum solution quality.  

 

 

Figure 64. Learned Performance Profiles for Appraising Urgency and Adjusting the Search 
Parameters Depth and Breadth 

 

As this experiment has thus far shown, the system is able to learn through internal 

rehearsal an urgency appraisal that allows adjustment of its cognitive response and deliberation 

time. However, it is important that the gains in deliberation time not come at the ultimate 

expense of solution quality. Due to the nature of the internal rehearsal approach used, which re-

evaluates past experience using the latest learned knowledge, the learned performance profiles 

are biased towards being optimistic estimations of solution quality. This bias exists because the 

most current knowledge has, by design, been learned from the same experience that is later used 

as a baseline for internally generating new “practice” experiences. Furthermore, Figure 63(e) 

suggests that this bias does influence parameter setting to an extent, because the improvement in 

deliberation time is both very dramatic and immediate; hallmarks of an “optimistic” system. 

Such biased influence is only unwelcome, though, if it simultaneously sacrifices solution quality.  
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Figure 65 presents the performance evaluations for this experiment. Figure 65(a) and (b) 

show that the final error rate for both constraints (1) and (2) is actually less than that observed in 

the non-fixed, high cost condition of Experiment 2. Figure 65(c), however, shows that there is 

also a slight decrease in the ratio of groceries to bags, and thus performance is not better on 

every constraint. Further analysis of these results also shows that the rate of occurrence of bags 

with two or three groceries does not increase, as it has in earlier conditions, but that the error rate 

on these bag types does steadily decrease (Figure 66). Additionally, these results show that the 

system has a very difficult time avoiding errors on grocery bags with four groceries and that 

performance on bags of this type leaves much to be desired.  

 

 

Figure 65. Evaluation Graphs for Episodes Generated with GrocerySet-A for the Non-Fixed 
Weight, High Cost, Urgency Condition 
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Figure 66. Breakdown of the Error Rate and Rate of Occurrence for Bags with Different 
Amounts of Groceries for the Non-Fixed Weight, High Cost, Urgency Condition 
 

 

Figure 67. Evaluation Graphs for Episodes Generated with GrocerySet-B for the Non-Fixed 
Weight, High Cost, Urgency Condition 
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Figure 67 presents the results for the episodes generated using GrocerySet-B. As with the 

earlier non-fixed conditions the system exhibits the most improvement on its ability to correctly 

appraise situations with respect to constraints (1) and (2). However, this figure also indicates that 

there is a small improvement on the error rate for both constraints (1) and (2), and unlike the 

episodes generated with GrocerySet-A, the ratio of groceries to bags does not decrease. Figures 

65-67 indicate that task performance does not suffer dramatically when the system is allowed to 

adjust its own search parameters in favor of quicker decision making. 

 

Experiment 4: Fit Appraisal Learning Using Self-Guided Experience  

Experiment Description 

The final simulation experiment evaluated and tested the system’s ability to monitor the 

levels of fit between its current knowledge and abilities and the task that is performed. While 

such knowledge could ultimately be used by the robot to mediate the cognitive cycle in a manner 

similar to that for urgency appraisals, the purpose in this research is simply to determine which 

knowledge structures are performing well and which require further training, or outside 

assistance. These appraisals can be viewed as assigning credit/blame when the robot succeeds or 

fails at the task; however, this is not merely a static process but is ongoing over a period of 

multiple episodes. Fit is only reset when the system retrains its knowledge structures.  

For this experiment the fit appraisals were taken from the system trained during 

Experiment 3. In other words, the system was not retrained through an additional 700 episodes, 

but since the fit appraisals are simply measurements on the system and do not affect 

performance, these measurements were taken concurrently as the system was trained and 

evaluated in Experiment 3. The rational for choosing the urgency condition is based on the fact 

that the measured system had to appraise both relevance and utility, and therefore none of the 

earlier fixed conditions could be used. In addition, the system needed to learn well in order for fit 

to improve, and thus the low cost conditions were eliminated. These eliminations left the non-

fixed, high cost condition as the one most suitable for this experiment. The urgency condition 

was used because the shortened deliberation time forced the system to make quicker decisions, 

which is more conducive to evaluating how well the system’s knowledge fits the current 

situation.  
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As the system was evaluated and trained during Experiment 3, fit appraisals were made 

using the final state from each episode, the internal appraisals for this state, and the external 

reward given for that state. Using this information, the matrix E (Chapter V) was determined and 

used to update the vector φφφφ. This was repeated for every episode and φφφφ was allowed to 

accumulate between training epochs. However, when the individual components were retrained, 

φφφφ was reset. The following subsection presents the final fit appraisals for each training epoch.  

 

Results and Discussion 

Figure 68 presents the fit values obtained as the system from Experiment 3 was trained 

and evaluated. As with the earlier conditions, these results have been filtered using a window 

size of three training epochs. Values of fit can range between 0 and 1, with 0 indicating good fit, 

and 1 indicating poor fit. However, with these appraisals the individual values are not as 

important as the order relative to each other as well as any trends present. These results indicate 

that as experience is acquired the fit between the system’s knowledge and planning components 

and the new situations to which they are exposed becomes increasingly more accurate, but also 

that each component improves at its own rate.  

Figure 68(a) presents the fit levels with respect to constraint (1) for the relevance and 

utility appraisals and the planning algorithm, i.e., φ1
c, φ1

m
, φ1

p. These appraisals indicate that the 

components for relevance and utility improve the most and that a small, nearly constant amount 

of error can be attributed to the planning component. It should be noted that the planning 

component cannot improve its own performance and that the only aspect of its performance that 

changes with experience is the amount of search that it performs (and this is only the case in the 

urgency condition). This component is analyzed because as the system is required to balance 

multiple constraints this balance is ultimately achieved by the planning algorithm. It is possible 

that during deliberation, and in an attempt to balance all three constraints, the planning algorithm 

will sacrifice one constraint to preserve the other two. When this happens it is important to 

realize that the planning algorithm was the “culprit”.  
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Figure 68. Fit Appraisals for Relevance, Utility, and Planning for Each Constraint and the Non-
Fixed Weight, High Cost, Urgency Condition 
 

Figure 68(a) shows that while the fit between the planning algorithm and success on 

constraint (1) remains constant, the planning algorithm is also the least responsible for errors on 

this constraint. The results indicate that even though the fit between both the relevance and utility 

appraisals and constraint (1) improves with training, these components deserve most of the 

blame for errors on this constraint, with the relevance appraisals receiving the lion’s share. 

Analysis and verification requires evaluation of the individual episodes, the errors that were 

made, and the appraisals that caused those errors.  

For this analysis the five training epochs 38, 39, 40, 41, and 42 were used. This window 

was chosen because it corresponds to a large “jump” in the fit appraisals for constraint (1). 

During these 50 episodes there was a combined total of 29 errors on constraint (1). What was 

analyzed with these errors was whether or not they could have been predicted, and if not – why? 

This analysis focused first on the individual groceries in each bag and the cluster to which those 

groceries belonged, in order to understand whether the grocery classifications caused the error. 
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To do this the groceries that caused each error were extracted and the clusters to which they 

belonged were analyzed to determine whether the remaining members of those clusters would 

also have caused the error, or was the error caused by an incorrect assignment. This is the same 

type of analysis that led to the conclusion in the fixed weight, high cost condition from 

Experiment 2 that the fixed weights forced groceries from GrocerySet-B into clusters when they 

did not obey the relationship properties of those clusters.  

For the 29 errors, 10 were identified as having been caused by incorrect clustering. For 

these 10 errors, the groceries, classifications, and “cluster mix ratio” are listed in Table 32. The 

cluster mix ratio is a measure of how many pairs of groceries (one from each cluster) obey the 

same relationship as those two groceries that caused the error. For example, given two clusters, 

each with ten groceries, if nine of the groceries in the first cluster can successfully be mixed (i.e., 

bagged) with all ten groceries from the second cluster then the cluster mix ratio for success is 

90%. The remaining grocery in the first cluster does not obey this relationship and would cause 

errors during task performance if the relational maps successfully learned the “mix is okay” 

relationship.  

 

Table 32. Constraint (1) Errors as a Result of Misclassification 

 Grocery 1 Grocery 2 Class 1 Class 2 Cluster Mix Ratio 

 eggs oranges C4 C8 16.7% 
 eggs oranges C4 C8 16.7% 
 eggs hot_soup C5 C0 12.5% 
 hot_soup ice_cream C0 C13 15.0% 
 eggs tuna C6 C6 22.2% 
 milk eggs C0 C6 16.7% 
 hot_soup yogurt C0 C6 20.0% 
 milk eggs C8 C6 20.0% 
 eggs yogurt C6 C6 32.0%  
 ice_cream  hot_soup C0 C6 20.0% 

 

Table 32 shows an interesting trend: 100% of these errors involved either hot_soup or 

eggs. Further analysis revealed that when these two groceries were treated correctly, they were 

placed in their own category (sometimes eggs was grouped with strawberries). When this did not 

happen, however, these groceries were placed in a category in which they were the outlier. Eggs 

were often placed with other “cold” items, yet many of these cold items could be bagged with 

heavy items, such as oranges, while eggs could not. Hot_soup was often placed in a large cluster 
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with spaghetti, green_beans, ziploc_bags, granola, and sometimes tuna, but unlike these other 

groceries hot_soup could not be bagged with cold items, such as ice_cream.  

Of the remaining 19 errors, six involved bags with four or more groceries and a 

confidence measure less than 50%. For these bags, the relational map was to blame either 

because it did not have enough experience, or because it did not correctly generalize the 

experience it had. Because the number of groceries in these bags was so high, however, the risk 

associated with these bags kept these errors from substantially modifying fit. In addition, six of 

the 29 errors were caused by the planning algorithm. Analysis of these bags revealed that the 

relational maps had given appraisals that were, at least approximately, correct but that the 

planning algorithm still chose an action that led to that error. Here “approximately correct” 

means that the appraisals had the correct sign and was with 0.5 of the true value. Thus these 

errors could be attributed to either a lack of search, the high action cost, or “fear” of a worse 

alternative. The final seven errors were attributed to the relational map because it failed to 

identify the relationship that would have predicted task success. Each of these bags, however, 

had three groceries which meant that the target relationship was more complex than in the simple 

two grocery case.  

Figure 68(b) shows that the level of fit, with respect to constraint (2), between the same 

three components and the grocery-bagging task was much better. This should be expected, 

however, because the rate of constraint (2) errors was much lower and therefore the system 

should appraise fit better. Another conclusion that can be drawn from Figure 68(b) is that when 

errors do occur, the blame is almost equally divided amongst all of the components.  

Figure 68(c) is intriguing. This figure shows that while the level of fit between the 

relevance and utility appraisals and the performance on constraint (3) improves with training, the 

fit between the planning algorithm and constraint (3) not only remains constant, but also that the 

planning algorithm deserves almost all of the blame for errors on this constraint. To understand 

why this is the case, it should be recalled that constraint (3) is evaluated with a fuzzy rule that is 

capable of returning values in the range [κ1, κ2), where κ1 and κ2 are parameters set by the 

system designer; in this experiment they are set to 1.5. Due to the fuzzy nature of this rule, many 

of the values provided by the external critic are actually much less than these limits. Analysis 

revealed that it is not uncommon for the system to receive values of ±0.5. Because of this, once 

the system learned to appraise all three constraints constraint (3) implicitly became “less 
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important” in most situations. Therefore, when choosing actions, the planning algorithm would 

be more likely to pursue paths in which appraisals for constraint (3) have a lower value because 

these appraisals are simply outweighed by the ±1.0 values returned by the other utility appraisals. 

This also provides more explanation as to why there was no substantial increase in the ratio of 

groceries to bags in the earlier experiments.  

 

ISAC Integrated Experiments 

Experimental Design 

The previous simulation-based experiments have focused on running multiple trials with 

large amounts of experience and numerous conditions. Through these experiments, the system 

has shown the ability to appraise relevance and identify useful concepts for goal 

accomplishment. The system has also learned to appraise utility along the various dimensions 

required for bagging groceries, and the system has shown that it can use internal rehearsal to 

evaluate its ability for the purpose of developing appreciations of itself. These appreciations were 

used to inform deliberation by mediating the cognitive cycle, or to identify for a human user 

which components require further training or assistance. In addition, the simulation experiments 

used an extended behavioral repertoire that included the Wait(g) behavior, which is not available 

with the physical robot. In effect, this behavior enabled the simulated system to select the desired 

order in which groceries should be bagged by allowing the system to bypass those groceries on 

the conveyor belt that are within reach in favor of groceries that are not yet in reach.  

By including the extra Wait(g) behavior, the simulated grocery-bagging task was more 

complex with respect to planning. This is due to the fact that this behavior introduced additional 

options that then had to be appraised, weighed, and considered. Both the simulated and hardware 

experiments required that the system cope with groceries at the front of the conveyor belt, but the 

simulated system could also plan for groceries at the end of the belt as well. Therefore, ISAC had 

to be deal with groceries in the sequential order in which they appeared and this, simultaneously, 

limited the behaviors available to ISAC and eased the computational requirements associated 

with planning.  

The interaction of a humanoid robot with the real world critically depends on the robot’s 

morphology and on its environment. Therefore, simulation is only one aspect of system 

validation. The current experiments aimed to evaluate the integration of the cognitive control 
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system described in Chapter V, and conceptually validated in Experiments 1-4, with the ISAC 

hardware system and peripheral software components. In particular, the objective is to integrate 

the designed control system with ISAC’s Perceptual Agents and Activator Agents in order to 

complete the cognitive control process. Figure 69 shows the combined ISAC-Simulator 

integrated environment used.  

 

      

 (a) (b) 

Figure 69. (a) ISAC Hardware System, and (b) Simulator Environment 

 

To investigate system integration, each of the components described in Chapter V and 

documented in Appendex B (dynamic representations, relational maps, urgency appraisals, and 

fit evaluations) were used for these experiments. The operation of these components within the 

ISAC architecture can be visualized as a set of control paths through the cognitive architecture, 

as shown in Figure 70. Within the ISAC architecture, appraising relevance occurs along the path 

shown in Figure 70(a). This path should be considered a “preprocessing” step that filters and 

focuses incoming stimuli into a set of task-relevant categories that can then be passed to the 

deliberative control loop. Appraising utility occurs along the path shown in Figure 70(b), and 

ends in the Central Executive Agent (CEA) which is in charge of comparing options and making 

the final decision. Urgency appraisals occur along the path shown in Figure 70(c) and are used to 

inform both the CEA and the Affect Agent. While utility and urgency appraisals ultimately end 

in the CEA, fit appraisals (Figure 70d) end in the Goals and Motivation System due to the fact 

that these appraisals are only used as post hoc processing and evaluative measures.  
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 (a) Relevance Path (b) Utility Path 

      

 (c) Urgency Path (b) Fit Path 

Figure 70. Significant Paths within the ISAC Architecture for (a) Relevance, (b) Utility, (c) 
Urgency, and (d) Fit Appraisals  
 

Integrating the designed system with the Perceptual Agents requires replacing the 

simulated perceptual input with input from the SES. Because the system was originally designed 

to operate on the symbolic output of the SES, this integration was a straightforward operation in 

which the data on the SES was accessed rather than the data stored in the simulated system. This 

can be conceptualized by the function: 

 

GetPercepts(SState s, bool simulation) 

{ 

 if(!simulation) 

 ses.Get(s.percepts( )); 

else 

 simulator.Get(s.percepts( )); 

} 
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in which the flag simulation indicates whether the experiment is using real or simulated data, and 

the struct s holds the current state (see Appendix A for a description of SState).  

Once the perceptual information has been received from the SES, it can be sent in two 

directions. The first direction involves sending that information to the Working Memory System 

(WMS) where it is filtered and used to create the necessary feature vectors that will later be used 

to access the relational maps. As described in Chapter V, in this work the WMS was not 

provided a priori with information indicating how percepts should be categorized into goal-

relevant chunks. Therefore, the component for developing dynamic representations had to use 

the learned weights to create the goal relevant chunks. This can be seen as an addition to the 

Working Memory toolkit (WMtk) described in Chapter V. In the WMtk, chunks were preset by 

the system designer; here the chunks are learned from experience. Example code for this 

operation is given as follows:  

 

//retrieve goal-relevant weights 

double weights[9] = {0}; 

dynamic_representation.Retrieve(weights); 

 

//group percepts into goal-relevant categories 

dynamic_representation.Compress(s.percepts, weights); 

 

//Fill in feature vectors with percepts 

std::vector<SFeatureVector> fv; 

dynamic_representation.InitializeFeatureVectors(fv, s.percepts); 

s.fv = fv; 
 

The second direction involves sending the perceptual information directly to the IRS and Goals 

and Motivation System. This enables the identification of interrupts and the development of fit 

appraisals. In both cases, only specific perceptual information is monitored. The IRS monitors 

grocery positions, and the Goals and Motivation System monitors external feedback. Example 

code to implement these operations is as follows: 

 

 std::vector<double> positions[3]; 

 std::vector<SEvaluation> evaluation; 

 for(int i=0;i<s.percepts.size( );i++) 

 { 

  if(s.percepts.at(i).identificationType == m_GrocID) 

  { 

   positions[0].push_back(s.percepts.xpos); 

   positions[1].push_back(s.percepts.ypos); 

   positions[2].push_back(s.percepts.zpos); 

  } 

  else if(s.percepts.at(i).identificationType == m_ExtID) 
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  { 

   SEvaluation eval; 

   eval.fv = s.percepts.GetFeatureVector( ); 

   eval.r = s.percepts.GetReward( ); 

   evaluation.push_back(eval); 

  } 

 } 

 

 //IRS 

 bool interrupt; 

 irs.GetInterrupt(positions, interrupt); 

 

 //Goals and Motivation System 

 gms.AppraiseFit(evaluation); 
 

The feature vectors are used to retrieve internal utility appraisals and to facilitate 

planning within the CEA. This process involves accessing the relational maps and passing the 

retrieved information through the Affect Agent back to the CEA. Once this has been 

accomplished the CEA can continue to search through the decision space, or can return the 

current best policy. The actual code to perform this recursive search is too long to present here, 

but is best summarized using the pseudo-code presented in Figure 25, in which all possible 

actions A that may be performed in a given state are used to create the set of possible states S that 

may be reached from the current state.  

Once the policy has been developed, a behavior must be selected and executed. In this 

dissertation, the term behavior is used to indicate the action/motion that ISAC physically 

performs. In Chapter V and in the simulation experiments, behaviors have also been referred to 

as actions, but for the current experiment, once an action has been selected it is referred to as a 

behavior to maintain consistency with previous work on ISAC. In addition, some behaviors may 

be composed of sub-actions as described in the section Behavioral Repertoire. The lowest level 

of sub-action is referred to as an atomic action. As described earlier, this hierarchy exists to 

reduce the computational demands on planning and decision making.  

The selection process requires choosing the behavior for the current state, but the 

execution process requires integration with the Activator Agents. This integration requires two 

steps: 1) parsing the desired behaviors into the properly sequenced atomic actions, and 2) 

sending the parsed action commands to the agents in charge of the physical hardware rather than 

to the simulated agents. The second step mirrors the straightforward integration between the 
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control system and the Perceptual Agents and can be conceptualized by the simple function 

SendAction( ): 

 

SendAction(CAction action, bool simulation) 

{ 

 if(!simulation) 

  activatorAgents.Put(action); 

 else 

  simulator.Put(action); 

}  
 

 The first step requires the use of procedural knowledge for each behavior, in particular 

the preconditions and postconditions for each behavior. This step also requires feedback from the 

Activator Agents in order to determine when the next behavior should begin. An example is the 

behavior BagGroceryRight(b, g) which, as described earlier, could be sequentially composed of 

multiple simpler behaviors that for the sake of deliberation time have been hidden from the 

planning and decision-making algorithms. Control of this behavior must appreciate that the order 

in which this sequence is executed is critical (i.e., ISAC should not reach for the bag before 

grasping the grocery) and that one sub-action cannot be initiated until the previous sub-action has 

finished. Therefore control of this behavior should be performed using a function similar to: 

 

PerformBehavior(CAction action, bool sim) 

{ 

 std::vector<CAction> action_seq; 

 //Get the sequence of actions for the current behavior 

m_ProceduralMemory.RetrieveActionSequence(action, action_seq); 

//Execute each action in sequence 

 for(int i=0;i<action_seq.size( );i++) 

 { 

  SendAction(action_seq.at(i), sim); 

  int outcome = SUCCESS; 

  while(!Response(action_seq.at(i), sim, outcome)) 

  {} 

 if(outcome != SUCCESS) 

   break; 

 } 

} 

 
where the Response( ) function awaits confirmation from the Activator Agents that the sub-

action has been completed. Information related to the success/failure of the behavior is stored in 

the variable outcome and can be used to stop the behavior at any point during execution if the 

previous action was unsuccessful. 
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Communication between the Perceptual Agents, Activator Agents, and the components 

housed in the Deliberation & Commitment block was handled using standard TCP/IP sockets, as 

shown in Figure 71. The communication between the Perceptual Agents and the Activator 

Agents and the hardware was handled using RS232 serial connections or PCI ports. Once 

information had been passed to the computer running the remaining software components (i.e., 

Deliberation & Commitment block), inter-computer communication was no longer an issue as 

these components were designed as object-oriented classes and were running within the same 

main( ) loop.  

 

 

Figure 71. System Connections for the Integrated ISAC Experiments 

 

The final integration step for these experiments was the most difficult to perform, and 

was important for proper, low-level (i.e., end-effector position) control. This was an integration 

step that did not involve any of the components specifically designed for this work. Rather, this 

step involved directly integrating the Perceptual and Activator Agents in order to perform the 

behaviors necessary to grasp items on the conveyor belt. Currently, there are two basic methods 

for executing arm behaviors on ISAC:  

1. Joint angle control based on inverse kinematics. In this case, a desired end-effector 

position and orientation is input to the system, and inverse kinematics are used to 

determine the appropriate joint angles for this pose. The arm can be driven directly to this 

point, or can traverse a pre-defined set of waypoints before reaching the final position. 
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2. Joint angle control based on pre-recorded files. In this case, the arm is moved through a 

pre-defined set of points. These pre-defined points may be either previously recorded 

motions, or new interpolated motions, but in either scenario the motion is completely 

defined before ISAC begins execution. 

 

Figure 72 illustrates a user-interface (UI) developed to perform basic arm control. This user 

interface is based on a neural network controller developed by Ulutas, et al., [2008]. 

 

 

Figure 72. User-Interface for ISAC Arm Control 

 

Each method relies on joint angle information, but differs in the manner in which the 

joint angles are determined. In the first case, inverse kinematics are used to derive the joint 

angles from desired end-effector cartesian coordinates, while in the second case the joint angles 

are loaded directly from a file. Grippers can be used with both control methods. In the first 

method, the gripper should be operated (i.e., opened/closed) once the arm has reached the desired 

final position. The second method, however, requires that a pause be inserted into the recorded 

motion file so that during this pause the grippers may be opened or closed as necessary. Gripper 

control was enabled by using the pressure control from ISAC’s outermost “tricep” muscle. This 

muscle had been previously disabled, as it was not necessary for control. (NOTE: This is because 

the downward motion powered by the triceps was already assisted by gravity and did not require 

flexing of the triceps but rather merely the controlled relaxing of the biceps). Therefore, the Arm 

Agents were used to control the grippers, and this control function is described in Appendix B. 
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Without direct integration between the Perceptual and Activator Agents the coordinates 

used by either of the described methods may not reflect the most recent, or most accurate, 

information regarding desired end-effector location. An ideal solution to this problem would be 

the implementation of visual-servoing control [Taylor and Kleeman, 2001] [Hosoda and Asada, 

1994], however, such control was beyond the scope of this dissertation. A less ideal, but more 

practical solution, involves combining the percept’s perceived location with the measured 

position of ISAC’s end-effectors. Unfortunately, there is not a linear transformation between 

these two coordinate frames because of the different sensors used (cameras and joint encoders), 

and thus this technique is associated with a certain amount of error that is a nonlinear function of 

object location, color, size, orientation, lighting conditions, and camera angles. Therefore, rather 

than attempt to solve these problems within this dissertation, pre-recorded (open-loop) motions 

were used to demonstrate the integration between the designed control system and ISAC’s 

Activator Agents. The integration between ISAC’s Perceptual and Activator Agents was 

reserved for future work. 

Finally with respect to system integration, only a subset of ISAC’s information control 

pathways was used. Examples of these pathways are provided in Figure 70, but are also 

described in Chapter V. The primary control pathways that were not used were those associated 

with ISAC’s reactive and routine (1st order response) systems. For these experiments, it was 

desired to isolate ISAC’s cognitive control processes (i.e., working memory, central executive, 

internal rehearsal, and long-term memory) and therefore the reactive and routine components 

were omitted.   

Once integration was complete, the components were connected as described in Chapter 

V (and shown in Figures 14 and 26). The inputs/outputs for each component were unchanged, 

with the exception that the percepts retrieved from the SES were used as the perceptual inputs 

rather than the percepts present on the simulated conveyor belt, and that the behavior outputs 

were parsed and sent to the Activator Agents rather than to the simulated ISAC system. The code 

to implement each component is summarized and described in Appendix B. 

 

ISAC Experiment 1: Integration of Knowledge and Processes Developed in Simulation  

The objective of this experiment was to evaluate how well ISAC could deploy the 

knowledge learned in simulation, and related to the appraisals for relevance, utility, urgency, and 
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fit, to the grocery-bagging task. Complete system integration was required with the exception 

that a pre-recorded motion was used to for the executed behavior. This motion involved reaching 

across the conveyor belt, closing the gripper, moving the gripper to a preset location, opening the 

gripper, and then returning the arm to the home position. This motion was recorded through 

manual teleoperation on ISAC, and the six individual joint angles were stored in an ASCII 

character file labeled “motion.txt”. The code method to capture motions is shown in Appendix B. 

This motion was executed in lieu of the complex, closed-loop pick and place behavior required 

to place groceries in individual bags. Because of the pre-programmed nature of this motion, once 

the behavior was completed the planning algorithms were instructed to update the current state 

“as if” the motion had been completed correctly. If the grocery was still on the conveyor belt, 

then the grocery was removed manually from ISAC’s visual space, so that the task could 

continue. This insured that ISAC had to continually plan for more complex situations, by 

updating bags regardless of behavior outcome. Because this experiment required the use of the 

same external critic that was used in the simulated Experiments 1-4, all of the knowledge learned 

in simulation was applied to this task without additional processing. However, because this 

experiment used the actual conveyor belt, it was necessary for ISAC to develop additional 

appreciations for how long it could deliberate before a decision must be made. This was done 

using the Bayesian network approach described in Chapter V. The significant events were 

defined to be those states in which groceries were located at the edge of the conveyor belt, i.e., 

about to fall off of the conveyor belt.  

For this experiment the conveyor belt was divided into 14 evenly distributed bins, each 

10” long, and 10” wide. The rational for these settings was to keep bin size uniform. The 

dimensions of the conveyor were 52” x 20”, however, the cameras had an effective viewing area 

~70” long at the height of the conveyor. The representation of bins is shown in Figure 73. Bin 

positions 7 and 14 corresponded with the end of the conveyor belt (and the floor) for the left and 

right sides of the conveyor belt, respectively. The speed of the conveyor belt was set at the 

lowest possible setting, which was approximately 0.1 miles per hour. This setting was used to 

ease the computational pressure placed on ISAC’s perception algorithms, as robust perception 

was not within the scope of this dissertation. As in Chapter V, a sampling rate of one second was 

used to measure grocery positions, and the resulting transition model was obtained (Figure 74).  
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Figure 73. Dimensions and Bin Distribution for Conveyor Belt 

 

 

Figure 74. Learned Transition Model, i.e., P(Bini | Bini-1) Using Hardware Obtained 
Observations 

 

Figure 74 indicates that there is much more noise in the measurements taken by the 

physical system than the ideal measurements used in Chapter V. This is due to residual noise in 

the color tracking algorithms and errors in the frame capture for the individual USB webcams. 

The color tracking algorithms employed simple blob detection to identify target colors and 

worked very well when the color to be tracked was present in input image. However, if the target 

color was not present, these active vision algorithms would occasionally identify background 

noise as the target color. This was only a problem when the percepts were not actually present, 

but during these situations caused percepts to randomly appear in the input image. A preset 

threshold was used to reduce this error by forcing the algorithms to detect a minimum number of 

pixels for the target color, and while this worked well it could not completely remove all noise 
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effects. Errors in frame capture were the result of a random latency with the USB device drivers. 

All efforts were made to remove this problem, but it was still possible for the USB cameras to 

“freeze” for 1-2 seconds. The investigation of this phenomenon identified the device driver 

software as the source of the problem, but was unable to fix the problem. Because such noise 

could potentially affect the urgency appraisals, ISAC continuously monitor the conveyor belt 

while deliberating, and based interrupt generation on the “worst-case scenario”.   

During prediction, a preset threshold of 80% was used to signify that a grocery was 

“confidently” believed to be in specific bin. This threshold was chosen because empirical tests 

suggested 80% was a sufficient value for prediction and such a high value forced ISAC to only 

rely on short-term predictions (i.e., 1-2 bins in the future). If the Bayesian networks predicted 

that a grocery had an 80% chance of being in either of the next to last bins (i.e., just before the 

edge of the conveyor) an interrupt signal was generated, deliberation was stopped, and the 

behavior began. Because a pre-recorded motion was used for the behavior, the conveyor belt was 

stopped so that this behavior could be performed on a stationary grocery. This also prevented 

new groceries from entering ISAC’s workspace (and potentially falling off of the conveyor) 

while the pre-recorded behavior was being performed. The conveyor, however, was only stopped 

after deliberation had been completed (or interrupted), and ISAC was not allowed to perform any 

additional planning during this time period. In other words, during behavior execution (and only 

during action execution), ISAC’s cognitive processes were halted while the Activator Agents 

executed the desired behavior. This ensured that while ISAC’s cognitive control algorithms had 

to cope with changing environments (i.e., conveyor belt on), the Activator Agents could execute 

a pre-recorded motion on a stationary environment. The interrupt process generated by the 

detection of significant events follows the control path illustrated in Figure 69(c). 

 

Experimental Procedure 

The experimental procedure for this experiment is listed as follows: 

1. ISAC is allowed to observe the motion of 15 groceries on the conveyor belt in order to 

train the Bayesian networks. 15 groceries were chosen because no significant changes 

were observed in the Bayesian networks after this amount of training. The Bayesian 

networks were trained using the discretized positions of the individual groceries on the 
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conveyor belt. This does not require action, but merely observation and then training on 

these observations. 

2. N groceries are selected uniformly from the range [5, 10] from the combined grocery set 

presented in Table 14. This range was chosen to ensure that ISAC had to cope with a 

minimum number of groceries, while keeping expected completion time for episodes 

within a reasonable time limit. Furthermore, accrued encoder error limited the number of 

times ISAC could successfully and safely perform the pre-recorded motion.  

3. Groceries were continuously placed on the conveyor belt at regular intervals so that no 

more than three groceries were present at any one time. This was repeated until all 

groceries had been presented to ISAC. The size of the conveyor belt dictated that no more 

than three groceries be present at any one time. An example is shown in Figure 75.  

4. Using knowledge learned from simulation about relevance, utility, urgency, and fit, as 

well as the Bayesian networks trained at the beginning of the experiment, ISAC develops 

a policy for the perceived state space. This knowledge was represented by the individual 

weights learned for perceptual attributes, the grocery clusters developed by these weights, 

the trained relational maps, and the stored performance profiles, and was taken directly 

from training epochs in Experiment 3. This is described further below. The input to the 

Bayesian networks was the perceived location of individual groceries on the conveyor 

belt. The policy associated a specific action with each individual state encountered during 

the planning process. The action stored by the policy was the action considered to be 

best, given the current search. 

5. Once deliberation is finished, ISAC bags the groceries using the developed policy by 

sending a flag to the Activator Agents that the pre-recorded motion should be executed. 

This was done using TCP/IP, as shown in Figure 71.  

6. Just as in the simulation experiments, ISAC is provided with external feedback from the 

critic related to evaluations of constraints (1), (2), and (3) for specific situation 

components (i.e., bags and collections bags).  

7. Steps (2) – (5) are repeated for 20 episodes as described below. 

 

In addition to these experimental steps, the Wait(g) behavior from Table 17 was removed 

from the list of possible behaviors. This was because the physical conveyor belt did not have a 
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collection bin, and therefore ISAC could not choose to wait for the next grocery in lieu of 

bagging the nearest grocery. This ensured that groceries did not fall off of the conveyor belt 

because ISAC had chosen to wait and bag another grocery first.  

Because this experiment required using all of the learned knowledge structures and 

components, i.e., attribute weights, conceptual clustering, relational maps, performance profiles, 

and Bayesian networks, how these components were connected was critical for experimental 

validity. As percepts were acquired (from the SES) they were used to fill in, or update, the 

current state representation. This state representation was described in both this chapter and 

Chapter V. The individual c++ variables and structures for the state representation are described 

in Appendix A. In addition, Appendix A also describes the classes used to represent percepts and 

actions, as well as lists of the major function used to operate on this information. 

 

 

Figure 75. ISAC Coping with Three Groceries 

 

Once the state had been updated with the latest perceptual information, the state was 

passed to the Working Memory System (WMS). In the WMS the conceptual clustering algorithm 

(Chapter V) used the learned attribute weights to compress the percepts into the feature vectors 

that would be used to retrieve evaluations for the current state. The member functions to do this 

are described in Appendix A, while example code is presented in Appendix B. The feature 

vectors were then appended to the state representation, and the state was passed to the Executive 

Control Agent (ECA). During deliberation utility and urgency appraisals were retrieved from the 

relational maps and performance profiles, respectively. This was performed using the processes 

described in Chapter V. The necessary functions are described in Appendix A, while example 
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code is presented in Appendix B. Planning was performed by the planning algorithm (Figure 25, 

Chapter V), which was instantiated within the CEA. As planning was performed a local policy 

was updated that associated specific states with actions. The representation for this policy is 

provided in Appendix A. The Bayesian network was used to determine if an interrupt should be 

generated. This was performed by making predictions about future states using the perceptual 

information stored in the current state. This also required the learned information shown in 

Figure 74. Finally, fit appraisals were made by comparing the external feedback (from the 

external critic) to the internal appraisals for a given state. Both Appendix A and B describe this 

process.  

 

Results and Discussion for ISAC Experiment 1 

ISAC was tested and evaluated for 20 episodes using derived knowledge of each 

appraisal acquired and used during simulation. This knowledge was stored in the learned 

attribute weight values, groceries clusters, relational maps, and performance profiles. In addition, 

the newly acquired Bayesian network (specifically Figure 74) was also used for this experiment. 

For each episode, a different trained knowledge set was selected from simulation so that error 

rates were not a function of a single faulty component. This re-sampling, however, did not 

include the Bayesian network, which was the same throughout. This was because the Bayesian 

networks were not trained using unsupervised learning while many of the other components 

(e.g., clustering and relational maps) were. In this experiment, the simulation-based knowledge 

was sequentially selected from the final 20 training epochs of the urgency experiment (i.e., 

Experiment 3). This experiment was chosen because it incorporated all of the appraisals 

investigated in this dissertation with the exception of the Bayesian network. Only 20 episodes 

were run due to the time constraints associated with using the physical system. Unlike the 

simulation experiments, each episode with ISAC took approximately 10 minutes to perform. 

This includes experiment set-up time as well as the time for groceries to move down the 

conveyor and ISAC to perform the pre-recorded motion (multiple times). The results for these 20 

episodes are presented in Figure 76. The same smoothing window that was used in the 

simulation experiments (three training epochs) has also been used here. Figure 77 shows images 

of ISAC taken during two separate episodes from this experiment.  
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Figure 76 indicates that the knowledge learned in simulation transfers well to the physical 

hardware. This is determined by noting that the error rates in Figures 76(a) and (b) are equal to 

or better than the error rates shown in Figure 65(a) and (b) for the final 20 training epochs. In 

addition, the appraisal error rate for constraints (1) and (2), Figures 76(d) and (e) respectively, is 

also better than that shown in Figure 65. The appraisal error rate for constraint (3), however, is 

just slightly worse. The fact that simulation knowledge transferred well to the physical hardware 

is expected because the system, as designed, is a planning and evaluation system that relies on an 

external critic for evaluation, and the external critic was the same for both the simulation and the 

experiment. For this experiment, with the exception of the Bayesian networks the operations 

performed by the Deliberation & Commitment block were independent of the source of the input 

to the system (i.e., either simulation or physical hardware). While the perceptual input for this 

experiment was generated from the physical hardware and was less than ideal, it represented by 

the same post-perception symbols (i.e., groceries not pixels) that were passed by the SES to the 

WMS and into the cognitive cycle. Because the Perceptual Agents were continuously monitoring 

the external state, the Bayesian networks was not allowed to accrue, and this did not substantially 

affect performance. During these episodes, none of the groceries fell off of the conveyor as a 

result of not receiving an interrupt signal. 

 

 
Figure 76. Performance Results for the ISAC Experiment Using Knowledge Derived from 
Simulation and Trained Bayesian Networks 



183 

 

         

 (a) (b) 

Figure 77. ISAC Interacting with Groceries Using Pre-Recorded Motions 

 

The primary difference between the simulation and ISAC experiments is in the manner in 

which groceries were perceived and actions were performed. While errors in perception and 

actuation are frequent issues in robotics research, this experiment showed that the error rate per 

bag did not increase over simulation when groceries were tracked using the physical hardware. 

However, it is interesting to note that the ratio of groceries : bags is less than it was in 

simulation. This is explained by the fact that fewer groceries were used and that groceries had to 

be dealt with in the sequential order in which they appeared on the conveyor belt. It was 

observed that ISAC preferred to create several bags in which initially very few groceries were 

placed. This behavior was frequently observed for approximately the first four-five groceries that 

appeared on the belt. Then, if possible, ISAC would attempt to place the new groceries into these 

bags. By reducing the combined number of groceries presented to ISAC, this behavior should 

result in a lower grocery : bag ratio. This was further compounded because ISAC could only bag 

groceries in a fixed, sequential order and thus it could be the case that ISAC would have to create 

many bags initially, while waiting on those groceries that could be placed in multiple bags. But 

by reducing the number of groceries per bag, perceptual errors actually made the grocery-

bagging task easier, and this could be taken as an explanation on why the error rate was actually 

better than in the simulation condition rather than simply equal to it.  

The explanation for why the knowledge learned from simulation can be so readily 

applied to the physical system is rooted in the fact that the reward rule (which ultimately 
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determined the error rate) was derived by an external critic, and the same critic was used for 

simulation and the current hardware experiment. True analysis of this crossover, therefore, must 

be reserved for future work in which the appraisals and planning components (the focus of this 

dissertation) have been integrated with additional sensors and hardware that can alleviate the 

responsibilities and perform the role of the external critic. This could include force and touch 

sensors on the grippers as well as more robust vision tracking algorithms for feedback control.  

 

ISAC Experiment 2: Integrated Cognitive Control Experiment 

The objective of this experiment is to evaluate integrated cognitive control on ISAC. In 

this task, ISAC is required to learn “from scratch” an easier form of the grocery-bagging task, 

and then to deploy this knowledge successful completion of future tasks.  

 

Experimental Condition and Assumptions 

The reason this experiment used a simpler task (described below) was that the designed 

system was based on statistical learning from experience, in which multiple trials were assumed 

to be obtainable. As with the first experiment, ISAC was resctricted to 20 episodes and thus 

ISAC had to learn from fewer examples. Again, this is due to the fact that each episode took 

approximately 10 minutes to perform. The nearly 3.5 hours required to run these experiments 

placed stress on the physical system and required nearly static lighting and environmental 

conditions to ensure robust color tracking. Coupled with the fact that ISAC’s real world 

experiences are often limited to much shorter durations, it was desired to show through this 

experiment that ISAC could learn on tasks of the type and duration that may be expected in the 

future, i.e., a limited number of episodes. Figure 78 shows the path of information through the 

ISAC architecture as experience is placed in episodic memory. The episodic memory system 

stores a record of what happened. For ISAC this includes both states and actions, and therefore 

information must enter episodic memory from both perception and deliberation, as shown by the 

two arrows entering episodic memory in Figure 78. This information is not fused in episodic 

memory but rather is stored in the order in which it appears. Once stored, information in episodic 

memory can mediate future deliberation through the Relational Mapping System, Internal 

Rehearsal System, and the Goals and Motivation System, as shown by the arrow leaving episodic 

memory in Figure 78. 
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Figure 78. Paths Used for Recording Experience 

 

 In addition, the following assumptions were made for this experiment: 

1. Integration of the Perceptual and Activator Agents (with each other) was not necessary 

for ISAC to learn from its experience. This assumption is based on the fact that planning 

was performed based on information provided by the Percetual Agents, and that the 

external critic provided feedback to the planning system based on the developed plans 

and selected behaviors, not on the results of those behaviors. 

2. Randomly generated experience was sufficient for learning. The simulation-based 

experiments indicated that the system could learn even when groceries were selected at 

random. 

3. For the sake of evaluating the decision-making and planning techniques, current 

behaviors were assumed to be successful, regardless of outcome. Without this 

assumption, the task may not grow in complexity. For example, if the first grocery on the 

conveyor was “eggs”, it would not matter in which bag the eggs were placed. If physical 

system, however, failed to successfully place the eggs in the bag, this failure could not be 

attributed to the planning system, but the failure also made the task easier on the next 

iteration when, perhaps, the grocery “potatoes” would be considered (i.e., all bags are still 

empty because the eggs are on the floor, and thus bag selection is inconsequential). In 

this experiment, once a behavior had been selected for a particular grocery, that grocery 

was manually removed from the conveyor belt.  
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The simpler version of the grocery-bagging task only required ISAC to sort groceries 

using the attributes temperature and healthy, and therefore the evaluation rules used by the 

external critic were different than those stated in the earlier section Performance Measures. For 

this experiment, ISAC was given negative reward on constraint (1) if, and only if, a bag 

contained two groceries of different temperature (see Table 14), and negative reward on 

constraint (2) if, and only if, a single bag mixed “healthy” and “nonhealthy” groceries. The 

evaluation for constraint (3) was based on the absolute difference between the average number of 

groceries per bag and a preset optimum (described in the next section). It is argued here that this 

task was easier because each individual constraint was evaluated using only one attribute and this 

evaluation was based on the presence/absence of attributes. 

The experimental process for the second condition is the same as that listed for the first 

experiment, except that the ISAC was allowed to reuse the trained Bayesian networks and that 

training was performed every five episodes. This is contrasted with the simulation experiments in 

which training was performed every 10 episodes. The allowable behaviors for this experiment 

are similar to those listed in Table 17, with the exception that the Wait(gi) behavior was no 

longer applicable. The rational for removing Wait(gi) is because the collection area had been 

removed to ensure the possibility that groceries could fall off of the conveyor. Finally, the pre-

recorded motions were not used for this experiment due to the lack of integration between the 

Perceptual Agents and the Activator Agents. Therefore, groceries were allowed to fall off of the 

conveyor belt after ISAC had chosen the bag in which to place them.  

 

Experimental Procedure 

The experimental procedure for this experiment is the exact same as it was for the 

previous experiment with three exceptions  

1. ISAC was allowed to re-use the trained Bayesian network. 

2. The remaining components (attribute weights, grocery clusters, and relational maps) were 

re-trained every 5 episodes because no learned knowledge was re-used from simulation. 

It should be noted that the training in this experiment occurs every 5 episodes rather than 

every 10 episodes as was done in simulation. The shorter duration between training steps 

was used because only 20 episodes were acquired and a 10 episode training window 

would have only evaluated one round of training before the experiment ended. Reducing 
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the training window to 5 episodes allows the system to train itself multiple times during 

the experiment, while simultaneously attempting to maximize the amount of new 

information included at each training step. Further rational for the training window size 

was based on empirical knowledge that had been acquired over many months of testing 

and evaluating the learning system.  

3. Behaviors were not performed, and therefore groceries were allowed to fall off of the 

conveyor belt after ISAC had selected in which bag they should be placed. The rational 

for this was because this experiment was testing the system’s ability to plan, not act. 

Combined with the difficulties (noted earlier) involving integration between the 

Perceptual and Activator Agents, it was desired to leave this complexity for future work. 

 

During this experiment, the same integration between components (specifically the 

input/output described in Chapter V) was used as in the previous experiment. Therefore, the 

techniques for implementing this experiment are those listed in Appendices A and B. While the 

procedure for this experiment differed slightly from the previous experiment, these differences 

did not affect component integration. 

 

Results and Discussion 

This experiment demonstrated the application of the designed system for cognitive 

control on ISAC. ISAC was required to cognitively process its experience to develop internal 

appraisals and then had to use those appraisals to improve task performance. As mentioned 

previously, the task used for this experiment was a modified form of the grocery-bagging task in 

which ISAC had to learn to separate groceries based on temperature (constraint 1) and to 

separate healthy and unhealthy groceries (constraint 2). The reward rule for constraint (3) gave 

negative reward proportional to the absolute difference between the average number of groceries 

per bag and a preset optimum number of groceries per bag. In this experiment, the preset 

optimum value was set to 3.0. This value was chosen because it was the closest integer that was 

not equal to the grocery : bag ratio from the simulated Experiments 1-4, and was also greater 

than 1.0.  

Figure 79 shows ISAC performing the cognitive control experiment. The performance 

results are presented in Figure 80. These results indicate that ISAC’s performance on this task 
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improved with experience, and that 20 episodes were sufficient for improvements of at least 50% 

on constraints (1) and (2). Therefore, while the limitations of the physical hardware dictated that 

a task be selected which could be learned quicker, the transition from simulation to the physical 

hardware was not so difficult to require a re-design of the learning algorithms. Given a task in 

which ISAC was required to not mix groceries with different temperatures or of differing 

nutritional value (i.e., healthy vs. nonhealthy), and to only place exactly three groceries in a bag, 

ISAC could learn to simultaneously improve on all three constraints. 

 

 

Figure 79. Integrated Cognitive Control Experiment 

 

 

Figure 80. Performance Results for the ISAC Cognitive Control Demo 
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It should also be noted that while the task was intended to be simpler to learn, violations 

of constraint (1) and (2) occurred with higher frequency during the early stages of this 

experiment than in previous experiments, and that this should have a positive effect on learning. 

One explanation for this is that the new reward rules naturally had a higher error rate for random 

selection than the previous reward rules, which is in part due to the diversity of the attributes in 

question and the simplicity of the reward rules. The second explanation is obtained by noting that 

in Figure 80, ISAC starts with a grocery : bag ratio of approximately 3.0. This would result in 

ISAC not learning any negative evaluations for constraint (3), and subsequently, ISAC could 

choose to place increasing more groceries in bags. This is, in fact, the behavior observed. It is not 

until the next training iteration (episodes 10-15) that ISAC realizes the mistake in this approach 

and is able to take corrective action. Even though the grocery : bag ratio eventually drops back to 

the range in which it started, the error rate per bag for both constraints (1) and (2) continues to 

decrease. Interestingly, however, the accuracy of ISAC’s appraisals does not improve at the same 

rate as the number of errors. The explanation for this is based on the fact that ISAC simply does 

not have the amount of experience necessary to learn appropriately fill-in the relational maps, 

and thus the improvements in performance are based on the fact that ISAC is learning (from 

experience) what not to do rather than what to do. This is supported by Figures 80(a) and (b) 

which show that while the error rate per bag has improved dramatically, it is still ~40% for both 

constraints, which is only slightly better than chance. In other words, ISAC is learning to avoid 

dangerous situations, but still has to guess a lot when selecting actions that might lead to good 

situations.  

Finally, the learned attribute weights are presented in Table 33 and the learned grocery 

clusters is presented in Table 34. These clusters indicate that not only is ISAC capable of 

learning a different task (other than that learned in simulation), which involves learning different 

utility appraisals, but also that ISAC can learn distinct grocery clusters as well. This validates 

that, given a task and experience on that task, the designed system is capable of learning goal-

specific appraisals for relevance, utility, and urgency.  
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Table 33. Learned Attribute Weights 

 Attribute Weight 

 healthy 1.0000 
 temperature 0.9110 

 firmness 0.7052 
 size 0.6480 
 weight 0.5386 
 price 0.2243 
 type 0.1944 
 color 0.0000 
 name 0.0000 
 

 

Table 34. Final Partition Using GrocerySet-A 

 Class Grocery 

 C0 ice_cream, eggs, 
  yogurt, cucumbers, chicken 
  strawberries 
 C1 granola, ziploc_bags, tuna 
  spaghetti, green_beans 
 C2 rotisserie 
 C3 hot_soup  
 C4 teriyaki_bowl 
 C5 milk, frozen_fruit 
 C6 oranges, potatoes 
 C7 soda, cereal, fruit_juice 
 C8 tissue 
 C9 bread 
 C10 chips 
 

 

Final Discussion of Results 

The system, as designed, is complex and expansive. It is argued, however, that such a 

design is necessary to investigate the type of intelligent, cognitive behavior that must be realized 

if robots are to operate successfully in real-world environments. The approach described in this 

dissertation investigates how the cognitive processing of experience can be used to enable 

intelligent control at various levels of deliberation and planning. The processing of experience is 

based on cognitive and psychological theories of human intelligence, processing, and emotion. In 

this dissertation, this processing of experience focuses on a variety of appraisals that have been 

identified in biological systems (Chapter IV) and are known to be necessary for artificial systems 

(Chapter III). While each appraisal has received attention in the literature, few approaches tie 

each of the individual theories together within a full cognitive architecture to affect system 
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performance. Furthermore, it is argued that the system’s unique experience is key to its 

development, and that only by the processing of its own experience can it improve in the areas 

encountered during its normal routine.  

The experiments described in this chapter evaluate and validate this system and its 

design, but also point to many areas in which more specific focus is needed. The results show 

that the system is capable of learning individual appraisals for relevance, utility, and urgency. 

The appraisal for relevance allows the system to create perceptual categories that reflect the goal 

significant properties of items. This allows compression of the perceptual space and enables the 

dynamic development of useful feature vectors to represent a situation. Experiments 1 and 2 

showed that through the processing of experience the system was able to identify what 

perceptual attributes should be focused on during task execution. Once these features were 

identified, the system was able to create perceptual categories using a well-known and effective 

conceptual clustering algorithm. In the fixed weight conditions, these categories resulted in a 

64% compression, while in the non-fixed conditions the amount of compression varied between 

64% and 56%.  

The interplay between the learned attribute weights, the derived grocery clusters, and the 

trained relational maps can be viewed as similar to that between the working memory, 

representational, and evaluative processes that occur (primarily) within the prefrontal and 

orbitofronal cortex, hippocampus, and amygdala [Rolls, 1999] [Braver and Cohen, 2000] 

[Richter-Levin, 2004]. In particular, the attribute weights construe the attribute space to reflect 

the goal-relevance, or irrelevance, of specific perceptual features. The conceptual clustering 

algorithm uses this information to create classes in which goal-relevant attributes are highly 

predictable. The result of these two processes is that the system learns what to focus on (i.e., 

what is important about different percepts) and then uses this knowledge to filter incoming 

stimuli into goal-relevant sets. While this does not, necessarily, reduce the total number of 

percepts that must be considered, it provides a more compact representation for the percepts. 

Furthermore, this technique could be used to reduce the total number of percepts considered for 

planning through the use of an ‘irrelevant’ perceptual class. Using the compressed perceptual 

representation, the relational mapping system learns evaluations for different combinations 

between the individual classes. This provides utility appraisals about the current situation, which 

can then be used for planning.  
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The relevance-based clustering also provided the system with the ability to generalize to 

new percepts. While, expectedly, the results obtained from generalization were not as good as 

those obtained in the non-generalized case, the results did indicate that such a method could be 

used and that this ability would enable the system to expand beyond the horizons embedded in it 

by the programmer. This type of appraisal is critical for systems that could be deployed in 

environments in which it is not known a priori what information is important and should be 

focused on, and what information should be filtered out. This ability is provided for by the ISAC 

cognitive architecture and is partially realized through the work described here.  

Experiments 1 and 2 analyze how well the system learns utility appraisals given the 

current relevance-based feature vectors. The utility appraisals were based on the identification of 

relational information in the environment that could be connected and associated with each other 

as well as goal-specific rewards. These experiments showed that as training increased, the 

system’s utility appraisals became more accurate, and that the number of errors per bag 

simultaneously decreased. For most conditions, the error rate was decreased by about 50%, 

however, in the nonfixed weight, low cost condition the reduced exploration and the noise 

injected by errors in the derived clusters caused performance on constraint (1) to remain constant 

over time rather than exhibiting a net decrease.  

The noise injected by the derived clusters was discussed in Experiment 2 and further 

described in Experiment 4. While the role of the relational maps is to identify relations between 

the derived clusters, errors will exist if there are outliers in each cluster that do not obey the 

statistical trends between members of that cluster and the remaining clusters. In Experiment 4 it 

was noted that these types of errors occur frequently with the groceries eggs and hot_soup.  

Because the system did not have an a priori representation of the desired feature vectors 

it was important that the system be able to learn the utility appraisals “from scratch”. In addition, 

because the system was an experience-based learner, these appraisals must be derived from and 

reflect an episodic long-term memory system. Within humans and other mammals such 

processing is believed to take place in an area of the brain known as the hippocampus, which 

processes relational and contextual information. The relational maps used in this dissertation are 

inspired by this research and are thus situated in the ISAC cognitive architecture at the 

“gateway” between the higher cognitive processes and ISAC’s long-term memory systems.  
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Experiment 3 built on the results from Experiments 1 and 2, and showed that through 

internal rehearsal the system could develop a basic understanding of its performance and abilities 

and use this understanding to modify its deliberation strategy. Using this approach, episodes 

were selected at random and re-evaluated using the current knowledge as the reward rule. This 

evaluation was performed for a variety of decision-making settings, specifically different depth 

and breadth, and for each situation the system recorded how well it believed it could perform on 

the task given more, or less, time. The results indicated that the system could achieve a 

substantial savings in deliberation time without a prohibitive loss in overall solution quality. The 

appraisals were based on the notion of urgency, yet for this experiment, immediate action was 

never demanded but rather the system only had to maximize the tradeoff between expected 

search time and expected solution quality.  

The fourth experiment investigated whether degrees-of-fit could be evaluated for a 

system composed of the components and appraisals included in this research. Of the four 

fundamental appraisals described throughout this dissertation, fit was the only appraisal that, 

when implemented, did not process past experience but instead processed the current experience 

using the system’s other internal appraisals and confidence values along with the external 

feedback. This experiment showed that a basic fit evaluation could be performed and that this 

evaluation provided information regarding credit assignment for task success/failure. This 

appraisal was not designed to enable the system to mediate its deliberation or improve its 

performance. While there are intriguing potential directions for such a signal, in this research fit 

was intended to provide the user with a basic understanding of which component was to blame 

when errors were committed and how bad was that component’s performance.  

The ISAC experiments demonstrated that the designed system could be integrated with 

the physical hardware, but this integration required that additional attention be given to the 

input/output processes of perception and arm control, as well as to the separate coupling of these 

two systems. Due to the nature of the designed system, the symbolic percepts were the easiest to 

integrate, however, there was noise associated with perceptual tracking that, if not continuously 

monitored, would cause inappropriate behavior in the form of mistimed interrupts and 

deliberation cycles. This is not a fundamental failure of the designed system, because the system 

(as designed) mediates deliberation based on the robot’s current best knowledge of the external 

state, or the beliefs about that state. Yet, this limitation does currently constrain ISAC to those 
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tasks in which the external state can be continuously monitored. Errors in perception could also 

result in false positive grocery identification. If a false positive occurred in ISAC’s workspace, 

ISAC would deliberate and plan for an imaginary grocery and then attempt to execute a behavior 

on that grocery. The end result made the grocery-bagging task easier along constraints (1) and 

(2) by reducing the actual number of groceries per bag (unbeknownst to ISAC). 

The use of interrupts also affected task performance during the ISAC experiments. The 

interrupts reduced the amount of searching performed by the deliberative process, and thus 

lowered the quality of the final solutions. This was primarily observed with respect to constraint 

(3), in which fewer groceries were placed in more bags (i.e., ISAC performed less exploration). 

This behavior should be expected because the planning algorithm was structured to expand new 

states in order of decreasing appraisal values; the states with the highest values were expanded 

first. In addition, the system was designed to be an experience-based learner, and thus it should 

be natural for the system to have higher utility evaluations for those states that have already been 

explored and are deemed “safest”. As the system bootstraps itself, the safest states are those with 

a low grocery : bag ratio. When interrupts were generated, the system was naturally forced 

towards safe behaviors, and this explains the extremely low error rate on the first ISAC 

experiment. But, because constraint (3) was intrinsically designed to punish safe behaviors, 

solution quality suffered on this one constraint.  

Finally, the integration with ISAC’s hardware and actuation systems was not difficult 

from the perspective of issuing behavior commands or reading information from the SES, 

however, integration between these components (perception and actuation) was extremely 

difficult due to the real-time feedback control issues associated with visual-servoing and the 

nonlinear errors associated with translating from the visual coordinate frame to the arm 

coordinate frame. Furthermore, the system was designed as a deliberation and planning 

algorithm and is not suited to the type of real-time feedback control and monitoring required for 

low-level behavior execution. In other words, while the system must continuously monitor the 

external state for changes that may affect the next planning step (i.e., interrupts and new states), 

it does not monitor the external state for changes that merely effect low-level control parameters 

for end-effector position. This is comparable to the notions in psychology that deliberative 

control is well suited for cognitive, executive behavior (i.e., attention, deliberation, and planning) 

but poorly suited for automatic, procedural behavior (i.e., arm control). Therefore, additional 
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integration between ISAC’s Perceptual and Activator Agents was required (e.g., visual 

servoing), but this was beyond the scope of the current research. 

Once further system integration has been performed, though, the results presented here 

demonstrate that the designed system is able to cognitively process experience in order to 

develop internal appraisals and to apply these appraisals for improvement on the task. The 

system is able to learn in both simulation environments and environments built for complex, 

humanoid robots. While learning and cognitive control on ISAC requires that the task be 

tailored, to an extent, to ISAC’s physical capabilities, ISAC was able to learn from its own 

experiences, even though they may be few in number.  
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CHAPTER VII 

 

CONCLUSIONS AND FUTURE WORK 

 

The goal of this research was to investigate how mutiple appraisals could be designed and 

integrated to enable decision making in a cognitive robot. The appraisals that were the focus of 

this work were relevance, utility, urgency, and fit. Learning these appraisals required that the 

robot cognitively process its own unique experience, which was stored in episodic, long-term 

memory. This research has found that cognitive robot which possessed these tools could learn a 

task, by developing its own appreciations of what was relevant for that task, how much utility 

should different situations elicit, how much urgency should be attached to each situation, and 

whether or not the current knowledge (i.e., learned appraisals) had a good degree-of-fit to the 

current task.  

A robot designed around the appraisals relevance, utility, urgency, and fit is not per se an 

“emotional” robot; however, such a robot does possess some of the “mental underpinnings” that, 

in humans, have been argued to develop into emotional states. These underpinnings are based on 

the cognitive processing of experience and enable the robot to focus on what is important, 

arbitrate amongst competing responses, and respond in a time sensitive manner. These abilities 

are present (at least to some extent) in all mammals, which suggest that they may be linked 

through evolution to our own notions of human emotion. Fittingly, each of these abilities has 

been individually studied within the robotics literature, but what is now necessary is to 

implement and integrate these abilities in a cognitively inspired system. Each component should 

be trained (as much as possible) from the robot’s unique experience, allowing that robot to 

develop its own unique appraisals for the environment in which it is deployed. As research in 

cognitive robotics advances, the internal states (including appraisals) will become more complex 

and of higher cognitive order, and the systems that utilize such states will be deployed in 

increasingly more complex environments. As these systems develop, their internal states will 

become more complex and adaptive, as well as more useful in everyday tasks. In fact, many 

systems already possess specific internal mechanisms that alone serve some of the same adaptive 

purposes as the internal appraisals linked to emotion and described in this dissertation. What is 

missing in the literature, however, is an investigation into how these components can be learned 
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from experience and then combined, especially within the framework of a larger cognitive 

architecture.  

In robotics research there are a vast multitude of challenges that exist today and must 

eventually be solved before any autonomous robotic system will ever truly succeed outside of the 

laboratory. Within in the myriad challenges are the decision-making issues related to real-time 

responsiveness and adaptability. These issues require that the robot possess the ability to filter 

and focus on what is relevant in the current situation, develop adaptive, flexible representations 

of the environment, evaluate these representations quickly and accurately, and then adjust its 

responses based on internal measures of degree-of-fit as well as resource and time demand. 

These problems are often simplified in order to focus on optimality and to make tasks more 

tractable, however, this simplification risks ignoring the interdependencies between each 

problem and the decision-making process as a whole. Robots will eventually need to break from 

using preset mappings from state to state representation, and in so doing will need to learn and 

represent increasing more complex relational knowledge that has been abstracted out of their 

own experiences. Tabular representations will need to be abandoned in favor of more techniques 

that favor generalization, re-use, and finite search time. Planning algorithms will constantly need 

to be adjusted to meet the resource imposed by the environment.  

Because no amount of innate knowledge can completely prepare a system for true non-

deterministic nature of the real world, it is important to continue taking steps towards systems 

that can build their knowledge up from experience in increasingly more complex ways. This 

requires integration of multiple components that filter and focus, evaluate and interrupt, rehearse, 

plan, and meta-manage. Interestingly, as current emotion research continues to evolve it is 

beginning to be understood that the control of the higher-order processes is not necessarily done 

by an even higher-order processes, but rather much of the control exerted on these processes 

actually finds its origins in the evolutionarily older neurological substrates [Sloman, 2001a] 

[Richter-Levin, 2004] [Gazzaniga, et al., 2002]. Therefore, part of the solution for adaptable, 

flexible robot control must be found in the interplay between the high-level cognitive processes 

and the lower-level, internal appraisal mechanisms, neither of which dominates the other.  
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Summary of Contribution of Work 

The contribution of this dissertation has been the investigation of theories of cognitive 

processing and emotion, and how such theories can be used to mediate decision making in an 

artificial, embodied system. This dissertation research has required investigating methods for 

flexibly representing experience (as well as the current situation), using this experience to 

develop internal evaluations for new states, rehearsing experience to enable appreciations of the 

robot’s own ability, and then matching performance against expectations to determine how the 

robot’s experience and knowledge compares to that robot’s performance on the current task. 

Through this investigation a lot of material has been presented related to neuroscientific and 

psychological theories about human cognition and mammalian abilities. The investigation has 

led repeatedly and extensively to the areas of emotion and appraisal mechanisms, episodic 

memory and relational learning, working memory and filtering and focusing, executive decision 

making and meta-management, as well as mental simulation and internal rehearsal. This entire 

approach has been framed within a larger cognitive architecture, and the attempt has been made 

to ground the various theories (e.g., episodic memory, emotion-based appraisals, alarm 

mechanisms and motivation, spotlight, and common currency) in known engineering methods 

(e.g., self-organizing maps, function approximators, interrupts and anytime algorithms, goal 

significance, and utility).  

A cognitive system has been developed that uses each of these techniques to perform an 

“everyday” task, that like the simple act of human perception is much more difficult than it 

seems. The results have shown that the system is able to develop each of the appraisals 

concurrently and that during this process performance on the task improves. The amount of 

improvement is predicated on the learning performed by each component. However, 

improvement is also based on the amount and type of experience acquired by the system. As the 

system acquires experience and learns from that experience, it develops a bias towards pursuing 

new experiences that closely match the previous experience. This is due to the fact that the 

similar experience is most likely to be appraised correctly, and thus the high confidence in 

responses is often enough to outweigh low confident, yet potentially very beneficial alternative 

responses. Thus, the robot becomes comfortable in its own environment.  

Through the experiments with the physical hardware it was shown that the appraisals 

relevance, utility, urgency, and fit are not only necessary for appropriate, adaptive behavior, but 
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can also be integrated with a complete cognitive architecture. While research on cognitive 

architectures either investigates deliberative control, or attempts to compartmentalize control 

within specific layers, the approach described in this dissertation integrated the appraisal 

processes within the recursive, cognitive loop. Therefore, no one component was at the top of the 

hierarchy, but rather each component exerted an influence on another, with the combined result 

of adaptive cognitive behavior. This behavior was based on the robot’s own experience, as well 

as the specific techniques (derived from psychology and neuroscience) to process this 

experience. While more work remains to be done within the ISAC cognitive architecture (e.g., 

integrating more robust feedback control between the Perception and Activator Agents), this 

research showed that through the cognitive architecture, ISAC could simultaneously learn 

multiple appraisals and improve task performance.  

 

Further Directions 

The research presented in this dissertation is the first step towards a cognitive robot that 

can truly bootstrap itself to learn a complex task. The designed system has only begun to scratch 

the surface of the type of appraisals that cacn usefully inform cognitive control and thus there are 

many future directions for this work. In addition, each of the appraisals discussed in this 

dissertation warrant more comprehensive, individual attention. In particular, the appraisal for 

relevance could be expanded to include fuzzy notions of class membership in which individual 

percepts may belong to multiple classes to varying extents. This would enable the system to 

better track multiple conflicting goals where each goal dictates different internal perceptions of 

objects. The attributes used for classification could also be expanded to include inter-attribute 

relationships, e.g., weight is only important when size is greater than ‘x’. Such a complex ability 

would truly enable the robot to build up notions of goal-relevant classification from scratch and 

allow for the type of complex relationships often taken for granted in human decision making. 

Furthermore, it would be interesting to investigate whether an associative network could be used 

to create the fundamental goal relevant classes. Such an investigation might involve training a 

network of interconnected perceptual attributes via Hebbian learning based on the contents of 

individual bags and episodes.  

The utility appraisals could certainly provide directions for future research. As 

highlighted at various points in this dissertation, the ability to access and use generalized 
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abstracted relations is critical for experience-based learning. This dissertation investigated one 

type of relation, i.e. sequential, which could be viewed as a constrained form of temporal or 

spatial relation. For example, the notion that “potatoes” were placed in the bag after “bread”, but 

before “milk” is a temporal interpretation of these relations, while the notion that “potatoes” 

were placed on top of “bread”, but under “milk” is spatial interpretation. Other tasks, however, 

do not cross over as well and it is currently an open question whether a system, such as the one 

described in this dissertation, could bootstrap itself to learn the relationship structure as well as 

the relationship content. Coupled with an extended ability to identify goal-relevant classes, such 

a system would be capable of learning in a wide variety of environments with comparatively 

little pre-programming (or re-programming) on the part of developers and engineers.  

Another open question would be whether or not the learned relationships stored within 

the Relational Mapping System could be extended to tasks for which they were not originally 

defined. This is an extremely complex problem that would also require highly flexible and 

reusable identification of goal-relevant classes. Consider, for example, an autonomous robotic 

vehicle driving along a crowded city street; it would certainly be advantageous for this system to 

understand that “large heavy objects do not go on top of smaller softer objects”. The interesting 

question is whether this important relationship could be learned merely by bagging groceries and 

then noting the attribute and relationship similarity across tasks? Researchers have begun to ask 

such questions (for an excellent review see [Thrun and Pratt, 1998]), however, few employ the 

type of complex architectural approach that ultimately may be required.  

The process of internal rehearsal to develop appreciations between situations and the 

behavioral and cognitive constraints that each affords is also an interesting problem that has 

recently seen some very intriguing results [Erdem, et al., 2008] [Sahin, et al., 2007]. As the 

environments in which robots are deployed become increasingly more complex, the need for 

offline pre-processing to mine a reusable set of easily deployable appreciations and affordances 

will become increasingly more important. This necessitates that a full investigation of internal 

rehearsal, including its biases and drawbacks, be performed.  

The process of appraising fit has only been lightly examined in this dissertation, and the 

individual fit appraisals have not been used to mediate control. However, error detection and 

error correction are critical for robotic systems [Lyons et al., 1989] [Halder and Sarkar, 2007]. 

This extends beyond measuring sensor error, and must encompass all aspects of system 
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functionality, including the cognitive processes ultimately responsible for decision making. As 

robots find themselves in increasingly more complex situations, it could be disastrous if these 

robots were to mistakenly believe that their current knowledge is a good fit to the new tasks. 

Much future work also remains to be done on the cognitive architecture used in this 

dissertation. The architecture has been an on-going project, and is constantly under revision and 

being taken in new directions [Kawamura, et al., 2008]. One such direction being considered is 

ubiquitous robotics [Rusu, et al., 2008], in which the architecture enables the robot to plug-and-

play into various sensing and effector-equipped environments. The research described in this 

dissertation would be an ideal starting point for such future work because in such environments 

the robot would not know a priori what information is going to be presented to it, and thus what 

information is relevant for its current goal. As the robot learns what is relevant, the robot will 

need to develop relational maps that associate the learned information with goal-based rewards. 

It would then be useful for the robot to appreciate relationships between the current situation and 

the need for fast commitment and urgency, as well as how well its current knowledge fits the 

new sensor suite or effector set that it has acquired.  

The system that has been described throughout this dissertation was developed based on 

the concepts of emotion and emotion-based appraisals. The discussion and design approached 

these issues from the point-of-view that low level “emotional” control would be highly 

advantageous for a system required to be adaptive and flexible in real-world environments. This 

discussion intentionally focused upon the commonly accepted parallels (at least within 

engineering) between emotion and utility, and attempted to describe robotic emotion as the type 

of multi-component process envisioned by Frijda [1986], Scherer [1997], Sloman [2001a], and a 

host of others. However, this dissertation tried to stop well short of pursuing these emotional 

concepts to the full extent with which they are realized in humans, and this necessarily opens the 

door for much future work in this area. While it is expected that some of this research will have 

immediate and practical uses for modern robots, some directions may best be left to science-

fiction writers.  

It is strongly contended that any robotic approach in which the goal of emotion is to 

enable more general, adaptive control, must include the robot’s experience and allow the robot to 

develop its own internal states. Attempts to create adaptive control mechanisms based on 

subjective notion of proto-typical emotions (e.g., “happy/sad” states) are destined for trouble 
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[Damasio, 1994], as robots are fundamentally different than humans, and this is not likely to 

change soon. Investigations into how such labeled states may improve human-robot interaction, 

however, are very intriguing and warrant future researcher, yet it is argued that this is 

conceptually distinct from the type of control and information processing investigated here.  

Ultimately, as robot technology advances the control systems that enable these robots to 

adaptively function in complex environments will require increasingly more complex systems, 

components, and appraisals. These appraisals will perform a multitude of tasks, including but not 

limited to: detecting relevance, appraising utility, identifying urgency, and measuring fit. The 

continuous and recursive interaction of these signals with the cognitive processes of the system 

will define its own set of control states, and within this set will lie the robot’s potential 

“emotions”. Some of these states may be familiar to us, while others may be alien, however, each 

will share a few common traits with our own concepts of emotion and internal control: each state 

(and the signals that underlie it) will be critical for the perceived proper functioning of the 

system, and each state will in part have been developed by that system cognitively processing its 

own experience. 
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APPENDIX A 

 

LIST OF MAJOR COMPONENTS, CLASSES, FUNCTIONS, AND VARIABLES 

  

State Representation: state.h 

States were represented as a C++ structure, SState. This was because states did not 

require any member functions, but only state variables. These variables were a combination of 

numeric, symbolic, and true/false relationships that were represented by associating enumerated 

types with boolean operators. In addition, vectors could be used to represent lists of any of these 

types of information. The state structure was designed for this dissertation to have just those 

variables described in Chapter VI. The important variables are listed as follows: 

1. vector<CPercept> percepts – A list of percepts (described next).  

2. vector<string> fv – This is the set of symbolic feature vectors. 

3. vector<double> u – This is the corresponding set of numeric utility appraisals.  

4. vector<double> x – This is the confidence vector for the numeric utility appraisals.  

5. bool flagi – This is the interrupt flag (true = interrupt; false = keep going) 

6. int d – This is the search depth 

7. double b – This is the search breadth 

8. double dt – This is the expected/allowable deliberation time 

9. vector<double> r – This is the external reward provided by the critic 

 

There was a separate structure SRelation defined for the individual logical relations. The 

variables within this relation are: 

1. vector<CPercept> percepts – This is a list of the percepts (described next) that form the 

relation. 

2. enum type – This is a type identifier for the relation. 

3. bool value – This is the true/false value of the relation. 

 

There was also a structure for maintaining the current, local policy, SPolicy. This policy 

associated states with actions, and therefore this structure had two variables: 

1. SState state – Specific state representation with which a single action is associated. 
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2. CAction action – Action representation (described below) for the specific action 

associated with the input state.  

 

This structure was used as a vector, (i.e., vector<SPolicy> policy) so that only one action would 

be represented with a single state.  

 

 

Percept Representation: percept.h, percept.cpp 

A C++ class was designed for percepts called CPercept. The member variables for this 

class were the individual attributes possible for a percept. For example, weight was a member 

variable as was xyz position. Each variable was specified as either numeric or symbolic. There 

were three primary member functions for the percept class CPercept: 

1. Initialize( ) – This function initialized the member variables to default values, which 

could be set based on the task. 

2. GetSemanticInformation(ref ) – This function retrieved all known semantic information 

for that percept, given a reference pointer. The most common reference pointer is the 

percepts name (e.g., “bread”, “potatoes”, etc.) but any information related to the percepts 

attributes can be passed through this function. 

3. GetRewardInformation(fv, u ) – The external reward values provided by the critic were 

treated as a type of percept. This function retrieved those values and stored them in the 

variables fv and u. 

 

 

Action Representation: action.h, action.cpp 

A C++ class was designed for actions called CAction. The member variables for this class 

were: 

1. double cost – Cost for performing that action. 

2. vector<CPercept> percepts – List of CPercept’s that could be used to represent the 

targets of that action. 

3. vector<int> subactions – Integer list of any other actions that may hierarchically form 

the current action. I.e., CAction(4) may be formed by performing CAction(2), CAction(3), 
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CAction(1) in sequence. Such examples included BagGrocery(b,g) which could also be 

written ReachTo(g) � Grasp(g) � ReachTo(b) � Release(g). 

4. vector<SRelation> preconditions – Set of true/false relationships that must hold before 

that action can be performed. 

5. vector<SRelation> postconditions – Set of true/false relationships that should hold after 

that action has been performed.  

 

There were two member functions for the class CAction: 

1. CheckPossibility(current_state) – This function checked whether the given action could 

be performed in the current state. 

2. DetermineEffect(current_state, new_state) – This function determined the new state as a 

result of applying the given action to the current state. 

 

 

Episode Memory: episodic_memory.h, episodic_memory.cpp 

There was nothing new implemented in the C++ episodic memory class, CEpisodic, for 

this dissertation. However, this class is described here because episodic memory was critical for 

this research and this description will help the discussion in Appendix B. There was only one 

public member function for this class: 

1. current_episode – This episodes was a list that recorded every state and action 

encountered during the current episode.  

 

The current episode was implemented as a generic structure with two components: SState 

and CAction. As described in Chapter’s V and VI, goals were implicit for this dissertation. In 

addition, outcomes were implicit in the next state stored in the list. The public member functions 

for this class were: 

1. AddState(state ) – This function added an input state to the current episode. 

2. AddAction(action ) – This function added an input action to the current episode.  

3. SaveEpisode( ) – Saves the current episode to a file. 

4. RetrieveEpisode(id ) – Retrieves a specific episode from the saved files.  

5. GetNumberOfEpisodes( ) – Retrieve the number of episodes stored in long-term memory. 
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Working Memory: working_memory.h, working_memory.cpp 

For this dissertation, most of the working memory functions were incorporated within the 

Dynamic Representation block, which included the functions described for weight learning and 

conceptual clustering. However, two critical functions of working memory (CWorking) that 

remained were to get the current state from short-term memory, and to maintain the local policy. 

The policy was one public variable that was represented as a structure, SPolicy with the 

following individual member variables: 

1. vector<SState> states – This was a list of states. 

2. vector<CAction> actions – This was the associated list of actions for each state. 

3. vector<double> u – This was the list of expected utilities for each state. 

 

The public member functions were: 

1. GetState(state ) – This function retrieved the current information in the short-term 

memory buffer 

2. UpdatePolicy(state, action, u ) – This function updated the current policy with the 

information state, action, u. 

 

 

Weight Learning: weight.h, weight.cpp 

The weight learning algorithm was designed to load sets percepts from states along with 

associated reward values, and derive the learn what value should be assigned to each perceptual 

attribute. The number of percept sets does not have to be preset, however, the number of reward 

dimensions does need to be preset. This algorithm was designed as a C++ class CWeight. The 

two public member variables were: 

1. m_percepts – Vector list of percepts. 

2. m_rewards[N] – N dimensional Vector list of associated rewards, where N is the reward 

dimension.  

 

The member variables for the weight learning algorithm were: 
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1. Load(file ) – Load the sets percepts from a file along with the associated reward values. 

The files used for this research were the individual episodes.  

2. Train( ) – Learn the weight values from the percept/reward combinations. 

3. Save(file ) – Save the learned weights to a file.  

 

 

Conceptual Clustering: ccluster.h, ccluster.cpp 

The conceptual clustering algorithm was a C++ class, CCluster, that implemented the 

COBWEB algorithm [Fisher, 1987] using the learned weight values for each percept. The 

training instances for this algorithm were the individual percepts used for the experiments 

(GrocerySet-A). The algorithm did not require any public member variables, only public 

functions. Theses functions were: 

1. LoadTrainingInstances(file ) – Loaded a set of percepts stored as CPercept.  

2. LoadWeights(file ) – Load the learned weights.  

3. Cluster( ) – Run the algorithm and develop the clusters.  

4. Classify(percept ) – Place an input percept in the best cluster and return a number 

associated with that cluster.  

5. SaveClusters(file ) – Save the learned clusters to file. This saves future computation by 

alleviating the need to continually re-calculate the clusters. 

6. AppendFeatureVector(fv, id) – This function appended a percept’s cluster identification 

onto a given feature vector.  

 

 

Self-Organizing Maps: som.h, som.cpp 

The self-organizing map algorithm was implemented as a C++ class CSom. As with the 

conceptual clustering algorithm, there were no public member variables associated with this 

class, only public member functions. These functions were: 

1. LoadTrainingInstance(episode ) – This function loaded an entire episode from a file, but 

had to be called for each episode needed for learning.  

2. Initialize( ) – This function cleared the current SOM had initialized a new random SOM.  

3. LoadSOM(file ) – This function loaded a previously saved SOM from a file.  
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4. SaveSOM(file ) – This function saved the current SOM to a file.  

5. Train( ) – This function trained the current SOM using the training instances.  

6. RetrieveNode(input ) – This function retrieved the nearest node for a given input vector, 

and returned the complete vector stored at that node.  

 

 

Urgency: urgency.h, urgency.cpp 

The algorithm for determining urgency, stored in class CUrgency, matched the current 

state feature vectors to a list of examples stored in a text file. Using this list as a guide, the 

algorithm attempted to set the search parameters d and b to maximize solution quality while 

minimizing deliberation time. Trained Bayesian networks were used to trigger interrupt flags. 

The public member functions are listed as follows: 

1. RetrieveMatches(fv, n ) – This function retrieves the n best matches from the stored file.  

2. SetDepthBreadth(d, b) – This function sets the values d and b based on the stored 

matches.  

3. LoadTrainingInstance(episode ) – This function loads an entire episode from a file, but 

must be called for each episode required for training.  

4. TrainBayesian( ) – This function uses the loaded episodes to train a Bayesian network. 

5. LoadBayesian(file ) – This function loads a Bayesion network from a file. 

6. SaveBayesian(file) – This function save the Bayesian network to a file. 

7. CheckFlags(state, flag ) – This function uses the current state to determine whether an 

interrupt should be generated.  

8. InternallyRehearse(state ) – This function is an exact copy of the planning function given 

in Figure 25, but is used here to rehearse situations without continually monitoring the 

external states.  

9. AppendResults(file ) – This function appends the results from the last rehearsal to a file.  
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APPENDIX B 

 

DESCRIPTION OF COMPONENTS AND IMPLEMENTATIONS 

 

Dynamic Representation 

This component was used to learn weights and to create clusters, or groups, or percepts 

using these weights. Specifically, the percepts that were groups were the individual groceries 

described in Table 14. The basic code to perform the training operation is shown as follows: 

 

/***********************************************************/ 

CEpisodic epm; 

CWeight wgt; 

int num_episodes = epm.GetNumberOfEpisodes( ); 

for(int i=0;i<num_episodes;i++) 

{ 

 char file[100] = epm.RetrieveEpisode(i); 

 wgt.Load(file); 

} 

wgt.Train( ); 

wgt.Save(“weights.txt” ); 

/***********************************************************/ 
 

The code to create the individual clusters is: 

 

/***********************************************************/ 

CCluster clstr; 

clstr.LoadTrainingInstances(“percepts.txt” ); 

clstr.LoadWeights(“weights.txt” ); 

clstr.Cluster( ); 

clstr.SaveClusters(“clusters.txt”); 

/***********************************************************/ 
 

The code for classifying percepts using the current clusters is: 

 

/***********************************************************/ 

CCluster clstr; 

clstr.LoadClusters(“clusters.txt”); 

CPercept percept; 

percpet.GetSemanticInformation(“bread”); //as an example 

int id = clstrs.Classify(percept); 

/***********************************************************/ 
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The code snippets described here can be inserted, or used wherever they are needed. The first 

two are related to the offline cognitive processing of experience, while the last one deals 

performs online appraisals for relevance. 

 

Relational Mapping 

This component used experience stored within a traditional episodic memory system (i.e., 

state, action, state, action), to create a relational map that associated sequential aspects of each 

episode with goal-dependent reward values. The basic code to train the relational maps is as 

follows: 

 

/***********************************************************/ 

CEpisodic epm; 

CSom som; 

som.Initialize(); 

int num_episodes = epm.GetNumberOfEpisodes( ); 

for(int i=0;i<num_episodes;i++) 

{ 

 char file[100] = epm.RetrieveEpisode(i); 

 som.LoadTrainingInstance(file); 

} 

som.Train( ); 

som.SaveSOM(“som.txt” ); 

/***********************************************************/ 

 

The code to use the SOM during online task performance is: 

 

/***********************************************************/ 

CSom som; 

som.Initialize(); 

som.LoadSOM(“som.txt”); 

SState state; 

wms.GetState(state); 

int id = som.RetrieveNode(state.fv); 

som.GetUtilityAppraisal(id, state.u, state.x); 

/***********************************************************/ 

 

Urgency 

The urgency component used a trained Bayesian network to set the search parameters d 

and b, or to generate interrupts flagi (note: the interrupts were referred to as i in the text, but have 

been changed to flagi to avoid confusion with the common nomenclature “for(int 

i=0;i<somelimit;i++)” ). The code used to train the urgency component is: 
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/***********************************************************/ 

CEpisodic epm; 

CUrgency urg; 

int num_episodes = epm.GetNumberOfEpisodes( ); 

for(int i=0;i<num_episodes;i++) 

{ 

 char file[100] = epm.RetrieveEpisode(i); 

 urg.LoadTrainingInstance(file); 

} 

urg.TrainBayesian( ); 

urg.SaveBayesian(“bayes.txt” ); 

 

int num_episodes_for_rehearsal = rand()%num_episodes; 

for(int i=0;i<num_episodes_for_rehearsal;i++) 

{ 

 char file[100] = epm.RetrieveEpisode(i); 

 SState state = epm.current_episode.pop_front(); 

 urg.InternallyRehearse(state); 

 urg.AppendResults(“urgency.txt”); 

} 

/***********************************************************/ 

 

The code to use the urgency appraisals is: 

 

/***********************************************************/ 

CUrgency urg; 

urg.LoadBayesian(“bayes.txt”); 

SState state; 

CWorking wms; 

wms.GetState(state); 

int d; 

double b; 

bool flag; 

urg.RetrieveMatches(state.fv, 5); //for example 

urg.SetDepthBreadth(d, b); 

urg.CheckFlags(state, flag); 

/***********************************************************/ 
 

Fit 

The algorithm for determining fit does not have a separate class, but rather this algorithm 

simply uses the functionality provided by the other classes. The code to calculate fit is provided. 

For brevity, the fit equations have been omitted.  

 

/***********************************************************/ 

SState state; 

CWorking wms; 

wms.GetState(state); 

vector<double> E; 
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for(int i=0;i<state.percepts.size();i++) 

{ 

 if(!strcmp(state.percepts.at(i).name,”External Reward”)) 

 { 

  vector<string> fv; 

  vector<double> u; 

state.percepts.at(i).GetRewardInformation(fv, u); 

  for(int j=0;j<u.size();j++) 

  { 

   double fit = /* Calculate fit as shown in Chapter V */ 

   E.push_back(fit); 

  } 

 } 

} 

/***********************************************************/ 
 

 

Communication with the Arm Agent 

Standard TCP/IP was used to communicate with the Arm Agent. Through this 

communication, the signals that were sent included flags for which behavior to execute. There 

were two flags used, one to initiate the pre-recorded motion, and one to shut the arms down at 

the end of the experiment. The gripper was closed/opened at preset points during the execution 

of the pre-recorded motion. Code to initiate the motion is provided, along with code to shut the 

arms down.  

 

/***********************************************************/ 

//Initiate the arm behavior 

int flag = INITIATE;  //#defined to be 1 

char msg[255]; 

sprintf(msg, “%d”, flag); 

 

//send msg to computer at 129.59.72.55 (Octavia) and port 30000 

sock.send(msg, “129.59.72.49”, 30000); 

/***********************************************************/ 

 

 

/***********************************************************/ 

//Shut the arm down 

int flag = SHUTDOWN; //#defined to be 0 

char msg[255]; 

sprintf(msg, “%d”, flag); 

 

//send msg to computer at 129.59.72.55 (Octavia) and port 30000 

sock.send(msg, “129.59.72.49”, 30000); 

/***********************************************************/ 
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The code to open/close the gripper using the Arm Agent is: 

 

/***********************************************************/ 

//example preset position for closing the gripper 

double pose1[3] = {-30, 80, 70};  

//example preset position for opening the gripper 

double pose2[3] = {10, 80, 75}; 

if(trajectory[0] == pose1[0]  

&& trajectory[1] == pose1[1]  

&& trajectory[2] == pose1[2]) 

{ 

 CloseGripper( ); 

} 

 
if(trajectory[0] == pose2[0]  

&& trajectory[1] == pose2[1]  

&& trajectory[2] == pose2[2]) 

{ 

 OpenGripper(7); 

} 

/***********************************************************/ 
 

where the functions CloseGripper( ) and OpenGripper( ) are designed to activate or deactivate 

the pressure valve of one of ISAC’s triceps muscles that has been disconnected from the arm and 

connected to the gripper.  

Recording motions with the Arm Agent required initializing the arms, and then closing 

the valves that connect to the arms, and finally reading the encoder data from the arms (as the 

arms were being manually driven through the desired motion). 

 

/***********************************************************/ 

InitializeCards(); InitializeAllValves(); 

Sleep(5000); //msec 

ResetLeftEncoders(); ResetRightEncoders(); 

CloseValves(); 

Sleep(5000); //msec 

ofstream out(“motion.txt”); 

getchar(); 

while(1) 

{ 

 ReadRightEncoders(); RealRightAngles(); 

 ReadLeftEncoders(); RealLeftAngles(); 

 out << leftAngles[0] << “ “ << leftAngles[1] << “ “ << leftAngles[2] << 

endl; 

 Sleep(50); 

} //note: this program must be manually stopped 

/***********************************************************/ 
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