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CHAPTER I 

 

INTRODUCTION 

 

Motivation 

 Obesity is an increasing epidemic in the Western world with nearly two-thirds of 

Americans classified as either overweight (Body mass index, BMI, between 25.0 and 

29.9 kg/m2) or obese (BMI ≥ 30.0 kg/m2) (2). Obesity carries with it the risk of 

developing several chronic conditions such as Type II Diabetes (11), coronary artery 

disease (10), and osteoarthritis (8). Analytically, the weight changes that lead to obesity 

represent an imbalance between energy intake and energy expenditure (EE). Though 

many factors, both behavioral and genetic, are capable of altering energy balance, one of 

the most readily modified components is the energy expenditure associated with physical 

activity (EEACT). Accurate assessment of physical activity is therefore a critical step in 

assessing the role of physical activity (PA) in body weight maintenance both on an 

individual basis and as a tool in developing and validating public health 

recommendations for daily PA levels.  

 The Vanderbilt University Energy Balance Laboratory is a unique environment 

comprised of physicians and research scientists devoted to the accurate assessment of EE 

and the development of hardware and software tools to carry these measurements from 

the laboratory into free-living. Accurate measurements of EE obtained in the fast 

response indirect room calorimeter, housed in the General Clinical Research Center, 

allow for subject-specific metabolic profiles to be developed for a wide variety of 
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subjects (12). These results represent an accurate assessment tool for daily energy 

balance in the laboratory. While inpatient measurements represent the gold standard in 

metabolic assessment, there is an acute need to develop tools that can be translated into a 

free-living environment that are capable of assessing the duration and intensity of daily 

PA patterns, and are accurate in their prediction of the metabolic costs of these activities.  

  Accelerometers have been considered a candidate for assessment of PA due to 

the physical relationship between acceleration and work (9) as well as the relatively low 

cost and simplicity of use. By relating accelerometer output to measured EE using 

indirect calorimeters, relationship can be established between the intensity of PA and the 

resulting change in EE (4-7). When subjects are then asked to wear accelerometers while 

they complete their normal daily routine, and the resulting data is analyzed using 

prediction equations developed in a laboratory setting, a prediction of their PA patterns 

are developed. However, when the first approaches were subjected to laboratory and 

short (several hours duration) field validation, significant errors emerged between EE 

measurements and predictions (1). These errors are likely a result of the limited duration 

of studies used for model development (7), and use of small, homogenous subject 

populations (5). Additionally, data from commercially-available accelerometers is coarse, 

typically one sample per minute, which limits the complexity of the relationship that can 

be established between their output and EE.  

Though accelerometers have been considered a promising tool for objectively 

assessing PA in a free-living environment, both the measurement devices and analysis 

paradigms to date have not been able to realize this promise. Two main areas can be 

identified as shortcomings in existing technologies: accelerometer hardware variability 
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and analytic tools relating acceleration to EE. To this end, we will explore the capabilities 

of existing analysis routines to predict EE on a daily basis by comparing the monitor 

output to data acquired in a diverse population of subjects in a room calorimeter. 

Additionally, we will attempt to characterize the hardware filtering in three commercially 

available accelerometer devices by subjecting them to a range of mechanically generated 

accelerations. These experiments will help us to better understand the unit of activity 

counts, which is the reporting unit used in most commercially available accelerometry-

based PA monitors. Further, we will explore a new modeling approach for the prediction 

of EE using raw (32 Hz) acceleration signals. Current data acquisition and analysis 

techniques using accelerometry-based PA monitors discard a large amount of potentially 

useful information by utilizing only an integrated signal, generally reported over a one 

minute interval, though device sampling is usually performed at a much greater temporal 

resolution (3). This model will be developed using a data set that is large both with 

respect to the number and heterogeneity of subjects included as well as the length of each 

study visit.  

 

Overview 

The research discussed in this thesis was performed to achieve three main 

objectives: (1) To understand the strengths and weaknesses of published relationships 

between acceleration and EE in twenty-four hour clinical data using market-available 

accelerometer technologies, (2) To characterize the device-specific hardware filtering in 

three commercial accelerometers subjected to mechanically generated accelerations, and 
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(3) To develop novel methods for prediction of EE using raw acceleration signals and 

artificial neural network (ANN) modeling.  

 Chapter II provides a brief introduction to and clinical relevance of obesity, a 

description of energy balance as well as introducing the measurement principles involved 

in metabolic monitoring and PA assessment. Instrumentation used throughout the thesis 

will be introduced and brief qualitative descriptions of currently used and proposed 

analytic techniques will be discussed. The goal of this chapter is to enable readers to 

understand both the direction and the outcomes of this body of research. More detailed 

mathematical descriptions directly applicable to the modeling approaches used can be 

found in Appendix A.  

 Chapter III explores the predictive accuracy of three commonly used 

accelerometers and seven of their associated EE prediction algorithms when applied to 

twenty-four hour studies where EE was constantly measured using a room calorimeter. 

This work represents a bridge between short structured activity protocols that have 

typically been used for model development and free-living studies where no reference 

standard is available on a minute-by-minute basis. Most of the regression equations were 

able to accurately assess the percent of the study visit spent in four PA intensity 

categories. However, most regressions seemed to under-predict the intensity of some data 

which resulted in an under prediction of the daily physical activity level (PAL). Results 

from this experiment were further explored in Appendix B where the EE is predicted 

using each model, and the impact of the baseline EE on the daily prediction errors is 

explored. 
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 Chapter IV describes the response of three generations of a commonly used 

accelerometer, the ActiGraph, subjected to a wide range of accelerations generated by 

altering both the frequency and radius of oscillation on a modified bench-top orbital 

shaker. Results from this study are used to understand both the response profile for each 

monitor generation as well as a study of the inter-monitor variability between the 

generations. The ActiGraph monitor demonstrated a nonlinear response when activity 

counts are related to acceleration. We were able to detect statistically significant point 

differences between the three generations of monitors at a number of acceleration values. 

These differences in counts corresponded to altered EE prediction of, on average, 0.30 

kcal/min (~ 130 kcal/day) for activity count values less than 4000, which account for 

greater than 90% of our study visit. Inter-monitor variability was consistent for monitors 

of each generation once a low frequency threshold had been passed (generally around 40 

RPM). Inter-monitor variability was reduced in the newest version of the ActiGraph, the 

GT1M, recommending its use in studies where measurements must be made with 

multiple monitor units. Similar data for two additional activity monitors (Actical, and 

RT3) as well as preliminary data relating the three activity monitors can be found in 

Appendix C. 

 To fundamentally change the classical paradigm of using summed acceleration 

signals to model EE, Chapter V proposes a new approach where raw acceleration data 

(32 Hz) collected from a bi-axial hip-mounted accelerometer is used to drive an ANN 

modeling approach. To accomplish this goal, raw signal data is reduced into a small 

number of summary statistics (features) for each minute of data. These statistics, 

combined with subject characteristics, are used as inputs to a three-layer (one hidden 
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layer) network. EE prediction accuracy is compared with results obtained from a 

traditional (one minute epoch) analysis approach as well as compared with a multi-

accelerometer array. Results of this study indicate that by using raw data at the hip, 

significant improvements can be realized relative to a hip only model developed using 

integrated data. Improvement was also found relative to a proprietary EE prediction 

algorithm developed using five sensor sites. This work suggests that ANN modeling has 

the potential to reduce error in prediction of EE as well as encouraging the notion that 

signal characteristics other than the integral over one minute may be useful in predicting 

EE. Additional results from the generalized ANN model can be found in Appendix D. 

Individual ANN models have been developed for each subject to study the improvements 

in model performance that can be achieved by using the data on a per subject basis. These 

experiments showed that individual models for EE using an ANN are able to improve 

upon the error values achieved using a generalized model. These results can be found in 

Appendix E.  

 Chapter VI provides a summary of this body of work, global conclusions, and 

future directions. 



7 

References 

1. Bassett DR, Jr., Ainsworth BE, Swartz AM, Strath SJ, O'Brien WL, and 
King GA. Validity of four motion sensors in measuring moderate intensity physical 
activity. Medicine and science in sports and exercise 32: S471-480, 2000. 
 
2. Brooks G, Fahey T, and Baldwin K. Exercise Physiology: Human Bioenergetics 
and Its Applications. New York: MacGraw Hill, 2005, p. 617-645. 
 
3. Chen KY and Bassett DR, Jr. The technology of accelerometry-based activity 
monitors: current and future. Medicine and science in sports and exercise 37: S490-500, 
2005. 
 
4. Chen KY and Sun M. Improving energy expenditure estimation by using a 
triaxial accelerometer. J Appl Physiol 83: 2112-2122, 1997. 
 
5. Freedson PS, Melanson E, and Sirard J. Calibration of the Computer Science 
and Applications, Inc. accelerometer. Medicine and science in sports and exercise 30: 
777-781, 1998. 
 
6. Heil DP. Predicting activity energy expenditure using the Actical activity 
monitor. Research quarterly for exercise and sport 77: 64-80, 2006. 
 
7. Hendelman D, Miller K, Baggett C, Debold E, and Freedson P. Validity of 
accelerometry for the assessment of moderate intensity physical activity in the field. 
Medicine and science in sports and exercise 32: S442-449, 2000. 
 
8. Hinton R, Moody RL, Davis AW, and Thomas SF. Osteoarthritis: diagnosis 
and therapeutic considerations. American family physician 65: 841-848, 2002. 
 
9. Ozkaya N and Nordin M. Fundementals of Biomechanics: Equilibrium, Motion, 
and Deformation. New York, NY: Springer Science, 1999. 
 
10. Poirier P, Giles TD, Bray GA, Hong Y, Stern JS, Pi-Sunyer FX, and Eckel 
RH. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of 
weight loss. Arteriosclerosis, thrombosis, and vascular biology 26: 968-976, 2006. 
 
11. Sharma AM. The obese patient with diabetes mellitus: from research targets to 
treatment options. The American journal of medicine 119: S17-23, 2006. 
 
12. Sun M, Reed GW, and Hill JO. Modification of a whole room indirect 
calorimeter for measurement of rapid changes in energy expenditure. J Appl Physiol 76: 
2686-2691, 1994. 
 
 
 



8 

CHAPTER II 

 

BACKGROUND 

 

Obesity and its clinical significance 

 Obesity is characterized by an excess of body fat. It can be diagnosed using either 

percent body fat or body mass index (BMI) depending on the availability of appropriate 

measurement equipment. Using body fat definitions, women with greater than 33% and 

men with greater than 25% body fat are considered obese (16). More commonly used in 

the clinic are determinations made using BMI, which is computed as weight in kilograms 

divided by the square of height in meters. BMI is divided into four broad classifications: 

underweight (BMI < 18.5 kg/m2), healthy (18.5 < BMI < 25 kg / m2), overweight (25 < 

BMI < 30 kg/ m2), and obese (BMI > 30 kg/ m2) (1). Approximately 66.3% of American 

adults are classified as either overweight or obese (2). The prevalence of obesity has 

increased from 12.8% to 32% since 1960 (32, 51).  

Epidemiological research has shown correlations between obesity and several 

chronic diseases including coronary artery disease (54), hypertension (17), type II 

diabetes (63), and osteoarthritis (40). Obese individuals also have a shorter life 

expectancy (31) and run a higher risk of depression (71). Health care costs for the obese 

are greater than for individuals with healthy BMI, with reported associations between 

obesity and days of hospitalization, number and cost of outpatient doctor visits, and 

increased spending on prescription drugs (57).  The estimated health care cost of obesity 

in 2003 was $130 billion (16). 
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Energy Balance 

 Body weight regulation occurs by balancing energy intake with total energy 

expenditure (TEE) in a process referred to as energy balance. Energy intake can be 

defined as any food, beverage, or calorie-containing nutritional supplement that is 

ingested. TEE is made up of three distinct components. The basal metabolic rate (BMR) 

is the energy cost associated with maintaining life in a resting condition. It can be 

approximated using physical attributes with any number of predictive equations (33), or it 

can be measured in the laboratory using calorimetry (18). BMR accounts for 

approximately 60% of TEE in an average adult (44). The thermic effect of food (TEF) is 

the component of EE resulting from the increase in metabolism due to digestion and 

absorption of nutrition, which accounts for approximately 10% of TEE. TEF is dependant 

on both the size and macronutrient content of a meal (69). The remaining energy 

expenditure is associated with physical activity (EEACT). Physical activity (PA) can be 

defined as active movements or motions performed by the body and therefore encompass 

a broad spectrum of activities from those with a low intensity such as fidgeting to high 

intensity intervals such as running (45).  

When, over time, energy intake and energy expenditure are not matched, 

fluctuations in body weight occur. Positive energy balance is defined as the condition 

where energy intake exceeds TEE and will result, in time, in weight gain. Conversely, 

negative energy balance occurs when there is not adequate energy intake to compensate 

for the TEE (16). Accurate characterization of each component of energy balance is an 

important step in understanding body weight regulation.  
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Measuring Energy Expenditure 

Human energy expenditure is most commonly measured using calorimeters (47). 

Calorimeters rely on the thermodynamic conservation principle that energy cannot be 

created or destroyed (43). Thus, changes in the energy content of a closed system must be 

due to conversion of energy from one form to another. Two types of calorimeters, direct 

and indirect, exist and both can be used for quantifying human energy expenditure. Direct 

calorimeters measure the temperature change of a known volume of water due to the heat 

production of the human subject (61, 62). This method is rarely used for clinical data 

collection due to the technical challenges and costs involved. Indirect calorimeters are 

more frequently used. In indirect calorimeters, the differences between the subjects’ 

inspired and expired air are characterized as oxygen (O2) and carbon dioxide (CO2) 

fractions in the air they breathe. EE is then be computed from these fractional gas 

concentrations using standard equations (42, 67).   

 Several types of instrumentation have been developed to compute energy 

expenditure using indirect calorimetry. One commonly used device is the metabolic cart 

(24), which includes devices such as the Vmax Encore (Viasys; Yorba Linda CA), and 

the Quark (Cosmed, Rome IT) systems. Subjects are asked to wear either a mouthpiece 

and nose clip or a mask over their nose and mouth. The mouthpiece or mask is connected 

to an external gas analyzer via tubing. Subjects engage in exercise and the gas analyzer 

returns several parameters such as oxygen consumption (VO2), carbon dioxide production 

(VCO2), the respiratory quotient (RQ; ratio of VCO2 to VO2) and EE. Metabolic carts are 

in widespread clinical use. They are relatively easy to use, have been well validated 

(using test-retest validations), and are relatively inexpensive. Because they are 
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commercially manufactured, an onsite technical expert is not required to keep them 

operational. Metabolic carts do have some limitations. The subject is tethered to the gas 

analyzer and therefore has a limited ability to perform locomotion or sport specific 

activities. There is also discomfort associated with the mouthpiece or mask which limits 

the test duration and subject compliance. 

 An alternative approach is the portable indirect calorimeter. These systems use the 

same measurement principles as the metabolic cart but they have been designed to be 

lighter weight and battery powered (28, 48). Examples of portable calorimeters are the 

Oxycon Mobile (Viasys, Yorba Linda, CA) and K4B2 (Cosmed; Rome IT). The design of 

the portable calorimeters allows subjects to wear the gas analyzer unit in a harness either 

on the back or the chest. While these systems suffer from the same types of restrictions in 

experimental duration (two hours maximum) and subject discomfort as the metabolic 

carts, they do allow subjects to engage in most types of PA (water sports are excluded). 

While the increase in the variety of PA modes is desirable for investigators, subjects 

using these devices are required to carry an added load associated with the gas analyzer, 

battery, and harness. While this load is generally small (< 5 lbs), there may be effects on 

exercise performance particularly in subjects with a low body weight.  

 Longer measurements of energy expenditure can be made in a room calorimeter 

(Figure 1). In these custom devices, subjects are sealed into a room where gas 

concentrations are constantly measured. All hardware is housed outside the calorimeter 

where it can be monitored by a trained operator. Compared to metabolic carts and 

portable calorimeter units, room calorimeters allow a wide variety of activities to be 

performed without the discomfort of a mask or mouthpiece. Some activities cannot be 
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performed due to the size of the room (e.g. baseball, golf). Activities that would change 

the gas content of the air are also excluded. Room calorimeters are expensive to build and 

maintain and require onsite technical expertise. They are also limited in their temporal 

resolution since the volume of the gas in the calorimeter is large relative to the changes in 

concentration the subject can generate. As a result, there are only about ten room 

calorimeters currently in use in the United States. 

 

 

Figure 1: Images of a subject engaged in various activities in the Vanderbilt room 
calorimeter. 
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 The Vanderbilt whole-room indirect calorimeter is a small, airtight environmental 

room (2.6 x 3.4 x 2.4 m, 19,500 liters in net air volume) with an entrance door (1 x 2 m) 

and an air lock (0.6 x 0.3 m) for passing food and other items. The room is equipped with 

a desk, a chair, an outside window, a toilet, a sink, a telephone, a TV with VCR/DVD 

player, an audio system/alarm clock, and a fold-down mattress. Oxygen consumption 

(VO2) and carbon dioxide production (VCO2) are calculated by measuring the changes of 

oxygen and carbon dioxide content of the air inside the calorimeter and by the flow rate 

of the purged air times multiplied by the concentration of gases. A special multi-channel 

air sampling system was designed to ensure an even sampling of the gas expired by the 

subject. Temperature is precisely controlled, while barometric pressure and humidity of 

the room are monitored (Figure 2). For this investigation, the sensitivity of the system 

(response time) is very important because EE changes in minutes in response to body 

movement during PA. Our system can consistently achieve the highest accuracy and 

fastest response time (>90% recovery in 1 min) compared to other room calorimeter units 

that are similar in size (67). To our knowledge, these are the most accurate data ever 

reported using whole room indirect calorimeters with measurement intervals as short as 

one minute.  The accuracy and fast response of this whole-room indirect calorimeter 

make it possible to study EEACT in details that were not previously feasible using room 

calorimeters.  
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Figure 2: Schematic detailing the operation of the Vanderbilt University room 
calorimeter (67). 

 

 

An alternative approach which can be used to measure EE is the doubly-labeled 

water technique (DLW). Subjects are asked to consume water with a known 

concentration of two stable isotopes: deuterium and oxygen-18. Urine or saliva 

concentration of the isotopes is measured both before and several days after consumption 

of the labeled water and the differential clearance rate of the isotopes is used to assess the 

CO2 production. Oxygen consumption is then computed using either an estimated or 

measured RQ (60). DLW only gives information about total energy expenditure over the 

measurement period, usually 7-10 days (all others can give information on the order of 
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minutes). It is also prohibitively expensive for most researchers with high costs of both 

the labeled water and the specialized spectroscopy required for data analysis.  

 

Studying Physical Activity 

While all components of energy balance must be studied and understood, PA is an 

ideal component of TEE for investigation since it can be directly controlled by 

individuals on a daily basis and participation can be systematically altered through 

exercise prescriptions. Alterations in PA have the capabilities of changing all components 

of EE (64, 74). Though most obviously participation in exercise leads to increases in 

EEACT, in the long term these changes will also result in increases in BMR. BMR is 

highly correlation with lean body mass (64). After consistent exercise performance, it is 

common that lean body mass would increase while fat mass decreases (10). TEE has also 

been shown to increase in individuals who are active relative to inactive control matched 

counterparts (65). It is therefore desirable to quantify the intensity and duration of PA 

when attempting to understand the etiology of obesity. 

As discussed previously, PA can be measured in the laboratory using calorimetry 

or DLW. However, in order to develop a tool that is useful for understanding the patterns 

of activity and its dynamic range in a real world or free-living environment, it is desirable 

to develop instrumentation that can capture information about the duration and intensity 

of PA bouts over several days at a time, while still maintaining a well-characterized 

relationship with minute-by-minute EE. Such devices would ideally be inexpensive, non-

invasive (worn externally with a minimum of added weight), and capable of monitoring 
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activity over a period of days or even weeks. To this end, a number of types of 

instruments, both qualitative and quantitative, have been developed.  

One approach to estimate EEACT is through the subjective reporting of PA. 

Broadly, two types of survey methods exist: activity recalls and activity diaries. In 

activity recalls a trained interviewer asks each subject questions about their occupation, 

leisure activities, and sport participation (46, 66). This information, coupled with the 

subject’s age, ethnicity, and a subjective assessment of the individual’s physical fitness is 

used to develop an estimate of the subject’s TEE. In activity diaries, each day is divided 

into segments of at least 15 minutes (76, 77). Subjects are asked to account for the 

primary activity they engaged in during each time period. Researchers collect the survey 

and assign energy costs to each interval based on the activity reported and a table of PA 

types and their associated energy costs (5). Surveys are ideal for large studies since the 

cost per subject is low and many subjects can participate simultaneously. They do 

however suffer from large inter-subject variability as not all subjects will accurately 

report their activities (76).  

 Portable sensor systems offer more quantitative information about PA. These 

monitors rely on either physical or physiological information to develop an estimate of 

EEACT. This class of device includes heart rate (HR) monitors, pedometers, and 

accelerometers. While more expensive than surveys, these devices are all small, non-

invasive, simple to use, and able to monitor PA for several days at a time.  

 HR can be detected using either a threshold voltage detector (3) or through a 

feature detection routine (e.g. measuring the RR interval) as part of the collection of an 

ECG signal (12). EEACT can be predicted by capitalizing on the linear or close to linear 
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relationship between HR and EEACT over a wide variety of aerobic conditions. But, HR 

measurements have the disadvantage of being affected by a number of external factors 

such as gender, fatigue, stress, and state of hydration which are not always associated 

with a proportional change in EEACT. Individual curves relating HR and EEACT could 

therefore be created with high accuracy but generalized modeling is difficult. In addition, 

HR is also not a good predictor of EEACT during low intensity (sedentary) activities (14, 

23), which account for a large portion of most subjects’ daily PA.  

 Pedometers are devices designed to count steps and estimate distance traveled 

during locomotion. Vertical acceleration is used to displace a lever arm inside the device. 

When the lever arm displacement reaches a threshold, it completes an electric circuit, 

which triggers the device to record a step (27). Pedometers are easy to use, with simple 

placement instructions and few if any input parameters for the user to specify. They also 

provide the user with immediate visual feedback indicating the number of steps taken, 

which can serve as a motivational tool.  

The same technical simplicity that makes pedometers attractive to consumers 

hampers their use as predictors of EEACT. The primary limitation of pedometers for PA 

analysis is they only attempt to account for information pertaining to locomotion. They 

also typically underestimate distance during slow walking and over-estimate it during 

jogging mostly due to a single stride length assumption for each subject (modeled by sex, 

weight and height) (8). Another limitation of pedometers is that many devices do not 

record a time history and therefore cannot be used to evaluate the pattern of PA over time 

(7).   
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Over the last twenty-five years accelerometers have become a common sensor 

used in portable PA monitors. Accelerometers have been chosen because of the 

proportionality between force and acceleration expressed in Newton’s Second Law  

(FNET = mass*acceleration) (52). Since force can be correlated with mechanical work 

(Work = force*displacement), and mechanical work requires an input of energy  

(Work = Change in Energy), acceleration in the vertical plane has been used as an 

estimate of EEACT. Acceleration measurements in PA monitors are most commonly made 

using beam bending piezo-electric accelerometers. Deflection of the beam due to activity 

causes a transient change in output voltage proportional to the magnitude of the 

deflection. Accelerometers are usually worn at the subject’s hip, a site close to the center 

of mass, and measure in at least the vertical plane (21). In most commercially available 

systems, voltage signals are rectified, filtered, and integrated over a user-defined 

measurement epoch and data are reported as activity counts, an arbitrary unit whose 

meaning varies between device manufacturers based on device sensitivity and filtering 

routines (36).  

Commercially-available accelerometers can be coarsely divided into first 

generation and second generation devices. First generation devices are defined as single 

site, single sensor type (acceleration only) units. These devices are able to record a time 

history of PA intensity information and have been widely used on adults (35, 58, 72) and 

children (34, 56) for monitoring PA over the course of days or weeks. Measurement 

accuracy is limited because accelerometers are only sensitive to movements on the part of 

the body to which they are attached. Temporal resolution of first-generation 

accelerometer output is also limited by the memory capacity of the monitors, battery life, 
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and the data epochs prescribed by the manufacturers. One minute is the standard field 

measurement interval, which was largely determined by the memory storage 

requirements of early accelerometer devices, though most modern accelerometers can 

record in several time epochs between one second and 15 minutes. Processed (filtered) 

signals are the only ones that end-users are able to access in most first-generation 

devices. They also have sensitivity primarily in a single plane, potentially limiting 

detection of sedentary activities, which may not have vertical acceleration components. 

The three most common first generation accelerometers currently in use are the 

ActiGraph (formerly MTI/CSA, Fort Walton Beach, FL), the Actical 

(MiniMitter/Respironics, Bend OR), and the RT3 (Stayhealthy, Monrovia CA).  

The ActiGraph is a uni-axial accelerometer device. The 7164 model has 64KB 

internal random access memory (RAM) for data storage of 22 days at 1-minute epoch. 

The 71256 model increases the memory storage capacity by 4 times (256KB RAM). The 

piezo-electrical accelerometer has a dynamic range of 0.05-2.0 G (multiples of the 

gravitational unit; 9.81 m/s2) with a frequency response between 0.25-2.5 Hz (70). 

Recently, a new model, the GT1M with expanded memory (1 MB) was released. A new 

sensor has been used in the GT1M monitors, however according to the manufacturer the 

internal filtering has been designed to minimize differences between the GT1M and 

previous ActiGraph devices. All ActiGraph monitors are configured to allow attachments 

to the wrist, ankle, or waist.  

The Actical is a small omni-directional accelerometer. It is worn at the hip, wrist, 

or ankle of the subject. The AC64 model has 64KB RAM for data storage that can record 

PA counts for up to 45 days using the 1-minute epoch. The sampling frequency is 32 Hz, 
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and sensitivity is 0.01 G. The Actical is a sister technology to the ActiWatch, which has 

been used extensively in sleep research (9). Though the sensor, memory size, and 

sampling rate are common to both the Actical and Actiwatch, the ActiWatch uses a peak 

detection routine to quantify the activity counts per epoch, where the Actical returns the 

integrated signal over the measurement epoch, which allows for a more balanced 

representation of the activity in the measurement epoch relative to the peak detection 

routine (38).  

The RT3 Research Tracker is a triaxial accelerometer device, which is built on the 

technology of the Tritrac-R3D (58), which was the first commercial tri-axial 

accelerometer for PA assessment. The RT3 is the size of a pager and is worn clipped onto 

the waist. It uses three orthogonally mounted piezo-electric accelerometers to measure 

motion in three planes and provides tri-axial vector data in activity count units. The 

sensor range, data sampling frequency, and A/D converting resolution are proprietary. 

The manufacture’s software calculates a subject’s EEACT using the vector magnitude of 

the activity counts and a linear regression algorithm, which is also proprietary. The RT3 

is capable of collecting and storing data up to 8.5 days (triaxial mode) with a battery life 

of 30 days. 

While a number of first generation devices have been used, the ActiGraph, 

Actical, and RT3 represent a cross section of device sizes, measurement axes, sampling 

rates, and frequency bandwidths. A table comparing some of the most relevant 

specifications of the first generation devices used in these experiments is presented in 

Table 1. Some of the specifications from the RT3 have appeared in peer-reviewed 

publications but have not been verified with the manufacturer. 
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Table 1: Descriptions of first generation physical activity monitors 

 ActiGraph 

7164 

ActiGraph 

71256 

ActiGraph 

GT1M 

Actical RT3 

  

 
 

 

 

 

 

 

 

 

 

Size 51x41x 

15mm 

51x41x 

15mm 

53x51x 

22mm 

28x27x 

10mm 

71x56x 

28mm 

Memory 64 Kb 256 Kb 1 Mb 64 Kb 128 Kb* 

Sensitive 
Axes 

Uni-axial Uni-axial Uni-axial Omni-

directional 

Tri-axial 

Sampling 
Rate 

10 Hz 10 Hz 10 Hz 32 Hz (10–12 Hz)* 

Bandwidth 0.5-2.5 Hz 0.5-2.5 Hz 0.5-2.5 Hz 0.5-3.2 Hz 0.2-10Hz* 

* Unpublished  
 

 

In order to attempt to address some of the limitations of first generation 

accelerometers, a second generation of accelerometry-based PA monitors has been 

developed. Second generation accelerometers are either equipped with an array of 

accelerometers worn at multiple sites (58, 79, 80), or they incorporate accelerometers 

alongside other physiologic measurements such as HR (12), near body temperature, and 

skin impedance (41). Most second generation monitors also allow raw signals to be 

collected and analyzed, at least over a short period of time. Increased temporal resolution 

coupled with a larger number of sensors has increased the amount of information 

available for EEACT prediction in second generation devices. Three commercially-
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available second generation devices are the Actiheart (MiniMitter/Respironics, Bend 

OR), the Sensewear (Bodymedia, Pittsburgh PA), and the IDEEA monitor (MiniSun, 

Fresno CA). The Actiheart and Sensewear monitors combine physical and physiological 

measures, while the IDEEA monitor uses an array of accelerometers attached to the body 

at multiple sites.  

The Actiheart is a small (7mm thick, 33 mm diameter, primary sensor) device 

worn on the chest that combines simultaneous HR detection and a uni-axial 

accelerometer. Data storage and acceleration detection occurs at the primary sensor and a 

wire runs to a smaller secondary sensor that is positioned for ECG acquisition. Heart rate 

data are collected at 128 Hz while acceleration is collected at 32 Hz. The accelerometer 

dynamic range is ± 2 G with a frequency response range of 1-7 Hz. Data are reported in 

either 15 second or one minute epochs, though EE predictions are made only on a 

minute-by-minute basis. The internal memory size is 128 KB which allows continuous 

recording for 11 days using a one-minute epoch (13).  

The Sensewear Armband is a PA monitor (85x54x20 mm, 85g with an internal 

lithium-ion battery) which is uniquely contoured to be worn at the upper arm. The 

internal sensors include an accelerometer as well as sensors for heat flux, galvanic skin 

response, skin temperature, and near-body ambient temperature. The accelerometer in the 

armband is a 2-axis accelerometer that utilizes a micro-electro-mechanical sensor device 

that measures motion. A poly-silicon spring supports a small mass that moves when 

subjected to external acceleration, i.e., body movements. The scale for the sensor is ±2 G 

with an 8-bit A/D converter (256 counts at 3.66 mg/count). The sampling rate is 32 Hz 

and has 512KB RAM of data storage.  The manufacture’s software calculates a subject’s 
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EEACT using a proprietary algorithm that combines acceleration, heat flux and other 

parameters. The Sensewear is capable of collecting and storing data up to 5.5 days at 1-

minute epoch (41). 

The Intelligent Device for Energy Expenditure and Activity (IDEEA), is an array 

of five accelerometers (upper sternum, mid thigh of both legs, and under both feet) 

designed to identify PA types and predict EE (79, 80). For our study, we utilized custom-

designed IDEEA monitors with added sensor arrays for upper limbs. Our current study 

will use this novel device based on accelerometry sensors (20x15x4 mm, 2g) attached at 

sites on both of the upper arms, back of the both hands (middle of the 3rd metatarsal), and 

hip (internal accelerometer within the minicomputer), in addition to the current IDEEA 

sites. Data are transmitted through thin, flexible cables (diameter = 1.7mm) to a 

minicomputer (70x56x16 mm, weighing 59g, and powered by one AAA battery) clipped 

at the waist. The sensors on the hands, feet, hip, and sternum are bi-axial accelerometers 

and the sensors on the thighs and upper arms are uni-axial. The scale of the sensors are 

±2 G. Currently, up-to 88 mega bytes (about 2 complete days) of continuous raw data can 

be stored in the minicomputer for download (via USB or serial port). Although the 

number of sensors and the wires limit the practical applications of this monitor in the 

field, the IDEEA2 is the only device that could measure and continuously record the raw 

signals necessary for our model development. An image of the IDEEA monitor and the 

sensor sites both for the commercial device and for the IDDEA2 custom device are 

shown in Chapter 5. 
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Table 2 shows three second generation activity monitors and provides some 

relevant specifications. The original IDEEA monitor is shown as this is the model that is 

commercially available.  

 

 

Table 2: Description of three second generation activity monitors 

 Actiheart Sensewear IDEEA 
  

 

 

 

 

 

 
 

Sensor Types Uni-axial 
accelerometer, 

Heart rate 

Bi-axial 
accelerometer, 

Heat Flux, 
Near Body 

temperature, 
Galvanic Skin 

Response 

5 accelerometers, 
mixture of uni-axial 

and bi-axial 

Device Location Chest (2 suggested 
locations) 

Bicep of right arm Hip 
(microprocessor), 
sensors on chest, 

mid-thighs, bottom 
of feet 

Sampling Rate 32 Hz (acceleration) 
128 Hz (heart rate) 

32 Hz 32 Hz 

 

 

Though a significant amount of research has been dedicated to understanding the 

output of accelerometers and how this output relates to EE, gaps still exist in our 

understanding of how to use the information from accelerometers most effectively. One 

of the major limitations in our current knowledge involves characterization of the 

relationship between the output of each PA monitor and measured EE. This involves both 
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validating existing equations in environments other than those that were used in 

development, but also the development of novel analytic routines to improve EE 

prediction accuracy. The second research area involves understanding the data filtering 

processes built in to accelerometers. Explorations in these areas will further reveal the 

capabilities of each accelerometer device to provide accurate and reproducible EE 

predictions. Developments in these areas will serve to guide the design of future 

instrumentation by identifying the sensor types and sites as well as the type of data 

acquisition and filtering that provide the best prediction potential. 

 

Relating Acceleration to Energy Expenditure 

Transforming the output data from accelerometers is essential for EE prediction, 

since the output units are arbitrary acceleration counts or raw voltage signals. Because 

activity counts are not standardized across types of PA monitors, this poses an additional 

challenge to generalized modeling using accelerometers because prediction equations are 

specific to the type of instrument used. Data analysis to date has existed in three main 

areas: intensity classification using ranges of metabolic equivalent units (METs), linear 

regression analysis relating counts and EEACT or METs, and nonlinear models where data 

are fitted to a pre-specified functional form.  

METs are a unit often used to classify PA intensity because they are represent 

TEE normalized by resting metabolic rate (RMR). This computation reduces the inter-

subject variability for a given type of PA and improves the ability of researchers to 

compare PA intensity across subjects of different body sizes and compositions.  

Traditionally, one MET is defined as an oxygen consumption of 3.5 mL/kg/min, which is 
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assumed to be the energy cost associated with sitting at rest (75). Therefore, it is assumed 

that all subjects performing a specific type of PA exert approximately the same number 

of METs even though the EE measurement may be very different. Thus METs provide a 

method to normalize data across subjects, which should reduce the error introduced into 

prediction equations when subjects whose physical characteristics, e.g., weight, height, 

age, differ from the model development set are introduced into a validation experiment.  

A compendium of PA types and their associated MET costs is published 

periodically by the American College of Sports Medicine (ACSM) (4). While each 

activity type has been assigned a MET value or range of values, many analyses using 

METs further simplify data by examining ranges of METs. Standard analysis ranges have 

been designated by ACSM and correspond to light (1-3 METs), moderate (3 – 6 METs), 

vigorous (6 - 9 METs), and very vigorous (> 9 METs) PA, although additional ranges are 

sometimes specified (75). Recently, there has been increased interest in characterizing 

sedentary activities, which can be assigned a range of 1-1.5 METs.  

Analysis using METs is the most logical approach to estimate EE in qualitative 

PA research where the activity type is known but no reference standard has been 

measured (PA recalls and surveys). From the activity type and the MET values for each 

activity (5), an estimation of the PA intensity can be made. Categorical analysis 

techniques are also appealing to researchers who are analyzing quantitative data over a 

long period of time or from many subjects since they reduce the large number of minute-

by-minute data points into a smaller number of summary statistics that can be used to 

compare data prospectively or cross-sectionally. Early accelerometer research focused on 

defining cut-points, values of acceleration counts that discriminated between the MET 
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ranges (35, 39, 50, 66, 68). The cut-points are then used to determine the amount of time 

subjects spend engaged in PA of a specific intensity, which is useful in determining 

compliance to public health recommendations or personal PA prescriptions. To develop 

cut-points, subjects performed specific PA types while researchers made measurements 

simultaneously with indirect calorimeters and accelerometers. 

To develop cut-points, several research groups have used linear regression to 

determine the relationship between VO2 and activity counts for the measured modes of 

PA (35, 39, 50, 68). The count value corresponding to 3, 6, and 9 METs were extracted 

from the regression fit and these values were used to classify data into three or four 

intensity categories (> 6 METs is sometimes used). Many sets of cut-points were 

independently developed for the ActiGraph PA monitor, the most commonly used 

commercial device to date, however only three will be presented here. The first set of cut-

points, developed by Freedson et al (35) was developed using treadmill walking and 

jogging at three specific speeds. In an attempt to build a model from a more diverse set of 

data, Hendelman et al (39) developed a second set of cut-points by supplementing the 

walking and jogging intervals with golfing, and basic household tasks. Swartz et al (68) 

developed a third alternative where only tasks of daily living such as yard work, walking 

while carrying a load, housework, and family care activities were measured. Each set of 

cut-points presents a different picture of how to analyze data acquired from the same 

piece of equipment. Since the studies used to develop cut-points involve fitting regression 

lines to all of the measured PA data, the regressions themselves can also be used to 

predict EE or METs. These early models tend to underestimate the specific MET costs of 

modes of PA relative to the compendium values in validation experiments (25).  
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Recognizing that the ability to predict EE from a linear regression model was not 

ideal for all activities, some researchers have begun to explore more sophisticated 

analysis approaches. One simple method to slightly increase model complexity, a bi-

linear regression approach has been suggested, where sedentary activities were used to 

build one linear regression and locomotion activities were used to develop the second 

(38). While this modeling approach addresses the apparent differences in the relationship 

between counts and VO2 in the low intensity domain relative to the moderate and 

vigorous ranges, the current two regression model is discontinuous at the point where the 

activities were divided. This increases the potential for large error in assigning energy 

costs to count values that lie close to the discontinuity, which could result from 

measurement differences across monitor units rather than actual intensity differences 

between the observations (29).  

In a shift away from using a linear function, a power model has been proposed to 

predict EEACT from a tri-axial accelerometer (22). This model takes advantage of the 

additional acceleration information provided by the three acceleration measurements to 

improve prediction accuracy in the low-intensity region, where uni-axial accelerometers 

and linear models tend to perform poorly. Validation of this model on a small sample of 

women wearing the Cosmed K4B2 portable calorimeter showed that the model 

overestimated the energy costs of walking and jogging, though the total EE estimate was 

similar to the calorimeter (19). A model based on a quadratic function has been 

developed in a small population of adolescent girls performing 10 PA types of various 

intensities in a free-living environment (59). This model has improved performance 

relative to cut-point approaches for the sample on which it was developed, however, the 
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quadratic form is not generally considered to be physiologically reasonable as there is the 

potential for decay in EE assigned to high intensity intervals. To our knowledge, this 

model has not been validated by other researchers.  

In our first study (Chapter III), we validated seven regression equations that have 

been developed for the ActiGraph, Actical, and RT3 PA monitors. All equations were 

developed using one-minute epochs and using populations of healthy adults, making 

them appropriate for comparison with our data. This work is, to our knowledge, the first 

time that these equations have been independently validated in 24 hour data sets in a 

large population of subjects asked to perform PA at self-selected paces. These 

experiments will provide insight into the relative strengths and weaknesses of each 

regression model.  

 

Accelerometer Variability  

In addition to challenges associated with relating accelerometer output to EE, a 

potential source of error in data acquisition and analysis using accelerometers are the 

technical specifications and performance of the accelerometer units themselves. Some 

accelerometer studies have revealed significant inter-monitor variability (15, 73) in 

clinical applications. This should raise concerns in research where multiple monitors are 

used for PA assessment and data are compared cross-sectionally or prospectively. The 

inherent variability introduced by subjects themselves is often confounded by variance 

introduced by the monitors in such trials. One approach to quantifying these differences 

is for a single subject to wear multiple monitors (50, 68, 78). But, the number of units 
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that can be worn and locations are always prohibitive factors in consistently representing 

monitor response between units of the same monitor type (ActiGraph, Actical, etc). 

One approach to developing an understanding of the magnitude of inter-monitor 

variability is to perform mechanical oscillation experiments.  Compared to human trials, 

mechanical oscillators have the potential to more fully characterize the function of 

accelerometry-based PA monitors because of the large number of accelerations that can 

be generated, the ability to record data from multiple monitors simultaneously, and the 

reproducibility of oscillations between trials.  Several groups have used mechanical 

shakers to determine the inter- and intra- monitor variability in ActiGraph 7164  

monitors, the most commonly used portable PA monitor. Fairweather et al developed a 

mechanical shaker to determine the variability of four ActiGraph monitors at a single 

acceleration value (30). This study showed high inter-instrument correlations in pair-wise 

comparisons between the monitors but the results are limited both by a small sample size, 

and a single acceleration test point. Metcalf et al developed a testing apparatus that 

captured the response of 23 ActiGraph 7164 monitors to sinusoidal oscillations at two 

speed profiles (49) These experiments showed low intra- and inter- instrument 

coefficients of variability (CV) at both the moderate and fast speed. While this study has 

a larger sample size, it still does not provide a complete characterization of the sensor 

response to different accelerations. Using a rotational wheel apparatus, Brage et al 

expanded on this work by exploring the inter- and intra-monitor variability of six 

ActiGraph 7164 monitors subjected to 51 accelerations generated by modulating both the 

speed and radius of oscillation (14). This study showed low intra-monitor variability but 

indicated that the inter-monitor variability was large enough to justify individual monitor 
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calibration, or specific EE prediction equations for each PA monitor unit. Because of the 

diversity of tested accelerations, this study provides a paradigm for experiments 

demonstrating the complete range of response of accelerometry-based PA monitors to 

mechanical oscillations. 

The RT3 (StayHealthy; Monrovia, CA) PA monitor has also been subjected to 

mechanical oscillation experiments (55). In this study, 23 RT3 monitors were oscillated 

at three frequencies (2.1, 5.1, and 10 Hz). Difference in response between the three 

measurement axes as well as inter-monitor variability as a function of frequency of 

oscillation was explored. Inter-monitor variability decreased as frequency increases, but 

was larger in all cases than that of the ActiGraph 7164. The y-axis measurements were 

significantly different than the x and z axis responses with respect to total counts 

recorded at the two highest frequencies. This study was limited by the small number of 

frequencies tested, and the radius of oscillation of the shaker used (8.8 mm), which is 

smaller than the physiological displacement expected for many PA types.  

Recently, a study was performed that compared the response of the ActiGraph 

7164, the RT3, and a third activity monitor, the Actical (MiniMitter/Respironics; Bend, 

OR) (29). While these investigators looked at inter-monitor variability in large sample 

sizes of monitors, only six accelerations were tested (three by modifying radius, and three 

by modifying frequency), and therefore, no conclusions could be drawn about the overall 

response profiles of each device, or the relationship between the three monitor types.  

While the response pattern and variability of the ActiGraph 7164 have been 

explored and some data have been collected using the RT3 and Actical, to our 

knowledge, no researchers to date have performed comprehensive analyses on newer 
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models of the ActiGraph, such as the 71256 and the GT1M, or developed complete 

response profiles for the RT3 and Actical monitors. It would also be desirable to 

determine if relationships exist between the monitor types, which might allow results to 

be compared across monitor types. Explorations in this area could lead to significant 

improvement in model development by reducing the error in EEACT models caused by 

inter-monitor variability, as well as by suggesting populations of subjects or modes of PA 

where a monitor’s hardware filters are likely to limit the accuracy of the response. 

In Chapter IV we undertook an extensive series of oscillation experiments to 

characterize the filtering of three generations of ActiGraph accelerometers. This work 

helps us to understand sources of error in our measurements that may be directly 

attributable to the instrumentation, particularly those errors that may result from 

introducing new equipment types during the course of a long term clinical investigation. 

Since clinical studies can easily span years, and equipment may be lost or damaged 

during this time, introducing new equipment is almost unavoidable. Further, through 

experiments in Appendix B where we compared responses between several PA monitor 

types we gained further insight into the differences in the meaning of activity counts 

across monitor types.  

 

Alternate Modeling Strategies 

In spite of a large body of work dedicated to the development of relationships 

between activity monitor output and EE, the major drawback with using accelerometers 

in the field to date has been in developing predictive models for METs or EE that 

generalize well to new subject populations and activity types. While linear regression 
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analysis is simple, the functional form of the model is not ideal, and the outcome of the 

modeling effort is highly dependant on the subject population and activity set used for 

model development, with large standard deviations in the generalization performance of 

group models. More complex models have not yet been widely accepted because of the 

required equipment, data dimensions, size and diversity of subject population needed for 

model development and testing, and technical hurdles associated with implementing the 

modeling techniques. However, recent work suggests that investigators are increasingly 

willing to explore more complex modeling approaches if higher predictive accuracy can 

be demonstrated.  

 Recently, a model has been developed using data collected in 1-second epochs. 

Data are grouped into two classes based on the CV in 10-second data intervals (26). An 

exponential regression was performed where CV ≤ 10, and a cubic regression was 

performed in all other data. MET values associated with individual PA types were 

improved using this approach. This approach capitalizes on technical improvements in 

the accelerometers which allow data to be collected in shorter epochs for longer periods 

of time. Results of this study indicated improvement relative to linear regression models 

developed using the ActiGraph; however, large errors were still detected for some 

individuals. 

Additionally, a classification scheme using quadratic discriminant analysis and 

hidden Markov models has been proposed as a proof-of-concept to identify specific PA 

types (53). Though the discrimination accuracy in the model was high (< 90%), the 

model was developed on four activity types (rest, computer work, walking at a set pace, 

and vacuuming) and data were only collected from a small number of subjects (n=6). In 
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spite of these limitations, models developed using clustering techniques and other 

nonlinear models suggest that researchers are aware of a need for more robust data 

acquisition and modeling approaches to improve prediction of type, duration, and 

intensity of PA.  

 Building on existing modeling approaches, which have shown benefits from using 

multi-dimensional (53), nonlinear (22), and high speed (26) accelerometer data, we have 

established design requirements for development of a new model relating acceleration 

and EE. Because there is no single “normal” metabolic response, a candidate modeling 

approach which allows for multi-dimensional data input and allows full interactions 

between acceleration and subject characteristics may improve prediction of both PA 

intensity and minute-by-minute EE. Predictions should be flexible, allowing the same 

acceleration inputs, when matched with different personal characteristics to elicit 

different predictions, and should be robust in the face of noise introduced both by the 

acceleration measurement of the device and inter-monitor variability. Machine learning 

approaches fit these requirements well. 

 Artificial neural network (ANN) is an information-processing paradigm inspired 

by the way the densely interconnected, parallel structure of the mammalian brain 

processes information (37). ANNs are collections of mathematical nodes that emulate 

some of the observed properties of biological nervous systems and draw on the analogies 

of adaptive biological learning.  
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Figure 3: Schematic of a single “artificial neuron” with parameters defined for the EE 
prediction problem. 

 

 

The key element of the ANN paradigm is the novel structure of the information 

processing system. It is composed of a large number of highly interconnected processing 

elements that are analogous to neurons and are tied together with weighted connections 

that are analogous to synapses. Each of these artificial neurons requires information 

inputs, weighting coefficients, transfer functions. Using these pieces of information the 

neuron can produce an output reflective of the current information supplied to it (Figure 

3). 

 In a complex ANN model, multiple processing units are organized into layers 

allowing for parallel processing and improving computational efficiency (Figure 4). 

These connections also allow for interactions between neurons and nonlinearities to be 

introduced. In a fully connected network, the weight values between neurons of a layer 
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are all allowed to influence the inputs to the next layer. This allows all layer full 

interactions in the model. 

 

 

Figure 4: Schematic of multi-layer ANN. In this diagram, the circles labeled “HIDDEN” 
and “OUTPUT” reflects the summation of layer weights and transformation by the basis 

functions.  
 
 
 

 Learning in biological systems involves adjustments to the synaptic connections 

that exist between neurons. ANNs also operate in an adaptive fashion. Supervised 

learning occurs by example through training, or exposure to a set of input/output data 

where the training algorithm iteratively adjusts the connection weights until a pre-

determined acceptable agreement is reached between model-predictive output (e.g., 
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predicted EE) and the true output (e.g., measured EE). Thus, these connection weights 

store the knowledge necessary to solve specific problems. 

 Although ANNs have been around since the late 1950's, it wasn't until the mid-

1980's that algorithms became widely adopted modeling tools (37). Today ANNs are 

being applied to an increasing number of real-world problems of considerable 

complexity. They are good pattern recognition engines and robust classifiers, with the 

ability to generalize in making decisions about noisy input data. They offer solutions to a 

variety of classification problems such as speech, character and signal recognition (11), 

as well as function approximation and system modeling where the physical processes are 

not understood or are highly complex, as is the case in metabolic modeling. The 

advantage of ANNs lies in their resilience against distortions in the input data and their 

capability of learning (37). They are often good at solving problems that are too complex 

for conventional technologies (e.g., problems that do not have a closed form solution or 

for which a closed form solution is too complex to be found) and are often well suited to 

problems that people are good at solving, but for which traditional analytic methods are 

not. 

 In the case of modeling the metabolic response to exercise, ANN models offer 

several advantages. First of all, a large number of subject characteristics may need to be 

combined with movement parameters in order to appropriately assess the magnitude of 

the expected metabolic response. ANN will allow the appropriate interactions to be 

emphasized, while reducing the impact of those that do not make a large contribution. 

Additionally, relative to standard least squares linear regressions, ANN models should be 

able to achieve better generalization since the higher number of degrees of freedom allow 
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the model to be more flexible in developing an appropriate model fit for data similar to 

that used for model training. ANN models can also avoid some problems with over-

fitting by terminating model training when error from a validation set begins to increase 

even if the training error is still decreasing. Finally, by not specifying a functional form a 

priori, bias introduced by any distributional assumptions is minimized and an appropriate 

model form for the data is realized.  

In the field of PA research, ANN models have been applied to gait analysis 

problems identifying the phase of gait as well as predicting joint angle parameters (20) . 

Additionally, speed and incline of unconstrained walking were predicted using 

accelerometer data and an ANN trained using data acquired from treadmill walking (6). 

To our knowledge, however, ANN approaches have not been used to directly predict EE 

from acceleration signals. 

To test the capabilities of the ANN approach to improve the prediction of EE, we 

designed an ANN (Chapter V) using raw data from two acceleration channels at the hip 

and compared the EE predictions and the resulting errors to those from traditional 

accelerometer models. Additionally, we compared these predictions to those made using 

the IDEEA monitor, which has access to data from five sites. In Appendix D we 

demonstrate an ANN using only acceleration signal components, which is used to 

highlight the importance of subject characteristics in model development, while showing 

that minute-by-minute validation errors are still lower than those observed with an 

integrated acceleration response. In Appendix E we demonstrate the capability to develop 

ANNs on a subject by subject basis, which could serve to further reduce observed errors 

in EE prediction. 
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Statement of Purpose 

 The purpose of this work is to demonstrate the utility of accelerometers for 

prediction of PA intensity, in particular, EE. This will be accomplished by first 

demonstrating the performance of first generation accelerometers coupled with existing 

regression models, by comparing EE predictions to measurements made in a room 

calorimeter. Resulting predictions will be explored to determine the types of prediction 

variables for which the monitors and regressions are successful as well as highlighting 

any systematic discrepancies in the predictions. We will then undertake an exploration of 

the hardware filtering built in to the same accelerometers to attempt to discern if 

prediction accuracy and measurement validity is impacted by the hardware filtering in 

each device. Finally we will pursue a novel analytic approach where raw (32 Hz) 

acceleration signals are used to drive an ANN model using data from hip sensors. Results 

from this model will be compared with existing regression approaches to determine the 

benefit that can be derived from adding additional information into the EE prediction 

process.  

 This work addresses several crucial gaps in our understanding of accelerometers 

and their ability to predict EE. By developing improved tools for quantitative 

measurement of PA, we will take a step towards being able to accurately predict EE in a 

free-living environment. This information helps us to understand the role of PA in energy 

balance and to tackle the epidemic clinical problem of obesity.  
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 CHAPTER III 
 
 
 

VALIDITY OF PHYSICAL ACTIVITY INTENSITY PREDICTIONS BY 
ACTIGRAPH, ACTICAL, AND RT3 ACCELEROMETERS 

 
 
 

Abstract 

 Accelerometers are promising tools for characterizing physical activity (PA) 

patterns in free-living persons. To date, validation of energy expenditure (EE) predictions 

from accelerometers has been restricted to short laboratory or simulated free-living 

protocols. This study seeks to determine the ability of seven regression equations for 

three commercially available accelerometers, ActiGraph (three equations), Actical (two 

equations), and RT3 (two equations), to predict summary measures of EE during 24-hour 

stays in a room calorimeter in a diverse subject population (n=85). All accelerometers 

and regression equations significantly underestimated (p<0.05) the daily physical activity 

level. When data from the entire visit was divided into four intensity categories, light, 

moderate, intense, and very intense, significant (p<0.05) over and under predictions were 

detected in numerous regression equations and intensity categories, though in most cases 

errors were less than 1%. Over almost all monitors and regressions, estimates of time 

spent in each intensity category were reliable (differences less than 2% of measurement 

interval); however, the regressions with physiologically reasonable intercepts always 

underestimated the daily physical activity level. New regression equations should be 

developed if accurate prediction of the daily PAL is desired.  
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Introduction 

 Physical activity (PA) is widely recognized as an important factor in maintaining 

healthy body weight. As the prevalence of obesity increases (15), increasing the daily PA 

level among adults has become an important public health priority. Several specific PA 

guidelines have been issued in an attempt to help individuals develop appropriate 

exercise habits. Both the Centers for Disease Control and Prevention and the American 

College of Sports Medicine (ACSM) have issued recommendations that adults perform 

moderate intensity PA for at least 30 minutes per day, five days a week (16, 23). Healthy 

People 2010 encourages adults to engage in at least three 20 minute bouts of vigorous PA 

each week (14). Some studies suggest that even these guidelines are insufficient to 

combat weight gain (3). Regardless of the specific PA goal adopted, it is important for 

researchers to objectively and accurately measure the actual daily participation in PA in 

order to understand the patterns of PA as well as to characterize the impact of achieving 

specific PA goals on overall health.  

One common method for objective assessment of PA is accelerometry. 

Accelerometer output can be used to predict gross energy expenditure (EE) (6, 10, 22) or 

metabolic equivalents (METs) (9, 11, 20), which can be computed by normalizing EE by 

resting energy expenditure (REE). To simplify interpretation of accelerometer data, cut-

points that distinguish intensity categories have been developed with descriptive names 

that correspond to those used in making public health predictions. Typical MET 

categories include light (1-3 METs), moderate (3-6 METs), intense/vigorous (6-9 METs), 

and very intense (> 9 METs) PA (23).  
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 A number of different EE prediction equations exist in the literature to predict 

both METS and gross EE using minute-by-minute accelerometer output. Some of these 

equations have yielded cut-points, which serve to discriminate PA intensities without 

making specific EE predictions. All of these regressions are specific to a particular 

accelerometer device, such as the ActiGraph (9, 11, 20), the Actical (10), and the RT3 

(6). Early equations were developed using only moderate-to-vigorous PA (9), while more 

recent approaches have incorporated lower intensity lifestyle activities, such as sweeping, 

house-cleaning, and gardening (10, 11, 20). A number of analytic approaches have been 

explored to develop robust prediction capabilities including linear regression (9-11, 20), 

bi-linear regression (10), and a nonlinear, power model (6). An extensive review of 

experiments designed to develop EE prediction equations and cut-points has recently 

been published by Matthews (13). 

 With numerous accelerometer devices on the market and multiple regression 

equations developed for each device, it is often difficult to select the device and 

regression equation that will be most appropriate for a specific study (5). Recently, a 

validation of three accelerometers, ActiGraph, Actical, and AMP-331, and fifteen 

prediction equations was performed on data acquired from short, structured protocols 

using portable indirect calorimetry (7), which showed overestimation of the metabolic 

cost of walking and sedentary activities, while underestimating the cost of most other 

activities tested. In the current study, we compared the predictive performance of three 

accelerometry-based PA monitors, ActiGraph, Actical, and RT3, and six EE prediction 

equations from the literature and one from the device manufacturer. We used EE 

measured by a room calorimeter during 24-hr periods in a heterogeneous group of 
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healthy adult volunteers as the reference criteria. Understanding the prediction accuracy 

of each monitor with respect to room calorimeter data provides an important intermediate 

step between EE estimates based on fully-structured laboratory protocols and free-living 

analyses. 

 

Methods 

Participants: Eighty-five adults (37 men, 48 women) between the ages of 18 and 70 

years completed this study. Subjects were weight stable (< 2kg change in the last year), 

free of both diseases and medications known to alter EE, were non-smokers, and were 

free of major orthopedic problems that would limit their ability to perform PA. The 

characteristics of these subjects are shown in Table 1. 

 

Table 1: Characteristics of study participants represented as median ~ inter-quartile range 
and (total range) 

. 
 All Subjects 

(n = 85) 
Men 

(n = 37) 
Women 
(n = 48) 

Age (years) 40 ~ 21.0 
(20 ~ 69) 

40.0 ~ 21.0 
(20 ~ 69) 

39.0 ~ 22.0 
 (20 ~ 67) 

Height (m) 1.70 ~ 0.13 
(1.52 ~ 1.91) 

1.77 ~ 0.10 
(1.67 ~ 1.91) 

1.64 ~ 0.08 
 (1.52 ~ 1.78) 

Weight (kg) 72.0 ~ 22.0 
(47.2 ~ 118) 

81.5 ~ 19.0 
(64 ~ 118) 

63.1 ~ 15.2 
 (47.2 ~ 114) 

BMI (kg / m2) 24.6 ~ 5.15 
(16.9 ~ 42.1) 

25.4 ~ 3.8 
(21.3 ~ 38.5) 

22.9 ~ 5.7 
(16.92 ~ 42.1) 

% Body Fat 28.0 ~ 16.0 
(6.7 ~ 57) 

23.3 ~ 10.0 
(6.7 ~ 45.1) 

35.2 ~ 13.6 
(11.7 ~ 57) 

  

 

Experimental Procedures: Volunteers were recruited from the Nashville, TN area using 

flyers, email distribution lists, and personal contact. Before participation, all subjects 
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signed an informed consent document approved by the Vanderbilt University Committee 

for the Protection of Human Subjects. Each subject was asked to complete one overnight 

stay in the room calorimeter while minute-by-minute activity data was acquired with 

three hip-mounted accelerometers. Each subject was asked to engage in two structured 

activity intervals. The morning activity period was comprised of self-paced ambulatory 

activities, while the afternoon activity period contained sedentary activities, such as 

deskwork, along with stationary biking. Because hip-worn accelerometers were used, 

stationary biking was ultimately eliminated from the analysis. Each prescribed activity 

was performed for ten minutes followed by a ten minute rest period to allow the 

metabolic rate to return to baseline between activities. During times when no specific 

activity was prescribed (~ 18 hours), subjects were encouraged to engage in their normal 

daily physical activity patterns. Resting energy expenditure was computed using the 

mean of measured sleeping EE. Subjects’ body composition was assessed in the week 

before their study visit using DEXA (GE Lunar Prodigy). Height, measured using a 

stadiometer, and weight, measured using a calibrated physician’s scale, were measured 

the morning the subject entered the room calorimeter.  

 

Instrumentation 
 
 Whole-room indirect calorimetry chamber: Energy-expenditure was computed on 

a minute-by-minute basis by the Vanderbilt University room calorimeter, which is 

located within the General Clinical Research Center. This system measures oxygen 

consumption and carbon dioxide production with high accuracy (system error < 1%). The 

room calorimeter is an airtight environmental room measuring 2.5 x 3.4 x 2.4 m. The 
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calorimeter is equipped with a toilet and sink, desk, chair, telephone, television, DVD 

player, stereo system, bed, treadmill, and exercise bike. Technical details of the 

calorimeter have been previously reported (19). 

Accelerometers: During the study visit, subjects were simultaneously outfitted 

with three commercially available accelerometers, the ActiGraph (formerly MTI/CSA; 

Fort Walton Beach, FL), the Actical (MiniMitter/Respironics; Bend, OR), and the RT3 

(StayHealthy; Monrovia, CA). Both the ActiGraph and Actical are primarily sensitive to 

motion in one plane (vertical). The RT3 is a tri-axial accelerometer, which reports 

activity in each of three orthogonal directions as well as the vector magnitude (VM) of 

the three measurements.  

Each of these monitors reports activity counts, a device-specific arbitrary unit, 

which represents the frequency and amplitude of acceleration events occurring over a 

user-defined measurement epoch. Technical specifications for each type of monitor have 

been previously reported (10, 17, 21). For this study, all monitors were attached to a belt 

secured at the waist with monitors positioned on the right hip, and all data was acquired 

in one minute epochs.  

 Regression Equations: Activity count data for each monitor can be converted to 

measures of PA intensity (EE or METS) using a variety of both published and proprietary 

equations. Three regression equations were studied for the ActiGraph, while two 

equations each were explored for the Actical and RT3 (Table 2). Data were analyzed 

using both MET-based categorical predictions and using daily physical activity level 

(PAL), which was computed as the average of the minute-by-minute MET prediction 

during the study interval.  



53 

 

 

Table 2: Regression Equations for each PA monitor (ac = activity counts; AC = Actical 
PA monitor, and AG = ActiGraph PA monitor). 

 
Equation  
Number 

Developer Activity 
Monitor 

Regression Equation(s) 

AC 1 *Heil(10) Actical AEE=(0.02779+1.143e-5*ac)*weight(kg) 
AC 2 *Heil(10) Actical AEE=(0.01217+5.268e-5*ac)*weight(kg)   350≤ac≤1200 

AEE=(0.02663+1.107e-5*ac)*weight(kg)      ac ≥ 1200 
AG 1 Freedson\ 

Work-
Energy(1, 9) 

ActiGraph AEE=9.4e-4*ac+0.1346*weight(kg)-7.37418   ac≤ 1952 
EE=1.91e-5*ac*weight(kg)                                ac>1952 

AG 2 Hendelman(11) ActiGraph METS=2.922 + 4.09e-4*ac 
AG 3 Swartz(20) ActiGraph METS=2.606 + 6.863e-4*ac 
RT3 1 Stayhealthy RT3 Proprietary 
RT3 2 Chen(6) RT3 AEE = (ac/76.2)0.533 * (0.203 + 6.8e-3*weight(kg)) 

 
* ac ≤ 50: AEE = 0; 50 < ac ≤ 350: AEE = 0.007565*weight(kg) 

 

 

 For two equations, the Freedson equation for the ActiGraph (AG 1) and the Chen 

equation for the RT3 (RT3 2), adaptations were made to the originally published form to 

make them appropriate for our study data. The Freedson equation was developed 

specifically for moderate to vigorous intensity PA. The original model, assumed to be 

valid only for moderate to vigorous activity, was augmented using a formulation of the 

work-energy theorem presented in the ActiGraph instruction manual (Version 3.2) (1). In 

order to minimize the impact of this change on our categorical variable analysis, 

ActiGraph data was analyzed using published cut-points (Table 3) to categorize the data 

rather than continuous EE predictions when possible, though continuous EE predictions 

were required for the PAL analysis. For the Chen RT3 equation (RT3 2), which was 
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originally developed for the TriTrac-R3D accelerometer, a constant correction factor (17) 

was used to account for data collected with RT3 monitors.  

 

 

Table 3: Activity Cut-points based on the EE prediction equations for each ActiGraph 
regression. 

 
Regression Light\Moderate 

Cut-point  
(3 METS) 

Moderate/Vigorous 
Cut-point  
(6 METS) 

Vigorous /Very 
Vigorous Cut-

Point (9 METS) 
AG 1 1952 5724 9498 
AG 2 190.7 7525.7 14860.6 
AG 3 574 4945 9317 

 

 

Statistical Analysis:  Both activity monitor types and specific regression equations were 

compared as to their ability to accurately predict daily PAL, and time spent in four 

standard PA intensity ranges, specified in METs. As the standard criteria, the 

calorimetry-measured PAL values were calculated on a minute-by-minute basis as the 

ratio between absolute EE and sleeping EE, which was the averaged EE over the entire 

sleeping duration. Data are presented as median and inter-quartile range for continuous 

variables, and as proportions for categorical variables. To test the null hypothesis that 

there is no difference in PAL and the percent of time spent in each intensity category 

between each regression equation and the calorimeter data, longitudinal analyses were 

conducted using GEE (12) to take into account the correlation among repeated 

measurements obtained from individual subjects. Analyses were performed using 

STATA 9.1 (StataCorp, College Station, TX), and R (www.r-project.org). 
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Results 

PAL over the entire measurement period (21.7 ± 0.41 hours) was computed for 

each subject using the room calorimeter EE as well as predicted EE using each activity 

monitor and regression equation (Figure1). The median of the measured PAL values was 

1.63, indicating that, on average subjects had an active day (PAL > 1.5). All PAL 

predictions were significantly different (p < 0.001) from the calorimeter-measured values. 

By examining the differences between the calorimeter and each prediction, the outcomes 

can be ranked. The smallest magnitude difference occurs with the proprietary regression 

equation for the RT3 monitor (RT3 1), which had an absolute difference of 0.07 from the 

median daily PAL obtained using the calorimeter. The largest errors are observed when 

using the Hendelman (AG 2) and Swartz (AG 3) regressions, which showed significantly 

higher predictive PAL than other regressions considered. These large prediction errors 

are attributable to their high y-intercept values (Table 2).   
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Figure 1: PAL relative to the calorimeter. Under-predictions fall below the x-axis, 
while over-predictions are above. The mean PAL measured by the calorimeter is   
1.63. All PAL values are significantly different from the calorimeter (p < 0.001). 

 

 

Data from each subject was also analyzed to determine the percent of the 

measurement period associated with each of four PA intensity categories, or MET ranges 

(Table 5), light (1-3 METs), moderate (3-6 METs), vigorous (6-9 METs), and very 

vigorous (> 9 METs). On average 95% of the study visit fell between 1-3 METs, 3.5% 

between 3-6 METs, and 0.75% spent in each of the 6-9 and > 9 MET classes.. The 1-3 

MET category was generally well represented by the Actical, which showed no 

significant differences in either the percent of time measured with the calorimeter and 

predicted by the single (AC 1) or bi-linear (AC 2) regressions. Both RT3 equations 

showed ~ 1.5% over-prediction, while the Swartz equation (AG 3) showed ~ 1% under-
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prediction. The largest prediction error occurred with the Hendelman cut-points (AG 2), 

where the mean under-prediction of time spent in light PA was close to 7%. All the 

models that under-predicted time spent in light activity subsequently over-predicted the 

time spent in moderate activity and vice versa. 

 

  

 
*Significant over-prediction (p<0.01); ^ Significant under-prediction (p<0.01) 

 
Figure 2: Percent of study spent in four intensity classes represented as the 

difference from the calorimeter.  
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Discussion 
 
 Accelerometry-based portable physical activity monitors are a feasible and 

objective means of measuring physical activity patterns. Many studies have developed 

and validated models with various accelerometers to predict activity energy expenditures; 

however, to our knowledge, the scopes of such studies were mostly limited to short and 

structured intermittent protocols. In this study using a whole room indirect calorimeter, 

we validated the ability of the ActiGraph, Actical, and RT3 activity monitors to 

accurately report group summary statistics relating to time spent in specific PA intensity 

categories in a heterogeneous group of healthy men and women. Previously published 

regression equations for each device were explored to discover their relative strengths 

and weaknesses. The long study duration (~ 22 continuous hours) presents a bridge 

between short laboratory PA protocols, where all exercise intervals are explicitly 

specified, and free-living studies by allowing subjects to engage in both prescribed and 

spontaneous bouts of PA while still providing minute-by-minute correspondence with EE 

information from the room calorimeter. Analyses were designed to attempt to highlight 

features that would be of interest to researchers examining long-durations (weeks) of 

free-living data, where minute-by-minute prediction accuracy is less important than 

reliable summary measures of each day.   

 PAL is a measure of the mean EE above resting, which makes it an attractive 

measurement quantity since it is directly comparable between subjects since it is 

normalized to REE. Mathematically, accurate predictions of PAL require that intervals in 

which activity counts are close to zero be assigned an EE close to or equivalent to the 

REE. Thus, the Hendelman (AG 2) and Swartz (AG 3) regressions are poor choices for 



59 

predicting PAL because the large y-intercepts (2.922 and 2.606 METs respectively) cause 

PAL to be significantly over-predicted when subjects are at rest or engaged in low 

intensity activities (7). Using all other regressions, PAL was, on average, under-predicted 

which highlights potential limitations in the regression forms and also reflects that there 

are some increases in EE where motion was not detected by the accelerometers (thermic 

effect of food, limb movements, and isometric muscle contractions). The RT3 regressions 

performed most comparably to the calorimeter, with the best performance associated with 

the proprietary regression (RT3 1). The higher predicted PAL in both RT3 regressions 

could be due to the lower proportion of measured zeros by the RT3 (0.50) relative to the 

Actical (0.59) and ActiGraph (0.61), or could be due to characteristics of this regression, 

such as a slightly over-predicted baseline value. In the case of the proprietary RT3 

regression, this is difficult to isolate the source, since the form of the regression is 

unknown.  

 Time spent in MET categories is a summary metric which characterizes the 

intensity distribution of daily PA, and is a useful tool for assessing whether a daily PA 

goal has been met in the field. While differences between predicted and measured 

distributions were generally small, some notable exceptions do occur. In our study, the 

regression with the largest prediction error was the Hendelman (AG 2) regression, 

displaying a large difference from the measured light intensity PA (Figure 2). This 

phenomenon has previously been observed when specific light and moderate PA modes 

were studied (2, 7) . The Hendelman regression (AG 2), along with the Chen RT3 

regression (RT3 2) rarely predicts that any data belongs to the very intense category. If 

the number of classes is reduced to three by combining all measurements > 6 METS, 
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which is a frequent analysis construct, the Chen RT3 regression (RT3 2) has good 

agreement with the calorimeter data with mean time spent in the > 6 MET category 

predicted at 1.38% relative to the measured 1.66%. This type of correction does not 

provide the same benefit for the Hendelman regression (AG 2) for the 6-9 MET category, 

suggesting that there is a systematic bias in the intensity prediction towards moderate 

intensity PA using this regression. This follows logically from the cut-points (Table 3), 

where the range of counts associated with moderate activity, 7335 counts, is far wider 

than the 3772 counts assigned to moderate PA using the Freedson cut-points (AG 1), or 

the 4371 using the Swartz cut-points (AG 3). The pattern of prediction errors observed in 

this study agree with previously reported validation results using the ActiGraph 

regressions in shorter, structured protocols (2, 7).  

There are some limitations in this study. First, we did not evaluate all predictive 

equations available for all the monitors we tested. We restricted our search to commonly 

used regressions, developed using one-minute epoch data, and chose to only examine one 

equation, the Freedson equation (AG 1) that only used walking and jogging in model 

development. Further, when possible we used equations that are built-in to activity 

monitor software, thereby attempting to isolate the equations that would be most 

accessible to researchers in the field. A new, nonlinear regression for the ActiGraph has 

recently been published (8), however, the data collection epoch was one second, and we 

were unable to validate its performance using this data set. Also, while we frequently 

referred to our predictions in terms of METs, they are more truly physical activity ratios 

(PAR) since each subjects’ activity data was normalized by a measured REE (18). This 

difference could explain some discrepancies with regression equations developed using a 
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constant 3.5 ml O2/kg/min as the normalization factor. However, there is some recent 

evidence that the constant normalization factor is not valid for all subjects (4) and PAR 

may be a more meaningful summary metric. We explored the impact of the value used 

for normalization by analyzing all of our data using an REE computed with the Harris-

Benedict equation (approximately 10% higher than our measured baseline EE, which we 

took the average EE during the entire sleeping period). Resulting statistical trends for 

PAL and percent of time spent in each intensity category were unchanged.   

It should also be noted that due to our large sample size, both with respect to 

number of subjects and duration of data collection, many statistically significant 

differences were detected that may result from absolute differences that are too small to 

be clinically relevant. Thus, each researcher must examine the magnitude of the 

difference between predicted and measured values to determine if observed differences 

are meaningful in the context of their work. Under prediction in PAL may be important, 

even if absolute differences are small, since a threshold value for an active day may not 

be predicted even if it is not achieved using these approaches. This was seen frequently in 

our data. For intensity categorizations, 1% difference between predicted and measured 

time in any PA category corresponds to approximately 15 minutes. This may not be 

significant in reporting total time spent in rest or light PA intensities, but may be very 

important in evaluating moderate to vigorous PA where the total time spent is expected to 

be relatively small and exercise recommendations frequently involve around 30 minutes 

of moderate to vigorous PA.    

In this study we compared three commercially available accelerometery-based 

activity monitors and seven EE prediction equations with measured values using a room 
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indirect calorimeter. Mean PAL was under-predicted in five regressions with a zero or 

near zero intercept, while it was overestimated using two equations that did not force 

activity counts of zero to correspond to REE. Despite many performance similarities 

across monitor types and regressions, specific strengths and weaknesses were found for 

each, suggesting that no one equation or monitor is superior in all circumstances. 

Consequently, researchers should consider their outcome goal in determining not only the 

instrument they use to collect data but also their post-collection processing method. Since 

data can be safely analyzed using multiple regression approaches, researchers who are 

interested in more than one type of outcome may determine that more than one regression 

approach should be employed within a study in order to produce the highest accuracy 

results for each measurement variable of interest. Additional results from this data set can 

be found in Appendix B. 
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CHAPTER IV 

 

COMPARING THE PERFORMANCE OF THREE GENERATIONS OF ACTIGRAPH 

ACCELEROMETER 

 

Abstract 

ActiGraph accelerometers are a useful tool for objective assessment of physical 

activity in clinical and epidemiological studies. Several generations of ActiGraph are 

being used; however, little work has been done to ensure that measurements are 

consistent across generations. This study employed mechanical oscillations to 

characterize the dynamic response and inter-monitor variability of three generations of 

ActiGraph monitors, from the oldest 7164 (n = 13), 71256 (n = 12), to the newest GT1M 

(n = 12). The response due to independent radius (22.1–60.4 mm) and frequency (25–250 

RPM) changes were measured, as well as inter-monitor variability within each 

generation. The 7164 and 71256 have similar relationships between counts and radius (p 

= 0.229) but were significantly different from the GT1M (p < 0.001). The counts vs. 

frequency responses were nonlinear in all three generations. Although the patterns were 

similar, the differences between generations at various frequencies were significant (p < 

0.017), especially in the lower and higher measurement ranges. Inter-monitor variability 

was markedly reduced in the GT1M compared to the 7164 and 71256. Other 

measurement differences between generations include decreased peak counts and 

sensitivity in low frequency detection in the GT1M. The results of this study revealed an 

improvement of the inter-monitor variability by the newest GT1M. However, the reduced 



66 

sensitivity in low count ranges in the GT1M may not be well suited for monitoring 

sedentary or light intensity movements. Furthermore, the algorithms for energy 

expenditure predictions developed using older 7164 monitors may need to modified for 

the GT1M. 

 

 Introduction 

Accelerometers are commonly used by researchers to objectively characterize the 

intensity and duration of physical activity in animals and humans. Due to their portability 

and data storage capacity, they are particularly useful in clinical and epidemiological 

studies in the fields of exercise, behavior, nutrition, and obesity. There are several 

accelerometry-based physical activity monitors commercially available, such as the 

Actical (Mini Mitter, Bend OR), ActiGraph (Fort Walton Beach, FL), and RT3 

(Stayhealthy, Monrovia, CA). Of these, the most studied monitor is the ActiGraph 

accelerometer, formerly marketed under the Computer Science and Application (CSA) 

and Manufacture Technology Incorporated (MTI) names. Collectively, ActiGraph 

monitors have been in use for more than a decade and have undergone several hardware 

and software revisions.  

Extensive work has been dedicated to the development of correlations between 

ActiGraph data and physiological criteria, such as oxygen consumption during walking 

and jogging in a laboratory setting (7, 9) Researchers have expanded these studies to 

include field data using portable indirect calorimeters as the validation criteria. (2, 8, 19) 

An extensive review of calibration experiments has recently been performed (18). Some 

studies revealed significant inter-monitor variability in CSA/MTI devices (4, 20). This 
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raises concerns in field applications where multiple monitors are used for physical 

activity assessment and data is compared cross-sectionally or prospectively. However, the 

inherent variability in monitors is often confounded by the variance introduced by the 

subjects themselves in such validation trials. Even in the case of a single subject wearing 

multiple monitors (11, 16, 21), the number of units that can be worn and suitable 

locations are always prohibitive factors. 

Compared to human trials, mechanical oscillators have several advantages, such 

as the large number of accelerations that can be generated, the ability to record data from 

multiple monitors simultaneously, and the reproducibility of oscillations between trials. 

Several groups have used mechanical shakers to determine the inter- and intra- monitor 

variability in ActiGraph 7164 (CSA) monitors. Fairweather et al developed a mechanical 

shaker to determine the variability between four ActiGraph monitors at a single 

acceleration value (6), and showed high inter-instrument correlations in pair-wise 

comparisons between the monitors. However, this study was limited both by a small 

sample size, and a single acceleration point. Metcalf et al (10) developed a testing 

apparatus that captured the response of 23 ActiGraph 7164 monitors undergoing 

sinusoidal oscillations at two speed profiles. These experiments showed low intra- and 

inter- instrument coefficients of variability (CV = [standard deviation / mean] · 100) at 

both the moderate and fast speed. While this study has a larger sample size, it does not 

provide a characterization of the sensor response over a wide range of accelerations. 

Using a rotational wheel apparatus, Brage et al (3) explored the inter- and intra-monitor 

variability of six ActiGraph 7164 monitors subjected to 51 accelerations generated by 

modulating both the frequency and radius of oscillation. This study showed low intra-
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monitor variability but indicated that the inter-monitor variability was large enough to 

justify individual monitor calibration. This study provides a comprehensive approach to 

characterizing the response patterns of ActiGraph 7164 monitors. Recently, a new 

investigation was undertaken to compare the response of ActiGraph 7164 monitors with 

response profiles with response profiles of the Actical and RT3 monitors (5). 

To our knowledge, no researchers to date have performed sensor characterization 

on newer models of the ActiGraph, such as the 71256 (marketed 1999 - 2005) and the 

GT1M (marketed in 2005), though it has recently been suggested as a potential source of 

monitor variability that should be explored (5). These analyses could provide insight into 

variations in the device hardware across monitor generations, which would impact the 

predictions of physical activity intensity or energy expenditure using devices other than 

the 7164 monitors. The purpose of this study is to investigate the inter- and intra- 

generation differences in count response and unit variability in three generations of 

ActiGraph monitors by applying a wide range of mechanically generated accelerations. 

 

Methods 

Instrumentation: The CSA/MTI ActiGraph monitors are small devices (5.1 x 4.1 x 1.5 

cm for 7164 and 71256, 5.3 x 5.1 x 2.2 cm for GT1M) that can be worn at the hip, wrist, 

or ankle (12) which measure acceleration in the vertical plane using a uni-axial 

piezoelectric accelerometer. Detailed specifications of the hardware and a full description 

of how the monitor acquires and filters data have been described previously (17). Data 

output from the ActiGraph is captured in counts from the manufacturer’s software (1), 

which are a measurement unit that accounts for the amplitude and frequency of 
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acceleration events over each sampling period. Resulting activity counts are then summed 

over a user-defined epoch, or measurement period. Data collected at different epoch 

lengths can be compared by multiplying the count output by the ratio of the two epochs 

(17).  

 We studied three generations of ActiGraph physical activity monitors: the 7164 (n 

= 13), the 71256 (n = 12), and the GT1M (n = 12). The 7164 monitors were borrowed 

from a field investigator, and were at least three years old at the start of the study. These 

devices were tested using both mechanical acceleration pulses and using the ActiGraph 

calibrator prior to use and determined to be functional. The 71256 monitors had been in 

limited use for approximately one year (no more than 10 study visits with each device), 

while the GT1M monitors were new when these experiments began. All 7164 and 71256 

monitors were calibrated using an external calibration apparatus (Model CAL71) 

according to the manufacturer’s guidelines before the experiments. At the conclusion of 

the experiments, all monitors were again evaluated with the calibrator and none was 

found to be outside the suggested calibration range. The GT1M monitors are not 

accommodated by the external calibrator, however, according to the manufacturer’s 

guidelines external calibration is not required for this model. 

 To generate all accelerations in this study, we selected an orbital shaker 

 (VWR, Catalog Number 57018-755) with a frequency range of 25 – 500 (± 2) RPM  

(0.42 – 8.3 Hz). An orbital shaker produces a sinusoidal pattern of accelerations and is 

therefore a reasonable simulator of repetitive human movements such as gait. However, 

the original 19.05 mm oscillating radius is smaller than the radius of movement that 

would be expected during normal gait, and higher intensity activities such as jogging 
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(13). Thus, we modified the orbital shaker to include an adjustable radius ranging from 

10.2 – 66.8 mm by adding an arm between the loading plate and the rotor of the shaker. 

The rotational frequency capabilities, as measured by an electronic odometer, remain 

unchanged after the modification. The loading plate was equipped with three elevated 

wooden columns attached by right angle brackets to the loading plate of the mechanical 

oscillator. The elevation of the columns allows monitors to be secured on all sides of the 

monitor, ensuring fidelity of position within each experimental condition. 

 

 

 

Figure 1: Orbital shaker with three generations of ActiGraph (3 each) placed in the nine 
locations used for mechanical oscillation experiments. For experiments, the monitors 

were secured to the surface with cable ties. 
 

 

Experimental Procedure 

Location experiment: The purpose of this first experiment was to determine the 

uniformity of motion between locations on the loading plate. The elevated columns were 



71 

divided into nine positions large enough to accommodate an ActiGraph. Each position 

was verified for consistency of measurement using a batch of ActiGraph 71256 monitors 

(n = 9). Each monitor was positioned in all locations and rotated at 60 RPM with an 

epoch length of 10 seconds for two minutes.  

Radius experiment: The purpose of this experiment was to measure the sensor 

output for five radius values, 22.1, 35.1, 41.6, 46.6, and 60.4 mm in different ActiGraph 

generations at a constant frequency (150 RPM). Monitors were divided into batches of 

nine units (Figure 1) from a mixture of generations, and were secured to the table 

throughout the radius changes. Epoch length was set to one minute, an epoch commonly 

used in field data collection. Activity counts were measured for six minutes with at least 

three minutes of rest between successive radii. 

 Frequency experiment:  The purpose of this experiment was to determine the 

dynamic range of each generation of ActiGraph accelerometer. Monitors were again 

divided into batches of nine (mixed generations) and subjected to 21 different oscillation 

frequencies ranging from 25 – 250 RPM at a fixed radius of 46.6 mm. The low end of the 

frequency range was dictated by the limitations of our mechanical shaker. Although the 

published high frequency limit for the ActiGraph was 2.5 Hz (150 RPM), we selected the 

high end of 250 RPM (about 4 Hz) because this is within the range of human movements 

(14, 15). A two epoch length convention was developed where frequencies less than or 

equal to 100 RPM were measured using 10 second epochs and frequencies greater than 

100 RPM were captured using one minute epochs, with measurements at 60, 80, and 100 

RPM collected using both epoch lengths. Short epochs were used to distinguish between 

noise, isolated spikes of low count values, and continuous signal acquisition. For the 
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short epoch trials, two minutes of data was collected followed by a one minute rest 

period, while for the long epoch trials, data was collected for six minutes followed by at 

least three minutes of rest. Data collected using 10-second epochs were then converted 

(multiplied by six) into analogous one-minute count values. Post hoc analysis showed 

that the percent difference in counts that were converted from short epochs to long 

epochs at the three repeated measurement points was less than the intra-monitor CV for 

each monitor, which suggests that the use of two measurement epochs did not have a 

significant effect on the reported results. 

For each experimental condition, the first and last data points were excluded from 

analysis in order to eliminate the possibility of transient recording errors associated with 

oscillator ramp-up/down phases. For the short epoch trials conducted as part of the 

frequency experiments, the first and last two data points were excluded from analysis. 

In additional to present data in terms of frequency (RPM) in our experiments, 

average acceleration was computed using the following equation (Eq 1) which was 

presented by Brage et al (2) who used a similar sinusoidal oscillator in a previous study, 

where acceleration (A) is a function of both the frequency (f) and radius (r) of oscillation.  

 

28 frA ⋅⋅⋅= π                       (Eq 1) 

 

 Moreover, in an attempt to develop a linearly increasing relationship between 

counts and acceleration for all measured values, results of the frequency experiments 

were adjusted using the filter weighting (FW) function proposed by Brage et al (4) as the 

following.  
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453.15573.006118.0 2 +⋅−⋅= ffFW                     (Eq 2) 

 

Statistical Analysis: For the location experiment, a non-parametric Kruskal-Wallis test 

was used to determine if location effects exist.  To assess the relationship between radius 

and counts, linear regression analysis was performed on the output from each generation 

of monitors. The equality of slopes across generations was assessed by testing if the 

radius by type effect is equal to zero using an F-test. Contrasts were established to test 

whether the slope of the 7164 and 71256 are different and if the slope of the GT1M is 

different than the 7164 and 71256 combined. For the frequency experiments, pair-wise 

comparisons between any two monitor types were performed using exact Wilcoxon rank 

sum tests at each measurement frequency with a Bonferroni adjustment to control for 

multiple comparisons in the overall Type I error rate. The inter- and intra-monitor CV 

was computed at each frequency. Statistical analyses were performed using SAS for 

Windows 8.02 (SAS Institute; Cary NC) and R 2.01 (The R foundation;  

www.r-project.org).  

 

Results 

 One ActiGraph GT1M monitor exhibited a non-zero response at 25 RPM. This 

monitor also showed a markedly greater count output at 30 RPM than the other GT1M 

monitors tested. This result was verified in multiple tests. Because of these differences, 

this monitor was excluded from all analyses leaving a sample of 11 GT1M monitor units.  
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Location Experiment 

 The location validation experiment showed no significant location effect on count 

values (Table 1) over all monitors (p = 0.999). This allowed monitors throughout the rest 

of the experiments to be tested regardless of their position on the loading plate.  

 

Table 1: Location verification experiment - Mean and Standard deviation (counts/minute) 
from nine ActiGraph 71256 monitors at each of nine locations on the loading plate are 

shown. 
 

593.4 ±16.5 
 

 
594.3 ± 16.7

 
594.8 ± 17.1

 
593.9 ± 17.0 

 

 
594.1 ± 17.6

 
593.9 ± 16.3

 
592.6 ±16.2 

 

 
592.6 ± 16.5

 
592.6 ± 17.5

 

 

Radius Experiment  

The mean counts were found to be correlated with radius for each generation of 

ActiGraph monitors at 150 RPM (Figure 2). Comparisons between groups of monitors 

reveal that the 7164 and 71256 monitors had similar slopes (p = 0.229), but are different 

from the GT1M (p < 0.001).  
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Figure 2: ActiGraph counts as a function of radius for each generation of monitor. This 
plot contains the mean of monitor means for each generation of monitor at each radius. 

The error bars represent one standard deviation. 
 

 

Frequency Experiments 

 Figure 3 shows the accelerometer output (mean counts) as a function of frequency 

of oscillation and calculated average acceleration (Eq 1) for the three generations of 

ActiGraph monitors at a fixed radius. All three generations showed a similar curve shape 

– a linear region in the middle section, flanked by two nonlinear regions at lower and 

higher frequencies. At frequencies greater than 160 RPM, all three generations of 

ActiGraph monitors were significantly different from each other at each frequency tested 

(p < 0.017). In addition, there were several data points at which pair-wise comparisons 

showed significant differences. The GT1M monitors were significantly different from the 

7164 monitors at all frequencies except 120 RPM, and from the 71256 monitors at all 
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frequencies except 120, 140, and 150 RPM. The 7164 and the 71256 monitors were 

significantly different at 30, 35, 50, 60, 90 and 160 RPM.  
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Figure 3: Plot of counts as a function of frequency and acceleration for each monitor 
generation over all measured accelerations. Results are mean of all monitors plus one 

standard deviation. 
 

 

One important difference in the behavior of the three generations of ActiGraph 

was observed at the lowest test frequencies (Figure 4). While the 7164 and 71256 

monitors have a nearly identical response to these oscillations, the GT1M monitor 

requires a larger acceleration to record a nonzero activity count response.   
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Figure 4: Activity counts as a function of frequency and acceleration for low acceleration 
values. The GT1M monitor requires a larger acceleration to record a non-zero count 

response.  
 

 

 Inter-monitor CV values were computed at all measured frequencies. The inter-

monitor CV for the GT1M monitors is consistently lower than either the 7164 or 71256 

monitors for frequencies greater than 40 RPM (Figure 5). In general, the CV is high for 

all generations at low frequencies (> 20%) because not all monitors of each generation 

have a non-zero response in this range (large standard deviation). The GT1M at 25 RPM 

was an exception because no signal was captured by any of the monitors (hence CV=0).  
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Intra-monitor CV was small in monitors of all generations, with values on the order of 

0.55% for all frequencies greater than 40 RPM. 
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Figure 5: Inter-monitor CV (%) for all frequencies greater than 35 RPM for all three 
ActiGraph generations. Data from 25 and 30 RPM is not shown because the large CV (> 

100%) observed at these frequencies does not well represent the trends over the 
measurement range. 

 

 

The exact FW function proposed by Brage (Eq 2) was not adequate to remove all 

the signal decay in the high frequency domain (Figure 6a) observed in these experiments. 

Therefore, we developed a new filter function using voltage data previously published 
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(17) over a slightly expanded frequency range, 0.95 – 5 Hz. A least squares quadratic fit 

on these data (Eq 3) yielded a regression that was able to correct for nearly all of our 

observed count decay at high accelerations (Figure 6b). 

 

446.15493.00592.0 2 +⋅−⋅= ffFW                     (Eq 3)  

 

The same filter weighting function was applied to all generations of ActiGraph since, to 

our knowledge, no voltage data have been published on the newer models.  
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Figure 6: Filter-weight corrected data using quadratic filter weighting function for each 
generation of ActiGraph monitor. The left panel (6a) shows the results using the Brage 

weighting function, while the right panel (6b) shows the results using a slightly modified 
quadratic weighting function designed to attenuate count decay at high accelerations.  

 

 

Discussion 

 The ActiGraph line of accelerometers are the most frequently used activity 

monitors in the physical activity research field. In this study, we developed an orbital 
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shaker and measured multiple units of the ActiGraph of three different generations under 

various acceleration conditions produced by altering both the frequency and radius of 

oscillation. Although the ActiGraph responses to acceleration changes have similar 

shapes, statistically significant point differences were found between the three 

generations. Particularly, the newest monitors, the GT1M, had smaller inter-monitor CV, 

but lower sensitivity in the low frequency range and reduced amplitude at higher 

accelerations. 

The radius analysis showed that there is a linear relationship between counts and 

radius for all measured values. This is an expected response based on the theory of 

rotational motion (Eq 1). However, the slope of the regression is significantly different in 

the GT1M monitors when compared to older monitors suggesting that there are some 

differences in either the device sensitivity, or the filtering scheme. To further explore this 

idea, experiments where acceleration was modulated by frequency changes at a constant 

radius were used to characterize the dynamic range and filtering of the count output.  

 Results from the frequency analysis showed that even though the general shape of 

the curves is similar, the GT1M count output is less than that of the other two monitor 

generations at low frequencies (<40 RPM), becomes greater for moderate frequencies 

(around 3-5% between 50 -120 RPM), and decays much more quickly after achieving a 

lower max count value in the high frequency domain (Figure 3). Although we originally 

wanted to derive correction factors between different ActiGraph generations, this non-

linear relationship between the generational response profiles prohibits us from achieving 

this goal with a single continuous function. In addition to observations made over the 
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entire range of tested frequencies, statistically significant point differences in amplitude 

existed in many of the test conditions.  

Using the Freedson equation (7) for predicting EE from activity counts, the 

observed difference in EE prediction for counts less than 4000 (assumed to be those most 

frequently attained by subjects) changes in predictions between the 7164 and each of the 

newer monitor generations were computed. Differences between the 7164 and 71256 

showed a consistent reduction in EE prediction of approximately 0.05 kcal/min. 

Comparisons between the 7164 and GT1M EE predictions ranged from an under-

prediction of -0.30 kcals/min at 30 RPM (counts ~ 300) to over-estimation of 0.40 

kcal/min at 60 RPM (counts ~ 3500). Differences between 7164 and 71256 monitors are 

therefore unlikely to be clinically significant; however differences between the 7164 and 

GT1M predictions could lead to large errors in daily or weekly EE predictions.  

 Our results from the frequency experiments clearly revealed that a significant 

improvement in the new GT1M monitor is a reduction in inter-monitor variability. While 

inter-monitor CV for the 7164 and 71256 was on the order of 3–5 % over all frequencies 

tested, the GT1M had values of less than 1 % at all frequencies greater than 40 RPM. We 

conducted additional experiments to reduce the inter-monitor CV in the 7164 and 71256 

monitors by using the external calibrator to specify a specific gain value (data not 

shown). However, even when a specific gain value is specified, the inter-monitor CV of 

the 7164 and 71256 monitors tested (1.56-5.96%) did not achieve CV as low as that 

observed in the GT1M, and the process of obtaining this level of control over the 

calibration factor is time intensive. As such, the ActiGraph GT1M appears to be a more 

consistent measurement tool than previous ActiGraphs, which could reduce measurement 
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variability in studies where a large number of physical activity monitor units will be used 

and data are compared prospectively or cross-sectionally.  

 The shape of all three of our observed acceleration response curves was similar to 

the curve shown by Brage et al (4) for the 7164 monitor. However, in order to generate a 

corrected curve for our data using the previously proposed filter weight correction 

scheme, a slightly altered weighting function was developed to accommodate our 

observed decay in high frequency data, which appears to have a slightly larger magnitude 

than previously observed. This could be due to differences in our mechanical testing 

devices, differences between the batches of monitors tested, and/or the slightly increased 

dynamic range used for data collection. Regardless of the exact filter weighting 

coefficients, this analysis supports earlier findings that the shape of the data response can 

be modified analytically using a quadratic regression to linearize the response profile and 

generate a monotonically increasing function (Figure 6). The same weighting function 

appears to produce similar results across ActiGraph generations. This approach, however, 

has limited relevance in the field where changes in acceleration can be caused by changes 

in either the amplitude (radius) or the frequency of oscillation. Because the underlying 

physical cause of the acceleration change would be unknown, application of a frequency-

based correction factor would not be well motivated. Even if changes in acceleration in 

the field could be linked to specific physical changes, this filter weight correction 

amplifies the magnitude of the count response, which limits our ability to use existing 

cut-points or energy expenditure prediction equations without either scaling the raw data 

or the coefficients in existing analysis routines. 
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Even though we detected many statistically significant differences in the 

frequency data, it is important for field researchers to consider how much these 

differences will impact their research findings. When working with largely sedentary 

populations, the magnitude of count differences between device generations are expected 

to be small and the amount of error introduced may be acceptable. However, the higher 

threshold for non-zero count reporting exhibited by the GT1M may increase the 

challenge of detecting and discriminating sedentary or light intensity activities; however 

this threshold should reduce the possibility of that noise would be reported as signal using 

these devices. Researchers who are using cut-points to divide their data into intensity 

categories may not see a large change in their outcome using GT1M monitors because 

only a small number of data points, those with count values similar to the cut-points, are 

expected to be re-classified if data from GT1M monitors is partitioned with equations 

developed for the 7164. Differences may be more important if energy expenditure is the 

desired outcome. In this case, any difference in count value would alter the minute-by-

minute energy expenditure prediction. Over the course of a day, small minute-by-minute 

differences could translate into large differences in total energy expenditure predicted. In 

such cases, it would be desirable to develop new equations using count data from GT1M 

monitors. Additionally, researchers who are interested in studying children, who tend to 

exhibit bursts of high intensity activity, or investigators working with other highly active 

populations, may be concerned about the lower peak count value for the GT1M monitors.  

 There are several limitations in our study. While the 71256 and GT1M monitors 

were purchased in batches and had similar prior use patterns among units of a generation, 

the 7164 monitors were borrowed from a field investigator. We have no knowledge of 
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their age, prior use, or service history. Since this study did not incorporate a time history 

component, it is unclear if these factors introduce significant error. The calibration 

process should minimize sensor drift over time and should identify bad sensors (since 

their count response would be outside the range of expected output for the calibrator), 

making it an important check point in the process of evaluating equipment. However, this 

process is not comprehensive (all possible accelerations are not tested) and some age and 

wear related issues could remain which may change the response of the monitors. These 

could explain some of the small changes between 7164 and 71256 monitors we observed. 

The sample size in our study is also a consideration. While it would be desirable to have 

larger batches of monitors, our sample sizes were constrained by the practical limitation 

of the number of monitors we had available on-site and through collaborators.  

 In conclusion, this study demonstrates the response of three generations of 

ActiGraph physical activity monitors under a wide range of mechanically produced 

acceleration conditions. We demonstrated a reduction in inter-monitor variability in the 

new ActiGraph GT1M monitors, which reduces the error introduced into analyses due to 

multiple monitor units and represents a significant improvement over previous ActiGraph 

monitors. Our results also indicated that significant differences in activity count outputs 

exist between the generations of monitors at numerous acceleration values. Differences 

between 7164 and GT1M monitors can lead to substantial differences in the prediction of 

daily EE. However, analyses relying on cut-points will likely only feel a minimal impact 

of these differences between monitor generations. Differences between 7164 and 71256 

monitors are unlikely to be clinically relevant. Ultimately, the end goal of each researcher 

must be considered when interpreting whether these count differences will introduce an 
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unacceptable level of error into data analysis. Differences observed in a mechanical 

setting should be verified in controlled human experiments to better understand the 

impact inter-generational differences have on analysis using ActiGraph monitors. 

Additional oscillation results can be found in Appendix C.  
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CHAPTER V  

AN ARTIFICIAL NEURAL NETWORK MODEL OF ENERGY EXPENDITURE 

USING NON-INTEGRATED ACCELERATION SIGNALS 

 

Abstract 

 Accelerometers are a promising tool for characterizing physical activity (PA) 

patterns in free-living. The major limitation in their use to date has been a lack of 

precision in predicting energy expenditure (EE), which may be attributed to the over-

simplified time-integrated acceleration signals and subsequent use of linear regression 

models for EE prediction. In this study, we used bi-axial raw (32 Hz) acceleration signals 

at the hip to develop a relationship between acceleration and minute-to-minute EE in 102 

healthy adults while measurements were simultaneously made in a room calorimeter for 

nearly 24 hours. Using the pooled data, we extracted 10 features which we determined 

had the potential to characterize EE intensity, and developed a feed-forward/back-

propagation artificial neural network (ANN) model with one hidden layer (12x20x1 

nodes). Results of the ANN were compared to predictions using the ActiGraph monitor, a 

uni-axial accelerometer, and the predictions made by the IDEEA monitor, an array of five 

accelerometers. All accelerometer predictions were highly correlated with EE (r2 > 0.79). 

After training and validation (leave –one subject out), the ANN showed significantly 

reduced mean absolute errors (0.29~0.10 kcal/min), mean squared errors (0.23±0.14 

kcal2/min2), and difference in total EE (21±115 kcal/day), when compared to both the 

IDEEA (p < 0.01) and the ActiGraph (p < 0.001). Thus, ANN combined with raw 

acceleration signals is a promising approach to link body accelerations to EE. Further 
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validation is needed to understand the performance of the model for different PA types 

under free-living conditions.  

 

Introduction 

In the last fifteen years, portable accelerometers have been used to characterize 

the intensity and duration of physical activity (PA), and their output has further been used 

for the prediction of energy expenditure (EE) (6, 10, 12). Accelerometer devices are 

typically worn at the hip with the aim of capturing displacement of the subject’s center of 

mass, which is generally associated with moderate to high intensity activities. In order for 

data to be collected for more than one day, long enough to assess the patterns of PA in 

free-living, most accelerometery-based PA monitors record one data point per minute, 

which represents the summation of acceleration events during the minute. The output of 

PA monitors is reported to the investigator in units of activity counts (22), which are an 

arbitrary unit specified by each device manufacturer. To our knowledge, this integration 

(or summation) process was not designed a priori for predicting EE rather it was dictated 

by memory capacity and battery life in early accelerometers. As such, other 

characteristics of raw acceleration signals may yield better predictive outcomes.  

Early modeling approaches to relate activity counts and EE typically assumed a 

linear relationship between the activity count values and EE measured using indirect 

calorimeters (10, 13, 15, 20). Linear regression fits were used because of their 

computational simplicity and ability to well characterize the energy costs of moderate 

intensity, ambulatory activities. While models based on this strategy provided an 

excellent first approximation of the relationship between hip-measured acceleration 
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signals and EE, they have suffered in their generalization to different PA types and 

subject populations (24). This is because the models were predominantly developed using 

short protocols containing primarily dynamic modes of PA (walking and jogging) and 

were developed on homogeneous subject populations. Prediction accuracy of general 

models also varies greatly between subjects with different personal characteristics (age, 

height, weight, etc) because identical accelerations may not result in the same metabolic 

cost for these individuals.  

Investigators have sought to improve model accuracy by increasing the amount of 

information gathered during each measurement epoch. This effort has included adding 

additional acceleration dimensions at the hip (6, 16), adding sensors to the limbs (wrist 

and ankle) for more complete movement detection (5, 13), and by coupling physical and 

physiological information, such as heart rate, near body temperature and skin impedance 

(4, 14, 18).  Using the additional data collected by these devices, more mathematically 

sophisticated and in some cases more accurate models relating acceleration and energy 

expenditure have been developed such as multiple linear regressions (12) and nonlinear 

models (6, 17). Recently, a new model for EE prediction was developed that called for 

recording data in finer time intervals (one second) using a uni-axial accelerometer rather 

than collecting more channels or types of sensor data (8). In this model, the second-by-

second data variability was used as an initial discrimination tool to decide the specific 

model to use on each epoch of data. This modeling approach was made possible because 

of improvements in the data storage capacity and battery life of modern accelerometers.  

Increases in temporal resolution open the field to new analytic solution techniques that 

rely upon multiple measurements acquired from each minute of measured activity.  
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The purpose of this study was to expand on existing EE modeling techniques by 

capturing raw (32 Hz) acceleration signals from a bi-axial accelerometer worn at the hip. 

We propose a feature extraction scheme where the dense acceleration signals are reduced 

to a small number of simple to compute statistical parameters (features) that are well 

correlated with the minute-by-minute EE measured by a whole room indirect calorimeter. 

The reduced signal information combined with subject demographics (sex, age, height, 

weight, BMI, and racial/ethnic background) were used to develop an artificial neural 

network (ANN) model to predict minute-by-minute EE. Results of the ANN model were 

compared with both a traditional accelerometer regression equation, and the proprietary 

output of a commercially available accelerometer array.  

 
Methods 

Participants: One hundred and two healthy adults (46 men, 55 women) between the ages 

of 18 and 70 years completed this study. Subjects were free of both diseases and 

medications known to alter metabolic rate, major orthopedic limitations, and were non-

smokers. The characteristics of these subjects are shown in Table 1. 
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Table 1: Characteristics of study participants represented as mean ~ inter-quartile range 
and (total range).  

 
 All Subjects 

(n = 102) 
Men 

(n = 46) 
Women 
(n = 56) 

Age (years) 35 ~ 22.0 
(19 – 69) 

35.5 ~ 20.5  
(20 ~ 69) 

35.0 ~ 22.3 
(19 ~ 67) 

Height (m) 1.70 ~ 0.15 
(1.52 ~ 1.91) 

1.78 ~ 0.09 
(1.67 ~ 1.91)  

1.63 ~ 0.08 
(1.52 ~ 1.78) 

Weight (kg) 72.1 ~ 22.4 
(48 ~ 120) 

81.4 ~ 18.6  
(64 ~ 120) 

64.6 ~ 19.5  
(48 ~ 114) 

BMI (kg / m2) 25.0 ~ 5.9 
(16.9 ~ 42.1) 

25.3 ~ 4.4  
(19.8 ~ 38.5) 

24.4 ~ 7.1 
(16.9 ~ 42.1)  

% Body Fat 27.6 ~ 17.3 
(6.2 ~ 57) 

22.4 ~ 9.1 
(6.2 ~ 45.1) 

36.2 ~ 16.0  
(11.7 ~ 57) 

 

 

Experimental Procedures: Volunteers were recruited from the middle Tennessee area 

using flyers, email distribution lists, and personal contact. Before participation, all 

subjects signed an informed consent document approved by the Vanderbilt University 

Committee for the Protection of Human Subjects. Each subject was asked to stay in the 

room calorimeter for approximately twenty-four hours while minute-by-minute activity 

data was acquired with multiple commercially available accelerometery-based PA 

monitors. Each subject was asked to engage in two structured activity intervals. The 

morning activity period was comprised of self-paced walking and jogging (both in the 

room and on the treadmill), while the afternoon activity period contained sedentary 

activities, such as deskwork, along with stationary biking (Table 2). Each prescribed 

activity was performed for ten minutes followed by a ten minute rest period to allow the 

metabolic rate to return to baseline between intervals and to allow post hoc 

discrimination between activity types. During times when no activity was prescribed, 



93 

subjects were encouraged to engage in their normal daily PA routine as much as possible. 

Subject’s height and weight were measured on the morning of the study visit. 
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Figure 1: Protocol for the metabolic chamber stay. Intervals denoted with (*) indicate 
recommendations for the range. Subjects are asked to self-pace for these intervals.  
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Instrumentation 

Activity-energy measurement system: Energy-expenditure was computed on a 

minute-by-minute basis by the Vanderbilt University room calorimeter, which is located 

within the Vanderbilt General Clinical Research Center. This system measures oxygen 

consumption and carbon dioxide production with high accuracy (system error < 1%). The 

room calorimeter is an airtight environmental room measuring 2.5 x 3.4 x 2.4 m. The 

calorimeter is equipped with a toilet and sink, desk, chair, telephone, television, DVD 

player, stereo system, bed, treadmill, and exercise bike. While the calorimeter floor 

contains a force plate and the room has several event markers, information from these 

systems was not utilized for these experiments. Technical details of the calorimeter have 

been previously reported (19). 

Accelerometers: Subjects were outfitted with both the ActiGraph (Fort Walton 

Beach, FL) uni-axial accelerometer, and a custom designed activity monitor, which is a 

derivative of the commercially available IDEEA (MiniSun, Fresno CA) monitor. The 

commercial IDEEA monitor consists of an array of five accelerometers (20x15x4 mm, 

2g) attached to the skin via hypoallergenic tape at the sternum, mid-thigh, and bottom of 

each foot. Each sensor is wired to a hip pack that serves to synchronize the signals from 

each channel and store the data.  While high accuracy for the IDEEA physical activity 

type identification routine has been published (26), the study designed to validate the EE 

prediction routine contained only walking, jogging, and lying down (25), and has 

therefore not been subjected to a rigorous validation in sedentary PA types. 
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Figure 2: Illustration of IDEEA sensor locations. Sites shown in black represent 
the original accelerometer sites, while sites in white are the custom sensor sites. 

 

 

The custom IDEEA monitor includes all of the sensors from the original 

configuration but adds recording capability at the hip pack (bi-axial), on each upper arm 

(uni-axial), and on the top of each hand (bi-axial). Raw data (32 Hz) is collected at each 

of the custom sites, while integrated signals are recorded by the original IDEEA sensors 

(Figure 2). In this configuration, data can be acquired continuously throughout our study 

visits (~ 21 hours). For this study, we used only the raw data from the hip sensors (bi-
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axial) for analysis. Since most investigators are only collecting data at the hip, and it 

would be ideal to collect field data from only one site in order to minimize the 

inconvenience to the subject, we felt it was important to explore model developments that 

could be applied to traditional hip-mounted accelerometers before expanding our study 

goals to include multi-site high frequency data analysis. 

 The ActiGraph is a uni-axial accelerometer that has been in widespread use for 

more than a decade. Device specifications have been published elsewhere (23). Data was 

collected using model 71256 activity monitors using one minute epochs. All monitors 

were calibrated prior to the start of the study and at 6 subsequent time points to ensure 

proper calibration. Resulting activity counts were analyzed using a combination of the 

Freedson equation for moderate to high intensity data and the work-energy theorem for 

low intensity values. This analysis construct is presented in the ActiGraph instruction 

manual as a way to use the Freedson equation on all intensities of PA data (1, 10). This 

equation was chosen since it was developed for one minute epoch data and the ActiGraph 

software is equipped to compute this regression.  

Modeling Approach: Artificial Neural Network (ANN) modeling was selected to 

relate the features of the raw acceleration signal to measured energy expenditure on a 

minute-by-minute basis. ANN modeling is an information-processing paradigm inspired 

by the way the densely interconnected, parallel structure of the mammalian brain 

processes information (11). Models are developed using a learning process where a series 

of connection weights, analogous to synapses, are tied to a series of processing elements, 

analogous to neurons. When presented with data, the model allows weighting coefficients 

to be updated such that the strength increases if the weight can be used to reduce 
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prediction error and the connection weight is reduced if it seems to increase error. ANN 

is a good candidate model when there are a large number of inputs for a small number of 

outputs or when the ideal functional form of the solution is not known (2).  

To implement ANN, we begin by specifying the number of inputs (acceleration or 

subject characteristic terms), the number of weight values (interactions between the 

terms), the architecture of the model (how interaction terms are arranged 

computationally), and the number and type of output parameters (energy expenditure, a 

single continuous variable) (Figure 3). A single neuron receives multiple inputs, which 

represent characteristics of the acceleration signal. The relative importance of each input 

is specified by a weight value. Initially, these values are small random numbers, since the 

relative importance of each characteristic is unknown. Through the model optimization 

process, weight values are optimized to predict minute-by-minute EE. The summation of 

inputs and their associated weight vectors are added and this value is modified by a 

transfer function, which limits the output range of each neuron is appropriate for the next 

downstream neuron.    
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Figure 3: A single artificial neuron. The inputs, which represent characteristics of the 
acceleration signals, are multiplied by weight vectors, which represent their strengths. 

The combination of these quantities is used to predict an outcome, in our case, EE.   
 

 

 

A single neuron (Figure 3) is not capable of solving difficult problem so multiple 

neurons are arranged into computational layers. The transfer functions between layers 

allow for nonlinearities and in the predicted output, while the weight values allow for 

interaction between all neurons of a layer. Data moves through each of the layers of 

neurons until the output layer is reached (Figure 4). In a fully connected network each 

input value is connected by every weight value to the first hidden layer of the network. 

Data flowing into the nodes (neurons) of the hidden layer is summed and subjected to a 

transfer function, which transforms the data into an appropriate order of magnitude for 
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the next layer. The transfer function can be any differentiable function, and must be 

specified by the user. 

 

Figure 4: Schematic for the feed forward network, which includes multiple neuron units 
formed into computational layers. Each input (z) is multiplied by the layer weights (w) 

and sent through a summation (a) and transformation (g(x)) to the next layer. The process 
is repeated until the output (y) is reached. The first basis function is a hyperbolic tangent 

function, while the second is a positive linear basis function. 
 

 

The output layer transfer function determines the bounds on the predicted 

solution. For example, we specified that EE prediction should never be less than zero, so 

a transfer function is selected that will not allow the model to predict negative values. 

Network parameters such as the number of neurons and the type of basis function are 

empirically determined. 

The process by which the model derives a solution is referred to as training 

because the model is presented with examples for which a known measurement value 

exists. This allows the performance of the model relative to a gold standard to be 

established. To start, each of the weight values is assigned a small, random value. In 

order to improve on these random weighting coefficients ANN models "learn" using a 

feed forward/ back propagation approach. The feed-forward process consists of 
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computing the transformations between the inputs and outputs as specified by the current 

weights and transfer functions (Figure 4), with each minute of data from each subject 

representing a training example since each has an EE measurement. The prediction from 

the forward pass through the network is compared to the measured value and an error 

signal is computed. This gradient (rate of change) of the error is used to adjust the 

weights starting with those in layers closest to the solution, working backwards to the 

inputs with the size of the weight change dependant on the contribution of the weight to 

the solution. This constitutes the back-propagation. Back-propagation is an optimization 

procedure and can be governed by most standard optimization approaches, such as 

gradient descent, or conjugate gradient methods (7). As the inputs are shown to the 

network many times and the weights are allowed to adapt, the error signal decreases, and 

an optimal set of weights can be realized. Training is allowed to continue until a specified 

error tolerance has been achieved, the validation error, computed on data not used for 

model development, begins to increase, or a maximum number of computational 

iterations has been reached. 

Once optimized weight values have been achieved, prediction of novel examples 

consists of using the forward pass through the network (multiplying inputs by layer 

weights, passing through transfer functions, and predicting a single EE value per minute). 

This spares the user the bulk of the computational costs and allows prediction to be 

produced nearly instantaneously for small to moderate sized networks.  

For this problem, a 12 node input layer, followed by a 20 node hidden layer, and a 

single node output layer architecture was used. Hyperbolic tangent basis functions were 

chosen for the input and hidden layer because of their capability to account for positive 
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and negative correlations in data. Training was performed using a gradient descent 

training function with a learning rate of 0.01. Validation was performed using leave-one-

subject-out cross validation. In this approach, the model was trained on 101 subjects with 

one subject used to validate the model results (21). Training was ended when the error on 

the validation set failed to decrease by more that 1e-6 per iteration (after an initial drop), 

the error gradient fell below 1e-6, or 5000 iterations was reached.  

Feature extraction: Feature extraction is the key step in preparing raw data for 

ANN modeling. The purpose for this step is data reduction. In this study, 1920  

(32 samples/sec x 60 seconds per minute) data points are collected by each IDEEA sensor 

channel for each minute of study data collected. These values all correspond to a single 

measurement made by the indirect calorimeter. This amount of information quickly 

becomes cumbersome to analyze, but more importantly, redundant information is 

contained in the acceleration signals. It is therefore vital that the raw data is reduced into 

a small number of parameters that carry the most relevant information. We chose to 

reduce the data into a series of parameters that we felt were both statistically relevant and 

physically meaningful. Eleven parameters were extracted from each channel of raw data 

(median, integral, peak intensity, inter-quartile interval, skew, kurtosis, peak CV over any 

10 seconds of data, lowest 10 second CV, mean absolute error (MAE), and the 

summation of signal power above and below 0.7 Hz). The signal power cutoff of 0.7 Hz 

was determine based on optimizing the division in the power spectral density (PSD) 

between walking and sedentary tasks in a sample of ten subjects not used for model 

development. The eleven computed acceleration parameters were then analyzed based on 

their correlations with one another in order to eliminate redundant information. This step 
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reduced the inputs to five for each sensor channel. These consist of the peak value, the 

inter-quartile interval, the lowest coefficient of variability when each minute of data was 

analyzed in ten second increments, the sum of the signal power below 0.7 Hz (assumed to 

be associated with sedentary activities), and the sum of the signal power above 0.7 Hz 

(assumed to be associated with locomotion and other higher intensity activities). These 

data were joined in the input set by the subjects’ sex, age, height, weight, and ethnic 

background since these features have been shown to impact resting metabolic rate (RMR) 

and can be easily measured or self-reported (9). 

Feature extraction was designed such that the final inputs to the model are 

quantities researchers are generally familiar with (at least conceptually), and that have 

meaning outside of this modeling effort, i.e. they correlate with characteristics of PA such 

as the intensity or variability of movements. Additionally, by using a small number of 

easily computed data features, the storage requirements for any future activity monitors 

would be minimized because raw data would not need to be stored, only the relevant 

computed parameters. This effectively minimizes the amount of internal storage capacity 

required of the accelerometer while maintaining the quality of information derived from 

the raw signal. Model development and feature extraction was performed using Matlab 

7.01 (Mathworks, Natick MA). 

Model validation was performed using a leave-one-subject-out cross validation 

(Figure 5). In this approach, the data was divided into a training set (n = 101) and a 

testing set (n = 1). The ANN model was optimized on the training set and the resulting 

optimized solution was used to predict the EE on a minute-by-minute basis for the single 

test subject, whose data was not used in model development. This process was repeated 
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102 times and the results reported were derived using the testing data only.  

 

 

 

Figure 5: Schematic of the leave-one-subject-out cross validation used for testing 
the performance of the ANN model.  

 

  

Statistical Analysis: Data are presented as median, inter-quartile range, and total 

range. Models (ActiGraph, proprietary IDEEA, ANN) were compared according to the 

mean absolute error (MAE) (Eq 1), the mean squared error (MSE) (Eq 2), the percent 

difference between each model and the measured TEE, and the squared Pearson’s 

correlation coefficient (r2) for each subject over the entire study duration, using ANOVA 

with post-hoc Tukey tests. Bland-Altman plots (3) were used to examine trends in 
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prediction accuracy as a function of the TEE. Post hoc analysis of the relationships 

between the difference in TEE measurement and prediction with the subject 

demographics were performed in order to understand the types of subjects for whom 

model development is especially challenging.  
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Results 

Approximately 112,000 data points (minutes of data) were used to train the ANN 

model. Convergence occurred after an average of 3328 iterations with a range of 475 – 

5000 iterations (5000 was the maximum number of iterations allowed for this 

experiment). The training error as a function of the number iterations showed an 

exponential decay profile. An error profile from a randomly selected subject is shown in 

Figure 6. Though the rates of decay may change between subjects, and some subjects 

may have long plateaus early in the training if the initial weight values place the model in 

an area of space where the gradient is small, all eventually exhibit an exponential profile 

where the bulk of the error decay occurs over approximately 50 iterations (Figure 6 

inset).   The number of iterations to solution convergence can be altered through the 

model learning rate, which was set at 0.01 for this model. When larger learning rates 
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were used in pilot experiments for this project and solutions were achieved more rapidly, 

ultimately, the solutions showed oscillations in the decay profiles indicating that the 

solution was not stable. 
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Figure 6: Error decay for a representative model training for the first 2000 iterations. The 
inset shows the error over the first 100 iterations.  

 
 

An F-test revealed no statistical correlation (p = 0.9214) between the number of 

iterations to convergence and the resulting validation errors. While the ANN was 

developed on 102 subjects, only 81 subjects had both IDEEA data and ActiGraph data 

(data was considered to be complete if at least nine hours of continuous daytime data was 
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collected). All results shown are based on paired comparisons of the subjects who had 

both IDEEA and ActiGraph data.  

A representative subject’s minute-by-minute EE prediction showed that the ANN 

was able to both characterize the baseline EE as well as prediction of programmed 

activity intervals and spontaneous PA bouts, though some small errors are observed 

(Figure 7).  
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Figure 7: Minute-by-minute EE prediction using ActiGraph (AG 1), IDEEA, and ANN. 
The top row of graphs shows the entire study visit, while the bottom shows the first 600 

minutes of collected data. This subject was a 43 year old male (height – 1.69 m; weight – 
76.9 kg; BMI – 26.7 kg/m2). Using BMI, this individual is characterized as healthy. 
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 Summary statistical measures, the r2, MAE, MSE (using minute-by-minute EE 

predictions), and percent difference between the chamber measured and model predicted 

TEE were computed for the ActiGraph, IDEEA, and ANN on each of the 81 subjects 

(Figure 8).  

 

 

Figure 8: Results of summary analysis of AG, IDEEA, and ANN models. The correlation 
coefficient, r2, was higher in the ANN than in the IDEEA or AG model, while MAE, 

MSE, and % difference in TEE was reduced.  
 

 

All models showed, on average, high correlation with measured minute-by-

minute EE. ANOVA revealed that the r2 was higher (p < 0.001) in the ANN model 

relative to the other models and that both the mean of the testing set MAE and MSE were 
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significantly reduced in the IDEEA model relative to the AG model (p < 0.001), with 

further reductions (p < 0.01) also seen when the ANN was compared with the IDEEA 

monitor proprietary model. The percent difference between TEE measured by the room 

calorimeter and that predicted by each model was computed to account for differences in 

the number of measurement minutes and PA intensities represented in each subject’s 

data. Analysis of the percent difference revealed a drop in percent error in the IDEEA 

relative to the AG, and a further decrease in error when the ANN was compared to the 

IDEEA model (Table 2). 

 

Table 2: Comparison of ActiGraph, IDEEA, and ANN model performance 
assessed using summary statistics for 81 common subjects. Data are presented as mean ~ 
inter-quartile range, along with the total range. All pair-wise comparisons are significant 
(p < 0.05 except MSE between IDEEA and ANN model.  

 
 r2 MAE 

(kcal/min) 
MSE 

(kcal2/min2) 
% Difference 

ActiGraph 0.82 ~ 0.11 
(0.55 ~ 0.93) 

0.46 ~ 0.18 
(0.28 ~ 0.84) 

0.56 ~ 0.78 
(0.18 ~ 7.04) 

17.59 ~ 11.02 
(2.20 ~ 32.32) 

IDEEA 0.86 ~ 0.09 
(0.40 ~ 0.96) 

0.40 ~ 0.13 
(0.22 ~ 0.84) 

0.35 ~ 0.27 
(0.11 ~ 1.93)  

10.09 ~ 9.78 
(0.02 ~ 35.53) 

ANN 0.87 ~ 0.08 
(0.60 ~ 0.96) 

0.29 ~ 0.10 
(0.19 ~ 0.42) 

0.23 ~ 0.14 
(0.09 ~ 0.55) 

3.58 ~ 4.04 
(0.13 ~ 15.35) 

 

 

Sex, age, height, weight, and BMI were explored to determine if significant 

effects of these characteristics exist in each model. All models had significant bias in the 

MAE with respect to sex, height, weight, and BMI (p < 0.001). While the MAE had 

significant correlations with height, weight, and BMI for all models, the difference 

between predicted and measured total EE was not significantly correlated with these 



110 

characteristics using the IDEEA or the ANN (p > 0.05). Age was not significantly 

correlated with either MAE or difference in total EE for any of the models. 

Bland-Altman plots were used to characterize the ability of each model to predict 

TEE (Figure 9). The AG model showed an average difference of 355 ± 240 kcal/day. 

There was also a significant trend (p = 0.0351) towards under-prediction of TEE as the 

absolute value of TEE increased.  The IDEEA model demonstrated a mean difference of 

230 ± 209 kcal/ day. There was a trend (p < 0.001) towards over-prediction as TEE 

increased. The ANN shows a mean difference of 21 ± 115 kcal/day. No significant trend 

(p = 0.86) was observed as a function of magnitude of daily EE.   
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Figure 9: Bland-Altman plots of TEE using the ActiGraph, IDEEA, and ANN. 
Both the mean and the standard deviation of the ANN show improvements relative to the 

IDEEA and ActiGraph model. 
 

 

Discussion 

In this study, we investigated a procedure of extracting features from raw 

acceleration data collected by hip-worn accelerometers and development of a minute-by-

minute EE prediction model based on ANN techniques. This experiment was developed 
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as a proof of concept that using features of the acceleration signal other than the integral 

and combining them with a flexible modeling approach, models can be developed that 

provide reduction in prediction error for EE, while also reducing the inter-subject 

variability, which tends to be high in generalized predictive models. The resulting 

network model showed a reduction in MAE, MSE, and percent difference in TEE when 

compared with both a first generation accelerometer device (ActiGraph), and the 

proprietary model used in the IDEEA monitor, a second generation multi-sensor array 

system. In addition to reductions in mean errors for the group, the variance was also 

reduced, which further suggests the robustness of the ANN modeling approach. Error 

reduction observed relative to an accelerometer array suggests that high accuracy 

predictions can be achieved using a single sensor, thus minimizing the inconvenience to 

the subject while maximizing the utility of the monitoring tool. 

 While the ActiGraph, proprietary IDEEA model and the ANN model all had high 

correlation with the TEE on a minute-by-minute basis, this is more reflective of the 

capability of the accelerometer to detect some motion rather than the model accurately 

reflecting minute-by-minute EE intensities. As such, it is high for all three monitors. 

When measures that reflect the magnitude of the EE differences observed on a minute-

by-minute basis (MAE or MSE) are considered, significant reductions in error were 

observed in the IDEEA model relative to the ActiGraph and the ANN relative to both of 

the other models. The cumulative effect of these errors can be observed in the percent 

difference measurement which shows a reduction of nearly 13% between the ActiGraph 

and the ANN, and 5% between the IDEEA monitor and the ANN. The mean of the 

difference in TEE was also greatly reduced by the ANN relative to the IDEEA and 
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ActiGraph with the mean difference in the ANN model being only 21 kcals, suggesting 

that the model has corrected for some of the baseline offset (resting EE) problems that 

have been previously observed for the IDEEA model (25). 

One of the biggest challenges involved in generalized modeling with 

accelerometers has been the large standard deviation of predictions across subjects. In 

this study, we found high individual prediction errors by AG and IDEEA comparing to 

the measured EE (95% CI [-835 ~ 125] and [-647 ~ 187] kcal/day, respectively). These 

values are beyond the treatment effect we typically target in sustainable weight loss 

interventions, which is 100-250 kcal/day. Thus, reducing this measurement error has 

crucial clinical implications. Large variability in performance across subjects may be 

related to the fact that standard regression approaches may not have sufficient flexibility 

to alter predictions when the same acceleration count value is achieved by a subject 

whose personal characteristics are different than those used for model development. The 

standard deviation in the TEE observed with the ANN, which allows interactions 

between characteristics and acceleration terms, showed a reduction of approximately 

50% relative to the ActiGraph and nearly 45% relative to the proprietary IDEEA model. 

However, the characteristics used in the ANN may not be sufficient to account for all 

modeling challenges in generalized modeling. This is seen as some subject characteristics 

introduce significant bias in the MAE though the model was given this information in 

training. Additional information such as body composition and measures of physical 

fitness such as VO2 Max would be candidates for the model.  

ANN has a number of attractive features for the energy expenditure prediction 

problem such as the flexibility of predictions across subjects, allowing interactions 
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between all input terms, and its ability to map multiple inputs (acceleration terms) to a 

single output (EE) without pre-specifying a functional form (linear, logistic, etc). The 

major disadvantages of ANN approaches are the computational complexity of the models 

which may require long training times and a relatively large number of free parameters. 

Additionally, model training requires a large number of labeled examples, acceleration 

data from a diverse sample of physical activity types, for which the EE is known, which 

requires a long data collection period before models can be developed.   

 While a classical ANN may seem like a black box solution technique, we 

attempted to minimize this appearance by carefully selecting model inputs that make 

sense in the context of the EE prediction problem. We chose terms that generally 

represent the magnitude of movements, frequency of movements, and the variability in 

motion patterns. These terms were assumed to be characteristic of certain modes and 

intensities of PA. However, this feature extraction process requires the model developer 

to make decisions about what data features may be of interest. Alternately, feature 

extraction can be performed by a standard data reduction technique such as principal 

component analysis, which achieves data reduction by combining parameters that are 

linearly related. This process maximizes the amount of the information from the data 

while eliminating repetitious measurements. The advantage of this technique is its 

capability to succinctly and consistently reduce data to the desired proportion of the total 

data variance. The disadvantage is that the reduced data is not comprised of 

characteristics that would be familiar to researchers; rather it contains features 

representing agglomerations of measurements. 

Perhaps the most challenging aspects of model development are collecting 
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appropriate model training data and validation. Since there are literally hundreds of 

modes of physical activity that individuals may engage in and at least that many profiles 

for subjects' metabolic response to exercise, models will tend to generalize best to data 

sets comprised of activities similar to those that were used for the original model 

development. We have attempted to mitigate this factor by (1) asking subjects to self-

pace activities and (2) capturing spontaneous bouts of PA. These two steps allow for the 

collected data to be both diverse in intensity composition, and representative of the 

activity patterns our subjects would normally engage in. In order to attempt to attempt to 

minimize the potential error increases associated with applying out model to new subjects 

(generalization errors), a leave one subject out cross validation procedure was selected. 

This technique allows the bulk of the collected data to be used in model development 

relative to a split sample validation where some percentage of the data is withheld for 

model validation. The data from the validation sample may include unique features that 

would have impacted the model development had they been available. The model 

presented here, however meant to prove that in principle, a high dimensional modeling 

approach such as ANN coupled with feature extraction from raw (32 Hz) acceleration 

signals can be used for EE prediction on a minute-by-minute basis, and the specific 

weighting coefficients should not be viewed as final.  

 Accelerometers have long been considered a promising tool for predicting EE due 

to their relatively low price, ease of use, and ability to record for many days at a time. 

This potential has not been fully met to date due to limitations in our ability to relate the 

output variables from the monitors to EE. Collecting raw acceleration data has the 

capability of improving the precision of EE prediction by allowing researchers the 
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flexibility to identify relevant parameters during the feature extraction phase as well as 

opening the field to high dimensional modeling techniques such as ANN which have the 

capability of generating more flexible predictions than more traditional modeling 

techniques. This study has shown a proof of concept that by applying feature extraction 

and ANN models to bi-axial acceleration data acquired at the hip, minute-by-minute and 

total EE predictions can be improved. Additional subjects and modes of PA should be 

acquired to both validate the current model as well as for use in developing a more robust 

algorithm. Additional results from the hip-only model can be found in Appendix D. 

Results from individual ANN models can be found in Appendix E. 
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 CHAPTER VI 
 

CONCLUSIONS AND FUTURE WORK 

 

Summary 

 Prediction of EE using accelerometers has been a widely researched topic for the 

last quarter of a century. In this thesis we have presented a systematic approach to 

understanding this technology in a diverse subject population using a room calorimeter as 

a reference measurement. As our first step, we explored model performance based on 

several market-available portable accelerometers’ ability to predict overall physical 

activity levels over the nearly 24 hour measurement period. The results from this validity 

study showed significant mismatches between EE predictions using first generation 

accelerometers and measurements made by the room calorimeter.    

We then decided to take the same activity monitors to the bench and 

comprehensively characterize the contribution of the data filtering process and inter-unit 

variability when known acceleration loads are applied. These results revealed a limitation 

in the current sensors and how they process the acceleration signals since the output is 

not consistent across monitor generations. Further studies using additional activity 

monitors revealed that the type of hardware filtering is different in different brands of 

activity monitors and that not all monitors exhibit monotonic behavior, which introduces 

a challenge in modeling the full scale EE response to activity measured with these 

accelerometers. 

Finally, we developed a new EE prediction approach using accelerometers. We 

began by deviating from the standard practice of using the time-integrated PA counts and 
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tested a new paradigm of modeling based on alternative features of the raw accelerometer 

data. In our final study, we have demonstrated a novel theoretical framework for this 

approach, using carefully-conducted clinical studies in a large and heterogeneous adult 

population, with a room calorimeter as gold-standard, and advanced modeling techniques 

(ANN) in both individual and generalized models.  

 Through these experiments, we discovered that existing accelerometer models, 

both linear and nonlinear, are only able to achieve accuracy in predicting some types of 

summary statistics relating to daily PA, such as the total time spent in each of four MET 

ranges; however they tended to underestimate the total daily PAL (Chapter III). While 

some of these errors are do to the functional form relating acceleration to EE, some of 

these errors could be attributable to the monitor sensitivity or device variability, where 

between-device CV was sometimes greater than 5% (Chapter IV). This variability is an 

important contributor to measurement error when multiple monitors are in use, which is 

common practice in field investigations. We were also able to determine that the 

ActiGraph monitors demonstrated a nonlinear relationship between activity counts and 

acceleration with decays in response to high accelerations (Chapter IV), while Actical 

and RT3 monitors showed increasing activity counts over all accelerations tested 

(Appendix C). When activity counts were normalized and the monitor response profiles 

could be compared while neglecting the scaling differences specific to each device, the 

RT3 and Actical showed similar response profiles. Divergence in the responses to 

standardized movement inputs delivered by mechanical oscillations between the different 

types of accelerometers suggests that unique modeling approaches may be needed to 

relate the output from each monitor to EE. 
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 Finally, we developed a new model using raw data acquired using a hip-mounted 

bi-axial accelerometer and analyzed using a three layer ANN developed using pooled 

data from 102 subjects. We demonstrated significant improvements by this approach in 

predicting EE as seen in reductions in MAE, MSE, and percent difference in TEE 

(Chapter V). This error reduction was realized relative to traditional linear regression 

based approaches but was also a significant improvement over a proprietary model using 

the IDEEA model, which incorporates measurements from an array of five 

accelerometers. This model demonstrated improvements relative to the linear regression 

approach even when no subject characteristics were used in model development 

(Appendix D). Further reductions in error were observed when small individual ANN 

models were developed (Appendix E); however, development of these models required 

subject specific training data which require individual calibrations that could hinder field 

applications. By developing a new generalized model with hip-only data, we have shown 

an improvement in EE prediction without increasing the burden on the subject. 

Additional validation and model testing in different subject populations are needed to 

confirm these promising early results.  

  

Conclusions 

 In conclusion, we made several advancements in the use of accelerometers 

through this thesis. The following generalizations can be drawn from these results: 

 

1. Uni-axial accelerometers coupled with linear regressions are generally capable of 

predicting the time spent in four intensity categories in 24 hour data; however, the 
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intensity of most types of activity is under predicted leading to a systematic under 

prediction in daily PAL if the regression has a physiologically reasonable intercept. 

 

2. Physical activity monitor response should not be assumed to be consistent across 

hardware revisions without robust mechanical testing. Changes in the filtering across 

monitor revisions have the potential to increase EE prediction error as the same 

accelerations are not represented by equivalent device output. 

 

3. Correlations between acceleration and EE are not limited to the time-integral of the 

signal. Quantities that characterize both the intensity, variability, and frequency 

components of the acceleration signals may be useful.  

 

4. EE is a complex physiological process that cannot be effectively modeled using a 

single regression for all subjects. For generalized modeling, a flexible approach such as 

ANN may improve the precision of EE predictions.  

 

Future Work 

Further work is needed to increase our understanding of the ANN and other 

prediction models explored in these studies. First, the existing ANN should be 

deconstructed to determine the relative contribution of each of the current features to the 

EE prediction. Once this has been accomplished, the feature extraction routine should be 

revisiting to attempt to discover additional signal characteristics that could further 

improve the prediction of EE. Work should also be expanded to predict EEACT or METs. 
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Also, the exact architecture of the network should be validated using more robust 

statistical validation procedures. It is possible that observed errors could be further 

reduced in a hip-only model with the addition of new features or a change in the number 

of free parameters, or the shape of the basis functions.  

Model generalization should also be further explored. Though a leave-one-out 

cross validation was pursued in the general hip-only model presented, all subjects were 

asked to perform similar PA types, even though variability was introduced by allowing 

subjects to self-select the intensity levels. Data should be acquired from new modes of 

PA spanning a wide variety of intensities. Additional subjects, particularly obese subjects 

and subjects of minority ethnic heritage would also be a welcome addition to the data set. 

Once the model has been well validated against calorimeter data, it should be validated 

against total EE in free living over a significant period of time (7-10 days) using DLW to 

determine the practical use of these models.  

While the IDEEA monitor was an ideal test instrument to develop models because 

of the capability to collect raw data for more than a day, in the future it may be beneficial 

to develop models that can be used on ActiGraph monitors or other commercially 

available single sensor units. These monitors are more familiar to researchers, are 

produced and marketed at a much lower price, and do not have wires connecting sensors 

to a central microprocessor. Capitalizing on these advantages should decrease the burden 

on both investigators and subjects while still capturing adequate information for high-

precision EE predictions. Currently, the ActiGraph is capable of recording raw data (10 

Hz) for only several hours. However, if a feature set based on high frequency voltage 

signals can be established, and this set of features is comprised of signal components that 
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can be calculated by hardware, there would be no need to store the raw signals, merely a 

small subset of signal characteristics per minute. This would allow the ActiGraph, or 

several other commercially available monitors, to incorporate modeling approaches that 

capitalize on the benefits of the raw signals in their analysis software without increasing 

the on-board memory or decreasing the battery life.  

As the rate of obesity increases in the western world, the interest in understanding 

the process of maintaining healthy body weight has become increasingly important. 

Because PA is a component of energy balance that can be readily modulated it has 

become a key factor in both individual weight loss prescriptions and public health 

recommendations. In spite of its widely recognized importance, the ability to quantify 

patterns of PA has been limited by measurement technology that is often unable to render 

accurate predictions of EE over the course of days or weeks. This thesis advances the 

goal of characterizing PA and its associated EE by characterizing the strengths and 

weaknesses of existing technologies and regression equations but also providing proof of 

concept of an improved EE prediction approach. This work can ultimately be used to give 

researchers and physicians insight into the exercise choices (duration, frequency, and 

intensity of PA) made by their patients and help them to better prescribe an appropriate 

course of PA to achieve optimal health benefits.  
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APPENDIX A 

 

ARTIFICIAL NEURAL NETWORK ALGORITHM 

 

 For the EE prediction modeling presented in this thesis, artificial neural networks 

(ANN) were the chosen solution technique. In this appendix, the analytic framework of 

the feed-forward/back propagation network, as described in Chapter II and implemented 

in Chapter V of this thesis, will be presented. For all models in this thesis a three layer 

network was chosen (one hidden layer). Generalized derivations will be presented with 

additional information added about our specific modeling choices. Some schematic 

figures are provided to be conceptual representations of the actual networks used in this 

work because visual representation of our actual multi-layer network is cumbersome; 

however the written descriptions are accurate to the models used for the experiments.  

Implementation of any ANN model begins by specifying the number of layers, 

the number of computational nodes in each layer (neurons), the basis function (transfer 

function) used between the layers, the learning rule, and the error function. Additional 

parameters such as a learning rate or momentum term may be needed based on the 

learning rule specified (1). The number of layers and nodes is determined empirically, 

though it is best to choose the smallest network possible to solve the problem. 

Computational layers can either be classified as input (first), output (final), or hidden 

layers. Hidden layers are intermediate steps between inputs and outputs and thus the 

output of the layer is “hidden” from the end user (3).  
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Figure A1 is a schematic of a two layer network. The feed-forward operation of 

the network uses each of the inputs (x) and the current state of the weight vectors (w) to 

predict the network output. The back-propagation step allows the network to iteratively 

update the weight values until a solution is found that optimally matches all the inputs 

patterns to the network outputs.       

 

Figure A1: Schematic for the feed forward network. Each input (z) is multiplied 
by the layer weights (w) and sent through a summation (a) and transformation (g(x)) to 

the next layer. The process is repeated until the output (y) is reached. The first basis 
function is a hyperbolic tangent function, while the second is a positive linear basis 

function.   
 

 

Notation and derivations are adapted from standard texts of neural networks (1, 3, 

4).The net input into each basis function represents the summation of the layer inputs 

multiplied by the connection weight values between the inputs and the neurons (Equation 

A.1). Figure A1 shows a single summation site, however, any number of computational 

nodes can be selected and each neuron would have its own connection weights, which 

would be related the inputs to the neuron. Weights can either be connected to all 

computational nodes (fully connected), as we explored in this problem, or the can be 

connected only to certain neurons as dictated by the user a priori (1). 
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The output from each summation node is transformed by a basis (transfer) 

function (Equation A.2), which serves to both restrict the magnitude of the layer outputs 

but also can be used to introduce nonlinearities into the model. The outputs from each 

basis function form the input vector for the next layer of the network. 

 

( )jj agz =   (A.2) 

 

A single basis function or multiple basis functions can be chosen for each layer 

depending on whether any prior knowledge may suggest that a specific transformation 

should mediate certain interactions. In our model, a hyperbolic tangent basis function 

(A.3) was chosen for the input and hidden layer and a positive linear basis function was 

chosen for the output layer (A.4). The hyperbolic tangent function was chosen because it 

allows both positive and negative correlations in the data to be realized. This is important 

because our model includes factors known to be both positively (e.g., increases in limb 

movements) and negatively (e.g., age) correlated with EE. The positive linear basis 

function was chosen because it sets a physiological lower limit to predictions from the 

network (EE cannot be negative). While it does not impose a physiological upper limit, 

the training data should constrain the upper limit to reasonable values. 
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The process by which network weights are optimized is known as training. 

Training can either be supervised, meaning that there is a known output for each input 

pattern, or unsupervised, meaning that the iterative weight updates are an attempt to 

establish partitions in a data set where relationships within the group of data are not 

explicitly known (4). Because EE determined by the whole-room indirect calorimeter is 

recognized as a gold standard value, supervised learning was implemented in our 

modeling efforts. Two weight update structures exist: batch and online updating. In batch 

mode, all patterns are presented to the network before any updates are made, where in the 

online mode weight changes are made as each input is show to the network. Because 

weight updates are very computationally demanding and we have a large number of input 

patterns, we chose batch updating for this study.  

To begin training, each weight value is assigned a small random value. The entire 

feed-forward network computation is made and the output for each pattern given the 

current state of the weight values is obtained. This value is compared to the known 

solution, or target, and an error term is computed. We chose to optimize on mean squared 

error (MSE), where the squared error can be computed for each input pattern (A.5) and 

averaged over all patterns (A.6). MSE causes large prediction errors (greater than 1 

kcal/min) to be amplified, which should help in driving the optimization process to fit 

high intensity data, which may not be represented by as many training examples as other 

intensity categories. The functional form is also differentiable, which is desirable for 
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back-propagation, and because the metric is based on a mean, the magnitude of the 

predicted error is independent of the number of training points. 
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Error back-propagation reduces the global error by updating the weights from the 

output end of the network to the input end. In order to determine the appropriate weight 

update for each individual weight, we must determine the amount of error associated with 

it. This operation can be expressed using the chain rule of differentiation as the product of 

the partial derivative of the error for each pattern as a function of the layer inputs, and the 

partial derivative of the layer inputs as a function of a specific weight value in that layer 

(A.7). 
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We will define the term delta (δ) to express the error for each layer as being the 

partial derivative of the error for a particular input pattern as a function of the layer inputs 

(A.8). 
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By rearranging the terms of the summation of inputs into a computational node 

(A.1), we can characterize the partial derivative for the layer as a function of each weight 

value (A.9). 
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 Combining the terms in A.8 and A.9 we see that the error for each weight is 

function of δ, which is the derivative of the output of each layer, and zi, which is the input 

value to a specific weight (A.10).  
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In practice, for the output layer, the term δ is a function of the derivative of the 

output layer transfer function, and the derivative of the error function with respect to each 

output value (pattern). Thus, if the error function and transfer function are both 

differentiable, the δ for the output layer can be calculated simply by multiplying the two 

values (A.11).  
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 The output layer for our model uses a positive linear basis function, whose 

derivative is specified by Equation A.12.  
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 The derivative of the MSE function (A.5) is specified by Equation A.13. 
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 For the hidden layers computation is slightly more complicated because the error 

is dependant on both inputs into the layer and errors from the output layer, which are a 

function of the computational nodes and basis functions in that layer rather than just a 

single output value as is the case in the output layer (A.14). Thus, the δ for the hidden 

layer contains the output layer δ (first term). Computation of the output layer delta is 

therefore essential for computation of the hidden layer error terms, which motivates the 

back-propagation strategy. The hidden layer delta is more complicated to compute than 

the output layer since it is modulated by the summation values on both the input and 

output side of the layer.  
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 By using the general definition of δ (A.8) and substituting Equations A.1 and A.2 

into Equation A.14, the delta for a hidden layer can be realized (A.15).  
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 Our input and hidden layers were specified by a hyperbolic tangent function, 

whose derivative is specified by Equation A.16. 
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 The derivative of the total error with respect to any weight value can be realized 

as the summation of the errors with respect that weight over all the training patterns 

(A.17). 
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 Once the error derivatives have been computed, the training iteration is completed 

by updating all the weight values (A.18). The form of the weight update ( w∆ ) depends 

on the learning rule.  

 

( ) ( ) ( )τττ www ∆+=+1   (A.18) 

 

For this problem, a simple gradient descent technique was chosen (2). In this 

technique, the direction of the weight change is specified to be the negative of the error 

gradient at the current weight state (A.19). The step size is determined by a user specified 

learning rate. This is a small value (0 < η ≤ 1), which slows solution progress so that 

there is steady progress down the error surface.  
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Gradient descent is the simplest optimization scheme for updating network 

weights. It is also a slow search routine as it, by design, takes small incremental steps 

down the error gradient rather than searching down the entire line of the gradient for an 

ideal step size, or other more sophisticated options. However, it is simple to implement 

and does not require the storage of large variables, which is a limitation of some solution 

techniques that are able to speed convergence (e.g. conjugate gradient). 

Termination of model training, or model convergence, was based on several 

factors. The ideal outcome would be for error to reach a value of zero in the training, and 

that a zero value would also be maintained in any future testing data. However, in 
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practice, this is unlikely to ever be the case so a set of three criteria were established. The 

first was the size of the error gradient. If the error gradient fell below an empirically 

determined limit (in our case, 1e-6), training was terminated. Small error gradients 

indicate that each weight update is small (because the gradient size is further reduced by 

the learning rate), and it is unlikely that meaningful improvement in the solution is being 

obtained. Small error gradients can be caused by a local error minimum or can be reached 

at the global minima so the results of terminations based on gradient size must be 

carefully analyzed. Training was also stopped if the training error increased for five or 

more successive iterations as this indicates the direction of the weight updates is not 

improving the quality of the solution, or if the change in the training error decreased less 

than 1e-6 for a training iteration. Finally, if the testing error, derived from subject data 

not used to derive the weight updates, increased for five successive iterations, or if the 

change in the testing error decreased less than 1e-6 for a training iteration, training was 

terminated, as this was designated as over fitting the model to the training data. Figure 

A2 is a flow chart summarizing the process of network training.  
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Figure A2: Flow diagram for steps in network convergence. Weights begin with 
an initial random assignment. Each input is used to determine a pattern error until all 
patterns have been presented. This total error is used to compute error derivatives and 

weight updates. This process is repeated until the mode converges.  
 

 

Model performance was tested using leave-one-out cross validation. In this 

approach, the network weights are allowed to converge on data from all but one subject 

(N-1), while data from the single subject that was withheld from the training is used to 

estimate the generalization performance. This approach is repeated for each subject and 

generalization error is reported as the mean, standard deviation, and range of the resulting 

error values. Results of the ANN experiments are presented in Chapter 5 as well as in 

Appendices D and E.  
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APPENDIX B 

 

ENERGY EXPENDITURE PREDICTION USING ACTICAL AND RT3 

 

 In order to completely understand the prediction capabilities of the regression 

equations in Chapter III, we expanded the scope of analysis to include direct prediction of 

gross EE using the Actical (4) and RT3 equations (1). The Freedson ActiGraph equation 

(AG 1) (2) predictions will not be contained here as this information can be found in 

Chapter V. The other two ActiGraph equations considered in Chapter III, the Hendelman 

equation (AG 2) (5) and the Swartz equation (AG 3) (6) are designed for making 

categorical MET predictions. Because they were designed with this goal in mind, they 

were allowed to have non-zero y-intercepts, which introduce significant bias into the 

predictions of gross EE. The overestimated average physical activity levels (PAL) that 

we presented and discussed in Chapter IV were a direct result from this. Thus, only the 

results from the two Actical and two RT3 equations will be explored here. 

For each regression equation, the same summary statistics computed for the ANN 

model were computed (Figure B1). These include the correlation coefficient (r2), MAE, 

MSE, and the percent difference in TEE between each prediction and the measured EE. 

All regressions showed high correlation with the measured EE. All MAE and MSE 

values were smaller than those computed with the Freedson equation. Both the Actical 

equations and the Chen RT3 equation (RT3 2) showed MAE and MSE less than the 

IDEEA model but greater than the ANN. The percent difference measurements were 

comparable to the ANN for all models except the proprietary RT3 model (RT3 1).  
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Table B1: Summary statistics relating to EE prediction in Actical (AC) and RT3 
monitors.  

 
 r2 MAE 

(kcal/min) 
MSE 

(kcal2/min2) 
% Difference 

AC 1 
 

0.84 ~ 0.11 
(0.42 ~ 0.93) 

0.37 ~ 0.11 
(0.25 ~ 0.63) 

0.35 ~ 0.26 
(0.15 ~ 1.50) 

3.58 ~ 4.06 
(0.03 ~ 17.05) 

AC 2 
 

0.83 ~ 0.15 
(0.46 ~ 0.94) 

0.35 ~ 0.08 
(0.24 ~ 0.65) 

0.29 ~ 0.20 
(0.13 ~ 1.20) 

6.04 ~ 4.66 
(0.23 ~ 16.55) 

RT3 1 
 

0.83 ~ 0.10 
(0.52 ~ 0.93) 

0.39 ± 0.12 
(0.27 ~ 0.66) 

0.49 ~ 0.36 
(0.15 ~ 1.82) 

6.88 ~ 7.00 
(0.47 ~ 20.24) 

RT3 2 
 

0.83 ~ 0.07 
(0.53 ~ 0.89) 

0.32 ± 0.10 
(0.23 ~ 0.57) 

0.27 ~ 0.28 
(0.11 ~ 2.25) 

6.34 ~ 6.92 
(0.25 ~ 17.02) 

 
 
 

 Because AC 1, AC 2, and RT3 2 are designed to EEACT, a baseline value was 

added in order to predict the gross EE for each minute. Initially, a measured RMR was 

used for these computations but large differences in TEE were observed. We assumed 

that this could be due to the fact that our RMR values were taken from sleep and as such 

are about 10% lower than the Harris-Benedict (3) predicted RMR for our subjects. In 

order to understand the impact of the baseline on EE predictions, the measured RMR was 

incrementally increased from the measured value to 40% greater than the measured value 

to understand how each error metric changes as a function of the baseline (Figure B1). 

The correlation coefficient is not impacted by baseline shifts, so no data for this metric is 

shown. Optimal results are achieved when the Actical baseline is utilized at 25% above 

the measured RMR, and the RT3 when RMR used in the model was 10% above the 

measured RMR, approximately equal to Harris-Benedict predictions.  
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Figure B1: Prediction errors in two Actical equations and one RT3 equation are explored 
by altering the REE used for predicting minute-by-minute EE. 

  

The results from varying the baseline suggest that transforming regression 

equations from EEACT prediction to total EE prediction has the potential to introduce 

large amounts on unintended errors. The data in total may be best represented by a high 

baseline, which may serve to balance out other problems in the model, such as under 

prediction of high intensity activities, and the inability of the accelerometers to detect 
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some sedentary PA types. The bi-linear Actical regression (AC 2) was particularly 

susceptible to alterations in the baseline. By optimizing the baseline, we were able to 

show substantial improvements in model performance, though this baseline shift is not 

well motivated if RMR is measured. This experiment serves to highlight the difficulties 

of correctly establishing a baseline and possibly explains the unrealistically high baseline 

values (y-intercepts) found in some regression equations, such as the Hendelman (AG 2) 

and Swartz (AG 3) ActiGraph regressions. 

 In our previous work with the regression equations presented in the literature for 

several accelerometers (Chapter III), we had considered only their ability to resolve the 

time spent in PA intensity categories, and their ability to correctly classify data into these 

categories on a minute-by-minute basis. By considering the EE prediction capabilities of 

these same regressions we were able to develop a greater understanding of the 

capabilities of different activity monitors and regression approaches to relate acceleration 

and EE. From this work we were able to determine that the Actical and RT3 models are 

more robust than the Freedson equation, and in same cases also more accurate than the 

proprietary IDEEA model. This work also was able to highlight the pitfalls of converting 

from EEACT predictions into gross EE predictions using RMR. In these cases the balance 

between selecting a physiologically reasonable baseline and improving measures of error 

must be carefully considered.  
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APPENDIX C 

 

OSCILLATION RESULTS FROM ACTIGRAPH, ACTICAL, AND RT3 PA 

MONITORS 

 

 In addition to the extensive oscillation experiments performed on the ActiGraph 

PA monitors, detailed in Chapter IV, similar experiments were performed on the Actical 

(n = 5) and RT3 (n = 15) PA monitors to establish cross-device references. Frequency 

experiment and inter-monitor variability results from these devices, as well as 

comparisons with the ActiGraph, are presented here. The same orbital shaker from 

Chapter IV was used for these experiments All results for the ActiGraph are for the 

GT1M model (n = 11), which is currently the only marketed device, though many old 

units (7164 and 71256) are still in clinical use.  

 When the mean frequency response is compared between PA monitor types, 

differences in both the amplitude of the observed count values, and the functional forms 

are detected (Figure C1). The nonlinear response of the ActiGraph has been well 

documented in this thesis as well as in the literature. However, the observed response 

profiles for the Actical and RT3, which to our knowledge have not been reported in the 

literature, both show increasing values over the tested frequency range. The response of 

the Actical is linear (r2 = 0.98), though the low frequency response may have some 

nonlinearity. The response of the RT3 appears to be nonlinear, with the bulk of the 

curvature in the mid-frequency section.  
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Figure C1: Plot comparing the frequency responses of ActiGraph, Actical, and RT3 PA 
monitor responses. Frequencies are mechanically generated to be between 25-250 RPM. 

 
 

Unlike the ActiGraph, both the Actical and RT3 monitors have peak count values 

that correspond with the highest frequency tested, while the maximum count value for the 

ActiGraph occurs at 140 RPM with large magnitude of decay at higher frequency values. 

Because higher frequency human movements should not have a reduced energy cost if all 

other variables are fixed, we believe that a constantly increasing response or one that 

increases to an asymptote at high frequencies is the most physiologically reasonable 

response profile. 

Each test point was also analyzed using the acceleration analogous to the test 

frequencies (Figure C2). This transformation is linear with respect to the radius of 

oscillation, but quadratic with respect to frequency and is specified in Chapter IV.  
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Figure C2: Activity count response of ActiGraph, Actical, and RT3 PA monitors as a 
function of applied acceleration.  

 

 The process of converting from frequency to acceleration does not seem to 

introduce significant changes in the shape of the response curves, with the exception of 

the Actical response, which now appears to be nonlinear. 

 It should be considered that differences observed in the count values themselves 

are not enough to indicate measurement differences. Counts are an arbitrary unit 

specified by each device manufacturer and therefore differences in scale are to be 

expected. It would be desirable to compare the response profiles directly between 

monitor types in order to attempt to determine if true measurement differences exist 

between the monitors. To begin to explore these comparisons, we normalized the activity 

counts of each monitor type by their respective maximum count values (Figure C3).  
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Figure C3: Comparison of the frequency response of ActiGraph, Actical, and RT3 PA 
monitors when activity counts have been normalized by the maximum count value 

achieved by monitor type.   
 

 The normalized count data seems to suggest that the response profiles of the 

Actical and RT3 are similar, though there is additional curvature in the RT3 data that 

does not appear in the Actical data. These profiles are notably different than that 

exhibited by the ActiGraph, which shows a more rapid increase to the peak value, and 

significant decay into the high acceleration region where both the Actical and RT3 are 

still increasing.  

 Another important characteristic of the response to mechanical oscillation which 

should be compared between PA monitors is their inter-monitor CV (Figure C4). This 

calculation expresses how much error is introduced into data analysis by using multiple 

units of the same type of PA monitor (ActiGraph, e.g.), which is common in field 

experiments where hundreds of subjects may be recruited for a study. When the full 

range of frequencies are considered, the data becomes difficult to interpret visually 
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because in the low frequency range some monitors of each type detect signal and some 

do not leading to large (CV > 100%) values. A reduced range (frequency > 50 RPM) was 

considered for visualization purposes. 
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Figure C4: Inter-monitor CV (%) for ActiGraph, Actical, and RT3 PA monitors. Low 
frequencies (< 50 RPM) were not included because CV for at least one monitor type was 

greater than 100%. 
 

 The CV for the ActiGraph monitor is the lowest for all tested frequencies with 

values on the order of 0.5%, suggesting a significant advantage for population studies. 

The Actical shows a pattern of decaying CV as a function of frequency, with the mean 

value around 10% for frequencies between 60-150 RPM, and around 3% for higher 

frequencies. The RT3 showed minimum CV for mid frequency values (150RPM) where 

the CV was around 3.5%. However, the higher frequency measurements yielded CV on 

the order of 13%, which questions the reliability of measurements for this range of 

values. The larger CV for the RT3 monitors in the high frequency experiments suggests 

that some of the nonlinearities in the observed response curve could be attributable to 
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measurement variability in the sample of monitors and may not be directly related to the 

device filtering.  

 It should be considered that only a very small sample was used in the reported 

Actical results (n=5). This outcome stems from a hardware revision that was made on 

Actical devices midway through data collection when devices were returned to the 

manufacturer for calibration. We presented results only from monitors that had the 

newest device hardware revisions in order to increase the practical applicability of the 

results. This revision called for a wider range of frequency detection, which should allow 

higher intensity activities to be accurately characterized. However, the larger frequency 

band, in general makes the variability harder to control.  

 In these experiments, the ActiGraph, Actical, and RT3 monitors were subjected to 

mechanical oscillations in order to compare and contrast their response profiles. While 

the magnitude of the count values varied greatly between monitors, the Actical and RT3 

monitors had similar response profiles, though both are different from the ActiGraph. 

However, the new ActiGraph had a much lower inter-monitor CV than either the Actical 

or RT3 monitors. 
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APPENDIX D 

 

ADDITIONAL RESULTS: HIP-ONLY ANN 

 

 In this Appendix, additional details and results that pertain to ANN training, 

representations of the final weight values, and additional results representing the 

prediction accuracy of the ActiGraph, IDEEA, and ANN models within specific activity 

intensity categories was considered.  

 During 24-hr stay in the room calorimeter, subjects tend to spend >90% of their 

time in low intensity activities and the error in prediction models is heavily influenced by 

small minute-by-minute mismatches in EE predictions during these low intensity 

intervals. Differences between predictions and measurements for high intensity data can 

cause large increases in both the mean of the minute-by-minute error measures and large 

mismatches in total EE even though they contribute only a small percentage of the 

patterns in the data set. Thus, each of the ANN models was trained on data that has been 

biased towards the high intensity data by replicating all the data points that corresponded 

to minutes where the measured EE was greater then 6 kcal/min. These data were 

presented to the model three times per training iteration.   

 

Feature Extraction 

 To extract the data features, raw acceleration data was synchronized with output 

data from the calorimeter by maximizing the correlation coefficient between a down 

sampled acceleration signal and the EE measured by the room calorimeter.  
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Table D1: Brief description of candidate features for the ANN model. 

Parameter Name Description Relationship with 
Physical Activity 

Median Middle value in an ordered list Central tendency of the 
measured activity  

Integral Left hand Riemann sum Accumulation of 
measured activity  

Peak Maximum absolute value Point estimate of the peak 
activity intensity 

Inter-quartile Range Upper quartile – lower quartile Variability of movements 
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MAE

1

1  Measurement of the 
activity variability  

CV (1)* ( ) ⎟⎟
⎠

⎞
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⎝

⎛
=

µ
σmin1CV  Lowest variability during 

each minute 
CV (2)* ( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

µ
σmax2CV  Highest variability during 

each minute 
PSD (1)^ ( ) ( ) 7.0

0
2 |)(1 xfftsumpsd =  The amount of total signal 

power associated with low 
intensity PA 

PSD (2)^ ( ) ( ) 10
71.0

2 |)(2 xfftsumpsd =  The amount of total signal 
power associated with 

moderate to vigorous PA 
* Each minute of data was divided into six segments. The CV was computed for each 10 
second interval and the smallest and largest values were retained. Analysis was intended 
to isolate transitions between activity types that may occur within one minute of data 
 
  ^ 0.7 Hz was used to divide the data between signal power associated with sedentary 
activities and that associated with dynamic PA. Values between 0.1 and 1.0 Hz were 
considered and discrimination was tested using hip data only on a sample of five subjects 
whose data was not used for model development. The value of 0.7 proved to be the best 
value for these subjects. 
 

 Each minute of acceleration data was isolated and used to extract 11 features 

(Table D1). These features were intended to represent the PA intensity and variability 
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over the minute as well as to detect of transitions between PA types happened during 

each minute, which might impact the overall EE. By computing the correlations between 

features, the 11 features were reduced to 5 by eliminating one feature of each pair whose 

correlation was higher than an arbitrarily specified 0.6.  

 

Sample weight distributions 

 Model validation was performed by leave one subject out cross validation. This 

process resulted in 102 sets of optimized weighting coefficients. In Figure D1, Hinton 

plots of the final weight values for a representative subject were generated for qualitative 

evaluation of the various weighting coefficients between each set of layers of the model. 

Positive weight values are indicated by green boxes, while negative values are shown in 

red. The relative size of the box indicates the magnitude of the weight values. Each 

specific interaction between a layer input weight (x-axis) and the neurons in the next 

layer (y-axis) can be characterized examined by examining the magnitude and sign of the 

box specified for the x-y pair. The input characteristics in the order they appear on the x-

axis of the input layer Hinton plot (Figure D1) is shown in Table D2. 
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Table D2: Order of characteristics for input layer Hinton plot. 

Variable Number Variable Name 
1 Age 
2 Height 
3 Weight 
4 BMI 
5 Sex (Binary – Woman = 0) 
6 Caucasian (Binary – Yes = 1) 
7 African American (Binary – Yes = 1) 
8 Peak (A\P) 
9 Inter-Quartile Range (A/P) 
10 Lowest 10 second CV (A/P) 
11 Signal Power < 0.7 Hz (A/P) 
12 Signal Power > 0.7 Hz (A/P) 
13 Peak (M\L) 
14 Inter-Quartile Range (M/L) 
15 Lowest 10 second CV (M/L) 
16 Signal Power < 0.7 Hz (M/L) 
17 Signal Power > 0.7 Hz (M/L) 

  A/P – Anterior/Posterior 
M/L – Medial/Lateral 

 
 
 

For the input layer there are a number of weights that are close to zero, along with 

several features that seem to have no large weight values associated with them, e.g., 

features 8 and 10 (peak and lowest 10 second CV of the anterior/posterior data channel). 

The small magnitude of the weights associated with a single feature could indicate that 

that feature does not have a large contribution to the total solution. These input features 

may be good candidates for systematic elimination, which could be performed to 

decrease the computational complexity of the model. If, however, some of the weight 

values from an input to a neuron are small, it only indicates that the interactions with this 

input term are small for a particular neuron. 
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Figure D1: Plot of the signs and relative magnitudes of the weights relative the input 
features to the first layer of neurons.  

 

 

 In the second layer (Figure D2), fewer weight values have a small magnitude, 

even though a slightly larger number of total weight values are present.  Additionally, 

there are no inputs to this layer that appear to have only small interactions with all of the 

neurons of this layer. This does not immediately suggest reducing the size of this layer. 

Relative to the input layer, the hidden layer shows a greater number of positive weights 

of high magnitude. This balance is likely due to the basis function limiting the response 

range from the input layer to values between -1 and 1, while the features used as model 

inputs were standardized to a mean of zero and standard deviation of one, which would 

allow some input features to be outside of the range of the basis function.  
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Figure D2: Schematic of the signs and relative magnitudes of the weights from the output 
end of the input layer to the hidden layer. 

 

The output layer weight schematic shows the 20 weights connecting the hidden 

layer with the single EE value predicted for each minute (Figure D3). As with the hidden 

layer, the weights appear to be well balanced between positive and negative values with a 

variety of weight magnitudes.  
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Figure D3: Schematic of sign and relative magnitude of the output layer weights. 

 

 

Prediction by activity intensity levels 

In a further attempt to understand the output data from the ANN model and how it 

relates to the outputs of the IDEEA model and the ActiGraph mode, the measured data 

from the chamber was divided into four intensity strata based on the measured resting 

metabolic rate (RMR). The four categories explored were 1-1.5 time RMR, designated as 

sedentary, 1.5-3 times RMR, light, 3-6 times RMR, moderate, and greater than 6 times 

RMR, intense. The mean of the measured and predicted EE for data in these intensity 

categories was computed and Bland-Altman plots were produced for each model and 

intensity class (Figure D4).  
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Figure D4: Bland-Altman plots for the ActiGraph, IDEEA, and ANN. Data from 
the calorimeter was discretized into four intensity categories and the mean of the 

corresponding data points were used to evaluate predictions in each intensity range.  
 

The intensity stratified Bland-Altman plots show that the Freedson equation for 

the ActiGraph tends to under-predict sedentary and light PA, while on average the 

moderate and vigorous PA intervals are well characterized. However, there is a relatively 

high standard deviation (~1.5 kcals/min for moderate; ~5 kcals/min for vigorous) for 

these measurements as well as a trend to over predict as the mean intensity of activities 

contained in these intervals increases. The IDEEA monitor tends to over-predict the EE 
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associated with sedentary activities. This is likely due to the prediction equation used to 

establish the RMR. The mean values for the light, moderate, and vigorous EE categories 

are well represented and standard deviations are improved relative to the ActiGraph for 

all three classes. Like the IDEEA monitor, our ANN model over-predicted sedentary EE; 

however, the magnitude of this over-prediction is smaller (~ 0.10 kcals/min) than the 

IDEEA. The ANN showed the lowest standard deviation of the three models considered 

in all but the sedentary category (ActiGraph was lowest for this category). The small 

mean offsets combined with the balance of over-prediction of sedentary EE and under-

prediction of light EE likely leads to the small observed differences in total EE.  

 

Acceleration only ANN 

 In order to understand the potential benefits in EE prediction accuracy that can be 

realized by allowing interactions between subject characteristics and acceleration signal 

features within the ANN framework, the acceleration values were isolated and the model 

was retrained on a reduced (acceleration only) data set. The network architecture, 

learning rule, and convergence criteria were unchanged from previous experiments. The 

elimination of the characteristics caused the ANN to have less subject information than 

AG1 or the proprietary model. AG1 was supplied with a subject specific physiologically 

reasonable baseline value (measured sleeping EE), and body weight was used as a term in 

the model. The IDEEA model has access to subjects’ sex, age, height, and weight along 

with signals from the five acceleration channels.  

AG1, the proprietary IDEEA model, the acceleration only ANN (ANN 1) and the 

acceleration plus characteristics model (ANN 2) were compared using the correlation 
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coefficient (r2), mean absolute error (MAE), mean square error (MSE), and percent 

difference in total measured EE. Statistical testing was performed using ANOVA for 

paired measurements with post hoc testing to identify pair-wise differences (Figure D5).  

 ANN 1 had a significantly higher r2 that AG 1 (p < 0.001) but was not 

significantly different from the IDEEA or ANN 2. The MAE for ANN 1 was 

significantly less than AG 1 (p < 0.001), not different from the IDEEA model, and was 

significantly higher than ANN 2 (p < 0.001). The same trend was observed in the MSE. 

The percent difference between the predicted and measured TEE was not significantly 

different between ANN 1 and either the IDEEA model or AG 1, but was significantly 

higher than ANN 2.  
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Figure D5: Comparison of error summary measures between the Freedson ActiGraph 
equation (AG1), the IDEEA proprietary model, an acceleration only ANN model 

(ANN1), and an acceleration plus characteristics ANN (ANN2). 
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 A Bland-Altman plot of the TEE predicted using ANN 1 relative to the measured EE 

from the metabolic chamber (Figure D6) revealed that while the mean difference was small 

(~ 28 kcal), the variability in the response was large (σ = 355 kcal). This prediction 

variability was larger than that observed for AG 1, IDEEA, or ANN 2 (See Chapter 5).  
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Figure D6: Bland-Altman plot for TEE measured using the metabolic chamber and 
predictions made using ANN 1 

 

 

 Raw data analysis (Figure D9-D12) showed errors in both the baseline detection and the 

amplitude of EE prediction are observed using ANN 1.  The baseline value tends to be over-

predicted in women and lean individuals (Figures D9-D10). While sleeping rest is well 

characterized in larger individuals (Figures D11-D12), the EE associated with the highest 

intensity activities is under-predicted. This likely results from the absence of body weight in 
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the training data, since for a given acceleration load, the energy cost is higher if more body 

mass must be moved.   
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Figure D7: Minute-by-minute EE measurements and predictions for a 33year old female 
(height = 1.62 m, weight - 58.5 kg, BMI - 22.5 kg/m2) 
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Figure D8: Minute-by-minute EE measurements and predictions for a 35 year old female 
(height = 1.70 m, weight = 63.2 kg, BMI = 21.9 kg/m2) 
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Figure D9: Minute-by-minute EE measurements and predictions for a 40 year old male  
(height = 1.75 m, weight = 101.5 kg, BMI = 33.14 kg/m2) 
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Figure D10: Minute-by-minute EE measurements and predictions for a 48 year old male  

(height = 1.86 m, weight = 101 kg, BMI = 29.14 kg/m2) 
 

   

The acceleration only ANN model was developed to attempt to show that minute-by-

minute EE prediction accuracy can be improved using features of the raw acceleration 

signal relative to models using integrated signals even if the feature based model does not 

contain any subject information. This was shown through the significant reductions in 

MAE and MSE observed between AG 1 and ANN 1. In most cases, the ability of the 

ANN model to predict the EE associated with low intensity EE was improve relative to 

AG 1. These changes are likely associated with spontaneous PA and characterizing them 
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may be useful.  ANN 1 did not show improved minute-by-minute prediction accuracy 

relative to the proprietary IDEEA model, which may use subject characteristics in 

addition to the five channels of acceleration data. The major limitation in ANN 1 was its 

inability to resolve the RMR. This is not surprising since this value is highly dependant 

on subject characteristics. Improper RMR predictions caused the percent difference 

between the TEE measured with the room calorimeter and that predicted with the ANN 

model to be quite large in some cases. This experiment showed that an acceleration only 

ANN model is able to achieve higher EE prediction accuracy than an acceleration model 

that was developed using integrated data and incorporating a measured baseline and body 

weight and achieve comparable predictive accuracy to a five sensor array which 

incorporates sex, age, height, and weight. This model, however, did not achieve the 

minute-by-minute accuracy observed when subject characteristics were combined with 

acceleration parameters. 

 

Minute-by-Minute ANN Results 

Minute-by-minute EE predictions (Figure D11-D20) are presented for 10 subjects 

(5 male; 5 female). Four subjects were considered lean (BMI ≤ 25 kg/m2), two subjects 

were borderline between healthy and overweight (25 < BMI ≤ 30 kg/m2), and four are 

characterized as obese (BMI > 30 kg/m2). Results are shown from the ActiGraph (AG1), 

the proprietary IDEEA algorithm, and the hip only, acceleration plus characteristics ANN 

model. Both the full time series (~ 1300 minutes) and the first 600 minutes, where most 

of the moderate to vigorous intensity PA occurs, are shown.  
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In viewing the full time series, it should be noted that AG1 was supplied a subject 

specific sleeping rest value (mean of the measured EE during sleep), which explains the 

good agreement between measurement and prediction during this time period. The 

IDEEA model and the ANN both have information (sex, age, height, weight, and BMI), 

which has been found to be correlated with resting EE, but the models were not directly 

supplied a value. As such, there is more variability in the error associated with the 

baseline in these two models.  

The major improvements in both the IDEEA and the ANN model, relative to  

AG 1, is increased detection and characterization of spontaneous low intensity PA, which 

is frequently assigned an activity count of zero using the ActiGraph. For this data set, the 

ANN more consistently fits the moderate to vigorous intensity peaks in the walking and 

jogging data, though some prediction errors are still detected. This is true for individuals 

of a wide range of BMI. 
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Figure D11: Minute-by-minute EE prediction using ActiGraph (AG 1), IDEEA, and 
ANN. The top row of graphs shows the entire study visit, while the bottom shows the 

first 600 minutes of collected data. This subject was a 30 year old female (height – 
1.62m; weight – 48.2 kg; BMI – 18.4 kg/m2). Using BMI, this individual is characterized 

as borderline underweight/healthy. 
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Subject 59 AG1
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Figure D12: Minute-by-minute EE prediction using ActiGraph (AG 1), IDEEA, and 
ANN. The top row of graphs shows the entire study visit, while the bottom shows the 

first 600 minutes of collected data. This subject was a 49 year old female (height – 
1.62m; weight – 55.6 kg; BMI – 21.2 kg/m2). Using BMI, this individual is characterized 

as healthy. 
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Figure D13: Minute-by-minute EE prediction using ActiGraph (AG 1), IDEEA, and 
ANN. The top row of graphs shows the entire study visit, while the bottom shows the 

first 600 minutes of collected data. This subject was a 47 year old male (height – 1.85m; 
weight – 73.5 kg; BMI – 21.5 kg/m2). Using BMI, this individual is characterized as 

healthy. 
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Figure D14: Minute-by-minute EE prediction using ActiGraph (AG 1), IDEEA, and 

ANN. The top row of graphs shows the entire study visit, while the bottom shows the 
first 600 minutes of collected data. This subject was a 23 year old male (height – 1.72m; 

weight – 67.0 kg; BMI – 22.6 kg/m2). Using BMI, this individual is characterized as 
healthy. 
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Figure D15: Minute-by-minute EE prediction using ActiGraph (AG 1), IDEEA, and 
ANN. The top row of graphs shows the entire study visit, while the bottom shows the 

first 600 minutes of collected data. This subject was a 27 year old female (height – 
1.78m; weight – 76.8 kg; BMI – 24.3 kg/m2). Using BMI, this individual is characterized 

as healthy to borderline overweight. 
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Subject 35 AG1
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Figure D16: Minute-by-minute EE prediction using ActiGraph (AG 1), IDEEA, and 

ANN. The top row of graphs shows the entire study visit, while the bottom shows the 
first 600 minutes of collected data. This subject was a 29 year old male (height – 1.84 m; 

weight – 83.5 kg; BMI – 25.3 kg/m2). Using BMI, this individual is characterized as 
healthy to borderline overweight. 
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Subject 48 AG1
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Figure D17: Minute-by-minute EE prediction using ActiGraph (AG 1), IDEEA, and 

ANN. The top row of graphs shows the entire study visit, while the bottom shows the 
first 600 minutes of collected data. This subject was a 24 year old female (height – 

1.53m; weight – 76.0 kg; BMI – 32.46 kg/m2). Using BMI, this individual is 
characterized as obese. 
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Figure D18: Minute-by-minute EE prediction using ActiGraph (AG 1), IDEEA, and 
ANN. The top row of graphs shows the entire study visit, while the bottom shows the 

first 600 minutes of collected data. This subject was a 48 year old female (height – 
1.57m; weight – 96.5 kg; BMI – 38.9 kg/m2). Using BMI, this individual is characterized 

as obese. 
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Figure D19: Minute-by-minute EE prediction using ActiGraph (AG 1), IDEEA, and 
ANN. The top row of graphs shows the entire study visit, while the bottom shows the 

first 600 minutes of collected data. This subject was a 57 year old male (height – 1.79m; 
weight – 98.2 kg; BMI – 30.6 kg/m2). Using BMI, this individual is characterized as 

borderline overweight/obese. 
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Figure D20: Minute-by-minute EE prediction using ActiGraph (AG 1), IDEEA, and 
ANN. The top row of graphs shows the entire study visit, while the bottom shows the 

first 600 minutes of collected data. This subject was a 40 year old male (height – 1.75m; 
weight – 101.5 kg; BMI – 33.1 kg/m2). Using BMI, this individual is characterized as 

obese. 
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Summary 

The work in this appendix addresses technical issues associated with the ANN 

model development which were not presented in Chapter V. These include description of 

the data features extracted from the raw acceleration data. The input values in the order 

they were presented to the model were presented along with Hinton plots showing the 

sign and magnitude of the network weighting coefficients and a brief analysis of the 

sensitivity of the model solution when random noise was applied to the optimized 

weights. Expanded results which show that when minute-by-minute EE was stratified 

into four categories and the means of the measured intensities within each category were 

compared to the model predicted means, each model showed a specific pattern of over 

and under-prediction of EE. As in our other experiments, the ANN showed a lower 

standard deviation term outside the sedentary intensity range. An acceleration only ANN 

model was developed, and it was determined that while the variance in EE predictions 

was similar to the ActiGraph, the MAE and MSE were significantly reduced. This model 

was comparable to the IDEEA model, which had more acceleration data and subject 

characteristics. Finally, minute-by-minute EE predictions for ten subjects were shown for 

the ActiGraph model, IDEEA, and ANN. These results demonstrate graphically the 

improvements in detection of EE intensity using the ANN. While these results are 

promising, they do indicate that more physical activity intensities, subject characteristics, 

or alterations to the network architecture may be required to optimally predict minute-by-

minute EE.  
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APPENDIX E 

 

COMPARING INDIVIDUAL AND GROUP ANN MODELS 

 

 In order to determine the capability of the ANN approach to develop robust 

individual models for EE prediction, a subject-specific hip-only model was developed for 

each of the subjects used in the development of the general ANN model, using a similar 

feed-forward back-propagation approach as described in Chapter V. Subject 

characteristics were no longer used as model inputs since each subject is unique and the 

impact these features make on metabolic response should be predictable through model 

training without direct presentation of this information. Due to the reduction in the 

number of input features from 17 to 10, the architecture of the model was reduced to a 5-

10-1 neuron structure (the original model used a 12-20-1).  The learning rate, functional 

form of basis functions, and convergence criteria were maintained from the generalized 

model.  

Two aspects of training were altered for the individual model. First, the training 

data was not biased towards high intensity examples. Each data point from the training 

set was presented once. This was due to the fact that within a subject there is less 

diversity in the metabolic response given a particular acceleration response than there is 

over the population. The second change was the validation procedure. For this modeling 

approach we performed a leave 200 minutes out approach, repeated 20 times for each 

subject. The mean EE prediction error over the 20 holdout iterations are reported. Two 

hundred data points represent approximately 15% of the total study visit and should 
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represent a diverse sample of activity types and intensities. However, the 200 data points 

included in each hold out set were chosen randomly and we did not study the intensity 

composition of each hold out set, which may be an important factor in the outcome of the 

model.  

Using a Wilcoxon rank sum test, we compared the mean results from the 20 

holdout sets derived from each subject’s individual model to the validation error for their 

respective holdout set from the generalized model. Significant reduction  

(p < 0.001) was observed in the MAE, MSE, and percent difference in measured TEE 

(Figure E1). A significant increase in the correlation coefficient (r2) was also observed. 

The results suggest that there may be some benefit to individualized models with respect 

to validation errors.  
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Figure E1: Comparison of the performance of Group ANN models with individual 
models.  
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To represent trends in under and over prediction of total EE for the 200 minute 

validation sets used in the individual model development, Bland-Altman plots were made 

for eight randomly selected subjects (Figure E2). Each plot reflects the results of the 20 

network optimizations performed for the subject.    

The mean differences in total and predicted EE for the 200 minute validation set 

ranged from -2.5 kcal to 0.92 kcal. No non-zero slope trends (p > 0.05) were detected for 

the Bland-Altman plots for these subjects. The differences in EE between the 

measurement and the prediction derived from the individual models are smaller than 

those in the group model. These improvements could be due to improved model fit or 

could result from the validation set containing fewer data points with less measurement 

diversity.  
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Figure E2: Individual Bland-Altman plots for eight randomly chosen subjects. 
Each point represents an optimization of the network.  
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Performing individualized modeling, while certainly less time consuming and 

potentially more accurate than generalized modeling, suffers from several important 

limitations. First of all, subject specific training data is required for the model 

development. This means that in order for the model to be developed, each subject must 

be studied for some period of time in a laboratory setting, where simultaneous acquisition 

of accelerometer and calorimeter data is performed. Ideally, this study period would be 

long enough for each subject to perform many of the activity types that are common in 

their daily life. This is more of a burden on the subject than simply wearing the activity 

monitor and having the investigator apply a general model to the data. This is an 

especially important consideration for large studies, where time and resources can be 

saved if subjects are not required to come to the research facility.  

Another limitation is that the individual model for a subject adapts to the EE of 

each subject at the time of model development. This means that changes in their personal 

characteristics or physical fitness could cause an individual model to be invalid at future 

time points. This would be especially true in interventional studies where the outcome 

goal involves making changes in either the subject’s body composition or exercise habits. 

In the case of a general model, these new characteristics would simply be inputted into 

the model and given enough training data was used for the generalized model 

development, a prediction that is more accurate for the current attributes of the subject 

would be realized without retraining. 

This work serves as a conceptual demonstration that individual ANN models can 

be developed using hip-only acceleration data. These models show a reduction in error 

when compared to generalized models developed using the same acceleration signals. 
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The solutions were also derived on a much smaller network architecture, which 

diminished the computational time for model training. The networks also showed nearly 

perfect match between in the total EE predicted for the 200 minute validation set. Though 

the error was reduced in the individual models relative to the generalized model 

presented in Chapter V, it is important to remember that individualized modeling requires 

each subject to come into the lab so that the investigator can obtain valid training data, 

and the model is only valid as long as the subjects metabolic response is not altered by 

changes in their personal attributes or lifestyle.  

 


