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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Thesis Overview 

Altered metabolism inherent to cancer cells has been known since the 1924 publication of Otto Warburg’s seminal 

report on aerobic glycolysis in rat carcinoma cells (Warburg et al., 1924). He found these cells to exhibit 

dramatically elevated rates of glucose uptake and lactate production in spite of abundant oxygen—a phenotype that 

is normally exhibited only by hypoxic cells. This phenomenon, dubbed the “Warburg effect”, has been observed in 

multiple tumor types over the subsequent decades and is the basis for clinical FDG-PET imaging of patient tumors 

(Kim and Dang, 2006). Renewed interest in Warburg’s findings has been sparked by numerous studies connecting 

multiple metabolic pathways with specific cancer phenotypes, such as the connection between isocitrate 

dehydrogenase 1 and acute myeloid leukemia along with succinate dehydrogenase and fumarate hydratase mutations 

which are linked to renal carcinoma and ganglioma (Isaacs et al., 2005; Mardis et al., 2009; Selak et al., 2005). A 

growing number of oncogenes have been shown to profoundly regulate metabolic activity. In particular, the MYC 

oncogene, which has been found to be dysregulated in over 30% of all cancers, was found to exert significant 

control over cell growth and metabolism (Dang, 2012). This link between oncogenes and metabolism, as typified by 

MYC, has solidified altered cell metabolism as a hallmark trait of cancer and also created a unique opportunity for 

metabolic engineering to be applied to traditional cancer research (Hanahan and Weinberg, 2011).    

 

Despite its central importance to cancer development, the inherently dynamic nature of cellular metabolism presents 

unique challenges for its quantification. Traditional procedures employed in cell biology focus on determining 

transcript, enzyme, and metabolite concentrations. While these data are useful for distinguishing healthy and 

diseased states, they do not provide functional information about metabolic pathway activation and nutrient 

utilization. Rate-controlling metabolic enzymes are often regulated at multiple levels—transcriptionally, 

translationally, post-translationally, and allosterically—emphasizing that mRNA or protein abundance does not 

equate to pathway activity. The functional end-point of this regulation is the metabolic flux: the kinetic rate of 

material flow through a biochemical pathway in which metabolites are simultaneously produced and consumed. It is 
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therefore clear that static metabolite profiling alone will not describe the complete metabolic phenotype of a cell, 

and that quantitative flux maps provide a unifying framework for unambiguous interpretation of other types of 

‘omics’ data (Sauer, 2006). Although targeted assays exist for quantification of specific metabolic reactions, they are 

typically limited in scope and would require the investment of substantial time and effort to characterize a large 

biochemical network. As a result, there is clear need for a widely available, systems-level, dynamic tool for 

quantitative studies of cellular metabolism. 13C metabolic flux analysis (MFA) provides such a tool, which can be 

used to map the flow of carbon through entire biochemical networks rather than individual reactions or nodes in 

isolation. Comparison of flux maps obtained under varying experimental conditions or in the presence of targeted 

genetic manipulations provides a functional readout on the global impact these perturbations have on cell 

metabolism. Such information is essential to understanding how metabolic pathways are regulated in working 

cells—and how they become dysregulated in diseased cells. This dissertation discusses the results of research 

combining cancer metabolism and metabolic flux analysis in the following chapters: 

 

• Chapter 2 reviews the literature in several different fields. This dissertation work combines classic cancer 

biology studies with cutting edge metabolic engineering techniques. As such, it was necessary to review 

what is and isn’t known about cancer metabolism, the MYC oncogene, the history of metabolic flux 

analysis (MFA) and its current state, as well as the application of MFA to cancer. 

 

• Chapter 3 details the analysis of extracellular fluxes and their errors. Extracellular fluxes such as glucose 

uptake, lactate secretion, and amino acid transport serve as the basis for intracellular flux analysis 

techniques such as flux balance analysis (FBA) and MFA. Estimating extracellular fluxes with as much 

accuracy and precision as possible is critical for increasing the confidence of estimated intracellular flux 

values. Most previous research does not treat error estimation with as much rigor as is required. The main 

result of our work in this area is the creation of a simple software package that aids in estimating fluxes 

from exponential and linear growth cultures.  

 

• Chapter 4 describes the rigorous validations steps taken to affirm the isotopically nonstationary 

proteinogenic MFA (INST-MFA) methodology. Due to the slow labeling of protein-bound amino acids, 
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ribose-bound RNA, and lipids, waiting for steady-state labeling patterns to stabilize is not feasible. 

Measuring the labeling during the transient period is a novel method to estimate steady-state fluxes from 

non-steady-state data. We compared several steady-state and non-steady-state methods to confirm that the 

INST-MFA method was appropriate and accurate. The method was tested on a model of B-cell cancer 

under High and Low c-Myc conditions. 

 

• Chapter 5 applies the method detailed in the previous chapter to 4 phenotypes of B-cell cancer: High and 

Low c-Myc levels in normoxic and hypoxic oxygen tensions. The INST-MFA method allowed for all four 

phenotypes to be assessed accurately. In normoxia, we confirmed our previous results detailed in Chapter 4 

and increased the precision of our results. In hypoxia, we measured highly upregulated glycolytic rates 

along with a commensurate decrease in oxidative phosphorylation. These flux maps serve as the starting 

point for rational hypothesis generation geared towards specifically targeting the metabolism of cancer.  

      

• Chapter 6 details the targeted inhibition studies undertaken using two separate pharmacologic drugs. 

Based on the flux results discussed in chapters 5 and 6, we decided to target lactate formation and oxidative 

phosphorylation in our B-cell cancer model. Oxamate, a competitive inhibitor of lactate dehydrogenase 

(LDH), and phenformin, an antagonist of Complex I of the electron transport chain, were used separately 

and in combination. High and Low Myc cells were inhibited at multiple concentrations in a normoxic 

environment. Each phenotype was found to be sensitive to the drugs individually while a synergistic effect 

was measured when the drugs were used simultaneously.    

  

• Chapter 7 describes the preliminary work done to extend the INST-MFA technique to an in vivo mouse 

model of Myc-driven cancer. Preliminary analysis on the optimal tracer combination for the experiment is 

discussed along with the proposed methods for sample extraction and analysis.   

 

• Chapter 8 concludes the dissertation with a summary of the research and proposals for future work. 

!

!
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CHAPTER 2 

 

BACKGROUND AND LITERATURE REVIEW 

 

2.1 Cancer and Metabolism 

Cancer is second only to heart disease as the leading cause of adult death in the United States making its treatment 

and prevention of utmost importance (American Cancer Society, 2012). The pace of cancer research in the past 

several decades has escalated dramatically leading to new insights and novel therapies (Vander Heiden, 2011). In 

particular, the metabolism of cancer is in a renaissance of research after having fallen out of vogue. In the late 

1920’s, Otto Warburg discovered through the study of rat carcinoma that the metabolism of cancer is shifted to 

fermentation in the presence of oxygen (Warburg et al., 1924). Fermentation typically only occurs when oxygen is a 

limiting factor as it is in tissues that are far from oxygen-carrying blood vessels. This hypoxic environment 

stimulates the switch from a primarily oxidative, and thereby energy-efficient behavior, to one that is less efficient 

and energy poor (Semenza, 2010). Typically, full oxidative phosphorylation (OXPHOS) of 1 mole of glucose in the 

TCA cycle will yield up to 36 moles of ATP whereas only 2 moles of ATP are generated through glycolytic 

fermentation of 1 mole of glucose. This means the glycolytic rate is going to be much higher to compensate for the 

decrease in efficiency. Originally, this switch to glycolytic metabolism in the presence of oxygen, known as the 

Warburg effect, was thought to occur because of inherent defects in the mitochondria of cancerous cells (Warburg, 

1956), but that hypothesis has since been disproven with the discovery of tumors that have fully functional, and even 

over-active, mitochondria (Zu and Guppy, 2004). Tumors do, however, typically have increased glycolytic activity 

(Fig. 2.1), a feature which has been useful in the imaging of tumors through the use of 18F-deoxyglucose positron 

emission topography (FDG-PET) (Vander Heiden et al., 2009). Previously, the metabolism was thought to be a 

curious side effect of the cancerous phenotype: altered only as a byproduct of the other dysregulations occurring in 

the cell (Hanahan and Weinberg, 2000). Indeed, only in the past few years has altered cell metabolism come to be 

seen as a potential hallmark of cancer (Hanahan and Weinberg, 2011). More evidence, however, has led to the 

appreciation of the primary role metabolism plays in supporting and influencing the survival of cancer cells with the 

discovery of oncogenes that directly control metabolism as well as putative “oncometabolites” that may play a 

significant role in cancer development (Hsu and Sabatini, 2008).
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The development of cancer has two interconnected paths: oncogene activation and loss of tumor suppressors (Hsu 

and Sabatini, 2008). The most well-established tumor suppressor is protein 53 (p53), so named for its characteristic 

weight of 53-kilodaltons. P53 has a primary role in regulating cell cycle, and patients who have mutated p53 have a 

higher propensity to form tumors earlier in life (Bensaad and Vousden, 2007). In vivo, p53 knockdown or mutation 

isn’t typically enough to induce a cancer-like phenotype, and its knockdown must be coupled with overexpression of 

tumor promoting genes such as Ras, PI3K, and Myc to initiate spontaneous cancers (Jones and Thompson, 2009). 

Many of these oncogenes are related in that they phosphorylate each other, target similar aspects of biology, or they 

engage in cross talk through coregulation of common signaling molecules. Ras, for example, is a part of the mitogen 

activated protein kinase (MAPK) signaling cascade that affects cell proliferation, growth, and survival (Pylayeva-

Gupta et al., 2011). Myc, a major part of this dissertation work, can also be activated by the MAPK signaling 

pathway. 

 

In addition to oncogenic alterations that lead to tumorigenesis, it is also possible for cells to obtain a proliferative 

advantage through metabolic adaptations (Ward and Thompson, 2012). One of the most prominent alterations under 

study right now is the alternative splicing of pyruvate kinase (PK) isoforms. Pyruvate kinase, an enzyme in 

glycolysis, converts phosphoenolpyruvate (PEP) to pyruvate and has two different isoforms (muscle and 

liver/erythrocyte) (Fig 2.2). The muscle isozyme can splice into forms 1 and 2 (PKM1 and PKM2) with the M1 

isoform having a greater enzymatic activity than M2 (Christofk et al., 2008; Mazurek, 2011). The PKM2 isoform 

has been shown to be universally expressed in proliferating cells including cancerous and embryonic tissue. It’s 

somewhat paradoxical that the lower activity isoform is expressed, but evidence has been discovered to show that 

the lower activity supports anabolic synthesis of metabolites in the earlier stages of glycolysis (i.e., nucleotides and 

possibly glycerol synthesis) (Anastasiou et al., 2012; Dang, 2009; Mazurek et al., 2000). This is further evidence 

that the preferential expression of the M2 isoform of pyruvate kinase can help a cell select for a more favorable 

phenotype for tumorigenesis. 
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Figure 2.2 A Simplified Description of Central Metabolism. A simplified version of glycolysis, oxidative pentose 

phosphate pathway (oxPPP), the TCA cycle, and glutaminolysis are shown. Specific enzymes discussed in the text 

are highlighted in red. Abbreviations: glucose (GLUC), lactate, (LAC), glutamine (GLN), glutamate (GLU), 

glucose-6-phosphate (G6P), phosphoenolpyruvate (PEP), pyruvate (PYR), oxaloacetate (OAA), Acetyl Coenzyme-

A (AcCoA), citrate (CIT), α-ketoglutarate (AKG), succinate (SUC), fumarate (FUM), malate (MAL), pyruvate 

kinase (PK), isocitrate dehydrogenase (IDH), succinate dehydrogenase (SDH), fumarate hydratase (FH)  
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Another example of altered metabolism being strongly selected for during tumorigenesis is the discovery of 

mutations in the isocitrate dehydrogenase 1 gene (IDH1) (Dang et al., 2009b). Mutations in this gene are known to 

be prevalent in glioma as well as acute myeloid leukemia (AML) (Mardis et al., 2009). IDH1 is a cytosolic, NADP+- 

dependent enzyme that interconverts isocitrate with alpha-ketoglutarate (αKG) (Fig 2.2). When mutations in IDH1 

occur, there is a loss of typical enzyme function. However, it was discovered that the mutation could also cause gain 

of function through production of the novel metabolite 2-hydroxyglutarate (2HG). It was also discovered that 

mutations in IDH2 can lead to the accumulation of 2HG, making the metabolite a possible biomarker for the disease 

(Reitman and Yan, 2010). Much work has been done lately to determine the exact role of 2HG in tumorigenesis. 

There is evidence that 2HG can impair normal epigenetic regulation and cell differentiation (Dang et al., 2009b). 

2HG has some role to play in these disease states and more work is required to elucidate the specific role of this 

metabolite in tumorigenesis. 

 

IDH mutations have received much of the attention in the past few years, but it’s not the only mutation known to 

occur in metabolic enzymes. Mutations in succinate dehydrogenase (SDH) (Selak et al., 2005) and fumarate 

hydratase (FH) (Isaacs et al., 2005), both enzymes in the TCA cycle, have been known to occur in multiple types of 

cancers including renal carcinoma and ganglioma. These are both loss-of-function mutations that lead to an 

accumulation of their corresponding substrate (succinate or fumarate) (Fig 2.2). There is evidence suggesting that 

both metabolites can affect metabolism in additional ways including the inhibition of other enzymes, such as prolyl 

hydroxylase 2 (PHD2) in the case of succinate, and altering transcription, as in the case of fumarate negatively 

regulating the Nrf2 transcription factor (Adam et al., 2011). The discoveries made with 2HG and IDH mutations, 

along with the mutations in SDH and FH, provide strong evidence that metabolism plays a central role in 

tumorigenesis and has the potential to be targeted for therapeutic intervention.   

 

In the past, metabolism has been successfully targeted, although not in the most rational manner. There have been 

several accidental discoveries that specific drugs targeting metabolism affect survival rates in cancer patients. 

Metformin, an inhibitor of Complex I in the electron transport chain (ETC), was shown in a meta-analysis to have 

pro-survival effects in diabetic patients (Evans et al., 2005). It’s not wholly clear whether the effect was due to 

metformin specifically or rather by a decrease in insulin levels. Folates are another class of drugs that target 
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enzymes in metabolism and have been used in a wide variety of tumors (Chabner and Roberts, 2005; Scott, 1970). 

L-asparaginase, an enzyme that limits the availability of asparagine to the cell, has been used successfully in acute 

lymphoblastic leukemia (ALL) due to the propensity of this cancer type to be auxotrophic with respect to asparagine 

and glutamine (Neuman and McCoy, 1956). Clearly, there is therapeutic potential in metabolism for many cancers, 

especially when the specific genetic alterations are known and it’s understood how those alterations affect metabolic 

phenotypes. Rationally determining how to target these alterations and their manifestations in metabolism by 

understanding the differences between normal and cancer cells is of great importance. Several groups in the past few 

years have worked to predict drug targets and their effects using large-scale network modeling (Facchetti et al., 

2012; Folger et al., 2011; Li et al., 2010). The combined efforts of computational modeling and hypothesis-driven 

experimental validation using isotope tracers and metabolic flux analysis, under the umbrella of ‘metabolomics’, has 

the potential to dramatically increase the pace of drug discovery and understanding in the coming years (Fan et al., 

2012). 

 

2.2 MYC and Metabolism 

Of particular interest to this dissertation work is the MYC oncogene. MYC encodes the transcription factor c-Myc 

(herein termed Myc), and it has been found to exhibit altered or deregulated expression in close to 40% of all 

cancers (Dang, 2012; Gardner et al., 2002). Myc plays a central role in growth and proliferation of normal, cancer, 

and stem cells with its involvement in many aspects of metabolism and the cell cycle, including transcription, 

translation, glycolysis, and glutaminolysis (Dang, 1999). It’s been shown that Myc can bind to ~30% of all genes 

but only a small fraction of those will respond to Myc alone (Dang, 2010). Myc can also regulate microRNAs and 

cooperate with other proteins, such as the hypoxia inducible factor 1 (HIF-1), to regulate and conduct cell 

metabolism (Dang et al., 2008). 

 

Myc is a helix-loop-helix (two α-helices connected by a loop) leucine zipper (dimer binding domain) transcription 

factor that requires dimerization with Max to bind to specific consensus sequences (CACGTG) termed E-boxes 

(Amati et al., 1992). Typically, Myc is regulated by normal cell circuitry such as growth factor signaling, but this 

ability is lost in many cancer cells (Dang, 2011). If expression of Myc is activated and dissociated from normal 

signals, proteins such as p53 and p19-ARF (alternate reading frame) will trigger cell cycle arrest, apoptosis, or 
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senescence. Therefore, loss of function of these proteins is required for Myc-mediated lymphomagenesis (Miller et 

al., 2012).  

 

Myc has been well-established as a key player in many aspects of cell biology (Dang, 2010) (Fig 2.3). Central to the 

work presented here is the role of Myc in energy and biosynthetic metabolism (Morrish et al., 2009). It was 

discovered in the 1990s that Myc directly targets the lactate dehydrogenase A gene (LDHA) which encodes an 

enzyme that converts pyruvate to lactate with NADH as a cofactor (Shim et al., 1997). In subsequent years, Myc 

was found to target many other glycolytic genes including GLUT1, HK2, PFKM, TPI1, GAPD, and ENO1 (Kim et 

al., 2004; Osthus et al., 2000). It would stand to reason that Myc would also bind to genes controlling aspects of 

amino acid metabolism, which directly feeds off glycolysis. However, only one gene involved in amino acid 

metabolism is known to be under direct Myc control: serine hydroxylmethyltransferase 2 (SHMT2) (Nikiforov et al., 

2002). This enzyme converts serine to glycine and MEETHF (methylenetetrahydrofolate), which is important for 

anabolic pathways such as nucleotide synthesis, a pathway also controlled by Myc (Liu et al., 2008). 

 

The direct control Myc has on glycolysis has created an opportunity for targeted inhibition. Many studies have 

inhibited LDHA either genetically or pharmacologically and have found some success (Fantin et al., 2006; Le et al., 

2010; Xie et al., 2009). Indeed, further in this dissertation we will see how targeting the enzyme with oxamic acid 

affects the growth of Myc-driven cells. But just as important as Myc’s control over glycolysis is its influence on the 

TCA cycle and mitochondrial metabolism. One of two primary carbon sources for the TCA cycle is glutamine (the 

other being glucose-derived pyruvate) (Vander Heiden et al., 2009). Glutamine is essential for the growth of many 

Myc-driven tumors, such that the cells are “addicted” to the amino acid, and they will become apoptotic if deprived 

of it (Dang et al., 2009a). Myc targets glutaminase (GLS), which converts glutamine to glutamate with concurrent 

production of ammonia, as well as glutamine transporters ASCT2 and SLC7A25 (Fig 2.3) (Gao et al., 2009; Wise et 

al., 2008). Additionally, Myc has also been shown to stimulate mitochondrial biogenesis through correlation 

analysis of gene expression in Myc-driven cells (Li et al., 2005). Mitochondrial mass and function have also been 

shown to correlate with Myc expression through gain- and loss-of-function studies (Dang, 2012).  
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Figure 2.3 Interactions of Myc. Myc has a diverse range of interactions and influences many parts of a cell’s 

phenotype. Boxes highlighted in green indicate metabolic pathways. Blue boxes are transcription factors. Italicized 

text indicates gene interaction. Red boxes indicate cell programs. 

 

 

Myc also interacts with HIF-1 to control pyruvate dehydrogenase kinase 1 (PDK1) (Gordan et al., 2007). PDK1 

phosphorylates and deactivates pyruvate dehydrogenase (PDH), an enzyme that converts pyruvate to Acetyl-CoA 

and CO2 and is the first step in the TCA cycle. Under hypoxic conditions, HIF-1 upregulates PDK1 expression, 

which is further increased by Myc, to direct cells into a glycolytic phenotype. HIF-1 also targets many of the same 

genes as Myc, which has led to the examination of the interplay between these two proteins. Under hypoxic 

conditions, the HIF-1α subunit is stabilized and binds with the constitutively expressed HIF-1β subunit. Together, 

they form a transcription factor that supports cell growth in low oxygen environments (Semenza, 2010). When a cell 

is not cancerous, HIF1 blunts the effectiveness of Myc through a complicated, and not fully understood, 

combination of binding and interaction. However, ectopic Myc expression in vivo, along with HIF expression, was 

shown to increase tumor size, suggesting an interaction between the two transcription factors (Kim et al., 2007). 

Because hypoxia is a major factor in many tumors due to an increased physical distance from blood supply, 

understanding how Myc and HIF interact is of critical importance.  
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It’s clear from many of the previous studies that Myc exerts significant control over metabolism. There have been 

several prominent studies that highlight the effectiveness of targeting metabolism, but a larger picture of the full-

scale metabolic network has not yet been realized. Much of the work in this dissertation is spent attempting to 

understand quantitative measurements of the differences in the metabolism of normal cells and their cancerous, 

Myc-driven phenotypes, so that we can identify new, rationally chosen therapeutic targets.  

 

2.3 Metabolic Flux Analysis (MFA) 

Key to studying metabolism in the past twenty years has been the implementation of a technique called metabolic 

flux analysis (MFA) (Wiechert, 2001). A flux is defined as the rate of flow of material through a metabolic pathway 

at steady state (Stephanopoulos, 1999). Fluxes are fundamental determinants of cell physiology because they are the 

functional endpoint of the cellular phenotype as defined by the genome, transcriptome, proteome, and metabolome 

(Nielsen, 2003; Sauer, 2006). As such, these quantitative measurements represent important parameters describing 

of the metabolic state of a cell.  

 

2.3.1 Advances in MFA 

A specific application of MFA is the technique called flux balance analysis (FBA) or stoichiometric MFA (Niklas 

and Heinzle, 2012). In FBA, only stoichiometric constraints are used to estimate intracellular fluxes. This works 

quite well in simple systems where there are only linear or diverging pathways (Fig 2.4). However, this method fails 

when there are parallel, cyclic, or bidirectional pathways. Linear programming techniques, thermodynamic 

constraints, and conserved balances of cofactors such as ATP and NAD(P)H can help, but these additions are still 

unable to determine bidirectional, also called exchange, fluxes (Bonarius et al., 1997; Stephanopoulos, 1999) and 

they are inferior compared to the addition of isotopic labeling measurements (Niklas and Heinzle, 2012). It is 

necessary to add additional constraints to the system in order to estimate the nonlinear pathways and make the 

system determined, if not overdetermined (Fig 2.4). 
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Figure 2.4. Isotope Tracing and 13C-Metabolic Flux Analysis. (A) In simple metabolic networks, each pathway 

produces a unique labeling pattern in the final product, and the resulting mass isotopomer distribution (MID) 

provides a direct measure of relative flux in the network. Mass isotopomers are molecules with the same chemical 

formula but different molecular weights due to varying incorporation of heavy isotopes. They are denoted M0, M1, 

M2, etc. in order of increasing weight. (B) In complex networks, a computational model is applied to determine 

fluxes by minimizing the lack of fit between simulated and measured labeling patterns at multiple pathway nodes. 

The flux parameters in the model are iteratively adjusted until the optimization converges. 
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The best method used to date is the addition of isotopically labeled substrates. Using isotope tracers, such as 13C, 

allows for additional constraints to be placed upon the estimation after measurement of the steady-state labeling 

patterns. Other tracers can be used, such as 2H or 15N, but 13C remains the most popular. Carbon-13 tracers are 

popular because of their lower cost, stability, and they tend to provide very rich data sets (Gomes and Simoes, 

2012). When a cell is fed an isotopically labeled substrate, the labeling becomes incorporated into intracellular 

metabolites as well any macromolecules derived from these metabolites. After some time, the labeling in the cells 

reaches a steady-state at which point the molecules of interest can be extracted and their labeling patterns measured 

by nuclear magnetic resonance (NMR) or mass spectrometry (MS) (Fig 2.4).  

 

Much of the work with MFA and labeled tracers has shifted to MS techniques, particularly GC-MS (gas 

chromatography / mass spectrometry) (Wittmann and Heinzle, 1999). NMR is a powerful technique because it can 

return information about the specific position of labeled atoms. However, there are drawbacks in that the 

instruments are typically very expensive compared to MS and the amount of sample required can be prohibitive. MS 

has emerged as the prominent technique because it has a high signal-to-noise ratio for a lower sample volume 

(Dauner and Sauer, 2000). The drawback of MS, however, is that it can only describe the mass isotopomer 

distribution (MID). An isotopomer is an isomer of a molecule that has specific atoms (such as hydrogen, oxygen, 

nitrogen, or carbon) with additional neutrons and the MID is the abundance distribution of isotopomers that have 

different weights (M0 fragments have zero labeled atoms, M1 fragments have one of their atoms labeled, etc.) 

(Wiechert, 2001). This is still very usable data because the distribution of the labeling pattern is unique for each flux 

distribution and will reach a steady-state once the cell has grown for a sufficient period of time at a metabolic 

pseudo-steady-state. The MID of each measured metabolite provides additional constraints on the feasible flux space 

(Zamboni et al., 2009). 

 

The modeling of isotope distributions adds another layer of complexity to the flux estimation. When 1H-NMR is 

used, the positional abundance of isotopically enriched hydrogens within a molecule can be known and the data is 

easily analyzed with linear algebra using atom mapping matrices (AMM) (Zupke and Stephanopoulos, 1994). For 

13C-NMR or MS data the AMM method is not suitable because both of these methods can return MID data. The 

isotopomer mapping matrix (IMM) method was developed to extend the AMM method to MID data. This was an 
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inefficient technique that required massive computing power to solve nonlinear equations. For each molecule, there 

are 2N possible isotopomers. So, for a 3-carbon molecule there are 8 possible ways it can be labeled but this number 

increases more if non-carbon atoms are included, such as oxygen and hydrogen. For large systems, including all 

possible isotopomers can be cumbersome and unnecessary. Advances were made in simplifying the calculations 

with the introduction of cumomers which reduce the nonlinear equations generated via IMM to a series of linear 

equations (Schmidt et al., 1997; Wiechert et al., 1999). Most recently, the elementary metabolite unit (EMU) method 

was introduced to further simplify the analysis (Antoniewicz et al., 2007). This method identifies the minimum 

amount of information required to fully describe the data and is considered a bottom-up approach where as IMM 

and cumomer methods are a top-down approach. For a particular MID, only the EMUs necessary to simulate the 

data are defined. This significantly reduces computation time by decreased the number of equations to be solved by 

an order of magnitude and it also allows for multiple tracers to be used in labeling experiments. EMUs are part of 

the underpinnings for all of the 13C-MFA work presented here. 

 

Another significant advance in MFA is the extension of the technique to isotopically nonstationary systems (Young 

et al., 2008). Typically, the labeling patterns are allowed to reach a steady-state before extraction and analysis. 

However, this is either sometimes not feasible, in the case of slow-growing cells, or not useful, in the case of 

autotrophic systems, which only use CO2 as their primary carbon source (Schwender, 2008). The development of 

isotopically nonstationary MFA (INST-MFA) techniques have been created to overcome some of these issues 

(Wiechert and Nöh, 2005). Mathematically, this adds a time variable to the estimation creating a set of ordinary 

differential equations as opposed to a set of algebraic balance equations. INST-MFA requires greater sampling and 

more sophisticated techniques but it has the potential of delivering more information with increased accuracy 

(Hofmann et al., 2008; Maier et al., 2008; Nöh and Wiechert, 2011; Shastri and Morgan, 2007). Some groups are 

even utilizing parallel labeling experiments to gain even more accurate information about the metabolism (Ahn and 

Antoniewicz, 2013; Leighty and Antoniewicz, 2012). The nonstationary technique will be described in more detail 

and further validated for our application to cancer cells in chapter 4. 
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2.3.2 Basic Mathematical Principles of MFA 

One of the fundamental assumptions of metabolic flux analysis is that the cell is in a pseudo-steady-state condition 

(Zamboni, 2011). This means that there is no accumulation of intermediate metabolites and that, over the 

measurement time-span, the metabolism is essentially constant. For quiescent cells this holds true quite well. For 

growing cells, this assumption can be true if cells are growing exponentially. As long as there is no inhibition of the 

cell by secreted products, cell-to-cell contact, or nutrient deprivation, this assumption is true. However, this 

condition does not hold in the times when the cell is transitioning to an alternate growth-phase or when a significant 

portion of the cell population is undergoing cell death (Niklas et al., 2011). Another basic assumption is the dilution 

effects on metabolites due to cell growth are minimal and can be ignored. Again, this is a valid assumption in most 

cases. 

 

Given the previous assumptions, it can be deduced that the sum of fluxes going into a cell must be equal to the sum 

of fluxes exiting a cell plus the consumption of material for anabolic growth. The same holds true for an internal 

metabolite. As such, the mass balance equation to solve is: 

 

! ∙ ! = 0,  (2.1) 

 

where S is the stoichiometric matrix and v is the flux vector. Each row of S represents the mass balance on an 

internal metabolite and each column corresponds to a flux in v (Fig 2.5). There are N-M degrees of freedom (F) in 

the system where N is the number of fluxes and M is the number of balanced metabolites. If we measure exactly F 

fluxes, then the system is determined and there is a unique solution. If there are fewer than F fluxes to measure then 

the system is underdetermined and additional constraints, such as linear programming or isotopic labeling data, must 

be placed on the system to estimate the fluxes. If the number of measured fluxes is greater than F, then the system is 

overdetermined and it becomes possible to assess the quality of the data and increase the accuracy of the measured 

values. In all cases discussed in this work, the system becomes overdetermined with the addition of isotope labeling 

data along with the extracellular flux measurements. 

 
The approach used in this dissertation is INST-MFA with EMUs forming the basis of the estimation. In this case, the 

math is more complex than the simple example presented in Fig. 2.5. The balances are now ordinary differential 
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equations, instead of linear algebraic equations, and require more computational effort to solve. At the heart of the 

flux estimation is the minimization of the difference between measured and simulated data according to the 

following equation: 

 

min!,!ϕ = ! !, !, t −! ! ! ∙ ∙ ! !, !, t −! !!!!             (2.2)  

s. t.! ∙ ! ≥ 0, ! ≥ 0 

!

where ϕ is the objective function to be minimized, u is a vector of free fluxes, c is a vector of metabolite 

concentrations, t is time, ! !, !, t  is a vector of simulated measurements, ! (t) is a vector of observed 

measurements, �m is the measurement covariance matrix, and N is the nullspace of the stoichiometric matrix.  A 

reduced gradient method can be implemented to handle the linear constraints of this problem within a Levenberg-

Marquardt nonlinear least-squares solver (Jazmin and Young, 2013; Young et al., 2008).  Alternatively, gradient-

free optimization approaches have been applied by Noh et al (2006).  

 

Simulated metabolite labeling data are generated by solving the forward problem. After the EMUs in a system have 

been enumerated, they are organized into mutually dependent blocks via a Dulmage-Mendelsohn decomposition 

(Dulmage and Mendelsohn, 1958; Pothen and Fan, 1990). The decoupled blocks are then arranged into a cascaded 

system of ODEs with the following form: 

 

!! ∙ !!!!! = !! ∙ !! + !! ∙ !! (2.3) 

 

Level n of the cascade represents the network of EMUs within the nth block.  The rows of the state matrix !! 

correspond to MIDs of EMUs within the nth block.  The input matrix !! is analogous but with rows that are MIDs 

of EMUs that are previously calculated inputs to the nth block (or MIDs of source EMUs that are unbalanced).  The 

concentration matrix !! is a diagonal matrix whose elements are pool sizes corresponding to EMUs represented in 

!!.  The system matrices !! and !! describe the network as follows: 
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!! !, ! = −sum!of!fluxes!consuming!!th!EMU!in!!!!!! = !
flux!to!!th!EMU!in!!!!from!!th!EMU!in!!!!! ≠ !  (2.4) 

 

!! !, ! = flux!to!!th!EMU!in!!!!from!!th!EMU!in!!! (2.5) 

 

After starting estimates of the fluxes and pool sizes are provided, equation 2.3 can then be integrated using standard 

ODE numerical solvers or more specialized algorithms detailed in Young et al. (2008). Solving the inverse problems 

requires, as previously mentioned, a gradient method to inform the optimization algorithms about the best search 

direction. The most accurate method of doing this by integrating a system of sensitivity equations whose solution 

describes how the calculated MIDs vary in response to changes in the model parameters. The following sensitivity 

equation comes via implicit differentiation of equation 2.3: 

 

!
!!

!!!
!! = !!!! ∙ !! ∙ !!!!! +

! !!!!∙!!
!! ∙ !! + !!!! ∙ !! ∙ !!!!! +

! !!!!∙!!
!! ∙ !! (2.6) 

 

where p is the vector of adjustable flux and pool size parameters.  

 

The end result of this estimation, assuming the inputs fluxes and labeling measurements are accurately estimated and 

the model correctly describes the biologic phenotype, is a map that details the rates of intracellular reactions. From 

this data, the overall fit of the estimation can be assessed along with the goodness-of-fit of each measurement and 

the overall contribution of each measurement to the precision of the estimated fluxes (Jazmin and Young, 2013).  
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Figure 2.5. Simple Example Network Detailing the Stoichiometric Matrix and Flux Vector. The above simple 

metabolic network is given to demonstrate the construction of the stoichiometric matrix (S) and the flux vector (v).  

 
 
2.3.3 Applications of MFA 

Prior to the past decade, MFA, and metabolic engineering in general, was applied mainly to prokaryotic cells 

(Stephanopoulos, 1999). Prokaryotes are simpler systems that lend themselves to less complicated network models, 

growth mediums, assumptions, and experiments. The transition to eukaryotic cells has been challenging because 

mammalian cells grow on a variety of substrates, are subject to internal compartmentation, have slower growth rates, 

and require assumptions that are more stringent and oftentimes less true (Niklas et al., 2010; Quek et al., 2010; 

Zamboni, 2011).  

 

Typical application of MFA in mammalian systems has been limited to the study of the production of vaccines and 

complex proteins like monoclonal antibodies (MAbs) (Genzel and Reichl, 2009; Seth et al., 2006; Wurm, 2004). 

This work has historically been done in CHO or hybridoma cell lines. Production of these proteins in mammalian 

systems is preferred primarily because of post-translational modifications that occur only in eukaryotic cells, and 

MFA is usually used in these cases for process optimization purposes. Of particular interest to this dissertation work 
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is the application of MFA to medical research. MFA has been applied to the study of diabetes, brain metabolism, as 

well as cancer with interesting results discovered in all cases (Niklas and Heinzle, 2012).  

 

2.4 MFA and Cancer 

The application of flux analysis to cancer metabolism has emerged only in the past ten years with the advances in 

modeling techniques detailed previously (Keibler et al., 2012). Even though Warburg detailed the metabolic 

phenomenon known as aerobic glycolysis in tumors in 1924 in rat tumors (Warburg et al., 1924), and with the 

exception of a few studies done in the following decades, it wasn’t until the early 21st century that the post-genomic 

era truly started to take hold and other ‘omics, such as transcriptomics, proteomics, and in particular, metabolomics 

were appreciated and accepted within the scope of cancer (Griffin and Shockcor, 2004). Many studies over the years 

used radioactive isotope labels to elucidate alterations in metabolism (Bier et al., 1977; Lorber et al., 1945), but it 

wasn’t until the 80s and 90s that the tracers were applied to cancer metabolism in earnest (Kelleher et al., 1987). It 

was around that same era that the use of stable isotopic tracers (namely carbon-13) came into prominence 

(Hellerstein et al., 1991; Hellerstein, 2004).  

 

2.4.1 Metabolic Pathway Discovery 

In the past five years alone, several studies have used stable isotopic tracers along with MFA (See Figure 2.3). 

Hunnewell et. al. (2010) analyzed ras-transormed fibroblast spheroids to determine the activity of specific metabolic 

pathways. They used 1-13C glucose and GC-MS techniques to measure the labeling of intracellular metabolites, such 

as PEP and 3PG, and intracellular amino acids. The MIDs of each metabolite is indicative of the active (or inactive) 

pathways in the cell. Some of their major conclusions were that glutamine is used primarily for biosynthetic 

purposes, rather than energy creation, and gluconeogenic pathways were inactive. Also of interest was the lack of 

malic enzyme (ME) activity. ME is important for creating reducing equivalents in the form of NAD(P)H (Chang and 

Tong, 2003). This study did not use true MFA even though extracellular measurements were gathered along with 

labeling data. (MFA is the combination of these data to estimate intracellular fluxes). 

 

Akin to the previous study, several independent groups have discovered an alternate use for glutamine in cells that 

are grown in hypoxic conditions or have their electron transport chain inhibited in some manner (Metallo et al., 
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2012; Mullen et al., 2012; Wise et al., 2011). Without the use of tracers, the changes that occurred in these cells 

would not have been evident based on the extracellular measurements alone. It was only through the measurement 

of MIDs derived from differently labeled substrates (13C-labeled glutamine and glucose) that these cells were found 

to use reductive carboxylation to meet the biosynthetic requirements of the cell. Reductive carboxylation is the 

shuttling of glutamine-derived alpha-ketoglutarate to citrate via isocitrate dehydrogenase and aconitase enzymes 

working in reverse of their typical behavior (See Figure 2.6). This physiology was discovered by measuring labeling 

patterns in citrate and lipids that could not be derived from the typical oxidative behavior of the TCA cycle. This 

clearly indicates the power of using isotopic tracers in cancer metabolism. 

 

The use of serine biosynthetic pathways in cancer was also discovered through the use of isotope tracers. While it 

has been known that cancer cells use serine biosynthetic pathways, how it was linked to promoting cancer growth 

was not fully understood (Kit, 1955). Two separate groups discovered that phosphoglycerate dehydrogenase 

(PHDGH) was essential in the growth of breast cancer and melanoma (Locasale et al., 2011; Possemato et al., 2011). 

PHDGH directs 3-phosphoglycerate from glycolysis towards serine biosynthesis (See Figure 2.3). Through the use 

of isotopically labeled glucose and glutamine, the groups discovered that, even in the presence of excess serine, 

carbon is still shunted from glycolysis towards serine synthesis. It was also found that alterations in TCA cycle 

activity (namely through a decrease in αKG metabolite levels) occurred when PHDGH activity was inhibited via 

shRNA. This non-intuitive linking evidences the complex nature of metabolism; a discovery that could only be done 

through the use of isotopically labeled tracers. 
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Figure 2.6. Major Pathways of Central Carbon Metabolism and Key Enzymes Commonly Dysregulated in 

Cancer Cells. Important pathways implicated in cancer cell proliferation are indicated: serine metabolism is 

highlighted with a purple arrow, oxidative glutamine metabolism with a blue arrow, and reductive glutamine 

metabolism with a green arrow. Enzymes known to be dysregulated in some cancers are shown in red text. 

Abbreviations: ACL, ATP citrate lyase; Aco, aconitase; αKGDH, α-ketoglutarate dehydrogenase; Aldo, aldolase; 

ALT, alanine transaminase; AST, aspartate transaminase; CS, citrate synthase; Enol, enolase; FAS, fatty acid 

synthase; FH, fumarate hydratase; G6PDH, glucose-6-phosphate dehydrogenase; GAPDH, glyceraldehyde-3-

phosphate dehydrogenase; GDH, glutamate dehydrogenase; GLS, glutaminase; HK, hexokinase; IDH, isocitrate 

dehydrogenase; LDH, lactate dehydrogenase; MDH, malate dehydrogenase; ME, malic enzyme; PC, pyruvate 

carboxylase; PDH, pyruvate dehydrogenase; PFK, phosphofructokinase; PGI, phosphoglucose isomerase; PGK, 

phosphoglycerate kinase; PGM, phosphoglycerate mutase; PHGDH, phosphoglycerate dehydrogenase; PK, pyruvate 

kinase; PKM2, pyruvate kinase M2; SCS, succinyl-CoA synthetase; SDH, succinate dehydrogenase; TPI, triose 

phosphate isomerase.  
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2.4.2 Metabolic Alterations Due to Oncogenic Changes 

MFA and the use of isotope labeling can be a powerful tool in studying cancer. However, analysis of a single cell 

phenotype is not very useful (Vander Heiden et al., 2009). The real power of flux analysis comes in the comparison 

between different cell states (Vander Heiden, 2011). Of particular interest to cancer researchers are the differences 

between normal cells and oncogenically-transformed cells. Understanding the fundamental differences in the 

functional endpoint of a host of cell processes can aid in the discovery of new and useful therapeutics. 

 

The first study that applied comprehensive 13C-MFA to map cancer cell metabolism was published in 2006 by 

researchers investigating ER-positive, breast carcinoma cells (Forbes et al., 2006). The response of MCF-7 cells to 

estradiol stimulation and two metabolic inhibitors—cerulinin, a fatty acid synthase inhibitor, and oxamate, an 

inhibitor of lactate dehydrogenase—was characterized using MFA. The goal of this study was the identification of 

targets whose inhibition could be useful as adjuvant treatment in ER-antagonist therapies. The authors report 

elevated rates of glucose and glutamine consumption upon estradiol-stimulation. Surprisingly, however, they also 

report a dramatically elevated flux into the pentose phosphate pathway (PPP). It was hypothesized that the NADPH 

generated by this pathway was critical for the elevated fatty acid synthesis required for proliferation; however, 

treatment with cerulinin did not reduce PPP flux. 

 

Another group compared regular mouse embryonic fibroblasts and K-Ras-transformed MEFs (Gaglio et al., 2011). 

They used 13C-MFA along with non-targeted tracer fate detection (NTFD) of 15N-glutamine and transcriptomic 

profiling to understand what the differences are between cancerous and non-cancerous cell lines. Through MFA, 

they discovered that the K-Ras transformed cell lines increase flux through glycolysis and decrease flux through the 

TCA Cycle. Transcriptional profiling supported the flux data with the result that multiple metabolic genes had 

upregulated expression. NTFD is used to examine how isotopic tracers, in this case 15N-glutamine, are used 

throughout the cell, not just in central metabolism. By measuring where the labeling appears inside the cell, it’s 

possible to gain a better understanding about how glutamine is utilized. In this study, it was found that K-Ras-

transformed cells utilized glutamine for greater biosynthetic purposes even though there was a decrease in the flux 

from the non-transformed state. However, the decrease in overall TCA cycle metabolism was greater than the 

decrease in glutamine uptake which indicated a decoupling between glycolysis, TCA cycle, and glutamine 
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metabolism. They further used chemical inhibition of specific enzymes (namely aminotransferase and glutamate 

dehydrogenase) to show that transformed cells were reliant upon glutamine to support proliferation and growth. This 

study shows the power of combining metabolic flux analysis with genomic profiling of cells to elucidate specific 

alterations between cancerous and non-cancerous cells. 

 

Other researchers are attempting to link morphological changes with metabolism using the techniques of metabolic 

engineering. Using the cancerous cell line, MCF-10A, Grassian et al. (2011) examined how extracellular matrix 

(ECM) detachment affects metabolism. Using [1,2-13C2]glucose, they compared the metabolism of attached and 

detached cells along with normal and over-expression of HER2, an epidermal growth factor receptor. ECM 

detachment resulted in a decrease through all major central metabolic pathways (glycolysis, pentose phosphate, and 

TCA cycle), but they did find a disproportionate decrease in pyruvate dehydrogenase (PDH) flux. However, in the 

presence of HER2, they found that the PDH flux was maintained through the suppression of pyruvate 

dehydrogenase kinase 4 (PDK4) in an Erk-dependent manner. The focus on PDH was driven by the labeling 

alterations of TCA cycle intermediates caused by ECM detachment and subsequent reversal of this effect through 

HER2 overexpression. These changes were brought to light specifically by using isotope tracers, again revealing the 

power they bring to a traditional biologist’s toolset. 

 

Another group, with whom we’ve collaborated for different studies, have used isotopic labeling in a Myc-driven 

model of Burkitt’s lymphoma (Liu et al., 2012). (This is the same cell line used in this dissertation work and is 

discussed in detail in chapters 3, 4, 5, and 6.) Le et al. (2012) examined the growth of P493-6 B-cells with and 

without Myc overexpression, normoxic and hypoxic oxygen tensions, and glucose abundant and deprived states. 

They grew cells with two separate tracers, [U-13C6]glucose and [U-13C5, U-15N2]glutamine, to examine the effects of 

the different metabolic perturbations. Using MID analysis, and not strict MFA, they were able to compare the 

labeling patterns in many different metabolic fragments such as citrate, succinate, fumarate, alanine and several 

others. The data gave strong evidence that these cells, and possibly most Myc-driven tumors, are highly dependent 

on glutamine and are capable of redirecting metabolism to a glucose-independent form of the TCA cycle when 

necessary. Evidence was also found, via labeling patterns in glutathione and other metabolites, that the glutamine 

contributed to ATP as well as antioxidant production, which is a key method of protecting the cell against reactive 
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oxygen species (ROS) produced by elevated OXPHOS. While this work had only a small amount of truly 

quantitative flux measurements, the labeling data revealed hidden details not evidenced by extracellular 

measurements alone. Further analysis of these cells and conditions using full-scale MFA is detailed in later chapters 

and expands upon the work briefly mentioned here. 

 

2.4.3 Translational Uses of MFA in Cancer Research 

Clearly, the use of isotope tracers and metabolic flux analysis are powerful tools in cancer research. This nascent 

application of MFA is the cutting edge in the field and it holds great promise for the future. However, while there 

have been many advances in the use of metabolic engineering techniques in studying diseases, much of the work to 

date has been ex vivo, i.e., in cell cultures or in vitro disease models (Vander Heiden, 2011). Many great discoveries 

have been made using in vitro methods, but there is a fundamental disconnect between the environment in a 

laboratory and inside of a patient. Drugs and techniques that show great promise in culture have been ineffective in 

clinics (American Cancer Society, 2012; Ledford, 2011). This begs the question, how can we improve the quality 

and applicability of data gained from the lab? 

 

Ideally, in vitro research would translate to in vivo models in a one-to-one fashion. This is almost never the case, 

although steps are being taken to bring the two together (Johnson, 2012). Extension of techniques to mice and other 

animals is not as easy as changing a few lines in a protocol. Entirely new methods are necessary to generate similar 

information as obtained from cell cultures. In the study of cancer, it would be of great benefit to generate metabolic 

flux maps of the in vivo tumor physiology. The way a cancer cell behaves inside a body can be very different than in 

a culture dish (Hanahan and Weinberg, 2011). Understanding exactly how the environment impacts the metabolism, 

and subsequently the growth and formation, of tumors inside a person is of critical importance to discovering how to 

best treat said patients. 

 

Part of this dissertation work was focused on extending the MFA techniques optimized in vitro into mice models: 

the first step on the path to doing MFA with actual tumors. Indeed, our choice of proteinogenic MFA was chosen 

specifically because of the impracticality of using intracellular metabolite labeling from whole tumors. Due to the 

physical limitations of extracting a whole tumor and freezing it, coupled with the sub-second changes that can occur 
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in the labeling patterns of intracellular metabolites, extracting the protein, RNA, and lipids of whole tumors is the 

preferred method due to their longer-term stability outside of the host (Goudar et al., 2010; Sriram et al., 2008). 

However, there are groups who have made the intracellular metabolite method work with some interesting results 

(Niklas and Heinzle, 2012). 

 

Yuneva et. al. (2012) used isotopic tracers to measure the differences in Myc- and Met-induced liver tumors in mice. 

By using 13C-labeled glucose and glutamine they were able to see the distribution of labeling in these tumors. They 

found that Myc-driven tumors increased rates of glucose and glutamine catabolism while Met tumors increased the 

conversion of glucose to glutamine. This difference underscores the metabolic differences that occur with different 

oncogenic drivers and the importance of understanding how these cells behave in an in vivo environment. Akin to 

this study, Marin-Valencia et al. (2012) applied MID analysis to study the effects of plasma infusions of 13C-glucose 

on mice bearing human glioblastoma orthotopic tumors. They found that all tumors studied exhibited active 

mitochondrial glucose oxidation as well as conversion of glucose carbon into glutamine and other biosynthetic 

intermediates. Building upon these studies will enable better MFA techniques to be applied to more in vivo cancer 

models. Fan et al. (2011) examined the differences between mice that have no lung cancer and mice that were 

injected with human lung adenocarcinoma cells. They used 13C-glucose as the tracer and found significant increases 

in the level of labeling in the tumor tissue in both glycolytic and TCA cycle metabolites, suggesting an enhanced 

flux through these pathways. While no true flux analysis was done, this experiment gives us a tantalizing glimpse of 

the kinds of data in vivo MFA can potentially return. These studies are the cutting edge of isotope labeling studies in 

vivo, and it’s clear there is still much work to be done to generate better results and conclusions from this data.  
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CHAPTER 3 

 

DEVELOPMENT AND VALIDATION OF ETA SOFTWARE PACKAGE FOR DETERMINATION OF CELL 

SPECIFIC RATES FROM EXTRACELLULAR TIME COURSES 

 

 
3.1 Introduction 

Metabolic fluxes represent quantitative measures of material flow within a biochemical network and are thus 

considered fundamental determinants of in vivo cell physiology (Nielsen, 2003; Sauer, 2006; Stephanopoulos, 1999; 

Wiechert, 2001). Measurements of cell specific rates of nutrient uptake and product formation (i.e., normalized to 

cell density) provide the basis for intracellular flux calculations using flux balance analysis (FBA) or metabolic flux 

analysis (MFA) (Quek et al., 2010). The measured extracellular rates are critical inputs to these methods because 

they constrain the solution space of feasible intracellular fluxes. Therefore, accurate estimation of cell specific 

extracellular rates, and their associated uncertainties, is an essential task in the construction of accurate metabolic 

flux maps. In addition, cell specific rates are intensive properties that do not depend on the size of the system under 

investigation, which facilitates comparisons between different experimental platforms.  

 

Under balanced growth conditions, where the culture attains an internal metabolic steady state, all cell specific 

metabolic rates are considered constant and the extracellular rates can be determined by measuring changes in 

medium composition over time. This is not as trivial as it may seem since the observed rates of change are 

proportional to the mathematical product of specific rate (v) and cell density (X), with the latter continuously 

increasing as the culture grows. Therefore, the calculation procedure must account for the combined effects of both 

variables on the measured time courses, as well as random errors introduced by the various measurements of 

extracellular metabolite and cell concentrations. The preferred method involves regression analysis to estimate the 

specific growth rate of the culture (m) and specific production rate (v) of each measured extracellular metabolite, 

using integrated balance equations that describe the rates of concentration change over time.  

 

Several prior articles have applied regression analysis to determine metabolic rates from extracellular time courses 

of substrate depletion or product accumulation (Glacken et al., 1988; Goudar, 2012; Kim and Forbes, 2007; Zupke et 
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al., 1995). However, these articles did not undertake a detailed error analysis of their regression approach and did 

not attempt to validate their approach using simulated data sets. Accurate assessment of uncertainty is critical for 

MFA because it provides the proper weighting of each measured rate in the sum-of-squares objective function that 

defines the best-fit solution. Furthermore, quantifying the uncertainty in each measurement enables rigorous 

statistical comparisons to be made between experiments. Recently, Goudar et al. (2009) assessed the propagation of 

uncertainty from prime variables into specific rates using both a Gaussian error propagation approach and Monte 

Carlo analysis. Their analysis, however, was limited to perfusion culture where cell concentrations are largely time 

invariant, and they did not provide a comparison to the more traditional approach of simply averaging the regressed 

rate parameters derived from replicate experiments. Furthermore, none of these prior studies have led to the 

development of publically available software tools that automate the estimation of metabolic rates and their 

uncertainties based on experimental time course measurements. 

 

Here, we compare two methods of error analysis applied to the problem of estimating metabolic rates from 

extracellular time-course measurements: (i) “Gaussian” error propagation from prime variables and (ii) “Sampling” 

the regressed parameters from multiple replicate experiments to estimate their standard deviation. Uncertainties 

obtained from the Gaussian and Sampling approaches were compared to the “true” Monte Carlo error estimate, 

which provides an asymptotically correct value but is more expensive to compute. We found that the Gaussian 

approach was the best choice for estimating uncertainty when using a small number of experimental replicates 

(n=3), which is typical of cell culture experiments. To automate the determination of specific rates and their 

uncertainties, we developed a MATLAB software package called Extracellular Time-Course Analysis (ETA). This 

software facilitates the import and selection of data points for regression, calculation of cell specific metabolic rates 

(or yields) and their uncertainties using either Gaussian error propagation or Monte Carlo analysis, and assessment 

of the goodness-of-fit of the exponential (or linear) growth model. The model can also account for first-order 

degradation of metabolites due to non-biological effects. The software provides an intuitive graphical user interface 

and documentation so that non-experts can readily implement these statistical features to analyze their own 

experimental data sets.   
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Using our newly developed ETA software package and a B-cell model of c-Myc-driven cancer, we assessed 

metabolic phenotypes under both High and Low Myc expression based solely upon extracellular metabolite and cell 

density measurements. We conducted time-course growth experiments and used ETA to estimate the specific uptake 

or excretion rate of glucose, lactate, and 18 different amino acids based on the exponential growth model. We found 

that the faster-growing High Myc cells globally upregulated their consumption of amino acids relative to glucose. In 

particular, specific uptake rates of glutamine, arginine, serine, lysine, and branched-chain amino acids were 

substantially increased in High Myc cells relative to Low Myc cells. Rates of glucose uptake and lactate excretion 

were also increased in High Myc cells, but the relative changes were modest in comparison to growth rate and 

amino acid fluxes. This study provides an example of how ETA can be applied to assess metabolic phenotypes of 

mammalian cells as a prelude to flux balance analysis, metabolic flux analysis, or more comprehensive metabolic 

profiling studies. 

 

3.2 Methods 

3.2.1 Balance Equation for Cell Growth 

Balanced exponential growth in batch culture is a key underlying assumption of these calculations. This assumption 

is generally valid for cells that are not experiencing nutrient or spatial growth limitations. The exponential growth 

equation is 

 

! = !!!!",  (3.1) 

 

where µ is the specific growth rate, X is the cell density (i.e., cell mass or number per unit volume of culture 

medium), t is time, and X0 is the initial cell density at the onset of exponential growth. Transformation of the 

equation into a form suitable for linear regression results in 

 

ln ! = ln !! + !".  (3.2) 

 

This equation can be used to determine the specific growth rate from linear regression of cell density measurements 

over time. 
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3.2.2 Balance Equations for Substrate Uptake and Product Secretion 

The general balance equation that relates changes in medium composition to extracellular metabolic fluxes under 

batch growth conditions is 

 

!"
!" = −!" + !",  (3.3) 

 

where C is metabolite concentration, k is the first-order degradation rate constant, v is the specific metabolite 

production rate, and X is the cell density determined from Equation (3.1).  The sign of the specific rate is defined to 

be negative for substrates and positive for products. The decay term is necessary to account for spontaneous first-

order degradation or accumulation of metabolites. Glutamine is the best example of a metabolite that is subject to 

degradation, since it is known to spontaneously degrade to ammonia and pyrrolidonecarboxylic acid under typical 

culture conditions (Ozturk and Palsson, 1990). The degradation rate constant is assumed to be independent of 

cellular metabolism and can be determined empirically by measuring the disappearance rate of glutamine in the 

absence of cells.   

  

Substituting for X in Equation (3.3) using Equation (3.1) and integrating with respect to t gives 

 

!!!"
!

= !!!
!!!
!

!(!!!)! − 1
!

+ !!!
!

 .  (3.4) 

 

When the decay rate constant k is zero, this equation reduces to 

 

!
!
= !!!

!
!

!!" − 1
!

+ !!
!

 .  (3.5) 

 

Equations (3.4) and (3.5) are both in a linear form y = ax+ b that can be used to determine the slope parameter a by 

regression analysis, which can be subsequently used to calculate the specific rate v.  
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3.2.3 Data Simulation 

Noise-free time courses for cell density and glucose and lactate concentrations were simulated using the rate 

parameters in Table 3.1. Equations (3.2) and (3.5) were used to simulate 8 measurement time points separated by 

12-hour intervals. Normally distributed random errors were introduced to the noise-free data using MATLAB’s 

normrnd random number generator to simulate 9999 replicate data sets. The data sets were separated into 3333 

groups with n = 3 replicates. 

 
 
 
 
 
Table  3.1 Parameters Used to Generate Simulated Data Sets. The values are representative of those found in our 

prior experiments and in the literature. Equations (3.2) and (3.5) were used to simulate noise-free time courses for 

cell density (X), glucose concentration (S), and lactate (P). Normally distributed random errors with zero mean and 

standard deviation (SD) of σ ln(X), σs, or σp were added to the noise-free time courses of ln(X), S, or P, respectively. 

 

Parameter Variable Value Units 

Initial Log Cell Density ln(X0) ln(2×105)  
Log Cell Density Measurement SD σ ln(X) 0.1  

Growth Rate Μ 0.02888 h-1 

Initial Glucose Concentration S 20 mM 

Glucose Measurement SD σs 2 mM 

Glucose Uptake Flux vs 150 nmol/106 cells/h 

Initial Lactate Concentration P 2 mM 

Lactate Measurement SD σp 2 mM 

Lactate Excretion Flux vp 300 nmol/106 cells/h 

Time step Δt  12 h 
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3.2.4 Least-Squares Regression and Error Analysis 

Two separate methods were used for least-squares regression and error analysis (Fig. 3.1). The Gaussian approach 

averaged the n replicate measurements at each time point and performed a single regression using the mean time-

course data [m1, m2, …, mN]. The sample variance si
2 of each data point was calculated and used to determine a 

pooled sample variance, sp
2, over the entire time course according to the equation 

 

!!! = !!!!
!!!
! ,  (3.6) 

 

where N is the total number of time points included in the regression. The standard error of the mean (SEM) was 

used to represent the uncertainty of each prime variable measurement, given by   

 

!!! = !
!!!
! .  (3.7) 

 

Errors were propagated from directly measured prime variables, such as cell density or metabolite concentration, to 

each calculated variable q = f (m1, m2, …) using the equation (Taylor, 1997)  

 

!!! = !"
!!!

!
!"!

!
! ,  (3.8) 

 

where the sum is over all prime variables that influence the calculated value of q. Numerical finite differencing was 

applied to estimate the partial derivatives with respect to prime variables (Gardenier et al., 2011). Least-squares 

linear regression was performed based on Equations (3.2) and (3.5), using the propagated uncertainties dxi and dyi 

associated with x- and y-axis variables, respectively, to determine the weight wi of each data point in the sum-of-

squared residuals (SSR) objective function 

 

SSR = !! !! − !!! − ! !!
!!! ,  (3.9) 

 

Where, 
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!! = !
!"!!!!!"!!

.       (3.10) 

 

MATLAB’s lscov command was used to obtain the weighted least-squares estimate of the best-fit line. The iterative 

re-weighting method of York et al. (2004) was applied to regressions where errors were simultaneously present in 

both the x- and y-axis variables.  

 

Alternatively, the Sampling approach did not average the raw data prior to regression. Each replicate time course 

was regresssed in an unweighted manner and rates were calculated based on Equations (3.2) and (3.5) without 

estimating the uncertainties of prime variables. The average and SEM of specific rates were then determined within 

each group of n replicates. Because uncertainties were calculated directly from sampling replicate rate estimates, this 

method required no error propagation. 
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Figure 3.1 Overview of Study Design. A noise-free time course was simulated using the parameter values listed in 

Table 3.1. Normally distributed random errors were added to the noise-free time course to generate 9999 replicates. 

The replicates were grouped into 3333 simulated experiments, each with n=3. The simulated experiments were 

analyzed using either the Gaussian or Sampling approach to estimate specific rates and uncertainties. Monte Carlo 

estimates of the true parameter values and uncertainties were determined by computing the average and standard 

deviation of specific rates regressed from all 9999 time courses.  An example is provided to illustrate how the 

Gaussian approach applies a single regression based on the average measurements from each simulated experiment, 

whereas the Sampling approach averages the rate parameters from n replicate regressions to estimate the final 

specific rate and its associated uncertainty.  
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3.2.5 Monte-Carlo Estimation 

Monte Carlo (MC) parameter estimates provided “true” values to which the Gaussian and Sampling methods were 

compared. MC estimates were determined by averaging the specific rates derived from unweighted regression of all 

9999 replicate time courses.
 
The standard deviation s of all 9999 replicates was used to estimate the true uncertainty 

of each rate parameter.  

 

3.2.6 Goodness-of-Fit Assessment 

We applied an F-test to assess the goodness-of-fit of our mathematical model to each experimental data set.  This 

test is appropriate when the measurement variances are estimated from sample replicates (Bevington et al., 1993; 

Nielsen, 2003; Sauer, 2006; Stephanopoulos, 1999; Wiechert, 2001). The null hypothesis (H0) is that the model 

provides an adequate description of the data and that any lack-of-fit can be attributed to normally distributed random 

errors in the measurements. The F-test uses the degrees of freedom due to lack of fit (DOFLOF), the degrees of 

freedom due to pure error (DOFPE), and the sum-of-squared residuals (SSR) to determine a p-value. The DOFLOF is 

N−M, where N is the number of regressed data points and M is the number of fitted parameters (e.g., M=2 in the case 

of a linear model). The DOFPE is given by N(n−1). The p-value of the F-test is defined as  

 

! = Pr[SSR > ! !"#!"# ,!"#!" ],  (3.11) 

 

or the probability that the SSR exceeds a particular value of the F distribution with corresponding values of DOFLOF 

and DOFPE.  

 

3.2.7 Cell Culture 

The human P493-6 B-cell line expresses an EBNA2-estrogen receptor fusion protein and contains a tetracycline 

(Tet)-repressible human MYC construct (Quek et al., 2010; Schuhmacher et al., 1999). Addition of 1 µg/mL Tet 

completely represses MYC expression, while the co-addition of 1 µM beta-estradiol (BES, MP Biomedicals, Solon, 

OH) induces a low level of endogenous MYC expression driven by the EBNA2 viral protein (Glacken et al., 1988; 
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Goudar, 2012; Kim and Forbes, 2007; Yustein et al., 2010; Zupke et al., 1995). This allows for three distinct levels 

of Myc expression: High (no addition), Low (Tet + BES), and None (Tet alone). Only High and Low Myc 

expression levels were examined in this study. Cells were cultured in RPMI 1640 medium (2 g/L glucose and 2 mM 

glutamine) supplemented with 10% fetal bovine serum (FBS) and 1% penicillin and streptomycin (PS) at 37°C and 

5% CO2. All cell culture supplies were purchased from Invitrogen (Carlsbad, CA). 

 

3.2.8 Cell Density and Metabolite Concentration Measurements 

Extracellular uptake and excretion rates of P493-6 cells were determined in triplicate growth experiments. Three 

separate T-75 tissue culture flasks were seeded at a density of 150,000 cells/mL. Every 12−16 hours, 300 µL of cell 

suspension was removed from each flask after gentle mixing with a pipettor. 50 µL were used for counting on a 

hemacytometer while the remainder was centrifuged to remove cells, and the conditioned cell-free medium was 

frozen at −80°C. Concentrations of medium glucose and lactate were determined using a YSI 2300 Stat Plus 

Glucose and Lactate Analyzer (YSI, Yellow Springs, OH). Medium amino acid concentrations were determined 

using high-performance liquid chromatography (HPLC, Agilent 1200 series) with a gradient elution method on a 

reverse-phase column (2009; Greene et al., 2009). Briefly, samples were derivatized immediately prior to injection 

with orthophthalaldehyde (OPA) and injected onto a ZORBAX Eclipse PLUS C18 column (Agilent Technologies, 

4.6 × 150 mm, 3.5 µm). Mobile phase A was composed of 10 mM Na2HPO4, 10 mM Na2B4O7, and 8 ppm NaN3. 

Mobile phase B was a 9:9:2 mixture of methanol:acetonitrile:water. The gradient profile was as follows: 2% B for 

0.5 minutes, ramp linearly to 47% for 15.5 minutes, ramp linearly to 100% B in 0.1 minutes, hold at 100% B for 3.4 

minutes, ramp linearly to 2% B in 0.1 minutes, and hold for 1.4 minutes for a total time of 21 minutes. The flow rate 

was 1.5 mL/min, and the column was held at 40°C for the duration of the run.  

 

The spontaneous degradation of glutamine to ammonia and pyrrolidonecarboxylic acid was included in the specific 

rate calculations (Ozturk and Palsson, 1990). The degradation rate was determined to be 0.0031 h-1 by measuring 

glutamine disappearance in control experiments performed in the absence of cells. Evaporation rates determined in 

control T-75 flasks without cells were found to be negligible in comparison to cell specific metabolic rates. 
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3.2.9 T-test for Comparison of Flux Estimates 

A two tailed t-test was applied to compare specific rate estimates between two experimental groups. The t-statistic is 

calculated as 

 

! = !!!!!
!!!!!!!

,  (3.12) 

 

where 

 

!!!!!!! = !!! !
!!
+ !

!!
  (3.13) 

 

and 
 

 

!!! = !!!!!!!!!!!
!!!!!

.  (3.14) 

 

Here, sp2 is the pooled sample variance, di is the degrees of freedom defined as (Ni − 2), and N1 and N2 are the total 

number of data points used in each regression. 
 

 

3.2.10 MATLAB Program – Extracellular Time-Course Analysis (ETA) 

Using the MATLAB programming environment, custom m-files were coded to perform all calculations required to 

implement the Gaussian, Sampling, and Monte Carlo methods of rate and uncertainty estimation. A user interface 

was implemented to facilitate data input and analysis. Documentation included with the software details program 

usage and functionality. Briefly, cell density and metabolite concentration data can be imported from Microsoft 

Excel or manually entered by the user. Individual time points can be selected interactively to achieve an acceptable 

fit to the exponential growth model, based on both graphical displays and the p-value of the F-statistic. A first-order 

decay rate can be entered to correct for spontaneous metabolite degradation. Calculated specific rates (or yields) and 
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their uncertainties are tabulated automatically and plotted in an accompanying figure window. The software is freely 

available at http://mfa.vueinnovations.com/. 

 

In addition to proliferating cell cultures, the exponential growth model can be readily applied to cultures in 

stationary or decline phase, in which case the specific growth rate will be estimated as near zero or negative, 

respectively. Furthermore, specifying the dead cell density (Xd) as an accumulating product formed from first-order 

death of viable cells can then be used to estimate the death rate constant (kd) of the culture if measurements of cell 

viability are available (i.e., replace C with Xd and v with kd in Equation 3.3). ETA is also capable of applying a linear 

growth model, which is known to occur in some instances of diffusion-limited or contact-inhibited growth of 

cultures (Freshney, 2000; Rizzi et al., 1989; Taylor, 1997). Although advanced growth models involving logistic or 

Gompertz equations have been previously used to describe more complicated growth curves, these models are 

explicitly intended to describe unbalanced growth conditions where growth rate and metabolism are changing over 

time. Therefore, we have chosen to include only two growth models in ETA (i.e., exponential and linear), because 

they are applicable to the vast majority of typical cell cultures undergoing balanced growth. Since balanced growth 

is also a key underlying assumption of FBA and MFA, we do not expect that this limitation will severely restrict the 

applicability of the program for the purposes it is intended.
 

 

3.3 Results 

3.3.1 Comparison of Simulated Data Sets 

We applied the Gaussian, Sampling, and Monte Carlo approaches to determine specific growth and metabolite 

production rates by regressing 9999 simulated time courses generated using the parameter values in Table 3.1. We 

hypothesized that Gaussian error propagation from prime variables would provide more precise rate and uncertainty 

estimates in comparison to the Sampling approach, which involves simply averaging the regressed rate parameters 

derived from replicate experiments, when the number of replicates is small. To test this hypothesis we compared 

3333 rate estimates derived from the Gaussian and Sampling approaches (each with n=3) to the “true” Monte Carlo 

estimates determined by averaging rate estimates from all 9999 simulated data sets. The calculated growth, glucose 

uptake, and lactate excretion rates returned by the Gaussian and Sampling methods exhibited normal distributions 

over the 3333 simulated experiments (data not shown). The mean of each distribution was nearly identical to the 
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Monte Carlo estimate (Table 3.2), and approximately 68% of the calculated rates fell within one standard error of 

the MC estimate in each case. As a result, we concluded that averaging experimental replicates either before or after 

regression analysis provides an equally valid approach to estimate the value of each specific rate parameter.  

  

In contrast to the rate values, the two methods did not produce equally accurate estimates of parameter uncertainties. 

When comparing the distribution of uncertainties returned by each method, we found that Gaussian error 

propagation resulted in an approximately normal distribution that was centered on the true value while the 

uncertainties determined by the Sampling approach had a non-normal distribution that was not centered around the 

true value (Fig. 3.2). In order to assess the accuracy of the two methods quantitatively, we calculated root-mean-

square (RMS) errors based on the residuals between estimated uncertainties returned by the Gaussian or Sampling 

approach and the true values determined by Monte Carlo analysis. The RMS errors for Gaussian error propagation 

were nearly 3-fold lower than the Sampling approach, indicating less variability and greater accuracy (Table 3.3). As 

a result, we concluded that the Gaussian approach provides more accurate and precise uncertainty estimates when 

the number of experimental replicates is small (e.g., n=3) and is therefore the preferred method.  

 
 
 
Table 3.2 Rate Estimations Based on Simulated Data Sets. Values for both Gaussian and Sampling approaches 

are shown as M ± SEM, where M is the population mean over all 3333 simulated experiments (each with n=3) and 

SEM is the standard error of the population mean. The Monte Carlo estimates represent the means over all 9999 

replicates.  

!! Growth (h-1) Glucose 
nmol/106 cells/h 

Lactate 
nmol/106 cells/h 

Gaussian 0.028878 ± 0.000013 150.1 ± 0.3 299.9 ± 0.3 

Sampling 0.028878 ± 0.000013 150.1 ± 0.3 300.0 ± 0.3 

Monte Carlo 0.028878 ± 0.000013 150.1 ± 0.3 300.0 ± 0.3 
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Figure 3.2 Distribution of Estimated Uncertainties Determined from Simulated Data Sets. Histograms 

describing the distribution of uncertainties for specific growth, glucose uptake, and lactate excretion rates are shown 

for both (A) Gaussian error propagation and (B) Sampling rate estimates from replicate experiments.  The solid 

black lines represent the Monte Carlo estimate of the true uncertainty of the estimated rates, which is given by 

!! !. 

  



! 51 

Table 3.3 Root-Mean-Square (RMS) Errors of Estimated Uncertainties. RMS errors were calculated for both 

the Gaussian and Sampling approaches by first computing the residuals between estimated uncertainties and the true 

values determined by Monte Carlo analysis. The residuals for all simulated experiments were then combined by 

taking the square root of the sum of squared residuals divided by the total number of simulated experiments (3333). 

  Growth (h
-1
) 

Glucose 
(nmol/10

6
 cells/h) 

Lactate 
(nmol/10

6
 cells/h) 

Gaussian 1.3×10-4 3.1 2.9 

Sampling 3.5×10-4 8.6 9.0 
 
 

 

3.3.2 P493-6 Rate Estimation with ETA 

Using our custom ETA software, we estimated specific metabolic rates for High and Low Myc P493-6 cell cultures. 

We estimated specific growth rate as well as uptake and excretion rates of glucose, lactate, and 18 of 20 amino acids 

(Table 3.4). ETA enabled us to select the most appropriate points for analysis based on the goodness-of-fit F-test 

and visual inspection (Fig. 3.3). For glutamine, we included an empirically determined degradation rate constant of 

0.0031 h-1, which significantly improved the p-value of the model fit from 0.0044 to 0.9329. As shown in Fig. 3.4, 

the data fall along a straight line when corrected for degradation effects using Equation (3.4), but have a curved 

profile when uncorrected.  

  

Growth of Low Myc cells was 40% slower than High Myc cells, while glucose uptake was reduced by only 21%. 

Both High and Low Myc cells exhibited a highly glycolytic phenotype, with the majority of incoming carbon 

excreted as lactate. This was most clearly indicated by the high lactate-to-glucose (L/G) ratios of 1.9 ± 0.2 and 2.1 ± 

0.3 for High and Low Myc cells, respectively. Besides glucose, glutamine is the other major carbon substrate for 

mammalian cell cultures (Gardenier et al., 2011; Vander Heiden et al., 2009). Glutamine uptake was elevated nearly 

2-fold in High Myc cells relative to Low Myc cells, supplying 9% of total carbon to High Myc cells and 7% to Low 

Myc cells. The uptake rates of most other amino acids were similarly elevated in High Myc cells (Table 3.4).  
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Table 3.4 Metabolic Rates for High and Low Myc P493-6 Cell Cultures. Rates have units of nmol/106 cells/h 

except for cell growth, which has units of h-1. P-values based on the goodness-of-fit F-test are listed for each rate 

parameter. Significance is indicated for the comparison between Low and High Myc conditions based on a two-

tailed Student’s t-test with p < 0.05. 

  High Myc   Low Myc     

Metabolite 
Specific Rate Fit Specific Rate Fit Sig. Diff. 

(p < 0.05) (nmol/106 cells/h) p-value (nmol/106 cells/h) p-value 

Biomass (h-1) 0.0290 ± 0.0010 0.1477 0.0176 ± 0.0010 0.7419 ✔!
Uptake Fluxes 

Glucose 73 ± 7 0.9177 58 ± 7 0.5981 ✖!
Arginine 4.6 ± 0.6 0.4751 1.9 ± 0.3 0.0387 ✔!

Asparagine 0.9 ± 0.4 0.2923 0.9 ± 0.3 0.1637 ✖!
Cystine 0.73 ± 0.13 0.7364 0.88 ± 0.09 0.3990 ✖!

Glutamine 11.5 ± 0.7 0.9329 5.9 ± 0.40 0.2089 ✔!
Histidine 0.78 ± 0.12 0.903 0.17 ± 0.05 0.5644 ✔!

Isoleucine 2.5 ± 0.2 0.9694 1.3 ± 0.30 0.7093 ✔!
Leucine 3.3 ± 0.3 0.8483 1.02 ± 0.14 0.2334 ✔!
Lysine 2.1 ± 0.2 0.9233 0.26 ± 0.08 0.3271 ✔!

Methionine 0.7 ± 0.1 0.9807 0.11 ± 0.04 0.6590 ✔!
Phenylalanine 0.1 ± 0.3 0.9951 0.3 ± 0.11 0.9754 ✖!

Serine 4.1 ± 0.2 0.8515 1.34 ± 0.10 0.3054 ✔!
Threonine 0.27 ± 0.06 0.8198 0.57 ± 0.09 0.0520 ✔!
Tyrosine 0.57 ± 0.09 0.9797 0.14 ± 0.05 0.5471 ✔!
Valine 1.41 ± 0.12 0.9193 0.54 ± 0.07 0.4526 ✔!

Excretion Fluxes 
Lactate 138 ± 9 0.2805 119 ± 7 0.9953 ✖!
Alanine 1.63 ± 0.14 0.8557 0.44 ± 0.09 0.1483 ✔!

Aspartate 0.36 ± 0.14 0.8772 -0.38 ± 0.05 0.0072 ✔!
Glutamate 2.7 ± 0.4 0.6521 2.9 ± 0.2 0.4787 ✖!

Glycine 0.8 ± 0.2 0.3028 0.01 ± 0.08 0.3727 ✔!
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Figure 3.3 Features of the ETA Software Package. (A) Users are able to (1) create new experimental time courses 

and view the calculated rate (or yield) estimates and associated uncertainties in both (2) graphical and (3) tabular 

formats for either exponential or linear growth models. (B) When a single measurement is selected, the program 

allows the user to (4) graphically assess the goodness-of-fit, (5) enter and select raw data for regression, and (6) 

view the calculated rates along with the p-value and mean-square error of the fit. Adjustable error tolerances and 

first-order degradation parameters can also be supplied by the user (7). 
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Figure 3.4 Effects of Spontaneous Degradation on Glutamine Rate Estimation. (A) When first-order 

degradation of glutamine is not accounted for, the data do not fit the exponential growth model. (B) When the 

correct degradation constant is included, Equation (3.4) provides an acceptable fit to the raw concentration 

measurements. Flux is measured in units of nmol/106 cells/hour.   
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3.4 Discussion 

Accurate quantification of cell specific metabolic rates and their uncertainties is of critical importance for assessing 

metabolic phenotypes of cultured cells. Using rigorous parameter regression approaches, we have shown that 

Gaussian error propagation is the most accurate and precise method for estimating the uncertainty of specific rates 

when the number of experimental replicates is small. This analysis uses finite differencing to compute the 

derivatives in Equation (3.8), which allows the uncertainties in all prime variables to be propagated into calculated 

variables. The Sampling approach, however, attempts to estimate uncertainties based solely on the standard 

deviation of estimated rates determined from replicate experiments. When n is sufficiently large, this is an 

acceptable method that asymptotically approaches the accuracy of the Monte Carlo result. However, when n is 

small, uncertainty estimates become less reliable than those determined by Gaussian error propagation. A further 

practical consideration is that some experiments do not allow for repeated sampling of the same cell culture, which 

means that each time point must be derived from a separate culture plate or flask. Because there is no logical way to 

group these data points into individual time courses without first averaging the data from separate experimental 

replicates, the Sampling approach is not applicable to this scenario and Gaussian error propagation is the only 

approach that can be used to obtain meaningful uncertainty estimates. 

  

We applied the Gaussian approach coded within our custom ETA software to analyze time-course experiments 

conducted on High Myc and Low Myc P493-6 B-cells. These cells contain a tetracycline-repressible Myc construct, 

which enables different levels of Myc expression to be studied on an isogenic background (Pajic et al., 2000; Pajic et 

al., 2001; 2004). High Myc cells are tumorigenic and resemble human Burkitt lymphoma cells, whereas Low Myc 

cells are nontumorigenic (Yustein et al., 2010). Therefore, comparison of metabolic phenotypes between High and 

Low Myc cells is expected to reveal differences between cancerous cells and normal proliferating cells.  

 

Measurements of cell density and extracellular nutrient concentrations were obtained throughout exponential phase 

and biological replicates were averaged. This was followed by regression analysis to estimate specific rates of 

growth, substrate consumption, and product excretion. Based on these specific rates, we observed that High Myc 

cells significantly increased their growth rate and the magnitude of most nutrient uptake and excretion rates in 

comparison to Low Myc cells. These results are consistent with previous reports of the general stimulating effect of 
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Myc on cell growth and metabolism (Fan et al., 2010; Morrish et al., 2009; Morrish et al., 2008). Studies in Rat1a 

fibroblasts and P493-6 cells have shown that Myc enhances flux through the glycolytic pathway by direct 

transactivation of several glycolytic genes (Kim et al., 2004; Osthus et al., 2000; Shim et al., 1997). However, 

ectopic Myc expression only modestly increased glucose consumption and lactate production in our system, and the 

relative changes in these rates were sub-proportional to the change in specific growth rate we observed. In contrast, 

most amino acid uptake fluxes were increased 2- to 3-fold in High Myc cells relative to Low Myc cells, which 

exceeded the 1.6-fold change in specific growth rate. Therefore, ectopic Myc expression impacted amino acid fluxes 

more strongly than glycolytic fluxes in P493-6 cells.  

 

It has been previously shown that Myc exerts direct control over glutamine metabolism and that Myc-

overexpressing cells are acutely sensitive to glutamine withdrawal or inhibition of anaplerotic glutamine flux 

entering the TCA cycle (Fan et al., 2010; Wise et al., 2008; Yuneva et al., 2007). Our data support these findings, as 

we observed a significant increase in glutamine uptake in High Myc cells as compared to Low Myc cells. However, 

our results also indicate that High Myc cells simultaneously increased most other amino acid fluxes in addition to 

glutamine. Nearly half of the incoming amino acids were consumed in excess of their biosynthetic requirements, 

which indicates that they were partially catabolized to meet the energetic or redox demands of P493-6 cells. Aside 

from one study that identified serine hydroxymethyltransferase (SHMT2) as a direct Myc target gene (Nikiforov et 

al., 2002), little is known about how Myc stimulates metabolism of other amino acids besides glutamine. Based on 

these results, further work to elucidate the mechanisms by which Myc influences global patterns of amino acid 

utilization in tumor cells could have significant therapeutic or diagnostic implications.  

 

One distinct advantage of using Gaussian error propagation for specific rate determination is the ability to rigorously 

assess the goodness-of-fit of the exponential growth model to the experimental data. In addition to accurate 

uncertainty estimation, the ETA software enables the user to interactively include or exclude individual data points 

based on the p-values of the goodness-of-fit F-test and graphical displays. This would not be possible without 

measurement of full time-course data, which enables confirmation of the underlying assumptions implying balanced 

growth and constant metabolic rates. Several recent articles have appeared in the biotechnology literature that rely 

on rate estimates computed from only two measurement time points (Jain et al., 2012; Mullen et al., 2012). While 
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this may be suitable for initial screening experiments, it does not lend itself to the type of rigorous error analysis and 

statistical treatment that is necessary for quantitative flux studies. Therefore, collection of multiple sample time 

points under balanced growth conditions followed by regression analysis and Gaussian error propagation are 

prerequisite for precise determination of metabolic fluxes.  

 

We determined p-values for the P493-6 data set which describe the confidence level in each fitted parameter based 

on an F-test. The goodness-of-fit p-value reflects the probability that any disagreements between the model and the 

experimental measurements are due to random errors rather than systematic errors. Based on this test, we should 

conclude that the fit is inadequate if the calculated p-value is unreasonably low. A low p-value can result from a few 

possible causes. First, it can indicate that the model is inadequate (e.g., balanced exponential growth assumption 

does not hold) or there are gross measurement errors in the data. Second, it can indicate that the true measurement 

errors are larger than what was specified in the regression analysis. If both of these can be excluded, the final 

possibility is that the measurement errors are not normally distributed. This can lead to p-values that seem small 

(e.g., 0.001) but may still be justifiable in practical cases where the errors have some non-Gaussian component. Fits 

that are grossly incorrect will often give very small p-values (e.g., 10-18) and should be summarily rejected (Press et 

al., 1992). In all cases, the p-values of the P493-6 rate estimates were greater than 0.001, indicating that the 

exponential model was acceptable.  

 

One limitation of our approach is that it assumes balanced exponential growth with constant specific rates of nutrient 

uptake or product excretion. If the culture exhibits multiple distinct growth phases (e.g., exponential, stationary, 

decline, etc.) or metabolic shifts during the experiment, the full time course can be divided into separate subintervals 

in which growth and metabolism are approximately constant. This will allow for each subinterval to be separately 

analyzed and subsequently compared.  Obviously, this is not possible if growth and metabolism are changing 

continuously over time or if distinct transition points cannot be readily identified within the overall time course. 

Both Leighty and Antoniewicz (2011) and Niklas et al. (2011) have developed sophisticated approaches for 

addressing such fully time-dependent scenarios by combining extracellular measurements with stoichiometric 

balance constraints that enable dynamic MFA calculations.  Leighty and Antoniewicz used piece-wise linear 

functions to approximate the time-dependence of extracellular concentration measurements, whereas Niklas et al. 
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applied polynomial splines to smooth and differentiate the extracellular measurements. Although these methods 

provide powerful alternative approaches that can be applied more generally to either metabolically transient or 

steady-state conditions, the underlying growth equations do not reduce to the canonical exponential growth model 

under steady-state growth conditions and therefore do not lend themselves readily to the analysis of standard growth 

experiments. Furthermore, the increased parameterization of these models can lead to elevated flux uncertainties in 

situations where the additional complexity is not warranted. This is especially evident during the initial period of 

batch or fed-batch growth when extracellular concentrations change slowly and therefore signal-to-noise ratios are 

small, as noted by Niklas et al. (2011).  

 

In summary, the application of regression analysis and Gaussian error propagation provides a rigorous approach to 

compare the metabolic phenotypes of different cell lines and growth conditions. While many types of experimental 

assays have been developed to facilitate the rapid collection of metabolic measurements, software tools that 

automate the analysis and statistical assessment of these data have been lacking. Therefore, ETA has been developed 

to streamline the analysis workflow required to (i) compute cell specific metabolic rates and their uncertainties 

based on an exponential or linear growth assumption, (ii) test the goodness-of-fit of the experimental data to the 

regression model, and (iii) rapidly compare the results across multiple experiments. Although our approach does not 

involve the complexity of some recently introduced dynamic MFA algorithms, we expect that it will be applicable to 

most typical batch or intermittent fed-batch experiments where metabolic steady state is achieved for extended 

intervals punctuated by infrequent metabolic transitions caused by the onset of nutrient depletion, oxygen limitation, 

or accumulation of some inhibitory factor (Deshpande et al., 2009). The rates calculated by ETA can then serve as 

inputs for a wide range of more advanced stoichiometric or kinetic modeling approaches, including FBA or MFA.   
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CHAPTER 4 

 

13C METABOLIC FLUX ANALYSIS METHOD VALIDATION AND APPLICATION TO MYC-

OVEREXPRESSING B-CELLS 

 

 
4.1 Introduction 

The reprogramming of energy metabolism is emerging as an important molecular hallmark of cancer cells (Hanahan 

and Weinberg, 2011). In particular, understanding the so-called Warburg effect, described as the avid conversion of 

glucose to lactate by tumor cells under aerobic conditions, has become a high priority in cancer research (Hsu and 

Sabatini, 2008; Koppenol et al., 2011; Vander Heiden et al., 2009). Recent discoveries linking specific metabolic 

alterations to cancer development have strengthened the idea that deregulated metabolism is more than a side effect 

of malignant transformation, but may in fact be a functional driver of tumor growth and progression in some cancers 

(Dang et al., 2009; DeBerardinis et al., 2008; Vander Heiden et al., 2010). Furthermore, prior studies have 

demonstrated that the Warburg effect can be reversed by either inhibiting lactate production (Fantin et al., 2006; Le 

et al., 2010) or altering the expression of specific glycolytic enzymes (Christofk et al., 2008), which correlates with a 

reduction in the ability of isogenic cancer cells to form tumors in nude mouse xenografts. Because of these and other 

discoveries, deregulated metabolic pathways have become attractive targets for cancer therapeutics (Evans et al., 

2005; Kroemer and Pouyssegur, 2008; Michelakis et al., 2008).  

 

To guide the search for new therapeutic targets and to better understand the mechanisms of metabolic 

reprogramming in tumor cells, integrative approaches are needed to fully characterize the metabolic phenotypes of 

cancer cells and to determine how they are influenced by specific molecular alterations. In particular, the ability to 

map intracellular carbon flows using 13C metabolic flux analysis (MFA) provides an attractive platform to elucidate 

the functional behavior of entire biochemical networks, rather than individual reactions or nodes in isolation (Sauer, 

2006).  By feeding cells a 13C-labeled substrate, and subsequently measuring the patterns of isotope incorporation in 

downstream metabolic products, extensive information about the intracellular distribution of carbon flux can be 

obtained. This enables system-wide quantification of reversible, parallel, and cyclic metabolic pathways that would 
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be otherwise unidentifiable based solely upon measurements of extracellular nutrient uptake and product excretion 

(Zamboni et al., 2009).  

 

While 13C MFA provides a rich source of phenotypic information, the application of this technique to mammalian 

systems presents unique challenges. In particular, the presence of subcellular compartmentation, complex media 

formulations, and slow labeling dynamics can lead to significant difficulties in experimental design and data 

interpretation (Zamboni, 2011). As a result, most mammalian MFA studies have relied on direct extraction and 

isotopomer analysis of free intracellular metabolites, rather than more slowly labeled—but highly abundant and 

stable—macromolecular species (Zamboni et al., 2009). Isotopically non-stationary MFA (INST-MFA) provides 

one approach to circumvent these limitations through computational analysis of metabolite labeling patterns 

obtained during the transient labeling period prior to isotopic steady state (Wiechert and Nöh, 2005). This approach 

offers several advantages over steady-state MFA, including shorter experimental times and the ability to determine 

fluxes with increased precision (Nöh and Wiechert, 2011; Young et al., 2008).  

 

Here, we investigated the metabolic alterations caused by differential expression of the MYC oncogene in a human 

B-cell line. MYC encodes the transcription factor c-Myc (herein termed Myc), which is a global regulator of cell 

growth, metabolism, and apoptosis (Dang, 1999). Myc exhibits deregulated expression in approximately 30% of 

human cancers (Dang et al., 2008) and is one of four transcription factors that collectively can reprogram 

differentiated adult cells back to a pluripotent stem cell state (Takahashi and Yamanaka, 2006). Although a few prior 

studies have applied isotopomer analysis to investigate the metabolic fates of 13C-labeled glucose and glutamine 

tracers in Myc-expressing cells, these approaches were not capable of integrating numerous isotopic measurements 

into a comprehensive flux map that encompasses all major pathways of central carbon metabolism (Le et al., 2012; 

Morrish et al., 2008; Wise et al., 2008). Furthermore, these studies were focused on discovering metabolic 

differences between Myc-expressing and non-expressing cells, rather than between cells with oncogenic (High) and 

endogenous (Low) Myc expression levels. Our study, on the other hand, applied rigorous 13C flux analysis to 

quantify metabolic phenotypes of P493-6 B-cells, which have been engineered to provide three distinct levels of 

Myc expression (No, Low, or High) depending on culture conditions.  
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We compared several steady-state and isotopically nonstationary MFA approaches to identify the best approach for 

analysis of P493-6 cells based on isotopomer measurements of protein-bound amino acids and ribose-bound RNA. 

We concluded that 13C INST-MFA was the most effective strategy for flux determination in these cells, and that 

ribose isotopomer measurements were important for maximizing flux identifiability. We then applied this approach 

to quantify fluxes in both High and Low Myc P493-6 cells (Fig. 4.1) and found significant reprogramming of central 

metabolism in response to ectopic Myc expression. High Myc cells relied more heavily on mitochondrial 

metabolism than Low Myc cells and globally upregulated their consumption of amino acids relative to glucose. The 

oxidative pentose phosphate (PP) pathway exhibited minimal activity under both High and Low Myc conditions, 

with negligible flux through the non-oxidative PP branch.  Based on these results, we expect that 13C INST-MFA 

will become a powerful tool for analysis of tumor cell physiology and for identification of critical metabolic nodes 

that can be targeted to inhibit cancer growth. 

 

4.2 Methods 

4.2.1 Cell Culture 

P493-6 B-cells were cultured according to the method detailed in section 3.2.7 of Chapter 3 with the following 

exception. For tracer experiments, glucose-free medium was supplemented with the following mixture of 13C-

labeled substrates: 28% [U-13C6]glucose, 20% [1-13C]glucose, and 52% [1,2-13C2]glucose. All tracers were 

purchased from Cambridge Isotope Laboratories (Andover, MA). 

 

4.2.2 Oxygen Uptake Rates 

High-resolution O2 consumption measurements were conducted at 37°C in RPMI 1640 medium using the 

OROBOROS O2K Oxygraph (Oroboros Instruments, Innsbruck, Austria). Cells were adjusted to a density of one 

million cells/mL and allowed to equilibrate in the instrument for a minimum of ten minutes. Cells were stirred at 

750 rpm in atmospheric conditions without CO2 control. To confirm that oxygen uptake was dependent on cellular 

respiration, we treated cells with the Complex I inhibitor rotenone at a concentration of 100 nM (Kim et al., 2006). 

Higher rotenone concentrations produced erratic measurements and did not result in further reductions in the O2 

uptake rate. 
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4.2.3 Specific Rate Determination 

Cell specific rates were determined according to the methods detailed in section 3.2 of Chapter 3. 

 

4.2.4 Steady-State Labeling Experiment 

In order to achieve steady-state labeling, it was necessary to culture cells continuously in the presence of tracers 

throughout multiple platings. Cells were seeded at an initial density of 150,000 cells/mL in a T-25 flask. Every two 

days, cells were counted and replated at the same initial density in fresh tracer-containing medium. After 4 platings 

(approximately 8 cell doublings), the cells were harvested by centrifugation at 1500 RPM, washed with PBS, and 

extracted to isolate total cellular protein and RNA. Each experiment was performed in triplicate. 

 

4.2.5 Isotopically Nonstationary Labeling Experiment 

INST-MFA requires the measurement of isotopic enrichment at multiple time points during the transient labeling 

period. For High Myc cells, samples were taken at 6, 12, 24, 36, 48, and 72 hours. For Low Myc cells, which 

exhibited a slower growth rate, samples were taken at 12, 24, 36, 48, 72, and 96 hours. For each time point, three 

separate T-75 flasks were seeded at the appropriate density to achieve a final cell number of approximately ten 

million cells per flask at the time of sampling. Prior to seeding, the growth medium was removed by centrifugation 

and the cells were resuspended in glucose labeled medium. At the sample times indicated previously, cells were 

harvested by centrifugation at 1500 RPM, washed with phosphate buffered saline (PBS), and extracted to isolate 

total cellular protein and RNA. 
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Figure 4.1 Overview of MFA Study Design. A mixture of 13C-labeled glucose tracers was fed to P493-6 cells 

growing under High or Low Myc conditions. Extracellular medium concentrations and intracellular metabolite 

labeling were measured at various time points throughout exponential phase. A computational model was applied to 

map fluxes by minimizing the lack of fit between simulated and measured labeling data and extracellular flux 

measurements.  
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4.2.6 Extraction, Hydrolysis, and Derivatization of Total Cellular Protein and RNA 

Extraction of protein and RNA was achieved using the TRIzol method, with the exception that proteins were 

precipitated using acetone instead of isopropanol (Simms et al., 1993). Protein samples were hydrolyzed to their 

constituent amino acids by incubating in 6N HCl for 20 hours at 110°C in a vacuum hydrolysis tube (Pierce). 

Similarly, RNA samples were hydrolyzed to ribose by incubating in 2N HCl at 100°C for 2 hours under vacuum. 

Protein hydrolysate samples were evaporated to dryness at 60°C under air flow. These dried samples were 

redissolved in 200 µL of ddH2O, filtered through a 0.2 µm filter, and re-dried prior to derivatization. RNA 

hydrolysate samples were evaporated to dryness at 60°C under air flow prior to derivatization. 

 

To enable GC-MS analysis, amino acids were converted to their tert-butyl dimethylsilyl (TBDMS) derivatives by 

dissolving in 50 µL pyridine and 70 µL MTBSTFA + 1% TBDMCS (Pierce), followed by incubation at 60°C for 30 

minutes. Ribose was converted to its aldonitrile pentapropionate derivative to enable GC-MS analysis (Antoniewicz 

et al., 2011; Lee et al., 1998). Briefly, dried samples were dissolved in 50 µL of 2 wt. % hydroxylamine 

hydrochloride in pyridine (Sigma) and incubated for 60 minutes at 90°C. Next, 100 µL of propionic anhydride 

(Sigma) was added, and the samples were incubated at 60°C for an additional 30 minutes. Samples were then 

centrifuged and evaporated at 60°C. The dried samples were dissolved in 100 µL of ethyl acetate prior to GC-MS 

analysis.  

 

4.2.7 Medium Glucose Derivatization 

Medium glucose labeling was assessed by GC-MS analysis. 100 µL of medium was washed with three volumes of 

cold acetone and centrifuged to remove protein. Samples were then evaporated to dryness at 60°C under air flow. 

Glucose was then converted to its aldonitrile pentapropionate derivative using the same procedure described in the 

previous section for ribose analysis. 

 

4.2.8 Gas Chromatography Mass Spectrometry (GC-MS) Analysis 

Derivatized sugar and amino acid samples were analyzed by GC-MS using a HP5-MS capillary column (30 m × 

0.25 mm i.d. × 0.25 µm; Agilent J&W Scientific) installed in an Agilent 7890A gas chromatograph (GC). The 

injection volume was 1 µL, and all samples were run in split mode with an inlet temperature of 270°C and a split 



! 68 

ratio of 10:1. Helium flow was controlled electronically at 0.73 mL/min for amino acid analysis and 1.65 ml/min for 

ribose and glucose analysis. The GC was interfaced to an Agilent 5975C mass spectrometer (MS) operated in 

electron impact mode with temperatures of 230°C for the ion source and 150°C for the quadrupole. The GC 

temperature program for amino acid analysis was: 150°C for 2 minutes, ramp at 5°C/min to 280°C, hold for 2 

minutes. Mass spectra were obtained in scan mode over the range 100−500 m/z. The GC temperature program for 

glucose and ribose analysis was: 80°C for 1 minute, ramp at 20°C/min to 280°C, hold for 4 minutes. Mass spectra 

were obtained in scan mode over the range 100−700 m/z. Raw ion chromatograms were integrated using a custom 

MATLAB M-file that applies consistent integration bounds and baseline correction to each ion (Antoniewicz et al., 

2007b). 

 

4.2.9 Isotopomer Network Model 

A detailed isotopomer model for mammalian B-cell metabolism was constructed. The metabolic network contains 

reactions for glycolysis, pentose phosphate pathway, TCA cycle, amphibolic pathways, amino acid catabolism, and 

biomass synthesis (Table 4.F.2 in Appendix 4.F). The network comprises 54 reactions with carbon atom transitions 

specified for all reactions. The network includes 8 extracellular substrates (glucose, arginine, asparagine, cysteine, 

glutamine, isoleucine, leucine, and serine), 6 metabolic products (biomass, lactate, alanine, glutamate, glycine, and 

lipids) and 35 balanced intracellular metabolites. Constraints from cofactor metabolites such as ATP and NAD(P)H 

were excluded because these balances have been shown to produce unreliable results in mammalian systems 

(Bonarius et al., 1998). Refer to Appendix 4.A for a detailed description of the model formulation and assumptions. 

 

4.2.10 Flux Determination and Statistical Analysis 

The elementary metabolite unit (EMU) framework was applied to efficiently simulate the labeling state of 

measurable metabolites represented in the isotopomer model (Antoniewicz et al., 2007a; Young et al., 2008). Both 

steady-state MFA and INST-MFA approaches involve solving an inverse problem whereby metabolic fluxes are 

determined by least-squares regression of measured extracellular fluxes and metabolite labeling patterns.  The flux 

parameters of the isotopomer model were iteratively adjusted using a Levenberg-Marquardt algorithm until optimal 

agreement with experimental data was obtained. Flux estimation was repeated a minimum of 50 times from random 

initial values to ensure a global minimum was achieved. All results were subjected to a chi-square statistical test to 
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assess goodness-of-fit, and accurate 95% confidence intervals were computed for all estimated parameters by 

evaluating the sensitivity of the sum-of-squared residuals (SSRES) to parameter variations (Antoniewicz et al., 

2006). 

  

4.2.11 Isotopomer Spectral Analysis (ISA) 

Isotopomer spectral analysis (ISA) is an alternative method to determine fluxes from nonstationary isotopomer 

measurements. It assumes that any deviations from steady state are due to the presence of unlabeled material that has 

not yet washed out of the system, and adjustable parameters are introduced that represent the fraction of unlabeled 

material that persists in both precursor and product pools; these parameters are denoted as D and G, respectively. 

The ISA framework was originally developed by Kelleher and Masterson (1992) and has been applied by 

Antoniewicz et al. (2007c) to determine fluxes in a nonstationary model of E. coli metabolism.  

 

As an alternative to INST-MFA, we developed an ISA-based nonstationary model by including two G dilution 

parameters, G1 and G2, into our steady-state isotopomer model. G1 represents the fraction of labeled protein in 

biomass and G2 represents the fraction of labeled RNA. Hence, (1-G1) and (1-G2) represent the amount of unlabeled 

protein and RNA, respectively, that remain at a given time point. Theoretical values for G1 and G2 were determined 

based on the doubling time of the cells as described in Antoniewicz et al. (2007c). Fluxes were determined at each 

sample time point of the nonstationary labeling experiment using the ISA-based model. Further details of the ISA 

procedure and its underlying assumptions are provided in Appendix 4.A. 

 

4.2.12 Biomass Equation 

The dry weight of each cell was determined to be approximately 150 pg. This value was estimated by drying 

70−150×106 cells in triplicate at 80°C overnight. The composition of the dry cell mass was estimated from the 

literature (Quek et al., 2010; Sheikh et al., 2005). Non-protein components included in the equation were 

nucleotides, lipids, and glycogen. The composition used for each purine was assumed to be: one R5P, one GLY, one 

CO2, and two MEETHF. The pyrimidine composition was assumed to be: one R5P, one CO2, and 1 ASP, except for 

thymine, which has one additional MEETHF. One G6P was assumed to make one glycogen monomer. The 

phospholipid fraction was assumed to be composed of the following lipids: phosphatidylcholine, 
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phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, phosphatidylglycerol, and cardiolipin. In each 

case, these molecules were modeled as having 17.43 AcCoA molecules and one DHAP with the following 

additional requirements: phosphatidylserine requires one SER, phosphatidylinositol requires one G6P, 

phosphatidylglycerol requires an additional DHAP, and cardiolipin requires an additional 17.43 AcCoA and 2 

DHAP. (17.43 is the AcCoA requirement for each pair of fatty acid side-chains based on the average lipid 

composition reported by Sheikh et al. (2005).) Glycolipids were assumed to be represented wholly by 

sphingomyelin, which was modeled as requiring 17.43 AcCoA, and 1 SER. Sterols were modeled as cholesterol, 

which was assumed to require 18 AcCoA molecules for biosynthesis. Stoichiometric coefficients were determined 

by multiplying the estimated fraction of each biomass component by the cell dry weight and converting to units of 

nmol/million cells (Zamorano et al., 2010).  

 

4.3 Results 

4.3.1 Cell Metabolic Phenotypes 

The calculated growth rates and extracellular fluxes for both High and Low Myc cells are shown in Table 4.1. 

Specific uptake and excretion rates were determined for 18 of 20 amino acids, but only 10 of those were consumed 

(or produced) in stoichiometric excess of the amounts required for biomass synthesis. Growth of Low Myc cells was 

40% slower than High Myc cells, while glucose uptake was reduced by only 21%. Both High and Low Myc cells 

exhibited a highly glycolytic phenotype, with the majority of incoming carbon excreted as lactate. This was most 

clearly indicated by the lactate-to-glucose (L/G) ratios of 1.9 ± 0.2 and 2.1 ± 0.3 for High and Low Myc cells, 

respectively. Besides glucose, glutamine is the other major carbon substrate for mammalian cell cultures (Vander 

Heiden et al., 2009). Glutamine uptake supplied 9% of total carbon to High Myc cells and 7% to Low Myc cells. 

The uptake of most other amino acids was similarly elevated in High Myc cells. The total amount of carbon 

contributed by amino acids decreased from 28% in High Myc cells to 20% in Low Myc cells, with uptake fluxes of 

arginine, glutamine, histidine, isoleucine, leucine, lysine, methionine, serine, tyrosine, and valine all significantly 

elevated in the High Myc cells. Excretion fluxes of alanine, aspartate, and glycine were also significantly increased 

in High Myc cells.  
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4.3.2 Isotopic Steady-State MFA – High Myc Cells 

Because the extracellular flux measurements do not provide sufficient constraints to estimate intracellular fluxes 

involved in cyclic or parallel pathways (See Appendix 4.B), we sought to apply isotope labeling experiments and 

13C MFA to generate a comprehensive flux map of High Myc P493-6 cells. At least 6 doublings of the cell 

population are required for the protein fraction to approach steady-state labeling. We estimated fluxes based on the 

steady-state labeling experiment both with and without ribose labeling data. After adding the ribose measurements 

to the model, the SSRES increased slightly above the acceptable 95% confidence threshold of the associated chi-

square distribution (from SSRES = 11.7 with 8 degrees of freedom (DOF) to SSRES = 36.1 with 20 DOF).  Despite 

this marginal lack of fit, we hypothesized that the addition of ribose labeling measurements would improve the 

precision of the flux estimates, especially within the PP pathway where ribose precursors are generated. This 

hypothesis was tested by computing the root-mean-square (RMS) error of net flux estimates within glycolysis, PP 

pathway, and TCA cycle (Table 4.2). We found that the addition of ribose labeling data decreased the RMS error of 

net PP pathway reactions from 57% to 34% and resulted in an overall improvement in RMS error from 27% to 21%. 

These findings confirm our hypothesis that the addition of ribose labeling measurements has a substantial impact on 

the precision of flux estimates within the PP pathway.  
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Table 4.1 Extracellular Fluxes for High and Low Myc Conditions. Fluxes have units of nmol/106 cells/h except 

for biomass, which has units of h-1. Fluxes that were included in the MFA flux estimations are marked with a ✔. The 

uptake rates of other amino acids (marked with a ✖) were stoichiometrically matched to the growth rate, indicating 

that they were solely used for biomass synthesis. These amino acids were not included in the MFA flux estimations 

because their catabolism was assumed to be negligible. Significance is indicated for the comparison between Low 

and High Myc conditions based on a two-tailed Student’s t-test with p < 0.05.  

 

  High Myc Low Myc     

Metabolite 
Flux 

(nmol/10
6
 cells/h) 

Flux 
(nmol/10

6
 cells/h) 

Included 
in MFA p < 0.05 

Biomass (h
-1

) 0.0293 ± 0.0008 0.0176 ± 0.0006 ✔ ✔ 
Uptake Fluxes 

Glucose 73 ± 5 58 ± 4 ✔ ✔ 
Arginine 4.7 ± 0.4 2.03 ± 0.15 ✔ ✔ 

Asparagine 0.9 ± 0.2 1 ± 0.2 ✔ ✖ 
Cystine 0.73 ± 0.11 0.94 ± 0.15 ✔ ✖ 

Glutamine 11.5 ± 0.3 6.3 ± 0.2 ✔ ✔ 
Histidine 0.78 ± 0.08 0.19 ± 0.03 ✖ ✔ 

Isoleucine 2.5 ± 0.2 1.4 ± 0.2 ✔ ✔ 
Leucine 3.3 ± 0.2 1.1 ± 0.1 ✔ ✔ 
Lysine 2.09 ± 0.15 0.61 ± 0.05 ✖ ✔ 

Methionine 0.67 ± 0.07 0.13 ± 0.03 ✖ ✔ 
Phenylalanine 0.13 ± 0.17 0.32 ± 0.07 ✖ ✖ 

Serine 4.1 ± 0.2 1.44 ± 0.01 ✔ ✔ 
Threonine 0.27 ± 0.04 0.61 ± 0.06 ✖ ✔ 
Tyrosine 0.58 ± 0.06 0.15 ± 0.03 ✖ ✔ 
Valine 1.42 ± 0.09 0.58 ± 0.05 ✖ ✔ 

Excretion Fluxes 
Lactate 139 ± 8 119 ± 6 ✔ ✖ 
Alanine 1.65 ± 0.11 0.76 ± 0.12 ✔ ✔ 

Aspartate 0.36 ± 0.08 -0.57 ± 0.12 ✖ ✔ 
Glutamate 2.8 ± 0.3 3.11 ± 0.03 ✔ ✖ 

Glycine 0.84 ± 0.11 0.02 ± 0.06 ✔ ✔ 
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Table 4.2 Root-Mean-Square (RMS) Percentage Errors for Selected Net Flux Estimations. RMS errors were 

calculated by first computing the percentage relative standard error of each net flux (i.e., si/max(vi,1)×100%, where 

si is standard error and vi is the net flux value). The resulting relative errors were combined by taking the square root 

of the sum of squared errors divided by the number of fluxes in each pathway. Reactions included in glycolysis, PP 

pathway, and TCA cycle are listed in Appendix 4.F Table 4.F.2. (SS w/w/o Ribose = steady-state with/without 

ribose measurements included.)  

 
  Pathway   

Method Glycolysis PPP TCA Cycle Overall 
SS w/ Ribose 5.5 34 32 21 
SS w/o Ribose 5.7 57 31 27 
ISA 24 Hour 5.5 54 42 29 
ISA 36 Hour 5.5 54 30 26 
ISA 48 Hour 5.0 62 27 27 
ISA 72 Hour 4.9 60 22 26 
INST-MFA 4.8 32 18 19 
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4.3.3 Isotopically Nonstationary MFA – High Myc Cells 

Because of the long experimental times required to reach isotopic steady state, we performed a transient labeling 

experiment on High Myc cells and analyzed the data using INST-MFA. Metabolic fluxes were estimated using 

isotopomer data collected at six time points: 6, 12, 24, 36, 48, and 72 hours after tracer introduction. This resulted in 

376 independent mass isotopomer measurements, which were combined with the 13 extracellular fluxes indicated in 

Table 4.1 to estimate metabolic fluxes and their 95% confidence intervals. Each time point included proteinogenic 

amino acid and RNA-ribose isotopomer measurements, except for 48 and 72 hours, which only included amino acid 

measurements. Fig. 4.2A shows the dynamic labeling trajectories of several selected GC-MS fragment ions along 

with the INST-MFA model fits. (Fits for the remaining isotopomer measurements are shown in Appendix 4.F, Fig. 

4.F.2A.) The model was overdetermined by 240 measurements, and the fit was accepted based on a chi-square test 

with SSRES = 91.7.  

 

The High Myc flux map determined by INST-MFA is shown in Fig. 4.3A. (Refer to Appendix 4.F Tables 4.F.3 and 

4.F.4 for a full listing of flux values and 95% confidence intervals. Pool sizes were completely unidentifiable or 

exhibited large 95% confidence intervals for most metabolites except for those where labeling was directly 

measured. Identifiable pool sizes and their 95% confidence intervals are shown in Appendix 4.F Table 4.F.5. Model 

reduction assumptions are discussed in Appendix 4.C). The oxidative PP pathway exhibited negligible activity, with 

only 2% of the incoming glucose diverted into this branch. Approximately 19% of the pyruvate synthesized from 

glucose entered the TCA cycle, 79% was excreted as lactate, and the remainder was converted to alanine. The 

majority (~73%) of glutamine consumed by the cell was metabolized to α-ketoglutarate, with the remainder excreted 

as glutamate. Both ATP-citrate lyase and mitochondrial malic enzyme were highly active, consuming more than 

35% of the citrate and 25% of the malate produced by the cell, respectively. These enzymes are hypothesized to play 

an important role in supplying carbon for lipid biosynthesis in tumor cells (Moreadith and Lehninger, 1984). 
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Figure 4.2 Labeling Dynamics of Selected GC-MS Fragment Ions. GC-MS ions shown are for alanine (ALA), 

glycine (GLY), serine (SER), aspartate (ASP), glutamate (GLU), and ribose (RIB). Each panel shows the 

experimentally measured mass isotopomer abundances (data points) and INST-MFA model fits (solid lines) for a 

single fragment ion measured under the (A) High or (B) Low Myc condition. Raw mass isotopomer data are shown 

without correction for natural isotope abundance. 

Time, hr Time, hr Time, hr Time, hr 

High Myc Low Myc A B 
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4.3.4 Isotopomer Spectral Analysis (ISA)-based Flux Estimation – High Myc Cells 

As an alternative to INST-MFA, we applied an ISA-based approach to estimate fluxes from nonstationary labeling 

data collected at 24, 36, 48, and 72 hours after tracer introduction. The 24- and 36-hour time points were 

overdetermined by 19 measurements while those at 48 and 72 hours were overdetermined by 6 measurements due to 

the lack of ribose labeling information. All estimates returned SSRES values that were within the expected 95% 

confidence range of the appropriate chi-square distribution. As shown in Table 4.3, the G1 parameter, which 

represents the fraction of newly synthesized protein estimated from isotope labeling measurements, was 

unidentifiable at time points prior to 48h. This is due to the low 13C enrichment of amino acids at these time points 

and the inability of the ISA model to distinguish between internal and external sources of isotope dilution. At later 

times, the estimated G1 values differed significantly from theoretical values derived from a simple dilution 

calculation (Antoniewicz et al., 2007c). Because Antoniewicz et al. (2007c) provided a simple bacterial growth 

medium that contained glucose as the sole carbon substrate, they observed close agreement between experimentally 

determined and theoretically predicted G parameter values. However, our mammalian culture medium contained 

high concentrations of amino acids and other unlabeled carbon sources. This additional source of isotope dilution 

resulted in a large mismatch between the experimental and theoretical G1 parameters. In contrast, the ribose portion 

of RNA was apparently derived exclusively from glucose carbon, and therefore the trajectory of G2 values matched 

closely with the theoretically predicted values in Table 4.3.  
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Table 4.3 Experimentally Determined and Theoretically Predicted G1 and G2 Dilution Parameters. Theoretical 

values are the same for both the G1 and G2 parameters and were determined based on the High Myc condition 

growth rate of 0.0293 h-1. RNA samples were not available for the 48 and 72 hour time points, which prevents the 

calculation of the G2 parameter at these times. Optimized parameter values and their standard errors are shown. 

 
Time Point Dilution Parameters 

(Hours) G1 G2 Theory 
6 3.3 ± 25.3 16.3 ± 0.7 16.1 
12 22.8 ± 24 30.7 ± 1.1 29.6 
24 34.4 ± 21.3 54.5 ± 0.9 50.5 
36 35.3 ± 19.7 66.9 ± 1.1 65.1 
48 40.7 ± 8.7 N/A 75.4 
72 51.1 ± 5.5 N/A 87.9 
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4.3.5 Comparison of MFA Approaches 

In order to select the most appropriate method for further MFA studies, we compared the precision and accuracy of 

each flux estimation approach. We compared steady-state MFA, 24-, 36-, 48-, and 72-hour ISA, and INST-MFA 

based on the 95% confidence intervals of net flux estimates. INST-MFA provided noticeably tighter confidence 

intervals for PP pathway and TCA cycle fluxes (Fig. 4.4 and Table 4.2). We attribute this increase in precision 

primarily to the transient labeling measurements of alanine and ribose ion fragments, which are particularly sensitive 

to changes in G6PDH flux (Appendix 4.F, Fig. 4.F.3).  Furthermore, the overall RMS errors of INST-MFA flux 

estimates were lower than those obtained from any other method (Table 4.2). These comparisons reveal that the 

INST-MFA method is the most robust approach to determine fluxes in our system because of its enhanced flux 

precision as well as its ability to integrate labeling data obtained at multiple time points during the isotopically 

nonstationary period. Despite these noticeable differences in precision, the methods produced overlapping 95% 

confidence intervals for the majority of flux estimates. All but 8 of the 56 net fluxes exhibited overlap of their 95% 

confidence intervals when compared across all methods. The only disagreements were between the steady-state and 

INST-MFA experiments, which exhibited nonoverlapping confidence intervals in the PP pathway (Fig. 4.4). This 

could be attributable to biological variation between the experiments or disturbances introduced by periodic 

replating of cells in the steady-state labeling experiment. Furthermore, the SSRES of the steady-state experiment 

was slightly outside the acceptable range, which suggests that isotope labeling may not have been fully equilibrated 

at the time of sampling. All other pair-wise comparisons (steady-state vs. ISA or ISA vs. INST-MFA) exhibited 

overlapping confidence intervals across all fluxes, indicating statistical agreement. Overall, the methods were 

remarkably consistent in light of the different labeling strategies (single vs. multiple platings), seed densities, and 

modeling assumptions applied in each case. In addition to providing superior flux resolution, INST-MFA also 

imposes the least restrictive modeling assumptions (e.g., no isotopic steady-state assumption) and is therefore 

expected to be free from potential biases introduced by the other methods.   

 We also sought to determine whether the increased precision we observed in the INST-MFA flux estimates 

was due to the increased total number of labeling measurements or to an inherent increase in sensitivity associated 

with the transient labeling measurements. We copied the steady-state labeling data five times to simulate six 

replicate measurement sets. This produced the same total number of isotopomer measurements as in the INST-MFA 

data set. We re-estimated fluxes based on the replicated steady-state measurements and found that there was 
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significant improvement in net flux precision over the original steady-state dataset, but that INST-MFA still 

provided superior identifiability of net fluxes in glycolysis and TCA cycle (Appendix 4.F, Table 4.F.9). INST-MFA 

was also able to resolve a greater number of exchange fluxes in comparison to steady-state MFA, and the number of 

identifiable exchange fluxes was not impacted by replicating the steady-state isotopomer measurements. Taken 

together, these results indicate that the increase in total number of labeling measurements can partially explain the 

improved precision of INST-MFA, but that the transient isotopomer measurements contain some inherent flux 

information that is not obtainable from the steady-state isotopomer measurements
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4.3.6 Isotopically Nonstationary MFA – Low Myc cells 

We next applied INST-MFA to estimate fluxes in Low Myc cells because of its superior precision in determining 

fluxes of High Myc cells. Furthermore, the short labeling time required for INST-MFA is especially important in 

experiments with the more slowly growing Low Myc cells, because it would require nearly two weeks to achieve 

isotopic steady state in the protein fraction of these cells. Fluxes were estimated from labeling data obtained at six 

time points: 12, 24, 36, 48, 72, and 96 hours after tracer introduction. We fit the isotopomer model to 402 

independent mass isotopomer abundances and 12 external flux measurements. Figure 4.2B shows the dynamic 

labeling measurements of several selected GC-MS fragment ions along with model simulations based on the best-fit 

parameters. (Fits for the remaining isotopomer measurements are shown in Appendix 4.F, Fig. 4.F.2B.) The system 

was overdetermined by 263 measurements, and the fit was accepted based on a chi-square test with SSRES = 89.0. 

(Refer to Appendix 4.F Tables 4.F.6, 4.F.7, and 4.F.8 for a full listing of estimated flux and pool size values and 

95% confidence intervals.) The data clearly indicate slower labeling in the Low Myc cells when compared to the 

High Myc cells, which agrees with the lower rates of growth and substrate uptake shown in Table 4.1.  

A comparison of the flux maps of the High and Low Myc cells in Fig. 4.3 shows several noticeable 

differences in nutrient utilization, as well as some unexpected similarities. Overall, the distribution of glycolytic and 

PP pathway fluxes was quite similar in High and Low Myc cells, which was surprising in light of the 42% reduction 

in growth rate exhibited by the Low Myc cells. Despite a reduced rate of glucose uptake, the Low Myc cells 

exhibited a slightly higher L/G ratio and a non-significant reduction in lactate excretion rate. Small oxidative PP 

pathway fluxes were observed in both conditions, which was just sufficient to meet the biosynthetic demand for 

ribose-5-phosphate (R5P). On the other hand, the most striking differences were found in mitochondrial metabolic 

pathways, where the Low Myc cells exhibited 2- to 4-fold reductions in all TCA cycle and amphibolic fluxes. 

Furthermore, the Low Myc cells channeled a significantly lower percentage of pyruvate into the TCA cycle (10% 

versus 19%). Glutamine uptake was halved in Low Myc cells, but glutamate secretion remained the same, resulting 

in a near 4-fold reduction in anaplerotic flux from glutamine to alpha-ketoglutarate. This directly correlated with a 

near 3-fold reduction in mitochondrial malic enzyme flux, which functions to balance the flow of carbon leading to 

citrate synthesis. The extrusion of citrate into the cytosol and its subsequent degradation to AcCoA, a process that 

supplies carbon for fatty acid synthesis and protein acetylation, did not change as drastically as other mitochondrial 

fluxes and was closely matched to growth rate. This fate accounted for 53% of the citrate produced in Low Myc 
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cells, but only 35% of the citrate produced in High Myc cells, indicating a clear shift toward increased oxidative 

metabolism in High Myc cells.  

 

4.3.7 Oxygen Uptake Rates 

The flux maps in Fig. 4.3 indicate a decrease in overall mitochondrial metabolism as a result of reduced Myc 

expression. We hypothesized that this change would correlate with a decrease in oxygen uptake rate (OUR) for 

respiratory processes. This hypothesis was tested by direct measurement of OUR, which confirmed that the Low 

Myc cells consumed oxygen at a rate of approximately 60% that of High Myc cells (Fig. 4.5). Oxygen uptake was 

strongly dependent on mitochondrial Complex I, as it was almost completely abolished in the presence of the 

Complex I inhibitor rotenone in both High and Low Myc cells.  
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Figure 4.5 Oxygen Uptake Rate of P493-6 Cells Under High and Low Myc Conditions. Oxygen uptake rates 

were measured in units of nmol/106 cells/hour. Rates were determined either in untreated cells (n=11) or cells 

treated with 100 nM rotenone (n=2). Error bars indicate standard error of the mean values.  Significance was 

determined using a two-tailed Student’s t-test with p<0.05. 
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4.4 Discussion 

The ability to quantitatively map intracellular carbon fluxes using isotope tracers and metabolic flux analysis (MFA) 

provides a powerful approach to identify functional network states and regulatory mechanisms that characterize cell 

metabolism. Although a handful of prior studies have used 13C MFA to examine the role of specific oncoproteins 

(Gaglio et al., 2011; Kim and Forbes, 2007) or cell signaling pathways  (Forbes et al., 2006; Grassian et al., 2011) in 

promoting global metabolic adaptations of tumor cells, we postulated that applying 13C MFA to map fluxes in P493-

6 B-cells would allow us to quantify the direct metabolic consequences of oncogenic Myc expression while 

minimizing the confounding effects of clonal variability. The P493-6 B-cell line is an EBV-immortalized line with a 

tetracycline-repressible Myc expression construct (Pajic et al., 2000; Pajic et al., 2001). This cell system therefore 

provides a unique platform to investigate the effects of varying Myc expression within an isogenic background, and 

it has been used successfully by other groups to assess the role of Myc in regulating cell growth, metabolism, and 

apoptosis (Gao et al., 2009; Kim et al., 2004; Kim et al., 2007; Le et al., 2012; Li et al., 2005; Liu et al., 2008; 

Schlosser et al., 2004). Furthermore, because Low Myc cells are nontumorigenic while High Myc cells resemble 

human Burkitt lymphoma cells, comparison of metabolic phenotypes between Low and High Myc cells is expected 

to reveal specific differences between normal proliferating cells and cancerous cells (Yustein et al., 2010). 

 

Using this B-cell model system, we proceeded to quantify metabolic phenotypes under both Low and High Myc 

conditions. We measured time courses of cell density and extracellular metabolite concentrations throughout 

exponential phase, followed by regression analysis to estimate specific rates of growth, substrate consumption, and 

product excretion. Based on these specific rates, we observed that High Myc cells significantly increased their 

growth rate and the magnitude of most nutrient uptake and excretion fluxes in comparison to Low Myc cells. This is 

consistent with previous reports of the general stimulating effect of Myc on cell growth and metabolism (Fan et al., 

2010; Morrish et al., 2009; Morrish et al., 2008). In particular, Myc has been shown to enhance flux through the 

glycolytic pathway by direct transactivation of GLUT1, HK2, PFKM, TPI1, GAPD, ENO1 and LDHA genes in 

studies of Rat1a fibroblasts and P493-6 cells (Kim et al., 2004; Osthus et al., 2000; Shim et al., 1997). Although our 

results show a modest increase in glucose consumption and lactate production as a result of ectopic Myc expression, 

the relative changes in these glycolytic fluxes were sub-proportional to the change in specific growth rate we 

observed. On the other hand, most amino acid uptake fluxes were increased 2- to 3-fold in High Myc cells relative to 
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Low Myc cells, which exceeded the 1.7-fold change in specific growth rate. Therefore, ectopic Myc expression 

impacted amino acid fluxes more strongly than glycolytic fluxes in P493-6 cells.  

 

Prior work has shown that glutamine metabolism is under direct control of Myc (Gao et al., 2009; Wise et al., 2008) 

and that Myc-overexpressing cells are particularly sensitive to glutamine withdrawal or inhibition of anaplerotic 

glutamine flux entering the TCA cycle (Fan et al., 2010; Wise et al., 2008; Yuneva et al., 2007). Our results show 

that, in addition to strongly upregulating their glutamine consumption, High Myc cells exhibited significant 

increases in most other incoming and outgoing amino acid fluxes. Furthermore, nearly half of the incoming amino 

acids were consumed in excess of their biosynthetic requirements, which indicates that they were partially 

catabolized to meet the energetic or redox demands of P493-6 cells. Aside from one study that identified serine 

hydroxymethyltransferase (SHMT2) as a direct Myc target gene (Nikiforov et al., 2002), little is known about how 

Myc stimulates metabolism of other amino acids besides glutamine. Based on our results, elucidating the 

mechanisms by which Myc influences global patterns of amino acid utilization in tumor cells represents a promising 

area of further investigation.  

 

Despite much prior work to investigate the altered nutrient requirements of Myc-overexpressing cells, quantitative 

information about flux through intracellular metabolic pathways is not obtainable based on analysis of extracellular 

measurements alone. Therefore, we applied isotope labeling and 13C MFA to further elucidate the intracellular flux 

distributions of P493-6 cells under Low and High Myc conditions. After considering several alternative approaches, 

we concluded that a transient isotope labeling experiment followed by INST-MFA would provide the best overall 

accuracy and precision for flux determination in our system. A comparison of flux maps generated under High and 

Low Myc conditions not only confirmed the previously described global increases in glucose and amino acid 

metabolism exhibited by High Myc cells, but also revealed dramatic alterations in mitochondrial metabolism. In 

contrast to the small relative shift in glycolytic flux, we observed near 4-fold enhancements in most TCA cycle and 

amphibolic fluxes in response to ectopic Myc expression. We also observed a significantly higher rate of oxygen 

consumption by High Myc cells in comparison to Low Myc cells, although the relative increase in oxygen 

consumption was less dramatic than the increase in TCA cycle flux determined by MFA. This could be attributable 

to increased utilization of NAD(P)H for anabolic metabolism in High Myc cells or to unavoidable differences in 
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culture conditions that were required to determine oxygen uptake rate (OUR). Despite these differences, however, 

both the MFA and OUR measurements are qualitatively consistent with an overall upregulation of mitochondrial 

metabolism in High Myc cells. This increase in mitochondrial activity is likely necessary to meet the increased ATP 

demands of High Myc cells, since the observed increase in glycolytic flux is insufficient to support the change in 

growth rate. Assuming a biosynthetic ATP requirement of 43 mmol/gDW (Sheikh et al., 2005) and our measured 

cell dry weight of 150 pg/cell, the difference in ATP demand for growth between High and Low Myc cells is 

approximately 75 nmol/106 cells/h. However, the difference in glycolytic flux accounts for only half of this ATP 

production, the remainder of which must be supplied by oxidative phosphorylation. The increase in TCA cycle flux 

and oxygen uptake exhibited by High Myc cells would more than compensate for the ATP deficit attributable to 

glycolysis. 

 

In addition to providing ATP to support enhanced growth of High Myc cells, increased mitochondrial metabolism 

likely also plays a role in promoting availability of biosynthetic precursors, such as AcCoA that is needed for lipid 

biosynthesis and post-translational modification of proteins (Morrish et al., 2009; Morrish et al., 2010). Several 

recent studies have reported that tumor cells growing under hypoxic conditions or with mitochondrial defects shift to 

a reductive carboxylation pathway to supply carbon for lipid biosynthesis (Metallo et al., 2012; Mullen et al., 2012; 

Wise et al., 2011). This involves conversion of glutamine to citrate by reversal of the isocitrate dehydrogenase 

(IDH) reaction, which normally functions to oxidize citrate in the TCA cycle. Although we could not precisely 

assess the reversibility of IDH based on our measurements, the net TCA cycle flux was determined to operate 

strictly in the forward direction in both Low and High Myc cells. This does not preclude the possibility of glutamine 

carbons becoming incorporated into citrate or fatty acids through reversible or cyclic action of IDH1/2 isoforms, 

even in the presence of a net forward TCA cycle flux. However, Le et al. (2012) have recently shown that when 

P493-6 cells were grown in the presence of [U-13C5]glutamine under either aerobic or hypoxic conditions, the 

labeling patterns of citrate reflect a predominantly oxidative mode of glutamine metabolism rather than reductive 

carboxylation or its conversion to lactate. 

 

One surprising finding of our study was the overall low level of oxidative PP pathway flux in both High and Low 

Myc cells. This could be due to the previously reported effects of Myc to enhance mitochondrial capacity and 
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thereby decrease production of reactive oxygen species (ROS) in Myc-overexpressing cells (Morrish et al., 2008). 

Oxidative stress is a key regulator of oxidative PP pathway flux, which has been shown to decrease dose-

dependently in response to treatments that reduce ROS levels (Tuttle et al., 2007). It is also possible that NADP-

dependent isoforms of isocitrate dehydrogenase (IDH1 or IDH2) or malic enzyme (ME1 or ME3) provide the 

dominant source of NADPH required for biosynthesis and redox homeostasis in P493-6 cells, and thereby diminish 

the cellular demand for oxidative PP pathway activity.  

 

To assess isotope labeling in our system, we relied exclusively on GC-MS measurements of RNA-bound ribose and 

protein-bound amino acids, following extraction and hydrolysis of total cellular protein and RNA. The labeling 

patterns of these macromolecular building blocks serve as proxies of the precursor metabolites from which they 

were biosynthetically derived. This “retrobiosynthetic” approach is commonly used in microbial and plant systems; 

however, the vast majority of recent 13C MFA studies performed on mammalian cells have relied exclusively upon 

direct extraction and isotopomer analysis of free intracellular metabolites (Niklas and Heinzle, 2012). Lee et al. 

(1998) previously applied mass isotopomer measurements of RNA-derived ribose and lipid-derived palmitate to 

investigate PP pathway fluxes in HepG2 cells but did not attempt to integrate these labeling data within a 

comprehensive flux model of central metabolism. Furthermore, we could identify only two previous examples 

where 13C MFA has been applied to a mammalian system based on isotopomer measurements of protein-bound 

amino acids rather than free metabolites (Goudar et al., 2010; Sriram et al., 2008). Although there are advantages 

and disadvantages to both approaches, and the preferred method will clearly depend upon the biological system and 

questions to be addressed, the most important benefits of the retrobiosynthetic approach are (i) the high signal-to-

noise ratio that is obtained due to the abundance of protein and RNA within the cell and (ii) the long-term stability 

of the macromolecule pools, which obviates the need for sophisticated sample quenching and extraction methods 

that are required to preserve the in vivo labeling state of labile intracellular metabolites. The latter consideration is 

particularly germane to the possible future extension of 13C MFA to 3D culture systems or other cellular 

environments where rapid sample collection is not practical. For example, harvesting cells from semi-solid 

substrates such as collagen or Matrigel typically requires incubation at altered temperatures, possibly in the presence 

of proteolytic enzymes, in order to depolymerize the matrix. These procedures are not compatible with current 

metabolite extraction methods that have been developed for 2D adherent cultures or suspension cultures where cells 



! 89 

can be readily recovered after quenching.  One potential drawback of the retrobiosynthetic approach is that it is only 

applicable to actively proliferating cells; however, this would still encompass the vast majority of cancer biology 

studies that are aimed at identifying potential drug targets or biomarkers that are specifically upregulated in growing 

tumors. We anticipate that further development of MFA approaches based on isotopomer analysis of protein, 

nucleotide, and lipid building blocks will open the door to novel investigations of tumor cell metabolism in non-

traditional culture systems, and perhaps eventually to in vivo tumors. 

 

Prior to initiating MFA studies under both Low and High Myc conditions, we compared several different approaches 

for collecting and analyzing isotope labeling data as a function of time. To date, most MFA studies have relied upon 

steady-state isotope labeling measurements as inputs for flux estimation, rather than transient isotopomer 

measurements (Niklas and Heinzle, 2012). This simplifies the sampling procedure and furthermore reduces the 

isotopomer model to a system of algebraic equations, which can be solved more efficiently in comparison to the 

ODE-based models that are required for INST-MFA (Quek et al., 2010). A major drawback of the retrobiosynthetic 

approach, however, is the slow labeling that occurs in protein and RNA fractions. Because the turnover of these 

pools is linked to cell growth, at least 6 cell doublings must be achieved under balanced growth conditions and in the 

presence of tracer to achieve isotopic steady state. Therefore, we examined the possibility of using a transient 

isotope labeling approach to circumvent the practical difficulties associated with prolonged tracer experiments. 

 

We analyzed isotope labeling data collected at multiple time points during exponential growth of P493-6 cells in 

simple flask cultures using steady-state MFA, INST-MFA, and an ISA-based pseudo-steady-state method. 

Comparison of all approaches revealed that their net flux estimates were largely in agreement, at least within the 

errors of the respective methods. The precision of INST-MFA flux estimates was best overall and was dramatically 

superior to other methods in resolving PP pathway fluxes. We attribute this to enhanced sensitivity of the SSRES to 

transient measurements of ribose and alanine labeling, particularly the Ala232 and Rib284 fragment ions, which 

constrained the nonoxidative branch of the PP pathway and indicated low net flux through the pathway as a whole. 

INST-MFA has the further advantage that it integrates the entire transient labeling data into a single flux map, and it 

does not depend on isotopic steady-state or pseudo-steady-state assumptions. Although INST-MFA has been 

previously applied to other mammalian systems (Ahn and Antoniewicz, 2011; Maier et al., 2008; Maier et al., 2009; 
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Munger et al., 2008; Young et al., 2008) and bacterial systems (Nöh et al., 2007; Schaub et al., 2008; Young et al., 

2011), this is the first time that it has been used to analyze transient labeling of macromolecular components such as 

proteinogenic amino acids or RNA-ribose. Furthermore, only one prior study has presented a systematic comparison 

between steady-state and INST-MFA methods in the same system, and this work was restricted to bacterial cultures 

(Noack et al., 2011). 

 

Overall, 13C INST-MFA was the most effective strategy for flux determination in P493-6 cells based on isotopic 

measurements of protein-bound amino acids and RNA-bound ribose. This approach has the advantage of relying 

exclusively on isotopomer measurements derived from highly stable and abundant macromolecular pools, while 

avoiding the long experimental times that would be required to achieve isotopic steady state.  We were able to 

precisely quantify the rates of all major glycolytic, PP pathway, TCA cycle, and amphibolic fluxes in P493-6 cells 

under both High and Low Myc expression levels. High Myc cells relied more heavily on mitochondrial metabolism 

than Low Myc cells and globally upregulated their consumption of amino acids relative to glucose. Most TCA cycle 

and amphibolic mitochondrial pathways exhibited near 4-fold flux increases in High Myc cells, in contrast to modest 

increases in glucose uptake and lactate excretion.  The oxidative pentose phosphate pathway exhibited minimal 

activity under both High and Low Myc conditions. This approach can be readily extended to investigate the 

metabolic adaptations of tumor cells and other proliferating mammalian cells, as well as their response to specific 

pharmacologic or genetic interventions. 
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APPENDIX 4.A - MFA Model Formulation 

The metabolic network model includes the reactions listed in Table 4.F.2 and is based on the following assumptions: 

• Intracellular metabolite levels and metabolic fluxes remained constant throughout the duration of the 

labeling experiment. Extracellular fluxes were confirmed to be constant throughout the experiment based 

on a long-term growth experiment from which the extracellular time courses were determined.  

• Differing seeding densities did not affect the metabolic phenotype. The 36, 48, and 72 hour plates were 

seeded with a lower density compared to the 6, 12, and 24 hour plates, but it was assumed that balanced 

growth was maintained throughout the experiment. 

• Cytosolic malic enzyme (ME1) and PEP carboxylase (PEPCK) were not detectable based on the [U-

13C5]glutamine labeling study discussed below under Model Reduction. Also, separate pools of malate, 

oxaloacetate, and isocitrate were not modeled to simplify the reaction network.  

• All essential amino acids except arginine, isoleucine, and leucine were assumed to be utilized solely for 

biomass synthesis in the High Myc condition. Isoleucine was also assumed to be utilized solely for biomass 

synthesis in the Low Myc condition. Catabolism of these amino acids was not modeled. 

• For the steady-state, ISA, and INST-MFA flux estimates, dilution of amino acid labeling was allowed to 

occur through reversible exchange with unlabeled substrates in the medium. Dilution of alanine was not 

allowed because it was not present in the medium prior to the labeling period. Lactate was allowed to be 

diluted from the medium because it was present in serum.  

• Succinate and fumarate are symmetric molecules that have interchangeable orientations when metabolized 

by enzymes of the TCA cycle. 

• There was no re-incorporation of labeled CO2. 
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APPENDIX 4.B - Stoichiometric Balancing Alone is Insufficient to Determine All Net Fluxes 

Prior to conducting isotope labeling experiments, we sought to determine whether our extracellular measurements 

were feasible by applying stoichiometric balancing alone to estimate fluxes in the High Myc condition. To do so, we 

fit our metabolic network model to the measured extracellular fluxes shown in Table 4.1. We obtained an acceptable 

fit (SSRES = 0) but were unable to determine several net fluxes and all exchange fluxes with uncertainties less than 

±100%. The net fluxes of PYC, MDH, and ME were completely unidentifiable, while several net fluxes in the 

pentose phosphate (PP) pathway and TCA cycle were estimated with 95% confidence intervals that spanned zero. 

This indicated that the fluxes balanced stoichiometrically, but that there was not enough information in the 

extracellular measurements to estimate fluxes involved in cyclic or parallel pathways. Therefore, we sought to apply 

isotope labeling experiments and 13C MFA to resolve the flux distribution within these important intracellular 

pathways. 
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APPENDIX 4.C - Model Reduction 

Isotopomer models used for 13C MFA must be tailored to the relevant metabolic reaction network and available 

measurements of the experimental system. While developing a model to describe the High Myc labeling experiment, 

we identified two network redundancies that could not be fully resolved by feeding glucose tracers alone. These 

were (i) presence of serine dehydratase activity, which deaminates serine directly to pyruvate and thus provides a 

route to bypass the pyruvate kinase (PK) enzyme and (ii) presence of cytosolic malic enzyme, which converts 

malate into pyruvate inside the cytosolic compartment. Both redundancies impact the precision with which fluxes 

surrounding the pyruvate node can be determined. Therefore, we sought to determine whether these enzymes were 

indeed active in our system and should be included in the isotopomer model.   

 

To determine whether serine could be converted to pyruvate by serine dehydratase in High Myc cells, we fed [U-

13C3]serine for 8 days and subsequently measured isotope labeling in proteinogenic amino acids (Appendix F, Fig. 

4.F.1). Based on the absence of 13C-labeling in alanine, aspartate and glutamate, we concluded that serine 

dehydratase was inactive in P493-6 cells under the conditions of our experiment. This was further confirmed by 

absence of serine dehydratase expression as assessed by Western blot (data not shown). To determine whether 

carbon could be recycled back to pyruvate through cytosolic malic enzyme or PEP carboxykinase (PEPCK), we fed 

[U-13C5]glutamine to High Myc cells for 8 days but found no significant labeling in proteinogenic alanine, glycine, 

or serine (Appendix F, Fig. 4.F.1). (The detection limit on our GC-MS is approximately 0.2 to 0.5 mol% enrichment 

for these fragments.) Based on this finding and to preserve parsimony in our isotopomer model, we concluded that 

cytosolic malic enzyme and PEPCK activities were not detectable and should be excluded from the model. A recent 

publication from CV Dang’s group also shows minimal activity of cytosolic malic enzyme based on a similar 13C5-

glutamine labeling experiment using measurements of free alanine isotopomers (Le et al., 2012). However, these 

data do not exclude the possibility of mitochondrial malic enzyme activity, which has been previously observed in 

tumor cells and was therefore retained in the model (Moreadith and Lehninger, 1984).  
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APPENDIX 4.D - Optimal Design of Isotope Labeling Experiments 

Since the optimal tracer combination for 13C MFA can depend strongly on the network topology and the available 

measurements, we adapted the approach of Möllney et al. (1999) to identify a mixture of 13C-labeled glucose tracers 

that would maximize the precision of net fluxes estimated from the steady-state isotope labeling measurements in 

Table 4.F.1. By applying the Nelder-Mead simplex algorithm (MATLAB fminsearch routine), we adjusted the 

relative amounts of five readily available glucose tracers—[1-13C], [2-13C], [6-13C], [1,2-13C2], and [U-13C6]—until 

D-optimality was obtained. (The D-optimality criterion minimizes the determinant of the parameter covariance 

matrix.) This resulted in an optimal tracer combination of 20% [1-13C]glucose, 28% [U-13C6]glucose, and 52% [1,2-

13C2]glucose. This tracer combination was applied in all subsequent labeling experiments. 
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APPENDIX 4.E - Abbreviations 

3PG, 3-phosphoglycerate; AcCoA, Acetyl-Coenzyme A; AcCoA.C, cytosolic Acetyl-Coenzyme A; ACL, ATP-

citrate lyase; ADH, α-ketoglutarate dehydrogenase; AKG, α-ketoglutarate; ALA, alanine; ALA.E, extracellular 

alanine; ALAR, alanine excretion rate; ALDO, aldolase; ALT, alanine transaminase; ARG, arginine; ARG.E, 

extracellular arginine; ARGR, arginine uptake rate; ARGS, arginase; ASN.E, extracellular asparagine; ASNR, 

asparagine uptake rate; ASNS, asparaginase; ASP, asparate; AST, aspartate transaminase; BIOM, biomass; CIT, 

citratre; CO2, carbon dioxide; CS, citrate synthase; CYS, cysteine; CYS.E, extracellular cysteine; CYSR, cysteine 

uptake rate; CYST, cystathionine synthase; DHAP, dihydroxyacetone phosphate; E4P, erythrose-4-phosphate; 

EC2, 2 enzyme-bound carbons; EC3, 3 enzyme-bound carbons;  ENO, enolase; F6P, fructose-6-phosphate; FBP, 

fructose-1,6-bisphosphate; FUM, fumarate; FUMS, fumarase; G6P, glucose-6-phosphate; G6PDH, glucose-6-

phosphate dehydrogenase;GAP, glyceraldehyde-3-phosphate; GAPDH, glyceraldehyde-3-phosphate 

dehydrogenase; GDH, glutamate dehydrogenase; GLC.C, cytosolic glucose; GLC.E, extracellular glucose; GLN, 

glutamine; GLN.E, extracellular glutamine; GLNR, glutamine uptake rate; GLS, glutaminase; GLU, glutamate; 

GLU.E, extracellular glutamate; GLUR, glutamate excretion rate; GLUT, glucose transport; GLY, glycine; 

GLY.E, extracellular glycine; GLYR, glycine excretion rate; GLYS, glycine synthase; HK, hexokinase; IDH, 

isocitrate dehydrogenase; ILE, isoleucine; LABG, labeled glucose; LAC, lactate; LAC.E, extracellular lactate; 

LEU, leucine; LDH, lactate dehydrogenase; LIPS, lipid sink; MAL, malate; MCT, monocarboxylate transporter; 

MDH, malate dehydrogenase; ME, malic enzyme; MEETHF, methylene tetrahydrofuran; OAA, oxaloacetate; 

PDH, pyruvate dehydrogenase; PEP, phosphoenolpyruvate;  PFK, phosphofructokinase;  PGI, phosphoglucose 

isomerase; PK, pyruvate kinase;PST, serine transaminase;PYC, pyruvate carboxylase; PYR.C, cytosolic pyruvate; 

PYR.M, mitochondrial pyruvate; PYRT, pyruvate transport; R5P, ribose-5-phosphate;  R5PE, ribulose-5-

phosphate epimerase; R5PI, ribulose-5-phosphate isomerase; RU5P, ribulose-5-phosphate; S7P, sedoheptulose-7-

phosphate; SER, serine; SER.E, extracellular serine; SERR, serine uptake rate;  SHT, serine hydroxymethyl 

transferase; SUC, succinate; SUDH, succinate dehydrogenase; TA1, transaldolase 1; TA2, transaldolase 2; TK1, 

transketolase 1; TK2, transketolase 2; TK3, transketolase 3; TPI, triose phosphate isomerase; UNLG, unlabeled 

glucose; X5P, xylulose-5-phosphate. 
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APPENDIX 4.F - Supplementary Tables and Figures 

Table 4.F.1 Isotope Labeling Measurements Used for Metabolic Flux Determination. GC-MS ions used to 

assess metabolite labeling. Standard errors of measurement (SEM) were determined based on the lack of agreement 

between measured and theoretically computed mass isotopomer distributions obtained from unlabeled cell extracts. 

 
Metabolite Mass Carbons Composition SEM (mol%) 

ALA 260 1-2-3 C11H26O2NSi2 0.4 

ALA 232 2-3 C10H26ONSi2 0.2 

GLY 246 1-2 C10H24O2NSi2 0.2 

GLY 218 2 C9H24ONSi2 0.3 

SER 390 1-2-3 C17H40O3NSi3 0.5 

ASP 418 1-2-3-4 C18H40O4NSi3 0.4 

ASP 390 2-3-4 C17H40O3NSi3 0.4 

GLU 432 1-2-3-4-5 C19H42O4NSi3 0.2 

GLU 330 2-3-4-5 C16H36O2NSi2 0.2 

RIB 284 1-2-3-4 C13H18O6N1 0.4 

RIB 259 3-4-5 C12H19O6 0.4 
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Table 4.F.2 Complete List of Reactions and Atom Transitions for the B-cell Metabolic Network. Refer to 

Nomenclature for a list of metabolite abbreviations. 

 
Glycolysis 
HK GLC.C (abcdef) → G6P (abcdef) 
PGI G6P (abcdef)   ↔ F6P (abcdef) 
PFK F6P (abcdef)   → FBP (abcdef) 
ALDO FBP (abcdef)   ↔ DHAP (cba) + GAP (def) 
TPI DHAP (abc)   ↔ GAP (abc) 
GAPDH GAP (abc)   ↔ 3PG (abc) 
ENO 3PG (abc) ↔ PEP (abc) 
PK PEP (abc)   → PYR.C (abc) 
LDH PYR.C (abc)  ↔ LAC (abc) 

Pentose Phosphate Pathway 
G6PDH G6P (abcdef) → RU5P (bcdef) + CO2 (a) 
R5PE RU5P (abcde)   ↔ R5P (abcde) 
R5PI RU5P (abcde)  ↔ X5P (abcde) 
TK1 X5P (abcde)   ↔ GAP (cde) + EC2 (ab) 
TK2 F6P (abcdef)   ↔ E4P (cdef) + EC2 (ab) 
TK3 S7P (abcdefg)   ↔ R5P (cdefg) + EC2 (ab) 
TA1 F6P (abcdef)   ↔ GAP (def) + EC3 (abc) 
TA2 S7P (abcdefg)   ↔ E4P (defg) + EC3 (abc) 

TCA Cycle 
PYRT PYR.C (abc) ↔ PYR.M (abc) 
PDH PYR.M (abc)  → AcCoA (bc) + CO2 (a) 
CS OAA (abcd) + AcCoA (ef) → CIT (dcbfea) 
IDH CIT (abcdef) ↔ AKG (abcde) + CO2 (f) 
ADH AKG (abcde) → SUC (bcde) + CO2 (a) 
SUDH SUC (½ abcd + ½ dcba)   ↔ FUM (½ abcd + ½ dcba) 
FUMS FUM (½ abcd + ½ dcba)   ↔ MAL (abcd) 
MDH MAL (abcd)   ↔ OAA (abcd) 

Amphibolic reactions 
ME MAL (abcd)  → PYR.M (abc) + CO2 (d) 
PYC PYR.M (abc) + CO2 (d) → OAA (abcd) 
ACL CIT (abcdef)  → AcCoA.C (ed) + MAL (fcba) 
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Table 4.F.2 Continued 

Amino Acid Metabolism 
GDH AKG (abcde) ↔ GLU (abcde) 
ARGS ARG (abcde) → GLU (abcde) 
GLS GLN (abcde) ↔ GLU (abcde) 
AST OAA (abcd) ↔ ASP (abcd) 
ASNS ASP (abcd) ↔ ASN (abcd) 
PST 3PG (abc) → SER (abc) 
SHT SER (abc) ↔ GLY (ab) + MEETHF (c) 
CYST SER (abc) ↔ CYS (abc) 
GLYS CO2 (a) + MEETHF (b) → Gly (ab) 
ALT PYR.C (abc) ↔ ALA (abc) 

BAA1 ILE (abcdef) + CO2 (g) → SUC (bcdg) +AcCoA (ef) + CO2 (a) 

BAA2 LEU (abcdef) + CO2 (g) → 
AcCoA (bc) + AcCoA (de) + AcCoA 
(gf) + CO2 (a) 

ALAR ALA (abc) → ALA.E (abc) 
ARGR ARG.E (abcde) → ARG (abcde) 
ASNR ASN.E (abcd) → ASN (abcd) 
CYSR CYS.E (abcde) → CYS (abcde) 
GLUR GLU (abcde) → GLU.E (abcde) 
GLNR GLN.E (abcde) → GLN (abcde) 
GLYR GLY (ab) → GLY.E (ab) 
ILER ILE.E (abcdef) → ILE (abcdef) 
LEUR LEU.E (abcdef) → LEU (abcdef) 
SERR SER.E (abc) → SER (abc) 

Transport 
GLUT GLC.E (abcdef) → GLC.C (abcdef) 
LIPS AcCoA.C → LIPID 
MCT LAC (abc) → LAC.E (abc) 

Biosynthesis 
BIOM 90 ALA + 56.55 ARG 

→ BIOMASS 

 
+ 43.2 ASN + 21.75 CYS 

 
+ 18.12 CYS + 52.5 GLN 

 
+ 48.3 GLN + 57.9 GLU 

 
+ 98.7 GLY + 48.6 ILE 

 
+ 84.6 LEU + 64.5 SER 

 
+ 34.95 R5P + 38.25 MEETHF 

 
+ 34.95 CO2 + 17.25 DHAP 

!! + 368.5 AcCoA.C 
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Table 4.F.3 Net Fluxes Determined by 13C INST-MFA for High Myc Cells. Values have units of nmol/106 

cells/h. Estimated flux values and 95% confidence bounds are shown. 

 
Reaction Value LB95 UB95 

Glycolysis !
HK GLC.C → G6P 83.32 75.80 91.09 
PGI G6P ↔ F6P 81.70 74.14 89.47 
PFK F6P → FBP 81.22 73.70 88.60 
ALDO FBP ↔ DHAP + GAP 81.22 73.70 88.60 
TPI DHAP ↔ GAP 80.67 73.16 88.45 
GAPDH GAP ↔ 3PG 161.64 146.59 177.17 
ENO 3PG ↔ PEP 160.95 145.96 176.35 
PK PEP → PYR.C 160.95 145.96 176.35 
LDH PYR.C ↔ LAC 128.11 114.37 141.01 

Pentose Phosphate Pathway !!

G6PDH G6P → RU5P + CO2 0.32 0.11 2.57 
R5PE RU5P ↔ R5P -0.49 -0.64 1.08 
R5PI RU5P ↔ X5P 0.80 0.71 1.58 
TK1 X5P ↔ GAP + EC2 -0.49 -0.64 1.08 
TK2 F6P ↔ E4P + EC2 0.24 -0.54 0.32 
TK3 S7P ↔ R5P + EC2 0.24 -0.54 0.32 
TA1 F6P ↔ GAP + EC3 0.24 -0.54 0.32 
TA2 S7P ↔ E4P + EC3 -0.24 -0.32 0.54 

TCA Cycle !!

PYRT PYR.C ↔ PYR.M 28.49 17.46 44.19 
PDH PYR.M → AcCoA + CO2 37.56 26.53 53.23 
CS OAA + AcCoA → CIT 40.94 29.77 56.74 
IDH CIT ↔ AKG + CO2 29.82 18.60 45.62 
ADH AKG → SUC + CO2 38.25 26.76 54.20 
SUDH SUC ↔ FUM 39.33 27.86 55.28 
FUMS FUM ↔ MAL 39.33 27.86 55.28 
MDH MAL ↔ OAA 38.14 26.57 54.31 

Amphibolic reactions !!

ME MAL → PYR.M + CO2 12.30 8.75 18.14 
PYC PYR.M + CO2 → OAA 3.23 0.00 8.86 
ACL CIT → AcCoA.C + MAL 11.12 10.61 23.44 
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Table 4.F.3 Continued 
 
Reaction Value LB95 UB95 
Amino Acid Metabolism 

!GDH AKG ↔ GLU -8.44 -9.60 -7.28 
ARGS ARG → GLU 2.91 2.12 3.71 
GLS GLN ↔ GLU 10.04 9.47 10.62 
AST OAA ↔ ASP 0.44 0.01 0.87 
ASNS ASP ↔ ASN 0.44 0.01 0.87 
PST 3PG → SER 0.69 0.45 1.04 
SHT SER ↔ GLY + MEETHF 2.49 2.35 2.63 
CYST SER ↔ CYS -0.03 -0.18 0.12 
GLYS CO2 + MEETHF → GLY 1.34 1.23 1.45 
ALT PYR.C ↔ ALA 4.35 4.08 4.61 
BAA1 ILE + CO2 → SUC + AcCoA + CO2 1.07 0.72 1.43 
BAA2 LEU + CO2 → 3AcCoA + CO2 0.77 0.30 1.23 
ALAR ALA → ALA.E 1.65 1.43 1.87 
ARGR ARG.E → ARG 4.61 3.82 5.40 
ASNR ASN.E → ASN 0.86 0.44 1.28 
CYSR CYS.E → CYS 0.68 0.53 0.84 
GLUR GLU → GLU.E 2.78 2.21 3.34 
GLNR GLN.E → GLN 11.49 10.92 12.06 
GLYR GLY → GLY.E 0.88 0.67 1.08 
ILER ILE.E → ILE 2.53 2.18 2.88 
LEUR LEU.E → LEU 3.30 2.86 3.74 
SERR SER.E → SER 3.75 3.44 4.05 

Transport !!

GLUT GLC.E → GLC.C 83.32 75.80 91.09 
LIPS AcCoA.C → Sink 0.00 0.00 12.51 
MCT LAC → LAC.E 128.11 114.37 141.01 

Biosynthesis !!

BIOM Biomass Synthesis 0.0300 0.0284 0.0315 
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Table 4.F.4 Exchange Fluxes Determined by 13C INST-MFA for High Myc Cells. Values have units of nmol/106 

cells/h. Estimated flux values and 95% confidence bounds are shown. 

 

Reaction   Value LB95 UB95 
Glycolysis    

!PGI G6P ↔ F6P 158.98 0.00 Inf 
ALDO FBP ↔ DHAP + GAP 0.00 0.00 Inf 
TPI DHAP ↔ GAP 0.39 0.00 Inf 
GAPDH GAP ↔ 3PG 0.00 0.00 Inf 
ENO 3PG ↔ PEP 45250.00 0.00 Inf 
LDH PYR.C ↔ LAC 285.65 140.29 575.42 

Pentose Phosphate Pathway     !!
R5PE RU5P ↔ R5P 213.81 0.00 Inf 
R5PI RU5P ↔ X5P 3.34 0.00 Inf 
TK1 X5P ↔ GAP + EC2 0.00 0.00 Inf 
TK2 F6P ↔ E4P + EC2 2.21 0.31 14.28 
TK3 S7P ↔ R5P + EC2 0.22 0.00 1.26 
TA1 F6P ↔ GAP + EC3 273.48 2.95 Inf 
TA2 S7P ↔ E4P + EC3 3.02 0.00 8.63 

TCA Cycle      !!
PYRT PYR.C ↔ PYR.M 86.56 2.93 Inf 
IDH CIT ↔ AKG + CO2 44.62 0.00 Inf 
SUDH SUC ↔ FUM 0.00 0.00 Inf 
FUMS FUM ↔ MAL 861.67 0.00 Inf 
MDH MAL ↔ OAA 3337.70 0.00 Inf 

Amino Acid Metabolism !!
GDH AKG ↔ GLU 27.18 14.34 52.40 
GLS GLN ↔ GLU 133.35 23.70 349.61 
AST OAA ↔ ASP 1.46 0.00 17.64 
ASNS ASP ↔ ASN 9.89 0.32 133.35 
SHT SER ↔ GLY + MEETHF 5.87 1.92 14.60 
CYST SER ↔ CYS 0.00 0.00 Inf 
ALT PYR.C ↔ ALA 0.00 0.00 46.26 
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Table 4.F.5 Pool Sizes Determined by 13C INST-MFA for High Myc Cells. Values shown have units of nmol/106 

cells. Estimated pool size and 95% confidence interval are shown. Only identifiable pool sizes are shown. 

 
High Myc Pool Sizes 

Pool Value LB95 UB95 
3PG 0.00 0.00 539.14 

AcCoA 73.00 0.00 468.59 
Ala 436.72 292.67 4109.20 
Asn 181.18 0.00 1864.90 
Asp 1.39 0.00 379.95 
Cit 67.95 0.00 716.84 

DHAP 0.00 0.00 144.74 
EC2 0.00 0.00 7.76 
EC3 0.00 0.00 72.78 
F6P 0.02 0.00 69.81 
FBP 1.36 0.00 72.08 
Fum 45.01 0.00 793.62 
G6P 0.00 0.00 98.37 
GAP 3.50 0.00 143.73 
Glc.C 0.00 0.00 106.30 
Gln 1680.70 332.86 3889.10 
Glu 217.58 0.00 1495.10 
Gly 189.04 97.93 328.55 
Lac 8211.20 4290.30 13495.00 

MEETHF 50.11 0.00 332.38 
Mal 2.78 0.00 780.14 

OAA 22.21 0.00 785.68 
PEP 150.27 0.00 547.95 

Pyr.C 1.03 0.00 1062.70 
Pyr.m 124.40 0.00 1499.40 
R5P 17.02 0.45 66.49 

Ru5P 4.01 0.00 70.27 
Ser 356.30 177.32 651.35 
Suc 99.89 0.00 791.51 
X5P 1.48 0.00 67.99 
aKG 82.87 0.00 714.72 
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Table 4.F.6 Net Fluxes Determined by 13C INST-MFA for Low Myc Cells. Values have units of nmol/106 cells/h. 

Estimated flux values and 95% confidence bounds are shown. 

 
Reaction Value LB95 UB95 

Glycolysis !
HK GLC → G6P 64.30 59.30 69.45 
PGI G6P ↔ F6P 61.61 56.43 67.00 
PFK F6P → FBP 62.49 57.52 67.60 
ALDO FBP ↔ DHAP + GAP 62.49 57.52 67.60 
TPI DHAP ↔ GAP 62.17 57.20 67.27 
GAPDH GAP ↔ 3PG 125.10 115.25 135.30 
ENO 3PG ↔ PEP 124.73 114.71 134.90 
PK PEP → PYR.C 124.73 114.71 134.90 
LDH PYR.C ↔ LAC 114.04 104.32 122.67 

Pentose Phosphate Pathway !!

G6PDH G6P → RU5P + CO2 1.94 0.47 3.86 
R5PE RU5P ↔ R5P 0.88 -0.09 2.54 
R5PI RU5P ↔ X5P 1.05 0.56 1.89 
TK1 X5P ↔ GAP + EC2 0.88 -0.09 2.54 
TK2 F6P ↔ E4P + EC2 -0.44 -1.27 0.05 
TK3 S7P ↔ R5P + EC2 -0.44 -1.27 0.05 
TA1 F6P ↔ GAP + EC3 -0.44 -1.27 0.05 
TA2 S7P ↔ E4P + EC3 0.44 -0.05 1.27 

TCA Cycle !!

PYRT PYR.C ↔ PYR.M 8.36 5.91 18.03 
PDH PYR.M → AcCoA + CO2 11.52 9.20 21.15 
CS OAA + AcCoA → CIT 12.11 9.85 21.80 
IDH CIT ↔ AKG + CO2 5.60 3.47 15.12 
ADH AKG → SUC + CO2 7.93 5.13 17.58 
SUDH SUC ↔ FUM 8.52 5.60 18.12 
FUMS FUM ↔ MAL 8.52 5.60 18.12 
MDH MAL ↔ OAA 11.12 8.66 20.24 

Amphibolic reactions !!

ME MAL → PYR.M + CO2 3.92 2.74 7.22 
PYC PYR.M + CO2 → OAA 0.76 0.00 3.95 
ACL CIT → AcCoA.C + MAL 6.51 6.11 13.75 
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Table 4.F.6 Continued 
 

Reaction Value LB95 UB95 
Amino Acid Metabolism 

!GDH AKG ↔ GLU -2.3323 -2.9044 -1.7411 
ARGS ARG → GLU 1.0425 0.6515 1.4326 
GLS GLN ↔ GLU 5.4145 5.1167 5.7098 
AST OAA ↔ ASP -0.2355 -0.6637 0.1886 
ASNS ASP ↔ ASN -0.2355 -0.6637 0.1886 
PST 3PG → SER 0.3739 0.1158 0.6359 
SHT SER ↔ GLY + MEETHF 1.2125 1.1293 1.2989 
CYST SER ↔ CYS -0.5598 -0.6878 -0.4322 
GLYS CO2 + MEETHF → GLY 0.5418 0.4983 0.599 
ALT PYR.C ↔ ALA 2.3328 2.1941 2.4705 

BAA1 ILE + CO2 → SUC + AcCoA + CO2 0.5918 0.1597 1.0246 

ALAR ALA → ALA.E 0.7547 0.6567 0.853 
ARGR ARG.E → ARG 2.0341 1.6577 2.4189 
ASNR ASN.E → ASN 0.993 0.5883 1.4289 
CYSR CYS.E → CYS 0.9412 0.8155 1.067 
GLUR GLU → GLU.E 3.1095 2.8151 3.3994 
GLNR GLN.E → GLN 6.2615 5.9684 6.5557 
GLYR GLY → GLY.E 0.0232 0.0000 0.1183 
ILER ILE.E → ILE 1.444 1.0244 1.8756 
SERR SER.E → SER 1.44 1.29 1.59 

Transport !!
GLUT GLC.E → GLC.C 64.30 59.30 69.45 
LIPS AcCoA.C → Sink 0.00 0.00 8.59 
MCT LAC → LAC.E 114.04 104.32 122.67 

Biosynthesis !!

BIOM Biomass Synthesis 0.0175 0.0165 0.0186 
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Table 4.F.7 Exchange Fluxes Determined by 13C INST-MFA for Low Myc Cells. Values have units of nmol/106 

cells/h. Estimated flux values and 95% confidence bounds are shown. 

 

Reaction   Value LB95 UB95 
Glycolysis    

!PGI G6P ↔ F6P 0.00 0.00 Inf 
ALDO FBP ↔ DHAP + GAP 0.00 0.00 Inf 
TPI DHAP ↔ GAP 134550.00 0.00 Inf 
GAPDH GAP ↔ 3PG 0.00 0.00 4.41 
ENO 3PG ↔ PEP 2826.90 0.00 Inf 
LDH PYR.C ↔ LAC 0.00 0.00 Inf 

Pentose Phosphate Pathway     !!
R5PE RU5P ↔ R5P 12.73 6.83 28.95 
R5PI RU5P ↔ X5P 0.78 0.06 2.28 
TK1 X5P ↔ GAP + EC2 233.51 39.04 Inf 
TK2 F6P ↔ E4P + EC2 1.70 0.34 4.38 
TK3 S7P ↔ R5P + EC2 0.40 0.04 1.78 
TA1 F6P ↔ GAP + EC3 0.00 0.00 44.04 
TA2 S7P ↔ E4P + EC3 0.38 0.02 Inf 

TCA Cycle      !!
PYRT PYR.C ↔ PYR.M 9239.30 0.00 Inf 
IDH CIT ↔ AKG + CO2 2.84 0.00 Inf 
SUDH SUC ↔ FUM 0.00 0.00 Inf 
FUMS FUM ↔ MAL 3384.70 0.00 Inf 
MDH MAL ↔ OAA 4328.80 0.00 Inf 

Amino Acid Metabolism !!
GDH AKG ↔ GLU 4.43 3.22 19.32 
GLS GLN ↔ GLU 24.91 2.20 96.54 
AST OAA ↔ ASP 0.67 0.00 7.42 
ASNS ASP ↔ ASN 2.06 0.00 15.15 
SHT SER ↔ GLY + MEETHF 0.49 0.00 Inf 
CYST SER ↔ CYS 0.00 0.00 Inf 
ALT PYR.C ↔ ALA 75.41 0.00 166.77 
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Table 4.F.8 Pool Sizes Determined by 13C INST-MFA for Low Myc Dells. Values shown have units of nmol/106 

cells. Estimated pool size and 95% confidence interval are shown. Only identifiable pool sizes are shown. 

 

 
Low Myc Pool Sizes 

Pool Value LB95 UB95 

3PG 2873.30 0.00 5040.60 
AcCoA 0.16 0.00 193.03 

Ala 14159.00 310.85 22100.00 
Asn 109.81 2.42 604.52 
Asp 0.00 0.00 369.09 
Cit 8.00 0.00 276.33 

DHAP 34.30 0.00 338.22 
EC2 0.24 0.00 13.98 
EC3 0.00 0.00 99.33 
F6P 61.17 0.00 178.27 
FBP 12.22 0.00 173.87 
Fum 4.09 0.00 383.67 
G6P 16.84 0.00 141.03 
GAP 11.63 0.00 348.37 
Glc.C 9.42 0.00 141.00 
Gln 334.57 69.80 3650.10 
Glu 0.30 0.00 461.73 
Gly 21.51 0.00 2337.20 
Mal 1.76 0.00 383.71 

OAA 1.22 0.00 384.69 
PEP 1.82 0.00 5074.60 

Pyr.C 0.21 0.00 1043.40 
Pyr.m 0.20 0.00 1087.20 
R5P 64.25 22.75 141.07 

Ru5P 0.01 0.00 14.02 
S7P 23.17 1.73 83.90 
Ser 837.83 0.00 2479.90 
Suc 60.48 0.00 357.46 
X5P 0.13 0.00 13.75 
aKG 10.34 0.00 279.56 

 
  



! 114 

Table 4.F.9 Root-Mean-Square (RMS) Errors for Selected Flux Estimations. RMS errors were calculated as 

described in the caption to Table 4.2. Reactions included in glycolysis, PP pathway, and TCA cycle are listed in 

Appendix F, Table 4.F.2. (SS w/ Ribose = steady-state with ribose measurements included, 6× SS w/ Ribose = 6 

identical replicates of SS w/ Ribose labeling data.) 

 

  Pathway   

Method Glycolysis PPP TCA Cycle Overall 
SS w/ Ribose 5.5 34 32 21 

6x SS w/ Ribose 5.4 19 26 17 

INST-MFA 4.8 32 18 19 
 
  



! 115 

 
 
Figure 4.F.1 Atom Percent Enrichment (APE) of Proteinogenic Amino Acid Fragments Sampled from [U-

13C3]serine and [U-13C5]glutamine Tracer Experiments. Fragments shown are for alanine (Ala), glycine (Gly), 

serine (Ser), aspartate (Asp), and glutamate (Glu). The atom percent enrichment represents the percentage of 

isotopically labeled carbons. The [U-13C3]serine tracer experiments showed no labeling in alanine, aspartate, and 

glutamate fragments, while significant labeling was obtained in serine and glycine fragments. The [U-

13C5]glutamine tracer experiments showed no labeling in serine, glycine, and alanine, while significant labeling was 

found in aspartate and glutamate fragments. This is evidence that serine dehydratase, cytosolic malic enzyme, and 

PEP carboxykinase are not detectable in our system. 
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Figure 4.F.2 Dynamic Isotope Labeling Trajectories of Measured Metabolites in the High and Low Myc 

Conditions. Experimentally determined (!) and INST-MFA fitted (−) mass isotopomer distributions for the (A) 

High Myc and (B) Low Myc conditions. Nominal masses of M0 mass isotopomers are shown next to the fragment 

abbreviation. Error bars represent standard measurement errors. Raw mass isotopomer data are shown without 

correction for natural isotope abundance.
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CHAPTER 5 

!
COMPARISON OF HIGH AND LOW MYC B-CELLS IN NORMOXIC AND HYPOXIC CONDITIONS USING 

ISOTOPICALLY NONSTATIONARY MFA 

 

5.1 Introduction 

In chapter 4, we saw that the isotopically nonstationary metabolic flux analysis (INST-MFA) method can be a more 

powerful way to estimate the intracellular fluxes of a mammalian cell than other methods (e.g., stationary MFA or 

ISA). The model system used, a P493-6 B-cell with varying levels of Myc expression, served as a solid proof-of-

concept cell model that verified the validity of the new techniques as well as revealed specific alterations between 

the normal and tumorigenic phenotypes (Murphy et al., 2013). While this is a complete and insightful study, there 

was an opportunity for improvements in many aspects of the work. 

 

Key to understanding how cancer survives and grows is placing the disease in its proper context. When a tumor 

grows in vivo, the cancerous cells typically outgrow the surrounding vasculature (Vander Heiden, 2011). When the 

cells become physically distant from the oxygen-carrying veins and arteries, a burden is created where the 

availability of oxygen is limited (Semenza, 2010b). This hypoxic environment, as discussed in the background in 

Chapter 2, causes a host of changes within the cell, namely the stabilization of the hypoxia inducible factors (HIF). 

These transcription factors then activate a host of processes that adapts the cell to the low oxygen environment 

(Semenza, 2010a). If the cells contain Myc alterations, as do the P493-6 cells used in this work, then it’s possible 

that the two proteins work together to support the altered phenotype (Dang et al., 2008). 

 

The previous MFA study of these cells (Chapter 4) lacked an analysis of how these cells adjust their metabolism in a 

hypoxic environment. Understanding how the carbon flux changes when tumors are unable to fully utilize the TCA 

cycle is critical to selecting new methods to specifically target cancerous cells (Vander Heiden, 2011). We have 

addressed this knowledge gap by repeating the INST-MFA studies from Chapter 4, adding the hypoxic condition as 

a variable. To address the limitations of the previous study, we have added measurements of lipid labeling to our 

analysis as well as improving how we collect and analyze samples. 
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Here, we show comparisons between a complete set of metabolic flux maps for the combination of High and Low 

Myc expression levels along with Normoxic and Hypoxic growth environments. We detail in the methods section 

the addition of lipid labeling measurements as well as new findings that build upon the previous MFA studies in 

Chapter 4. 

 

5.2 Methods 

5.2.1 Cell Culture 

Cells were maintained according to the method in section 3.2.7 of Chapter 3 with the following exceptions. Hypoxic 

cells were cultured in 5% CO2 and 1% O2. For tracer experiments, glucose-free medium was supplemented with a 

1:1 mixture of [U-13C6]glucose and [1,2-13C2]glucose. All tracers were purchased from Cambridge Isotope 

Laboratories. 

 

5.2.2 Specific Rate Determination 

Specific rates were determined according to the methods detailed in section 3.2 of Chapter 3 with the following 

exceptions. The degradation rate of glutamine in culture medium without cells was found to be slightly different for 

each experiment. Also, evaporation led to non-negligible increases in the concentration of certain metabolites over 

time. These cell-independent effects were modeled by inclusion of a non-zero exponential decay rate in the 

regression equation (Equation 3.3 in chapter 3). Table 5.B.1 lists the decay rates incorporated into the specific rate 

determination. 

  

5.2.3 Isotopically Nonstationary Labeling Experiment 

INST-MFA requires the measurement of isotopic enrichment at multiple time points during the transient labeling 

period. For each condition, the time points were chosen based on the doubling-time of the cell such that 

approximately three doubling periods will have occurred at the last point and the more intermediate samples will 

give the highest level of labeling possible based on the expected growth rate. For High Myc cells in normoxia (HN), 

samples were taken at 6, 12, 24, 36, 48, and 72 hours. For High Myc cells in hypoxia (HH), samples were taken at 

12, 24, 36, 48, 71, and 96 hours. For Low Myc cells in normoxia (LN), samples were taken at 18, 36, 54, 72, 90, and 

108 hours. For Low Myc cells in hypoxia (LH), samples were taken at 18, 36, 54, 72, 96, 120, and 144 hours. For 
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each time point, three separate T-75 flasks were seeded at the appropriate density to achieve a final cell number of 

approximately ten million cells per flask at the time of sampling. Prior to seeding, the growth medium was removed 

by centrifugation and the cells were resuspended in glucose-labeled medium. At the sample times indicated 

previously, cells were harvested by centrifugation at 1500 RPM, washed with phosphate buffered saline (PBS), and 

split into two microcentrifuge tubes. Each tube was centrifuged at 1500 RPM to pelletize cells. One tube was flash 

frozen in liquid nitrogen for future lipid analysis. TRIzol was added to the other tube, and the sample was 

homogenized and then frozen at -80°C for future protein and RNA extraction and analysis. 

 

5.2.4 Extraction, Hydrolysis, and Derivation of Total Cellular Protein and RNA 

Refer to section 4.2.6 in Chapter 4 for details on this methodology. 

 

5.2.5 Medium Glucose Derivatization 

Refer to section 4.2.7 in Chapter 4 for details on this methodology. 

 

5.2.6 Extraction and Derivatization of Total Cellular Lipids 

Samples were removed from the -80°C freezer and thawed at room temperature for ten minutes. A solution of 5% 

sulfuric acid in methanol was made fresh and 1 mL was added to the cell pellet. The pellet was homogenized with a 

glass Pasteur pipet and transferred to a 6 mL glass tube. An additional 1 mL of 5% sulfuric acid in methanol was 

added. Then, 0.5 mL of toluene and 25 µL of a 0.2% BHT in methanol solution were added. The sample was heated 

at 95°C for 2 hours with occasional vortexing. After heating, 3 mL of DI water was added, and the solution was 

vortexed vigorously to quench. 2 mL of hexane was added; the sample was shaken and then centrifuged at 2500 

RPM to separate layers. The hexane layer (top portion) was removed and dried under nitrogen flow at room 

temperature. Dried samples were resuspended in 200 µL of hexane and transferred to a glass GC/MS vial.  

 

5.2.7 Gas chromatography Mass Spectrometry (GC-MS) Analysis 

Derivatized sugar and amino acid samples were analyzed according to the method in section 4.2.8 of chapter 4. 

Derivatized lipid samples were analyzed by GC-MS using a DB-23 capillary column (30 m × 0.25 mm i.d. × 0.25 

µm; Agilent J&W Scientific) installed in an Agilent 7890A gas chromatograph (GC). The injection volume was 1 
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µL, and all samples were run in split mode with an inlet temperature of 270°C and a split ratio of 10:1. Helium flow 

was controlled electronically at 1 mL/min. The GC was interfaced to an Agilent 5975C mass spectrometer (MS) 

operated in electron impact mode with temperatures of 230°C for the ion source and 150°C for the quadrupole. The 

GC temperature program for lipid analysis was: inject sample at 100°C, ramp at 40°C/min to 150°C, ramp at 

10°C/min to 190°C, ramp at 40°C to 250°C, hold for 3 minutes. Because the primary lipid of interest was palmitate, 

mass spectra were obtained in scan mode over the range 269-290 m/z (Yoo et al., 2004). Raw ion chromatograms 

were integrated using a custom MATLAB M-file that applies consistent integration bounds and baseline correction 

to each ion (Antoniewicz et al., 2007). 

 

5.2.8 Isotopomer Network Model 

A detailed isotopomer model for mammalian B-cell metabolism was constructed. The metabolic network contains 

reactions for glycolysis, pentose phosphate pathway, TCA cycle, amphibolic pathways, amino acid catabolism, and 

biomass synthesis (Table 5.B.3 in Appendix B). The network comprises 59 reactions with carbon atom transitions 

specified for all reactions. The network includes 10 extracellular substrates (glucose, aspartate, arginine, asparagine, 

cystine, glutamine, isoleucine, leucine, serine, and valine), 5 metabolic products (biomass, lactate, alanine, 

glutamate, and glycine) and 41 balanced intracellular metabolites with the following exceptions: HN did not include 

aspartate or arginine fluxes, HH did not include aspartate or valine, and LN did not include aspartate. These amino 

acids were left out based on the biomass requirement and the growth rate. If the incoming amino acid flux was less 

that what was required by the biomass equation then catabolism of that amino acid was not included. Constraints 

from cofactor metabolites such as ATP and NAD(P)H were excluded because these balances have been shown to 

produce unreliable results in mammalian systems (Bonarius et al., 1998). Refer to the Appendix of Chapter 4 for a 

detailed description of the model formulation and assumptions. 

 

5.2.9 Flux Determination and Statistical Analysis 

Refer to section 4.2.10 of chapter 4 for details on this analysis. 
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5.2.10 Biomass Equation 

The biomass equation is the same as described in chapter 4, section 4.2.12 with the following exceptions. Palmitate 

is included in the biomass and is assumed to come from the AcCoA.c pool. As such, the coefficients for these 

metabolites are 40.26 for palmitate and 49.14 for AcCoA.c. 

 

5.3 Results 

5.3.1 Cell Metabolic Phenotypes in a Normoxic Environment 

Under normal cell-culture oxygen tension (21%) we measured qualitatively similar results to those discussed in the 

previous chapter (see Table 5.1). A 28% decrease in growth rate was measured between High and Low Myc cells. 

Both conditions exhibited the high glycolytic phenotype measured previously with lactate to glucose ratios of 1.9 ± 

0.2 and 2.0 ± 0.2, respectively. Glutamine, the other primary source of carbon aside from glucose, represented 8.4% 

of the incoming carbon in the High Myc condition and 8.0% in Low Myc. Most fluxes are decreased when 

comparing from High Myc to Low Myc, but most are not significantly different with a p-value greater than 0.05. 

Serine uptake and lactate and asparagine efflux were the only significantly different extracellular fluxes. In both 

conditions, amino acids contributed 30% of the incoming carbon. 

 

5.3.2 Cell Metabolic Phenotypes in a Hypoxic Environment 

When High and Low Myc cells were placed in a low oxygen environment (1% oxygen), their metabolism adjusted 

to enable growth under hypoxia (Table 5.2). High Myc cell growth rate was decreased by 37% while Low Myc was 

decreased by 59%. Compared to each other, the shift from High Myc to Low Myc was marked by a 53% decrease in 

growth rate under hypoxia. As expected, both conditions exhibited very high glycolytic activity with L/G ratios of 

1.92 ± 0.15 (High) and 1.94 ± 0.15 (Low). Surprisingly, the Low Myc condition had a larger glucose and lactate flux 

in the hypoxic environment than High Myc. This difference potentially highlights some of the interaction between 

ectopic and regulated levels of Myc and the induction of HIF by low oxygen. In low oxygen environments, we 

would expect a decrease in TCA cycle activity, a notion supported by the low consumption of glutamine in both 

conditions (Semenza, 2010a). Glutamine only represented 1.7% and 0.7% of the incoming carbon for High and Low 

Myc, respectively.  Amino acids in general decreased their relative contribution to the incoming carbon flux to 9% 

(High) and 6% (Low), indicating a shift towards reliance on glucose as the major source of carbon.  
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Table 5.1 Extracellular Fluxes for High and Low Myc Phenotypes in a Normoxic Environment.  

Fluxes have units of nmol/106 cells/h except for biomass, which has units of h-1. Fluxes that were included in the 

MFA flux estimations are marked with a ✔. The uptake rates of other amino acids (marked with an ✖) were 

stoichiometrically matched to the growth rate, indicating that they were solely used for biomass synthesis. These 

amino acids were not included in the MFA flux estimation because their catabolism was assumed to be negligible. 

Significance is indicated for the comparison between Low and High Myc conditions based on a two-tailed Student’s 

t-test with p<0.05.    

 
  High Myc Low Myc     

Metabolite Flux 
(nmol/106 cells/h) 

Flux 
(nmol/106 cells/h) 

Included 
in MFA p < 0.05 

Biomass (h-1) 0.0363 ± 0.0016 0.0261 ± 0.0013 ✔ ✔ 

Uptake Fluxes 

Glucose 124 ± 12 95 ± 7 ✔ ✖ 

Aspartate 0.85 ± 0.97 1.23 ± 0.69 ✔ ✖ 

Serine 6.1 ± 0.7 3.3 ± 0.5 ✔ ✔ 

Glutamine 16.3 ± 4.4 11.9 ± 2.1 ✔ ✖ 

Histidine 0.58 ± 0.27 0.2 ± 0.18 ✖ ✖ 

Threonine 1.35 ± 0.49 0.84 ± 0.47 ✖ ✖ 

Arginine 0.11 ± 3.31 2.2 ± 1.9 ✖ ✖ 

Tyrosine 0.82 ± 0.25 0.06 ± 0.26 ✖ ✖ 

Cystine 1.27 ± 0.42 1.91 ± 0.2 ✔ ✖ 

Valine 3.33 ± 0.43 1.96 ± 0.35 ✔ ✖ 

Methionine 0.91 ± 0.34 0.41 ± 0.17 ✖ ✖ 

Tryptophan 0.18 ± 0.13 0.54 ± 0.31 ✖ ✖ 

Phenylalanine 1.16 ± 0.22 0.77 ± 0.2 ✖ ✖ 

Isoleucine 4.82 ± 0.94 3.05 ± 0.66 ✔ ✖ 

Leucine 4.44 ± 0.97 3.15 ± 0.72 ✔ ✖ 

Lysine 2.12 ± 0.24 1.79 ± 0.56 ✖ ✖ 

Secretion Fluxes 

Lactate 233 ± 12 186 ± 9.6 ✔ ✔ 

Glutamate 5 ± 0.8 5.1 ± 1.1 ✔ ✖ 

Asparagine 8.3 ± 2 -0.91 ± 1.87 ✔ ✔ 

Glycine 1.21 ± 0.66 -0.09 ± 0.35 ✔ ✖ 

Alanine 2.45 ± 0.73 0.75 ± 0.35 ✔ ✖ 
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Table 5.2 Extracellular Fluxes for High and Low Myc Phenotypes in a Hypoxic Environment.  

Fluxes have units of nmol/106 cells/h except for biomass, which has units of h-1. Fluxes that were included in the 

MFA flux estimations are marked with a ✔. The uptake rates of other amino acids (marked with an ✖) were 

stoichiometrically matched to the growth rate, indicating that they were solely used for biomass synthesis. These 

amino acids were not included in the MFA flux estimation because their catabolism was assumed to be negligible. 

Significance is indicated for the comparison between Low and High Myc conditions based on a two-tailed Student’s 

t-test with p<0.05.    

  High Myc Low Myc     

Metabolite Flux 
(nmol/106 cells/h) 

Flux 
(nmol/106 cells/h) 

Included 
in MFA p < 0.05 

Biomass (h-1) 0.0229 ± 0.0017 0.0107 ± 0.0009 ✔ ✔ 

Uptake Fluxes 

Glucose 173 ± 11 217 ± 13 ✔ ✔ 

Aspartate 0.47 ± 0.49 2.53 ± 1.18 ✔ ✖ 

Serine 2.56 ± 0.39 2.86 ± 0.54 ✔ ✔ 

Glutamine 3.96 ± 2.18 2.1 ± 2.65 ✔ ✖ 

Histidine 0.08 ± 0.22 -0.14 ± 0.28 ✖ ✖ 

Threonine 0.36 ± 0.32 0.3 ± 0.34 ✖ ✖ 

Arginine 3.57 ± 1.26 2.41 ± 2.32 ✖ ✖ 

Tyrosine 0.14 ± 0.2 0.04 ± 0.25 ✖ ✖ 

Cystine 0.76 ± 0.22 3.28 ± 0.27 ✔ ✔ 

Valine 1.09 ± 0.28 0.87 ± 0.37 ✔ ✖ 

Methionine 0.26 ± 0.21 0.2 ± 0.26 ✖ ✖ 

Tryptophan 0.11 ± 0.14 0.28 ± 1.16 ✖ ✖ 

Phenylalanine 0.33 ± 0.18 0.2 ± 0.22 ✖ ✖ 

Isoleucine 1.89 ± 0.5 1.22 ± 0.71 ✔ ✖ 

Leucine 1.81 ± 0.51 1.34 ± 0.72 ✔ ✖ 

Lysine 0.8 ± 0.36 0.69 ± 0.49 ✖ ✖ 

Secretion Fluxes 

Lactate 333 ± 15 423 ± 20 ✔ ✔ 

Glutamate 2.39 ± 0.47 7.39 ± 0.75 ✔ ✔ 

Asparagine 4.84 ± 2.23 -2.48 ± 1.99 ✔ ✔ 

Glycine 0.87 ± 0.41 0.91 ± 0.51 ✔ ✖ 

Alanine 3.02 ± 0.37 1.65 ± 0.34 ✔ ✖ 



! 125 

 
5.3.3 Isotopically Nonstationary MFA – High and Low Myc Cells in a Normoxic Environment 

Concurrently with the growth experiment, we conducted transient labeling experiments on the High and Low Myc 

cells under atmospheric oxygen tension. At the time points indicated in section 5.2, isotopomer data were collected 

resulting in 720 independent mass isotopomer measurements for High Myc and 732 for Low Myc. These 

measurements were combined with 13 extracellular fluxes (Table 5.1) to estimate metabolic fluxes and their 95% 

confidence intervals. The High Myc condition was overdetermined by 544 measurements and the fit was accepted 

based on a chi-square test with SSRES = 335.5. The accepted Low Myc estimation was also overdetermined by 555 

measurements with SSRES=359.4. Figure 5.1 shows the High Myc dynamic labeling trajectories of several GC-MS 

fragments along with the INST-MFA model fits. Figure 5.2 shows the same results for the Low Myc experiment. 

The remaining ion fragments are shown in Appendix B, Figures 5.B.1 and 5.B.2 

 

The flux maps determined by INST-MFA are shown in Figure 5.3. (Refer to Appendix B for full listings of net and 

exchange flux values, pool sizes, and all 95% confidence intervals.) The MFA results agree with the conclusion that 

glycolysis is upregulated in both conditions. The branch point at the pyruvate node indicates that in the High Myc 

condition 74% of the glucose was secreted as lactate as opposed to 85% in the Low Myc. Both conditions showed 

negligible pentose phosphate flux, with 3% or less of the incoming glucose carbon directed to this pathway. 24% of 

the pyruvate formed went to the TCA cycle in the High Myc condition as opposed to 14% in the Low Myc, 

corroborating the results we saw in chapter 4. Rates of glutamine conversion to α-ketoglutarate were higher in the 

High Myc condition (43% versus 32%), which supports the notion that High Myc cells are more reliant upon 

glutamine for growth. Cytosolic acetyl-CoA production was tied to growth rate in both cases. Similar activities of 

mitochondrial malic enzyme were measured in both conditions which, due to the Low Myc condition having an 

overall decreased TCA flux, means the cells relied upon this reaction more than in High Myc. Along with the nearly 

3-fold increase in other TCA cycle enzymes such as succinate dehydrogenase and malate dehydrogenase, this 

indicates a clear shift toward oxidative phosphorylation, a conclusion reported previously in Chapter 4. 
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Figure 5.3 High Myc Normoxic Flux Map Net fluxes are shown in units of nmol/106 cells/hour. Fluxes are 

represented as M ± SE, where M is the median of the 95% flux confidence interval and SE is the estimated standard 

error of M calculated as (UB95-LB95)/3.92. UB95 and LB95 are the upper and lower bounds of the 95% confidence 

interval, respectively. Arrow thickness is scaled proportional to net fluxes included in the adjacent table. Arrow 

color is representative of the flux uncertainty relative to the hexokinase flux value and is scaled such that the fluxes 

with a relative error 20% of the HK flux or greater are bright red and the fluxes with the lowest relative error are 

bright green. Some fluxes included in the isotopomer model are not shown in the figure to enhance clarity.
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Figure 5.4 Low Myc Normoxic Flux Map Net fluxes are shown in units of nmol/106 cells/hour. Fluxes are 

represented as M ± SE, where M is the median of the 95% flux confidence interval and SE is the estimated standard 

error of M calculated as (UB95-LB95)/3.92. UB95 and LB95 are the upper and lower bounds of the 95% confidence 

interval, respectively. Arrow thickness is scaled proportional to net fluxes included in the adjacent table. Arrow 

color is representative of the flux uncertainty relative to the hexokinase flux value and is scaled such that the fluxes 

with a relative error 20% of the HK flux or greater are bright red and the fluxes with the lowest relative error are 

bright green. Some fluxes included in the isotopomer model are not shown in the figure to enhance clarity.
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5.3.4 isotopically Nonstationary MFA – High and Low Myc Cells in a Hypoxic Environment 

The transient labeling experiments done in the normoxic environment were repeated at a low oxygen tension (1%) to 

simulate the stressful conditions in vivo tumor cells would encounter when far from the body’s vasculature. Six time 

points were taken for the High Myc condition while seven were taken for Low Myc. This resulted in 696 and 753 

independent mass isotopomer measurements for High and Low Myc, respectively. The High Myc estimation 

included 13 extracellular fluxes while the Low Myc had 15. Each estimation was overdetermined by 514 and 551 

measurements and accepted based on a chi-square test with SSRES equal to 294 and 165.2 for High and Low Myc, 

respectively. Figure 5.5 shows the High Myc dynamic labeling trajectories of several GC-MS fragments along with 

the INST-MFA model fits. Figure 5.6 shows the same results for the Low Myc experiment. The remaining ion 

fragments are shown in the Appendix Figures 5.B.3 and 5.B.4 

 

Since these cells were in a hypoxic environment, we expected to see a decrease in mitochondrial flux and a 

significant increase in glycolytic activity. Under these conditions, Low Myc cells (Fig. 8) actually exhibited a larger 

glycolytic flux than High Myc cells (Fig. 7), but approximately 93% of the incoming glucose was converted to 

lactate in both conditions. (Refer to Appendix B for full listings of net and exchange flux values, pool sizes, and all 

95% confidence intervals.)  Only ~7% of the pyruvate synthesized from glucose entered the TCA cycle in either 

condition, with the remainder going to alanine synthesis. Both of these conditions had very low, though similar, 

TCA cycle rates compared to their glycolytic rates even though the Low Myc cells grew significantly slower than 

the High Myc cells. Due to limited OXPHOS capabilities under hypoxia, much of the isotopic labeling was diverted 

out of the cell prior to entry to the TCA cycle. This resulted in large confidence intervals because of the low level of 

labeling in TCA cycle-derived metabolites such as glutamate and aspartate. Figure 5.9 shows the different 

enrichment levels of selected GC-MS fragments between the four conditions. Due to the retrobiosynthetic approach, 

many of the fragments in the hypoxic condition had less than 2% isotopic enrichment. It is clear that in the hypoxic 

condition, the majority of the carbons in glutamate, aspartate, and palmitate fragments were from some unlabeled 

source other than glucose. The glycolytic metabolites (alanine, glycine, serine, and ribose) exhibited varying levels 

of enrichment. The high alanine enrichment corroborates the high glycolytic rates measured. Based on the rate of 

entry of carbon into the mitochondria, we can conclude that High and Low Myc cells had similar rates of 

mitochondrial activity, but slight differences in the metabolism are not detectable with this tracer mix.  
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5.3.5 Metabolic Alterations Due to a Switch to Hypoxia. 

Dramatic differences in metabolism were seen when comparing High or Low Myc cells in hypoxia versus normoxia. 

The switch to a hypoxic environment activated numerous alternate pathways most likely via increase of the hypoxia-

inducible transcription factors. In going from 21% to 1% O2 we saw a significant decrease in the growth rates of 

High (62%) and Low Myc (44%) cells. In contrast to the growth rate, we saw the glycolytic flux increase 

dramatically: High Myc cells increased glucose uptake by 18% and lactate secretion by 50% in hypoxia while Low 

Myc cells increased glucose uptake by 110% and lactate secretion by 134%. Other fluxes, such as pyruvate 

dehydrogenase (PDH) decreased in the High Myc condition (63% decrease) while staying nearly the same in the 

Low Myc condition. In fact, the PDH flux was nearly identical in High Myc Hypoxic and both Low Myc conditions, 

highlighting how high levels of Myc, as well as oxygen, are necessary for significant TCA cycle activity in this cell 

model. With the decrease in oxidative phosphorylation we also saw an approximately 68% decrease in glutaminase 

activity in both conditions. Glutaminase activity was linked with anaplerotic malic enzyme (ME) activity, but due to 

the low level of labeling it is difficult to make specific claims about the differences between normoxic and hypoxic 

environments. Malic enzyme is important for regeneration of reducing equivalents in the form of NAD(P)H and for 

removal of excess anaplerotic carbon entering the TCA cycle (Moreadith and Lehninger, 1984). Glucose-6-

phosphate dehydrogenase (G6PDH), the first enzyme in the pentose phosphate pathway, is also important for 

NADPH generation (Schwartz et al., 1986), but we saw almost no activity in all four conditions.
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Figure 5.7 High Myc Hypoxic Flux Map Net fluxes are shown in units of nmol/106 cells/hour. Fluxes are 

represented as M ± SE, where M is the median of the 95% flux confidence interval and SE is the estimated standard 

error of M calculated as (UB95-LB95)/3.92. UB95 and LB95 are the upper and lower bounds of the 95% confidence 

interval, respectively. Arrow thickness is scaled proportional to net fluxes included in the adjacent table. Arrow 

color is representative of the flux uncertainty relative to the hexokinase flux value and is scaled such that the fluxes 

with a relative error 20% of the HK flux or greater are bright red and the fluxes with the lowest relative error are 

bright green. Some fluxes included in the isotopomer model are not shown in the figure to enhance clarity.
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Figure 5.8 Low Myc Hypoxia Flux Map Net fluxes are shown in units of nmol/106 cells/hour. Fluxes are 

represented as M ± SE, where M is the median of the 95% flux confidence interval and SE is the estimated standard 

error of M calculated as (UB95-LB95)/3.92. UB95 and LB95 are the upper and lower bounds of the 95% confidence 

interval, respectively. Arrow thickness is scaled proportional to net fluxes included in the adjacent table. Arrow 

color is representative of the flux uncertainty relative to the hexokinase flux value and is scaled such that the fluxes 

with a relative error 20% of the HK flux or greater are bright red and the fluxes with the lowest relative error are 

bright green. Some fluxes included in the isotopomer model are not shown in the figure to enhance clarity.
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Figure 5.9 Atom Percent Enrichment (APE) of GC-MS Fragments Sampled. Fragments shown are for alanine 

(ALA), glycine (GLY), serine (SER), aspartate (ASP), glutamate (GLU), ribose (RIB), and palmitate (PALM). The 

atom percent enrichment represents the percentage of isotopically labeled carbons. The x-axis is time measured in 

hours. The remaining fragments are in Appendix B, Figures 5.B.5 and 5.B.6.
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5.4 Discussion 

Central to understanding cancer metabolism is determining differences in pathway flux between cancerous and 

normal cells as well as how cancerous cells adapt to altered growth environments (Vander Heiden, 2011; Vander 

Heiden et al., 2009). In vivo, a cancer cell has mutations that both remove anti-growth signals and increase pro-

growth signals (Hanahan and Weinberg, 2011). Whether this is due to the loss of tumor suppressors or the 

expression of oncoproteins, the result is that cells adjust their physiology and metabolism to support rapid growth 

(Ward and Thompson, 2012). Not only are the signals inside the cell important but so are the external signals: 

factors such as nutrient availability, oxygen tension, and adjacent cells will greatly affect metabolic phenotypes. 

Quantitatively understanding how these changes specifically affect metabolism is key to finding new ways to exploit 

differences between normal and cancer cells (Koppenol et al., 2011). 

 

In this study, we assessed P493-6 B-cells under four distinct conditions: High and Low Myc levels under normal 

(21%) and low (1%) oxygen levels. We previously stated that these cells are ideal for studying altered Myc 

expression levels due to their isogenic background as well as their well-documented use and success in other 

research groups (Le et al., 2010; Le et al., 2012; Murphy et al., 2013; Pajic et al., 2000; Pajic et al., 2001). Under all 

four conditions we measured the extracellular uptake and secretion rates of glucose, lactate, and 18 amino acids as 

well as the growth rate of the cells. Consistent with our previous report of High and Low Myc metabolism in 

normoxia (Chapter 4) we saw a decrease in growth in Low Myc and a decrease in the fluxes of glucose, lactate, and 

most amino acids. However, unlike the results in chapter 4, we find that the amino acid contribution is the same in 

both conditions (30%). It’s possible that the improved methods employed in repeating the experiment yielded results 

that improved our accuracy but decreased precision slightly because we considered more sources of error in the 

analysis (see chapter 3). In hypoxia we measured an increase in glucose and lactate fluxes when compared to 

normoxia. However, Low Myc cells had a greater overall glycolytic flux than High Myc did. 

 

Building on our work from the previous chapter, we decided to repeat the INST-MFA experiments in the normoxic 

condition and add the hypoxic condition. We also added more GC-MS fragments to our analysis and improved the 

method used for extracellular flux determination (Chapter 2). The addition of the palmitate 270 fragment was 

hypothesized to increase the accuracy of the flux estimation in the TCA cycle and lipid synthetic pathways. In 
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normoxic conditions, our MFA results confirmed the High Myc cells’ shift towards mitochondrial metabolism 

measured in Chapter 4. Although not as dramatic as we previously reported, we did measure larger fluxes in the 

TCA cycle as well as a greater portion of the glucose-derived pyruvate entering the mitochondria. Fluxes controlled 

by isocitrate dehydrogenase and succinate dehydrogenase were increased approximately 2.5-fold in High Myc cells 

when compared to Low Myc. These results better align with our previously measured oxygen uptake rates (Figure 

4.5 in Chapter 4). While the overall TCA cycle flux supports the previous OUR measurements, there are several 

differences between the two studies. We previously reported a dramatic increase in malic enzyme (ME) flux in High 

Myc cells. The difference measured in this study was not as great as previously observed. However, there is still 

significant flux through the pathway suggesting it is important for balancing the carbon flow through the TCA cycle 

and possibly for the maintenance of NAD(P)H. A recent study has highlighted how the tumor suppressor p53 can 

downregulate expression of ME1 and ME2 and that these proteins work in a positive-feedback loop to sustain p53 

activation (Jiang et al., 2013). It is clear from this and other studies that malic enzyme has some role to play in 

supporting tumor growth (Moreadith and Lehninger, 1984; Vander Heiden et al., 2009). Whether it’s solely through 

replenishment of cofactors or through feedback mechanisms like those seen with p53 is not wholly clear. Similar to 

our previous data we found that ATP-citrate lyase activity was tied to growth. This is primarily a byproduct of how 

the lipid synthetic reactions were modeled, but the flux results suggest this is an appropriate method of modeling the 

metabolism. Another important finding reconfirmed by this study is the low level of pentose phosphate pathway 

activity. We saw in all four conditions that less than 2 percent of the incoming glucose carbon entered the pentose 

phosphate pathway through glucose-6-phosphate dehydrogenase (G6PDH). This suggests that activity through this 

pathway is solely for nucleotide synthesis and not for cofactor balancing. It’s possible that the larger flux through 

IDH and ME pathways meets the NADPH requirements of the cell.  

 

In hypoxic conditions, HIF1α degradation is stabilized and dimerizes with HIF1β to form the HIF transcription 

factor that controls many similar aspects of central metabolism as Myc (Lum et al., 2007; Semenza, 2010b). At 

normal expression levels of Myc, HIF will act as an inhibitor of Myc and cause a decrease in the rate of growth and 

direct metabolism towards glycolysis (Dang et al., 2008). However, when Myc is ectopically expressed, the two 

transcription factors will cooperate to promote tumorigenesis via mechanisms that are not fully understood(Gordan 

et al., 2007). It’s thought that Myc and HIF work to promote growth of the cell and glycolysis but it’s not clear from 
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previous studies how this affects the cell specific fluxes. Our results show Myc and HIF can increase the growth 

rate, as seen in the High Myc cells, but the glycolytic fluxes are actually lower. Based on this result, it seems the 

cells are able to more efficiently use the nutrients to promote growth.  

 

A new measurement we added to the MFA method was the labeling of palmitate. Labeled palmitate measurements 

have been used in previous studies to show the differences in carbon utilization from glucose and glutamine sources 

(Keibler et al., 2012). Work from Le et al. (2012) using the same P493-6 cell line showed that under hypoxic 

conditions, more of the carbons used for palmitate synthesis came from glutamine than from glucose. This suggests 

a way for cells to reconfigure their metabolism in a glucose-independent manner. Our MFA results support the 

conclusion that P493 cells can decouple glucose and glutamine metabolism, despite the presence of glucose in the 

culture media. These data, along with the low level of 13C labeling in palmitate, show a significant rewiring of 

metabolism towards a glutamine-driven TCA cycle. However, in both High and Low Myc cells, glutamine uptake 

decreased and the overall rate of carbon through the TCA cycle was decreased when compared to the normoxic 

condition. Recent studies have suggested that the TCA cycle operates in a reductive manner when in a hypoxic 

environment, however our results still show a primarily oxidative directionality to the TCA cycle.  

 

This study highlights with greater accuracy the differences between High and Low Myc conditions in both normoxic 

and hypoxic environments. The use of labeling from amino acids, RNA-bound ribose, and palmitate, along with the 

extracellular measurements, allowed us to peek inside the cell to quantitatively measure how cancerous cells alter 

their metabolism to support survival. Future work in hypoxic conditions will need to rely on alternate sources of 

labeled carbon, such as glutamine, due to the low level of glucose utilization in the TCA cycle. Flux results like 

these are the foundation for rational decision-making regarding new therapeutic targets such as those discussed in 

the next chapter (Keibler et al., 2012).  
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APPENDIX 5.A - MFA Model Formulation 

The metabolic network model includes the reactions listed in Table 5.B.3 in Appendix B and is based on the same 

assumptions as in Appendix 4A. 
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APPENDIX 5.B - Supplementary Tables and Figures 

Table 5.B.1 Evaporation and Degradation Rates for High and Low Myc Cells in Normoxic and Hypoxic 

Conditions. Decay rates were determined in cell-free media control experiments using a first-order kinetic model. 

Negative values indicate accumulation due to evaporation and positive values indicate spontaneous degradation. 

Which rates to include were determined by whether the absolute value was greater than 0.001 and the uncertainty 

did not span zero. Abbreviations are as follows: HN – High Myc Normoxic, HH – High Myc Hypoxic, LN – Low 

Myc Normoxic, and LH – Low Myc Hypoxic. All values were input into ETA. 

Metabolite) Condition) Decay)Rate)(h31))
Aspartate HN -0.0048 ± 0.0025 

Asparagine HN 0.1075 ± 0.0038 
Glutamine HN 0.0042 ± 0.0011 
Arginine HN 0.0027 ± 0.0010 
Alanine HN -0.0018 ± 0.0016 

Tryptophan HN 0.0064 ± 0.0030 
Aspartate HH -0.0030 ± 0.0014 

Asparagine HH 0.0078 ± 0.0034 
Glutamine HH 0.0041 ± 0.0008 
Arginine HH 0.0026 ± 0.0008 

Tryptophan HH -0.0015 ± 0.0007 
Aspartate LN -0.0052 ± 0.0021 
Glutamate LN -0.0017 ± 0.0011 

Serine LN -0.0010 ± 0.0006 
Glutamine LN 0.0033 ± 0.0006 
Arginine LN 0.0020 ± 0.0007 
Alanine LN -0.0017 ± 0.0008 
Tyrosine LN -0.0017 ± 0.0010 
Valine LN -0.0015 ± 0.0008 

Tryptophan LN -0.0104 ± 0.0053 
Phenylalanine LN -0.0018 ± 0.0010 

Isoleucine LN -0.0012 ± 0.0006 
Leucine LN -0.0011 ± 0.0006 
Lysine LN -0.0012 ± 0.0009 

Aspartate LH -0.0042 ± 0.0012 
Glutamine LH 0.0042 ± 0.0004 
Arginine LH 0.0026 ± 0.0003 

Tryptophan LH -0.0062 ± 0.0037 
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Table 5.B.2 Isotope Labeling Measurements Used for Metabolic Flux Determination. GC-MS ions used to 

assess metabolite labeling. Standard errors of measurement (SEM) were determined based on the lack of agreement 

between measured and theoretically computed mass isotopomer distributions obtained from unlabeled cell extracts. 

 

Metabolite Mass Carbons Composition SEM (mol%) 
ALA 260 1-2-3 C11H26O2NSi2 0.3 
ALA 232 2-3 C10H26ONSi2 0.2 
GLY 246 1-2 C10H24O2NSi2 0.2 
GLY 218 2 C9H24ONSi2 0.2 
SER 390 1-2-3 C17H40O3NSi3 0.4 
SER 362 2-3 C16H40O2NSi3 0.5 
SER 288 2-3 C14H34NOSi2 0.4 
ASP 418 1-2-3-4 C18H40O4NSi3 0.3 
ASP 390 2-3-4 C17H40O3NSi3 0.4 
ASP 302 1-2 C14H32O2NSi2 0.3 
GLU 432 1-2-3-4-5 C19H42O4NSi3 0.4 
GLU 404 2-3-4-5 C18H42O3NSi3 0.5 
GLU 330 2-3-4-5 C16H36O2NSi2 0.3 
RIB 284 1-2-3-4 C13H18O6N1 0.5 
RIB 259 3-4-5 C12H19O6 0.5 
GLUC 370 1-2-3-4-5 C17H24O8N 0.5 
GLUC 284 1-2-3-4 C13H18O6N 0.5 
GLUC 259 4-5-6 C12H19O6  0.5 

PALM 270 

1-2-3-4-5-
6-7-8-9-
10-11-12-
13-14-15-
16 

C17H34O2 0.3 
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Table 5.B.3 Complete List of Reactions and Atom Transitions for the B-cell Metabolic Network. Refer to 

Appendix 5C for a list of metabolite abbreviations. 

Glycolysis 
HK GLC.c (abcdef) → G6P (abcdef) 
PGI G6P (abcdef)   ↔ F6P (abcdef) 
PFK F6P (abcdef)   → FBP (abcdef) 
ALDO FBP (abcdef)   ↔ DHAP (cba) + GAP (def) 
TPI DHAP (abc)   ↔ GAP (abc) 
GAPDH GAP (abc)   ↔ 3PG (abc) 
ENO 3PG (abc) ↔ PEP (abc) 
PK PEP (abc)   → PYR.c (abc) 
LDH PYR.c (abc)  ↔ LAC (abc) 
Pentose Phosphate Pathway 
G6PDH G6P (abcdef) → RU5P (bcdef) + CO2 (a) 
R5PE RU5P (abcde)   ↔ R5P (abcde) 
R5PI RU5P (abcde)  ↔ X5P (abcde) 
TK1 X5P (abcde)   ↔ GAP (cde) + EC2 (ab) 
TK2 F6P (abcdef)   ↔ E4P (cdef) + EC2 (ab) 
TK3 S7P (abcdefg)   ↔ R5P (cdefg) + EC2 (ab) 
TA1 F6P (abcdef)   ↔ GAP (def) + EC3 (abc) 
TA2 S7P (abcdefg)   ↔ E4P (defg) + EC3 (abc) 
TCA Cycle 
PYRT PYR.c (abc) ↔ PYR.m (abc) 
PDH PYR.m (abc)  → AcCoA (bc) + CO2 (a) 
CS OAA (abcd) + AcCoA (ef) → CIT (dcbfea) 
IDH CIT (abcdef) ↔ AKG (abcde) + CO2 (f) 
ADH AKG (abcde) → SUC (bcde) + CO2 (a) 
SUDH SUC (½ abcd + ½ dcba)   ↔ FUM (½ abcd + ½ dcba) 
FUMS FUM (½ abcd + ½ dcba)   ↔ MAL (abcd) 
MDH MAL (abcd)   ↔ OAA (abcd) 
Amphibolic reactions 
ME MAL (abcd)  → PYR.m (abc) + CO2 (d) 
PYC PYR.m (abc) + CO2 (d) → OAA (abcd) 
ACL CIT (abcdef)  → AcCoA.c (ed) + MAL (fcba) 
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Table 5.B.3 Continued 

Amino Acid Metabolism 
GDH AKG (abcde) ↔ GLU (abcde) 
ARGS ARG (abcde) → GLU (abcde) 
GLS GLN (abcde) ↔ GLU (abcde) 
AST OAA (abcd) ↔ ASP (abcd) 
ASNS ASP (abcd) ↔ ASN (abcd) 
PST 3PG (abc) → SER (abc) 
SHT SER (abc) ↔ GLY (ab) + MEETHF (c) 
CYST SER (abc) ↔ CYS (abc) 
GLYS CO2 (a) + MEETHF (b) → Gly (ab) 
ALT PYR.c (abc) ↔ ALA (abc) 

BAA1 ILE (abcdef) + CO2 (g) → SUC (bcdg) +AcCoA (ef) + CO2 (a) 

BAA2 LEU (abcdef) + CO2 (g) → 
AcCoA (bc) + AcCoA (de) + AcCoA 
(gf) + CO2 (a) 

BAA3 VAL (abcde) → SUC (abcd) + CO2 (e) 
ALAR ALA (abc) → ALA.e (abc) 
ARGR ARG.e (abcde) → ARG (abcde) 
ASNR ASN.e (abcd) → ASN (abcd) 
ASPR ASP.e (abcd) → ASP (abcd) 
CYSR CYS.e (abcde) → CYS (abcde) 
GLUR GLU (abcde) → GLU.e (abcde) 
GLNR GLN.e (abcde) → GLN (abcde) 
GLYR GLY (ab) → GLY.e (ab) 
ILER ILE.e (abcdef) → ILE (abcdef) 
LEUR LEU.e (abcdef) → LEU (abcdef) 
SERR SER.e (abc) → SER (abc) 
VALR VAL.e (abcde) → VAL (abcde) 
Transport 
UNLG GLC.u (abcdef) → GLC.e (abcdef) 
LABG GLC.l (abcdef) → GLC.e (abcdef) 
GLUT GLC.e (abcdef) → GLC.c (abcdef) 
LIPS 8*AcCoA.C ↔ PALM 
MCT LAC (abc) → LAC.e (abc) 
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Table 5.B.3 Continued 

Biosynthesis 
BIOM 90 ALA + 56.55 ARG 

→ BIOMASS 

 
+ 43.2 ASN + 70.8 ASP 

 
+ 21.75 CYS +  48.3 GLN 

 
+  57.9 GLU + 98.7 GLY 

 
+ 48.6 ILE + 84.6 LEU 

 
+ 64.5 SER + 62.4 VAL 

 
+ 43.28 G6P + 34.95 R5P 

 
+ 38.25 MEETHF + 34.95 CO2 

  
+ 18.26 DHAP + 49.14 AcCoA.c 
+ 40.26 PALM 
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Table 5.B.4 Net Fluxes Determined by 13C INST-MFA for High Myc Normoxic Cells. Values have units of 

nmol/106 cells/h. Estimated flux values and 95% confidence bounds are shown. 

Reaction Value LB95 UB95 
Glycolysis !
HK GLC.C → G6P 148.86! 134.49! 166.19!
PGI G6P ↔ F6P 147.08! 132.83! 164.43!
PFK F6P → FBP 146.32! 131.97! 163.38!
ALDO FBP ↔ DHAP + GAP 146.32! 131.97! 163.38!
TPI DHAP ↔ GAP 145.64! 131.26! 162.99!
GAPDH GAP ↔ 3PG 291.58! 263.03! 326.48!
ENO 3PG ↔ PEP 290.16! 261.46! 324.91!
PK PEP → PYR.C 290.16! 261.46! 324.91!
LDH PYR.C ↔ LAC 221.95! 197.72! 244.92!
Pentose Phosphate Pathway !!
G6PDH G6P → RU5P + CO2 0.17! 0.05! 4.68!
R5PE RU5P ↔ R5P -0.76! -0.86! 2.28!
R5PI RU5P ↔ X5P 0.92! 0.84! 2.43!
TK1 X5P ↔ GAP + EC2 -0.76! -0.86! 2.28!
TK2 F6P ↔ E4P + EC2 0.38! -1.14! 0.43!
TK3 S7P ↔ R5P + EC2 0.38! -1.14! 0.43!
TA1 F6P ↔ GAP + EC3 0.38! -1.14! 0.43!
TA2 S7P ↔ E4P + EC3 -0.38! -0.43! 1.14!
TCA Cycle !!
PYRT PYR.C ↔ PYR.M 62.46! 40.93! 97.85!

PDH PYR.M → AcCoA + 
CO2 62.57! 40.26! 97.62!

CS OAA + AcCoA → CIT 67.94! 45.03! 103.47!
IDH CIT ↔ AKG + CO2 54.11! 30.87! 89.80!
ADH AKG → SUC + CO2 58.96! 33.97! 95.86!
SUDH SUC ↔ FUM 63.10! 38.04! 100.30!
FUMS FUM ↔ MAL 63.10! 38.04! 100.30!
MDH MAL ↔ OAA 73.78! 49.51! 109.29!
Amphibolic reactions !!
ME MAL → PYR.M + CO2 3.14! 1.29! 9.27!
PYC PYR.M + CO2 → OAA 3.03! 0.93! 7.22!

ACL CIT → AcCoA.C + 
MAL 13.83! 12.69! 15.06!
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Table 5.B.4 Continued 

Reaction Value LB95 UB95 
Amino Acid Metabolism 

!GDH AKG ↔ GLU -4.85! -10.59! 0.05!
GLS GLN ↔ GLU 11.98! 6.82! 17.73!
AST OAA ↔ ASP 8.87! 5.29! 12.57!
ASNS ASP ↔ ASN 8.87! 5.29! 12.57!
PST 3PG → SER 1.42! 0.85! 2.31!
SHT SER ↔ GLY + MEETHF 3.43! 2.79! 4.06!
CYST SER ↔ CYS 0.01! 0.00! 0.74!
GLYS CO2 + MEETHF → GLY 2.00! 1.39! 2.62!
ALT PYR.C ↔ ALA 5.76! 4.30! 7.30!

BAA1 ILE + CO2 → SUC + 
AcCoA + CO2 3.08! 1.14! 4.90!

BAA2 LEU + CO2 → 3AcCoA 
+ CO2 0.76! 0.00! 2.76!

BAA3 VAL → SUC + CO2 1.05! 0.10! 1.92!
ALAR ALA → ALA.E 2.41! 0.97! 3.88!
ASNR ASN.E → ASN 7.26! 3.66! 10.90!
CYSR CYS.E → CYS 0.80! 0.04! 1.45!
GLUR GLU → GLU.E 4.97! 3.34! 6.77!
GLNR GLN.E → GLN 13.78! 8.99! 19.42!
GLYR GLY → GLY.E 1.76! 0.53! 2.98!
ILER ILE.E → ILE 4.89! 2.93! 6.70!
LEUR LEU.E → LEU 3.91! 2.93! 5.92!
SERR SER.E → SER 4.48! 3.47! 5.38!
VALR VAL.E → VAL 3.38! 2.50! 4.21!
Transport !!
GLUT GLC.E → GLC.C 148.86! 134.49! 166.19!
PALM AcCoA.C → Palmitate 1.50! 1.38! 1.63!
MCT LAC → LAC.E 221.95! 197.72! 244.92!
Biosynthesis !!
BIOM Biomass Synthesis 0.0373! 0.0342! 0.0406!
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Table 5.B.5 Exchange Fluxes Determined by 13C INST-MFA for High Myc Normoxic Cells. Values have units 

of nmol/106 cells/h. Estimated flux values and 95% confidence bounds are shown. 

Reaction   Value LB95 UB95 
Glycolysis    

!PGI G6P ↔ F6P 0.00! 0.00! Inf!

ALDO FBP ↔ DHAP + 
GAP 14.87! 0.00! Inf!

TPI DHAP ↔ GAP 29830.00! 0.00! Inf!
GAPDH GAP ↔ 3PG 55.40! 0.00! Inf!
ENO 3PG ↔ PEP 210.76! 0.00! Inf!
LDH PYR.C ↔ LAC 0.00! 0.00! Inf!
Pentose Phosphate Pathway   !!
R5PE RU5P ↔ R5P 30425.00! 0.00! Inf!
R5PI RU5P ↔ X5P 0.00! 0.00! 20.09!
TK1 X5P ↔ GAP + EC2 0.00! 0.00! 23.40!
TK2 F6P ↔ E4P + EC2 28.76! 5.98! 255.55!
TK3 S7P ↔ R5P + EC2 0.06! 0.00! 4.26!
TA1 F6P ↔ GAP + EC3 98.11! 58.02! 180.52!
TA2 S7P ↔ E4P + EC3 683.52! 0.00! Inf!
TCA Cycle      !!
PYRT PYR.C ↔ PYR.M 0.00! 0.00! 259.62!
IDH CIT ↔ AKG + CO2 91.96! 47.21! 168.00!
SUDH SUC ↔ FUM 346.19! 0.00! Inf!
FUMS FUM ↔ MAL 2437.30! 0.00! Inf!
MDH MAL ↔ OAA 190.97! 0.00! Inf!
Amino Acid Metabolism   !!

PALM 8*AcCoA.c ↔ 
PALM 0.00! 0.00! 0.17!

GDH AKG ↔ GLU 9.93! 5.05! 23.73!
GLS GLN ↔ GLU 31.16! 4.80! 117.68!
AST OAA ↔ ASP 0.00! 0.00! 26.34!
ASNS ASP ↔ ASN 29.30! 13.74! Inf!

SHT SER ↔ GLY + 
MEETHF 11.54! 6.27! 21.33!

CYST SER ↔ CYS 0.00! 0.00! Inf!
ALT PYR.C ↔ ALA 153.03! 67.75! 272.00!
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Table 5.B.6 Pool Sizes Determined by 13C INST-MFA for High Myc Normoxic Cells. Values shown have units 

of nmol/106 cells. Estimated pool size and 95% confidence interval are shown. Only identifiable pool sizes are 

shown. 

Pool Value LB95 UB95 
3PG 0.00 0.00 59.71 

AcCoA 0.00 0.00 12.05 
AcCoA.c 0.00 0.00 2.27 

Ala 18845.00 10057.00 27912.00 
Asp 183.08 0.00 985.23 
Cit 0.00 0.00 25.53 

DHAP 0.00 0.00 46.40 
E4P 0.00 0.00 1599.30 
EC2 0.00 0.00 305.80 
EC3 851.70 23.44 2285.00 
F6P 0.00 0.00 32.03 
FBP 0.00 0.00 24.46 
Fum 0.00 0.00 312.12 
G6P 0.00 0.00 25.33 
GAP 0.00 0.00 48.63 
Glc.c 0.00 0.00 24.29 
Glc.e 5.94 3.13 7.81 
Gln 816.94 211.22 2968.90 
Glu 83.60 0.00 378.62 
Gly 124.01 0.00 316.32 

MEETHF 96.32 0.00 471.99 
Mal 0.00 0.00 267.46 

OAA 0.01 0.00 263.76 
PEP 0.00 0.00 53.28 
Palm 166.04 152.01 189.13 
Pyr.c 0.00 0.00 78.42 
Pyr.m 0.00 0.00 14.97 
R5P 14.48 1.88 125.82 
Ru5P 0.00 0.00 275.40 
S7P 1004.60 314.37 1628.90 
Ser 782.93 380.30 1447.50 
Suc 0.00 0.00 249.29 
X5P 3.13 1.01 283.74 
aKG 1642.30 845.68 2945.90 
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Table 5.B.7 Net Fluxes Determined by 13C INST-MFA for High Myc Hypoxic Cells. Values have units of 

nmol/106 cells/h. Estimated flux values and 95% confidence bounds are shown. 

Reaction Value LB95 UB95 
Glycolysis !
HK GLC.C → G6P 176.26! 163.21! 194.61!
PGI G6P ↔ F6P 174.97! 161.95! 193.34!
PFK F6P → FBP 174.63! 161.64! 193.09!
ALDO FBP ↔ DHAP + GAP 174.63! 161.64! 193.09!
TPI DHAP ↔ GAP 174.21! 161.23! 192.65!
GAPDH GAP ↔ 3PG 348.67! 322.74! 384.23!
ENO 3PG ↔ PEP 347.77! 321.89! 384.62!
PK PEP → PYR.C 347.77! 321.89! 384.62!
LDH PYR.C ↔ LAC 330.13! 304.43! 354.21!
Pentose Phosphate Pathway !!
G6PDH G6P → RU5P + CO2 0.30! 0.01! 6.92!
R5PE RU5P ↔ R5P -0.34! -0.55! 4.03!
R5PI RU5P ↔ X5P 0.64! 0.50! 2.85!
TK1 X5P ↔ GAP + EC2 -0.34! -0.55! 4.03!
TK2 F6P ↔ E4P + EC2 0.17! -2.02! 0.28!
TK3 S7P ↔ R5P + EC2 0.17! -2.02! 0.28!
TA1 F6P ↔ GAP + EC3 0.17! -2.02! 0.28!
TA2 S7P ↔ E4P + EC3 -0.17! -0.28! 2.02!
TCA Cycle !!
PYRT PYR.C ↔ PYR.M 12.55! 0.27! 54.89!

PDH PYR.M → AcCoA + 
CO2 10.26! 3.25! 51.05!

CS OAA + AcCoA → CIT 11.05! 4.05! 54.14!
IDH CIT ↔ AKG + CO2 2.50! -4.50! 45.57!
ADH AKG → SUC + CO2 5.30! 0.32! 49.15!
SUDH SUC ↔ FUM 6.09! 0.72! 49.72!
FUMS FUM ↔ MAL 6.09! 0.72! 49.72!
MDH MAL ↔ OAA 14.51! -64.81! 51.84!
Amphibolic reactions !!
ME MAL → PYR.M + CO2 0.14! 0.00! 107.60!
PYC PYR.M + CO2 → OAA 2.42! 0.21! 108.72!
ACL CIT → AcCoA.C + MAL 8.55! 7.38! 9.71!
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Table 5.B.7 Continued 
 

Reaction Value LB95 UB95 
Amino Acid Metabolism 

!GDH AKG ↔ GLU -2.80! -7.81! 1.89!
ARS ARG → GLU 3.59! 1.17! 6.05!
GLS GLN ↔ GLU 2.92! -1.13! 7.16!
AST OAA ↔ ASP 5.88! 1.43! 10.08!
ASNS ASP ↔ ASN 5.88! 1.43! 10.08!
PST 3PG → SER 0.90! 0.20! 1.87!
SHT SER ↔ GLY + MEETHF 2.02! 1.58! 2.46!
CYST SER ↔ CYS -0.21! -0.63! 0.22!
GLYS CO2 + MEETHF → GLY 1.14! 0.73! 1.54!
ALT PYR.C ↔ ALA 5.09! 4.31! 5.87!

BAA1 ILE + CO2 → SUC + 
AcCoA + CO2 0.79! 0.00! 1.78!

BAA2 LEU + CO2 → 3AcCoA + 
CO2 0.00! 0.00! 1.01!

ALAR ALA → ALA.E 3.02! 2.29! 3.75!
ARGR ARG.E → ARG 3.59! 1.17! 6.05!
ASNR ASN.E → ASN 4.88! 0.47! 9.08!
CYSR CYS.E → CYS 0.71! 0.29! 1.14!
GLUR GLU → GLU.E 2.38! 1.47! 3.30!
GLNR GLN.E → GLN 4.04! 0.00! 8.28!
GLYR GLY → GLY.E 0.88! 0.08! 1.67!
ILER ILE.E → ILE 1.91! 1.05! 2.89!
LEUR LEU.E → LEU 1.95! 1.69! 2.90!
SERR SER.E → SER 2.43! 1.72! 3.14!
Transport !!
GLUT GLC.E → GLC.C 176.26! 163.21! 194.61!
PALM AcCoA.C → Palmitate 0.93! 0.80! 1.05!
MCT LAC → LAC.E 330.13! 304.43! 354.21!
Biosynthesis !!
BIOM Biomass Synthesis 0.023! 0.0199! 0.0262!
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Table 5.B.8 Exchange Fluxes Determined by 13C INST-MFA for High Myc Hypoxic Cells. Values have units of 

nmol/106 cells/h. Estimated flux values and 95% confidence bounds are shown. 

Reaction   Value LB95 UB95 
Glycolysis    

!PGI G6P ↔ F6P 270.92! 0.00! Inf!
ALDO FBP ↔ DHAP + GAP 0.00! 0.00! Inf!
TPI DHAP ↔ GAP 0.00! 0.00! Inf!
GAPDH GAP ↔ 3PG 43.13! 0.00! Inf!
ENO 3PG ↔ PEP 369.98! 0.00! Inf!
LDH PYR.C ↔ LAC 1384.90! 445.68! 29783.00!
Pentose Phosphate Pathway   !!
R5PE RU5P ↔ R5P 104.37! 0.00! Inf!
R5PI RU5P ↔ X5P 426.95! 0.00! Inf!
TK1 X5P ↔ GAP + EC2 0.07! 0.00! Inf!
TK2 F6P ↔ E4P + EC2 377.63! 37.92! Inf!
TK3 S7P ↔ R5P + EC2 0.03! 0.00! Inf!
TA1 F6P ↔ GAP + EC3 2351.80! 28.96! Inf!
TA2 S7P ↔ E4P + EC3 0.00! 0.00! 14.42!
TCA Cycle      !!
PYRT PYR.C ↔ PYR.M 1444.80! 0.00! Inf!
IDH CIT ↔ AKG + CO2 48.10! 0.00! Inf!
SUDH SUC ↔ FUM 5.57! 0.00! Inf!
FUMS FUM ↔ MAL 5622.00! 1.88! Inf!
MDH MAL ↔ OAA 49.51! 0.00! Inf!
Amino Acid Metabolism   !!
PALM 8*AcCoA.c ↔ PALM 0.00! 0.00! 2.67!
GDH AKG ↔ GLU 33.10! 0.41! Inf!
GLS GLN ↔ GLU 193.46! 10.07! Inf!
AST OAA ↔ ASP 0.00! 0.00! Inf!
ASNS ASP ↔ ASN 22.86! 0.00! Inf!

SHT 
SER ↔ GLY + 
MEETHF 13.56! 3.33! 43.51!

CYST SER ↔ CYS 4.38! 0.00! Inf!
ALT PYR.C ↔ ALA 0.00! 0.00! 145.62!
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Table 5.B.9 Pool Sizes Determined by 13C INST-MFA for High Myc Hypoxic Cells. Values shown have units of 

nmol/106 cells. Estimated pool size and 95% confidence interval are shown. Only identifiable pool sizes are shown. 

Pool Value LB95 UB95 
3PG 0.09 0.00 1556.10 

AcCoA 0.00 0.00 19.06 
AcCoA.c 0.00 0.00 16.24 

Ala 238.97 168.28 5958.40 
Asp 1.78 0.00 17893.00 
Cit 0.00 0.00 53.60 

DHAP 0.10 0.00 854.45 
E4P 0.01 0.00 908.76 
EC2 421.10 8.88 844.51 
EC3 0.17 0.00 1766.10 
F6P 0.00 0.00 521.90 
FBP 0.00 0.00 435.76 
Fum 5.55 0.00 20007.00 
G6P 0.02 0.00 532.51 
GAP 0.03 0.00 869.38 
Glc.c 0.03 0.00 450.97 
Glc.e 6.02 0.00 8.95 
Gln 10038.00 0.00 88824.00 
Glu 0.33 0.00 8708.80 
Gly 203.08 0.00 666.71 
Lac 13152.00 2727.20 29330.00 

MEETHF 53.91 0.00 8713.00 
Mal 6.26 0.00 19981.00 

OAA 167.79 0.00 17391.00 
PEP 0.07 0.00 1557.80 
Palm 360.77 298.51 1358.10 
Pyr.c 0.44 0.00 3265.70 
Pyr.m 0.07 0.00 3243.30 
R5P 2.94 0.00 470.70 
Ru5P 19.07 0.00 487.26 
Ser 758.98 122.54 1841.10 
Suc 184.33 0.00 45338.00 
X5P 0.18 0.00 505.93 
aKG 0.01 0.00 7213.80 
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Table 5.B.10 Net Fluxes Determined by 13C INST-MFA for Low Myc Normoxic Cells. Values have units of 

nmol/106 cells/h. Estimated flux values and 95% confidence bounds are shown. 

 
Reaction Value LB95 UB95 
Glycolysis !
HK GLC.C → G6P 104.01! 94.94! 115.02!
PGI G6P ↔ F6P 101.88! 92.81! 112.76!
PFK F6P → FBP 101.87! 92.83! 112.76!
ALDO FBP ↔ DHAP + GAP 101.87! 92.83! 112.76!
TPI DHAP ↔ GAP 101.37! 92.18! 112.23!
GAPDH GAP ↔ 3PG 203.23! 185.08! 225.03!
ENO 3PG ↔ PEP 202.30! 184.22! 224.23!
PK PEP → PYR.C 202.30! 184.22! 224.23!
LDH PYR.C ↔ LAC 179.45! 162.27! 196.21!
Pentose Phosphate Pathway !!
G6PDH G6P → RU5P + CO2 0.94! 0.00! 5.69!
R5PE RU5P ↔ R5P -0.01! -0.68! 3.33!
R5PI RU5P ↔ X5P 0.95! 0.60! 2.51!
TK1 X5P ↔ GAP + EC2 -0.01! -0.68! 3.33!
TK2 F6P ↔ E4P + EC2 0.01! -1.67! 0.34!
TK3 S7P ↔ R5P + EC2 0.01! -1.67! 0.34!
TA1 F6P ↔ GAP + EC3 0.01! -1.67! 0.34!
TA2 S7P ↔ E4P + EC3 -0.01! -0.34! 1.67!
TCA Cycle !!
PYRT PYR.C ↔ PYR.M 19.64! 11.95! 42.10!
PDH PYR.M → AcCoA + CO2 22.82! 14.08! 45.29!
CS OAA + AcCoA → CIT 25.34! 15.87! 49.67!
IDH CIT ↔ AKG + CO2 15.15! 5.48! 39.60!
ADH AKG → SUC + CO2 17.81! 4.97! 42.90!
SUDH SUC ↔ FUM 19.48! 6.25! 44.97!
FUMS FUM ↔ MAL 19.48! 6.25! 44.97!
MDH MAL ↔ OAA 25.41! 16.42! 48.62!
Amphibolic reactions !!
ME MAL → PYR.M + CO2 4.26! 0.00! 10.79!
PYC PYR.M + CO2 → OAA 1.08! 0.31! 3.90!
ACL CIT → AcCoA.C + MAL 10.19! 9.29! 11.13!
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Table 5.B.10 Continued 
 

Reaction Value LB95 UB95 
Amino Acid Metabolism 

!GDH AKG ↔ GLU -2.65! -7.88! 1.52!
ARS ARG → GLU 0.12! 0.00! 3.50!
GLS GLN ↔ GLU 9.47! 5.76! 13.39!
AST OAA ↔ ASP 1.15! -2.18! 1.26!
ASNS ASP ↔ ASN 1.15! -2.18! 1.26!
PST 3PG → SER 0.93! 0.55! 1.55!
SHT SER ↔ GLY + MEETHF 1.88! 1.57! 2.05!
CYST SER ↔ CYS -1.10! -1.48! -0.72!
GLYS CO2 + MEETHF → GLY 0.83! 0.56! 0.91!
ALT PYR.C ↔ ALA 3.21! 2.45! 3.98!
BAA1 ILE + CO2 → SUC + AcCoA + CO2 1.46! 0.20! 2.77!
BAA2 LEU + CO2 → 3AcCoA + CO2 0.35! 0.00! 1.54!
BAA3 VAL → SUC + CO2 0.21! 0.00! 0.96!
ALAR ALA → ALA.E 0.74! 0.01! 1.47!
ARGR ARG.E → ARG 1.67! 1.45! 5.03!
ASNR ASN.E → ASN 0.04! 0.00! 3.37!
CYSR CYS.E → CYS 1.70! 1.31! 2.08!
GLUR GLU → GLU.E 5.35! 3.24! 7.42!
GLNR GLN.E → GLN 10.79! 7.06! 14.84!
GLYR GLY → GLY.E 0.00! 0.00! 0.53!
ILER ILE.E → ILE 2.80! 1.50! 4.12!
LEUR LEU.E → LEU 2.67! 2.13! 3.88!
SERR SER.E → SER 1.66! 0.99! 2.26!
VALR VAL.E → VAL 1.93! 1.57! 2.64!
Transport !!
GLUT GLC.E → GLC.C 104.01! 94.94! 115.02!
PALM AcCoA.C → Palmitate 1.10! 1.01! 1.21!
MCT LAC → LAC.E 179.45! 162.27! 196.21!
Biosynthesis !!
BIOM Biomass Synthesis 0.0274! 0.025! 0.0300!



!

! 157 

 
Table 5.B.11 Exchange Fluxes Determined by 13C INST-MFA for Low Myc Normoxic Cells. Values have units 

of nmol/106 cells/h. Estimated flux values and 95% confidence bounds are shown. 

Reaction   Value LB95 UB95 
Glycolysis    

!PGI G6P ↔ F6P 3141.10! 0.00! Inf!
ALDO FBP ↔ DHAP + GAP 0.00! 0.00! Inf!
TPI DHAP ↔ GAP 277.91! 0.00! Inf!
GAPDH GAP ↔ 3PG 18.71! 0.00! 67.64!
ENO 3PG ↔ PEP 4349.40! 0.00! Inf!
LDH PYR.C ↔ LAC 269.73! 66.92! 777.34!
Pentose Phosphate Pathway   !!
R5PE RU5P ↔ R5P 18.36! 0.20! Inf!
R5PI RU5P ↔ X5P 0.14! 0.00! Inf!
TK1 X5P ↔ GAP + EC2 10.30! 0.20! Inf!
TK2 F6P ↔ E4P + EC2 1.42! 0.00! 13.30!
TK3 S7P ↔ R5P + EC2 0.21! 0.00! Inf!
TA1 F6P ↔ GAP + EC3 0.00! 0.00! 371.04!
TA2 S7P ↔ E4P + EC3 6.44! 0.00! Inf!
TCA Cycle      !!
PYRT PYR.C ↔ PYR.M 3322.90! 0.00! Inf!
IDH CIT ↔ AKG + CO2 0.00! 0.00! 10.41!
SUDH SUC ↔ FUM 0.00! 0.00! Inf!
FUMS FUM ↔ MAL 2548.10! 4.18! Inf!
MDH MAL ↔ OAA 1092.50! 0.00! Inf!
Amino Acid Metabolism   !!
PALM 8*AcCoA.c ↔ PALM 0.00! 0.00! 0.08!
GDH AKG ↔ GLU 21.06! 3.60! 70.42!
GLS GLN ↔ GLU 30.41! 4.98! 111.72!
AST OAA ↔ ASP 0.00! 0.00! 41.39!
ASNS ASP ↔ ASN 3.43! 1.10! 118.85!
SHT SER ↔ GLY + MEETHF 8.15! 4.00! 16.26!
CYST SER ↔ CYS 0.00! 0.00! Inf!
ALT PYR.C ↔ ALA 0.00! 0.00! 20.37!
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Table 5.B.12 Pool Sizes Determined by 13C INST-MFA for Low Myc Normoxic Cells. Values shown have units 

of nmol/106 cells. Estimated pool size and 95% confidence interval are shown. Only identifiable pool sizes are 

shown. 

Pool Value LB95 UB95 
3PG 10111.00 6470.00 14243.00 

AcCoA 0.01 0.00 60.26 
AcCoA.c 0.00 0.00 92.79 

Ala 321.65 232.27 2249.90 
Asn 262.93 49.90 8023.30 
Asp 0.00 0.00 160.31 
Cit 0.01 0.00 41.15 

DHAP 295.19 0.00 1684.70 
E4P 95.64 0.00 648.86 
EC2 3.32 0.00 120.24 
F6P 55.10 0.00 570.65 
FBP 11.87 0.00 636.65 
Fum 0.02 0.00 73.79 
G6P 3.40 0.00 723.42 
GAP 0.00 0.00 1284.70 
Glc.c 90.06 0.00 501.57 
Glc.e 4.19 2.25 5.52 
Gln 3990.60 493.03 18049.00 
Glu 0.01 0.00 143.10 
Gly 337.30 188.68 640.94 
Lac 6374.80 2959.60 10726.00 

MEETHF 146.65 0.00 760.20 
Mal 0.02 0.00 81.21 

OAA 0.02 0.00 77.76 
PEP 0.00 0.00 14246.00 
Palm 511.86 445.66 587.02 
Pyr.c 0.35 0.00 1834.40 
Pyr.m 0.22 0.00 1770.10 
R5P 41.92 23.54 248.39 
Ru5P 0.00 0.00 92.32 
S7P 3.97 0.00 719.19 
Ser 589.60 266.17 1156.10 
Suc 0.24 0.00 81.69 
X5P 0.05 0.00 117.68 
aKG 0.00 0.00 62.04 
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Table 5.B.13 Net Fluxes Determined by 13C INST-MFA for Low Myc Hypoxic Cells. Values have units of 

nmol/106 cells/h. Estimated flux values and 95% confidence bounds are shown. 

Reaction Value LB95 UB95 
Glycolysis !
HK GLC.C → G6P 217.72! 201.27! 240.08!
PGI G6P ↔ F6P 216.59! 200.16! 238.90!
PFK F6P → FBP 216.72! 200.29! 239.12!
ALDO FBP ↔ DHAP + GAP 216.72! 200.29! 239.12!
TPI DHAP ↔ GAP 216.50! 200.09! 238.88!
GAPDH GAP ↔ 3PG 433.28! 400.42! 478.02!
ENO 3PG ↔ PEP 433.22! 400.33! 478.14!
PK PEP → PYR.C 433.22! 400.33! 478.14!
LDH PYR.C ↔ LAC 422.56! 386.14! 454.77!
Pentose Phosphate Pathway !!
G6PDH G6P → RU5P + CO2 0.61! 0.00! 5.48!
R5PE RU5P ↔ R5P 0.13! -0.31! 3.46!
R5PI RU5P ↔ X5P 0.48! 0.25! 2.10!
TK1 X5P ↔ GAP + EC2 0.13! -0.31! 3.46!
TK2 F6P ↔ E4P + EC2 -0.06! -1.73! 0.15!
TK3 S7P ↔ R5P + EC2 -0.06! -1.73! 0.15!
TA1 F6P ↔ GAP + EC3 -0.06! -1.73! 0.15!
TA2 S7P ↔ E4P + EC3 0.06! -0.15! 1.73!
TCA Cycle !!
PYRT PYR.C ↔ PYR.M 7.93! -3.00! 64.29!

PDH PYR.M → AcCoA + 
CO2 8.68! 1.56! 64.29!

CS OAA + AcCoA → CIT 10.96! 5.50! 66.34!
IDH CIT ↔ AKG + CO2 6.49! 1.24! 61.86!
ADH AKG → SUC + CO2 2.57! 0.34! 57.97!
SUDH SUC ↔ FUM 3.42! 0.38! 58.69!
FUMS FUM ↔ MAL 3.42! 0.38! 58.69!
MDH MAL ↔ OAA -0.23! -135.17! 22.10!
Amphibolic reactions !!
ME MAL → PYR.M + CO2 8.11! 0.00! 175.72!
PYC PYR.M + CO2 → OAA 7.37! 0.45! 176.41!

ACL CIT → AcCoA.C + 
MAL 4.47! 3.75! 5.18!
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Table 5.B.13 Continued 
 

Reaction Value LB95 UB95 
Amino Acid Metabolism 

!GDH AKG ↔ GLU 3.92! -1.60! 10.68!
ARS ARG → GLU 2.11! -2.49! 6.24!
GLS GLN ↔ GLU 2.02! -0.66! 6.54!
AST OAA ↔ ASP -3.82! -8.15! 0.54!
ASNS ASP ↔ ASN -2.10! -5.88! 0.58!
PST 3PG → SER 0.07! 0.03! 0.30!
SHT SER ↔ GLY + MEETHF 1.85! 1.40! 2.32!
CYST SER ↔ CYS -2.36! -2.82! -1.88!
GLYS CO2 + MEETHF → GLY 1.39! 0.95! 1.85!
ALT PYR.C ↔ ALA 2.73! 2.05! 3.42!

BAA1 ILE + CO2 → SUC + 
AcCoA + CO2 0.71! 0.00! 2.12!

BAA2 LEU + CO2 → 3AcCoA 
+ CO2 0.52! 0.00! 1.90!

BAA3 VAL → SUC + CO2 0.13! 0.00! 0.87!
ALAR ALA → ALA.E 1.65! 0.99! 2.31!
ARGR ARG.E → ARG 2.79! -1.80! 6.94!
ASNR ASN.E → ASN 2.62! 0.00! 6.40!
ASPR ASP.E → ASP 2.58! 0.25! 4.88!
CYSR CYS.E → CYS 2.62! 2.14! 3.09!
GLUR GLU → GLU.E 7.35! 5.89! 8.82!
GLNR GLN.E → GLN 2.60! 0.00! 7.14!
GLYR GLY → GLY.E 2.05! 1.15! 2.98!
ILER ILE.E → ILE 1.30! 0.51! 2.71!
LEUR LEU.E → LEU 1.54! 0.87! 2.91!
SERR SER.E → SER 0.22! 0.00! 0.85!
VALR VAL.E → VAL 0.88! 0.64! 1.61!
Transport !!
GLUT GLC.E → GLC.C 217.72! 201.27! 240.08!
PALM AcCoA.C → Palmitate 0.48! 0.41! 0.56!
MCT LAC → LAC.E 422.56! 386.14! 454.77!
Biosynthesis !!
BIOM Biomass Synthesis 0.0120! 0.0101! 0.0140!
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Table 5.B.14 Exchange Fluxes Determined by 13C INST-MFA for Low Myc Hypoxic Cells. Values have units 

of nmol/106 cells/h. Estimated flux values and 95% confidence bounds are shown. 

Reaction   Value LB95 UB95 
Glycolysis    

!PGI G6P ↔ F6P 127900.00! 0.00! Inf!
ALDO FBP ↔ DHAP + GAP 0.00! 0.00! Inf!
TPI DHAP ↔ GAP 15214.00! 0.00! Inf!
GAPDH GAP ↔ 3PG 0.00! 0.00! Inf!
ENO 3PG ↔ PEP 294.22! 0.00! Inf!
LDH PYR.C ↔ LAC 5926.80! 0.00! 20459.00!
Pentose Phosphate Pathway   !!
R5PE RU5P ↔ R5P 1.62! 0.16! Inf!
R5PI RU5P ↔ X5P 2485.30! 0.00! Inf!
TK1 X5P ↔ GAP + EC2 17.49! 0.16! Inf!
TK2 F6P ↔ E4P + EC2 7.18! 0.31! 91.38!
TK3 S7P ↔ R5P + EC2 0.28! 0.04! Inf!
TA1 F6P ↔ GAP + EC3 102260.00! 776.11! Inf!
TA2 S7P ↔ E4P + EC3 31.36! 0.03! Inf!
TCA Cycle      !!
PYRT PYR.C ↔ PYR.M 0.00! 0.00! 61.00!
IDH CIT ↔ AKG + CO2 0.00! 0.00! Inf!
SUDH SUC ↔ FUM 4.36! 0.00! Inf!
FUMS FUM ↔ MAL 75.68! 5.31! Inf!
MDH MAL ↔ OAA 13159.00! 6.38! Inf!
Amino Acid Metabolism   !!
PALM 8*AcCoA.c ↔ PALM 0.00! 0.00! Inf!
GDH AKG ↔ GLU 0.00! 0.00! 349.16!
GLS GLN ↔ GLU 30.45! 0.00! 533.30!
AST OAA ↔ ASP 15.41! 0.40! Inf!
ASNS ASP ↔ ASN 0.00! 0.00! Inf!

SHT 
SER ↔ GLY + 
MEETHF 0.55! 0.00! 13.10!

CYST SER ↔ CYS 0.00! 0.00! Inf!
ALT PYR.C ↔ ALA 0.00! 0.00! 65.85!
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Table 5.B.15 Pool Sizes Determined by 13C INST-MFA for Low Myc Hypoxic Cells. Values shown have units 

of nmol/106 cells. Estimated pool size and 95% confidence interval are shown. Only identifiable pool sizes are 

shown. 

Pool Value LB95 UB95 
3PG 0.62 0.00 7074.90 

AcCoA 0.01 0.00 330.34 
AcCoA.c 78197.00 20184.00 174560.00 

Ala 590.47 392.04 13264.00 
Asp 0.01 0.00 621.03 

DHAP 0.00 0.00 571.09 
EC2 0.48 0.00 2910.00 
EC3 0.36 0.00 458.67 
F6P 0.15 0.00 1526.40 
FBP 0.01 0.00 1340.40 
Fum 0.00 0.00 371.36 
G6P 8.92 0.00 1527.30 
GAP 0.46 0.00 2875.70 
Glc.c 0.40 0.00 1516.30 
Glc.e 8.77 5.04 11.40 
Glu 0.06 0.00 2566.10 
Gly 0.02 0.00 631.16 
Lac 42303.00 11773.00 63688.00 
Mal 0.00 0.00 380.12 

OAA 0.00 0.00 363.90 
PEP 0.65 0.00 7182.40 
Palm 0.00 0.00 21826.00 
Pyr.c 7.64 0.00 31877.00 
Pyr.m 0.00 0.00 171.11 
R5P 118.20 10.93 502.92 
Ru5P 0.03 0.00 494.40 
S7P 633.34 0.00 2633.50 
Ser 430.38 85.62 2638.10 
Suc 0.00 0.00 367.74 
X5P 0.00 0.00 445.40 
aKG 0.00 0.00 614.62 
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Figure 5.B.1 Dynamic Isotope Labeling Trajectories of Measured Metabolites in the High Myc Normoxic 

Condition. Experimentally determined (!) and INST-MFA fitted (−) mass isotopomer distributions for the (A) High 

Myc and (B) Low Myc conditions. Nominal masses of M0 mass isotopomers are shown next to the fragment 

abbreviation. Error bars represent standard measurement errors. Raw mass isotopomer data are shown without 

correction for natural isotope abundance. 
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Figure 5.B.2 Dynamic Isotope Labeling Trajectories of Measured Metabolites in the High Myc Hypoxic 

Condition. Experimentally determined (!) and INST-MFA fitted (−) mass isotopomer distributions for the (A) High 

Myc and (B) Low Myc conditions. Nominal masses of M0 mass isotopomers are shown next to the fragment 

abbreviation. Error bars represent standard measurement errors. Raw mass isotopomer data are shown without 

correction for natural isotope abundance. 
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Figure 5.B.3 Dynamic Isotope Labeling Trajectories of Measured Metabolites in the Low Myc Normoxic 

Condition. Experimentally determined (!) and INST-MFA fitted (−) mass isotopomer distributions for the (A) High 

Myc and (B) Low Myc conditions. Nominal masses of M0 mass isotopomers are shown next to the fragment 

abbreviation. Error bars represent standard measurement errors. Raw mass isotopomer data are shown without 

correction for natural isotope abundance. 
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Figure 5.B.4 Dynamic Isotope Labeling Trajectories of Measured Metabolites in the Low Myc Hypoxic 

Condition. Experimentally determined (!) and INST-MFA fitted (−) mass isotopomer distributions for the (A) High 

Myc and (B) Low Myc conditions. Nominal masses of M0 mass isotopomers are shown next to the fragment 

abbreviation. Error bars represent standard measurement errors. Raw mass isotopomer data are shown without 

correction for natural isotope abundance. 
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Figure 5.B.5 Atom Percent Enrichment (APE) of GC-MS Fragments Sampled. Fragments shown are for alanine 

(ALA), glycine (GLY), serine (SER), and aspartate (ASP). The atom percent enrichment represents the percentage 

of isotopically labeled carbons. The x-axis is time measured in hours. 
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Figure 5.B.6 Atom Percent Enrichment (APE) of GC-MS Fragments Sampled. Fragments shown are for 

glutamate (GLU) and ribose (RIB). The atom percent enrichment represents the percentage of isotopically labeled 

carbons. The x-axis is time measured in hours. 
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APPENDIX 5.C - Abbreviations 

3PG, 3-phosphoglycerate; AcCoA, Acetyl-Coenzyme A; AcCoA.C, cytosolic Acetyl-Coenzyme A; ACL, ATP-

citrate lyase; ADH, α-ketoglutarate dehydrogenase; AKG, α-ketoglutarate; ALA, alanine; ALA.E, extracellular 

alanine; ALAR, alanine excretion rate; ALDO, aldolase; ALT, alanine transaminase; ARG, arginine; ARG.E, 

extracellular arginine; ARGR, arginine uptake rate; ARGS, arginase; ASN.E, extracellular asparagine; ASNR, 

asparagine uptake rate; ASNS, asparaginase; ASP, asparate; AST, aspartate transaminase; BAA, branched-chain 

amino acids; BIOM, biomass; CIT, citratre; CO2, carbon dioxide; CS, citrate synthase; CYS, cysteine; CYS.E, 

extracellular cysteine; CYSR, cysteine uptake rate; CYST, cystathionine synthase; DHAP, dihydroxyacetone 

phosphate; E4P, erythrose-4-phosphate; EC2, 2 enzyme-bound carbons; EC3, 3 enzyme-bound carbons;  ENO, 

enolase; F6P, fructose-6-phosphate; FBP, fructose-1,6-bisphosphate; FUM, fumarate; FUMS, fumarase; G6P, 

glucose-6-phosphate; G6PDH, glucose-6-phosphate dehydrogenase;GAP, glyceraldehyde-3-phosphate; GAPDH, 

glyceraldehyde-3-phosphate dehydrogenase;GDH, glutamate dehydrogenase; GLC.C, cytosolic glucose; GLC.E, 

extracellular glucose; GLN, glutamine; GLN.E, extracellular glutamine; GLNR, glutamine uptake rate; GLS, 

glutaminase; GLU, glutamate; GLU.E, extracellular glutamate; GLUR, glutamate excretion rate; GLUT, glucose 

transport; GLY, glycine; GLY.E, extracellular glycine; GLYR, glycine excretion rate; GLYS, glycine synthase; 

HK, hexokinase; IDH, isocitrate dehydrogenase; ILE, isoleucine; LABG, labeled glucose; LAC, lactate; LAC.E, 

extracellular lactate; LEU, leucine; LDH, lactate dehydrogenase; LIPS, lipid sink; MAL, malate; MCT, 

monocarboxylate transporter; MDH, malate dehydrogenase; ME, malic enzyme; MEETHF, methylene 

tetrahydrofuran; OAA, oxaloacetate; PALM, palmitate; PDH, pyruvate dehydrogenase; PEP, 

phosphoenolpyruvate;  PFK, phosphofructokinase;  PGI, phosphoglucose isomerase; PK, pyruvate kinase;PST, 

serine transaminase;PYC, pyruvate carboxylase; PYR.C, cytosolic pyruvate; PYR.M, mitochondrial pyruvate; 

PYRT, pyruvate transport; R5P, ribose-5-phosphate;  R5PE, ribulose-5-phosphate epimerase; R5PI, ribulose-5-

phosphate isomerase; RU5P, ribulose-5-phosphate; S7P, sedoheptulose-7-phosphate; SER, serine; SER.E, 

extracellular serine; SERR, serine uptake rate;  SHT, serine hydroxymethyl transferase; SUC, succinate; SUDH, 

succinate dehydrogenase; TA1, transaldolase 1; TA2, transaldolase 2; TK1, transketolase 1; TK2, transketolase 2; 

TK3, transketolase 3; TPI, triose phosphate isomerase; UNLG, unlabeled glucose; VAL, valine; X5P, xylulose-5-

phosphate. 
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CHAPTER 6 

 

TARGETED INHIBITION OF NORMOXIC HIGH AND LOW MYC CELLS USING SMALL-MOLECULE 

DRUGS 

 

6.1 Introduction 

Up to this point we have seen how metabolic flux analysis can be used to create quantitative maps of the 

intracellular flow of carbon through central metabolism. The true power of this analysis technique is in its ability to 

compare metabolic phenotypes with different genetic or environmental perturbations (Keibler et al., 2012). Because 

the fluxes are normalized to cell density, it is possible to compare disparate cell types for differences in metabolic 

activity (Niklas and Heinzle, 2012). In the previous chapters, the P493-6 B-cell line has served as a model of non-

tumorigenic cell metabolism and Myc-driven cancer metabolism on an isogenic background. The only difference 

between the two states is the increased expression level of Myc, and any alterations can be directly (or indirectly) 

attributed to this increase (Pajic et al., 2000; Pajic et al., 2001). 

 

In chapters 4 and 5, we saw how the different oncogenic and environmental states affect cell metabolism and 

discovered some key differences in metabolism that could potentially be exploited for therapeutic targeting. One of 

the big challenges in cancer therapeutics is specifically targeting cancerous cells versus normal cells (Kamb et al., 

2007). Ideally, the chosen target would specifically inhibit the growth of the cancer while minimizing harm to 

normal tissue. What typically happens is some inhibition of the cancer with greater off-target side-effects (Kamb et 

al., 2007). Cancer is a subtle disease where normal processes are dysregulated, meaning it can be difficult to target 

specific pathways in the disease because many other cells in the body are using those same pathways, albeit in a 

more regulated manner. This altered regulation manifests in different metabolic phenotypes which can be revealed 

through flux analysis techniques. 

 

The question then becomes, how do we go from flux maps to testing different therapeutic targets? Would it be better 

to target reactions that have a low flux because it can act as a pinch-point for the metabolism? Or does a larger flux 

magnitude indicate greater importance? A case could be made for targeting fluxes that have their rates either 
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increased or decreased, and there are no clear answers about which is the better option. Attempts at computational 

modeling of metabolism and drug effects have tried to answer this question but much is still unknown (Facchetti et 

al., 2012; Folger et al., 2011; Li et al., 2010).  

 

Based on our previous flux data and prior research, we have chosen to target two aspects of cell metabolism: lactate 

formation and oxidative phosphorylation (OXPHOS). Previous studies on these cells have shown that inhibiting 

lactate dehydrogenase A (LDH-A) can be an effective method to target the High Myc phenotype (Dang, 2011; Le et 

al., 2010; Shim et al., 1997). We also observed an upregulation of lactate flux from Low to High Myc expression 

levels, meaning that High Myc cells could be more dependent on lactate secretion. Oxamate is a specific, 

competitive inhibitor of LDH-A, and we applied it to High and Low Myc cells at a variety of concentrations to 

understand its differential effects on growth and metabolism (Novoa et al., 1959; Pelicano et al., 2006; Ramanathan 

et al., 2005).  

 

To target OXPHOS, we used phenformin, which is a more potent form of the anti-diabetic drug metformin (Caraci 

et al., 2003; Keibler et al., 2012). This drug was chosen for several reasons. First, several meta-analysis studies on 

diabetic patients taking metformin have shown a reduced incidence of cancer (Dowling et al., 2011; Evans et al., 

2005; Niklas and Heinzle, 2012). Second, phenformin targets mitochondrial metabolism as a whole because it is an 

inhibitor of Complex I of the electron transport chain (Caraci et al., 2003; Pajic et al., 2000; Pajic et al., 2001). Since 

our data showed that High Myc cells have increased flux through the TCA cycle and a greater fraction of pyruvate 

going to mitochondrial oxidation, we chose to inhibit mitochondrial metabolism instead of a specific enzyme in the 

TCA cycle. Similar to oxamate, we applied varying concentrations of phenformin to understand its differential 

effects on High versus Low Myc cells.  

 

Finally, we used both of these drugs in combination to test for synergistic effects of inhibiting two major 

bioenergetic pathways simultaneously. Metabolism has evolved to be robust in the face of perturbations, and in 

many cases cells are able to reroute metabolism to support growth when pathways become inhibited (Kamb et al., 

2007; Vander Heiden et al., 2009). Understanding the interaction of drug combinations is an important aspect of 

research and shows promise in the clinic (Jia et al., 2009; Kamb et al., 2007). We hypothesized that the cells would 
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be able to overcome the inhibitory effect of a single drug by rerouting metabolism to alternate pathways. It would be 

logical to assume that in the presence of oxamate, a cell would shift its metabolism to a more oxidative phenotype 

while phenformin would force the cell to be more glycolytic. However, if both drugs were present simultaneously, 

they could potentially create a synergistic effect where the cell is unable to overcome the dual inhibition.  

 

6.2 Methods 

6.2.1 Cell Culture 

Cells were maintained according to the method in section 3.2.7 of Chapter 3 

 

6.2.2 Specific Rate Determination 

Specific rates were determined according to the methods detailed in section 3.2 of Chapter 3. 

 

6.2.3 Drug Treatment 

Cells in culture were treated with sodium oxamate with the following concentrations: 1, 5, 10, 50, and 100 mM 

solutions. Treatment with phenformin hydrochloride was done at the following concentrations: 10, 25, 50, 100, 200, 

400 µM. Drug combination treatments were done according to Figure 6.1. Concentrated stocks were made in RPMI 

1640 medium, filtered in a 0.22 µm filter, and added to culture.  

 

6.2.4 IC50 Estimation 

IC50 values were determined by plotting the inhibition versus drug concentration, the latter on a logarithmic scale. 

A best-fit line was estimated using Microsoft Excel and the IC50 value was the point at which the line crossed the 

50% inhibition mark.  

 

6.2.5 Drug Combinatorial Effects 

The combination index (i.e. synergy, antagonism, or additive) was calculated using the freely available CompuSyn 

software (ComboSyn Inc.). Briefly, this software uses equations derived from the mass-action law, which is based 

on models of enzyme kinetics and receptor binding theory (Chou and Talalay, 1984). The software fits the data to 

the median-effect principle and determines inhibition parameters (i.e., IC50) from the regression model.   
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Figure 6.1 Design of Drug Inhibition Studies. P493-6 High and Low Myc cells were treated with varying 

concentrations of oxamate and phenformin. Green boxes indicate analyzed conditions while red indicates 

unanalyzed conditions.   
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6.3 Results 

6.3.1 Treatment of High and Low Myc Cells with Oxamate 

Oxamate is a potent inhibitor of the enzyme lactate dehydrogenase A (LDH-A) which converts pyruvate to lactate 

with concomitant conversion of NADH to NAD+. Previous work has shown Myc to directly transactivate LDHA, 

and direct inhibition or knockdown of the enzyme has been shown to slow tumor growth (Facchetti et al., 2012; 

Folger et al., 2011; Le et al., 2010; Li et al., 2010; Shim et al., 1997). P493 cells treated with oxamate alone showed 

only slight growth inhibition up until 50 mM, at which point both High and Low Myc cells exhibited zero or 

negative growth (Figure 6.2). The IC50 concentration was estimated to be approximately 20 mM in High Myc cells 

and 24 mM in Low Myc cells. This indicates that High Myc cells were slightly more sensitive to the drug. However, 

only at the 50 mM concentration did we see a significant difference in growth rates with High Myc cells in a death 

phase while Low Myc were in a stationary phase. Normalized glucose and lactate fluxes responded similarly to 

oxamate treatments with no significant differences detected between High and Low Myc cells (Figure 6.2). We do 

see a dose-dependent decrease in lactate secretion, along with a commensurate decrease in glucose uptake, for both 

conditions indicating that oxamate is affecting LDH-A and there seems to be no difference in effectiveness. See 

figure 6.A.1 in Appendix A for absolute flux values. 
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Figure 6.2 Effects of Treating High and Low Myc Cells with Oxamate. (A) Normalized growth rates are shown 

for High and Low Myc cells with oxamate inhibition alone. (B) Absolute growth rate values. (C) Normalized 

glucose uptake fluxes. (D) Normalized lactate secretion fluxes. * indicates significance with p<0.05.  Rates were 

normalized to the untreated (0 mM) control.   
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6.3.2 Treatment of High and Low Myc Cells with Phenformin 

Phenformin is a general inhibitor of oxidative phosphorylation and acts by inhibiting Complex I of the electron 

transport chain (Dang, 2011; Le et al., 2010; Owen et al., 2000; Shim et al., 1997). High and Low Myc cells treated 

with varying concentrations of phenformin showed significant differences in their response. Low Myc cells were 

more sensitive to a low concentration (10 µM) of the drug. However, increasing the concentration from 10 to 25 µM 

caused a more significant decrease in the High Myc cell growth rate than in Low Myc cells (Figure 6.3). Our 

previous data (Chapters 4 and 5) showed that High Myc cells rely more upon OXPHOS than Low Myc. It is 

reasonable to hypothesize that due to this difference the High Myc cells might be more sensitive to an inhibitor of 

OXPHOS. Indeed, we estimated IC50 concentrations of 90 µM for High Myc and 230 µM for Low Myc. 

Phenformin also had the effect of increasing the glycolytic flux, similar to the response seen when these cells were 

placed in a low oxygen environment (Figure 6.3). In particular, High Myc cells were able to increase their glycolytic 

flux magnitude greater than Low Myc cells indicating a higher capacity for metabolic alterations. However, the 

increase in flux magnitude did not improve the ability of the High Myc cells to survive at higher concentrations 

indicating that OXPHOS inhibition might be a viable therapeutic target that can more specifically target cancerous 

cells. 
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Figure 6.3 Effects of Treating High and Low Myc Cells with Phenformin. (A) Normalized growth rates are 

shown for High and Low Myc cells with phenformin inhibition alone. (B) Absolute growth rate values. (C) 

Normalized glucose uptake fluxes. (D) Normalized lactate secretion fluxes. * indicates significance with p<0.05. 

Rates were normalized to the untreated (0 mM) control.   
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6.3.3 Combinatorial Treatment of High and Low Myc Cells with Oxamate and Phenformin 

We hypothesized that treating the cells with both drugs simultaneously would have a synergistic effect by 

potentially blocking the two main routes of ATP production in central metabolism. We treated High and Low Myc 

cells with oxamate and phenformin in combination at concentrations that, individually, had minimal effects on cell 

growth and metabolism (Fig. 6.1). Figure 6.4 describes the altered growth rates in response to dual treatments. At 1 

mM oxamate and 10 µM phenformin (combination A), concentrations that are at least an order of magnitude below 

the IC50 of each individual drug, we measured a growth rate decrease of more than 20% in High and Low Myc 

cells. Estimated growth rate values for High and Low Myc cells were significantly different for increasing drug 

concentrations until the 5 mM oxamate and 10 µM phenformin (combination C) treatment, at which point both 

growth rates were almost identical. At the greatest concentration of both drugs (combination D), High and Low Myc 

cells both exhibited negative growth rates. Figure 6.5 compares the glucose and lactate fluxes for the combination 

drug treatments. At drug combinations A and B (1 mM oxamate and 25 µM phenformin), High Myc cells exhibited 

a significant increase in glucose and lactate fluxes, suggesting a possible mechanism by which these cells are able to 

overcome the metabolic insult. The point at which the High and Low Myc cells are growing at the same rate 

(combination C), we see a significant decrease in the glycolytic flux of the High Myc cells compared to combination 

B. It seems that up to a certain point, which is possibly related to energy or redox homeostasis, High Myc cells can 

upregulate glycolysis to stay alive until some imbalance inside the cell becomes too great and they start dying.  

 

Based on analysis of growth rates using CompuSyn, combination index (CI) values were determined for the dual 

inhibition studies with High and Low Myc cells (Table 6.1).  For all drug combinations, it was found that High Myc 

cells experienced drug synergism. Low Myc cells, however, exhibited synergism only for combinations B and C. 

Combination A showed an antagonistic effect in Low Myc cells, indicating the inhibition was lower than would be 

predicted based on the single inhibition curves. Low Myc cells were highly sensitive to the 10 µM dose of 

phenformin alone, but with the addition of oxamate there is a slight rescue in the growth rate. It’s possible that the 

addition of a slight glycolytic insult via oxamate alters the redox (or ATP) homeostasis level to improve the growth 

rate. For combination C, where the growth rates were found to be identical, we see a greater sensitivity in High Myc 

cells than Low Myc. Synergy for the final combination where both phenotypes were dying was not assessed due to 
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the limitations of the CompuSyn software. However, based on visual inspection, it appears that there is a synergistic 

effect at this concentration as well. 

 

 
 

Figure 6.4 Comparison of High and Low Myc Growth Rates for Dual Inhibitor Treatments. High and Low 

Myc cells were treated with oxamate and phenformin simultaneously. Absolute growth rates (A) and normalized 

rates (B) are compared. * indicates significance with p<0.05. Rates were normalized to the untreated control.   
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 Figure 6.5 Comparison of Normalized Glycolytic Fluxes for High and Low Myc Cells for Dual Inhibition 

Treatments. Normalized glucose (A) and lactate (B) fluxes are shown for High and Low Myc cells in dual 

inhibition studies. * indicates significance with p<0.05. Rates were normalized to the untreated control.   
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Table 6.1 Combination Index (CI) Values for High and Low Myc Dual Inhibition Studies. Values were 

computed using CompuSyn. Values greater than 1 indicate antagonism while values lower than 1 indicate 

synergism. The lower or higher the number the greater the synergism or antagonism, respectively. 

 

!!   High Myc Low Myc 

ID Drug Combination Combination Index (CI) 

A 1 mM Oxamate 
10 µM Phenformin 

0.58 7.76 

B 1 mM Oxamate 
25 µM Phenformin 

0.61 0.06 

C 5 mM Oxamate 
10 µM Phenformin 

0.09 0.23 
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6.4 Discussion 

One of the challenges of studying cancer metabolism is understanding and quantitating how cells adjust to 

perturbations. When a cell is in a hypoxic environment, experiences nutrient deprivation, or is inhibited by 

pharmacologic molecules, it adjusts its metabolism to meet the new demands and promote survival (Novoa et al., 

1959; Pelicano et al., 2006; Ramanathan et al., 2005; Vander Heiden et al., 2009). Previous chapters have shown 

that 13C-MFA can be used to map how these differences manifest themselves via altered intracellular fluxes.  

 

Metabolic flux maps for High and Low Myc cells in normoxia highlighted alternate energy pathway utilization. 

High Myc cells were observed to shunt a greater portion of their glucose-derived pyruvate to the TCA cycle than 

Low Myc cells. Coupled with an increased glutamine flux, TCA cycle rates were elevated over 2-fold. Both cell 

types were still highly glycolytic, but mitochondrial OXPHOS contributed more to the energetic budget of High 

Myc cells than it did in Low Myc cells. Based on these flux results we chose to perturb the two key energy 

production pathways in central metabolism, glycolysis via lactate dehydrogenase and OXPHOS, using small-

molecule inhibitors. 

 

Lactate dehydrogenase A (LDHA) is one of the many direct gene targets of Myc transactivation. Previous work by 

Le et al. (2010) in P493-6 cells has shown that LDH-A is required for tumor growth and initiation. Using either a 

small-molecule drug-like inhibitor of LDH-A, called FX11, or siRNA on cultured cells, they were able to slow cell 

growth, decrease ATP stores, and induce high levels of reactive oxygen species and apoptosis. They also used 

FK866, an inhibitor of NAD+ synthesis, and found that it had an antagonistic effect on the growth of cells and 

tumors. FX11 significantly inhibited the formation of tumors from P493-6 mouse xenografts, indicating a critical 

role for LDH-A activity in vivo. The combination of FX11 and FK866 actually induced tumor regression, suggesting 

that a dual hit approach could be a viable therapeutic option. Other studies have also highlighted the important role 

of LDH-A in tumor survival (Fantin et al., 2006; Xie et al., 2009). Interestingly, LDH-A is also a target of hypoxia 

inducible factor 1 (HIF1). HIF1 has increased expression in low oxygen environments, which is typical of in vivo 

tumors.  
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We first treated High and Low Myc cells with oxamate, a competitive inhibitor of LDH-A that interferes with 

pyruvate binding to the enzyme’s active site. Oxamate is an effective and specific inhibitor and has been in use in 

research for over 50 years (Novoa et al., 1959). We hypothesized, based on our flux results, that High Myc cells 

would be more sensitive to oxamate due to their higher lactate flux. High Myc cells were in fact more sensitive, but 

the difference was slight (20 mM versus 24 mM). However, these are high doses of drug, and the large uncertainty 

estimates (not shown) make it difficult to assess the significance of the IC50 values. As expected, lactate fluxes were 

decreased in oxamate treated cells in a dose-dependent manner. This decrease possibly increased the concentration 

of NADH inside the cell, which can be compensated for by decreasing the glucose uptake rate. Indeed, we saw a 

concomitant decrease in glucose uptake as well, indicating the cells primarily adjusted to the perturbation by 

slowing glucose metabolism and growth. 

 

We next treated cells with phenformin, an antagonist of Complex I in the electron transport chain. Phenformin is a 

more potent version of the anti-diabetic drug metformin which was found in a recent retrospective study of diabetic 

patients to reduce the incidence of cancer compared to patients not on the drug (Evans et al., 2005). Other studies 

have previously shown phenformin to be effective in reducing the growth rates of neuroblastoma and prostate 

adenocarcinoma cells (Caraci et al., 2003). This leads to the question of whether cancerous cells treated with 

phenformin are more sensitive than their normal counterparts. By disrupting Complex I, phenformin disrupts the 

proton gradient inside the mitochondria and increases the ratio of NADH to NAD+. This increase feeds back to the 

TCA cycle to decrease the flux, thereby making phenformin a general inhibitor of mitochondrial metabolism.  

 

When High and Low Myc cells were treated with increasing concentrations of phenformin, we saw a dose-

dependent decrease in growth rate. A comparison of normalized growth rates between High and Low Myc cells 

showed no statistical difference except at the lowest concentration tested (10 µM). However, estimated IC50 levels 

reveal that High Myc cells (90 µM) were more sensitive overall than Low Myc cells (230 µM). When compared to 

our flux maps these data seem to make sense: High Myc cells do rely more on the TCA cycle than Low Myc and 

they have an overall larger flux magnitude suggesting that they should be more susceptible to OXPHOS inhibition 

by phenformin. Myc is known to stimulate mitochondrial biogenesis and glutaminolysis, both of which play a role in 

enhancing TCA cycle flux and OXPHOS (Li et al., 2005; Wise et al., 2008). Extracellular flux measurements in the 
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presence of phenformin showed a marked increase in glycolysis. Glucose and lactate fluxes increased by nearly 3-

fold in High Myc cells at a concentration of 10 µM. For the entire drug concentration range measured, High Myc 

cells had larger fluxes than Low Myc indicating the more cancerous phenotype has a greater capacity to alter its 

metabolism to overcome the insult. Even at the highest phenformin concentration tested (400 µM) the metabolism of 

both High and Low Myc cells were upregulated compared to the untreated controls. This shows that a cell, 

particularly a more cancerous one, can direct its metabolism to a more fermentative phenotype to survive. However, 

it is possible that, due to the High Myc cells’ extra glycolytic capacity, the cell has a greater risk of dying when the 

concentration is high enough. High Myc cells typically have higher levels of ROS and oxygen uptake (see chapter 4) 

which, with the ectopic expression of Myc, could lead to a greater instability in the cells ability to handle chemical 

insults at high concentrations (Dang et al., 2005; Le et al., 2012).   

 

When P493 cells were treated with single drugs they were able to adjust their metabolism to circumvent the 

perturbation. Growth rates slowed, but they were still able to survive and proliferate without dramatic differences in 

sensitivity between the two cell lines. Since cells treated with oxamate most likely shifted to OXPHOS under 

normoxic conditions to survive and cells treated with phenformin clearly upregulated glycolysis, we hypothesized 

that blocking both pathways simultaneously would leave the cells with no alternative routes to maintain ATP 

production and redox homeostasis, and they would succumb to the dual inhibition at lower doses. To test this, High 

and Low Myc cells were treated with both oxamate and phenformin at concentrations that, individually, had 

minimal effect on growth. At the lowest concentration combination tested (1 mM oxamate and 10 µM phenformin) 

there was a significant decrease in growth rate only for the Low Myc cells. However, based on the IC50 values, the 

drugs acted synergistically in High Myc cells and antagonistically in Low Myc. With a 10 µM dose of phenformin 

alone, Low Myc cells decreased their growth rate by almost 40%, but when co-treated with 1 mM oxamate, the 

growth rate was rescued slightly. This is a surprising result because it is not clear how small doses of two inhibitors 

acting with wholly different mechanisms and in different parts of the metabolic network would be less effective than 

the drugs individually. This result, however, is limited to a small range because as the dosage of each drug was 

increased the cells decreased their growth dramatically. At the final drug combination (5 mM oxamate and 25 µM 

phenformin) we measured a negative growth rate for both Myc expression levels. The most interesting part of this 

experiment was the combination of 5 mM oxamate and 10 µM phenformin. Both High and Low Myc cells had 
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identical growth rates when compared to their respective controls, meaning High Myc cells were more sensitive to 

this specific drug combination. Indeed, the combination index for the High Myc cells was much lower than Low 

Myc (0.09 vs. 0.23) indicating greater synergy.  

 

When the intracellular fluxes of High and Low Myc cells were measured previously, there seemed to be several 

opportunities for targeted intervention. A straight comparison of the raw flux values indicated several differences. 

High Myc had many fluxes in glycolysis, TCA cycle, and anaplerotic pathways upregulated when compared to Low 

Myc. Intuitively, we hypothesized that the higher the flux the more sensitive the cell would be to targeted inhibition 

of that pathway. We did measure a slight increase in sensitivity in the High Myc cells but the difference is 

statistically insignificant. This line of thinking also held true when using phenformin: OXPHOS fluxes were larger 

in High Myc cells and they were also more sensitive to an inhibitor of OXPHOS. These conclusions indicate that 

perhaps MFA results on untreated cells can be used to predict drug responses in a straightforward manner. However, 

the drugs under study here are potent inhibitors of key enzymes in metabolism. It’s not clear how the flux results 

would inform the drug response if enzymes such as malic enzyme, glucose-6-phosphate dehydrogenase, or any of 

the enzymes in the TCA (such as isocitrate dehydrogenase) were selectively targeted. Based on the data presented 

here, it may be logical to assume that an increased flux magnitude equates to a higher sensitivity, but that may not be 

the case in all instances. What is clear based on the data is that High Myc cells are able to adjust their metabolism 

more dramatically than their non-cancerous counterparts to overcome the chemical insult. This most likely extends 

to other cancer cell models as well. It would be beneficial to perform MFA studies on cells in the presence of drugs 

to gain a more complete picture of how metabolism adjusts. Based on simple extracellular measurements, it’s not 

clear if other parts of metabolism (i.e. PPP, anaplerotic fluxes, lipid pathways) are changing in non-intuitive ways. 

Different mutations manifest in different phenotypes and it’s possible they respond to drugs in slightly different 

manners too: Myc increases reliance on OXPHOS (Murphy et al., 2013) while K-Ras promotes the classic Warburg 

Effect (Gaglio et al., 2011) and these different cell types probably do not respond to inhibiting drugs in similar 

manners. A full understanding of how a cell’s metabolism responds to different treatments is critical to rationally 

selecting new therapeutic strategies.  
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APPENDIX 6.A - Supplementary Figures 

 

Figure 6.A.1 Glucose and Lactate Fluxes of Oxamate-treated High and Low Myc Cells. (A) Glucose uptake 

fluxes are shown for High and Low Myc cells with oxamate inhibition alone. (B) Lactate secretion fluxes. * 

indicates significance with p<0.05.  

 

 

 

Figure 6.A.2 Glucose and Lactate Fluxes of Phenformin-treated High and Low Myc Cells. (A) Glucose uptake 

fluxes are shown for High and Low Myc cells with phenformin inhibition alone. (B) Lactate secretion fluxes. * 

indicates significance with p<0.05.  
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Figure 6.A.3 Comparison of Fluxes for High and Low Myc Cells in Dual Inhibition Cultures. Glucose (A) and 

lactate (B) fluxes are shown for High and Low Myc cells in dual inhibition studies. * indicates significance with 

p<0.05.  
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CHAPTER 7 

 

APPLICATION OF METABOLIC FLUX ANALYSIS TO AN IN VIVO MODEL OF MYC-DRIVEN 

LYMPHOMAGENESIS 

 

7.1 Introduction 

The utility of metabolic flux analysis (MFA) in cancer research has grown rapidly over the past several years 

(Keibler et al., 2012). Numerous studies, including those discussed in chapters 4 and 5, have shown surprising 

alterations in cancer metabolism that were only evidenced using isotope tracers (Gaglio et al., 2011; Kim and 

Forbes, 2007; Le et al., 2012; Metallo et al., 2012). The majority of these studies have been conducted using in vitro 

models of cancer. These studies are very useful but there is a fundamental disconnect between cancerous cell growth 

in a flask versus in a human body. Unlike a cell culture flask, the tumor microenvironment is complex, three-

dimensional, and subject to variations in nutrient and oxygen availability (Vander Heiden, 2011). Various aspects of 

the in vivo environment can be emulated in vitro, but it is only a simulacrum of a true in vivo environment.  

 

The next step with MFA is to expand it to more complicated culture systems such as 3-D culture and in vivo tissue. 

Animals studies, and mice in particular, are highly relevant for clinical applications, and their use in research is well-

established (Frese and Tuveson, 2007; Shultz et al., 2007). Isotope tracers have been used in mice for many years 

(Fan et al., 2012) but their application to in vivo cancer metabolism is relatively nascent. 13C tracers have been used 

to study mouse models of MET and MYC-induced liver tumors (Yuneva et al., 2012), glioblastoma (Marin-Valencia 

et al., 2012), and lung cancer (Fan et al., 2011). One study by Fan et al. (2009) used 13C-labeled glucose to study 

cancerous and non-cancerous lung tissue resected from a patient. These studies are on the cutting edge of in vivo 

metabolomics research, but much still remains unknown and very few labs are able to do this kind of work.  

 

One of the primary assumptions of MFA in vitro is the homogeneity of the cell culture (Zamboni, 2011). When the 

metabolites in an experiment are pooled, the assumption is that a very large portion of the cell population is in a 

similar metabolic state: their nutrient availability and environment are the same. This assumption is not necessarily 

true in vivo (Ward and Thompson, 2012). Cells that are closer to the host’s vasculature will have an increased supply 
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of oxygen and substrates while those farther away will experience more nutrient deprivation and stress (Jones and 

Thompson, 2009). This heterogeneity complicates the analysis.  

 

Another aspect of in vitro MFA is the relative ease with which extracellular uptake and secretion fluxes can be 

measured (see Chapter 3). Simply by measuring the concentration of metabolites from the culture medium along 

with the growth rate of the culture, cell specific fluxes can be readily estimated. Inside an animal, this is very 

difficult, if not impossible. There are some techniques available for estimating the growth rate of an in vivo tumor, 

but the pool of nutrients is shared throughout the entire body, making determination of specific fluxes between the 

tumor and its surroundings difficult. As such, it may only be possible to determine relative flux ratios between 

different pathways (e.g., glycolysis versus pentose phosphate or TCA cycle) rather than absolute rates. 

 

Also limiting the analysis is the cost of the isotopic tracer. Cell cultures consume a miniscule amount of carbon 

compared to whole animals. When a significant portion of the incoming carbon needs to be isotopically labeled, the 

cost can be prohibitive. Optimization can be done to minimize the amount needed, but the requirement is still going 

to be greater than an equivalent in vitro experiment.  

 

Finally, tumor resection and cell isolation can affect the analysis by altering the mass isotopomer distributions 

(MID) of intracellular metabolites. The labeling of some intracellular metabolites can change on the time scale of a 

few seconds, due to rapid turnover in highly active pathways of central metabolism. To avoid these unwanted 

sampling artifacts, the metabolism has to be rapidly quenched upon sample collection. This is relatively simple in 

vitro, and there are established protocols for cold quenching cultured cells (Nöh et al., 2007). However, the time 

required to sacrifice an animal, harvest the tissue, and quench the metabolism can be on the order of minutes instead 

of seconds (Fan et al., 2011). While it is theoretically more ideal to measure the labeling of free intracellular 

metabolites directly, it may be practically better to measure the labeling of macromolecules that provide a stable 

proxy of the metabolite building blocks from which they were biosynthetically derived (see Chapter 4 for details). 

True in vivo isotopomer analysis can be done using NMR with a small surface coil, but the uses are limited due to 

the shallow depth of measurements that can be achieved (Fan et al., 2012). Measuring the isotopic enrichment of 
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macromolecule pools (protein, RNA, lipids) offers an alternative approach that could enable isotopomer analysis of 

in vivo tumor samples while avoiding the introduction of sampling artifacts. 

 

Here, we describe a proposed method for extending the INST-MFA approach applied in chapters 4 and 5 to an in 

vivo tumor model, including recommended procedures for sample collection and analysis. We propose to use an Eµ-

myc transgenic mouse model that develops fatal lymphoma within a few months of birth (Adams et al., 1985). We 

have performed computational simulations to determine the minimum required tracer amount that should be fed to 

precisely estimate flux ratios using INST-MFA while minimizing the tracer cost. We assumed a metabolic 

phenotype similar to the High Myc normoxic flux map described in Chapter 5 and predicted isotope labeling 

trajectories for a variety of tracer and measurement combinations. The information from these simulations was then 

used to develop a recommended protocol for performing an in vivo isotope labeling experiment that would enable 

relative flux estimation of early-stage lymphoma based on INST-MFA. This protocol will be tested in a future pilot 

study to establish proof of concept of our approach.  

 

7.2 Methods 

7.2.1 Metabolic Network 

Based on previous experience and conversations with collaborators, it was determined that the only in vivo 

measurements we would be able to make are the labeling of the cell macromolecules and possibly the growth rate 

based on BrdU incorporation and ribose isotopic enrichment. As such, the model was adjusted to best describe the 

available data: glucose and glutamine were assumed to be the major carbon sources and lactate and biomass were 

the primary carbon sinks. Dilution of labeling was allowed via alanine, aspartate, glutamate, glycine, and serine. The 

growth rate was the only rate input to the estimation and was used primarily to aid in the estimation of the relative 

uptake rate. As it’s not possible to know the actual glucose or glutamine uptake in the system, the growth rate is 

used to roughly estimate the range of possible uptake fluxes. Once that range is determined, the growth rate is 

removed from the estimation and the split ratios are determined. Two separate flux estimations were performed: 

first, glucose uptake was fixed to 100 and the split ratio between glycolysis and pentose phosphate (PP) pathway 

was calculated; and second, pyruvate dehydrogenase (PDH) was fixed to 100 and relative TCA cycle fluxes were 

calculated. The reaction networks and atom transitions used for MFA are listed in Table 7.A.1 in the Appendix. 
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7.2.2 Tracer Formula Optimization 

To identify the best combination of naturally labeled glucose, [U-13C6]glucose, and [1,2-13C2]glucose for an in vivo 

flux study we utilized the High Myc normoxic flux map from chapter 5 as the basis for our estimation. Using these 

finalized flux values, the amount of each tracer was adjusted to multiple set points. At each combination, the MIDs 

were simulated (the “forward” MFA simulation) based on the flux values and tracer fed. Three time points were 

simulated: 24, 48, and 72 hours. We then used these simulated measurements to solve the “inverse” MFA 

calculation and estimate flux confidence intervals. The optimum combination was defined as the least expensive 

mixture that allowed the G6PDH flux to be estimated to within +/-10% of the glucose uptake flux.  

 

7.2.3 Determination of Growth Rate from Ribose Labeling 

Since glucose is the primary carbon source for RNA synthesis, the atom percent enrichment (APE) (see chapter 5) of 

ribose derived from RNA follows close with the theoretical maximum APE. Because of this fact, the growth rate can 

be estimated via a least-squares optimization by comparing the lack of fit between the measured and theoretical 

maximum APEs at each time point and adjusting the growth rate until the fit is minimized. It will be important to 

accurately determine the actual amount of labeled carbon being fed to the mice to get a good estimate of the 

maximum theoretical APE.  

 

The APE was calculated for the Ribose 284 fragment from the High Myc normoxic labeling experiment in Chapter 

5. Based on the tracer used in the experiment (1:1 - [U-13C]glucose : [1,2-13C]glucose) we calculated the maximum 

theoretical APE which is 0.66. Using this as the maximum, we then used the following expression to estimate the 

APE at each time point based on a given growth rate: 

 

1 − !
!!" x!APE!"# (7.1) 

 

where µ is the growth rate, t is the time, and APEMax is the maximum APE given the tracer input. For each time 

point, the estimated and measured APE is subtracted from each other and the result squared. The squares are then 
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summed and square-rooted. This value is then minimized by adjusting the growth rate using Microsoft Excel’s ‘Goal 

Seek’ feature.  

 

7.3 Results 

7.3.1 In Vivo Tracer Optimization 

If the cost of the in vivo tracers was not a concern then all of the glucose consumed by the mice should be 

isotopically labeled. However, to decrease expenses we attempted to estimate the minimum required amount of 

tracer needed to precisely estimate flux ratios in upper glycolysis. [1,2-13C2]glucose is the most expensive tracer we 

typically use, but it is necessary to fully resolve PP pathway flux relative to glycolysis (see chapters 4 and 5). 

Without this tracer the precision of our PP pathway estimates decreases dramatically. Ten different tracer 

combinations were tested and the 95% confidence intervals of the G6PDH flux were compared. Figure 7.1 shows 

the flux magnitude and confidence intervals for each tracer combination. 30% [1,2-13C2]glucose was found to be the 

minimum amount required to give a confidence interval that was less than 10% of the magnitude of the glucose 

uptake flux (set to 100 in these simulations). Increasing concentrations of [U-13C6] and [1,2-13C2] did seem to 

improve the estimation, but the cost increases would not justify the marginal improvements in sensitivity. Keeping 

the two tracers at a 1:1 ratio, as done in chapter 5, with a minimum of 30% [1,2-13C2]glucose and the remainder as 

unlabeled glucose seems to be the best compromise.  

 

7.3.2 Comparison of Growth Rate Estimation 

The measured growth rate of the High Myc normoxic cells in chapter 5 was 0.0363 hours-1 +/- 0.0016. The MFA 

results returned a value of 0.0373 hours-1 with a 95% confidence range of 0.0342 to 0.0406. By comparing the 

theoretical APE to the measured APE for each of the six Ribose 284 time points, we estimated the growth rate to be 

0.0357 hours-1. This value is well within the 95% confidence interval and within the standard error of our original 

estimation. 

 

 

 

 



! 196 

7.4 Proposed Methods 

7.4.1 Tracer Feed 

Due to the high cost of the isotopic tracer and long times necessary to reach isotopic steady-state within the 

macromolecular pools to be sampled, we decided to conduct an isotopically nonstationary experiment. Previous data 

have shown that the B-cells inside the Eµ-myc mouse double approximately every 16-24 hours, meaning that 3-4 

doubling periods could be achieved within 3 days (conversations with Christine Eischen, PhD). Based on the data 

presented in section 7.3, the tracer combination of 40% naturally labeled glucose, 30% [U-13C6]glucose, and 30% 

[1,2-13C2]glucose will be optimal for data precision and cost. Due to the complicated nature of the animal feed we 

determined that it would be best to use the glucose available in the original formula, in the form of cornstarch, as the 

naturally labeled fraction. The isotopically labeled glucose tracer mix will then be mixed with the custom 

formulation of the AIN-93G Growth Diet (Purina Animal Nutrition). Sucrose, maltodextrin, and soybean oil will be 

completely removed with the cornstarch lowered to 25.18% of the original formulation. Sucrose and maltrodextrin 

will be removed because they enter the cell as glucose and would dilute the labeled pool. Soybean oil was removed 

to enhance the mixing process. This affects the formula by increasing the fraction of the other feed components (See 

Table 7.1). Depending on the final amount of feed needed, the glucose tracer will first be mixed with the powdered 

chow. Once the powders have been thoroughly mixed, the soybean oil will be slowly added to the powder in the 

blender to create a homogenous mixture. Beginning on day 1 of the labeling experiment, 3 grams of custom 

isotopically labeled chow will be given to the mice once in the morning and once in the evening for up to three days. 
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Figure 7.1 Comparison of G6PDH Flux Resolution Provided by Different Glucose Tracer Combinations. 10 

different combinations of naturally labeled, [U-13C6], and [1,2-13C2]glucose were compared for differences in 

predicted G6PDH flux resolution. Glucose uptake was fixed to 100. Values represent the median of the 95% 

confidence interval. Error bars are the upper bound of the 95% confidence interval.   
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Table 7.1 In Vivo Flux Analysis Feed Formulation. The AIN-93G feed formulation was adjusted by removing 

soybean oil, maltodextrin, sucrose, and 14.57% of the cornstarch. The tracer will be added to the powdered chow 

and mixed thoroughly. The soybean oil will be added last and mixed in. The total fraction of carbohydrates from 

starch and the glucose tracer will be the same as prior to adjustment. Soybean oil will be added in the same ratio as 

the original formula.  

Ingredient Original (%) Adjusted (%) w/ Tracer (%) w/ Soybean Oil (%) 
Tracer Mix 0 0 40.61 37.77 

Corn Starch 39.7486 45.59 27.07 25.18 
Casein 20 36.21 21.51 20 

Maltodextrin 13.2 0 0 0 
Sucrose 10 0 0 0 

Soybean Oil 7 0 0 7 
Powdered Cellulose 5 9.05 5.38 5 

Mineral Mix 3.5 6.34 3.76 3.5 
Vitamin Mix 1 1.81 1.08 1 
L-Cystine 0.3 0.54 0.32 0.3 

Choline Bitartrate 0.25 0.45 0.27 0.25 
t-Butylhydroquinone 0.0014 0.0025 0.0015 0.0014 

Total Amount 100 100 100 100 
 

 
7.4.2 Experimental Outline 

Animals 

Three Eµ-myc transgenic mice that are 5 to 7 weeks old (Adams et al., 1985) will be fed the custom diet discussed in 

section 7.4.1. Mice will be fed 3g of chow twice daily, once in the morning and once in the evening. One mouse will 

be sacrificed after one day on the tracer diet, one mouse after two days, and one mouse after three days. Each animal 

will be injected intraperitoneally with 100 µL of 10mg/mL bromodeoxyuridine (BrdU) in sterile PBS 12-16 hours 

prior to sacrifice (O'Donnell et al., 2005). Tissues (spleen, bone marrow, liver, and kidney) samples will be 

harvested and processed according to the following methods. See Figure 7.2 for a description of the proposed 

workflow. 

 

Spleen 
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The spleen will be minced and red blood cells lysed using a hypotonic solution (Gey’s solution). The remaining 

splenocytes will be partitioned for three different analyses. First, approximately 10-15 million cells will be removed 

to analyze the isotopic enrichment present in the heterogeneous population. Second, B-cell lymphocytes will be 

separated from the remaining splenocytes via negative selection on a BD IMag enrichment set (BD Biosciences), 

and the remaining cells will be discarded. BrdU incorporation of 1-2 million extracted B lymphocytes will be 

analyzed by flow cytometry. The remaining B lymphocytes will be either lysed in TRIzol or frozen at -80°C or flash 

frozen in liquid nitrogen for future lipid analysis. 

 

Bone marrow 

Once bone marrow cells have been extracted, the red blood cells will be lysed using a hypotonic solution (Gey’s 

solution). The cells will be split into multiple microcentrifuge tubes with at least 5 million cells and either lysed in 

TRIzol and frozen at -80°C or flash frozen in liquid nitrogen for future lipid analysis. 

 

Liver and kidney 

Tissues from the liver and kidney will be analyzed as non-proliferative control samples. Cells in the kidney are not 

known to exhibit a high degree of metabolic activity, making it an ideal negative control sample. Conversely, cells 

in the liver, chiefly hepatocytes, are known to be highly metabolically active. However, neither tissue should exhibit 

proliferation during the experiment. Therefore, labeling of macromolecular pools are not expected to be significantly 

altered in either tissue. Homogenized tissues will either be lysed in TRIzol or stored at -80°C or flash frozen in 

liquid nitrogen for future lipid analysis. 

 

7.4.3 Sample Analysis 

Labeling of amino acids, RNA, and palmitate will be done according to the protocols in chapter 5. BrdU labeling 

corresponds with the fraction of cells that are in S-phase. This labeling will be used to measure variations among the 

three mice based on differences in labeling. Theoretically, a similar fraction of the cells should be labeled if the 

metabolism of each mouse is similar. Using the ribose labeling it is possible to estimate the growth rate of cells 

based on the maximum theoretical labeling (see section 7.2.3). Two fluxes will be individually fixed to 100 in order 

to estimate split ratios in glycolysis/PP pathway (relative to glucose uptake) and TCA cycle activity (relative to 
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PDH) (see section 7.2.1). All labeling and growth data will be input into the INCA software and analyzed in a 

similar manner to data in chapters 4 and 5. 

 

 

7.5 Discussion 

This chapter proposes a method for conducting an in vivo flux analysis study of cancer metabolism. Many of the 

methods needed for this study have been already optimized but have yet to be brought together. We’ve previously 

described optimized methods for measuring isotopic labeling in protein, RNA, and lipid samples, and we’ve shown 

how the isotopically nonstationary approach can be effectively applied to estimate fluxes in cultured cells (see 

chapters 4 and 5). Our collaborators in the Eischen lab have extensive experience with in vivo studies including 

tissue resection, B-cell purification, and BrdU analysis. Therefore, we now have brought together the necessary 

expertise to perform a pilot study. 

 

Prior to conducting the experiment it was necessary to optimize the amount of 13C-glucose tracer used in the study. 

Typical costs for [U-13C6]glucose and [1,2-13C2]glucose are approximately $100/gram and $400/gram, respectively. 

Any efforts at reducing the amount of tracer will be beneficial as long as the reduction does not increase the 

uncertainty in the flux estimation dramatically. Based on the work presented here it seems that keeping a 1:1 ratio of 

uniformly labeled glucose to 1,2-labeled glucose is ideal, the same combination used in chapter 5, but with the total 

fraction of labeled glucose reduced to roughly half of the total carbohydrate fed. We found that a minimum of 30% 

[1,2-13C2] glucose is the best compromise between cost and data precision and, in keeping with the 1:1 ratio, we also 

propose using 30% [U-13C6]glucose. The remaining naturally labeled carbohydrate will come from the cornstarch 

already present in the mouse chow. 
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Figure 7.2 Proposed Workflow for In Vivo INST-MFA Study. Each mouse is treated exactly the same after 

sacrifice with four different tissues being resected. The liver and kidney will serve as negative controls because their 

macromolecule labeling is presumed not to change significantly. Bone marrow will have the red blood cells lysed 

prior to analysis. A small slice of the spleen will be analyzed for heterogeneous labeling and the remaining portion 

will be negatively selected for B-cells. The B-cells will be split and either measured for BrdU incorporation or 

analyzed via GC/MS.  
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This study is built upon the work presented in this dissertation in a way that is unique to the previous literature (Fan 

et al., 2011; Marin-Valencia et al., 2012; Yuneva et al., 2012). To the best of our knowledge, nobody has applied 

MFA techniques to the study of in vivo lymphoma mouse models. Our proteinogenic MFA method was designed 

specifically with this application in mind, and the isotopically nonstationary approach was found to be superior 

because it provides increased flux resolution relative to steady-state MFA and can also be applied to systems where 

isotopic labeling does not have time to fully equilibrate. We specifically chose to work with the Eµ-myc transgenic 

mouse model for the proposed pilot study because it overexpresses Myc, similar to the P493-6 cells studied 

previously, and develops fatal B-cell lymphoma, making it an excellent model for studying Myc-driven cancer 

(Adams et al., 1985). Our expectation in working with this mouse model is that it will give more information about 

when the metabolic transition occurs in pre-cancerous cells. It’s understood that cells alter their metabolism to 

support cancerous growth. What’s not well understood is when this alteration occurs in the development of cancer 

and determining when this transition happens will guide the search for new therapeutics. This also has the potential 

to inform about the differences between cancerous cells in vivo and in vitro. We expect this experiment will be rich 

in data and will enable us to advance understanding of cancer metabolism as well as the application of metabolic 

engineering techniques to complex systems. 
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Appendix 7.A - Supplementary Table 
 
Table 7.A.1 Complete List of Reactions and Atom Transitions for the In Vivo B-cell Metabolic Network. Refer 

to Appendix 5C for a list of metabolite abbreviations. 

Glycolysis 
HK GLC.c (abcdef) → G6P (abcdef) 
PGI G6P (abcdef)   ↔ F6P (abcdef) 
PFK F6P (abcdef)   → FBP (abcdef) 
ALDO FBP (abcdef)   ↔ DHAP (cba) + GAP (def) 
TPI DHAP (abc)   ↔ GAP (abc) 
GAPDH GAP (abc)   ↔ 3PG (abc) 
ENO 3PG (abc) ↔ PEP (abc) 
PK PEP (abc)   → PYR.c (abc) 
LDH PYR.c (abc)  ↔ LAC (abc) 

Pentose Phosphate Pathway 
G6PDH G6P (abcdef) → RU5P (bcdef) + CO2 (a) 
R5PE RU5P (abcde)   ↔ R5P (abcde) 
R5PI RU5P (abcde)  ↔ X5P (abcde) 
TK1 X5P (abcde)   ↔ GAP (cde) + EC2 (ab) 
TK2 F6P (abcdef)   ↔ E4P (cdef) + EC2 (ab) 
TK3 S7P (abcdefg)   ↔ R5P (cdefg) + EC2 (ab) 
TA1 F6P (abcdef)   ↔ GAP (def) + EC3 (abc) 
TA2 S7P (abcdefg)   ↔ E4P (defg) + EC3 (abc) 

TCA Cycle 
PYRT PYR.c (abc) ↔ PYR.m (abc) 
PDH PYR.m (abc)  → AcCoA (bc) + CO2 (a) 
CS OAA (abcd) + AcCoA (ef) → CIT (dcbfea) 
IDH CIT (abcdef) ↔ AKG (abcde) + CO2 (f) 
ADH AKG (abcde) → SUC (bcde) + CO2 (a) 
SUDH SUC (½ abcd + ½ dcba)   ↔ FUM (½ abcd + ½ dcba) 
FUMS FUM (½ abcd + ½ dcba)   ↔ MAL (abcd) 
MDH MAL (abcd)   ↔ OAA (abcd) 
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Table 7.A.1 Continued 
 
Amphibolic reactions 
ME MAL (abcd)  → PYR.m (abc) + CO2 (d) 
PYC PYR.m (abc) + CO2 (d) → OAA (abcd) 
ACL CIT (abcdef)  → AcCoA.c (ed) + MAL (fcba) 

Amino Acids 
GDH AKG (abcde) ↔ GLU (abcde) 
GLS GLN (abcde) ↔ GLU (abcde) 
AST OAA (abcd) ↔ ASP (abcd) 
PST 3PG (abc) → SER (abc) 
SHT SER (abc) ↔ GLY (ab) + MEETHF (c) 
CYST SER (abc) ↔ CYS (abc) 
GLYS CO2 (a) + MEETHF (b) → Gly (ab) 
ALT PYR.c (abc) ↔ ALA (abc) 
GLNR GLN.E (abcde) → GLN (abcde) 

Transport 
UNLG GLC.U (abcdef) → GLC.E (abcdef) 
LABG GLC.L (abcdef) → GLC.E (abcdef) 
GLUT GLC.E (abcdef) → GLC.C (abcdef) 
LIPS 8*(1/8*AcCoA.C) → PALM 
MCT LAC (abc) → LAC.E (abc) 

Biosynthesis 
BIOM 90 ALA + 70.8 ASP 

→ BIOMASS 
 

+  48.3 GLN + 57.9 GLU 

 
+ 98.7 GLY + 64.5 SER 

 
+ 43.28 G6P + 34.95 R5P 

 + 38.25 MEETHF + 34.95 CO2 

  + 18.26 DHAP+ 49.14 AcCoA.C 
+ 40.26 PALM 
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CHAPTER 8 

 

CONCLUSIONS AND FUTURE WORK 

 

8.1 Conclusions 

The work presented in this dissertation provides new knowledge and understanding in the fields of metabolic 

engineering and cancer biology. The combination of these fields is a relatively nascent application and much is 

unknown about what the data will reveal. We have contributed to the knowledge base by testing and optimizing flux 

analysis methods on a Myc-driven model of cancer, attempting to predict drug effects based on our flux results, and 

extending these methods to in vivo systems. Since a metabolic flux is the functional endpoint of a host of cellular 

processes, accurately quantifying these reaction rates is critical to properly interpreting other experimental results 

such as gene expression and protein levels (Sauer, 2006).  

 

Over the past several years the metabolism of cancer has been accepted as an important aspect of the disease and its 

alteration is now recognized as a bona fide hallmark (Ward and Thompson, 2012). Several recent studies have 

examined cancer using isotopic tracers while only a handful have used full-scale MFA (DeBerardinis et al., 2007; 

Gaglio et al., 2011; Grassian et al., 2011; Jain et al., 2012; Kim and Forbes, 2007; Le et al., 2012; Marin-Valencia et 

al., 2012; Metallo et al., 2012; Scott et al., 2011; Wise et al., 2011). Our work, along with the existing literature 

detailed in chapter 2, attests to the power of flux quantification in cancer research.  

 

In chapter 3, we presented a robust method for accurately quantifying the growth rate and extracellular fluxes of a 

cell. The new method combined improvements in sampling, measurement, and error analysis into a software 

package called ETA that is now freely available to the scientific community.  

 

Chapter 4 incorporated the improved techniques from the previous chapter into a novel 13C MFA method that relies 

on samples collected during the nonstationary labeling period. Steady-state and ISA methods were compared with 

the new INST-MFA method, with the latter returning the best results. The P493-6 B-cell cancer model at High and 
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Low Myc expression levels was used as the test bed, and we found Myc to be a strong driver of amino acid 

metabolism and oxidative phosphorylation.  

 

In chapter 5, we used the same cell model and improved the INST-MFA methodology to include lipid-labeling 

analysis. In addition to a normoxic flux analysis study at High and Low Myc levels, we also examined the P493-6 

cells under a hypoxic environment. The normoxic results confirmed our previous studies while the hypoxic data 

confirmed the highly glycolytic phenotype seen in other studies (Semenza, 2010). We also saw evidence for 

interaction between Myc and HIF. High Myc cells in hypoxic conditions had decreased glycolytic flux magnitude 

but an increased growth rate whereas Low Myc cells had a slower growth rate but greater glycolytic flux. This 

suggests Myc levels strongly affect the growth and fluxes of cells, particularly in relation to HIF.  

 

Next, in chapter 6, we looked at how we could use the normoxic MFA results to predict potential therapeutic targets. 

Little is known about how differences in flux data correspond to inhibitory effects. Using an inhibitor of lactate 

formation and another inhibitor of OXPHOS we found that a cancer cells’ increased reliance on a pathway, as 

indicated by a larger fraction of carbon flowing through that pathway than in a more normal phenotype, suggested a 

greater sensitivity than increased flux magnitude alone. In the context of High and Low Myc cells, the High Myc 

cells had more carbon flowing through glycolysis but a greater fraction of the pyruvate generated was going to the 

TCA cycle than to lactate formation. In Low Myc cells, a larger portion of the pyruvate was going to lactate 

secretion than to mitochondrial metabolism. Each cell line was also able to dramatically alter its metabolism to 

overcome the inhibition. In the case of the High Myc cells, flux magnitudes could be increased 2- to 3-fold 

suggesting they are better able to withstand the inhibition than Low Myc cells. The drugs were also used in 

combination, and again the High Myc cells were able to adjust their metabolism more dramatically than Low Myc. 

We also found that combining the drugs at doses that, individually, had no effect on the growth, significantly 

inhibited the cells.  

 

Finally, in chapter 7 we detailed some preliminary work and proposed methods to extend the INST-MFA technique 

to an in vivo mouse model of Myc-driven cancer. This work has great potential in bringing metabolic engineering 

techniques closer to the clinic. 
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8.2 Recommendations for Future Work 

While the methods and studies detailed in this dissertation are complete, there is room for more work to be done. 

Our INST-MFA methodology is applicable to a wide variety of cells and cell types, not just the P493-6 B-cell model 

discussed. Within the realm of cancer metabolism, there are numerous oncogenes whose expression is dysregulated 

and it’s unknown how those alterations functionally affect metabolism. Applying this method to more cell lines and 

models of cancer is essential to gaining a better understanding of the link between oncogenes, metabolism, and 

tumorigenesis.  

 

While our INST-MFA method is robust and we’ve shown it to be accurate and efficacious, it can still be improved 

and optimized further. One comparison we did not make is between flux maps generated from intracellular 

metabolite labeling versus our proteinogenic method. While we expect no significant differences to be found it 

would still be valuable to conduct this study. It would also be beneficial to examine different tracer combinations 

and different labeled substrates. Particularly in the hypoxic condition where we saw low levels of labeling in TCA 

cycle metabolites, it would be good to either repeat the study with 13C-labeled glutamine or allow the cells to grow 

longer in the labeled glucose. Several other research groups are working to analyze the use of different tracers 

individually and in combination (Ahn and Antoniewicz, 2013; Leighty and Antoniewicz, 2012; Metallo et al., 2009). 

Future flux studies with the B-cells studied here, or other cancer cell models with different tracers, could improve 

the quality of flux estimates and reveal new insights about metabolic rewiring. 

 

MFA is new to the study of cancer biology and, as such, the understanding of how flux results predict drug effects is 

limited. The drug studies done in chapter 6 helped answer this question but more studies are needed. In particular, 

repeating these studies in hypoxia would help relate the hypoxic MFA results to drug inhibition data. A larger panel 

of drugs targeting specific enzymes, metabolically related pathways, and signaling networks will enable a better 

understanding of the relation between flux results and drugs effects. Additionally, combinatorial studies are essential 

to treating cancer (Dang et al., 2011). There is no doubt that cancerous cells are able to dramatically alter their 

metabolism to compensate for a perturbation. Limiting the available alternatives in a targeted manner with multiple 

drugs and correlating it with flux data will be essential to the next generation of drug treatments. Also important to 
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the future of cancer research is conducting experiments in more clinically relevant models (Johnson, 2012). Our 

work to extend the INST-MFA methodology to mice is just one example of a larger push to generate more clinically 

meaningful results. INST-MFA and in vivo flux analysis techniques are on the cutting edge of both cancer research 

and metabolic engineering and much remains to be discovered in both fields. 
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APPENDIX A 

 

DETAILED PROTOCOLS  

 

A.1 - 13C INST-MFA 

The purpose of this protocol is to guide the user in starting an isotopically nonstationary metabolic flux analysis 

experiment. At the end of the experiment, the user will have frozen samples ready to be analyzed further. 

 

Supplies 

• 50 mL centrifuge tubes 

• 10 mL centrifuge tubes 

• 2 mL microcentrifuge tubes 

• Isotopically labeled cell culture medium 

• Unlabeled cell culture medium 

• T-75 Flasks / 15 cm Plates 

• TRIzol 

• Liquid N2 

• Centrifuge 

 

Planning - MFA 

1. Choose appropriately spaced time points for the cell line. In the first doubling period, 3 samples need to be 

taken. For example, if the doubling time is 24 hours, samples should be taken at 6, 12, and 24 hours. The 

early time points are when the most rapid change is occurring in labeling patterns. Time points can be 

spaced further apart after the first doubling. The final 3 time points for this example would be 36, 48 and 72 

hours. 

2. Determine the total number of flasks / plates that are needed. Every time point needs 3 biological replicates 

and a minimum of 4 time points are needed. A typical experiment is 6-10 time points. 
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3. Calculate the total volume of media needed. Typical volume is 30 mL for a T-75 flask and 40 mL for a 15-

cm dish. 

4. Determine the initial seeding concentration for each time point. The final cell number for each point needs 

to be around 107 cells. Use the growth rate to back-calculate for the seeding density based on the time 

points. Do not seed below the minimum density used for normal growth conditions. It is essential to keep 

the cells in the exponential growth phase. Seeding them too low will create a long lag phase and alter the 

data.  

5. Make enough media with the isotopically labeled substrate for the entire experiment.  

 

Planning – Control Experiment 

1. Along with the MFA experiment, a control growth experiment is conducted to measure the rates of cell 

lines under study. Growth, uptake and secretion fluxes, as well as evaporation rates are measured in this 

experiment. Refer to the protocol on setting up time-course growth experiments for the protocol.  

2. Include this data in the calculations for how many cells are needed. This experiment needs to be run 

concurrently with the MFA experiment so that conditions are identical. 

 

MFA Setup – Suspension Cells 

1. Count all cells being used for the growth experiment in unlabeled medium 

2. Remove unlabeled medium and add labeled medium in the appropriate amount.  

3. Seed each T-75 flask with the appropriate volume and bring the final volume to 30 mL. 

4. Place in the incubator at 37°C, 5% CO2 

5. Control experiment is set up at the same time as well 

 

MFA Setup – Attached Cells 

1. Count all cells being used for the growth experiment in unlabeled medium 

2. Use unlabeled medium and dilute to the appropriate density.  

3. Seed each 15 mL dish with the appropriate volume and bring the final volume to 40 mL. 

4. Place in the incubator at 37°C 
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5. Control experiment is set up at the same time as well 

6. After 3 to 4 hours, remove all plates from incubator. Ensure that cells are attached to the plate 

7. Remove unlabeled medium and add labeled tracer medium. The clock starts when the cells are placed in 

labeled medium. 

8. Place back into incubator. 

 

MFA Sampling – Suspension Cells 

1. Remove flasks for the specific time point from the incubator.  

2. Remove cells from flask and split 50:50 into two separate 50 mL centrifuge tubes.  

3. Centrifuge at 1500 rpm for 5 minutes. 

4. Take 500 µL of medium (from either flask) and store at -80°C for future analysis 

5. Aspirate remaining medium 

6. Wash with 5 mL PBS 

7. Centrifuge at 1500 rpm for 5 minutes. 

8. Aspirate PBS 

9. To one flask add 1 mL of TRIzol and homogenize with pipette tip. Incubate 5 min at room temp 

10. To the other flasks, add 1 mL of PBS. Transfer to 2 mL microcentrifuge tube. Spin tube, aspirate PBS 

11. Using tweezers, dip the tube in liquid nitrogen for 30 seconds. Store at -80°C. These samples will be stored 

for lipid analysis. 

12. After 5 minutes has passed for TRIzol extraction, transfer the liquid to a new 2 mL centrifuge tubes  

13. Freeze at -80°C 

14. Take appropriate samples from the control experiment after all MFA samples have been placed in freezer. 

 

MFA Sampling – Attached Cells 

1. Remove plate for the specific time point from the incubator.  

2. Take 500 µL of medium and store at -80°C for future analysis 

3. Aspirate remaining medium 

4. Trypsinize cells according to preferred protocol 
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5. Add FBS to stop the activity of the trypsin 

6. Transfer cells to 10 mL tube 

7. Centrifuge cells at 1500 rpm for 5 minutes and aspirate FBS 

8. Wash with 5 mL PBS 

9. Split cells into two separate 10 mL tubes 50:50 

10. Centrifuge at 1500 rpm for 5 minutes. 

11. Aspirate PBS 

12. To one flask add 1 mL of TRIzol and homogenize with pipette tip. Incubate 5 min at room temp 

13. To the other flasks, add 1 mL of PBS. Transfer to 2 mL microcentrifuge tube. Spin tube, aspirate PBS 

14. Using tweezers, dip the tube in liquid nitrogen for 30 seconds. Store at -80°C. These samples will be stored 

for lipid analysis. 

15. After 5 minutes has passed for TRIzol extraction, transfer the liquid to a new 2 mL centrifuge tubes  

16. Freeze at -80°C 

17. Take appropriate samples from the control experiment after all MFA samples have been placed in freezer. 
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A.2 - Aldonitrile Pentapropionate Derivatization of Glucose  

This protocol details the derivatization of glucose for analysis using GC/MS. 

 

Supplies 

• Acetone (refrigerated) 

• 2 wt% hydroxylamine hydrochloride in pyridine solution (may be refrigerated up to a year) 

• Propionic anhydride 

• Ethyl acetate 

• Heating block 

 

Sample preparation 

1. Transfer 10-100 µL glucose solution (0.1 – 10 mM) to Eppendorf tube (1.5 mL) 

2. Add 300 µL cold acetone 

3. Vortex vigorously for 10 sec 

4. Centrifuge for 5 min at 14,000 rpm to remove proteins 

5. Decant fluid into Eppendorf 

6. Evaporate to dryness under air flow at 60°C – approx. 20 min 

 

Derivatization 

1. Add 50 µL hydroxylamine / pyridine solution to the sample 

2. Incubate for 60 min at 90°C on the heating block 

3. Centrifuge for 10 sec at 14,000 rpm 

4. Add 100 µL propionic anhydride 

5. Incubate for 30 min at 60°C on the heating block 

6. Centrifuge for 10 sec at 14,000 rpm 

7. Evaporate to dryness under air flow at 60°C – approx. 30 min 

8. Dissolve sample in 100 µL ethyl acetate, some precipitation may form 
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9. Centrifuge for 10 min at 14,000 rpm to remove solids 

10. Transfer liquid to GC injection vial containing a 150 µL insert 
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A.3 - Aldonitrile Pentapropionate Derivatization of RNA-Derived Ribose  

This protocol details the hydrolysis of RNA to ribose and the derivatization of the ribose for analysis using GC/MS. 

 

Supplies 

• Acetone (refrigerated) 

• 2 wt% hydroxylamine hydrochloride in pyridine solution (may be refrigerated up to a year) 

• Propionic anhydride 

• Ethyl acetate 

• Heating block 

• Evaporator 

• Vacuum Hydrolysis Tube 

• Microcentrifuge tubes 

• Liquid Sonicator 

• Pasteur Pipettes 

 

Sample preparation 

1. Decant ethanol from RNA pellet 

2. Dry under airflow at RT for <5 min. 

3. Add 400 µL ddH2O per tube 

4. Sonicate briefly to dissolve RNA 

5. Use Pasteur pipette to transfer solution to vacuum hydrolysis tube 

6. Add 200 µL of 6N HCl on top in hydrolysis tube 

7. Apply vacuum to the tube 

8. Heat at 100°C for 2 hours 

9. Transfer to microcentrifuge tube 

10. Evaporate to dryness under air flow at 60°C – approx. 120 min 

 

Derivatization 
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1. Add 50 µL hydroxylamine / pyridine solution to the sample 

2. Centrifuge for 30 sec at 14,000 rpm 

3. Sonicate in water sonicator for 5 minutes 

4. Incubate for 60 min at 90°C on the heating block. Ensure centrifuge tube lid stays secure 

a. Periodically check to make sure solution is in contact with pellet and hasn’t condensed on the lid 

of the tube. Shake liquid down if it has. 

5. Centrifuge for 30 sec at 14,000 rpm 

6. Add 100 µL propionic anhydride 

7. Sonicate in water sonicator for 5 minutes 

8. Incubate for 30 min at 60°C on the heating block 

9. Centrifuge for 30 sec at 14,000 rpm 

10. Transfer supernatant to new microcentrifuge tube 

11. Evaporate to dryness under air flow at 60°C – approx. 30 min 

12. Add 100 µL of ethyl acetate 

13. Sonicate in water sonicator for 5 minutes 

14. Leave overnight to fully dissolve (may not be fully necessary. Use best judgment) 

15. Centrifuge for 10 min at 14,000 rpm to remove solids 

16. Transfer liquid to GC injection vial containing a 150 µL insert 
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A.4 - CyQuant 

The purpose of this protocol is to measure the DNA content of cells in a 96-well plate format and generate standard 

curves to convert DNA levels to cell number. 

 

Supplies 

• Multichannel pipette capable of going up to 200µL.  

• Several conical tubes for holding lysis buffer and dye. Use plastic ware for holding the dye because the dye 

can adsorb to glass. 

• CyQuant Lysis Buffer 20X, CyQuant GR Dye 400X 

• DI Water 

• Pipettes for transferring lysis buffer and dye 

• Cell DNA Standards prepared before hand (1e6 cells/mL in Lysis Buffer) 

 

Preparation of Reagents 

1. Remove plates, dye, lysis buffer, and DNA Standard (or Cell # Standard) from freezer and thaw for at least 

1 hour before analysis 

2. Determine desired number of wells to be analyzed, including standards.  

a. 2X Dye Needed = ((#Samples x 100) + (#Cell Lines x 300)) / 1000 This will be in mL 

i. Round up to next 5 or 10 mL. 

b. 1X Dye Needed = ((#Cell Lines x #Std. Curve Replicates x 11 x 250 )) / 1000  This will be in mL 

i. Round up to next 5 or 10 mL 

c. Lysis Buffer Needed = Amt of 2X Dye + Amt of 1X Dye + (# Samples x 300)/1000 This will be 

in mL 

i. Be generous… don’t want to run out. 

3. To make 10 mL of 2X Dye: 50 µL of GR Dye in 10 mL of 1X Lysis Buffer 

4. To make 10 mL of 1X Dye: 25 µL of GR Dye in 10 mL of 1X Lysis Buffer 

5. To Make 20 mL of Lysis Buffer: 1 mL of Buffer in 19 mL of DI Water 
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Procedure for Samples 

1. Add 200 µL of Lysis Buffer to each sample well. Incubate at RT for 30 min.  

2. Gently mix solution in wells and transfer either 10µL or 20µL to new well.  

a. Note: Choice of amount depends on expected number of cells. This just dilutes the amount of 

DNA analyzed to get it within the range of the standard curve. 

3. Add 80 µL or 90 µL of Lysis Buffer to each well depending on original dilution factor. (Total volume 

should be 100 µL at this point) 

4. Add 100 µL of 2X Dye to each well. This makes the final concentration of dye in the well 1X. (Final 

volume should be 200 µL) 

5. Incubate in the dark at room temperature for 5-10 minutes. 

6. Read plate in the plate reader using the following settings. 

 

 

Procedure for Standard Curve Preparation 

Standard curve concentrations : 50000, 25000, 12500, 6250, 3125, 1563, 781, 391, 195, 98, 49, 0. 

1. Cells should already be in lysis buffer at a concentration of 1 million cells / mL. 

2. Add 300µL of cell lysate to 300µL of 2x dye in Eppendorf tube. 

3. Add 150µL of 1X Dye to wells 2-12 for each standard curve.  

4. Add 200µL of the Cell Lysate mixture to well 1 for each standard curve. 

5. Add 100µL of 1X Dye to well 1 for each standard curve. 

6. Remove 150µL from well 1 and transfer to well 2. 

7. Remove 150µL from well 2 and transfer to well 3.  

8. Repeat for each well except for well 11. Discard 150µL of sample from well 11.  

7. Add 50µL of 1X dye to each well (Final volume should be 200 µL in each well) 

8. Incubate in the dark at room temperature for 5-10 minutes. 

9. Read plate in the plate reader using the following settings. 
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A.5 - Determination of Cellular Rates 

The purpose of this protocol is to determine the specific growth rate and specific uptake and secretion rates of 

extracellular metabolites. This is accomplished by taking multiple time points over the course of several cell 

doublings and measuring cell number as well as metabolite concentration levels. This protocol is for cell cultures 

that are believed to be growing exponentially. It is not suitable for quiescent cells or cells with non-exponential 

growth phenotypes. This is a general protocol that allows for multiple methods of assessing cell number or cell 

density and metabolite concentrations. 

 

Supplies 

All the materials below are not necessary all the time.  

• Eight 96-well plates 

• Multi-channel pipette capable of handling 200µL 

• Microcentrifuge tubes (or 200 µL PCR tubes) 

• Fluorescence Plate Reader 

• CyQuant Cell Proliferation Assay Kit (Invitrogen C7026) 

• Glucose Assay Kit (Biovision K606-100) 

• Lactate Assay Kit (Biovision K607-100) 

• Materials specified by kits 

• T-75 Flasks or 6-well plates 

• Hemacytometer 

• Trypan Blue 

• Other cell number, glucose, lactate, and amino acid measuring methods 

 

Notes 

No matter the culture condition, it is recommended that 8 time points are taken for the time-course experiment. 

When done in normoxic conditions, it is possible to take samples from the same flask, e.g. a T-75 flask. In hypoxic 

conditions, however, it is recommended to avoid re-oxygenating the culture. To do this, it is necessary to seed 8 
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separate plates or flasks at the beginning of the experiment and completely harvest it. Re-oxygenation has the 

potential to alter the growth and affect the analysis.  

 

It is absolutely necessary to control for evaporation in every experiment. The best way to do this is to seed an 

identical number of wells, plates, or flasks with the same volume of media sans cells. When a time point is taken, 

take a sample of the media and freeze it along with the media taken from the cell sample.  

 

Time points should be spaced so that every sample is taken at approximately every half-doubling period. For 

example, if the doubling time of the cell line is 24 hours, then samples should be taken approximately every 12 

hours.  

 

At every time point, 3 samples should be captured: the media in which the cells were cultured, the control media that 

does not have cells, and the cell number/cell density. If the cell number is not immediately measured, the plates or 

sample should be frozen for later analysis (e.g. CyQuant analysis).  

 

Protocol  

Hypoxic Method 

1. Choose a seeding density that is appropriate for the cells, but that is also detectable by the chosen 

measurement method. For example, the P493-6 B-cell culture requires about 150,000 - 200,000 cells/mL. 

For adherent cells, 10% seeding density would be appropriate. 

2. Seed a minimum of 3 wells on each plate, or have 3 separate flask with cells and the appropriate volume of 

media.  

3. Seed a minimum of 3 wells on each plate, or have 3 separate flask with cell-free media to control for 

evaporation. 

4. Place into the hypoxic chamber and allow them to culture. Every ½ doubling period (so every 12 hours for 

a 24 hour doubling culture) take out one plate as rapidly as possible to avoid re-oxygenation. 

5. Suspension Cells: Mix the culture well before taking a sample. Take 500 µL from each well and put into 

separate microfuge tubes. Spin these down, transfer the media to a new tube and freeze at -80°C until ready 



! 224 

for analysis. Use the cells in the old tube for hemacytometer counting. (Use according to desired method, 

trypan blue or not.) Record the cell number in a notebook as # cells/mL (back calculate for the original 

volume of media). If done on a plate (i.e. 96-well plate), spin the plate and carefully remove cell media. 

Either count cells manually or freeze for later analysis by chosen protocol. 

6. Adherent Cells: Take 500 µL from each well and put into separate microfuge tubes. Freeze these at -80°C. 

Add Trypsin or other agent to detach the cells if manually counting. Count according to preferred method 

and record the value as # cells/well. Record the initial volume along with the cell number. 

 

Normoxic Protocol for Suspension Cultures 

1. Choose a seeding density that is appropriate for the cells, but that is also detectable by the chosen 

measurement method. For example, the P493-6 B-cell culture requires about 150,000 - 200,000 cells/mL. 

For adherent cells, 10% seeding density would be appropriate. 

2. Seed 3 separate T75 Flasks with 30 mL of media with the cells at the appropriate density. Or seed 96- or 6- 

well plates at the nominal volume and cell density. 

3. Every ½ doubling period mix the media repeatedly. Remove 500 µL from each flask, spin down, transfer 

media to new tube and freeze at -80°C.  

4. Use cells in tube for counting in hemocytometer. Record values as # cells/mL. 

5. For experiments done in well plates, spin the plates, remove the media and freeze, and count cells 

according to chosen method. 

 

Normoxia Protocol for Adherent Cultures 

The hypoxic protocol for adherent cells is appropriate for cultures of this type. Seeding separate plates for each time 

point makes the analysis easier and more efficient.  
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A.6 - Methylation of Fatty Acids to Measure Palmitate 270  

The purpose of this protocol is to describe the steps necessary to trans-methylate palmitate from a cell pellet.  

Protocol 

1. Make fresh solution of 5% sulfuric acid:methanol (0.1 mL H2SO4:1.9 mL CH3OH) 

2. Add 1 mL of sulfuric acid and methanol solution to cell pellet. Homogenize pellet. 

3. Transfer solution to 6 mL glass tube. Add 1 mL of sulfuric acid and methanol solution. 

4. Add 0.5 mL of Toluene 

5. Add 25 uL 0.2% BHT in MeOH solution (3.168 mg BHT for 2 mL MeOH). This inhibits lipid peroxidation.  

6. Heat at 95°C for 2 hours. Vortex occasionally. 

7. Add 3 mL of DI-H2O and shake to quench reaction. 

8. Extract with 2 mL of Hexane. Shake vigorously.  

9. Centrifuge tubes at 2500 rpm for 2 minutes. 

10. Remove hexane (top portion) and dry under N2 and heat. 

11. Resuspend in 200 uL hexane and thoroughly vortex to clean walls 

12. Add to GC/MS vial with glass insert. 

13. Analyze on GC/MS with the following settings 

a. DB-23 capillary column (30 m × 0.25 mm i.d. × 0.25 µm; Agilent J&W Scientific) I 

b. Injection volume of 1 µL, split mode, inlet temperature of 270°C, split ratio of 10:1.  

c. Helium flow at 1 mL/min.  

d. Mass spectrometer (MS) in electron impact mode with temperatures of 230°C for the ion source 

and 150°C for the quadrupole.  

e. GC temperature program: inject sample at 100°C, ramp at 40°C/min to 150°C, ramp at 10°C/min 

to 190°C, ramp at 40°C to 250°C, hold for 3 minutes.  

f. Obtained mass spectra in scan mode over the range 269-290 m/z 
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A.7 – Polymerase Chain Reaction (PCR) 

The purpose of this protocol is to extract mRNA from cells, synthesize cDNA, and amplify the chosen cDNA via the 

polymerase chain reaction. 

Cell harvesting (from a 24 well plate – adjust quantities as needed) 

1. Transfer samples to an empty well and aspirate old media 

2. Wash with 1 ml PBS, 2 min 

3. Add 250 uL trypsin, wait until cells detach 

a. Plate can be incubated at 37°C for 2 min to favor cell detachment 

4. Add 250 uL media with FBS to inactivate the trypsin 

5. Pipette up and down the trypsin/media with cells on top of the material (do this at least 3 times). 

6. Transfer cells/trypsin/media to 1.5 mL tube 

7. Centrifuge at 5000 rpm for 5 min 

8. Aspirate supernatant 

9. Wash with 500 uL PBS 

10. Centrifuge at 5000 rpm for 5 min 

11. Aspirate supernatant as much as possible without aspirating the cell pellet 

 

RNA isolation (Using RNeasy mini kit) 

Before beginning:  

β-mercaptoethanol (β-ME) must be added to Buffer RLT before use. β-ME is toxic; dispense in a fume hood 

and wear appropriate protective cloting. Add 10 ml of β-ME per 1 ml Buffer RLT. RLT buffer is stable for 

1 month after addition of β-ME. 

 

1. Disrupt the cells by addition of Buffer RLT  

i. 350 ml if number of pelleted cells< 5x106 or  

ii. 600 ml if number of pelleted cells is between 5x106 and 1x107 

2. Loosen the pellet thoroughly and vortex or pipet to mix 
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3. Homogenize the sample: Pipet the lysate directly onto a QIAshredder (Cat No. 79656) spin column placed 

in a 2 ml collection tube, and centrifuge for 2 min at full speed (13200 rpm) 

4. Add 70% ethanol and mix thoroughly 

a. 350 ml if number of pelleted cells< 5x106 or  

b. 600 ml if number of pelleted cells is between 5x106 and 1x107) 

5. Transfer up to 700 ml of the sample, including any precipitate that might have formed, to an RNeasy mini 

column placed in a 2 mL collection tube 

6. Close the tube gently and centrifuge for 15 s at ≥ 8000xg (≥10,000 rpm) 

7. Discard the flow through and re-locate the RNeasy mini column on the same 2 mL collection tube 

a. Repeat steps 5 to 7 if there is more than 700 ml of the sample 

8. Add 350 ml of Buffer RW1 to the RNeasy mini column 

9. Close the tube gently and centrifuge for 15 s at ≥ 8000xg (≥10,000 rpm) 

10. Discard the flow through and collection tube 

11. Prepare DNAse solution (Components Cat. No. 79254) 

a. Buffer RDD ! 70 ml / sample 

b. DNAse ! 10 ml / sample 

12. Add the DNAse solution (80 ml / sample) to the RNeasy spin column membrane and place on the benchtop 

(@20-30ºC) for 15 min 

13. Add 350 ml of Buffer RW1 to the RNeasy spin column 

14. Close the tube gently and centrifuge for 15 s at ≥ 8000xg (≥10,000 rpm) 

15. Transfer the RNeasy column into a new 2 ml collection tube 

16. Pipet 500 ml buffer RPE onto the RNeasy column 

17. Close the tube gently and centrifuge for 15 s at ≥ 8000xg (≥10,000 rpm) 

18. Discard the flow through and re-locate the RNeasy mini column on the same 2 mL collection tube 

19. Add another 500 ml Buffer RPE to the RNeasy column 

20. Close the tube gently and centrifuge for 2 min at ≥ 8000xg (≥10,000 rpm) (make sure the column is dry. If 

this is not the case, place the column in a new 2 ml collection tube and centrifuge at full speed for 1 min) 

21. Centrifuge for an extra minute at 13200 rpm 
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22. Transfer the RNeasy column to a new 1.5 ml collection tube. 

23. Pipet 30 ml of RNease-free water directly onto the RNeasy column  

24. Close the tube gently and let it sit for 1 min. Then centrifuge for 1 min at ≥ 8000xg (≥10,000 rpm) 

25. Remove and discard the RNeasy column, and close the 1.5 ml collection tube 

i. RNA is not stable! Keep it in ice while working with it in downstream steps 

26. Measure the RNA concentration using an Eppendorf BioPhotometer Plus  

i. Eppendorf BioPhotometer Plus 

ii. Blank: 100 ml of RNase-free water 

iii. In an UVette dilute 2 ml of the sample in 98 ml of RNase-free water and mix well by pipetting 

iv. Feed the dilution information to the equipment and read the RNA concentration 

v. “Purity ratio” = Abs260nm/Abs280nm a good value is ~1.7 

 

NOTE: If the RNA needs to be stored, this should be done at -80°C. This should be avoided; the cDNA should be 

prepared as soon as possible.  

 

cDNA synthesis (Using iScript cDNA synthesis kit) 

1. After measuring the RNA content in all the samples, determine the amount of RNA template to be used in 

the cDNA synthesis (it should be as close to 1mg as possible) 

 

NOTE: The initial RNA amount to use as a template should be the same for all of the samples; it will be limited by 

the sample with less total isolated RNA. 

CONTINUED ON NEXT PAGE 
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2. For each sample: 

a. In a nuclease-free 1ml tube add the following reagents: 

 

Components Volume per reaction 

5x iScript reaction mix 4 ml 

iScript reverse transcriptase 1 ml 

Nuclease-free water X ml 

RNA template Y ml 

Total volume 20 ml 

 

X and Y depend on the amount of RNA quantified in the sample 

3. Transfer the tubes to a thermocycler and use the following protocol (40 min): 

a. 5 minutes at 25°C 

b. 30 minutes at 42°C 

c. 5 minutes at 85°C 

d. Hold at 4°C 

4. Store the cDNA at -20°C 

 

PCR 

1. Obtaining the PCR product 

a. Set up reaction tubes on ice 

b. Add the following components to the reaction tube to obtain 20 ml total: 

i. RNAse free water 

ii. PCR Supermix 

iii. Primer solution 

1. The forward and reverse primer come together in a concentration of 100 mM. This 

solution needs to be diluted according to the parameters of the test. For example, to 
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prepare a 2.5 mM primer solution: mix 5 ml of the original primer with 195 ml of 

RNAse free water. 

iv. cDNA 

v. The amounts of each component will vary according to the concentrations determined for 

each experiment. An example is shown here: 

 

Components Final desired 

concentration 

Amount added 

Water  5.55 ml 

Supermix  11.25 ml 

Primer (initial conc.=2.5 mM) 250 nM 2 ml 

cDNA 30 ng/ml 1.2 ml 

 

c. Transfer the tube to a thermocycler and use the following protocol (1h30min): 

i. Lid 100°C Vol 20 ml 

ii. 5 min at 95°C 

iii. 30 sec at 95°C 

iv. 30 sec at 55°C 

v. 30 sec at 72°C 

vi. Go back to step 2-4 x35 times 

vii. 7 min at 72°C 

viii. End 

 

d. Keep the PCR product at -20°C until loading onto the gel 

 

Agarose gel electrophoresis of PCR products 

The following procedure can be followed to prepare a 1.5 mass% agarose gel to use with an 8 well comb. 
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NOTE: lower concentration of agarose works better for larger molecules. 0.7% is good for DNA fragments with 

length between 5 and 10 kb. 2% works for DNA fragments with 0.2-1 kb. 

 

1. Place casting gates and combs in gel casting tray on a level surface. Looking at the tray from the top, it 

should look like: 

 

 

 

 

 

2. Prepare a 1.5% mass Agarose solution in 1XTAE (Tris Base/Acetate/EDTA) 

a. In a beaker, mix 35 ml of 1XTAE with 0.525g of Agarose 

 

NOTE: To dilute 10xTAE: 50 ml of 10xTAE + 450 ml dH2O = 500 ml of 1xTAE 

 

b. Cover the beaker with plastic foil and poke small holes on the plastic 

c. Warm up the mixture ~1 min in the microwave 

d. Remove carefully from the microwave using a heat protection glove 

e. Add 1 ml Ethidium Bromide and mix 

 

3. Load the gel onto the gel casting tray, cover the tool with plastic wrap and let it solidify. Do not cover with 

the lid because it can move the comb and damage the gel. 

 

NOTE: To clean the beaker where the gel was prepared, let it stand at room temperature and after the gel has 

solidified detach it from the surface of the glass. Discard the excess gel in a biowaste container. 

 

4. Remove the comb and add 1X TAE at the sides of the gel casting tray until the gel is covered by the buffer 

 

Comb 

"! +!

Space for the TAE 
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NOTE: To clean the electrophoresis tool only use water, NO ETHANOL 

 

5. Load the PCR product/dye mixture onto the gel 

a. Locate a strip of paraffin paper on the table and combine 10 ml of the PCR product and 2 ml of the 

dye (Promega) for each sample 

b. Use the pipette to mix the samples 

c. Use a pipette to carefully load each sample into a well in the gel 

d. Load 3-4 ml of the pre-mixed DNA ladder (Biolabs- 1kb N32325-can be found at The Core) into at 

least one well 

e. Cover the electrophoresis tool with the appropriate lid 

 

NOTE: Promega supplies only the dye (6x). Biolabs sells the DNA ladder with a vial of dye. To load the sample, 

dye needs to be added to the proper amount. To load the DNA ladder, the DNA ladder, the dye and water need to be 

mixed according to the manufacturer’s instructions. 

 

6. Set the electrophoresis tool to run at 100V, 400mA, for 40 min 

7. Remove the gel and keep moist 

8. Read the gel 

a. Bio-rad quantity one 

b. Basic select scanner- Gel DocxR, UV-push button “TRANS UV” – Auto expose 

c. Save-export JPEG 
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A.8 - Protein and RNA Extraction from Cultured Cells  

This protocol is for the extraction of RNA and proteins from cells. This is a triphasic extraction protocol with the 

total RNA in the aqueous phase, the DNA in the interphase and the protein and other organelles in the organic phase.  

 

Supplies 

• Cells in a flask or dish 

• Cell Scraper (for adherent cells) 

• 1X PBS 

• TRIzol (Invitrogen 15596-26) 

• 2 mL microcentrifuge tubes (Eppendorf 022363352) 

• Chloroform 

• 100% Ethanol 

• Isopropanol 

• Acetone 

• Refrigerated centrifuge for microcentrifuge tubes and for 15 mL tubes 

• 75% Ethanol  

 

Protocol 

A. Pellet Formation 

1. Remove the growth media and wash cells one to three times with 5 ml 1x PBS. 

2. Add 2 mL of Trizol for a 10 cm dish (106-107 cells) and use cell scraper to break cells open. 

3. Transfer in 1ml aliquots to two microcentrifuge tubes. 2 mL has been best in my experience. 

4. Leave at RT, 5mins (samples may be frozen at this stage) 

5. Add 0.2ml chloroform / 1ml homogenates 

6. Shake vigorously for 15secs. (Should have a “pepto-bismol” look) 

7. Incubate at RT for 2-3mins. The mixture should separate by now. 
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8. Spin at 12k rpm, 4°C, 15min this will separate cell homogenate to three phases: a clear aqueous 

supernatant (total RNA), a white interphase (DNA), and a pink organic phase containing the other 

cellular fraction including proteins, membranes etc. 

9. Continue with DNA Precipitation 

 

B. DNA Precipitation  

1. Transfer the clear aqueous phase from the previous step to clean microcentrifuge tubes (larger 2 mL 

preferable). Be sure not to take up any of the DNA interphase! Take the aqueous phase and extract 

according to the RNA Precipitation (Step D) protocol. 

2. Add to the tube with the remaining organic phase 0.3 ml of 100% ethanol per 1 ml of TRIzol Reagent 

used for the initial homogenization.   

3. Mix samples by inversion. Incubate at room temperature for 2-3 minutes. 

a. While these are incubating, the first two steps of the RNA Precipitation can be done so that 

when the next centrifugation step is complete, the RNA will be ready to be centrifuged. 

4. Sediment DNA by centrifugation at 5k rpm (2000 g) for 10 minutes at 4ºC. 

5. Continue with Protein Precipitation. 

 

C. Protein Precipitation 

1. Transfer the supernatant to a single clean 15 mL centrifuge tube. In my experience, it’s been best to 

take about 500 µL off the top of the pink supernatant.  

2. Add several volumes of acetone to precipitate protein. Exact amount of acetone is not necessary. 

3. Mix by inversion for 10-15 sec to obtain a homogeneous solution. 

4. Store samples for 10 min at room temperature. 

5. Centrifuge at top speed for 10 min at 4ºC. Protein pellet sediments. If 4ºC is not available for larger 

tubes, they can be stored in -20ºC for about 15 minutes and then centrifuged at RT.  

6. Store in -20ºC freezer until ready to analyze. 
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D. RNA Precipitation 

1. Add 0.5ml Isopropanol/1 mL homogenates.  

2. Mix by inversion. 

3. Incubate at Room Temperature for 10 minutes then centrifuge for 15 minutes at 12k RPM and 4°C 

4. Decant the supernatant, gently mix pellet in 1 mL of 75% or 100% EtOH. (This is a wash step.) The 

RNA pellet will adhere to the side of the tube quite well, so pouring out any solution into a waste 

container works very well. 

5. Centrifuge for 5 minutes at 12k RPM at 4°C 

6. Store in -20ºC freezer until ready to analyze. 
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A.9 – tert-butyldimethylsilyl (TBDMS) Derivatization of Amino Acids  

This protocol describes the derivatization of (proteinogenic) amino acids for subsequent GC/MS analysis. 

 

Supplies 

• 6 N Hydrochloric Acid, HCl (J.T. Baker) 

• Pyridine (Sigma) 

• MTBSTFA + 1% TBDMCS, 1 mL ampules (Pierce Biotechnology, product# 48927) 

• 13 mm Acrodisc Syringe Filter with PVDF Membrane, 0.2 um pore size (Pall, product# 4450) 

• 1 mL Syringe (VWR) 

• Syringe Needle (VWR) 

• 9” Pasteur Pipettes (VWR) 

• 1 mL Vacuum Hydrolysis Tube (Pierce Biotechnology, product# 29550) 

• 1.5 mL Eppendorf Tubes 

• 2 mL Amber Glass Injection Vial (Varian, product# 392611547) 

• 150 uL Insert for injection vial (Waters, product# WAT094171) 

• Drying oven 

• Analytical Nitrogen Evaporator (Organomation N-Evap, model# 112) 

• Heating block 

 

Biomass Hydrolysis and Sample Preparation 

1. Centrifuge fermentation sample for 1 min at 3000 rpm (suitable to pull pellet to bottom) 

2. Aspirate liquid 

3. Transfer small amount of biomass pellet to Vacuum Hydrolysis tube using Pasteur pipette 

4. Add 700 uL of 6 N HCl to hydrolysis tube 

5. Apply vacuum to hydrolysis tube 

6. Place sample on heating block for 20 hours at 110°C 

7. Let the hydrolysis tube cool down for several minutes 

8. Transfer sample to Eppendorf tube using a Pasteur pipette 
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9. Centrifuge for 10 min at 14,000 rpm to remove cell debris 

10. Transfer liquid layer into a new Eppendorf tube (Pasteur Pipette may be better. Avoid particles) 

11. Evaporate sample to dryness under air flow at 60°C 

12. Dissolve in 150 uL ddH2O. May be necessary to centrifuge and sonicate to have sample contact H2O and 

fully dissolve 

13. Transfer sample using a Pasteur Pipette and using a syringe, filter the sample through the Acrodisc 0.2 um 

pore size filter 

14. Evaporate sample to dryness under air flow at 60°C  

 

Derivatization  

1. Dissolve dried sample in 50 uL pyridine (in a fume hood) 

2. Add 70 uL of MTBSTFA +1 % TBDMCS 

3. Centrifuge and sonicate sample to fully contact sample and liquid 

4. Incubate for 30 min at 60°C on a heating block 

5. Centrifuge for 5 min at 14,000 rpm to remove solid debris 

6. Transfer liquid to injection vial containing a 150 uL glass insert 

 

 

 


