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Chapter 1

Introduction

Electronic health record (EHR) systems can improve the quality of patient care, safety

and education, while reducing costs and enabling research [1]. To encourage the adoption

and use of EHR systems by healthcare providers, the US government passed the Health

Information Technology for Economic and Clinical Health (HITECH) Act of 2009 [2] and

established incentives for healthcare providers that demonstrate meaningful use of EHR

system to provide better patient care [3]. As a result, integration of EHR systems into

healthcare organizations (HCOs) has continually increased. However, the increased acces-

sibility of protected health information (PHI) in EHR systems leads to a greater potential

for misuse and abuse by the authorized users. Such events can result in penalties levied by

federal and state regulators.

An EHR is fundamentally a collaborative information system, which, traditionally, is

protected through proactive strategies, such as fine-grained access control technologies [4].

Such technology is often integrated into EHR systems; however, the dynamics of patient

care, in combination with the difficulty in predicting who needs access to a patient’s med-

ical record when, make it challenging to deploy such fine-grained control schema without

triggering a substantial quantity of false alerts and slowing care workflows [5]. Despite ac-

knowledging the potential for insider threats, HCOs typically do not instantiate fine-grained

controls [6]. This implicitly suggests that HCOs deem the losses associated with impacts

on workflow and care to be greater than those brought about by employees who misuse or

abuse their privileges.

Still, HCOs do not neglect insider threats entirely. In lieu of fine-grained proactive

protections, HCOs tend to rely upon retrospective mechanisms, such as auditing and inves-

tigation. In the United States, the Security Rule of the Health Information Portability and
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Accountability of 1996 (HIPAA) requires that all HCOs maintain audit logs, analyze them

for inappropriate use and report misuse [7]. Hospitals maintain audit log of all accesses to

PHI and the audit log is often reviewed by administrative officers to detect inappropriate

access. However, the sheer volume of accesses documented by large HCOs makes manual

review infeasible. The number of access transactions is often over one million per day [8],

while officers have only one or two people at their disposal (often allocating only a portion

of their time) to run investigations. As a result, many HCOs prioritize their investigations

by monitoring patient records deemed to be very important persons (VIPs) [9] or upon pa-

tient complaints [10]. In the latter scenario, compliance officers investigate the accesses to

patient records after a complaint has been registered.

More recently, there has been a push to (semi-)automate the auditing process. However,

there are many challenges an HCO faces to do so. For instance, the information often

required to determine if an access is inappropriate is not stored in the audit log [11], [12].

As a consequence, HCOs have deployed rule-based methods [10], [13] to capture high-

risk behavior and promote them to compliance officers for review. Figure 1.1 shows the

process associated with such a traditional rules-based auditing system. Unfortunately, rule-

based flagging systems can result in high false positives [9]. For example, a typical rule

is to flag when an employee accesses an EHR of a patient with the same last name. Yet,

for individuals with a common name, clearly this rule will trigger an excessive amount of

alerts.

Given the state of affairs, we set out to, assess the validity of rules for auditing accesses

made in EHR systems. Our goal is to test, through simulation and theoretical analyses, if

these flags occur at a higher rate than expected, and therefore serve as a valid means to

detect inappropriate behavior. In order to achieve this goal, we solve three sub-problems

that are listed below.

1. Investigate the difference between observed and expected high-risk accesses. We

introduce an approach to investigate the difference between the observed and ex-
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Auditing System

Audit 
log

Flagged Accesses
Manual Review

True Positive

False Positive

Accesses Not Flagged
No review

Rules

Last name

Co-worker

Neighbor

Pre-defined flag criteria specified by Privacy Officers as 
High-Risk behavior.

Figure 1.1: The process by which an HCO investigates accesses to EHRs deemed to be of
high-risk.

pected rate of high-risk accesses in EHR systems for typical expert-specified rules.

If a rule holds merit, we anticipate that the observed rate of high-risk accesses will

be higher than the expected rate of high-risk accesses to the EHR system. Using

one week of data from Vanderbilt University Medical Center (VUMC), we show that

there are many rules for which this difference is statistically significant.

2. Select and prioritize rules based on deviation between observed and expected.

We introduce an approach for selection and prioritization of the high-risk rules. This

approach is based on the magnitude of the deviation between the observed and ex-

pected frequency of high-risk accesses for each rule.

3. Prioritize flagged high-risk accesses for investigation. To improve the manageabil-

ity of a manual review process in resource constrained environments, explanation-

based filtering [10] can be utilized to prioritize the flagged accesses for manual

review. Note that rule-based flagging and explanation-based filtering are comple-

mentary approaches to detect inappropriate behavior. While rules capture the high-

risk behavior, explanations reduce the set of accesses that need to be investigated

to a set of un-explained accesses. We find synergy between these two auditing ap-

proaches and introduce an explanation-based mechanism to prioritize high-risk ac-
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cesses flagged by rules for manual investigation. We show that many, though not all,

of the high-risk accesses can be explained away with clinically justifiable reasons.

Challenge: 
Prompt Detection 
of Insider Misuse 

Approach 2

Approach 1

Rule-Based 
Auditing

Effectiveness 
in practice?

We use statistical methods, 
such as chi-square test to 

evaluate effectiveness of rules.

Data-Driven
Auditing

Use Patient Encounter 
and diagnoses information

Build Supervised Machine 
Learning Model that predicts 

probability of access to patient 
EHR

Oblivious to Statistical 
Properties of EHR data

Limitation

To overcome this limitation Flagging and Ranking 
Suspicious Accesses 

for review

Leading To

Figure 1.2: Summary of challenges, approaches and contributions in this work.

Despite its potential, rule-based auditing system is inherently limited by its reliance

on predefined rules, which themselves are often based on domain expertise. However, in

practice, there are many possible reasons for inappropriate access. As a result, the access

coverage (i.e., proportion of accesses effectively monitored by high-risk rules) is low. An-

other limitation of rule-based auditing system is that the rule-based flagging of high-risk

accesses is dependent on the correctness and completeness of EHR data. Incorrect EHR

data (e.g., the wrong patient’s last name is entered into the EHR system) leads to gaps in

identifying a potential high-risk access. Similarly, an incomplete address or a P.O. Box

would lead to gaps in flagging a potentially high-risk access according to the Residential

Proximity or Residential Street rule.

To this end, we propose an automated suspicious access detection system which can

overcome above mentioned limitations of rule based auditing system. We hypothesize that

the department from which an employee will access a patient’s EHR and the time of this ac-

cess depends upon the patient’s clinical encounter times and diagnosis. We believe that the

patient clinical encounter and diagnosis information can be used to predict which hospital
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department’s employee will access patient’s EHR and when will the access occur. We pro-

pose an automated suspicious access detection system based on supervised machine learn-

ing technique that learns access patterns of various hospital departments using the audit

log of accesses and corresponding patient’s clinical encounters and diagnosis. This system

predicts the probability of access of a patient’s record on a given date by an employee of a

given hospital department. The value of probability of occurrence for each access can be

used to identify suspicious accesses in the audit log, which according to the system are the

accesses predicted to have zero/low probability of occurrence. This automated suspicious

access detection process can reduce the time and manual effort in identifying suspicious

accesses to EHR. The suspicious accesses detected by our system can be investigated by

administrative officers to identify if the suspicious access is in fact an inappropriate access.

This fast detection of insider misuse can reduce further harm to the sensitive patient health

information. Figure 1.2 summarizes challenges, approaches and contributions in this work.
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Chapter 2

Background

In this chapter, we first provide an overview of the different frameworks and techniques

we utilize in this thesis. Next, we review works related to the Electronic Health Record

(EHR) auditing systems.

2.1 Background

2.1.1 Supervised Machine Learning

Machine learning is the process of analyzing the data by establishing the relationship

between multiple features in the data to solve various problems including classification,

prediction etc. Machine learning algorithms are classified into supervised and unsupervised

algorithms. A supervised machine learning algorithm learns from a dataset of training

instances that are represented using same set of features with known associated labels. It

applies the learned relationships to predict labels for future new instances of data [14]. For

example, given a training set of patient disease diagnoses mapped to a department that treats

the diseases, supervised machine learning learns from this dataset and builds a function to

best determine the department from the disease diagnoses. Then, given a set of disease

diagnoses withheld from the training dataset, the function will predict a department that

treats the diseases.

Random Forest Classifier. Random forest classifier is an ensemble learning algorithm

for building a predictor with a set of decision trees which grow in random subset of data

[15]. Random forest fits the set of decision tree classifiers on the various subsets and utilizes

averaging to achieve optimal predictive accuracy and controls over-fitting of data.

Classifier Performance. The performance of random classifier is evaluated using area

under the receiver operating characteristics curve (AUC ROC) metric [16]. ROC curve is a

6



graph of true positive rate vs false positive rate of a classifier.

2.2 Related Work

Various auditing strategies have been proposed to detect inappropriate insider accesses

in EHRs. Boxwala et al. have introduced an automation strategy based on statistical

and supervised machine-learning techniques to detect suspicious accesses to EHRs [9].

This strategy uses audit logs and EHR data to construct features to learn predictive mod-

els that rank suspicious and non-suspicious accesses according to their risk. The features

constructed in this technique are user-related, patient-related, record-access-events-related,

encounter-related, and user-patient-relationship-related. The encounter-related features in

this technique only cover Encounter location type and patient visits. Our technique focuses

on different types of encounters and encounter times. Also, their technique includes Patient

features based on patient type such as whether patient is VIP or patient is also an employee,

it does not use patient’s diagnosis for feature construction.

Recognizing that not all suspicious accesses are affiliated with a specific pattern, a vari-

ety of frameworks have been developed to detect anomalous accesses based on deviations

from expected behavior [17], [18].

Fabbri et al. have proposed notion of an explanation-based auditing system (EBAS)

considering that most accesses to EHRs occur for a valid clinical or operational reason.

EBAS works by filtering out accesses to the EHR according to explanations generated

automatically from the data by a mining algorithm [10]. EBAS is also equipped to explain

reasons for an access to EHR based on diagnosis information [19].

While all of these auditing strategies offer certain benefits over the simple rule-based

auditing system, currently approaches based on the latter are in common use by HCOs.

Hence, we first evaluate the effectiveness of the auditing rules in identifying inappropriate

accesses to EHR and propose methods to improve effective use of auditing rules. Rec-

ognizing the inherent limitations of auditing rules which lead to low access coverage, we
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propose an automated auditing system that utilizes patient clinical encounter and diagno-

sis information to automatically detect suspicious accesses to EHR, which has not been

investigated in the previous works on EHR auditing.
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Chapter 3

Flagging and Ranking Suspicious Accesses in Electronic Health Record Systems Using

Auditing Rules

Healthcare organizations (HCOs) often deploy rule-based auditing systems to detect

insider threats to sensitive patient health information in electronic health record (EHR)

systems. These rule-based systems define behavior deemed to be high-risk a priori (e.g.,

family member, co-worker access). While such rules seem logical, there has been little

scientific investigation into the effectiveness of these auditing rules in identifying inappro-

priate behavior. Thus, in this work, we introduce an approach to evaluate the effectiveness

of individual high-risk rules and rank them according to their potential risk. We investi-

gate the rate of high-risk access patterns and minimum rate of high-risk accesses that can

be explained with appropriate clinical reasons in a large EHR system. An analysis of 8M

accesses from one-week of data shows that specific high-risk flags occur more frequently

than theoretically expected and the rate at which accesses can be explained away with five

simple reasons is 16 - 43%.

3.1 Methodology

We hypothesize that a high-risk audit rule holds merit when the observed frequency

at which it fires is higher than what would occur due to routine daily behavior. To test

this hypothesis, we compare the observed frequency of high-risk accesses in a large EHR

audit log with what one might expect to observe at random. We apply a goodness of fit

test to determine if there is a significant difference between the observed and expected

frequencies. We further examine the observed high-risk accesses flagged by each rule to

determine the minimum rate in that these accesses can be explained with clinical reasons.

9



3.1.1 Data overview

The data investigated in this study is drawn from the VUMC EHR system. Table 3.1

depicts the data investigated in this study. These data are an integration of EHR audit log,

employee personal information, patient personal information (e.g., names, dates of birth,

and residential addresses) with information about the department for which the employee

is affiliated (e.g., the Anesthesiology department).

Table 3.1: Summary of the VUMC data used in this investigation.

Total Accesses 7.5M
Repeat Accesses 6.9M

Self-Accesses 21K
Unique Non-Self Accesses (LEP ) 710K

Unique Employees (E) 13K
Unique Patients (P) 152K

Unique Departments 2.1K

We designate an access as a Self-access when the employee has accessed his/her own

record. We assume this occurs when the first name, last name and date of birth of the

employee and patient in the access are the same. We designate an access as a Repeat

access when the employee accesses the record of the same patient earlier in the week. All

of the accesses except the first access are considered as Repeat accesses.

3.1.2 Types of high-risk behavior

While there are many types of high-risk behavior, we selected the following types for

our experiments through background analysis. Specifically, we investigate five high-risk

rules in this study:

1. Co-Worker: The EHR user and patient are both employees of the VUMC.

2. Department Co-Worker: The EHR user and patient work in the same VUMC de-

partment.

10



3. Last Name: The EHR user and patient have the same last name.

4. Geographic Proximity: The EHR user lives within 0.25 miles of the patient.

5. Residential Street: The EHR user lives on the same street as the patient. In addition,

we added one rule to ascertain if the results of our experiments are merely an artifact

of the data or if they are indicative of suspicious behavior:

6. First Name: The EHR user and patient have the same first name.

3.1.3 Method overview

In this section, we provide an overview of the method to test our hypothesis and to

determine the minimum rate of high-risk accesses explained with a clinical reason, as de-

picted in Figure 3.1.

The steps in this method are defined broadly as follows:

1. Determine the observed frequency of the high-risk accesses.

2. Determine the expected frequency of high-risk accesses by:

(a) Using simulations with random samples of users and patients.

(b) Using simulations with permutations of users and patients.

(c) Using a theoretical formulation.

3. Compare the observed frequency of high-risk accesses to the expected frequency

of high-risk accesses, and determine the significance of the deviation between the

observed and expected frequency.

4. Use the explanation-based method to identify the observed high-risk accesses that

can be explained with clinical reasons, and determine the minimum rate that observed

high-risk accesses can be explained.
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Figure 3.1: The steps to compute the observed and expected frequencies of high-risk ac-
cesses, and the minimum rates that high-risk accesses can be explained.
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3.1.4 Observed and expected frequencies of high-risk accesses

E1 P1
E2 P2
E3 P3
E4 P4
E5 P5

E3 P3
E4 P4
E1 P1

E3 P1
E4 P3
E1 P4

E4 P3
E2 P4
E3 P1

Audit Log Simulated Accesses
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Permute Patients
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Random Sample
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P1 E2 P3

E5 P4
E3 P1

Employee List (E)
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Simulated Accesses 
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E4
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P3
P4
P5

Random Sample

Random Sample

Employee-Patient
Pairing

Observed 
Accesses (S)

Employee 
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Patient 
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Figure 3.2: An overview of the process for sampling the observed accesses and simulation
of the expected accesses.

Figure 3.2 depicts the method to obtain the observed accesses by sampling the audit log

and simulation of the expected accesses using permutation and random sampling methods.

We explain these methods in detail in the following sections.

Observed. We obtain the observed frequency of high-risk accesses empirically from

the set of unique employee-patient pairs LEP, where E is the list of employees (or users) and

P is the list of patients in the employee-patient access pairs LEP. These pairs are obtained

from the 710,000 unique accesses in the audit log and are devoid of any self-access. We

select a random sample S of 100,000 pairs from LEP, each of which is assessed for the

high-risk criteria. We count the occurrence of the high-risk accesses across the sample and

calculate the frequency of the high-risk accesses in the sample as: |high-risk accesses| / |S|.

Expected. To simulate accesses and obtain an expected frequency distribution of high-

risk behaviors we apply both permutation and random sampling methods. We use two

distinct methods to confirm these simulation methods do not result in selection bias and
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that the sample selected by our methods are representative of the population. We compare

the results of the simulations to verify if the results lead to the same conclusion.

Expected: Permutation. In this approach, we construct simulated accesses by shuf-

fling the data points in S. We use two types of permutation methods to simulate accesses and

verify that results of both the methods lead to the same conclusion. 1) Permute Patients:

This method shuffles the list of patients while holding the list of employees in sample S

constant. 2) Permute Employees: This method shuffles the list of employees while fixing

the list of patients in sample S.

Expected: Random Sampling. We obtain the employee list E and the patient list P

from the set of employee-patient pairs LEP. Next, we select a random sample of 100,000

employees SE and 100,000 patients SP (without replacement) from E and P, respectively.

We then construct simulated accesses by randomly matching the records in SE and SP.

For each simulation, we calculate the frequency of high-risk accesses in sample S.

Expected: Theoretical Formulation. The expected frequency of high-risk accesses

is computed empirically, using the probabilities of high-risk accesses occurring among the

employees and patients in sample S. We determine the expected frequency for five of the

six rules presented above.

The expected frequency of the high-risk accesses using probabilities is computed as

∑
|x|
i=1 PEiPPti, where, PEi = |Employee with attribute value x| / |SE|, PPti = |Patient with

attribute value x| / |SP|, attributes: [last name, first name, residential street name, work

department name] and SE and SP are the lists of employees and patients in S, respectively.

Experimental Evaluation. We run 10 experiments each for the randomization and per-

mutation methods to compute the observed and expected frequencies of high-risk accesses.

We compute the ratio of the mean observed frequency to mean expected frequency for each

of the high-risk rules. We also compute the percentage of observed and expected high-risk

accesses for each high-risk type to determine the rate of observed and expected high-risk

accesses.
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Minimum rate of high-risk accesses explained. While there are many operational

and clinical reasons that can explain the reason for accesses in an EHR, we select pri-

mary treatment, payment and healthcare operations (TPO) [20] to ascertain the extent to

which high-risk accesses can be explained. We specifically focus on explanations in the

form of 1) scheduled appointments, 2) ordered lab results, 3) ordered medications, 4) ad-

mission, discharge, and transfer events, and 5) clinical documentation. A high-risk access

can have multiple explanations (e.g., patient had a scheduled appointment with the access-

ing employee, and patient also had a lab order with the accessing employee). We use the

explanation-based approach to prioritize the observed high-risk accesses for further inves-

tigation by administrative officers, with unexplained accesses considered as high priority

for the investigation. The explained accesses can be ranked using the type and number of

explanations available for the access.

Since we do not exhaust the list of possible reasons, we compute the minimum rate

at which high-risk accesses can be explained for each high-risk rule. Additional plausible

explanations for the access exist (e.g., user performed surgery on the patient) and could be

invoked to raise the rate.

Goodness of fit chi-square test. We apply a χ2 test to determine the goodness of fit

between the observed (empirical) and expected (simulated) number of occurrences of high-

risk accesses. This test is designed to ascertain if there is a significant difference, such that

these deviations are likely not the result of chance alone. The measure of goodness of fit is:

χ
2 =

n

∑
i=1

(Oi−Ei)
2

Ei
,

where Oi and Ei are the observed and expected high-risk event frequencies of type i, re-

spectively.

We test this value against a χ2 distribution with 1 degree of freedom. This is because

there are two categories: 1) High-risk accesses, 2) Non-high-risk accesses. We perform
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this test at the 0.01 significance level (i.e., we accept the alternative hypothesis when the

value result is below this level).

3.2 Results

In this section, we summarize the deviation of the observed from the expected high-

risk access rates obtained by four methods 1) Permute Patients, 2) Permute Employees, 3)

Random Sampling and 4) Theoretical formulation, for each high-risk access rule. We begin

by presenting the rate of observed and expected high-risk accesses. Next, we summarize

the minimum explanation rate for the high-risk accesses. Finally, we report the statistical

significance of the deviation between the observed and expected high-risk access rates.

3.2.1 Observed versus expected frequencies of high-risk access.

Table 3.2 summarizes the observed to expected frequency ratios for the various high-

risk access rules. It was found that the ratio of observed to expected frequencies varies

from 0.99 to 4.33 for the high-risk behavior rules. The observed frequency of the high-risk

accesses is higher than the expected frequency for all the high-risk rules except for the

HCO Co-Worker rule, which is approximately 1 (at 0.99).

Table 3.2: Observed to expected frequency ratio for the high-risk access rules.

Observed / Expected
High-Risk Rule Permute Patients Permute Employees Random Sampling Theoretical

HCO Co-Worker 1 1 0.99 1
First Name 1.17 1.17 1.15 1.12
Last Name 1.53 1.5 1.54 1.72
Geographic Proximity 2.51 2.34 2.54 Not computed
Residential Street 4.04 4.22 4.33 3.8
Department Co-Worker 3.22 3.14 3.25 2.41

As expected, the ratio of observed to expected frequencies for the First Name high-

risk class ranges from 1.12 to 1.17 for the four methods, suggesting there is no significant

deviation between the observed and expected frequencies for this rule.
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While the Geographic Proximity rule identifies if the patient and employee live within

a fixed distance (0.25 miles), the Residential Street rule identifies if the patient and user

live on the same street. Limiting the high-risk criteria to street name results in the higher

ratio of observed to expected for the Residential Street rule than the ratio of observed to

expected for Geographic Proximity rule.

Table 3.3: The observed versus expected percentage for the high-risk access rules.

High-Risk Rule Observed Expected
Permute Patients Permute Employees Random Sampling Theoretical

HCO Co-Worker 3.84% 3.84% 3.84% 3.86% 3.84%
First Name 0.25% 0.21% 0.21% 0.21% 0.22%
Last Name 0.14% 0.09% 0.09% 0.09% 0.08%
Geographic Proximity 0.16% 0.07% 0.07% 0.07% Not computed
Residential Street 0.12% 0.03% 0.03% 0.03% 0.03%
Department Co-Worker 0.04% 0.01% 0.01% 0.01% 0.02%

Table 3.3 shows the percentage of observed and expected high-risk accesses for each

high-risk type in a sample of 100,000 accesses. The average percentage of observed high-

risk accesses ranged from 0.03% to 3.8%. Though the percentage of high-risk accesses for

HCO Co-Worker is higher than other types (by more than 3%), the observed frequency of

high-risk accesses does not deviate from the expected (see Table 2). This suggests that these

accesses can be assigned the lowest priority for investigation. The percentage of observed

and expected high-risk accesses for the rest of the high-risk rules is less than 1%, but given

that millions of accesses are committed per week, this small percentage yields non-trivial

numbers of high-risk accesses.

3.2.2 Minimum rate of high-risk access explained away.

Table 3.4 summarizes the average rate (over 10 experiments) at which the observed

high-risk accesses can be explained with clinical reasons. Notably, the selected set of

explanations accounted for less than 50% of the accesses.

Table 3.5 summarizes the distribution of the explanations per high-risk rule. The highest

number of high-risk accesses is explained with the Clinical documentation explanation
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Table 3.4: The rate at which high-risk alerts would be explained away.

High-Risk Rule Observed Accesses Explained Away Standard deviation
HCO Co-Worker 38.78% 0.67
First Name 35.59% 2.54
Last Name 21.43% 2.88
Geographic Proximity 24.79% 3.13
Residential Street 16.11% 4.88
Department Co-Worker 43.90% 9.32

for all high-risk rules, with the percentage of accesses explained in the range of 15% to

43%. Scheduled Appointment explains 2% to 8% of the high-risk accesses. The other

four explanations explain less than 5% of the high-risk accesses for all high-risk rules. The

Clinical Documentation explanation shows high standard deviation (9.26) for the high-

risk rule Department Co-Worker because of two out-lier experiments with the highest and

lowest number of explained accesses, respectively.

Table 3.5: Distribution of explanations per high-risk rule (STD DEV = Standard deviation).

% Observed Accesses Explained Away
Scheduled Appointment Ordered Lab Ordered Medications (Admission, Discharge and Transfer) Clinical Documentation

High-Risk Rule % STD DEV % STD DEV % STD DEV % STD DEV % STD DEV
HCO Co-Worker 7.5 0.3 1.28 0.22 0.006 0.01 0.43 0.05 37.94 0.67
First Name 8.76 1.29 1.59 0.67 0 0 0.85 0.54 34.6 2.51
Last Name 2.23 1.01 0.43 0.37 0.22 0.35 0.22 0.35 20.69 3.15
Geographic Proximity 6.33 1.47 1.07 0.65 0 0 0.35 0.49 24.25 3.38
Residential Street 2.99 1.5 0.69 0.37 0 0 0.15 0.33 15.68 5.06
Department Co-Worker 8.26 4 1.4 2.02 0 0 1.1 1.43 43.6 9.26

3.2.3 Hypothesis test.

Table 3.6 shows the χ2 result for a sample S of 100,000 unique accesses that are de-

void of self-accesses. The expected number of accesses for this experiment was simulated

through the permutation method (i.e., shuffling the list of patients and keeping list of em-

ployee fixed in the observed accesses). It should be noted that we did not include the Co-

Worker rule in the χ2 test because the results showed that there was no difference between

the observed and expected accesses for this high-risk class.

The result of the χ2 for high-risk rules Last Name, Geographic Proximity, Residential

Street and Department Co-Worker indicated a probability < 0.0001. This is below the 0.01

significance level, such that we accept the alternative hypothesis for these high-risk rules
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(i.e., the difference between the observed and expected frequency of high-risk accesses

for these rules is statistically significant). The result of the χ2 for First Name indicated

a probability of 0.0113, which is above the 0.01 significance level, such that we reject the

alternative hypothesis (i.e., there is no significant difference between observed and expected

frequencies of high-risk accesses). This is notable because it suggests that our control rule

is functioning correctly.

Table 3.6: Results of the χ2 test for goodness of fit between the observed and expected
with one degree of freedom per experiment. * denotes: Significance at 0.01 level.

High-Risk Rule Observed Expected Chi-Square Probability
First Name 245 208

6.42 0.0113
Non-High-Risk 99755 99792

Last Name 140 91
25.87 <0.0001*

Non-High-Risk 99860 99909

Geographic Proximity 166 66
150.1 <0.0001*

Non-High-Risk 99834 99934

Residential Street 115 28
267.29 <0.0001*

Non-High-Risk 99885 99972

Department Co-Worker 36 11
54.58 <0.0001*

Non-High-Risk 99964 99989

3.3 Discussion

This study examined the extent to which high-risk EHR access rules are plausible in

practice. Our empirical investigation illustrates that the observed rate at which high-risk

rules are triggered is higher, at a statistically significant level, than what one would expect

at random for several typical classes of high-risk behavior. This significant deviation sug-

gests that there may be systematic EHR user behavior that requires further investigation,

implying those rules may hold merit. Still, not all rules deviate to the same degree. In this

respect, we further believe that the magnitude of the deviation of the observed frequency of
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high-risk accesses from their expected frequency obtained from each high-risk class may

be a plausible measure to assist in the prioritization of auditing rules in emerging game

theoretic frameworks [21].

1

Residential Street

37% of the accesses flagged by
the Geographical Proximity rule  
were not flagged by the 
Residential Street rule.

15% of the accesses flagged by 
the Residential Street rule were not flagged by 
the Geographical Proximity rule.

Geographic Proximity

Figure 3.3: Geographic Proximity and Residential Street rules yield different results.

Geographical Proximity and Residential Street rules are designed to capture the same

high-risk behavior (i.e. a user accessing records of a patient living in close geographic

vicinity of the user). However, these two rules yield different results in terms of number

of accesses flagged and the deviation of observed frequency from expected frequency of

flagged accesses. Notably, the user and patient in 15% of the accesses flagged by the Res-

idential Street rule do not live within 0.25 miles of each other, and the user and patient in

37% of the accesses flagged by the Geographical Proximity rule do not live on the same

residential street, as depicted in Figure 3.3. Also, the length of the streets in the city varies

from 0.4 miles to over 10 miles leading to a non-uniform application of the geographic

vicinity criteria. This result indicates that rule definitions play an important role in effec-

tively capturing high-risk behavior.

Despite their potential, high-risk access rules often have a high false positive rate. This

makes them prohibitively expensive for HCOs to systematically investigate, which is a

concern given the limited budgets available to privacy officers. However, we show that

high-risk access rules can be complemented through an explanation-based model, such
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that many accesses can be explained away by valid TPO reasons (16% to 44% depending

on the high-risk rule at minimum). We believe this is notable because it suggests that high-

risk rules and explanations are not correlated. Nonetheless, we believe that, in this setting,

the explanations can be used to prioritize high-risk accesses for manual investigation. The

unexplained accesses can be considered high priority for investigation, while the explained

accesses can be ranked using the type and number of explanations available for the access.

There are, however, several limitations of this study that we wish to highlight for future

investigations. First, an explanation-based system relies solely on the data stored in the

database to generate explanation for an access. Missing information (or non-documented

relationships) may result in few unexplained appropriate accesses. For example, EHR

systems maintain records of patient appointments with doctors, but they do not explicitly

record the relationship between the doctor and the nurse working together at the appoint-

ment. Thus, the system cannot readily explain the access of patient’s record by the nurse

working with the doctor, though the access in this case is appropriate. Other research has

posited enhancing explanations with additional data learned from diagnosis information

[19]. Second, in this study we only consider simple high-risk rules. In a future investiga-

tion, we plan to study more complex and nested high-risk rules. Fourth, this study suggests

that different high-risk rules yield different results, but does not investigate the reasons for

the differences.

3.4 Conclusions

In this chapter, we examined the rate of high-risk access rules in the electronic health

record of a large healthcare organization. Specifically, we compared the observed and

expected rates to ascertain the extent to which such rules are potentially useful in practice.

The primary finding of this investigation was that such rules appear to detect behaviors that

are statistically significantly different than what would transpire under random activities.

There are many reasons why such deviation might transpire, but our investigation shows
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that such rules should not be dismissed.
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Chapter 4

Flagging and Ranking Suspicious Accesses in Electronic Health Record Systems Using

Machine Learning Based Prediction Methods

Hospitals are facing steep challenges to protect patient data in EHR from insider threat.

As per HIPAA Breach Notification Rule [22], hospitals are required to maintain an audit

log of accesses to EHR and report the breaches within a specified time frame. To detect

the breaches, the audit log is manually reviewed and investigated by the administrative

officers. However, given the high volume of accesses per day in large hospitals [8], it

may not be feasible to detect the breaches within the specified time frame. Hence, to

enable prompt detection of insider misuse, hospitals need automated inappropriate access

detection mechanisms.

During the course of care, a patient can have multiple clinical encounters, such as Ap-

pointment, Labs, etc. EHR system records information for each of these patient encounters

including the encounter date. When a hospital employee accesses a patient’s records, that

information is recorded in the audit log as an access along with the access date. An access

by an employee can occur on/before/after a patient’s encounter. For example, a surgeon ac-

cesses a patient’s records prior to the surgery encounter whereas a lab technician accesses

a patient’s records after the labs have been ordered by the physician. We observe that, the

patient encounter and audit log information can be utilized to identify suspicious accesses

to patient EHR. More specifically, encounter and access dates can be utilized to predict the

probability of access on a given date for the observed encounters. If the probability of ac-

cess is below a certain threshold and the access occurs, then the access can be automatically

flagged as a suspicious access.

We leverage supervised machine learning technique to build a prediction model that

utilizes a patient’s encounter and diagnosis information to predict the probability of access
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to patient’s EHR. We observe that, access patterns may vary significantly across different

hospital departments. Hence, we construct three different types of models for prediction:

1. Unique Model for Each Department: This model predicts the probability of access

of a patient’s EHR by employee of the given department on a given date,

2. Unique Model for Each Cluster of Departments: This model predicts the probability

of access of a patient’s EHR on a given date by employee of any department from

given cluster of departments and

3. Single Model for All Departments: This model predicts the probability of access of

a patient’s EHR on a given date by an employee who can belong to any department.

4.1 A Motivating Scenario

We hypothesize that the access pattern of a department is determined by patient’s spe-

cific encounter types and diagnoses. To test our hypothesis, we analyze the audit log of two

months from VUMC. We define a metric using access date and encounter date as (access

date - encounter date), to quantify how far apart an access occurs from an encounter. We

use the prior access and encounter information stored in the audit log to derive a distri-

bution for our metric. A large hospital like VUMC can have multiple departments. Each

department can exhibit a different pattern for patient accesses. Hence, we derive distribu-

tions for our metric in context of each department. Figure 4.1. shows the distribution of

our metric for four different departments. To further understand the statistical properties of

these distributions we harness skew and kurtosis.

Table 4.1. lists the statistics that describe the access distributions presented in Figure

4.1. Skewness is a measure of the asymmetry of a probability distribution of a variable.

Zero skew value indicates that the distribution is symmetric about the mean whereas neg-

ative skew value indicates that the distribution is left tailed i.e. left tail of the distribution

is heavier than the right tail and a positive skew value means that the distribution is right
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Figure 4.1: Distribution of Metric (Access Date - Encounter Date) for Four Different De-
partments, Encounter Type = ANY.
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tailed [23]. We performed this statistical analysis for all the 1737 departments in our data

and we observe that the Skew values range from 0 to 9.89. It should be noted that all the

departments had distribution with positive skew value i.e. there were more accesses after a

clinical encounter compared to before the encounter for all departments.

Kurtosis is a measure of tailedness / peakedness of a distribution. A high value of kurto-

sis means the distribution has heavy tails compared to a normal distribution and a low value

of kurtosis means that the distribution has light tails compared to a normal distribution. We

observe that the kurtosis values for the departments in our dataset range from -3 to 99.02

which suggests that the tailedness varies for all department distributions. Out of the four

departments in the table 4.1, the Anticoagulation Clinic has a negative kurtosis value which

means it is lightly tailed and has flat peak, and Anesthesiology department has high value

of kurtosis which means it is heavily tailed and has a sharp peak.

Table 4.1: Statistics of Distribution of Metric (Access Date - Encounter Date) for Four
Different Departments, Encounter Type = ANY.

Department Minimum Maximum Mean Variance Skew Kurtosis
Anesthesiology 1 9212 480.03 1057367.45 5.93 43.62

Anticoagulation Clinic 5 2425 526.78 339468.04 0.98 -0.07
Liver Transplant Program 2 1038 153.12 31418.53 1.76 4.62

Nephrology 1 2752 273.5 151441.54 2.99 13.64

We perform similar analysis for all VUMC departments and the results enable us to

conclude that access patterns vary significantly across different departments.

A clinical encounter is further classified into different types including appointment, labs

etc. To assess whether the distribution of our metric for a department changes for different

encounter types, we evaluate the distribution of our metric for each encounter type. Figure

4.2 shows that the distribution for two different encounter types (anesthesiology-case and

appointment) of the Anesthesiology department are different. These results inform us that

the prediction model needs to be aware of encounter types.
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Figure 4.2: Distribution of Metric (Access Date - Encounter Date) for Anesthesiology
Department, Encounter Type: 1) Appointment, 2) Anesthesiology Case

4.2 Methodology

4.2.1 Data Overview

We perform experiments on the data from VUMC. Table 4.2. summarizes the statistics

of the data used in this study.

Table 4.2: Summary statistics of the data used in this study.

Patients Employee Departments Encounter Types ICD Chapters Access Dates Encounter Dates
433254 1737 54 21 2017/10/01-2017/11/30 2017/10/01-2017/11/30

Figure 4.3 depicts the relationships in our dataset. For each access, the Audit log

records, ID of the patient whose records are accessed, ID of the employee who made the

access and the time of access. The EHR stores information for each clinical encounter of

a patient by recording the encounter type and encounter time. EHR system also stores pa-
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tient diagnosis in terms of International Classification of Diseases, Ninth Revision (ICD-9)

and Tenth Revision (ICD-10) codes [24]. The ICD codes are mapped into 21 ICD chapters

depending on the subject of the ICD codes. To reduce the size of the feature matrix for pre-

diction models we use ICD chapters instead of ICD codes. In addition, the VUMC dataset

includes the list of departments each employee is affiliated with.

Audit Log

Patient ID Employee ID Access Time

Patient Information

Patient ID Encounter Information ICD Codes

Employee Information

Employee ID Department Affiliations

Patient Encounters Information

Encounter Type Encounter Time

ICD Code to ICD Mapping

ICD Code ICD Chapter

Figure 4.3: Input Data Integration.

4.2.2 Feature Extraction

We constructed features using our metric (access date - encounter date) for each en-

counter type and diagnosis information (ICD chapters). Table 4.3. depicts patient data

example.

Table 4.3: Patient Encounters and ICDs

Patient Appointment Labs ICD Chapters
P1 2017/10/04 NO 1
P3 2017/10/07 NO NO
P4 2017/10/07 2017/10/06 21

Features: Encounter Information. Our dataset includes 54 types of clinical encoun-

ters e.g. appointment, lab order (labs), medication order, anesthesiology case etc. For each
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patient in our data, we obtain the encounter-date i.e. when each patient had these encoun-

ters. We then obtain the absolute difference between access date and encounter date for

each of these encounters of the patient. If the patient had multiple occurrences of same

type of encounter we consider only the encounter date that is closest to the access date. For

the encounters that did not occur for a patient we default the value to 100.

Features: Diagnosis Information. The EHR system stores ICD codes for each pa-

tient. We obtain the ICD chapters for each patient by mapping these ICD-codes to ICD

chapters. If a patient has a ICD chapter assigned in EHR, the value is considered as 1 for

corresponding chapter in the feature matrix, else it is default to 100.

Feature Matrix. We construct feature matrix using the audit log (sample shown in Ta-

ble 4.4), the metric data (access date - encounter date) for 54 encounter types and diagnosis

(ICD chapter), for 433254 patients over two-month period as shown in Table 4.5.

This feature matrix covers following cases:

• Patients had clinical encounters and their EHR was accessed by hospital employees,

• Patients did not have any clinical encounters but their EHR was accessed by hospital

employees and

• Patients had clinical encounters but their EHR was not accessed by any hospital em-

ployee.

Table 4.4: Audit Log Sample

Patient Access Date Department of Employee in the Access
P1 2017/10/04 D1
P1 2017/10/05 D2
P3 2017/10/07 D3
P4 2017/10/04 D4
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Table 4.5: Feature matrix Sample

Patient Access Date Department of Employee in the Access Appointment Labs - ICD Chapter 1 - ICD Chapter 21
P1 2017/10/04 D1 0 100 - 1 - 100
P1 2017/10/05 D2 1 100 - 100 - 100
P3 2017/10/07 D3 0 100 - 100 - 100
P4 2017/10/04 D4 3 1 - 100 - 1

4.2.3 Classifier construction

We evaluate four classifiers including Random Forest Classifier (RFC), Stochastic Gra-

dient Descent, Gaussian Naive Bayes and Logistic Regression. The results show that RFC

performs better than the other models hence, we primarily include results of RFC in this

study (see section 4.3.1). Random forest is an ensemble learning approach for building a

predictor with a set of decision trees which grow in random subset of data [15]. Random

forest fits the set of decision tree classifiers on the various subsets and utilizes averaging to

achieve optimal predictive accuracy and controls over-fitting of data.

We build RFC using scikit-learn which is a python machine leaning library [25]. We

train and test the classifier on five-fold cross-validation. In a n-fold cross-validation the

dataset D is randomly split into n mutually exclusive subsets D1, D2, ...., Dn of same size

to ensure every sample in the dataset D has equal probability of appearing in the training

and test set [26]. The classification model is trained and tested n times with the training

data as D/Dt and tested with Dt, where t ε 1, 2, ...., n.

Model Types. We trained three separate models:

1. Unique Model for Each Department,

2. Unique Model for Each Cluster of Departments and

3. Single Model for All Departments.

The feature matrix remains same for all three models. The models differ in the output

matrix, the ‘Unique Model for Each Department’ predicts the probability of access of a

patient’s EHR by employee of the given department on a given date, ‘Unique Model for
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Employee ID, Department Affiliations Encounter Information, Disease Diagnosis 
Patient EHRAudit Log

Patient ID, Employee ID, Timestamp 
Employee Information

Feature Extraction

Data

Split into Training Data and Test Data for 5 Cross-Validations

Build Model
RandomForestClassifier (#Trees=10, Max Depth=10)

Test Model Predictions, Record AUC, 
Estimate Feature Importance

Training Set
Labeled Features

Test Set
Features Without Labels

Build Model with K Important Features
Evaluate Model Using AUC

Tune Hyper-Parameters,
Identify Best Model

Test Best Model, Record AUC

Test with Real and 
Simulated Accesses

Record AUC

Compare with Model 
with Only Real Accesses

Compare with Model 
with Default Parameters

Figure 4.4: Steps to Build and Evaluate Prediction Model

Each Cluster of Departments’ predicts the probability of access of a patient’s EHR on a

given date by employee of any department from given cluster of departments and ‘Single

Model for All Departments’ predicts the probability of access of a patient’s EHR on a given

date by an employee who can belong to any department. In this study, we used a prediction

time window of one day. In future, we would like to experiment with different time window

sizes. Table 4.6 depicts the output matrix for these models.

Table 4.6: Model Outcome Matrix

Unique Model for Each Department Unique Model for Each Cluster of Departments Single Model for All Departments
Patient Access Date Access by Department ‘Dn’ Access by Any Department in Cluster ‘Cn’ Access by Any Department

P1 2017/10/04 1 0 1
P1 2017/10/05 0 0 0
P3 2017/10/07 1 0 1
P4 2017/10/04 0 1 1
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Department Clustering. We use the Louvain method for community detection in large

networks to obtain department clusters [27]. Louvain method is a heuristic method based on

greedy network modularity optimization. Modularity of a network is measure of strength

of division of a network into modules/clusters/communities [28]. A network with dense

connections between the nodes within modules but sparse connections between nodes in

different modules has high modularity value. The data used for detection of department

communities is the list of patients accessed by each department.

4.2.4 Model Evaluation and Optimization

Area Under ROC Curve (AUC ROC). We use the average area under the receiver

operating characteristics curve (AUC ROC) of all cross-validations to evaluate the perfor-

mance of the classifier [16].

Feature Importance Evaluation, Build Model with Important Features. Impor-

tance of a feature in the input feature matrix with respect to the predictability of the target

variable is computed using the relative depth of the feature used as decision node in a tree.

Features that are used at the top of a decision tree contribute to the decision of a larger

fraction of input sample. The relative importance of each feature is measured using the

expected fraction of input samples they contribute to [25]. We estimate the importance of

each feature in the feature matrix of the predictor. We rank the features according to their

importance level then, we identify the importance level of 10th feature from the top and

select this importance value as a threshold importance level. We build a new model with

only the features having importance value equal or above this threshold importance level.

We compute the AUC ROC of the new predictor with these k important features, with five-

fold cross-validation. We then compare the AUC ROC of predictor with all features and

predictor with only k important features.

Model with Simulated Accesses. To determine if an access is an appropriate access or

an inappropriate access, needs manual investigation by privacy and administrative officers.
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Our dataset does not include this information about the accesses in the audit log and we

do not know if our dataset includes any true inappropriate accesses. Hence, to evaluate

the performance of our predictive models on audit log containing inappropriate accesses,

we mix real accesses with simulated accesses and test our models. We generate the sim-

ulated accesses by randomly pairing patient and department together. We assume that the

randomly generated accesses would not follow the access patterns expected by various hos-

pital departments. We train and test the predictor with mix of real and simulated accesses

and compare the performance of this model with performance of model built with only real

data.

Model Optimization. We perform hyper-parameter tuning on RFC using Hyperopt-

sklearn [29]. We obtain the best model and compute the AUC ROC using best model.

Figure 4.4 depicts the steps in our methodology.

4.3 Results and Discussion

4.3.1 AUC ROC

Table. 4.7 shows the AUC ROC values using different Machine Learning Algorithms

including RFC, Logistic Regression, Stochastic Gradient Descent and Gaussian Naive

Bayes. Results of this test show that, RFC performs better than all tested Machine Learning

Algorithms hence, we select RFC to build our prediction framework.

Table 4.7: AUC ROC Using RFC VS Other Machine Learning Algorithms

Single Model for All Departments Unique Model for Each Department
INTERNAL MEDICINE ANESTHESIOLOGY

Random Forest Classifier 0.81 0.79 0.87
Logistic Regression 0.52 0.67 0.83
Stochastic Gradient Descent 0.51 0.66 0.81
Gaussian Naive Bayes 0.51 0.64 0.75

Table 4.8. shows the average AUC ROC for the three different model types. Results

indicate that there is no clear winner. We observe that ‘Unique Model for Each Depart-

ment’ has a wide range for AUC ROC. Further investigation shows that, in general the
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departments that have very few accesses, have low model AUC ROC. ‘Unique Model for

Each Cluster of Departments’ provides the AUC ROC for an entire cluster of departments.

However, it is not clear what is the contribution of each department to overall AUC ROC

score. Similar concerns can be raised for ‘Single Model for All Departments’ which is a

specific case where all departments belong to a single cluster.

Table 4.8: AUC ROC for Each Type of Model

Model Type AUC ROC AVERAGE AUC ROC
Single Model for All Departments 0.78 0.78

Unique Model for Each Department 0.6 - 0.9 (No. of departments = 1737) 0.84
Unique Model for Each Cluster of Departments 0.77 - 0.87 (No. of clusters = 15) 0.8

4.3.2 Feature importance and AUC ROC with important features

In section 4.2.4, we describe our method to identify important features and reduce the

feature set size. Table 4.9 shows the top 5 important features of the example department

and cluster models. From the table, we see that the important features for each depart-

ment specific model are different. In addition, the important features (Encounter Type and

Disease codes) of the predictor are directly related to the department. Similar trend is ob-

served in cluster specific models. This confirms our hypothesis that the access pattern of a

department is determined by patient’s specific encounter types and diagnosis.

Table 4.9: Top Five Important Features Detected for Few Models

Model Type Top Five Important Features

Unique Model for Each Department
ANESTHESIOLOGY

Anesthesiology Case, ADT, Labs,
Documents History And Physical, Appointment

INTERNAL MEDICINE
Labs, Appointment, ADT,
Documents Clinical Communication,
Documents Medication Administration

Unique Model for Each Cluster of Departments
UROLOGY Cluster

Appointment,
ICD Chapter 14: ‘Diseases of the Genitourinary System’,
ICD Chapter 11: ‘Diseases of the Digestive System,
Complications Of Pregnancy, Childbirth, And The Puerperium’,
Anesthesiology Case, Labs

OPHTHALMOLOGY, EYE CLINIC Cluster

ICD Chapter 7: ‘Diseases of the eye and adnexa,
Diseases Of The Circulatory System’,
Appointment, ICD Chapter 8: ‘Diseases of the ear and mastoid process,
Diseases Of The Respiratory System’,
Labs, Anesthesiology Case

ENT, AUDIOLOGY, ALLERGY Cluster

Appointment, Labs,
ICD Chapter 10: ‘Diseases of the respiratory system,
Diseases Of The Genitourinary,System’,
Anesthesiology Case, ADT

We compute the AUC ROC of the new model with only important features with five-
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Figure 4.5: AUC with All Features VS AUC with K Important Features

fold cross-validation. We observe that AUC ROC values of model built with only important

features exhibit minimal difference as compared to the AUC ROC values of model built

with all features as shown in Figure 4.5. We believe, in case of very large dataset model

with only important features can be used to reduce feature vector size while achieving

similar model accuracy as model with all features.

4.3.3 Real and Simulated Accesses

If we introduce x number of simulated accesses in each department model then the

performance of the model depends on the number of real accesses by that department as

seen in the table 4.10.

Table 4.10: AUC with Real and Simulated Accesses

Department Number of Real Accesses by Department AUC with Real Accesses Only AUC with Real + Simulated Accesses
INTERNAL MEDICINE 86816 0.67 0.67
ANESTHESIOLOGY 27573 0.78 0.76
DENTAL-VAV CLINIC 259 0.77 0.74
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4.3.4 Optimized Model Performance

We obtain the best parameters for the RFC using hyper-parameter tuning method. We

compute the AUC ROC using the RFC with optimized hyper-parameters. Table 4.11.

shows the results of the model optimization experiment. The results suggest that, in general

hyper-parameter tuning improves the performance of the prediction models.

Table 4.11: AUC ROC with Optimized Parameters VS AUC ROC with Default Parameters

Model Department No. of Accesses With Optimized RFC Without Optimization
(RFC (n estimators=10, max depth=10))

Unique Model for Each Department
INTERNAL MEDICINE 86816 0.81 0.67

ANESTHESIOLOGY 27573 0.85 0.78
NEPHROLOGY 17813 0.84 0.84

Single Model for All Departments ALL 2108607 0.78 0.77

4.4 Conclusions

In this chapter, we propose a supervised machine learning framework to detect suspi-

cious accesses to sensitive patient health information. This framework uses patient clinical

encounter information and diagnosis information to predict which hospital department em-

ployee will access a patient’s EHR and when this access will occur. We empirically evaluate

our prediction models on two months of audit logs from VUMC EHR system. The average

AUC over different hospital departments in our dataset is 0.84. Results of our experiments

indicate; this automated identification of suspicious accesses can be utilized to significantly

reduce the manual effort in EHR auditing.
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Chapter 5

Conclusions and Future Work

Hospitals are facing steep challenges to protect the privacy of patient data in EHR from

insider threats. To achieve fast detection of insider misuse and reduce further harm, large

hospitals need automated suspicious access detection mechanisms. This work presents

fundamental results towards designing efficient automated suspicions access detection sys-

tems.

HCOs primarily use rule-based auditing to identify suspicious insider behavior. How-

ever, rule-based methods have several limitations. First, rule-based auditing systems have

not been evaluated empirically. Second, rule-based auditing systems rely on predefined

rules and are oblivious to the statistical properties of the EHR data. To this end, we pro-

pose a principled approach to evaluate the effectiveness of rule-based auditing methods in

identifying suspicious behavior. Then, we propose an auditing method based on supervised

machine learning techniques which utilizes clinical context of the accesses in the EHR data

to identify suspicious behavior. Our detailed contributions in this work are as follows:

• We examined the rate of high-risk access patterns and minimum rate of high-risk ac-

cesses that can be explained with appropriate clinical reasons in a large EHR system.

An analysis of 8M accesses from one-week of data from the VUMC shows that spe-

cific high-risk flags occur more frequently than theoretically expected and the rate at

which accesses can be explained away with five simple clinical reasons is 16 - 43%.

• We build a machine learning model to predict the probability of access of a patient’s

EHR by the specified department on the specified date based on the clinical encounter

and diagnosis information. To empirically evaluate our prediction models, we per-

form an analysis with two months of audit logs from VUMC EHR system. The av-

erage AUC over different hospital departments in our dataset is 0.84. Results of our
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analysis indicate; this automated identification of suspicious accesses can be utilized

to significantly reduce the manual effort in EHR auditing.

There are several limitations in our study which provide directions for future investiga-

tions. First, this study does not test if a flagged suspicious access is in fact an inappropriate

access. A flagged suspicious access needs to be investigated manually by a privacy officer

to determine if it is a true inappropriate access. However, this manual investigation is be-

yond the scope of this study. Second, this investigation focused on data from only a limited

time period (one week and two months) from a single medical center. As such, it will be

necessary to validate these findings with data from a broader time period and over other

healthcare organizations.
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