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CHAPTER I 

 

INTRODUCTION 

 

Incidence 

The World Health Organization defines preterm birth (PTB) in humans as birth before 37 

completed weeks of a typically 40-week gestation (Figure 1.1). Globally, 15 million babies, or 

about 1 in 10, are born preterm every year and that number is rising1. Prematurity is the 

leading cause of death in children under 5 worldwide and its complications are responsible 

for the deaths of approximately 1 million children annually1. Rates vary both between and 

within countries, but incidence continues to rise across most of the developed world despite 

advances in biological knowledge. Public health and medical interventions designed to delay 

elective cesarean sections have also failed to reduce the number of preterm births2. Babies 

born too soon are predisposed to suffer from neurodevelopmental, respiratory, 

gastrointestinal, and other complications throughout their lives. Furthermore, medical care 

for mothers and babies before, during, and long after preterm births is costly, adding to a 

yearly total of $26 billion3. 
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Figure 1.1. Human pregnancy timeline. Normal human pregnancy lasts approximately 40 
weeks. Delivery is considered preterm before 37 completed weeks of gestation. 
 

Subtypes 

PTB can be caused by 1) the medically indicated induction of preterm delivery due to either 

maternal or fetal complications, 2) spontaneous, idiopathic preterm labor with intact fetal 

membranes (sPTB), or 3) preterm premature rupture of membranes (PPROM). Approximately 

30% of all preterm births are medically indicated due to preeclampsia (PE), intrauterine 

growth restriction (IUGR), gestational diabetes mellitus (GDM), chorioamnionitis, or other 
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complications. The other 70% of preterm births occur spontaneously, with 45% due to sPTB 

and 25% due to PPROM1. 

 

Disparities 

PTB is a global problem with generally higher rates in low-income countries (~12%) and lower 

rates in high-income countries (~9%), although rates can vary from ~5% in some northern 

European countries to ~18% in Malawi2,4. Despite this general trend, several high-income 

countries have much higher rates of PTB than expected. In the United States, for example, the 

rate of preterm birth has increased by 30% since 1981, reaching its peak at 12.5% in 2006, 

decreasing for several years after that, and increasing again in 2015 and 2016, with the rate 

currently reported at 9.6%2. Of the 1.2 million preterm births that occur in high-income 

countries, the United States contributes more than 0.5 million (42%) of them2. 

 

Major racial and ethnic disparities are also evident in preterm birth. In the United States, the 

PTB rate among black women is twice as high as the rate among white women, even after 

adjusting for other confounding factors5-7. Furthermore, black women are 3-4 times more 

likely to have a very early PTB (before 32 weeks) than women from any other ethnic groups1,8. 

Rates of PTB are also higher among black women born in the United States than they are 

among black women born outside of the United States, but both are higher than the rate 

among white women9,10. Conversely, East Asian and Hispanic women have relatively low rates 
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of PTB, while South Asian women have increased risk of low birth weight with no connection 

to PTB risk 1. 

 

Interestingly, PTB rates for many US immigrant groups are positively correlated with the 

length of time they have lived in the United States11. Epidemiological studies have linked 

poverty, education, age, marital status, prenatal care, and other factors with PTB incidence 

and, although the mechanisms for their involvement are unknown, these factors presumably 

influence PTB risk across ethnic groups. Preterm birth rates also vary by state, and sometimes 

even by neighborhood, in the United States and these differences could reflect the effects of 

socioeconomic factors, as well6,12. Differences in PTB risk are also evident in maternal age, 

where women under 20 and over 40 are more likely to deliver preterm, although these 

disparities differ between ethnic groups, with the PTB risk for black women rising at a 

younger age than it does for women of other ethnicities13. 

 

Risk factors 

In addition to racial and ethnic disparities, many other risk factors have been linked to PTB 

incidence (Figure 1.2). Pregnancy history has been shown to have an impact on PTB risk, for 

example, with risk increasing as inter-pregnancy interval decreases14. Although the 

mechanism for recurrence is unclear, it could be related to persistent infection, nutrition, or 

chronic health conditions. Multiple gestations also increase risk of PTB where almost 60% of 

twin births and nearly all of higher order births are delivered preterm15. Many maternal 
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medical conditions have been shown to increase PTB risk including thyroid disease, asthma, 

hypertension, diabetes, history of cervical loop procedures, and depression1. Moreover, 

tobacco use increases PTB risk at least 2-fold1. 

 

Figure 1.2. PTB risk factors. Risk factors for PTB stem from genetics (pink), environmental 
stress (green), and ethnicity (blue). Redrawn from Bezold et al. where relative risk and 
confidence intervals were obtained from previous independent PTB risk studies applying a 
variety of methods.16-22 
 

A variety of infections have been linked to PTB including urinary tract infections, malaria, 
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births occur in the presence of an often subclinical intra-amniotic infection23. These infections 

typically present as chorioamnionitis, defined as inflammation of the chorion, amnion, and 

placenta24. Intrauterine infections can cause PTB by activating the innate immune system and 

triggering the release of inflammatory cytokines and chemokines that can then stimulate the 

production of prostaglandins, activating either uterine contractility and eventually sPTB or 

matrix-degrading enzymes and eventually PPROM1. 

 

Genetics 

Several lines of evidence suggest that genetics also plays a role in prematurity. sPTB is a trait 

that appears to be maternally transmitted, where a woman’s risk of delivering preterm is 

increased if her mother, full sisters, or maternal half-sisters have delivered preterm17. In fact, 

women with sisters who delivered preterm are 80% more likely to experience PTB25. Women 

who were born preterm themselves are also more likely to deliver preterm26,27. Interestingly, 

women who deliver post-term are also at an increased risk to deliver post-term again, 

suggesting that genetics plays a role in birth timing, in general28. Twin studies have 

demonstrated both maternal and fetal genetic contributions to variation in birth timing, with 

heritability estimated between 15% and 40%29-32. 

 

Candidate gene studies have been performed on pathways involved in immunity and 

inflammation as key regulators of sPTB pathogenesis. Most of this research focuses on 

inflammatory cytokines like tumor necrosis factor (TNF) as well as interleukins and their 



 7 

receptors (IL-1B, IL-2, IL-4, IL-6, IL-10, IL-1R, IL6R), but results have been mixed and have 

generally failed to replicate16,26,33-35. Other studies have focused on matrix metalloproteinases 

involved in extracellular matrix metabolism (MMP1, MMP9), but again, results have failed to 

replicate across study populations26. Single candidate gene studies have also linked oxytocin 

(OXY) and vascular endothelial growth factor (VEGF) to sPTB, but neither have been replicated 

in larger cohorts36,37. Furthermore, family-based linkage studies have implicated IGF1R, AR, and 

IL-2 in sPTB38,39. 

 

Genome-wide association studies have attempted to uncover polymorphisms associated with 

sPTB, but, until recently, had also failed to replicate in validation cohorts40. A 2017 GWAS, 

however, identified variants at the EBF1, EEFSEC, and AGTR2 loci significantly associated with 

sPTB41. This was the largest PTB-related GWAS to date and, because of its size, it is the only of 

its kind to identify significant associations. 

 

Despite this growing body of research, however, the common pathways influencing sPTB 

pathogenesis and their genetic regulators remain poorly understood. 

 

Biomarkers 

In addition to genetic factors contributing to sPTB, researchers have also identified several 

predictive biomarkers through protein and gene expression studies. In fact, a recent meta-

analysis identified 42 biomarkers associated with sPTB through a variety of multiplex assays42. 
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Like in candidate gene studies (and as no coincidence), the majority of these biomarkers are 

cytokines, chemokines, metalloproteinases, and growth factors involved in inflammatory 

pathways. Some of these molecules include RANTES, IL-10, Eotaxin, and TNF-RI identified in 

maternal serum, ANGPT2 identified in amniotic fluid, and ICAM-1, IGF-I, IL-1B, IL-1Ra, IL-8, 

MCP-3, MIP-1a, PDGF-BB, TGF-a, TGF-B1, TIMP1, TNFa, TNFR-I, TNFR-II, and VEGF identified in 

fetal plasma42. 

 

In general, PTB is now thought to be a complex, multifactorial syndrome associated with 

multiple mechanisms of disease and can be caused by the interaction of many of the 

aforementioned racial, ethnic, socioeconomic, environmental, and genetic risk factors. 

Although 45% of all preterm births are spontaneous, this subtype remains relatively 

understudied compared to preeclampsia and other diseases of pregnancy43. Therefore, the 

following dissertation focuses on identifying the genetic regulators of sPTB, specifically. 

 

Evolution 

PTB has been observed in many other species, indicating that it is not a human-specific 

phenomenon44. The use of animal models has shed additional light on the mechanisms 

regulating parturition, but this insight is limited because many pregnancy-associated traits 

evolve rapidly and are different between species. The placenta, for example, is highly variable 

across mammals in invasiveness, shape, and interdigitation, even in closely related primate 

species (Figure 1.3)45-47. Furthermore, placental morphology and other pregnancy-associated 
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traits may have evolved rapidly alongside bipedalism and increased cranial size in the human 

lineage48. This evolution could be influenced by maternal-fetal conflict, maternal energy 

restriction, or cephalopelvic constraint49. 

 

Figure 1.3. Primate placental diversity. A high degree of variation exists in invasiveness, 
shape, and interdigitation of placenta, even across closely related primate species. 
 

The changing hormonal landscape during pregnancy differs across mammals, as well, adding 

another layer of complexity to utilizing model species in the study of PTB50. Progesterone, in 

particular, is key in facilitating and maintaining pregnancy, and its levels rise until the time of 

delivery in humans and great apes51. In contrast, Old World monkeys have lower, unchanging 

levels of progesterone throughout pregnancy and New World monkeys show progesterone 

withdrawal51. Despite these numerous differences, models in sheep, mouse, rat, guinea pigs, 

and a handful of other species have been used to further our understanding of the events 

leading up to parturition and PTB16,52. 
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Challenges 

High levels of heterogeneity exist in the study of sPTB associated with both etiology (e.g., 

multiple subtypes) as well as pathophysiology (e.g., multiple causative biological pathways), 

making it difficult to identify and replicate genetic risk factors or proteomic biomarkers. 

Multiple tissues in the mother (e.g., decidua, myometrium, cervix, etc.) and fetus (e.g., amnion, 

chorion, umbilical cord, etc.) must interact in order to facilitate nutrient transfer and maintain 

pregnancy47. Moreover, both the maternal and fetal genomes interact to confer sPTB risk47. 

Pregnancy is a uniquely challenging biological system, with time-sensitive dynamics that 

change dramatically over a period of about 9 months, and this challenge is reflected in the 

relative lack of biological insight into pathways whose dysregulation lead to sPTB and other 

pregnancy pathologies. Advances in high-throughput ‘omics experiments have allowed for 

the analysis of sPTB pathogenesis in terms of genomic, transcriptomic, proteomic, 

metabolomic, and epigenomic variation. However, when employed in isolation, any single 

‘omics approach can only provide limited insight into what we know is a highly complex 

biological system. Therefore, understanding the pathways that lead to sPTB pathogenesis will 

likely require the integration of information across ‘omics layers and the study of their 

combined influences. 
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Chapter Previews 

In this dissertation, I use meta-analysis, comparative transcriptomics, and integrative 

genomics approaches to map the pathways leading to prematurity, especially in sPTB. 

 

In chapter II, I synthesize the current landscape in transcriptomics research across all subtypes 

of PTB. Because PTB research is so heterogeneous, a systematic approach to aggregating 

relevant data is essential to summarizing our current understanding of gene expression in 

PTB. To accomplish this, I first conducted a systematic literature review of all genome-wide 

pregnancy studies across gestational tissue types and pathologies, including sPTB. Second, I 

performed a meta-analysis of all publicly available, genome-wide transcriptomics analyses to 

identify genes commonly reported as differentially expressed across all represented 

phenotypes. This analysis uncovered gaps in PTB research and examined the set of currently 

available PTB candidate genes. A key conclusion of this chapter is that, although sPTB makes 

up the majority of all PTB cases, only 18% of transcriptomic research focuses on that subtype. 

 

In chapter III, I seek to begin filling that gap in sPTB-specific research by comparing gene 

expression profiles from placental tissue collected after human sPTB and term deliveries to 

identify genes whose dysregulation may contribute to sPTB pathogenesis. These types of 

comparisons are complicated, however, by the necessary difference in gestational age of the 

tissue samples (e.g., <37 weeks vs. 40 weeks). In humans, it is impossible to collect ‘healthy’ 

placental tissue from ~37 weeks of gestation to compare with placental tissue from sPTB 
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cases. Therefore, differentially expressed genes could reflect sPTB pathology or simply 

differences due to gestational age. To disentangle these components, I also compare gene 

expression profiles from a closely related species with similar placental and pregnancy 

characteristics, Rhesus macaque. By using data from placental tissue collected at a similar 

gestational age (80% completed gestation) in macaque, I identify sPTB-specific differentially 

expressed genes as well as those related to gestational age differences. 

 

In chapter IV, I expand beyond transcriptomics to discuss sPTB as a multifactorial syndrome 

influenced by diverse biological pathways and likely to benefit from an integrative approach 

that synthesizes equally diverse data. I review the complexities introduced by many 

gestational tissues and multiple genomes (e.g., maternal and fetal) that must interact to 

maintain a healthy pregnancy. I also discuss the rapid evolution of pregnancy-related traits as 

well as the challenges and opportunities this presents for integrative research. 

 

In chapter V, I develop a software approach (integRATE) for integrating the types of diverse 

‘omics data mentioned in chapter IV and apply it to sPTB studies. This desirability function-

based method allows for the integration of heterogeneous ‘omics data collected from diverse 

platforms and samples, as is the case across sPTB research.  integRATE uses desirability 

functions to rank genes both within and across studies based on their cumulative weight of 

evidence provided by the different types of ‘omics data at hand. By applying this framework 

to sPTB ‘omics data (including the transcriptomics data discussed in chapter III as well as 
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GWAS, proteomics, and epigenomics data), I refine our understanding of sPTB candidate 

genes supported by the current literature as well as advocate for further functional testing on 

biological pathways containing these genes. 

 

Collectively, my dissertation uses transcriptomics as well as integrative genomics approaches 

to identify genetic regulators of sPTB. This work outlines unique challenges in studying sPTB 

and proposes next steps based on integrating the heterogeneous ‘omics data at our disposal. 
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ABSTRACT 

Background: Preterm birth (PTB), or birth before 37 weeks of gestation, is the leading cause 

of newborn death worldwide. PTB is a critical area of scientific study not only due to its 

worldwide toll on human lives and economies, but also due to our limited understanding of 

its pathogenesis and, therefore, its prevention. This systematic review and meta-analysis 

synthesizes the landscape of PTB transcriptomics research to further our understanding of the 

genes and pathways involved in PTB subtypes. 

Methods: We evaluated all published genome-wide pregnancy studies across gestational 

tissues and pathologies, including those that focus on PTB, by performing a targeted PubMed 

MeSH search and systematically reviewing all relevant studies.  

Results: Our search yielded 2,361 studies on placenta, decidua, myometrium, maternal blood, 

cervix, fetal membranes (chorion and amnion), umbilical cord, fetal blood, and basal plate. Se-

lecting only those original research studies that measured transcription on a genome-wide 

scale and reported lists of expressed genetic elements identified 96, 21, and 21 gene 

expression, microRNA, and methylation studies, respectively. Although 30% of all PTB cases 

are due to medical indications, 90% of these 138 studies focused on them. In contrast, only 

7% of these studied focused on spontaneous onset of labor, which is responsible for 45% of 

all PTB cases. Furthermore, only 23 of the 11,007 unique genetic elements reported to be 

transcriptionally active were recovered 10 or more times in these 138 studies. Meta-analysis of 

the 96 gene expression studies across 9 distinct gestational tissues and 29 clinical phenotypes 

showed limited overlap of genes identified as differentially expressed across studies.  
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Conclusions: Overall, profiles of differentially expressed genes were highly heterogeneous 

both between as well as within clinical subtypes and tissues as well as between studies of the 

same clinical subtype and tissue. These results suggest that large gaps still exist in the 

transcriptomic study of specific clinical subtypes as well in the generation of the 

transcriptional profile of well-studied clinical subtypes; understanding the complex landscape 

of prematurity will require large-scale, systematic genome-wide analyses of human 

gestational tissues on both understudied and well-studied subtypes alike. 
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INTRODUCTION 

In humans, gestation typically lasts 40 weeks; preterm birth (PTB) is defined as birth before 37 

weeks of gestation and is the leading cause of newborn death worldwide. More than 15 

million babies are born too soon every year and rates of PTB had been increasing until 2006 

when changes in obstetrical practices regarding early cesarean sections led to a recent 

decrease in deliveries before term1. Nevertheless, 10% of pregnancies still end before 37 

weeks across the world and this high incidence of PTB is problematic because premature 

babies are at higher risk for lifelong health and developmental problems2,3. For example, 

almost half of all children born premature suffer from vision or hearing loss and learning 

disabilities at some point in their life4,5. The combined medical costs stemming from care 

during the labor and delivery process as well as from care later in life are estimated to be near 

$26 billion annually6.  

 

PTB is a critical area of scientific study not only due to its worldwide toll on human lives and 

economies, but also due to our limited understanding of its pathogenesis and, therefore, its 

prevention. PTB is a complex, multifactorial syndrome comprised of multiple clinical 

subtypes, which often occur at different gestational ages and can be defined as either 

‘spontaneous’ or ‘medically indicated.’ Medically indicated preterm deliveries account for 30% 

of PTB cases and are often preceded by complications including preeclampsia (PE), 

intrauterine growth restriction (IUGR), gestational diabetes mellitus (GDM), and 

chorioamnionitis7. The remaining 70% of PTB cases are idiopathic; 45% is due to the 
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spontaneous onset of labor (iPTB) and the remaining 25% is due to the preterm premature 

rupture of membranes (PPROM). Regardless of PTB subtype, however, current therapies are 

not successful in prolonging time to birth once labor has been initiated and the most 

effective therapy, progesterone supplementation, is only effective in a small number of high-

risk cases8. It is critical that we gain greater insight into the genes and pathways that regulate 

birth timing in humans in order to develop effective prevention and treatment strategies, 

including for cases of iPTB. 

 

A number of environmental risk factors have been associated with iPTB including infection, 

nutrition, socioeconomic status, and stress but the pathways through which these risk factors 

act remain unclear9. Recent evidence from family, twin, and case-control studies suggests that 

genetics also plays an important role in birth timing, and the heritability of PTB is estimated to 

be approximately 30%1,6,7. Thus, PTB tends to run in families and women who were born 

preterm are also more likely to deliver preterm themselves. Interestingly, however, fathers 

born prematurely do not appear to pass on this risk to offspring1. Furthermore, one of the 

strongest predictors of PTB is previous preterm birth and, in subsequent pregnancies from 

the same woman, birth timing tends to occur around the same gestational age for each 

pregnancy10. Candidate gene studies have targeted genes with known biological roles 

potentially related to processes occurring during pregnancy but, in general, teasing apart the 

complex genetic architecture of pregnancy and PTB has proved challenging. 
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Further complicating our understanding of PTB genetic architecture are the numerous 

maternal and fetal gestational tissues that must interact to facilitate parturition8,11. These 

tissues include decidua, myometrium, cervix and maternal blood originating from the mother 

and villous placenta, fetal membranes (chorion and amnion), umbilical cord, and fetal blood 

originating from the fetus (Figure 2.1). Furthermore, the basal plate is a region at the 

maternofetal interface that is commonly biopsied for the study of PTB and includes cells from 

both the decidua and villous placenta. The decidua, myometrium, and cervix act to house the 

fetus as well as expel it during labor and delivery, the chorion and amnion act as membranes 

separating the fetus from the mother, and the umbilical cord allows for efficient nutrient 

transfer. Together, these tissues share a general functionality in the efficient maternofetal 

exchange of nutrients, gas, and waste. 
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Figure 2.1. The tissues of pregnancy. Our systematic literature review surveyed a total of 9 
distinct gestational tissue types including 4 of maternal origin (cervix, myometrium, decidua, 
and maternal blood; shown in red), 4 of fetal origin (fetal blood, fetal membranes, umbilical 
cord, and placenta; shown in blue), and 1 of mixed maternal and fetal origin (basal plate; 
shown in purple). 
 

Although little is known about the complex etiology of PTB, many studies have generated 

pregnancy-related transcriptomes in various tissue types and pathologies. Because of the 

diversity of tissues and clinical subtypes involved as well as the large number of questions 
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complex transcriptional landscape of this multifactorial syndrome. To synthesize what is 

known about PTB transcriptomics, we analyzed all published genome-wide studies of 

gestational tissues (placenta, decidua, myometrium, maternal blood, cervix, basal plate, fetal 

membranes, umbilical cord, and fetal blood) in both healthy and diseased human 

pregnancies to identify all statistically supported candidate genetic elements in PTB subtypes.  

 

Our meta-analysis identified 138 genome-wide studies of pregnancy and PTB, of which 96 

studied gene expression, 21 studied microRNA activity, and 21 studied methylation. 

Examination of these studies showed that very few were focused on idiopathic PTB (7%) even 

though iPTB accounts for 45% of all PTB cases; the majority of PTB research focused on PE. 

Moreover, there was limited overlap in the identity of candidate genes across studies; for 

example, the 138 studies reported a total 11,007 unique candidate genetic elements, but only 

23/11,007 (0.2%) of those elements were found in 10 or more studies. An in-depth meta-

analysis of differentially expressed genes in the 96 studies focused on gene expression 

showed that overlap between the sets of differentially expressed genes identified in the 

different studies was limited. In placenta (n=53), for example, 6,291 differentially expressed 

unique genes were identified but only 2, LEP and FLT1, were present in more than 10 studies. 

Similarly, in PE studies (n=27), 5,526 differentially expressed unique genes were identified but 

only 7 were found in 5 or more studies. The limited overlap of differentially expressed genes 

across studies of the same tissue or clinical subtype as well as the highly uneven coverage of 

studies targeting highly prevalent clinical subtypes suggest that larger-scale, systematic 
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studies aimed at understanding the transcriptional profiles of the diverse clinical PTB 

subtypes and characterizing their disease-relevant transcriptional differences will be 

necessary to identify genes whose dysregulation contributes to this complex, multifactorial 

syndrome. 
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RESULTS 

A systematic review identified 138 transcriptomic studies on 9 gestational tissues and 

29 different phenotypes 

Of the 2,361 studies identified in our PubMed search, 138 genome-wide transcriptomic 

studies in human gestational tissue samples were, based on a number of selection criteria, 

deemed eligible for systematic review (Additional File 2.1)12-124. Platform-wise, 130/138 (94%) 

were microarray studies, 5/138 (4%) were bisulfite-sequencing studies, and 3/138 (2%) were 

RNA-sequencing studies. All studies were published between 1999 and 2014, primarily in the 

journals Placenta and The American Journal of Obstetrics and Gynecology. The phenotypes 

examined in these studies were quite diverse; 18/138 (13%) studies examined preterm 

pregnancies, 83/138 (60%) term pregnancies, and 37/138 (27%) both preterm and term 

pregnancies. One non-clinical phenotype (healthy pregnancies) and 28 distinct clinical 

phenotypes were represented. Finally, 21/138 (15%) were microRNA studies, 21/138 (15%) 

were methylation studies, and the remaining 96/138 (70%) were gene expression studies. A 

total of 11,007 unique genetic elements were reported to be transcriptionally active across all 

138 studies (Additional File 2.2), but only 23/11,007 (0.2%) were reported in 10 or more 

studies.  

 

The 138 studies analyzed 9 distinct gestational tissues, namely placenta, decidua, 

myometrium, maternal blood, cervix, fetal membranes (chorion and amnion), umbilical cord, 

fetal blood, and basal plate. The three most common tissues studied were placenta (84/138; 
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61%), fetal membranes (18/138; 13%), and myometrium (17/138; 12%), whereas each of the 

other six tissues was sampled in 7 or fewer studies (Figure 2.2). 

 

 

Figure 2.2. The vast majority of genome-wide transcriptomic studies on gestational 
tissues have focused on the placenta. A targeted PubMed search for genome-wide 
transcriptomic studies yielded a total of 138 studies focusing on 9 distinct gestational tissue 
types. Placental research accounted for 58% of all studies in the meta-analysis, followed by 
fetal membranes (13%) and myometrium (12%). 
 

The 138 studies analyzed 29 distinct phenotypes (Figure 2.3). 16/138 (12%) studies focused on 

healthy pregnancies, while the remaining 122/138 (88%) studies focused on clinical 

phenotypes. The most common phenotypes studied were PE (40/138; 29%), labor (16/138; 

12%), and iPTB (10/138; 7%). Definitions for all phenotypes are provided in Additional File 2.3. 
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Figure 2.3. Gestational tissue transcriptomic studies in term and preterm human 
pregnancies organized by phenotype. A targeted PubMed search for genome-wide 
transcriptomic studies yielded a total of 138 studies focusing on 29 distinct phenotypes. PE 
research accounted for 29% of all studies in the meta-analysis, followed by labor (12%) and 
iPTB (7%). Phenotype definitions are provided in Additional File 2.3. 
 

PTB research focus does not reflect PTB subtype epidemiological prevalence  

To evaluate whether the proportion of transcriptomic studies devoted on different PTB 

subtypes reflects their clinical prevalence, we compared the frequencies of the three major 

clinical etiologies (iPTB at 45%, PPROM at 25%, and medically indicated PTB at 30%) to the 

frequency of transcriptomic studies devoted to these etiologies (Figure 2.4). We found that 

although only 30% of all PTB cases are due to medical indications, such as PE, IUGR, or GDM, 

124/138 (90%) of the studies in our systematic review focused on them; 40/138 (29%) of these 
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studies focused on PE alone. In contrast, although iPTB is responsible for 45% of all cases, only 

10/138 (7%) of the studies in our systematic review studied this clinical subtype. 

 

 

Figure 2.4. Proportion of transcriptomic research does not correspond to PTB subtype 
prevalence. Although only 30% of all PTB cases are due to medical indications, such as PE, 
IUGR, or GDM, 90% of the studies in our systematic review focused on them. In contrast, only 
7% of the studies focused on iPTB, even though this clinical subtype accounts for the majority 
(45%) of PTB cases. 
 

A meta-analysis of 96 gene expression studies across 9 distinct gestational tissues 

showed limited overlap of candidate genes 

To perform an aggregated meta-analysis, we focused on the 96/138 gene expression studies. 

These 96 gene expression studies analyzed all 9 distinct gestational tissues, namely placenta, 
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decidua, myometrium, maternal blood, cervix, fetal membranes (chorion and amnion), 

umbilical cord, fetal blood, and basal plate. The three most common tissues studied for 

differential gene expression were placenta (53/96; 55%), myometrium (17/96; 18%), and fetal 

membranes (13/96; 14%), whereas each of the other six tissues was sampled in 4 or fewer 

studies. Genome-wide gene expression profiling studies of the three most commonly studied 

gestational tissues, i.e., placenta, myometrium, and fetal membranes, identified a total of 

8,329 unique differentially expressed genes, of which only 2,021 (24%) were found in two or 

more studies (Figure 2.5, Additional File 2.4). This examination also showed that only 23 

candidate genes were differentially expressed two or more times in studies of all three tissues 

(Additional File 5). Among the genes present in this overlap were interleukin 1 beta, a 

proinflammatory cytokine shown to be involved in infection-related PTB and PE, and 

superoxide dismutase 2, an antioxidant enzyme shown to be involved in oxidative stress 

associated with PTB14,19,30,45,61,125-129. 
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Figure 2.5. Overlap of differentially expressed genes across gestational tissues. 
Differentially expressed genes present in two or more gene expression studies categorized by 
tissue were compared across the three most commonly studied tissues (placenta, 
myometrium, and fetal membranes). Out of 2,021 genes identified to be differentially 
expressed in at least two studies, only 23 genes were shared across all three tissues. 
 

Although gene expression profiles are available for 29 distinct phenotypes, PTB 

research is dominated by studies focused on select phenotypes 

The 96 gene expression studies analyzed 29 distinct phenotypes. From these studies, 8/96 

(8%) studies focused on a non-clinical phenotype (healthy pregnancies), with the remaining 
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88/96 (92%) studies focused on clinical phenotypes. Among studies focused on clinical 

phenotypes, the three most common phenotypes investigated were PE (27/96; 28%), labor 

(14/96; 15%), and IUGR (8/96; 8%); each of the other 26 clinical phenotypes was studied in 5 or 

fewer studies. Genome-wide gene expression studies of the three most commonly studied 

clinical phenotypes identified a total of 7,471 unique genes, of which only 1,261 (17%) were 

present in two or more studies (Figure 2.6, Additional File 2.6). No candidate genes were 

found two or more times in studies of all three phenotypes. Generally, overlap of differentially 

expressed genes was more limited across clinical phenotypes than across gestational tissues. 
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Figure 2.6. Overlap of differentially expressed genes across phenotypes. Differentially 
expressed genes identified in two or more gene expression studies categorized by phenotype 
were compared across the most commonly studied phenotypes (PE, labor, and IUGR). Out of 
1,261 genes identified to be differentially expressed in at least two studies, none were shared 
across all three phenotypes. 
 

Overlap of differentially expressed genes identified across PTB studies is limited 

Studies of placenta, myometrium, and fetal membranes, the three most commonly studied 

tissues, focused on a total of 25 distinct phenotypes (Figure 2.7a, Additional File 2.7). The 

clinical phenotype studied, however, differed between tissues, with PE dominating placental 
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research (23/53 placental studies or 43%), labor dominating myometrial research (9/17 

myometrial studies or 53%), and PPROM dominating fetal membrane research (4/13 fetal 

membrane studies or 31%). Likewise, the range of tissues studied differed between 

phenotypes. PE was studied across 4 distinct gestational tissues (placenta, decidua, basal 

plate, and maternal blood), labor was studied across 4 distinct gestational tissues 

(myometrium, fetal membranes, placenta, and cervix), and PPROM was studied across only 1 

distinct gestational tissue (fetal membranes) (Figure 2.7b, Additional File 2.8). 

 

 

Figure 2.7. Representation of overlap in differentially expressed genes across the most 
commonly studied tissues, phenotypes, and tissues & phenotypes. Studies are 
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represented as distinct wedges in the outermost track, colored by phenotype and sized by 
number of genes reported. Genes that show a high degree of overlap across studies appear as 
black links connecting each study reporting the gene. In general, the scarcity of links 
illustrates the considerable lack of overlap in the genes identified as differentially expressed 
across PTB studies. (A) Representation of overlap in differentially expressed genes across the 
most commonly studied tissues. Studies of placenta, myometrium, and fetal membranes, the 
three most commonly studied tissues, focused on a total of 25 distinct phenotypes with PE 
dominating placental research, labor dominating myometrial research, and PPROM 
dominating fetal membranes research. (B) Representation of overlap in differentially 
expressed genes across the most commonly studied phenotypes. PE was studied across 4 
distinct gestational tissues (placenta, decidua, basal plate, and maternal blood), labor was 
studied across 4 distinct gestational tissues (myometrium, fetal membranes, placenta, and 
cervix), and PPROM was studied across only 1 distinct gestational tissue (fetal membranes). (C) 
Representation of overlap in differentially expressed genes across the most commonly 
studied tissue and phenotype combinations. The most studied combinations were PE in 
placenta (n=23), labor in myometrium (n=9), and PPROM in fetal membranes (n=4). 
Examination of PE in placenta studies identified 16 genes that were present in 4 or more 
studies, examination of labor in myometrium studies identified 15 genes that were present in 
4 or more studies, and examination of PPROM in fetal membranes studies identified 4 genes 
that were present in 3 or more studies. 
 

To identify common differential gene expression signatures, we looked for overlap between 

differentially expressed genes reported in studies of the same phenotype and tissue. The 

most studied phenotype-tissue combinations were PE in placenta (n=23), labor in 

myometrium (n=9), and PPROM in fetal membranes (n=4) (Figure 2.7c, Table 2.1). 

Examination of PE in placenta studies identified 16 genes that were present in 4 or more 

studies including LEP, a fat-regulating hormone commonly shown to be differentially 

expressed in gestational tissues of women with PE and HELLP Syndrome, and FLT1, a growth 

factor known to be highly expressed in preeclamptic placental trophoblast 

cells17,28,40,44,49,71,81,87,130. Examination of labor and myometrium studies identified 15 genes that 

were present in 4 or more studies including PTGS2, a cyclooxygenase involved in 
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inflammation and commonly upregulated in myometrium during labor14,22,36,60,62,127,131. Finally, 

4 genes were present in 3 or more fetal membranes & PPROM studies including IL8, a 

proinflammatory chemokine often associated with PTB32,33,51,80,85,132. 

 

Table 2.1. The most often recovered differentially expressed genes in placenta and PE, 
myometrium and labor, and fetal membranes and PPROM. 
 

Placenta & PE 
Entrez gene ID Official gene symbol # studies 
3952 LEP 7 
2321 FLT1 6 
3623 INHA 6 
3624 INHBA 6 
2022 ENG 5 
6647 SOD1 5 
10148 EBI3 5 
604 BCL6 4 
1082 CGB 4 
3972 LHB 4 
10272 FSTL3 4 
10544 PROCR 4 
54210 TREM1 4 
60676 PAPPA2 4 
93659 CGB 4 
94115 CGB 4 

Myometrium & Labor 
Entrez gene ID Official gene symbol # studies 
165 AEBP1 4 
366 AQP9 4 
861 RUNX1 4 
2354 FOSB 4 
3164 NR4A1 4 
3576 IL8 4 
3976 LIF 4 
5054 SERPINE1 4 
5292 PIM1 4 
5334 PLCL1 4 
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5743 PTGS2 4 
6401 SELE 4 
9123 SLC16A3 4 
51129 ANGPTL4 4 
117247 SLC16A10 4 

Fetal membranes & PPROM 
Entrez gene ID Official gene symbol # studies 
972 CD74 3 
1117 CHI3L2 3 
3576 IL8 3 
7805 LAPTM5 3 

 

To examine whether the sets of genes that were most prevalent in each of the three tissue 

and phenotype pairs (placenta & PE, myometrium & labor, and fetal membranes & PPROM) 

disproportionally represented particular functions, we examined whether any Gene Ontology 

functional category was statistically significantly enriched (p < 0.0001) in each of the three 

gene sets (Additional File 2.9). Candidate genes identified in placenta & PE studies were 

enriched for regulation of cell death (GO:0010941) and apoptosis (GO:0042981), candidate 

genes identified in myometrium & labor were enriched for wounding (GO:0009611) and 

inflammatory response (GO:0006954), and candidate genes identified in fetal membranes & 

PPROM were enriched for defense response (GO:0006952) and immune response 

(GO:0006955). 
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DISCUSSION 

PTB is a complex, multifactorial syndrome with high prevalence worldwide, whose 

pathogenesis remains poorly understood, especially for cases of early spontaneous labor. To 

provide an overview as well as a synthesis of the current landscape of PTB transcriptomics we 

conducted an in-depth systematic review of the literature as well as a meta-analysis of 96 

gene expression studies on a wide diversity of gestational tissues and clinical phenotypes. 

Examination of our results identifies two key findings. First, the correspondence between PTB 

subtype prevalence and proportion of transcriptomic research devoted to these subtypes is 

weak. Second, the overlap between differentially expressed genes identified in different 

studies is quite small, even on studies aimed on the same phenotypes and tissues. Below, we 

discuss the possible factors that underlie these two key findings and their implications for 

research on PTB. 

 

In general, transcriptomic studies on placental tissue samples from women with preeclampsia 

dominate PTB research. Furthermore, there are very few studies focusing on iPTB, a subtype 

responsible for 45% of all PTB cases. Although genes commonly associated with PTB clinical 

subtypes (i.e., LEP and FLT1) are identified in many of the gene expression studies to be 

differentially expressed, the overlap between the differentially expressed genes identified 

across studies is generally very limited. This is not surprising in comparisons between tissues 

(Figure 5), because these often involve examinations of different clinical subtypes, although it 

does suggest that there is little overlap in tissue-specific transcriptional profiles of different 
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clinical subtypes. Similarly, it is not surprising that comparisons between clinical subtypes do 

not show a high degree of overlap (Figure 2.6), because these often involve examinations of 

different tissues. Nevertheless, it should be noted that differentially expressed genes with 

substantial overlap across studies appear to be biologically meaningful. For example, genes 

involved in hormone regulation (i.e., CGB, CRH, INHA, and GH2), which have been previously 

shown to be key in the maintenance of pregnancy, show substantial overlap in preeclampsia 

studies. Genes involved in inflammation (i.e., IL8), which have been previously shown to be 

dysregulated in PPROM and other clinical PTB subtypes, are also identified to be differentially 

expressed in multiple studies. 

 

The observed minimal overlap between the differentially expressed genes identified across 

studies focused on the same tissue and clinical phenotype (Figure 2.7) is possibly more 

serious. One potential explanation may be the difficulty in obtaining appropriate controls 

important in pregnancy research; comparing studies that differ with respect to the presence 

of labor, gestational age, and fetal sex is challenging, since all of these factors are thought to 

influence the gene expression landscape in gestational tissues. Even though matching of 

samples with respect to all these factors is very challenging, the reporting of a standard list of 

such factors as required metadata in transcriptomic studies would facilitate further 

examination of their importance and likely influence on transcriptomic profiles.  
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Unfortunately, different studies also follow different guidelines with respect to data 

availability. For example, some studies do not report the full list of differentially expressed 

genes identified or do not make them easily available for subsequent analysis (e.g., reporting 

tables that contain differential expression data on hundreds or thousands of genes in PDF 

format), therefore limiting and biasing the data available for subsequent analyses. The 

publishing of the data for all genes with differential expression above an explicit significance 

threshold is crucial in order to carefully analyze aggregated results and draw meaningful 

conclusions. 
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CONCLUSIONS 

This study synthesizes all high-quality transcriptomic studies on gestational tissues to 

examine the landscape of PTB as well as to identify genes and genomic elements associated 

with it. We found that highly prevalent PTB subtypes, such as iPTB, are not well studied as well 

as that differentially expressed genes identified in different studies are often non-

overlapping. Thus, the identification of the genes whose dysregulation contributes to this 

complex and multifactorial syndrome will require many more large-scale, systematic studies 

aimed at understanding the transcriptional profiles of these diverse clinical PTB subtypes 

across gestational tissues and characterizing their disease-relevant transcriptional differences. 
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METHODS 

Search strategy 

This systematic review and meta-analysis followed guidelines set by the Preferred Reporting 

Items for Systematic Reviews and Meta-Analyses (PRISMA) (Additional Files 10-12)133. The 

electronic search was performed on August 16, 2014 in PubMed with no restrictions to 

identify all articles relating to differentially expressed or methylated genes and microRNAs in 

human gestational tissues. The search strategy was constructed based on related MeSH 

terms: 

"Pregnancy"[mh] AND "Humans"[mh] AND ("Gene Expression Profiling"[mh] OR "Gene Expression 

Regulation"[mh]) AND ("Placenta"[mh] OR "Decidua"[mh] OR "Myometrium"[mh] OR "Cervix 

Uteri"[mh] OR "Extraembryonic Membranes"[mh] OR “Blood”[mh] OR “Plasma”[mh] OR “Umbilical 

Cord”[mh]) 

 

Systematic review 

We collected abstracts for all 2,361 studies identified from this search and annotated 

eligibility based on 6 inclusion criteria: 

1. Published in English 

2. Full text available 

3. Original research 

4. Human placental tissue samples 

5. Genome-wide analysis 
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6. Candidate gene list assembled 

138 studies met all 6 criteria and were included in the systematic review. 

 

Meta-analysis 

Studies were included in our meta-analysis if they met an additional 3 inclusion criteria: 

1. Studied differential gene expression 

2. Provided candidate gene list 

3. DAVID ID conversion successful 

Of the 138 studies included in our systematic literature review, 96 gene expression studies 

met these criteria and were further analyzed. All differentially expressed genes reported in 

these studies were first extracted and then converted to Entrez ID format using the DAVID 

online tool, selecting the smallest Entrez ID number if multiple IDs mapped to single genes. 

We extracted all reported significantly differentially expressed genes based on each study’s 

significance threshold for differential expression. Overlap was determined simply by the 

presence of the same gene in the gene lists from different studies. DAVID was used to assay 

functional enrichment according to Gene Ontology categories. All analyses were performed 

using Python and visualizations were performed using ggplot2 and Circos134,135. 
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ABSTRACT 

Introduction: A major issue in the transcriptomic study of spontaneous preterm birth (sPTB) 

in humans is the inability to collect healthy control tissue at the same gestational age (GA) to 

compare with pathologic preterm tissue. Thus, gene expression differences identified after 

the standard comparison of sPTB and term tissues necessarily reflect differences in both sPTB 

pathology and GA. One potential solution is to use GA-matched controls from a closely 

related species to tease apart genes that are dysregulated during sPTB from genes that are 

expressed differently as a result of GA effects. 

Methods: To disentangle genes whose expression levels are associated with sPTB pathology 

from those linked to GA, we compared RNA sequencing data from human preterm placentas, 

human term placentas, and rhesus macaque placentas at 80% completed gestation (serving 

as healthy non-human primate GA-matched controls). We first compared sPTB and term 

human placental transcriptomes to identify significantly differentially expressed genes. We 

then overlaid the results of the comparison between human sPTB and macaque placental 

transcriptomes to identify sPTB-specific candidates. Finally, we overlaid the results of the 

comparison between human term and macaque placental transcriptomes to identify GA-

specific candidates. 

Results: Examination of relative expression for all human genes with macaque orthologs 

identified 267 candidate genes that were significantly differentially expressed between 

preterm and term human placentas. 29 genes were identified as sPTB-specific candidates and 

37 as GA-specific candidates. Altogether, the 267 differentially expressed genes were 
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significantly enriched for a variety of developmental, metabolic, reproductive, immune, and 

inflammatory functions. Although there were no notable differences between the functions 

of the 29 sPTB-specific and 37 GA-specific candidate genes, many of these candidates have 

been previously shown to be dysregulated in diverse pregnancy-associated pathologies. 

Discussion: By comparing human sPTB and term transcriptomes with GA-matched control 

transcriptomes from a closely related species, this study disentangled the confounding effects 

of sPTB pathology and GA, leading to the identification of 29 promising sPTB-specific 

candidate genes and 37 genes potentially related to GA effects. The apparent similarity in 

functions of the sPTB and GA candidates may suggest that the effects of sPTB and GA do not 

correspond to biologically distinct processes. Alternatively, it may reflect the poor state of 

knowledge of the transcriptional landscape underlying placental development and disease. 

 

  



 57 

INTRODUCTION 

Preterm birth (PTB), or birth before 37 completed weeks of gestation in humans, is a global 

health issue affecting at least 15 million newborns every year1-3. This complex, multifactorial 

syndrome accounts for around 1 million neonatal deaths annually and surviving neonates 

often require lifelong care for common comorbidities including developmental, visual, and 

digestive problems4,5. 30% of PTB cases are indicated by medical conditions such as 

preeclampsia or intrauterine growth restriction, while the remaining 70% are caused by the 

spontaneous onset of labor either with (25%) or without (45%) premature membrane 

rupture6,7.  

 

Spontaneous, idiopathic preterm birth (sPTB), much like most other complex human genetic 

diseases, is augmented by environmental risk factors (e.g., stress, infection, and 

socioeconomic status) as well as by genetics. Several studies have shown that women are 

more likely to deliver preterm if a sister delivered preterm, if a previous child was born 

preterm, if they were born preterm themselves, or if they have African American ancestry8-11. 

In recent years, studies have also highlighted the importance of gene expression regulation in 

complex genetic diseases12. Thus, analysis of the genetic elements that are active or 

dysregulated in gestational tissues harbors great potential to identify candidate genes for 

sPTB and several genome-wide studies have already started to outline its genomic, 

transcriptomic, and methylomic architecture13. 
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Nevertheless, a major obstacle in the transcriptomic study of sPTB in humans is the inability to 

collect gestational age-matched healthy control tissue to compare with pathologic preterm 

tissue. Without safe, non-invasive procedures to sample healthy preterm tissues destined for 

healthy term births, the most common approach is to use healthy term tissues as the control 

for pathologic preterm tissues14-16. This complicates downstream data analysis, though, 

because observed differences in gene expression reflect not only differences in pathology, 

but also differences in gestational age (GA). 

 

One potential solution is to use GA-matched controls from a closely related species to 

distinguish genes dysregulated during sPTB from genes expressed differently at different 

points in pregnancy. The decoding of the rhesus macaque (Macaca mulatta) genome and 

subsequent comparison with that of human and chimpanzee revealed that these 3 primate 

species share about 93% of their DNA17. Thus, macaque is an ideal species for transcriptional 

comparison with humans not only because the two species share a close evolutionary affinity 

but also because of similarities with respect to key pregnancy-related traits. For example, 

even though placental morphology is highly variable across mammals, human and macaque 

placentas share the same discoid shape, hemochorial invasiveness, and villous 

interdigitation18,19. Similarly, the relationship between pelvis and fetal head size in humans is 

more akin to the relationship in macaques than it is to any other primates20. This is particularly 

important as it would alleviate any effects that cephalopelvic constraints might have on birth 
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timing21. Finally, several human pregnancy pathologies have been recorded in macaques 

including stillbirth, PTB, placenta previa, and placental abruption22. 

 

In this study, we compare transcriptomes from human sPTB placentas, human term placentas, 

and macaque placentas at 80% completed gestation to distinguish between sPTB-specific 

and GA-specific candidate genes. Specifically, candidate genes that are differentially 

expressed between human sPTB and human term as well as between human sPTB and 

macaque are potentially sPTB-specific. In contrast, candidate genes that are differentially 

expressed between human sPTB and human term as well as between human term and 

macaque are potentially GA-specific. This novel comparative approach disentangles the 

confounding effects of sPTB and GA differences and allows for the educated prioritization of 

candidate genes for future studies of pregnancy and prematurity. 
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RESULTS 

RNA sequencing and transcriptome analysis 

Analysis of 311.9 million reads from 5 term and 5 preterm human placental samples resulted 

in the successful mapping of 298.4 million reads (95%). 265.9 million (85%) of these mapped 

to a single position in the human genome and 96.9 million (32%) mapped to human genes 

that share 1:1 orthology with macaque genes. Analysis of 29.8 million reads from 2 macaque 

placental samples at 80% completed gestation resulted in the successful mapping of 28.7 

million read pairs (96%). 26.6 million (89%) of these mapped to a single position in the 

macaque genome and 25.1 million (87%) mapped to macaque genes that share 1:1 orthology 

with human genes. Notably, the correlation coefficient between human sPTB samples ranges 

from 0.84 to 0.95, between human term samples ranges from 0.95 to 0.98, and between 

rhesus samples is 0.89 (Additional File 3.2). This degree of variation between samples is on par 

with the degree of variation reported between samples from other much more homogeneous 

tissues23. 

 

Distinguishing sPTB-specific and GA-specific candidate genes 

To identify sPTB-specific and GA-specific candidate human genes, we performed three 

pairwise differential expression comparisons: human sPTB vs. human term, human sPTB vs. 

macaque (GA-matched control), and human term vs. macaque (healthy, early gestation 

comparison) (Figure 3.1a). We identified 267 genes that were differentially expressed 

between human sPTB and term (149 over-expressed and 118 under-expressed), 12,379 genes 
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that were differentially expressed between human sPTB and macaque (7,193 over-expressed 

and 5,186 under-expressed), and 12,566 genes that were differentially expressed between 

human term and macaque (7,285 over-expressed and 5,281 under-expressed) (Additional File 

3.5).  

 

 

Figure 3.1. A comparative approach to disentangling the effects of PTB and GA in 
human transcriptomic studies. (A) RNA-seq data from macaque placentas collected at 80% 
gestation serves as healthy nonhuman primate gestational age controls to disentangle the 
involvement of sPTB from that of gestational age when comparing human sPTB and term 
placentas. Differentially expressed genes were first identified between human sPTB and 
human term placentas and then intersected with differentially expressed genes from 2 other 
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pairwise comparisons (human sPTB vs. macaque and human term vs. macaque). This 
intersection allowed for the categorization of the initially identified differentially expressed 
human sPTB vs. human term genes (dark grey, n=267) as sPTB-specific (green, n=29) or GA-
specific (blue, n=37). (B) For each of the 3 pairwise transcriptomic comparisons, log2 fold 
change values were plotted corresponding to each of the 29 sPTB-specific gene candidates as 
well as the 37 GA-specific gene candidates. For consistency, the macaque transcriptomes 
were used as controls in both inter-species comparisons and, therefore, the direction of fold 
changes in the human term vs. macaque comparison for GA-specific genes is reversed. 
 

Taken alone, differentially expressed genes from the human sPTB and human term 

comparison presumably represent expression differences that may be attributable to either 

sPTB pathology or GA. To further distinguish the 267 differentially expressed genes between 

those that represented sPTB-specific candidates or GA-specific candidates, we intersected the 

candidate gene results of all three differential expression experiments. This approach allowed 

for the identification of 29 sPTB-specific candidate genes and 37 GA-specific candidate genes 

(Figure 3.1b, Table 3.1, Table 3.2, Additional File 3.6). 23/29 (70%) of the sPTB-specific genes 

were over-expressed in sPTB and only 6/29 (21%) were under-expressed. In contrast, 18/37 

(49%) of the GA-specific genes were over-expressed in sPTB and 19/37 (51%) were under-

expressed (Figure 3.1b, Additional File 3.6). 

 

Table 3.1. sPTB-specific genes. 

Symbol Description Fold change (log2)* Adjusted p-value* 
L1CAM L1 cell adhesion molecule 2.00 5.63E-05 
PNMT phenylethanolamine N-

methyltransferase 
1.02 3.58E-04 

MYO1E myosin 1E 0.39 5.42E-04 
ARMCX2 armadillo repeat containing, X-

linked 2 
-0.66 1.24E-03 
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PDE2A phosphodiesterase 2A, cGMP-
stimulated 

-1.03 1.44E-03 

MAPRE3 microtubule-associated protein, 
RP/EB family, member 3 

0.65 2.47E-03 

CD163 CD163 molecule 1.13 5.98E-03 
ETS2 v-ets avian erythroblastosis virus 

E26 oncogene homolog 2 
0.70 1.22E-02 

CTSZ cathepsin Z 0.32 1.22E-02 
CDK14 cyclin-dependent kinase 14 -0.76 1.22E-02 
VSIG4 V-set and immunoglobin domain 

containing 4 
0.81 1.50E-02 

NAALAD2 N-acetylated alpha-linked acidic 
dipeptidase 2 

0.89 1.75E-02 

E2F5 E2F transcription factor 5, p130-
binding 

-0.92 2.44E-02 

HTRA4 HtrA serine peptidase 4 1.50 2.63E-02 
KCTD4 potassium channel 

tetramerization domain 
containing 4 

1.26 2.83E-02 

TRIM14 tripartite motif-containing 14 0.60 3.19E-02 
ZMYND8 zinc finger, MYND-type 

containing 8 
0.38 3.72E-02 

ARHGAP24 Rho GTPase activating protein 24 0.54 3.79E-02 
FOXO1 forkhead box 01 0.80 4.06E-02 
FOXS1 forkhead box S1 -1.01 4.43E-02 
ITGA10 integrin, alpha 10 0.83 4.93E-02 
SLA Src-like-adaptor 0.85 4.97E-02 
ACSL3 acyl-CoA synthetase long-chain 

family member 3 
0.41 4.97E-02 

FAM46B family with sequence similarity 
46, member B 

1.18 6.46E-02 

ELTD1 adhesion G protein-coupled 
receptor L4 

-0.57 6.51E-02 

WWC3 WWC family member 3 0.55 6.53E-02 
CEBPD CCAAT/enhancer binding protein 

(C/EBP), delta 
0.80 7.03E-02 

ADORA3 adenosine A3 receptor 1.01 7.09E-02 
PIPOX pipecolic acid oxidase 1.27 7.40E-02 

*values from human sPTB vs. human term comparison 
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Table 3.2. GA-specific genes. 

Symbol Description Fold change (log2)* Adjusted p-value* 
ICA1 islet cell autoantigen 1, 69kDa -1.08 2.49E-04 
EFNB1 ephrin-B1 0.78 3.58E-04 
TMEM56 transmembrane protein 56 -1.05 3.58E-04 
KL klotho -0.83 1.62E-03 
BMX BMX non-receptor tyrosine 

kinase 
-1.09 2.47E-03 

BMP2 bone morphogenetic protein 2 1.53 2.49E-03 
SH3PXD2B SH3 and PX domains 2B 1.19 2.87E-03 
KLF15 Kruppel-like factor 15 1.76 3.05E-03 
TIMP3 TIMP metallopeptidase inhibitor 

3 
0.93 5.69E-03 

DCTN1 dynactin 1 0.25 5.83E-03 
PPIP5K2 diphosphoinositol 

pentakisphosphate kinase 2 
-0.46 5.98E-03 

RGAG1 retrotransposon gag domain 
containing 1 

1.54 8.67E-03 

ADAMTS15 ADAM metallopeptidase with 
thrombospondin type 1 motif, 15 

1.29 1.29E-02 

ELMO3 engulfment and cell motility 3 0.81 1.29E-02 
INSL6 insulin-like 6 -1.26 1.33E-02 
APOB apolipoprotein B -1.55 1.75E-02 
LDB2 LIM domain binding 2 -0.57 2.02E-02 
APLNR apelin receptor -0.62 2.41E-02 
POF1B premature ovarian failure, 1B -1.12 2.66E-02 
MIOS missing oocyte, meiosis 

regulator, homolog (Drosophila) 
-0.38 2.97E-02 

MFSD4 major facilitator superfamily 
domain containing 4 

-0.84 3.83E-02 

RFWD3 ring finger and WD repeat 
domain 3 

-0.37 4.01E-02 

AMOT angiomotin 0.69 4.30E-02 
DQX1 DEAQ box RNA-dependent 

ATPase 1 
0.92 4.32E-02 

DBH dopamine beta-hydroxylase 
(dopamine beta-
monooxygenase) 

-1.26 4.37E-02 

TRIM63 tripartite motif containing 63, E3 
ubiquitin protein ligase 

1.40 4.43E-02 
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SLC25A4 solute carrier family 25 
(mitochondrial carrier; adenine 
nucleotide translocator), 
member 4 

0.78 4.63E-02 

BRPF1 bromodomain and PHD finger 
containing, 1 

0.31 5.22E-02 

FCN1 ficolin (collagen/fibrinogen 
domain containing) 1 

-0.99 5.50E-02 

DNASE1L3 deoxyribonuclease I-like 3 1.14 6.31E-02 
BAALC brain and acute leukemia, 

cytoplasmic 
-0.92 6.70E-02 

CCND1 cyclin D1 -0.74 7.40E-02 
TFDP1 transcription factor Dp-1 -0.29 8.20E-02 
HAND2 hand and neural crest derivatives 

expressed 2 
0.71 8.61E-02 

CLMP CXADR-like membrane protein 0.74 8.69E-02 
FAM65B family with sequence similarity 

65, member B 
-0.71 8.69E-02 

FUCA2 fucosidase, alpha-L-2, plasma 0.25 9.45E-02 
*values from human sPTB vs. human term comparison 

 

Differentially expressed genes were enriched for developmental and metabolic 

functions 

All together, these 267 genes were significantly enriched for involvement in a wide variety of 

developmental processes (e.g., GO:0005515) (Additional File 3.7). Furthermore, the gene set 

as a whole was enriched for function in metabolism, reproduction, immunity, inflammation, 

and cell signaling. Although statistical significance is limited due to small gene set size, the 29 

sPTB-specific genes were involved in transcription factor activity and binding (e.g., 

GO:0008134 and GO:0005515) and the 37 GA-specific genes were involved in development 

and response to stimuli (e.g., GO:0007275 and GO:0009628). 
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Placental sPTB-specific and GA-specific candidate genes are heterogeneously expressed 

Given the high heterogeneity of gene expression that has been previously reported in 

placental transcriptome studies, we evaluated the transcriptional profile of sPTB-specific and 

GA-specific candidate genes by comparing their relative expression to publicly available 

expression data from Protein Atlas13,24. 27 of the 29 sPTB-specific candidates and 34 of the 37 

GA-specific candidates had been previously identified for placental gene expression at 

varying levels in Protein Atlas (Figure 3.2, Additional File 3.8). Although mean expression 

levels of these candidate genes in human sPTB, human term, and macaque placentas were 

generally comparable to expression levels presented by Protein Atlas, our data also reflect the 

known variability in placental gene expression both within and between individuals24. For 

example, HTRA4 was highly expressed across our sPTB transcriptomes (FPKM=75.4) and lowly 

expressed across our term transcriptomes (FPKM=11.7), but Protein Atlas reported an 

intermediate expression level (FPKM=43.8). 
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Figure 3.2. sPTB-specific and GA-specific candidate genes show heterogeneous 
expression patterns in placenta. For sPTB-specific (top panel) and GA-specific (bottom 
panel) candidate genes, mean mRNA expression in Fragments Per Kilobase of transcript per 
Million mapped reads (FPKM) was compared between the 5 human sPTB, 5 human term, and 
2 macaque placental samples as well as to data from Protein Atlas. 
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DISCUSSION 

A major obstacle in the transcriptomic study of PTB in humans is the inability to collect 

healthy, GA-matched control tissue samples that facilitate the comparison of preterm 

diseased tissue to healthy tissue from a corresponding point in pregnancy. This complicates 

interpretation of results since candidate genes necessarily reflect both sPTB pathology as well 

as GA differences. Our comparative approach utilizing the transcriptomic profiles of rhesus 

macaque placental samples from 80% gestation overlaid with transcriptomic profiles of 

human preterm and term placental tissue allows for the disentanglement of these variables 

and, thus, the identification of genes with roles specific to sPTB pathology or GA.  

 

Generally, most genes in the sPTB-specific and GA-specific categories have previously been 

annotated for placental tissue expression in Protein Atlas, sometimes uniquely so, although 

the level of expression often differed, in line with previous work on the high heterogeneity of 

placental gene expression (Figure 3.2)24. Moreover, the 29 genes in the sPTB-specific category 

included several previously identified for involvement in pregnancy pathologies. For 

example, HTRA4, a serine peptidase, is over-expressed during early-onset preeclampsia25. 

CD163, a hemoglobin scavenger receptor expressed exclusively in macrophages, is over-

expressed in the preterm preeclamptic decidua and has also been identified as a predictor of 

preterm birth in maternal serum26,27. The presence of CD163 among differentially expressed 

genes in our data may indicate that some maternal decidual tissue (and thus, macrophages) 

was inadvertently captured during placental biopsy. ADORA3, an adenosine receptor, is over-
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expressed in preeclamptic trophoblasts and also modulates secretion of matrix 

metalloproteinases that serve as important components in PPROM signaling pathways28. 

VSIG4 encodes a protein with an immunoglobulin domain that has been characterized as a 

maternal biomarker of preeclampsia29,30. PDE2A is a phosphodiesterase and the gene contains 

a SNP associated with idiopathic recurrent miscarriage31. Finally, NAALAD2 has been shown to 

be under-expressed in decidua during preeclampsia32. Our results indicate that pathways 

previously identified as involved in other pregnancy pathologies may also be involved in sPTB 

pathogenesis. 

 

The 37 genes in the GA-specific category also included several previously identified for 

involvement in pregnancy pathologies. For example, BMP2, an extracellular growth factor, is 

over-expressed in fetal membranes during spontaneous term labor and preterm labor with 

chorioamnionitis33,34. TIMP3, a matrix metallopeptidase inhibitor, is expressed in fetal 

membranes during labor and has also been shown to be hypomethylated during 

preeclampsia35-37. APLNR, a G-protein coupled receptor, is a key receptor of apelin, a gene that 

is under-expressed during term and preterm labor in amnion as well as during preeclampsia 

in placenta38,39. KL, or klotho, is under-expressed in pregnancies where the neonate is small-

for-gestational-age40. INSL6 is a member of the relaxin family of peptide hormones and, 

although little is known about INSL6 specifically, relaxin expression at the fetomaternal 

interface has been linked to PPROM pathogenesis and serum relaxin concentration has been 

identified as a potential PTB biomarker41,42. EFNB1 may play a role in cell adhesion and has 
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been shown to be differentially expressed during preeclampsia43. ADAMTS15 is a member of a 

disintegrin and metalloproteinase with thrombospondin motifs protein family and has been 

previously identified as dysregulated during PPROM44. KLF15 has been shown to be under-

expressed in the preeclamptic decidua32. Finally, APOB is a low density lipoproteins and 

variation in the gene sequence has been associated with preterm delivery45. Our identification 

of these genes as GA candidates raises the hypothesis that they might be differentially 

expressed due to differences in gestational age of the tissues being compared rather than 

due to the underlying pathology. Alternatively, these genes might be involved in both 

disease and development.  

 

In addition to involvement in pregnancy pathologies, some sPTB-specific candidate genes 

have been annotated for involvement in more general biological processes related to healthy 

pregnancy, labor, and placentation. For example, FOXO1, is a potential modulator of 

inflammatory events in the myometrium during labor and its expression in endometrium is 

regulated by progesterone46,47. CEBPD is a transcription factor and, through its interaction 

with CEBPA, is involved in the regulation of immune and inflammatory responses in various 

gestational tissues as well as in the development of fetal lungs48,49. ETS2 has been shown to 

mediate matrix metalloproteinase activity and trophoblast invasion50. ARHGAP24 is a 

RHOGTPase activator involved in myometrium contractility and shows increased mRNA 

expression in myometrium during labor51. E2F5 is a member of the E2f transcription factor 

family and has been shown to help coordinate placental development in mice52. FAM46B has 
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been shown to be under-expressed in myometrium and cervix during labor48. Finally, PNMT is 

an enzyme known to be expressed in myometrium and fetal membranes that shows 

decreased enzymatic activity in myometrium during labor53-55.  GA-specific candidate genes 

have similarly been annotated for involvement in biological processes related to healthy 

pregnancy and labor. For example, HAND2 is a progesterone-regulated transcription factor 

that is expressed in myometrium and essential for embryo implantation and FCN1 is involved 

in innate immune defense and over-expressed in myometrium and cervix during labor40,48. 

 

Comparison of the functions of sPTB-specific candidate genes with those of GA-specific 

candidate genes, however, does not identify any notable differences. For example, both sPTB-

specific and GA-specific candidate genes include developmental genes (GO:0032502) (e.g., 

E2F5, ARHGAP24, ETS2, ACSL3, MYO1E, PDE2A, FOXS1, CTSZ, L1CAM, and FOXO1 for sPTB, and 

CLMP, FAM65B, CCND1, KL, KLF15, BMX, INSL6, LDB2, EFNB1, HAND2, APOB, BMP2, DNASE1L3, 

SH3PXD2B, TIMP3, APLNR, AMOT, and DCTN1 for GA, respectively), genes involved in 

immunity-related functions (GO:0002376) (e.g., L1CAM, TRIM14, FOXO1, and VSIG4 for sPTB, 

and KL, DBH, BMX, APOB, DCTN1, and FCN1 for GA, respectively), and genes involved in stress 

response (GO:0006950) (e.g., TRIM14, CD163, FOXO1, and VSIG4 for sPTB, and FCN1, CCND1, 

BMP2, KL, DBH, KLF15, BMX, MIOS, RFWD3, and DCTN1 for GA, respectively).  

 

Similarity between the functions of sPTB-specific and GA-specific candidates may genuinely 

reflect the idea that dysregulation during sPTB pathology is not a biologically separate and 
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distinct process from GA. Alternatively, the overlap of functions may reflect our poor state of 

knowledge of the transcriptional landscape underlying placental development and disease. 

For example, the vast majority of transcriptomic studies on placental tissues have traditionally 

focused on identifying the impact of environmental factors or known clinical subtypes in 

placental gene expression, heavily biasing any knowledge of the functions of placental genes 

toward disease (as opposed to developmental or physiological) phenotypes13. Furthermore, 

only a handful of studies have mapped the transcriptional changes occurring during placental 

development and, given the inability to collect healthy tissue from multiple time points, these 

studies are typically limited to comparing the transcriptional landscapes of first and third-

trimester placentas56-58. Interestingly, only 2 of the 37 GA-specific genes in this study (LDB2 

and BMP2) have been previously annotated as differentially expressed between early and late 

pregnancy56,57. 

  

Although our comparative analysis allowed for the more detailed categorization of otherwise 

general candidate genes, comparison of transcriptomes across species has several important 

caveats. For example, biological and analytical differences such as those stemming from 

alternative splicing, annotation heterogeneity, and genetic variation are potential sources of 

‘noise’59-61. The development and increasingly wide-spread use of RNA-seq, however, has 

facilitated a more straightforward inter-species transcriptome comparison due to the breadth 

and depth of expression data generated by this approach23,61-63. Like previous inter-species 

transcriptomics experiments, our comparative analysis was limited only to 1:1 orthologs in 



 73 

order to facilitate sensible comparison and, even further, the human-macaque transcriptome 

comparisons were overlaid with a direct human-human comparison as an attempt to filter 

out potentially large amounts of expected gene expression differences. Still, the results of 

inter-species transcriptome comparisons must be carefully interpreted due to the many 

inherent differences in gene expression and its regulation across species.  

 

Additionally, this study would have benefited from the inclusion of term macaque placental 

tissue samples. Although unavailable at the time of analysis, these samples would allow for an 

understanding of gene expression in term macaque placentas that could then be compared 

with the other groups in our analysis. Furthermore, gestation length and the timing of some 

early developmental events differ between human and macaque, although little is known 

about comparative placentation towards the end of pregnancy22. Therefore, the use of 

placenta collected at 80% completed gestation in macaque may not be the ideal time point 

for comparison with human sPTB. 

 

These caveats notwithstanding, our results demarcate how a comparative transcriptomics 

approach to the study of human sPTB allows for the identification and prioritization of 

candidate genes and pathways involved specifically in sPTB pathogenesis and GA changes 

during pregnancy. Although a handful of recent studies have analyzed genome-wide gene 

expression in the human term (and occasionally preterm) placenta, ethical issues prevent 

comparisons of sPTB tissue to a healthy tissue at the same GA in humans. Our novel, 
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comparative approach is the first to utilize GA-matched control placental tissue from a closely 

related species for comparison with human term and preterm placental tissue samples. 

Despite the challenges inherent in inter-species transcriptome comparisons, the use of RNA-

seq data and well-annotated reference genomes makes possible the human-macaque 

comparison and ultimate prioritization of otherwise convoluted differentially expressed gene 

sets as promising sPTB-specific candidates. 
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METHODS 

Tissue collection, RNA isolation, and RNA sequencing 

Human placentas were collected immediately after delivery and the decidua basalis layer 

from a central cotyledon was dissected and discarded. Approximately 1g of underlying villous 

tissue was then biopsied for further analysis. The 5 term (GA 38-39 weeks, mean 38 or 95% 

completed gestation) human placental tissue biopsies were all collected after cesarean 

delivery. Of the 5 preterm (GA 29-33 weeks, mean 32 or ~80% completed gestation) human 

placental tissue biopsies that were collected, 4 were collected after cesarean delivery and 1 

after vaginal delivery. Each of the biopsies was flash frozen in liquid nitrogen and stored at -

80°C64. Total RNA was isolated using TRIzol and Illumina libraries were constructed using the 

TruSeq Stranded Total RNA Sample Prep Kit with Ribo-Zero Gold. RNA sequencing (RNA-seq) 

was performed on an Illumina HiSeq 2500 machine using HiSeq version 3 sequencing 

reagents. The samples were sequenced using a single-end approach with 50bp reads, 

generating approximately 30 million reads per sample. Raw count data have been deposited 

in the NCBI Gene Expression Omnibus (GEO) database and are accessible through GEO Series 

accession number GSE73714 

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE73714). 

 

Macaque placentas were collected immediately after delivery and full thickness biopsies 

(~2cmx2cm) free of clots and debris were taken midway between the attachment of the 

umbilical cord and the placenta edge. Both placental tissue samples were collected after 
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cesarean delivery via hysterotomy (GA 128-131 days, mean 129.5 or ~80% completed 

gestation)65. Total RNA was isolated from 100μg of frozen tissue using TRIzol and suspensions 

were stored at -80°C. RNA-seq was performed on an Illumina HiSeq machine after passing 

initial quality control metrics. The two samples were sequenced using a paired-end approach 

with 50 bp reads, generating approximately 15 million paired reads per sample. 

 

Data processing and differential expression analysis 

RNA-seq data was analyzed from the 5 term and 5 preterm human placental tissue samples as 

well as the 2 macaque placental samples from 80% completed gestation. Raw sequence read 

files were first quality checked using FastQC and then trimmed for quality and adapter 

sequences using Trimmomatic with the default parameters (LEADING:3 TRAILING:3 

SLIDINGWINDOW:4:15 MINLEN:36)66. Across all 10 human cDNA libraries, a total of 311.9 

million reads were sequenced and subsequently mapped to the hg19 human reference 

genome using TopHat2 (Additional File 3.1, Additional File 3.2)67. Across the 2 macaque cDNA 

libraries, a total of 29.8 million read pairs were sequenced and subsequently mapped to the 

Mmul 1.0 macaque reference genome using TopHat2 (Additional File 3.1, Additional File 3.2).  

 

Given our interspecies transcriptome comparisons, we restricted all analyses to 19,063 one-

to-one (1:1) human-macaque orthologs obtained from Zimin et al.68. Specifically, only 

sequence reads that uniquely aligned to these 19,063 human or macaque genes were 

counted using HTSeq, resulting in 18,879 genes with expression values in both species 



 77 

(Additional File 3.3, Additional File 3.4). DESeq2 was used to quantify relative gene expression 

differences in terms of fold change (log2) and statistical significance (Benjamini Hochberg-

corrected p-values), where positive fold change represents over-expression in human sPTB 

compared to human term (or human sPTB/term compared to macaque) and negative fold 

change represents under-expression in human sPTB compared to human term (or human 

sPTB/term compared to macaque)69. Genes were annotated as differentially expressed if the 

adjusted p-value was < 0.1. 

 

Functional enrichment analysis 

GO Biological Process term enrichment was calculated using the Cytoscape plugin BiNGO70. 

Terms were considered significant if the adjusted p-value was < 0.1 after the Benjamini-

Hochberg multiple testing correction. FPKM for each gene was calculated across all human 

sPTB, human term, and macaque transcriptomes and associated RNA and protein expression 

data was extracted from Protein Atlas using GEneSTATION71-73. 
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Pregnancy is an ensemble of complex traits subject to substantial genetic and 

environmental variation  

A highly-interconnected network of physiological, cellular, and molecular pathways supports 

the development of a healthy fetus by maintaining homeostasis through pregnancy despite 

variation in maternal diet, stress, medical care, and other factors. When genetic and/or 

environmental variation of this network cannot be buffered to maintain a healthy state, 

complications arise. Like diseases of other complex traits, the most common complications of 

pregnancy – preeclampsia (PE), spontaneous preterm birth (sPTB), preterm premature 

rupture of membranes (PPROM), intrauterine growth restriction (IUGR), and spontaneous 

recurrent pregnancy loss (RPL) – involve multiple genetic loci and environmental factors1-5.  

 

Understanding the genetic basis of such complex traits is challenging. For example, although 

many pregnancy-related traits and pathologies, such as birth timing1,6, birth weight6,7, and 

propensity to develop PE8, have substantial heritabilities, they are likely governed by 

numerous genetic variants with small effect sizes and that epistatically interact with each 

other2. Furthermore, pregnancy-related traits are also influenced, to varying degrees, by 

multiple environmental factors. For example, gestational diabetes9,10, PE10,11, and sPTB9,10,12 are 

well known for their association with maternal obesity, and sPTB may also be associated with 

certain environmental exposures, such as bisphenol A13. Similarly, chronic and acute stress is 

thought to reduce birth weight and alter methylation levels of genes involved in the 
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hypothalamic–pituitary–adrenocortical (HPA) axis in the placenta, cord blood, and maternal 

blood14. 

 

Further complicating matters is that the genetic and environmental factors underlying 

pregnancy-associated traits and diseases do not act independently; rather, they exhibit gene 

by environment (GxE) effects, where the pathological phenotype is only observed with 

specific combinations of genetic variants and environmental conditions. For example, PPROM 

is often associated with inflammation due to bacterial infection, but recent studies argue that 

the fetal genotype also influences susceptibility15. Specifically, human fetuses with a null 

SIGLEC14 genotype were more likely to be born prematurely, but only in conjunction with 

Group B Streptococcus (GBS) infection; in its absence, the SIGLEC14 null variant did not appear 

to influence prematurity.  

 

But what makes pregnancy-associated traits and diseases extremely, or maybe even 

singularly, complex is that they involve three additional dimensions. The first dimension of 

complexity is associated with the fact that pregnancy-associated traits require coordination 

and communication across many different tissues and organs in two individuals: the mother 

and the fetus. The interplay of tissues and organs from two individuals creates many of the 

distinctive complexities of pregnancy including immunosuppression, entwined physiology 

(respiration and metabolism), and shared endocrinology. For example, the production of 

progesterone, which maintains gestation in most placental mammals, must successfully shift 
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from the ovary to the placenta16. Similarly, primary human trophoblasts have been shown to 

release exosomes containing microRNAs, proteins, and phospholipids with antiviral 

properties, facilitating communication between maternal and fetal tissues17,18. 

 

The second dimension of complexity in pregnancy is that it involves multiple genomes 

(maternal, paternal, and fetal), which gives rise to the potential for conflicts of interest over 

parental investment19,20. Parent-of-origin effects on gene expression or genomic imprinting, 

for example, may have evolved as a result of differences in the consequences of resource 

investment for paternally and maternally-derived alleles21,22. When females mate more than 

once and offspring are half-sibs, paternally-derived alleles in the fetus may be evolutionarily 

favored to sequester more resources than optimal from the mother's perspective, favoring 

imprinting of the maternal allele23,24. 

 

The third and final dimension of complexity is that of rapid evolutionary change. Pregnancy 

and its associated tissues evolve rapidly in mammals25-28, and the placenta is arguably the 

most diverse mammalian organ29. Out of this history of rapid evolutionary change emerged 

human pregnancy, which is distinctive in its own right28, as a consequence of several 

evolutionary events and processes spanning the course of mammalian evolution, including 

the existence of genetic conflict30, the primate-specific expansion of cranial size31, and the 

human-specific evolution of bipedalism32.  
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The importance of considering these additional dimensions of complexity is apparent in 

hypotheses proposed to explain puzzling facts of human pregnancy. Birth in humans appears 

to occur sooner than would be expected, given development of the neonate. A much larger 

fraction of brain growth occurs postnatally in humans than in any other primate. Why? The 

“obstetrical dilemma” (OD) hypothesis aims to explain gestation length based on two 

observations unique to human pregnancy – labor that poses risks to both mother and fetus, 

as well as birth at a point when fetal brain size is only 30% of adult size. The OD hypothesis 

holds that bipedal locomotion and large cranial capacity, both of which evolved in recent 

human history, act in opposing ways on the human pelvis, with the result being selection for 

shortened gestation lengths that preclude cranial expansion beyond pelvic capacity23,24,33-38. 

An alternative hypothesis, known as the “energetic and metabolic constraints on fetal growth 

and gestation” (EGG) hypothesis, aims to explain gestation length by invoking physiological 

limitations to metabolic provisioning in utero. Here, the primary controlling factor is 

physiological limits to the transfer of energy and metabolites between the mother and an 

encephalized fetus39. At some point, it is simply more efficient to transfer resources outside of 

the womb than within. 

 

As these scenarios make clear, neither the genetic basis of pregnancy-associated traits and 

pathologies nor the proximate or ultimate hypotheses that explain them can be adequately 

understood from a single experimental approach, data source, or perspective. The history of 

efforts to decipher the genetic basis of a wide variety of complex traits and diseases offers 
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numerous examples of the perils associated with reliance on a single experimental vantage 

point40-42, and the complexities of pregnancy only amplify the need for integrative approaches 

that combine multiple data types, approaches, or model systems25,43,44. In this review, we 

examine some of the complexities that make human pregnancy-associated traits and 

pathologies unique and synthesize recent progress in integrative efforts to understand their 

genetic and environmental dimensions. 

 

Integrating multiple maternal and fetal tissues 

Pregnancy is singular among human processes in involving coordination of many different 

tissues and organs from two individuals (Figure 4.1), including maternal pregnancy-specific 

(e.g., decidua, myometrium, and cervix), maternal non-specific (e.g., immune system, 

metabolism, and endocrine system), and fetal (e.g., lungs, adrenal glands, and fetal 

membranes). These interactions are responsible for many of pregnancy’s unique 

physiological features, such as immune system modulation45, entwined respiration and 

metabolism46, and shared endocrinology (e.g., progesterone production). True for most 

placental mammals, the classic example of coordination between maternal and fetal tissues is 

ensuring that progesterone – a key hormone required for maintenance of gestation – is 

continuously produced during pregnancy even though the underlying tissue responsible for 

its production shifts from the ovary to the placenta16.  
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Figure 4.1. Pregnancy uniquely requires communication and coordination across 
multiple tissues in two individuals. Multiple maternal tissues (purple) and fetal tissues 
(blue) as well as tissues comprised of both maternal and fetal cells (orange) must interact to 
facilitate a healthy pregnancy. The placenta serves as the nexus of communication that links 
multiple tissues in the mother and fetus both locally and at a distance. For example, 
interactions between NK cells in the decidua and fetal trophoblast cells in the placenta shape 
the degree of placental invasiveness and rate of the exchange of nutrients and oxygen.  
Similarly, the hypothalamic–pituitary–adrenocortical (HPA) axis communicates maternal and 
fetal stress levels across multiple tissues through cortisol shared through blood exchange in 
the placenta. 
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The placenta is the nexus of this network of communicating tissues and dedicates a large 

fraction of its energy budget to secretion and coordination of maternal and fetal needs47, 

while also providing the functions of the kidney, the lungs, and the liver for the fetus. Much of 

this communication occurs locally at the maternal-fetal interface and appears to have evolved 

early during the evolution of placental mammals by regulatory rewiring of the cAMP signaling 

pathway in endometrial stromal cells to facilitate decidualization and implantation48-50. There 

are many examples of the importance of communication at the maternal-fetal interface. For 

example, interaction between maternal immune cells and trophoblasts modulates 

macrophage inflammatory responses in human pregnancy, which in turn may play a role in 

implantation and proliferation51. Later in gestation, remodeling of the spiral arteries requires 

successful communication between maternal endothelium and migrating interstitial 

trophoblasts, which involves both chemotaxis and shifts in cytokine production52. Surprising 

recent work has demonstrated that placental secretion of microRNAs in exosomes at this 

interface appears to directly increase the resistance of maternal and fetal cell types against 

viruses implicated in perinatal infections by boosting autophagy18,53,54.  

 

In addition to local effects at the apposition of maternal-fetal tissues, inter-tissue 

communication also affects non-adjacent maternal and fetal tissues during gestation. For 

example, placental production of the neurotransmitter serotonin is crucial for embryonic 

brain development55,56. The placenta also influences maternal physiology by secreting high 

levels of corticotrophin releasing hormone (CRH), which leads to higher levels of maternal 
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cortisol, and may be involved in post-partum depression through desensitization to 

endogenous maternal CRH57. Medical interventions making use of these communication 

pathways can potentially be exploited for restoring proper signaling and growth in 

pathological conditions. Case in point, one recent study has identified synthetic peptides that 

target liposomes to the maternofetal interface, which restored proper signaling and 

appropriate placental growth by delivery of IGF2 in a fetal growth restriction mouse model58. 

This important study provides a proof of principle that, in a mouse model, it is possible to take 

advance of selective binding at the maternofetal interface for the targeted delivery of 

therapeutics that improve pregnancy outcome. 

 

Pregnancy thus involves complex crosstalk between multiple interdependent tissues. A 

comprehensive understanding of adverse pregnancy outcomes is unlikely to emerge from an 

approach that atomizes pregnancy-associated processes into discrete units of function. More 

promising are approaches that account for the numerous organs and tissues involved plus all 

of their interactions in both healthy and pathological states. However, the challenge is that in 

most cases, sampling of all relevant tissues has not been possible. For example, a recent 

meta-analysis of 93 global transcriptomic studies across 9 gestational tissues and 29 clinical 

subtypes showed the paucity of studies that capture multiple tissues with the same clinical 

phenotype (e.g., many data sets for placental gene expression during PE, but few samples 

from other tissues)59. Even if focus is restricted to examination of single tissues, an additional 

challenge arises in that independently obtained samples from the same tissue type and 
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clinical subtype show substantial heterogeneity in their gene expression profiles, with only 

minimal replication of significant genes across studies. This heterogeneity has both technical 

and biological explanations. Some of the heterogeneity stems from differences in tissue 

sampling protocols and from differences in the interaction with tissues that were not 

collected concurrently. Additionally, recent studies have shown that placental gene 

expression patterns cluster into distinct molecular categories that correlate with maternal 

symptomology60,61. This clustering has also shown improved homogeneity in placental gene 

expression and illustrates the need for improved molecular phenotyping and experimental 

design that takes these clusters into account. Nevertheless, much of the observed diversity 

likely reflects genuine heterogeneity in gene expression within and among individuals, which 

is evident in global gene expression profiles of placental tissue obtained from healthy 

pregnancies62 as well as in comparisons of transcriptional profiles of placental cell types63. 

 

The extent and magnitude of the observed interactions necessitates the simultaneous sample 

collection and analysis of multiple tissues, rendering data collection and integration across 

tissues one of the pressing challenges for understanding pregnancy. An alternative, 

complementary approach to the simultaneous examination of multiple tissues is in vitro 

reconstruction of tissue interactions, which may become possible as placenta-on-a-chip 

technology matures64,65. A recent study by Blundell et al.65 demonstrated a model of the 

human placental barrier using trophoblasts and endothelial cells that accurately reproduces 

the formation of microvilli and the syncytialization of trophoblasts, and matches the glucose 
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transfer rate of perfused ex vivo human placentas. Furthermore, cell lines of endometrial 

stromal cells66, decidual cells50, and myometrial cells67 are available, which may lead to more 

comprehensive pregnancy-on-a-chip approaches. New data from single-cell transcriptomes 

will also help to detect the effects of local tissue-tissue interactions63. Such advances in in vitro 

technology will greatly aid the capture of multiple different data types (e.g., gene expression, 

protein abundance, phosphorylation, etc.) from interacting tissues simultaneously and in an 

integrated fashion, which can be used to generate models of tissue interactions. Predictions 

from such models could in turn be validated through in vivo collection of the same data types 

from the same tissues. 

 

Integrating maternal and fetal genomes 

The involvement of both the maternal and the fetal genome in pregnancy complicates its 

study in three related ways. First, a maternal allele can impact pregnancy through either 

phenotypic expression in the fetus if transmitted or in the mother as either the untransmitted 

or transmitted maternal allele (Figure 4.2). Second, as described above, the phenotypic 

impact of a fetal allele can vary depending on whether it is maternally or paternally derived, a 

phenomenon known as parent-of-origin effects associated with genomically imprinted 

genes68. Third, and as a consequence of these two, natural selection may act on alleles 

differently depending on which genome they find themselves in (maternal or fetal) or which 

they stem from (maternal or paternal). Therefore, alleles may increase the frequency of their 

transmission to the next generation by different strategies – improving maternal, fetal, or 
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paternal fitness – which can give rise to genetic conflict since reproductive and/or survival 

success is different for each organism involved21. 

 

 

Figure 4.2. Involvement of three genomes complicates genetic analyses aimed at 
linking genes with pregnancy-associated phenotypes. Unlike genetic analyses of most 
other traits, studies of pregnancy typically require genotyping both mother and fetus, since 
variants can influence pregnancy through impacting either the maternal or the fetal 
phenotype or both. Specifically, non-transmitted maternal alleles (red) affect pregnancy only 
through impact on maternal phenotype; transmitted maternal alleles (blue) can potentially 
affect pregnancy through impact on maternal and/or fetal phenotype; transmitted paternal 
alleles (purple) only impact pregnancy through fetal phenotype; finally, non-transmitted 
paternal alleles (orange) do not affect pregnancy directly. Genetic conflict arises when natural 
selection differentially favors alleles when they are maternally or paternally expressed, which 
may contribute to pathologies of pregnancy, including preeclampsia. 
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and fetal size69-74. Is this correlation causal? If yes, is it driven by phenotypic expression of 

alleles in the mother or the fetus? To address these questions, Zhang and colleagues75 used a 

novel genetic analysis method to disentangle the causal influence of maternal phenotype 

and genetics from fetal genetics on gestation outcomes. They found that birth length and 

birth weight were significantly associated with maternal transmitted haplotype whereas 

gestational age was significantly associated with the maternal non-transmitted haplotype. On 

the basis of these results, Zhang and colleagues inferred that fetal genetics drives the 

association between maternal height and fetal growth, but that maternal height, rather than 

fetal genetics, drives gestational age at birth. This implies that physical and anatomical 

constraints may contribute to birth timing, as suggested by the OD hypothesis. 

 

Parent-of-origin effects are typically associated with genomic imprinting, where expression of 

a gene in the fetus or extraembryonic tissue, including the placenta, is only from either the 

maternally or the paternally inherited allele. Thus, depending on the parent-of-origin, specific 

variants will be expressed and their effects will be accentuated, whereas other variants won’t 

and their effects will be obscured. Although imprinting was thought to affect most tissues 

relatively consistently, a recent study revealed a new class of imprinted genes that are specific 

to the placenta and exhibit paternal allelic expression76. These placenta-specific imprinted 

genes suggest a novel mechanism of imprinting, as these loci are not methylated, the typical 

mechanism of imprinting, in either sperm or embryonic stem cells76.  
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Genomic imprinting and gene expression only from either the maternally or the paternally 

inherited allele likely arose due to a tug-of-war in fetal resource allocation between the 

genomes21,22; specifically, whereas the selectively favored fetal genetic variants will be those 

that optimize resource allocation to the fetus, the selectively favored maternal genetic 

variants will be those that optimize resource allocation across both the current pregnancy but 

also future ones23,24. Where these two optima are in conflict, the kinship theory predicts that 

maternally-inherited allelic expression (paternal imprinting) will tend to favor slower fetal 

growth whereas paternally-inherited allelic expression (maternal imprinting) will tend to favor 

increased fetal growth22. Experimental evidence from functional studies of several imprinted 

genes provide empirical support for these predictions. For example, in mice, the imprinted Ipl 

gene is maternally expressed in both the placenta and the yolk sac, and functions to restrain 

placental growth and size77. In contrast, the imprinted Igf2 gene is paternally expressed in the 

mouse placenta, and functions to increase the supply of maternal nutrients to the fetus, 

augmenting fetal growth78.  

 

Genetic conflict between maternal, fetal, and paternal genomes has many possible 

phenotypic outcomes, but two of the most clinically significant, low fetal birth weight and PE, 

are closely related and mediated by interactions between the maternal immune system and 

the placental trophoblasts. It might be expected that fetal birth weight is optimized by 

natural selection , as a healthy weight is associated with increased perinatal survival79 and 

reduces the risk of a wide range of adverse adult outcomes (e.g., cognitive development and 



 98 

function, chronic health conditions, disability)80,81. Unrestricted fetal growth is undesirable 

since very large babies also have increased morbidity and mortality. Thus, stabilizing selection 

acts on birth weight to maintain this balance82. However, the maternal genome is favored to 

optimize resource allocation across multiple offspring21. One illustration of this parent-

offspring conflict and its influence in fetal birth weight regulation comes from the well-

studied interaction between two loci that contain highly polymorphic gene clusters: the KIR 

locus, expressed in maternal natural killer cells, and the HLA locus, expressed in implanting 

placental trophoblasts. A recent study has shown that when a mother has a KIR haplotype 

containing the KIR2DS1 receptor gene, fetal birth weight increases when the fetus paternally 

inherits the HLA-C2 ligand genotype but not when the same allele is maternally inherited83. 

This combination of a maternal genotype and a paternally-inherited fetal genotype has a 

substantial effect on birth weight, increasing it by almost 10% (~250 grams), which is strongly 

suggestive of HLA-C2 favoring fetal growth and fitness when paternally-inherited. 

 

An outcome of substantial mismatch in the relative influence of maternal and fetal variants is 

increased morbidity and/or mortality for both the mother and fetus84. Evolutionary biologists 

have long argued that some pathologies of pregnancy stem precisely from situations in 

which maternal and fetal reproductive success are not aligned21,85. For example, risk for PE is 

thought to start when the placenta is insufficiently perfused due to inadequate invasion of 

the decidua by trophoblasts, which leads to increased fetal signals of distress and higher 

blood pressure86. At the genetic level, mismatch occurs when a fetus inherits the paternal 
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HLA-C2 genotype but the mother has a KIR AA genotype since the interaction of these two loci 

in this specific combination has been shown to increase risk for PE87. Interestingly, protective 

KIR B variants have evolved independently in Sub-Saharan African and European populations 

and are found at different locations within the KIR gene cluster88. 

 

Processes that mediate genetic conflict, including immune interactions and imprinting, 

introduce unique selective pressures on the maternal, fetal, and paternal genomes. Both the 

OD and the EGG hypothesis point to the possibility of ongoing genetic conflict between 

maternal and fetal alleles. Although the OD and EGG hypotheses have been presented as 

alternative explanations for human fetal development and birth timing, the two views may be 

complementary and reinforcing. Under both hypotheses, the peak growth of an energy-

demanding fetal brain coincides with birth and imposes a substantial maternal cost in energy 

and risk, which may be compensated for by boosting long-term cognitive development and, 

presumably, fetal fitness81,89. Long-term stability of gestation length may be the result of a 

compromise between individually optimal maternal, paternal, and fetal fitness. However, the 

conflict between genomes also plays out on shorter time-scales as illustrated by differences in 

gestation length and fetal maturity among African, Asian, and European populations90. 

Understanding either timescale requires the integration of maternal and fetal phenotype with 

maternal and fetal genetic variants and an understanding of evolutionary dynamics. 

 



 100 

Genetic conflict in pregnancy appears to lead to faster evolutionary rates across mammals 

and may lead to the divergence of many pregnancy processes between humans and 

common model organisms. A recent integrative study found that genes enriched for 

placental expression evolve faster than genes enriched for expression in most other tissues25.  

Why is this so? Conflict between maternal and fetal genomes has been proposed to result in 

the “Red Queen” effect, where both genomes must continually evolve to maintain balance84. 

Some of the conflict is thought to be mediated by genomic imprinting91. For example, fixation 

of a new variant of a paternally imprinted gene favoring fetal growth may be countered by 

fixation of a variant of a maternally imprinted gene restraining fetal growth (and vice versa); 

repeated cycles of fixations of variants influencing fetal growth would result in acceleration of 

evolutionary substitution rates in the genes involved, a hallmark of the “Red Queen” effect at 

the molecular level.  Although early examination of the Igf2 gene and its receptor Igfr2 as well 

as of a small number of other imprinted genes in a few mammals did not show evidence of 

evolutionary rate acceleration92, a more recent study that examined a broader set of 

imprinted genes inferred that imprinted genes show increased evolutionary rates relative to 

non-imprinted genes, consistent with the expectation that genetic conflict results in “Red 

Queen” effects26. Furthermore, the set of human imprinted genes differs substantially from 

the set of mouse imprinted genes, which suggests ongoing turnover of the proximal 

mechanisms mediating long-term genetic conflicts76. 
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Integrating function and evolution of pregnancy  

Multiple pregnancy-associated traits evolve rapidly (Figure 4.3). For example, the placenta is 

highly variable across mammals, showing tremendous diversity in structure, shape, 

invasiveness27,93. Along the human lineage, some pregnancy-associated traits may have 

evolved in conjunction with the rapid evolution of greater cranial capacity and bipedalism, 

resulting in faster evolutionary rates than would be expected based on genetic conflict alone. 

Interestingly, one recent study argued that humans may have evolved genetic architecture 

that allows pelvic size and cranial capacity to co-vary94. Women with large heads give birth to 

babies with larger than average heads, which would seemingly lead to extreme cases of the 

obstetric dilemma and mortality; however, pelvic size co-varies with cranial size, greatly 

reducing the risk. Strong selection for this co-variation is presumably less likely in other 

primates that do not face the OD, although we are unaware of experiments that explicitly test 

this hypothesis. 
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Figure 4.3. Pregnancy evolves rapidly across mammals, primates, and human 
populations. A) Variation in mammalian placentation and fetal access to the maternal 
bloodstream. This variation can be broadly categorized into three commonly observed 
modes: epitheliochorial (minimally invasive), endotheliochorial (intermediate), and 
hemochorial (very invasive). Maternal uterine epithelium (purple) is present only in 
epitheliochorial placentae; thus, the fetal chorion (blue) is the only epithelium in both 
endotheliochorial and hemochorial placentae. In hemochorial placentae, the maternal 
endothelium of blood vessels (pink) is eroded, leading to the formation of blood sinuses (red). 
As with many pregnancy traits, placentation does not follow a simple evolutionary pattern; 
rather, varying levels of invasiveness have repeatedly evolved throughout mammals.  B) 
Likewise, the shape of the placenta (pink) and its areas of contact (red) with the underlying 
uterus varies widely across mammals and includes cotyledonary, diffuse, zonary, and discoid 
morphologies. C) Primates vary in the relative sizes of the maternal pelvis (open oval) and the 
fetal cranium (filled oval) at the time of birth, with both macaques and humans sharing a tight 
fit that appears to have evolved independently in each of the two lineages. Redrawn from 
Schultz 1969 and Rosenberg 2002. D) Human populations have diverged in gestation length 
with populations of European ancestry (purple) delayed about one week relative to 
populations with African (orange) or South Asian (blue) ancestry. Redrawn from Scioscia 2009. 
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definition of PTB given by the World Health Organization96. Although this definition is 

obviously specific to our species, generalizing the human-based definition of PTB as 

‘parturition prior to 92.5% (37 / 40 weeks) completed gestation’ and applying to mammals in 

general show that substantial variation in the length of gestation is widespread across 

mammals and that human gestation length is very similar to what would be expected of a 

mammal of our body mass97. Nevertheless, the dramatic long-term negative effects of 

preterm birth have not been reported extensively in other species. The rate of human fetal 

brain expansion peaks at the time of normal parturition and infants are born in a secondarily 

altricial state, unable to care for themselves. Other primates experience peak rates of brain 

development much earlier and are born precociously98-100, which Phillips et al. suggest 

reduces the fitness consequences for earlier birth97. Thus, humans may be unique relative to 

other mammals due primarily to the timing and importance of brain development, but not 

with respect to variation in gestation length. More generally, by disentangling of studies of 

genetic contributors to gestation timing from studies of the medical consequences of 

premature birth across mammals, the possibility emerges that some mammal models may be 

useful for the study of gestation timing, while others may be useful for the study of specific 

PTB-associated pathologies. For example, it could be argued that bats, which have gestation 

lengths much longer than other mammals of similar size, may be great models for 

understanding the genetics of gestation timing, even though they may be poor models for 

studying the pathology of PTB, as prematurely born bats are not known to exhibit any of the 

pathologies associated with human preterm birth97,101,102.  
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The rapid evolution of pregnancy makes the integration of evolutionary analyses and 

functional data critical to translating discoveries from one species to another, e.g., from the 

mouse to humans95. The first step toward this goal is understanding how the biological 

systems of pregnancy have diverged between two species. One illustrative example is a 

recent study that integrated diverse types of data, including gene expression from multiple 

species, multiple genomic signatures (e.g., CpG island density, sequence conservation, and 

nucleotide substitution rates), histone modification, copy number variation, TF binding 

motifs, and ChIP-seq, in order to understand how placental development and gene 

expression evolve quickly103. This integrated analysis revealed that cell lineage-specific 

enhancers from endogenous retroviruses from the RLTR13D5 family led to substantial 

divergence of gene regulation in trophoblast stem cells between mouse and rats during 25 

million years of separation, a time interval substantially smaller than the 80 million year one 

demarcating the divergence of rodents and primates103. Interestingly, other integrative ‘omics 

analyses have pointed to the importance of transposable elements (TEs) in the evolution of 

pregnancy104,105. For example, a cross-species integration of myometrial RNA-Seq data showed 

that ancient TEs have been coopted into hormone-responsive regulatory elements 

coordinating uterine gene expression104. Thus, DNA sequences derived from ancient 

repetitive elements such as endogenous retroviruses and TEs appear to have been repeated 

coopted into the regulatory landscape of several different tissues associated with mammalian 

pregnancy. 
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The rapid evolution of gestation may make clinical translation of animal models more 

difficult, but it can also be exploited to identify candidate genes based on those evolutionary 

differences25,106-109. For example, a recent study identified over 1,000 mammalian genes that 

repeatedly experienced selection (i.e., accelerated protein sequence evolution) during the 

evolution of reduced placental invasiveness in other mammals107. These genes significantly 

overlap with genes known to be involved in disorders of pregnancy, particularly PE, and 

include several associated via GWAS analyses (e.g., F5, a coagulation factor; IL6, an 

inflammatory cytokine; and APOE, an apolipoprotein) as well as several that are differentially 

expressed in PE relative to normal gestation (e.g., S100A8, a calcium-binding protein involved 

in inflammatory and immune responses; CD97, an adhesion G protein-coupled receptor; and 

FLT1, a vascular endothelial growth factor receptor). By further integrating evolutionary 

analyses that predict phenotypic impact of mutations and known genetic and physical 

interactions, this unique study also narrowed down the original list of candidate genes likely 

involved in the three independent evolutionary transitions towards reduced placental 

invasion to 199 genes, all of which are novel candidates for involvement in PE. 

 

Some aspects of pregnancy, such as birth timing90, evolve so quickly that they have even 

diverged between modern human populations, raising the possibility that searching for 

genes exhibiting strong population differentiation may be a fruitful approach to identify gene 

candidates108,110. For example, the leptin gene (LEP), which has been previously associated 

with PE111-113, shows strong differentiation between human populations110. The same is true 
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for the reductase DHCR7, which has been associated with both melanoma and preterm 

birth108,114.  

 

Accelerating integration to facilitate a dynamic understanding of pregnancy 

Typically, integrative studies use either multiple data types in a single tissue or the same data 

type across multiple tissues42. In an excellent recent example illustrating the potential power 

of the first approach, Chu and colleagues integrated high-throughput microRNA, mRNA, and 

protein expression data to infer an integrated regulatory network that responds to oxidative 

stress in human placental trophoblast cells115. Similarly, another recent study integrated 

previous GWAS data on PTB with genes differentially expressed between term and preterm 

samples of myometrial tissue to identify a significant association between parts of two 

transcription factor networks and PTB116. Examples of the second approach are meta-analyses 

that synthesize knowledge from a single data type across multiple studies investigating 

different tissues to identify commonalities as well as gaps in current knowledge. One recent 

comprehensive meta-analysis59 of genome-scale gene expression studies found a substantial 

mismatch between currently available data sets related to various pathologies of pregnancy 

and their worldwide incidence, identifying tissues and pathology combinations (e.g., placenta 

and sPTB) that are relatively understudied. Specifically, although only 30% of PTB cases are 

medically indicated, 76% of global gene expression research focuses on these cases. In 

contrast, 45% of PTB cases occur spontaneously and only 18% of global gene expression 

research focuses on this major contributor to PTB incidence. Finally, this meta-analysis also 
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revealed that replication of results across studies of the same tissue and pathology is very low, 

with only 23/10,993 unique genetic elements replicated 10 or more times across 134 studies, 

reflecting both the high heterogeneity of global gene expression profiles across cell types63, 

individuals62, and populations62, as well as variability in the design and implementation of 

pregnancy-related gene expression analyses in general. 

 

As the pace of research accelerates, systematic data integration is moving beyond single 

publications. For example, Uzun and colleagues have developed dbPTB, which systematically 

collects genes reported to be associated with preterm birth and is regularly updated, creating 

a dynamic synthesis of genetic associations117. Comprehensive resources like these can 

provide the foundation for additional analyses that incorporate other kinds of data. For 

example, integration of preterm birth-related genes reported in dbPTB with data from a 

previous GWAS study that failed to identify any genome-wide significant candidates allowed 

for the identification of several pathways (e.g., regulation of blood pressure, smooth muscle 

contraction, and general metabolism) potentially involved in PTB but missed by the GWAS 

study alone118.  

 

Although necessary for advancing our understanding of pregnancy and its pathologies, 

integration of data is a challenge for many reasons. First, data sets relevant to pregnancy can 

be difficult to obtain. Existing curation of pregnancy literature has focused more on reporting 

individual candidate genes (e.g., dbPTB) rather than genome-scale data sets. A meta-analysis 
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of transcriptomes59 has shown that many papers report genome scale data sets that are not 

readily available through standard repositories like the Gene Expression Omnibus (GEO), a 

behavior that is objectionable by present-day standards of practice119. Second, re-analysis and 

quality control of genome scale data sets often require substantial domain-specific 

knowledge as well as considerable computational expertise. For example, even though RNA-

seq data sets can be distilled down to per-gene expression levels (e.g. read counts), a 

simplification and compression of orders of magnitude, original data sets can involve multiple 

samples may consist of terabytes of raw data that require substantial computational time. 

Similarly, integration of multiple types of data requires expertise that may not be readily 

available in many research labs. Finally, once the raw data has been distilled, integrating data 

effectively using appropriate statistics, algorithms, and data visualizations requires additional 

expertise and perspective (Figure 4.4). 
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Figure 4.4. The multi-faceted complexities of pregnancy require integration of multiple 
types and sources of data. Pregnancy involves two individuals with two distinct genomes 
(maternal: light red/light green, fetal: dark red/dark green), multiple tissues, and rapid 
evolution. Each layer of complexity corresponds to a different type of data and successful 
integration requires careful attention not only to phenotype and tissue, but also to a variety 
of molecular and evolutionary modulators. Ideally, several different types of ‘omics data from 
the same mothers and babies can be collected across tissues and intersected with relevant 
evolutionary and functional data to better illuminate the presumably complex pathways 
leading to pregnancy pathologies. 
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Open discussion at a recent NIH meeting for the Human Placenta Project120 highlighted the 

importance of making data publicly available and providing the bioinformatics tools needed 

to analyze it. Fortunately, research supporting the integration of pregnancy data and analyses 

is accelerating. For example, ImmPort (immport.org) is a new platform that makes very large 

raw datasets easily available for analysis and integration121. Adoption of ImmPort by the 

pregnancy research community will ensure rapid access to the most recent datasets, 

including ones that are otherwise impractical for individual labs to host; a recent data release 

(March 2016) included a very large case-control microbiome study of preterm birth122, which 

has over 4,000 individual metagenomics samples. In addition, following a recent public 

request for feedback on how to integrate placental images from various technologies and 

molecular data with physiology and anatomy123, the NIH is in the process of developing a 

comprehensive electronic placental atlas tool. 

 

Other databases with more general biological data applicable to the study of pregnancy and 

its pathologies include Protein Atlas124, GTeX125, OMIM126, and similar resources with 

information about ‘omics in the context of general expression patterns or disease 

associations. Of note, however, is the limited tissues, phenotypes, and species annotated in 

each of these resources. For example, although Protein Atlas contains dense information on 

placental FPKM and genes exhibiting placental-specific expression patterns, these data stem 

only from healthy, term placentas. Similarly, GTeX contains gene expression information for 

reproductive tissues like uterus, ovary, and cervix, but lacks data for placenta. Therefore, all of 
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these data are important when considering an integrative approach to pregnancy and its 

pathologies, but must be utilized as supplementary to other, more targeted ‘omics data. 

 

One example of a database designed to facilitate integrative pregnancy research is one 

developed by the authors, GEneSTATION (Figure 4.5A; genestation.org), which provides 

access to a wide variety of pre-processed data for on-the-fly exploration across multiple data 

types, species, and human populations127. Datasets include gene and protein expression for 

multiple tissues and pregnancy phenotypes, gene ages and evolutionary rates, allele 

frequencies across populations, as well as functional annotations and can be analyzed with 

novel tools like SynTHy (Synthesis and Testing of Hypotheses, Figure 4.5B), a framework for 

the aggregation and cross-filtering of candidate genes according to user-determined filters 

applied to GEneSTATION data, or integRATE, a desirability function-based data integration 

software that prioritizes candidate genes in terms of their weight of evidence across relevant 

research. 
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Figure 4.5. GEneSTATION is a new platform for integration of diverse ‘omics and 
evolutionary data types that facilitates rapid analyses. A. GEneSTATION integrates 
pregnancy-specific data from a number of public sources with functional data that is not 
specific to disease. The platform provides users with rapid, simple tools for generating and 
testing hypotheses, integrating data, and analyzing sets of candidate genes using both 
existing data and user submitted data. Results from all analyses can be easily downloaded 
and used to prioritize candidate genes for functional involvement in a trait or pathology. B. 
One example visual analytical tool from GEneSTATION, SynTHy, allows integration of many 
data types, including differential gene expression in pregnancy tissues for various 
pathologies, gene ages, and genetic differences between populations (FST). In the example 
analysis, the user has selected genes that are differentially expressed in spontaneous preterm 
birth in the placenta, arose in the lineage leading to placental mammals, and associated with 
genetic variants that show substantially different frequencies between South Asian and 
European population (FST ≥ 0.447). 
 

As the amount and diversity of ‘omics data associated with pregnancy phenotypes and 

pathologies continues to increase, it will be important to keep in mind that numerous 

computational methods exist for the integration of ‘omics data including genomic variation 
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analysis, domain knowledge-guided analysis, concatenation-based integration, 

transformation-based integration, and model-based integration128. These tools aim to predict 

phenotypic traits, identify biomarkers, and illuminate genetic underpinnings of complex 

diseases, like PTB and other pregnancy-associated pathologies. However, the majority of 

these methods requires the availability of multiple ‘omics data types from the same patient 

cohort and functionally validated genes known to be involved in a given pathology for model 

training; in our view, generation of such multi-omics data sets from the same set of patients 

should be a priority for future research. 

 

Perspective 

In this review, we have outlined the complexities associated with the genetic dissection of 

pregnancy traits and pathologies and presented several different integrative approaches on 

how can these can be overcome. Going forward, we believe that integrative approaches will 

yield the greatest understanding of pregnancy-associated phenotypes when they are joined 

with research platforms that enable pregnancy researchers from multiple fields to readily 

access diverse types of pregnancy-related data, quickly obtain and examine syntheses of 

current data, and efficiently explore the connections between their own data and the existing 

syntheses. Such platforms will increase the pace and efficiency of discovery by reducing effort 

duplication in basic data processing, quickly identifying datasets relevant to specific 

questions, translating knowledge from model organisms into humans and vice versa through 

the integration of an evolutionary perspective and analyses, and providing scientists with 
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intuitive tools that help them confidently and effortlessly integrate data and analyses from 

multiple disciplines. 

 

Given the multi-faceted complexities of pregnancy, it is encouraging that the agencies 

funding pregnancy research have shifted their funding strategies to prioritize approaches 

that integrate new approaches with existing data and knowledge. In light of the substantial 

challenges involved in reanalyzing a wide variety of data (request from authors, 

validation/curation, and basic analysis), future integrative approaches will require data and 

analysis platforms that make diverse kinds of existing pregnancy data readily available and 

interoperable, along with algorithms to easily integrate and interpret new data. 

 

The diverse complexities of pregnancy make integrative approaches a necessary part of all 

future pregnancy research. Rapid discovery and improved clinical care will be the fruit of 

community efforts to improve data access, to facilitate powerful multi-disciplinary analyses by 

non-experts, and to develop platforms that promote collaboration across disciplines. 
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ABSTRACT 

The integration of high-quality, genome-wide analyses offers a robust approach to 

elucidating genetic factors involved in complex human diseases. Even though several 

methods exist to integrate heterogeneous omics data, most biologists still manually select 

candidate genes by examining the intersection of long lists of candidates stemming from 

analyses of different types of omics data that have been generated by imposing hard (strict) 

thresholds on P-values, fold changes, and other quantitative variables, increasing the chance 

of missing potentially important genes. To better facilitate the unbiased integration of 

heterogeneous omics data collected from diverse platforms and samples, we propose a 

desirability function framework for identifying candidate genes with strong evidence across 

data types as targets for follow-up functional analysis. Our software, integRATE, uses 

desirability functions to rank genes both within and across studies, identifying well-supported 

candidate genes according to the cumulative weight of biological evidence rather than based 

on imposition of hard thresholds of key variables. Our approach is targeted towards disease 

systems with sparse, heterogeneous omics data, so we test integRATE on one such pathology: 

spontaneous preterm birth (sPTB). Integrating 10 sPTB omics studies identifies both genes in 

pathways suspected to be involved in disease pathogenesis as well as novel genes never 

before linked to this syndrome. integRATE is available as an R package on CRAN 

(https://cran.r-project.org/web/packages/integRATE/). 
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INTRODUCTION 

Biological processes underlying disease pathogenesis typically involve a complex, dynamic, 

and interconnected system of molecular and environmental factors1. Advances in high-

throughput omics experiments have allowed for the collection of data corresponding to the 

genomic, transcriptomic, epigenomic, proteomic, and metabolomic elements that contribute 

to variation in these biological processes2. However, each of these omics approaches, when 

employed in isolation, can only capture variation within a single layer of a much more 

complicated biological system3,4. For example, even though the thousands of single 

nucleotide polymorphisms (SNPs) that have been linked to complex diseases or traits via 

genome-wide association studies (GWAS) have greatly contributed to our understanding of 

complex disease, we still lack in depth knowledge of the molecular mechanisms underlying 

the vast majority of these associations5. Similarly, transcriptomics studies routinely identify 

hundreds to thousands of differentially expressed genes between diseased and healthy tissue 

samples, but disentangling the disease-causing changes in gene expression from its 

byproducts can be far more challenging6. Given the limitations of each omics approach but 

also that each one focuses on a different layer of the biological system that each complex 

disease represents, integration of different types of omics data and study of their combined 

influences to identify the key biological pathways involved has emerged as a promising 

avenue for research4. 
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One optimal design for an integrative omics study is to obtain diverse types of omics data 

from the same tissue samples or patient cohorts. The resulting data can then be vertically 

integrated (Figure 5.1, top left) to identify candidate genes and pathways involved in complex 

disease. Alternatively, a single type of omics data can be collected from a variety of tissue 

samples or patient cohorts, facilitating their horizontal integration across many samples, 

which can substantially increase the experiment’s power (Figure 5.1, top right). In both 

vertical and horizontal integration experiments where diverse types of omics data are 

available from the same samples, a variety of multi-staged and meta-dimensional statistical 

integration approaches can be utilized (Figure 5.1, bottom)7. These multi-omics integration 

methods allow for the comprehensive modelling of complex traits and phenotypes that 

ultimately deepen our understanding of the key genomic factors, pathways, and interactions 

involved in pathogenesis or other biological outcomes. For example, multi-staged integration 

uses multiple steps to first identify associations between different data types and then 

identify associations between data types and the phenotype of interest8, whereas meta-

dimensional integration combines data simultaneously based on concatenation, 

transformation, or model building9. 
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Figure 5.1. Selecting a data integration strategy depends on the structure of accessible 
multi-omics data. (A, left) If multiple types of omics data (‘multi-omics’) are available for the 
same cohort of patients, vertical integrative analysis can be performed to combine 
information across data types. This integration can be achieved using a variety of multi-
staged and meta-dimensional statistical approaches that identify disease subtypes, regulatory 
networks, and driver genes. (A, right) If the opposite is true and a specific type of omics data is 
available across a number of different patient cohorts, horizontal meta-analysis can be 
performed to increase statistical power and identify disease-associated perturbations. (B) In 
some cases, however, experimental data are only available for different omics data types from 
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different cohorts of patients and neither vertical nor horizontal data integration can be 
performed. In these situations, integration relies on mapping data to common units (e.g., 
genes or pathways) and then either integrating transformed data or simply overlapping 
candidate sets. The software approach presented here (integRATE) utilizes desirability 
functions to transform and integrate heterogeneous data allowing for the prioritization of 
candidate genes for functional analysis. 
 

Although multi-omics data sets capable of being vertically or horizontally integrated are 

becoming increasingly common, such data sets are lacking for many complex diseases10-14. 

Often, heterogeneous omics data are collected study by study, for a limited set of tissue 

samples and across only 1 or 2 omics data types at a time (Figure 5.1B, top). In these cases, the 

statistical methods developed for vertical and horizontal integration are not applicable 

without consistent sampling (of the same tissue samples or patient cohorts) or gold standards 

(i.e., genes known to be involved in the complex disease under investigation). For each study, 

a long list of genes or genomic regions with associated data are produced, depending on the 

omics experiment, and sorted based on effect size (e.g., fold change), significance (e.g., P-

value), or some other criterion. Hard thresholds can then be imposed on P-values, for 

example, to bin the genes or genomic regions and identify significant candidates for further 

analysis; this type of approach can then be applied across multiple, heterogeneous omics 

studies. 

 

Several problems exist with the imposition of hard thresholds, however. Including (or 

excluding) genes or genomic regions as ‘candidates’ based P-value, fold change, expression 

level, and odds ratio cutoffs introduces biases, lowers effect sizes and relationship 
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information, and can be conflated when combining multiple cutoffs from several criteria15-17. 

These cutoffs can sometimes even be arbitrary, like selecting the top n or n% from each data 

set. Additionally, statistical significance is not always equivalent to biological significance, 

meaning that non-statistically significant genes may still be involved in disease pathogenesis, 

or vice versa. Moreover, while selecting the top n genes might limit the scope of further 

functional analysis, the alternative approach of selecting all significant hits could mean that 

thousands of genes are identified as candidates. A final consideration in analyzing 

heterogeneous omics data is that we sometimes do not know any genes, pathways, or 

networks that have already been shown to be involved in complex disease. Some integration 

methods, especially those based on prediction (e.g., machine learning, network analysis), 

depend on the availability of such knowledge for algorithm training and cannot be 

performed in their absence7,8,18-21.  

 

Desirability functions represent one way to integrate heterogeneous omics data in systems 

where gold standards do not yet exist (Figure 5.1B, bottom). Originally developed for 

industrial quality control, desirability functions have been successfully used in 

chemoinformatics to rank compounds for drug discovery and have been proposed as a way 

to integrate multiple selection criteria in functional genomics experiments22-26. In the context 

of integrating diverse but heterogeneous omics data, desirability functions allow for the 

ranking and prioritizing of candidate genes based on cumulative evidence across data types 

and their variables, rather than within-study separation of significant and non-significant 
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genes based on single variables in single studies. For example, a 2015 study initially proposed 

the use of desirability functions to integrate multiple selection criteria for ranking, selecting, 

and prioritizing genes across heterogeneous biological analyses and demonstrated its use by 

analyzing a set of microarray-generated gene expression data22. 

 

To facilitate data integration in the presence of largely heterogeneous multi-omics data and 

when prior biological knowledge is limited, we propose a desirability-based framework to 

prioritize candidate genes for functional analysis. To facilitate implementation of our 

framework, we implemented it into a user-friendly software package called integRATE, which 

takes as input data sets from any omics experiment and generates a single desirability score 

based on all available information. This approach is targeted towards systems with 

particularly sparse or heterogeneous data, so we test integRATE on a set of 10 omics data sets 

related to spontaneous preterm birth (sPTB), a complex disease where multi-omics data are 

limited. 
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DESIGN 

Variable Transformation 

First, relevant studies need to be identified for integration based on any number of 

characteristics including tissue(s) sampled, disease subtype, or experimental designs (Figure 

5.2, step 1). Then desirability functions are fit to each variable within a study (e.g., P-value, 

odds ratio, fold change, etc.) according to whether low values are most desirable (dlow, i.e., P-

value), high values are most desirable (dhigh, i.e., odds ratio), or extreme values are most 

desirable (dextreme, i.e., fold change) (Figure 5.2, step 2). These desirability scores can be 

calculated by applying one of the following equations: 
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In these equations, Y is the variable value and s is the scale coefficient affecting the function’s 

rate of change. For dlow and dhigh, A is the low cut point and B is the high cut point where the 

function changes. For dextreme, A is the low cut point, C is the intermediate cut point, and B is 

the high cut point where the function changes. The user can customize these cut points 

based on numerical values (e.g., P-value < 0.05) or percentile values (e.g., top 10%). The 

resulting values, ranging from 0 to 1 (or the minimum and maximum values specified are 

transformed desirability scores based on information from each variable. 

 

 

Figure 5.2. integRATE relies on three main steps to identify studies, integrate data, and 
rank candidate genes. (1) Relevant studies must first be identified for integration based on 
any number of features including, but not limited to: phenotype, experimental design, and 
data availability. (2) Data corresponding to all variables in each study are then transformed 
according to the appropriate desirability function. In this step, the user assigns a function 
based on whether low values are most desirable (dlow), high values are most desirable (dhigh), 
or extreme values are most desirable (dextreme) and can customize the shape of the function 
with other variables like cut points (A, B, C), scales (s), and weights (w) to better reflect the 
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data distributions or to align with user opinion regarding data quality and relevance. (3) 
These variable-based scores are integrated (dstudy) with a straightforward arithmetic mean 
(where weights can also be applied) to produce a single desirability score for each gene in 
each study containing information from all variables simultaneously. (4) Finally, study-based 
desirability scores are integrated to produce a single desirability score for each gene (doverall) 
that includes information from all variables in all studies and reflects its cumulative weight of 
evidence from each data set identified in step 1. These scores are normalized by the number 
of studies containing data for each gene and can be used to rank and prioritize candidate 
genes for follow up computational and, most importantly, functional analyses. 
 

Variable Integration 

Next, desirability scores for each variable within a study are combined using an arithmetic 

mean so that data points (e.g., genes) with desirability scores of zero for any given variable 

remain in the analysis (Figure 5.2, step 3). Desirability for data points within a study can be 

calculated by: 
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In this equation, wi is the weight parameter (assigned to each variable), di is desirability score 

for each data point in each variable, and N is the total number of transformed variables. This 

step produces a single desirability score (dstudy) for each data point in the study containing 

information from all transformed variables. Here, the user is also able to include variable 

weights (wi) when integrating their desirability scores in case certain variables are considered 

more informative or accurate than others. 
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Study Integration 

Finally, the dstudy values can be integrated using the arithmetic mean to produce a single 

desirability score (doverall) for each data point, representing its desirability as a candidate 

according to the weight of evidence from all variables in all studies that were integrated 

(Figure 5.2, step 4). The overall score used to prioritize candidates can be calculated by: 
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In this equation, wi is the weight parameter (assigned to each study), di is desirability score for 

each data point in each study, and N is the total number of studies integrated. Importantly, 

the overall desirability score is normalized by the number of studies missing data for each 

data point to account for the number of values contributing to each overall desirability score. 

This normalization factor can be used to calculate a soft cutoff for the most desirable 

candidates that is equivalent or higher than the desirability score that would be achieved by a 

data point with a perfect desirability score of 1 in a single study but missing from all other 

studies. We call genes achieving desirability scores equal to or above this cutoff ‘desirable.’ 

 

Software 

This methodology is implemented in our software, integRATE, available on CRAN as an R 

package. Although we focus on using desirability functions to integrate heterogeneous omics 
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data corresponding to complex human diseases, integRATE can be applied to data sets from 

any phenotype, species, and data type (provided that the units can all be mapped to a 

common set of elements, like genes). Functionality is provided for the application of 

customizable desirability functions as well as data visualization. 

 

Implementation 

One human complex genetic disease where the omics data available are heterogeneous is 

preterm birth (PTB). Defined as birth before 37 weeks of completed gestation, PTB is the 

leading cause of newborn death worldwide despite medical advances that continue to 

improve outcomes for babies born too early27. Evidence from family, twin, and case-control 

studies suggests that genetics plays a role in determining birth timing and a recent GWAS 

identified a handful of genes linked to prematurity28. Nevertheless, the pathogenesis of PTB 

and its many subtypes remains poorly understood29-31. 

 

Although 30% of preterm births are medically indicated due to complications including 

preeclampsia (PE) or intrauterine growth restriction (IUGR), the remaining 70% occur 

spontaneously either due to the preterm premature rupture of membranes (PPROM) or 

idiopathically (sPTB). Further complicating factors are that multiple maternal and fetal tissues 

are involved (e.g., placenta, fetal membranes, umbilical cord, myometrium, decidua, etc.) as 

well as multiple genomes (maternal, paternal, and fetal)32.  
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The publicly available data for sPTB consist of several different independently conducted 

omics analyses that cannot be analyzed using statistical approaches developed for vertical 

and horizontal integration28,33,34. Although these omics data have been analyzed in isolation, 

integration of their information using the desirability-based platform implemented in 

integRATE might better reflect what we know is a complex system regulated by a complex 

interplay between many layers of biological regulation and allow for the identification and 

prioritization of novel candidate genes for further functional and targeted analyses. 

 

Study Identification 

Studies were initially identified based on the following PubMed search strategy: 

 

“Pregnancy”[mh] AND “Humans”[mh] AND “Preterm birth”[mh] AND (“Gene Expression 

Profiling”[mh] OR “Gene Expression Regulation”[mh]) AND (“Placenta”[mh] OR “Decidua”[mh] 

OR “Myometrium”[mh] OR “Cervix Uteri”[mh] OR “Extraembryonic Membranes”[mh] OR 

“Blood”[mh] OR “Plasma”[mh] OR “Umbilical Cord”[mh])  

 

Papers that seemed to conduct a genome-wide omics analysis of sPTB from a preliminary 

scan of the abstract were downloaded for full-text assessment. Furthermore, a thorough 

investigation was conducted of their associated reference lists to identify papers not captured 

via PubMed. 
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Additionally, each study had to meet the following inclusion criteria: 

 

1) Experimental group consisted of sPTB cases only and wasn’t complicated by other 

pregnancy phenotypes (e.g., preeclampsia) 

2) Analysis was genome-wide and not targeted to any specific subset of genes or 

pathways 

3) Full data set was publically available (not just top n%) 

 

We identified 54 studies through the first phase of our literature search, but only 10 data sets 

met all inclusion criteria. All excluded studies are listed in Additional File 5.1 with reasons for 

exclusion and the 10 data sets used in our pilot analysis are outlined in Table 5.133-46. 

 

Table 5.1. 10 sPTB ‘omics analyses were identified for integration. 

First Author Year Experiment Control Tissue 'omics Type 
Zhang 2017 sPTB term maternal blood genomics (GWAS) 
Ackerman 2015 sPTB term placenta transcriptomics (RNA-seq) 
Heng 2014 sPTB term maternal blood transcriptomics (microarray) 
Chim 2012 sPTB term maternal blood transcriptomics (microarray) 
Mayor-Lynn 2011 sPTB term placenta transcriptomics (microarray) 
de Goede 2017 sPTB term cord blood epigenomics (microarray) 
Fernando 2015 sPTB term cord blood epigenomics (microarray) 
Parets 2015 sPTB term maternal blood epigenomics (microarray) 
Cruickshank 2013 sPTB term fetal blood epigenomics (microarray) 
Heng 2015 sPTB term maternal blood proteomics (mass spec) 

 

 

 



 139 

Data Transformation 

Each of the 10 data sets was transformed to a gene-based format. This step was necessary 

because integRATE applies desirability functions both within and across studies and, in order 

for that integration to be possible, the genetic elements of each study have to match. 

 

Genomics. SNP-based data containing P-values and effect sizes were mapped to genes with 

MAGMA, as outlined in the Zhang et al. supplementary methods 

(http://ctg.cncr.nl/software/magma)35,47,48. 

 

Transcriptomics. Gene expression data from microarray experiments were accessed via GEO 

(https://www.ncbi.nlm.nih.gov/geo/) and re-analyzed using the GEO2R plugin 

(https://www.ncbi.nlm.nih.gov/geo/info/geo2r.html)36-39. Raw RNA-seq data from Ackerman 

et al. were analyzed in-house with custom scripts33.  

 

Epigenomics. Methylation data were accessed via GEO (https://www.ncbi.nlm.nih.gov/geo/) 

and re-analyzed using the GEO2R plugin 

(https://www.ncbi.nlm.nih.gov/geo/info/geo2r.html)40-44. 

 

Proteomics. Protein expression data were downloaded from supplementary files associated 

with each publication and the protein IDs were mapped to genes using Ensemble’s BioMart 

tool (https://www.ensembl.org/info/data/biomart/index.html)34,45. 
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Application of integRATE 

After mapping results from all 10 omics studies to genes, we applied integRATE and 

calculated desirabilities for all variables within studies (dstudy) and all genes across studies 

(doverall). We ran four different sPTB pilot analyses: 

 

1) In the first analysis (iR-none), we ran integRATE with no added customizations (e.g., no 

cut points, no scales, no minimum or maximum desirabilities, etc.) (Figures 5.3-5.5, 

Additional File 5.2). 

2) In the second analysis (iR-num), we ran integRATE using numerical cut points 

(Additional files 5.4-5.7). 

3) In the third analysis (iR-per), we ran integRATE using percentile cut points (Additional 

files 5.8-5.11). 

4) In the fourth analysis (HardThresh), we pulled statistically significant genes from each 

study to represent the results that would have been obtained if the typical approach 

based on hard thresholds and intersection of significant genes across studies outlined 

earlier was applied (Additional files 5.12 and 5.13). All genes with adjusted P-values < 

0.1 or unadjusted P-values < 0.05 were deemed significant in each study and 

intersected to compare with the results from integRATE49. 

 



 141 

Additionally, we performed a permutation test shuffling desirabilities for all genes 1,000 times 

to test whether our integration strategy produced results different from what might occur at 

random (Additional File 5.15). 
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RESULTS 

In total, our sPTB pilot analyses of the integRATE pipeline integrated gene-based results from 

10 omics studies (1 genomics, 4 transcriptomics, 4 epigenomics, and 1 proteomics, Table 5.1) 

and included data sets ranging from 422 genes to 20,841 genes. 

 

iR-none. First, the software was run without any added cuts, weights, or scales, resulting in a 

list of 26,868 genes with data points from one or more of the 10 omics studies (Additional File 

5.2). Normalized desirabilities for these 26,868 genes ranged from 8.04E-16 to 0.46 (mean = 

0.08±0.05) (Figure 5.3). Furthermore, 7,977 genes (29.7%) had desirabilities ≥ 0.1 

corresponding to values equal to or higher than what would be achieved if a given gene 

achieved perfect desirability in one study but was absent from all others. These top 7,977 

genes were enriched for 70 unique GO-Slim Biological Process categories, including pathways 

involved in metabolic processes, immunity, and signal transduction (Additional File 5.3)50. The 

top 10 genes (Figures 5.4 and 5.5) have desirabilities ranging from 0.46 (CAPZB) to 0.38 

(ACTN1) and all are represented in each of the 10 omics data sets analyzed. This analysis 

applied integRATE without cut points, allowing for a straightforward, linear transformation of 

data across all variables and studies. 
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Figure 5.3. After integration, 612/26,868 genes were identified as highly desirable. All 
genes in the analysis were sorted from most desirable (rank = 1) to least desirable (rank = 
26,868) and plotted according to their overall desirability scores, ranging from 8.04E-16 to 
0.46. Because this analysis included 10 omics studies, the lower bound for our set of 
‘desirable’ candidate genes is 0.1 (pink dashed line) and 7,977 genes achieved scores greater 
than or equal to that value. All desirability scores for the entire data set are available in 
Additional File 5.2 (and in Additional files 5.4 and 5.8 for iR-num and iR-per, respectively). 
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Fig 5.4. The top 10 most desirable genes have a wide range of desirabilities across data 
types. The top 10 genes in our analysis have overall desirabilities ranging from 0.38 (ACTN1) 
to 0.46 (CAPZB), but the dstudy values range, even when organized by data type. Some genes, 
like STOM, appear to be highly ranked not because of any extremely high dstudy value, but 
rather due to a lack of low dstudy values in any data type. In other words, this gene is likely not 
identified as particularly important in any individual study but shows a consensus of relatively 
strong evidence across all 10 studies. Contrastingly, other genes, like CAPZB, appear to be 
highly ranked due to one very high desirability score in a single data type (GWAS) that 
overpowers underwhelming evidence in other studies. 
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Fig 5.5. The top 10 most desirable genes also show a large discrepancy in their 
percentile ranks across studies. After ranking the genes in each study by desirability and 
calculating their percentiles based on the number of unique ranks, the top 10 most desirable 
genes appear to show even greater variability in relative ranking across not just data type, but 
individual studies. All 10 genes are in the top 25% of the (smaller) proteomics study, but their 
relative rankings vary significantly in all other studies. Furthermore, while none of the genes 
are in the top 25% of the GWAS study (Zhang2017), other studies, like one of the 
transcriptomics analyses (MayorLynn2011), show a large range in relative rankings, with 
certain highly desirable genes ranked very high and others ranked very low. 
 

iR-num. We next applied cut points based on numerical values (Additional File 5.4). P-values 

such that values smaller than 0.0001 received the maximum desirability score of 1 and values 

larger than 0.1 received the minimum desirability score of 0. All P-values between 0.0001 and 

0.1 were transformed according to the dlow function. For dextreme functions, 4 cut points are 
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assigned and we chose commonly used values of 0.5 and 1.5 (or their equivalents if the values 

were log transformed). Therefore, fold changes below -1.5 or above -1.5 (or below log2(1/3) or 

above log2(3)) received the maximum desirability score of 1 and fold changes between -0.5 

and 0.5 (or between log2(1/1.5) and log2(1.5)) received the minimum desirability score of 0. 

Intermediate values were transformed according to the dextreme function. This approach mirrors 

what was applied in a previous implementation of the desirability framework for omics data, 

and takes into account prior knowledge of typical P-value and fold change distributions22. 

 

iR-per. Finally, we applied cut points based on percentiles (Additional File 5.8). P-values were 

cut such that those in the top 5% received the maximum desirability score of 1 and those in 

the bottom 5% received the minimum desirability score of 0, with all values in between 

transformed according to the dlow function. Fold changes were cut such that those in the top 

5% and bottom 5% received the maximum desirability score of 1 and those in the middle 50% 

received the minimum desirability score of 0, with all other values transformed according to 

the dextreme function. 

 

While the top most desirable genes in iR-num appeared to be better candidates in each 

individual study (Additional File 5.7), using these cut points corresponding to standard 

significant P-value and fold change cut offs greatly reduced the amount of data (Additional 

File 5.4), since some studies did not exhibit sufficiently low P-values or extreme fold changes, 

for example. The top 10 most desirable genes in iR-num were supported by only 4 or 5 studies 
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(Additional File 5.6), as opposed to in iR-none and iR-per where all studies provided data 

regardless of P-value or fold change. 

 

HardThresh. For comparison, we also manually selected candidate genes by imposing a hard 

threshold on P-value (P-value < 0.05 if unadjusted and P-value < 0.1 if adjusted) (Additional 

File 5.12). After binning data into ‘significant’ gene lists, we intersected these lists to pull out 

genes that would have been identified simply by selecting the intersection of all significant 

genes. Although 18,727 genes were considered significant’ in at least 1 study, no genes were 

identified as significant in all 10 studies. The best candidate gene (KIAA0040) was considered 

significant in 6/10 studies and 15 other genes were identified in 5/10 studies (Additional File 

5.13). Interestingly, none of these genes appear in the top 10 of our most desirable candidates 

after integration and, even more generally, none are specifically discussed in any of the 

studies, either. 

 

Finally, we performed a permutation test to compare our results to a null hypothesis. 

Desirabilities for all 26,868 genes were randomly shuffled 1,000 times, averaged to produce a 

null sampling distribution, and then plotted against our empirical iR-none data (Additional 

File 5.15). Mean desirabilities in our sample distribution ranged from 0.056 to 0.062, with an 

average of 0.059 (95% CI [0.058, 0.061]). In our empirical iR-none analysis, 15,285/26,868 

(56.9%) genes achieved desirabilities greater than the permutation mean of 0.059. 
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DISCUSSION 

By using desirability functions to rank genes within studies and combine results across 

studies, integRATE allows for the identification of candidate genes supported across 

experimental conditions and omics data types. This is especially important when 

heterogeneous sets of omics data, like those available for sPTB, where the statistical 

approaches developed for vertical or horizontal integration are largely inapplicable. We have 

shown that integRATE can map any omics data to a common [0, 1] scale for linear integration 

and produce a list of the most desirable candidates according to their weight of evidence 

across available studies. These candidates then become interesting targets for follow-up 

functional testing depending on where in the data their desirability signals come from. 

Analysis of 10 heterogenous omics data sets on sPTB showed that the gene candidates 

identified using desirability functions appear to be much more broadly supported than those 

identified by the intersection of all significant genes across all studies and contain both genes 

that have been previously associated with sPTB as well as novel ones (Figures 5.4 and 5.5, 

Additional File 5.13).  

 

integRATE will identify both known and novel candidate genes associated with a complex 

disease, including ones that are not be among the top candidates in any single omics study 

but are consistently (i.e., across studies) recovered as significantly (or nearly significantly) 

associated. For example, genes that are significantly differentially expressed at an 

intermediate to high level across many studies will have high desirability scores. Furthermore, 
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integRATE can identify such genes across omics types, tissues, patient groups, and any other 

variable condition. Although integRATE allows for this kind of synergistic, desirability-based 

analysis, it is important to note that integRATE is not a statistical tool nor is it intended to be 

the end point of any analysis. integRATE is a straightforward framework for the identification 

of well-supported candidate genes in any phenotype where true multi-omics data is 

unavailable and, importantly, it serves as a springboard for future functional analysis, an 

essential next-step in testing whether the candidates are actually involved in the biology of 

the disease or phenotype at hand. 

 

One aspect of the desirability framework that is arbitrary is the decision of what may be 

appropriate cut points for the different functions. In our sPTB pilot analyses (iR-none, iR-num, 

and iR-per), we observed that the imposition of cut points corresponding to accepted values 

(e.g., P-value < 0.0001) has the potential of greatly affecting the resulting gene prioritization. 

On this basis, we propose that desirability functions are best used to integrate highly 

heterogeneous omics data without imposed numerical cut points for P-values, fold changes, 

and other variables. Implemented this way, one can maximize the information from the 

analysis of each omics data set used in prioritizing candidate genes. But users may also have 

reasons to want to put more weight on data sets that are of higher quality or on data types 

that may be more informative. In such instances, the weight parameter can be used to reflect 

study quality instead of imposing cut points (e.g., studies that fail to achieve P-values as low 
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as others in the integrative analysis can be weighted less to reflect potentially lower 

experimental quality). 

 

In our sPTB pilot analyses, members of the annexin family (ANXA3, ANXA4 and ANXA9) appear 

in the top 10 most desirable candidate gene sets regardless of analysis approach (e.g., 

without cut points as well as with numerical and percentile cut points). This family is involved 

in calcium-dependent phospholipid binding and membrane-related exocytotic and 

endocytotic events, including endosome aggregation mediation (ANXA6). In a previous 

proteomic analysis, ANXA3 was found to be differentially expressed in cervicovaginal fluid 26-

30 days before the eventual onset of sPTB as compared to before healthy, term deliveries51. 

Furthermore, members of the annexin family are known to be involved in coagulation 

(ANXA3, ANXA4). Coagulation has been previously suggested to be involved in PTB and, even 

though the mechanism of such involvement is still a mystery, it is interesting that several 

genes involved in coagulation or blood disorders appear in our top candidate lists52. In 

addition to ANXA3 and ANXA4, VWF (or Von Willebrand Factor) is a gene encoding a 

glycoprotein involved in homeostasis that has been found to be expressed significantly more 

in preterm infant serum as compared to term53,54. Finally, another highly desirable candidate, 

STOM, encodes an integral membrane protein that localizes to red blood cells, the loss of 

which has been linked to anemia55. These results suggest that homeostasis and coagulation 

might play a key role in the development of sPTB. 
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In addition to homeostasis and coagulation, another biological process represented across 

our results is actin regulation and muscle activity. The most notable gene associated with this 

biological process is CAPZB, which encodes part of an actin binding protein that regulates 

actin filament dynamics and stabilization and is present in the top 10 most desirable 

candidate gene list in all three analyses. Although CAPZB has never been linked to sPTB or 

other pregnancy pathologies, its role in muscle function could be linked to myometrial and 

uterine contractions that, when they occur prematurely, might be directly involved in the 

development of sPTB56,57. Another one of our top candidates, ACTN1, is also involved in actin 

regulation and, even more interestingly, has also been linked to blood and bleeding 

disorders58,59. Finally, several other highly desirable genes identified in one or more of our 

integrative analyses include GPSM3, WDR1, and DYSF, are all involved in the development and 

regulation of muscle or in the pathogenesis of muscle-related diseases60-62. 

 

Even outside the top 10 most desirable genes across our integrative analyses, we found genes 

both previously identified as being involved in pregnancy or sPTB pathology as well as 

involved in pathways potentially relevant to sPTB (Additional File 2). For example, one gene 

falling just outside the top 10 most desirable candidates in all analyses is MMP9, a matrix 

metalloproteinase. Interestingly, MMP9 has been linked not only to sPTB, but also to preterm 

premature rupture of membranes (PPROM) and preeclampsia (PE) across a number of fetal 

and maternal tissues and at a variety of time points during pregnancy63-67. MMP9 gene 

expression has been observed as significantly higher during preterm labor than during term 
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labor in maternal serum, placenta, and fetal membranes68-70. Even in the first trimester, levels 

of MMP9 in maternal serum were higher in PE cases than in healthy controls, suggesting that 

increased MMP9 protein expression is linked to the underlying inflammatory processes 

governing PE pathogenesis66. Finally, fetal plasma MMP9 concentration has been found to be 

significantly higher in fetuses with PPROM than in early and term deliveries with intact 

membranes, implicating MMP9 in the membrane rupture mechanism controlling early 

delivery due to membrane rupture67. We see similar evidence of MMP9 as a desirable sPTB 

candidate maintained across omics and tissue types in our integRATE analyses, raising the 

hypothesis that its role in inflammation and extracellular matrix organization relates to sPTB 

even in the absence of PPROM or PE. 

 

A recent GWAS analysis, the largest of its kind across pregnancy research, identified several 

candidate genes with SNPs linked to PTB28. This study linked EBF1, EEFSEC, and AGTR2 to 

preterm birth and EBF1, EEFSEC, AGTR2, and WNT4 to gestational duration (with ADCY5 and 

RAP2C linked suggestively). By analyzing 43,568 women of European ancestry, this large study 

is the first to identify variants and genes that are statistically associated with sPTB. 

Interestingly, our integrative analysis identified EBF1 as a desirable candidate (doverall = 0.15 

[top 3%] in iR-none and doverall = 0.23 [top 1%] in iR-per), suggesting that this gene, in addition 

to GWAS, might also be functionally linked to sPTB pathogenesis across transcriptomics, 

epigenomics, and proteomics studies. Even when analyzing the 9 other omics studies without 

this GWAS data set, EBF1 still achieved an overall desirability of 0.17, placing it in the top 2% 
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of all genes (Additional File 5.14). While our integrative analysis supports the identification of 

EBF1 as an interesting candidate gene for follow up, the lack of signal for any of the other 

GWAS-identified hits also reinforces the need to approach complex phenotypes like sPTB 

from a variety of omics perspectives, since sequenced-based changes may impact the 

phenotype in indirect and complicated functional ways. 

 

In summary, integRATE is a software solution to desirability-based data integration, most 

applicable in biological research areas where omics data is especially heterogeneous and 

sparse. Our approach combines information from all variables across all related studies to 

calculate the total weight of evidence for any given gene as a candidate involved in disease 

pathogenesis, for example. Although not a statistical approach, this method of data 

integration allows for the prioritization of candidate genes based on information from 

heterogeneous omics data even without known ‘gold standard’ genes to test against and can 

be used to inform more targeted downstream functional analyses. 
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CHAPTER VI 

 

CONCLUSION 

 

‘omics research across PTB subtypes 

By performing a systematic review and meta-analysis of gene expression studies in pregnancy 

and its pathologies in chapter II, I first showed that large gaps exist in the transcriptomic 

analysis of PTB subtypes, particularly in sPTB. Second, I showed that gene expression profiles 

are highly heterogeneous both across tissues and phenotypes as well as within the same 

tissue and phenotype, indicating that more high quality, large-scale data will be necessary to 

understand the complex landscape of gene expression and its regulation during pregnancy, 

parturition, and prematurity. Although this research focused primarily on gene expression, 

data were also collected from microRNA and methylation studies and similar conclusions 

were drawn about the sparsity of genome-wide research and heterogeneity of expression 

and methylation patterns1. 

 

Other meta-analyses have been published focusing on sPTB proteomics or pathology-specific 

biomarkers2,3. Similarly, a meta-analytical approach has also been taken to better understand 

gene-gene interactions conferring sPTB risk4. Due to the heterogeneity found between 

pathologies as well as the sparsity of pregnancy-related ‘omics data, future research should 

combine the gene expression, methylation, and microRNA studies from my meta-analysis 
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with these proteomics and biomarker studies as well as with other publicly available ‘omics 

studies (e.g., metabolomics) for use in future integrative analyses. 

 

Our lab has been developing a database, GEneSTATION, designed to accomplish this goal, 

among many others5. Currently, GWAS, RNA-seq, gene expression microarray, and 

methylation data sets related to sPTB and other PTB subtypes are described in GEneSTATION 

with important metadata associated about experimental and control group designation, 

gestational age, and tissue type. Future work will expand this resource to include proteomic 

and metabolomic data as well as add functionality for sorting and downloading data sets 

based on phenotype. A combination of automated as well as expert-curated approaches to 

maintaining this resource will be necessary to build an up-to-date resource of appropriately 

organized, subtype-specific PTB ‘omics data. 

 

Gene expression in sPTB 

In chapter III, I analyzed both human and macaque RNA-seq data to identify transcripts that 

are differentially expressed in placenta between sPTB and term pregnancies. Comparing gene 

expression from human placental tissue at preterm and term identified significantly 

differentially expressed transcripts that, in addition to sPTB pathology, also likely represented 

differences in gestational age of the samples. By using gestational age-matched control 

samples from macaque, I was able to parse this list of differentially expressed genes and 

categorize them as either sPTB-specific or gestational age-specific. Some of our sPTB-specific 
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candidates are involved in inflammatory and immune processes (L1CAM, TRIM14, FOXO1, 

VSIG4, CEBPD) and others exhibit matrix metalloproteinase activity (ETS2). Several sPTB-

specific candidates have also been linked to sPTB or other pregnancy pathologies in previous 

research (HTRA4, CD163, ADORA3, PDE2A, NAALAD2). These are obvious candidates for future 

functional analyses in placental cell lines or mouse models. 

 

Experimentally, our collaborators have recently accessed additional placental tissue samples 

from macaque who delivered at term. Once sequenced for RNA expression, these samples 

can be used to weed out normal differences between preterm and term macaque placenta 

and, thus, refine our comparison with human data. Furthermore, placental gene expression 

from preterm and/or term deliveries in other primate species (e.g., lemur) might even be 

considered to expand this comparative analysis. 

 

In light of the high heterogeneity in placental genes expressed both within and across human 

populations, more research is necessary to identify the common pathways regulating 

parturition and prematurity in this tissue6. To this end, another collaborator collected single 

cell RNA-seq data from placenta to help uncover key genes and regulators involved in 

communication at the maternal-fetal interface7. This data showed strong signals from growth 

factors and immune pathways, similar to results from our transcriptomic and integrative 

analyses. Nevertheless, more work is required in tissue samples as well as single cells to 
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compare gene expression profiles over time, in different pathologies, and across populations 

and identify pathways dysregulated leading up to PTB. 

 

The promise of data integration in sPTB 

While chapter IV outlined why data integration is so crucial in a complex, multifactorial 

syndrome like sPTB, chapter V offered an approach to accomplish this task with the 

heterogeneous data at hand. The desirability-based method used by integRATE is intended to 

prioritize candidate genes based on their weight of evidence across high-quality data for 

follow-up functional testing. Therefore, future research could closely investigate the roles of 

some of our most promising candidates (ANXA3, ANXA4, ANXA9, VWF, STOM, CAPZB, ACTN1, 

GPSM3, WDR1, DYSF, MMP9) in gestational tissues during pregnancy. Many of these candidate 

genes are involved in homeostasis or muscle activity, suggesting that future analyses might 

investigate these pathways in greater detail to determine whether their dysregulation 

contributes directly to sPTB pathogenesis. 

 

Until recently, no GWAS had been successful in identifying SNPs associated with sPTB. After 

combining data from several birth cohorts as well as from direct-to-consumer genetic testing, 

our collaborators identified several loci significantly associated with sPTB (EBF1, EEFSEC, 

AGTR2) and we were able to utilize this data in our integrative analysis (chapter V)8. Sample 

sizes are continuing to grow with the establishment of large cohorts, biobanks, and consortia, 

and these larger samples will allow future GWAS to identify other common maternal and fetal 
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polymorphisms associated with increased sPTB risk and further refine our understanding of 

its pathogenesis. 

 

As more and more data sets are collected across tissue types, pathologies, and ‘omics 

platforms, we become increasingly able to utilize statistical integration strategies like 

network-based and machine learning approaches to identify genetic regulators of sPTB. 

These methods have successfully been used to discover driver genes in cancer, but they 

require multi-omics data not currently available in sPTB or any other pregnancy pathology9. 

The collection of this type of data is a critical next step in advancing PTB research and will 

require the careful establishment of cohorts where samples are collected and sequenced 

across time and tissues, but within the same patients. For example, an ideal sPTB study would 

follow a large cohort of women through pregnancy and collect tissue samples (e.g., maternal 

blood) during each trimester for multi-omic sequencing. This type of data could shed light on 

the interconnected genomic, transcriptomic, epigenomic, proteomic, and metabolomic 

components leading to sPTB pathogenesis. 

 

Summary 

Together, my dissertation work has contributed novel methods for the study of sPTB as well 

as insights into its pathogenesis. This research demonstrates the utility of meta-analytical 

(chapter II), comparative transcriptomic (chapter III), and integrative genomic (chapters IV and 

V) approaches to better understanding a complex phenotype with sparse, heterogeneous 



 164 

data. As PTB rates around the world continue to rise despite all we’ve learned about its 

pathogenesis, continued research is essential to discover predictive biomarkers and drug 

targets that lessen the burden of prematurity. 
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