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CHAPTER I 

INTRODUCTION 

I. Significance 

The Parkinson’s disease foundation estimates that as many as one million individuals in 

the United States are afflicted with Parkinson’s disease [1]. While approximately four 

percent of people with Parkinson's are diagnosed before the age of 50, incidence 

increases with age. The major symptoms of Parkinson’s disease vary from person to 

person, but can include tremor, slowness and stopping of movements (bradykinesia and 

akinesia), limb stiffness or rigidity, and difficulties with gait and balance. The cause of 

the disease is unknown. Although there is presently no cure, treatment options include 

medication and surgery to manage the symptoms. Levodopa remains the most effective 

medication for Parkinson’s disease. Unfortunately, with increased dosing and prolonged 

use of levodopa, patients experience other side effects including dyskinesia and "on-off" 

periods when the medication unpredictably starts or stops working [2]. Drug induced 

dyskinesia is characterized by hyperkinetic involuntary movements that may interfere 

with activities of daily living, cause functional impairments and eventually disable the 

patient as its severity worsens. Pharmacological and surgical treatments are constantly 

being developed to provide respite to patients.  

The assessment of the severity of dyskinesia is essential to develop better therapies to 

treat it. Drug trials and surgical treatments for dyskinesia can be better developed and 

evaluated by the clinimetrics of dyskinesia. Several rating scales exist to rate the severity 

of dyskinesia. There are several disadvantages to these rating scales in general [3]. First, 
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they are subjective in nature and may not be reproducible, both between raters and by the 

same rater. Training raters can mitigate but not eliminate this effect. Second, 

questionnaires given out to patients for assessing dyskinesia may not represent accurate 

details of the severity of dyskinesia. Finally, most rating scales are based on a Likert-type 

5 point scale ranging from 0 (no dyskinesia) to 5 (severe dyskinesia). The disadvantage 

of a 5 point discrete scale is the lack of resolution and hence the possibility of 

misclassifying patients with symptoms who fall in between two scores. Hence developing 

quantitative assessment techniques has been a research challenge over the last decade.  

Several devices have been used in the recent past with reasonable amounts of success to 

quantify the severity of dyskinesia. The disadvantage of these device-based techniques is 

the use of expensive and dedicated devices that are accompanied by expensive and 

complex software. Specific data collection protocols have to be designed and wearing 

these devices may be inconvenient to the patients. Most of the quantitative techniques 

convert the continuous output of their analyses into discrete values to correlate their 

findings to the manual ratings of neurologists. Thus, in spite of having quantified 

dyskinesia successfully, these techniques may not be user friendly for the patients and 

neurologists. A low-cost quantitative technique that is based on widely available patient 

data and provides simple interpretations to the severity of dyskinesia would benefit 

neurologists.  This dissertation discusses the development and validation of a continuous 

score that interprets the severity of dyskinesia using patient videos  

Since Parkinson’s disease is a movement disorder, the progression of the disease is 

assessed by evaluating the patient’s motor skills periodically using the standardized 

Unified Parkinson’s Disease Rating Scale (UPDRS) [49]. The UPDRS is a six part scale 
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in which part III focuses on the motor symptoms of Parkinson’s disease and part IV is a 

dyskinesia questionnaire. Though the UPDRS assesses the severity of dyskinesia using a 

brief questionnaire, specialized dyskinesia rating sales have been developed that will be 

discussed in detail in the section, ‘Clinimetrics of dyskinesia’. We mention the UPDRS 

examination here because our initial hypothesis of assessing dyskinesia using patient 

videos was tested using UPDRS evaluation videos. UPDRS evaluations are performed by 

trained raters or neurologists in a laboratory or a clinic, and are video recorded for 

retrospective analysis. These evaluation videos then become a part of the patient’s 

clinical record. The most common way to use these videos is to perform retrospective 

subjective ratings.  

Our goal was to use image and signal processing techniques on these patient videos to 

quantify the severity of dyskinesia. This problem is difficult, given the complexity in 

obtaining useful information from two dimensional videos frames as opposed to the 

direct quantitative measures such as acceleration, velocity, position coordinates, and 

displacements obtained from devices such as accelerometers, gyroscopes, etc. Tracking 

the patient’s movement through video sequences and extracting meaningful features that 

represent the characteristics of dyskinesia is the first concern. The second issue is how to 

combine these features to develop a formula or a score that captures the severity of 

dyskinesia. The validation of such a score is the third issue since there is no gold standard 

available that can be used to compare with the quantitative score.  Hence a validation 

protocol needs to be developed to assess the effectiveness of the score. By developing 

solutions to address these issues, this work will be the first to use widely available, cost 
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effective videos of Parkinson’s disease patients to quantitatively assess the severity of 

dyskinesia.  

II. Background 

Our work can be categorized under two topics: (1) video tracking and analysis, and (2) 

clinimetrics of dyskinesia. A brief review of published work in these areas is presented 

here with their relevance to the issues mentioned in the previous section.  

II. 1 Video tracking and analysis  

Several surveys have been published in the area of human motion analysis and tracking 

[4, 5, 6, and 7]. These authors have presented several taxonomies of human tracking. The 

following figure represents the one such taxonomy. 

 

Fig 1.1. Motion tracking taxonomy. 

Our work is an example of a vision-based, marker-less, model-free human motion 

tracking and estimation problem. We use an intensity-based non-rigid registration 
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algorithm to track points of interest in videos sequence and then proceed to use PCA to 

quantify the tracked motion data. Hence, we will focus predominantly on prior work in 

marker-less, model-free vision-based tracking methods and discuss the other aspects of 

tracking very briefly.  

Non-vision based methods use motion sensors that are attached to or held by the human 

tracking target. These devices measure various kinetic and kinematic parameters that help 

track the subject’s motion in space and time. A detailed review of different types of 

motion sensors and their applications can be found in [8]. Most of the prior work in 

dyskinesia quantification uses non-vision based methods and these are reviewed in the 

next section. Since it is not possible to specify the actual action of the subject at all 

instants of the sensor signals, a simultaneous video capture is also performed in some 

cases to aid the analysis. Zhou et al. give a detailed description of some of the recent non-

vision based systems that are used for human motion tracking [5]. Non-vision based 

techniques have disadvantages owing to the use of dedicated devices which may be 

expensive, cumbersome, and not power-efficient. In addition to these disadvantages, 

these motion sensors can gather data only about the movement, but cannot provide any 

information about the shape of the object being tracked or about its environment.  

Vision-based methods are called so because they use computational motion tracking 

techniques ostensibly similar to human vision, i.e., optical sensing techniques. Tracking 

can be performed with or without markers. Marker-based tracking techniques generally 

use infra-red cameras that can detect and track movements of passive reflective markers 

affixed to the subjects. To prevent occlusion problems, several cameras are used to 

capture the marker positions simultaneously and a 3D model of the subject’s movement 
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is reconstructed. Marker-based motion capture has been successfully used in 

rehabilitation and gait analysis, sports, graphics, and animation. Internal motion models 

are used to compute the kinetic and kinematic parameters of movement of the subjects. 

Some examples of marker-based systems are Vicon [9], Qualisys [10], CODA [11]. The 

main disadvantages of these systems are their high cost, lack of portability, and the use of 

markers and special suits on subjects who may find it inconvenient. 

Marker-less vision-based tracking techniques use video sequences obtained from 

cameras. These techniques can be used for 2D and 3D tracking applications. Model-based 

approaches use a-priori human body knowledge that is modeled using kinematic models 

or shape-based models. The challenge in these techniques is the development of a model 

with sufficient degrees of freedom to generate realistic kinematic movement. Poppe has 

described prior work using kinematic and shape models in his survey paper [12].  

Our work tracks 2D video data using a model-free approach. These techniques do not use 

explicit a-priori body models to track subjects in video sequences. Since our dataset 

consists of uncalibrated videos of patients with different body types with possible 

presence of disabilities due to Parkinson’s disease, developing a single body model 

including these shape constraints is not a tractable problem. The movement of the subject 

in different regions of interest is analyzed using image processing techniques without any 

prior information about the object shape. We have limited our review to a few examples 

in biomedical applications. Goffredo et al. used different types of pose estimation 

techniques to track human movement in video sequences. They used a silhouette-based 

human tracking technique on single camera video images to quantify human gait and 

researched its usability in clinical applications [13].   In their prior work, they combined 
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the classical ‘snakes’ technique [57] with neural networks as predictors to enhance the 

capability of silhouettes tracking techniques for applications in rehabilitation [14].  They 

also used a block matching technique to evaluate balance strategies in posturography 

[15]. Allin et al. similarly used the block matching technique to track movement of 

elderly subjects in uncalibrated videos to capture the postural sway parameters that 

distinguish normal and abnormal balance performance [16].  Chang et al. presented 

pioneering work in using single camera video images to quantify the abnormal gait and 

posture in Parkinson’s disease patients. They segmented patients from the video 

background to perform pose estimation by extracting features pertaining to distances and 

joint angles and use back propagation neural networks to perform classification between 

the normal and Parkinson’s disease group [17]. Similar work for gait and posture analysis 

was performed by Lee et al. [18] and Tan et al. [19]. Lee et al. used swing distances and 

joint angles as input features to general regression neural networks to classify normal and 

Parkinson’s disease gait [18]. Tan et al. focused more on the video tracking problem by 

developing better segmentation and image restoration techniques [19]. Sami et al. 

employed video tracking and analysis technique to study neonatal seizures. Motion 

detection and estimation is performed using optical flow computation. This step is 

followed by the use of adaptive block matching with Kalman filters to track multiple 

body parts in neonatal videos [20]. Emoto et al. have used particle filters to perform gait 

identification in humans under camera-view independent conditions [21]. Poppe presents 

several examples of color and texture-based motion tracking techniques that have been 

used in the past [12]. Additional work describing other areas of applications can be found 
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in the survey paper by Moeslund et al., which gives a detailed description of the various 

techniques used in tracking of humans in video sequences [4]. 

We have used an intensity-based non-rigid image registration algorithm to track 

dyskinetic movement. Non-rigid registration is a widely used medical image analysis 

technique. It could be point-based, intensity-based or surface-based registration 

technique. A detailed description of these methods and their various applications such as 

shape analysis, cardiac motion estimation, the development of medical atlases, image 

guided surgery, and study of disease progression can be found in Crum and Hill [22]. 

Lucas and Kanade developed a similar feature-based iterative image registration 

technique using spatial-intensity gradients in images and Newton-Raphson optimization 

techniques to track objects in stereo vision sequences [23]. Hager and Toyama developed 

a system called X Vision using the principle of image warping based on edge detection 

and sum-squared-difference optimization techniques to track facial features in video 

sequences [24]. Such sum-squared-difference based trackers have been used in the past 

for human tracking [25, 26]. Research in non-rigid image registration has been widely 

published and we have referenced only those studies that have applications in video 

tracking.  

We now proceed to give a brief overview of our work in movement tracking using 

videos. We have used the intensity-based non-rigid image registration technique, 

Adaptive Bases algorithm (ABA) [27]. By employing non-rigid image registration on the 

entire image, we have omitted the segmentation or the pose estimation processes and 

track only certain points of interest on the human target as opposed to the entire human 

target. Tracking only these points of interests provides us with sufficient information and 
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makes this technique simple to use. We have not used any prior information or 

constraints regarding the shape or the position of the target in our method. Our technique 

uses adaptive radial basis functions to perform image warping and normalized mutual 

information as the similarity measure. ABA has been shown to be robust and accurate 

[27]. A possible disadvantage of this method may occur when using images that show 

high intensity homogeneities and exhibit occlusions and re-appearances of body parts. A 

detailed description of the registration algorithm and its application in tracking is 

discussed in chapter 2. 

II.2 Clinimetrics of dyskinesia 

The clinimetrics of dyskinesia include qualitative and quantitative assessment of the 

severity of dyskinesia. Hoff et al. give a review of the techniques in the assessment of 

dyskinesia used one decade ago [28]. Though the subjective rating scales still remain in 

use widely to this day, several quantitative techniques have been developed that focus 

exclusively on the assessment of dyskinesia.  A more recent review article by Kiejsers et 

al. discusses some of these techniques [29].   

II.2.1 Rating Scales 

Rating scales have been the most established and widely used means of assessment of 

severity of dyskinesia by clinicians for several decades. We present here a short review of 

the commonly used dyskinesia rating scales. Until recently, there was no standard 

dyskinesia rating scale such as the UPDRS for Parkinson’s disease assessment. The key 

attributes of dyskinesia are described as anatomical distribution, phenomenology, 

duration, intensity, disability and patient perception. Different rating scales base their 
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dyskinesia rating on different attributes of dyskinesia. The Abnormal Involuntary 

Movement Scale (AIMS) is rated on different parts of the body thus emphasizing the 

anatomical distribution of dyskinesia and its intensity [30]. The Lang Fahn activities of 

daily living scale focuses on the intensity of dyskinesia experienced by the patients while 

performing regular day-to-day activities [31]. The most commonly used rating scale is 

the Rush Dyskinesia Rating Scale, which has undergone sufficient clinimetric testing 

[32]. This scale is used to perform objective assessments of the ability of the patient to 

perform tasks of daily living. Some of these scales are patient assessment questionnaires 

such as the Parkinson’s disease Dyskinesia Rating Scale which may not be the most 

accurate technique to assess dyskinesia [33]. The Clinical Dyskinesia Rating Scale was 

developed based on anatomical distribution, disability and intensity of dyskinesia and is a 

commonly used rating scale [34]. The most recently developed scale is the Unified 

Dyskinesia Rating Scale (UDysRS) which is expected to become the standard dyskinesia 

rating scale equivalent to the UPDRS scale for Parkinson’s disease symptoms [35]. The 

UDysRS is a five part scale that assesses: 1) general patient perceptions, 2) patient 

perception with Off Dystonia impact, 3) objective impairment based on anatomical 

distribution and intensity while performing four specific tasks, and 4) disability based on 

the Rush Dyskinesia Rating Scale. Finally a total objective score is computed based on 

the impairment and disability scores. The UDysRS combines several rating scales in such 

a way that all attributes of dyskinesia can be assessed using a single rating scale. The 

results of the clinimetric testing of this scale over a range of 70 patients indicated an 

inter-rater and intra-rater reliability with correlation coefficients ranging from 0.37 to 

0.87 for various tasks. Further validation and development is underway to standardize the 



11 
 

UDysRS. Though neurologists extensively use these conventional rating scales, their 

disadvantages of subjectivity, low resolution and tedious rating instructions are 

compelling reasons for moving towards quantitative assessment techniques. 

II.2.2 Quantitative Assessment Techniques 

Quantification of movement has been most commonly performed with the help of 

devices. Quantification of dyskinesia has been researched only in the past two decades 

and prior work in this area is limited. Burkhard et al. use solid state gyroscopes on the 

upper extremities of the patients to determine the severity of dyskinesia when they do not 

perform any voluntary tasks [36]. Kiejsers et al. used uni-axial accelerometers mounted 

on the upper and lower extremities of the most affected side. Parameters from the 

accelerometer data are used as inputs to a supervised neural network to detect and 

classify dyskinesia [37]. Subsequent research by Kiejsers et al. resulted in the 

development of an automatic method to assess dyskinesia in daily lives of Parkinson’s 

disease patients and establish a set of movement parameters that can distinguish between 

voluntary and involuntary movements [38]. Similar studies using accelerometry data was 

published by Hoff et al. and Patel et al., Hoff et al. used bi-axial accelerometers and 

frequency spectrum analysis was performed on the recorded acceleration signals [39]. 

Patel et al. used tri-axial accelerometers and PCA was applied to determine the most 

useful features that can be extracted from the acceleration data. Clustering analysis was 

performed using these features to classify patients into varying severity ranges [40]. Liu 

et al. quantified dyskinesia in the arms using digitized spiral drawing tasks. The patients 

were asked to draw spirals on a digitized graphic tablet and the drawing velocity 

computed using the positions of the pen in the radial and tangential directions were 
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correlated with the amplitude of the dyskinetic movements [41]. Gour et al. used an 

electromagnetic motion tracker system to analyze patterns embedded in dyskinesia 

movements to determine if dyskinesia is truly random is nature [42]. Though 

quantification of dyskinesia was not the direct goal of this study, the authors have 

obtained results which interpret dyskinesia as not truly random movements but as having 

deterministic patterns. A more recent study was performed by Chung et al. to quantify 

dyskinesia with patient data collected using force plates. Patients were asked to suppress 

voluntary movements while standing on the force plates. The variations in the center of 

pressure were analyzed and correlated with the modified AIMS rating scale [43].  This 

technique is not effective when evaluating patients who are unable to stand on the force 

plate due to severe disability caused by Parkinson’s disease.  

In the initial development of our score, we have analyzed the tracked patient data using 

PCA [44]. PCA has been commonly used as a dimensionality reduction technique to 

determine the most significant features that best represent a high dimensional dataset in a 

lower dimensional space. We are not interested in reducing the dimensionality of our 

feature set. Instead, we want to use PCA to study the variances and co-variances of the 

tracked points as they move together in the video sequence. In motion analysis, 

Daffertshofer et al. have used PCA to study human movement coordination and 

variability in walking trials [45].  Beleznai et al. have used PCA to track local multiple 

objects in a moving video sequence and applied their algorithm on human movement 

tracking [46]. In this work, we have used eigenvalues and eigenvector of the covariance 

matrix to capture this variation. The severity score initially developed using eigenvalues 

is further modified to include more attributes of dyskinesia including randomness of 
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movement, chorea and dystonia. We have used some of the concepts in [45] in this 

context by analyzing the evolution of eigenmodes. We experimented with approximate 

entropy, frequency spectrum dispersion and speed of movement trajectories to include the 

effects of dystonia and chorea in the existing severity score. There have been very few 

studies reporting on the quantification of chorea and dystonia and the most relevant to our 

work is by Beuter et al. They quantify dystonia using a position transducer attached to the 

patient’s left and right wrists.  The patient is asked to perform the finger-to-nose task 

simultaneously with both hands. The finger-to-nose task requires the patient to touch 

their index fingers to the tip of the nose as fast as they can. The trajectories of this 

repetitive task are analyzed and features capturing the smoothness of the movement are 

used to quantify dyskinesia severity [47]. 

The clinimetrics of dyskinesia play an important role in the effective treatment of this 

motor dysfunction. Qualitative assessment provided by the rating scales are mostly 

preferred by neurologists because they are mostly based on visual observation of the 

patients. Since these observations are expressed through subjective interpretation of the 

attributes of dyskinesia as specified in the rating scales, they are rater-dependent. They 

are good initial assessment techniques, but fall short when a quantifiable measure or 

score is necessary to determine the efficacy in drug trials or surgical treatments. These 

quantitative measures will parameterize the attributes of dyskinesia qualitatively assessed 

in rating scales and yet be rater independent and precise.  

III. Overview Of This Dissertation 

Patient Data - This dissertation was developed using patient data from two sources. The 

initial study utilized existing UPDRS videos of Vanderbilt University Medical Center’s 
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(VUMC) patients and developed a severity score based on video tracking and PCA 

analysis. Due to several inadequacies in the quality of the videos, 35 patient videos and 

corresponding scores from the UDysRS trial study were utilized to perform further 

developmental and validation studies. These videos and the corresponding scores were 

acquired from Dr. Christopher Goetz and Dr. Glenn Stebbins at the Rush University 

Medical Center (RUMC), Chicago, IL [35]. 

The remainder of the dissertation is organized as follows. Chapter 2 discusses the 

necessity of the severity score, its development and validation using a small dataset of 

Parkinson’s disease patients, including a control group of non-dyskinetic patients. This 

study was performed using the VUMC dataset. Chapter 3 validates the severity score on 

the RUMC dataset of 35 videos using a specially developed ranking protocol and reports 

on the intra-rater and inter-rater variability studies performed on this data using the 

ranking protocol. The robustness of the score is analyzed by evaluating its variations with 

the use of longer video sequences and changes in the position of the landmark points. 

Chapter 4 discusses the modification of the severity score to include chorea and dystonia 

and the validation study using the ranking protocol is repeated to show the improvement 

in the correlation between the severity score rankings and the neurologists’ rankings and 

the severity score ranking and the UDysRS rankings. In Chapter 5, a summary of the 

contributions of this work is presented along with possible directions for future work in 

this area.  
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CHAPTER II 

DEVELOPMENT OF SEVERITY SCORE 

Rao AS, Bodenheimer RE, Davis TL, Li R, Voight C, Dawant BM, Quantifying Drug 

Induced Dyskinesia in Parkinson’s disease Patients Using Standardized Videos,  

Proceedings of the30th Annual International Conference of the IEEE Engineering in 

Medicine and Biology Society 2008; 1769-72. 

I. Introduction 

Measurement of dyskinesia using devices such as accelerometers, gyroscopes or marker-

based motion capture techniques; and the analyses of this data to develop mathematical 

parameters that effectively describe the various attributes of dyskinesia have been the 

conventional approaches to quantify dyskinesia objectively. Specifically, previous work 

includes the use of classification algorithms such as neural networks [37], expectation 

maximization and clustering [40] on the data acquired with these sensors to detect and 

quantify dyskinesia in Parkinson’s disease patients. These methods involve expensive, 

cumbersome devices that have to be worn or held by the patients and use complex data 

processing algorithms. The goal of this dissertation was to develop a completely non-

invasive technique using patient videos, which are collected as a part of a Parkinson’s 

disease patient’s clinical record. We tested our hypothesis using patient videos which are 

routinely collected for UPDRS evaluations by the neurologists and may not be used 

primarily to evaluate dyskinesia. The UPDRS videos are captured with patients being in 

OFF medication and ON medication states. During the OFF medication state, the disease 

symptoms return and the severity of the disease and its progression can be evaluated. 

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4636107
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4636107
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During the ON medication state, the symptoms of Parkinson’s disease are generally 

controlled, but the side effect of the medication, namely dyskinesia, surfaces and inhibits 

the patients from performing the UPDRS tasks efficiently. Using these ON medication 

videos of patients performing various tasks such as reading, pronation and supination of 

the wrist, finger-to-nose movements, opening and closing of fists, and heel tapping, we 

can detect and quantify the abnormality of the patient’s movements. Dyskinesia is 

characterized by abnormal, random involuntary movements and we quantify these 

features by analyzing the trajectories of the movement of various body parts of the 

patient.  

Though the characteristics of dyskinesia such as amplitude, velocity, frequency, and 

randomness have been quantified using time series analysis of movement trajectories [38], 

clustering analysis of features obtained from acceleration data [40] or by analyzing kinetic 

and kinematic parameters [39, 40, 41], these quantifying measures have been individually 

correlated to conventional rating scales that have been used as ground truths. We propose 

to combine our measures to form a single score, which collectively represent the attributes 

of dyskinesia, and compare it with neurologists’ scores. We do not classify the patients 

under the conventional Likert scale pattern of 1 – 5, with 1 representing mild dyskinesia 

and 5, severe dyskinesia, but instead advocate the use of a continuous score. A continuous 

score provides a finer assessment of severity when compared to a rating scale in which 

several patients with varying degrees of dyskinesia may be accommodated into a single 

rating category. By knowing the range of scores obtained by our patients and their 

individual scores, one can determine the corresponding rating any patient would have 

received if evaluated using a conventional rating scale.  
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Since we have developed a continuous score, we have chosen to compare our scores to the 

neurologists’ scores by rank order correlation. Since our pilot involves small sample set of 

patients, this validating technique was found to be appropriate. For larger datasets of 

patients, better validating techniques have been used as seen in the next chapter. This 

chapter focuses on the preliminary results obtained when attempting to analyze the 

severity of drug-induced dyskinesia using video based analysis.  We have used an 

intensity-based non-rigid image registration algorithm to track patients’ head and 

shoulders while they are performing the reading task in the UPDRS evaluation. 

The trajectories of the head and shoulder movement were analyzed using PCA 

[44] to determine movement parameters that could be used to quantify the severity of 

dyskinesia. These parameters were then combined to form the severity score, SVS. We 

rank the patients according to their SVS scores and compare our ranking to the rankings 

of an expert neurologist using Spearman rank order correlation [48]. A high correlation 

was observed between our rankings and the neurologist’s rankings. Similar analysis was 

performed using a control group of non-dyskinetic Parkinson’s disease patients to further 

establish the utility of our score in quantifying dyskinesia.    

II. Methods 

II.1 Patient data and pre-processing 

UPDRS part III evaluations [49] are often video recorded as a part of a patient's 

clinical record. An ON medication segment and OFF medication segment is recorded 

to study the variability of motor symptoms of Parkinson’s disease due to medication. 

Though the UPDRS part III examination does not include a dyskinesia rating, several 
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patients exhibit dyskinesia in the ON medication segment due to mental/physical 

exertion caused by the examination. The simplest task in the UPDRS part III motor 

examination is the reading task. The patient is asked to sit still and is given a few lines to 

read out loud and the rater then evaluates the patient’s speech and expressions in this 

task. Since dyskinesia is initiated or worsens due to physical or mental exertion [2], 

patients affected by dyskinesia show involuntary movements of the upper and lower 

body while performing the reading task. Our aim is to detect and quantify these 

involuntary movements.  

The patients were filmed for an average of ten seconds. A short video sequence of two 

seconds showing the patient performing the reading task was extracted from these 10s 

segments of 26 Parkinson’s disease patients (13 dyskinetic (DP), 9 non-dyskinetic 

(NDP) and 4 non-dyskinetic with tremor (NDPT)). These short sequences were rated by 

an expert neurologist on a scale of 0 (absent) - 4 (severe) for dyskinesia severity. The 

dyskinetic patients were further ranked from 1(least) - 13 (most) based on their 

relative severity of dyskinesia. The mental exertion due to the speech task is known to 

initiate or worsen existing dyskinesia leading to involuntary movements of the head, 

shoulders and in facial expressions. Since we do not have the patient’s entire body in 

view, neither the severity score nor the neurologist evaluates dyskinesia that may be 

present in the lower body.  In this study we detect and analyze the severity of dyskinetic 

movement of the head and shoulders. Each sequence was extracted into 60 individual 

frames. All the frame sequences were normalized across patients to avoid scaling 

errors. Patient consent was obtained from all patients for using the videos for research 

studies and publication. 
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II.2 Data analysis 

II.2.1 Registration and Tracking 

The next step was to track the head and shoulders of the patient on each of the 60 video 

frames. After an initial attempt in using block matching techniques failed, a non-rigid 

image registration algorithm was used to perform motion tracking in the video frames. 

The adaptive bases algorithm (ABA) is an intensity-based non-rigid image registration 

algorithm [27]. In the following section, we briefly describe how ABA is used to track 

the patient’s movements.  

 

Adaptive Bases Algorithm (ABA) – An overview  

Image registration is the process of deforming or morphing a source image to match a 

target image such that the variations in the images are minimized using a similarity 

measure. Image registration can be achieved by rigid or non-rigid transformations of the 

source image into the target image. Non-rigid transformations have higher degrees of 

freedom than rigid transformation, resulting in elastic deformations. Hence it is best 

suited to our application which involves, bending and stretching movements in patients. 

More details about non-rigid image registration and applications can be found in [22]. 

The ABA technique is intensity-based and uses compactly supported radial basis 

functions to model the deformation field and normalized mutual information as the 

similarity measure between the target image and the deformed image. It is a multi-

resolution and multi-scale technique that follows a bottom-up approach of proceeding 

from coarse levels to finer levels, where each level is defined as a particular combination 

of resolution and scale. Deformation fields are first initialized at the lowest image 
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resolution and scale (fewer basis functions with wider regions of support). Within a given 

level, local deformations are performed by varying the basis function parameters such 

that each region of mis-registration is optimized before proceeding to the next level. The 

optimization process also integrates a constraint that ensures unnatural deformations do 

not occur by ensuring the Jacobian of the deformation field at every given level is 

positive definite.  The final deformation field is the sum of the deformation fields 

obtained at each level of optimization. The process of using deformation field to track 

patient movements is described as follows.  

Tracking using ABA 

Each video frame is treated as an individual image and the change in the patient’s 

positions from a given frame to the next is captured using ABA. For every frame Fn as 

source image, the consecutive frame Fn+1 is the target image and the deformation field 

DFn,n+1 is computed using ABA. This deformation field DFn,n+1 gives the mapping of 

every point in Fn to the corresponding point in Fn+1, thereby facilitating the tracking of 

desired points across the video sequence. Thus, starting with the first frame of the 

sequence, successive frames are registered to obtain a series of deformation fields 

relating a given frame to the next frame. The relation between the first frame and the final 

frame of the sequence is given by  

𝐹𝑛 = �𝐷𝐹𝑖,𝑖+1

𝑛

𝑖=1

𝐹1 

We were interested in capturing the movement of the head and shoulders in the frames 

and three landmark points were chosen for this purpose. The center of the forehead, right 

and left shoulders were selected as the landmark points. A higher number of landmark 
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points did not improve the tracking quality. Tracking the motion of these landmark points 

in video sequence is equivalent to tracking the motion of the head and shoulders in the 

video sequence. The three landmark points are chosen manually in the first video frame. 

Each frame is sequentially registered to the next, establishing a transformation of the 

landmark points from the given frame to the next. This process is repeated until the final 

video frame is reached, and the result is a set of image coordinates of the three landmark 

points in every frame of the video sequence. Figure 2.1 shows tracking of head and 

shoulders in a severely dyskinetic patient and Figure 2.2 shows the deformation fields 

computed between consecutive frames of a severely dyskinetic patient. 

 

Fig. 2.1 Graphical representation of the tracking of landmark points using ABA in a 
severely dyskinetic patient. The cluster of points in the center image represents the 
trajectory of motion of the landmark points at the head and shoulders. 
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Fig 2.2 Frame-by-frame tracking of head and shoulders in a severely dyskinetic patient. 
The deformation fields mapping the first frame to the next is shown superimposed over a 
grid.     
 

By using non-rigid registration, we can automatically track the landmark points. The only 

manual step in this process is to pick the landmark points to be tracked in the first frame. 

Depending on the part of the body that needs to be evaluated for dyskinesia, these 

landmark points can be chosen accordingly. The quality of the tracking can be observed 

from the examples in Figures 2.1 and 2.3. We have performed only qualitative analysis 
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on the tracking results as small errors in tracking will not affect our analysis for large 

movements exhibited by dyskinetic patients, but may do so if there are extremely fast 

movements with low amplitude. Since ABA is an intensity-based algorithm, regions with 

homogenous intensity may not be correctly identified as mis-registered regions all the 

time, even where there is movement occurring in those areas. Thus, the quality of 

tracking may be reduced in these areas. When patients wear clothing without textural or 

color contrasts, such homogenous intensity areas are present and the movement of the 

landmark points, if chosen in those areas, in the successive frames may not be captured. 

 

 

Fig. 2.3 Tracking of head and shoulders in (top) a modereately dyskinetic and (bottom) a 
non-dyskinetic patient 
 

The left image in Figures 2.3 (a) and 2.3 (b) shows the landmark points on the first frame 

of the patient. The right image shows the first frame with the landmark points computed   
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in subsequent frames superimposed on it. The differences in the trajectories of the 

landmark points for the DP and NDP patient shows the dyskinetic movement exhibited 

by the DP patient as compared to the absence of any movement in the NDP patient. 

II.2.2 Principal Component Analysis and Severity Score (SVS) 

The result of registration and tracking of the landmark points is a set of image 

coordinates in every frame of the video sequence. This step is performed for all the 26 

video sequences in this study. The goal is to establish a relation between the dyskinetic 

movements and the trajectory of the landmark points in the video sequence. Our analysis 

method mimics the strategy used by neurologists to rate the severity of dyskinesia. 

Neurologists look at multiple body parts simultaneously to determine the severity of 

dyskinesia. Similarly, we analyze the landmark points as a group instead of studying their 

individual trajectories. The motivation for this analysis was based on the concept of 

active shapes model introduced by Cootes et al. [50]. The principle behind the active 

shapes model is based on the point distribution model (PDM).  Given a set of training 

shapes of an object in an image, its PDM is computed by defining a set of homologous 

‘landmark’ points on the training shapes, computing their mean positions and 

determining the statistical variations in the positions of homologous landmark points 

from the mean positions. The eigenvalues and eigenvectors of the covariance matrix, 

obtained by PCA analysis of the training shapes, are used to capture these statistical 

variations across the training shapes. Each axis in the PC space corresponds to a mode of 

variation. Using the mean shape and weighted sum of most significant eigenvectors, new 

shapes can be constructed. Thus, shape synthesis was the main goal of the PDM.  

 



25 
 

We limit our analysis to studying the statistical variations in the set of training shapes. 

Using non-rigid registration for tracking, the three landmark points were automatically 

tracked, thus generating homologous points for every frame of the sequence. Our set of 

training shapes consisted of the set of frames in the video sequence, with each shape 

defined by the landmark points in the head and shoulders as seen in Figure 2.4. 

Procrustes method was not applied as all the video frames were already aligned [51].  

Let  

𝑇 = �
𝑥11 𝑥12 𝑥13
𝑦11 𝑦12 𝑦13
𝑦𝑀1 𝑦𝑀2 𝑦𝑀3

… … … … … …
𝑥1,𝑁−1 𝑥1,𝑁
𝑦1,𝑁−1 𝑦1,𝑁
𝑦𝑀,𝑁−1 𝑦𝑀,𝑁

� ……………….(2.1) 

represent the 2D coordinates of the ‘M’ landmark points in a video sequence of ‘N’ 

frames. T defines the set of training shapes. 

Mean shape is computed by row averaging the coordinates to get T1 as 

𝑇′ =  �𝑥̅1 𝑥̅2
𝑦�1 𝑦�2 ⋯⋯⋯𝑥̅𝑁−1 𝑥̅𝑁

𝑦�𝑁−1 𝑦�𝑁
� , …………….(2.2) 
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For each training shape, we calculated the demeaned shape such that 

                                X = 𝑇 −  𝑇′ ………………………..(2.3) 

Next, the covariance matrix of X is computed as 

                                 𝐶𝑂𝑉 =  1
𝑁

 ∑ 𝑋𝑖 𝑋𝑖′𝑁
𝑖=1  ……………(2.4) 
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Using singular value decomposition, the eigenvalues and eigenvectors of COV are 

computed as follows 

                            COV = 𝛬𝑘 �
1 ⋯ 𝑜
⋮ 1 ⋮
0 ⋯ 1

�  𝑉𝑘………(2.5) 

where Λk are the eigenvalues and Vk are the corresponding eigenvectors. 

Vk correspond to the principal components or modes of variation. Λk represents the 

spread or variance along the corresponding mode or eigenvector Vk.   

In our dataset, M = 6 corresponding to the 2D coordinates of three landmark points.  A 

6x6 covariance matrix was generated using (2.4) and the corresponding Λk  and Vk  were 

computed.  

 

Fig.2.4 Set of 60 training shapes defined by the head and shoulders of a severely 
dyskinetic patient.  
 

The eigenvectors or the modes of variations, capture the way in which the landmark 

points move together across the frames. The eigenvalues corresponding to an eigenvector 

described the variance of the landmark points together along the direction of the 

eigenvector. We seek the smallest number of eigenvectors that capture 95% of the total 
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variance. These eigenvectors, usually fewer than six, are called the significant modes of 

variation as they capture the significant variations of the landmark points together. Thus, 

the mean positions, eigenvectors and eigenvalues together define a PDM. The application 

of PDM in [49] is to synthesize new positions of the landmark points. Since our goal is to 

analyze the movement and not synthesize new movement, PCA is used only to generate 

the eigenvalues and eigenvectors. 

The next step of the data analysis was to correlate the PCA parameters to the attributes of 

dyskinesia. For our preliminary work we have hypothesized that the severity of 

dyskinesia is characterized by the amplitude and the directions of the random 

movements. Chapter 4 of this dissertation will discuss more complex elements of 

dyskinesia to develop a more accurate quantitative score. To correlate dyskinesia to the 

PCA parameters, we must interpret the PCA parameters generated from the dyskinetic 

movements. 

• The eigenvalues capture the extent of movement along the corresponding mode of 

the variation. The sum of the eigenvalues, which provides the total variance in all 

the frames, is proportional to the amplitude of the total movement exhibited by 

the patient in the video sequence. Hence, large amplitudes of movement by the 

patient are characterized by high total variances. 

• We cannot directly determine a PCA equivalent to the directions of movement 

since we have applied PCA to the entire dataset and obtained modes of variation 

for all the landmark points instead of directions of movement for individual 

landmark points. Thus the eigenvectors now represent the directions of 

movements of the landmark points together. These eigenvectors could indicate 
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movement of just one point, or of two points simultaneously or of all the three 

points simultaneously. If a patient exhibits movements in several directions, it 

results in a larger number of significant modes of variation required to capture the 

95% of the variance. Thus the number of significant modes of variation can be 

partially used to represent the randomness of the directions of movement.  

• To further understand the directions of movement, we proceed to study the fall off 

or the rate of decrease of eigenvalues along the modes of variation. Two patients 

could have similar total variance and number of significant modes of variation, 

but the distribution of the eigenvalues along the modes of variation could be 

different, thus differentiating the severity of dyskinesia in these patients.  The 

distribution of the eigenvalues is an indication of the variation or the extent of 

movement along the corresponding modes of variation. A steep decrease of the 

eigenvalues indicates that most of the movement is concentrated in the first few 

modes, whereas a gradual decrease shows that more number of modes have 

significant variance. This gradual decrease implies that the patient exhibits 

significant movement in several directions which in turn indicates a more severe 

case of dyskinesia. To mathematically describe this parameter we have computed 

the standard deviation of the percentage contribution of the eigenvalues to the 

total variance. We call this parameter STDEV. 

STDEV = 

2

1 1

1(( *100) { ( *100)})
N N

n n

n n

EV EV
TV N TV

N
= =

−∑ ∑
 

where N is the number of eigenvalues, EVn is the nth eigenvalue, and TV is the 

total variance. A larger standard deviation indicates a steep rate of decrease 
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whereas a low standard deviation indicates a gradual rate of decrease of 

eigenvalues. 

III. Results 

We estimate the relationship between the severity of dyskinesia and the PCA parameters 

using the following examples from the dataset of 13 dyskinetic patients with varying 

severity of dyskinesia.  We show the significance of each of these parameters by using 

the rating of the neurologist as ground truth. Each of the two seconds video sequence is 

rated by an expert neurologist from 0 (no dyskinesia) to 4 (severe dyskinesia). The 

neurologist rated the videos based on the general definition of dyskinesia.  We define this 

clinical rating as the clinical score. The following table shows the two PCA parameters 

(total variance [TV] and number of significant modes [NSM]) for each of the 13 

dyskinetic patients along with the rating of the neurologist. Patients with similar clinical 

score and different clinical scores are analyzed to describe the significance of the PCA 

parameters and also derive a relationship between the parameters and the severity of 

dyskinesia. 

 

Table 2.1. Total variance (TV), number of significant modes (NSM) and neurologist 
rating for 13 DP patients 
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(a)  Patients with similar clinical score 

Patients 3, 4 and 5 were rated with a score of two by the neurologist. The mean of the 

total variance of these patients is 187.86 and the standard deviation is 131.93. Patient 3 

requires three significant modes of variation, whereas patients 4 and 5 require only one 

significant mode of variation. Thus the clinical  score of two for patient  3 is attributed to 

the small but significant movement along more modes of variation, whereas, for patients  

4 and 5 it is attributed to the high variance but along only one mode of variation. The 

large variance in patients 4 and 5 was not significant enough to increase the severity 

score, thus accommodating all the three patients in the same score category. A similar 

trend is observed for patients 6, 7, 8, 9, 10, and 11 who have the same clinical score of 

three. Patients 6 and 7 with the lowest variance have the highest number of significant 

modes compared to the patients 10 and 11 who have the highest variance and the lowest 

number of significant modes. Thus the total variance and number of significant modes 

vary directly with the severity of dyskinesia. 

 

(b) Patients with different clinical score 

 

Table 2.2 Percentage contribution of the first three eigenvalues (EV 1, EV 2, and EV 3) 
to the total variance for DP patients # 3, 5 and 6 
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Patient 5 has a higher variance than patient 6, but lower number of significant modes. 

Similarly, patient 3 has lower variance than patient 5 but the same number of significant 

modes as patient 6. But patients 3 and 5 have a clinical score of two and patient 6 has a 

score of three. The total variance of patient 3 and 6 are comparable and NSM are equal. 

But the spread of eigenvalues from Table 2 for patient 3 is less than that of patient 6. 

Eigenvalues distributed more evenly along the modes of variation implies significant 

movement along all the modes of variation. Thus we infer that the distribution of 

eigenvalues along the different modes is an important factor in determining the severity 

of dyskinesia. From the cases described above, we can hypothesize that: 

  

Dyskinesia severity α Total variance (TV) 

          α Number of significant modes of variation (NSM) 

                                  α 1/distribution of eigenvalues along the modes of variation 

 

A heuristic solution based on the above dependencies was developed to quantify the 

severity of dyskinesia. The distribution of eigenvalues along the modes of variation was 

computed as the standard deviation of the percentage contribution of the eigenvalues to 

the total variance (STDEV). A severity score (SVS) was formulated to rank the severity 

of the patients: 

The score was normalized with respect to the number of frames in the video sequences to 

ensure valid results on longer sequences that contain more movement. 

 

SVS = (TV * NSM) / (STDEV * NF) 
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where NF is the number of frames in the video sequences. In this study, the number of 

frames was constant for all patients. 

III.1 Validation of SVS using Neurologist Ranking 

The severity score is a continuous variable and the clinical score by the neurologist is 

discrete, based on the 0 – 4 scale. Moreover, since several patients were given the same 

clinical score, the neurologist ranked the patients based on relative severity of dyskinesia 

from 1 (least severe) to 13(most severe). The dyskinetic patients were ranked based on 

the clinical score and the severity score SVS as seen in the table below. 

 

Table 2.3. STDEV, TV, NSM, ranking using SVS and ranking of the neurologist. 
A comparison of the two rankings shows a high correlation with a Spearman rank order 
correlation of 0.99.  
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Non-Dyskinetic Patients 

We have seen that the SVS can be used to measure the severity of dyskinesia 

quantitatively. As a part of our study, we also evaluated nine non-dyskinetic patients 

(NDP) and 4 non-dyskinetic patients with mild to severe tremor (NDPT). Tremor is often 

confused with mild dyskinesia. Tremor is a rhythmic involuntary motion whereas 

dyskinesia is a random involuntary motion. We also look at the two PCA parameters (TV 

and NSM) of the NDP and NDPT group as shown below: The NDP and NDPT patients 

were given a score of zero by the neurologist signifying the absence of dyskinesia. 

 

 

 

Table 2.4. TV and NSM for NDP and NDPT patients. 

IV. Discussion 

To the best of our knowledge this is the first study that quantified dyskinesia using 

patient videos and PCA-based methods. We have shown that in our preliminary analyses; 

a single number, namely the severity score, SVS, can be used to quantify dyskinesia as 
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opposed to previous studies that have measured various attributes of dyskinesia and 

correlate them individually to rating scales.  Our results indicate that the total variance, 

number of significant modes of variation and the standard deviation of the percentage 

contribution of the eigenvalues are suitable parameters to define the characteristics of 

dyskinesia. By combining these parameters suitably to form the SVS represented by a 

single number, efficacy studies in drug trials are easier to perform. If necessary, these 

individual parameters can also be assessed for each of the patients. The utility of our 

score is further tested on a larger number of datasets in Chapter 3. We have also shown 

the benefits of a continuous score over a discrete score and the possibility of finer 

classification of patient’s dyskinesia severity.  

The results of the analyses on the non-dyskinetic group of patients indicate that for most 

of the NDP and NDPT patients, the total variance was negligible compared to the DP 

patients. The high number of significant modes for NDP patients 2, 4 and 5 can be 

attributed to a small amount of noise due to the registration and tracking or the inability 

of the patient to sit completely still while performing the speech task. The small variance 

in these patients indicates that there is insignificant movement of the points, so large 

number of significant modes is still insufficient to classify them as dyskinetic patients.  

NDPT patient 4 had severe tremor. The total variance and number of significant modes of 

this patient is comparable to that of DP patient 1 from Table 1. But the percentage 

contribution of the first eigenvalue to the total variance for NDPT patient 4 is 92.2% 

whereas for DP patient 1 it is 68.51%. Tremor is a rhythmic motion that can be 

represented using a single mode. Though NDPT patient 4 has two significant modes, over 

90% of the variation in movement is captured in the first mode itself.  The other three 
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NDPT patients 1, 2 and 3 have smaller eigenvalues owing to their mild tremor. The 

significant variance of NDP Patient 1 is attributed to the downward movement of the 

camera as seen in Figure 2.5. Since the motion was only in the downward direction, there 

is only one significant mode of variation. 

Some of the disadvantages of our score are that it cannot differentiate voluntary 

movement from dyskinetic movement and fails to give weightage to the most disabling 

type of dyskinesia – namely chorea and dystonia.  Since this work has used the 

communication task as the task of interest for dyskinesia quantification, voluntary 

movements are rare and can be avoided by instructing the patients to control their 

voluntary movements. Parameters quantifying chorea and dystonia will be discussed in 

detail in Chapter 4. 

 

Fig. 2.5. First and last frame of a NDP patient # 1 with camera movement. Note the slight 
downward shift of the patient with respect to the background in the last frame compared 
to the first 
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CHAPTER III 

VADIATING SEVERITY SCORE AND RATER VARIABILITY ANALYSIS  

Rao AS, Dawant BM, Bodenheimer RE, Li R, Fang J, Phibbs F, Hedera P, Davis TL, 

Validating an objective video-Based dyskinesia severity score in Parkinson’s disease 

patients, Parkinsonism and Related Disorders, In Review. 

 

I. Introduction 

Levodopa therapy in Parkinson’s disease patients results in drug- induced dyskinesia 

characterized by hyperkinetic involuntary movements that may often interfere with 

activities of daily living [1]. Despite current treatment measures, the disabling symptoms 

of dyskinesia continue to challenge the development of better pharmacological and 

surgical interventions.   The efficacy of these treatments can be evaluated by reliable 

qualitative and quantitative clinical assessment of patients.  In this context, rating scales 

have been the most established and widely used means of assessment of the severity of 

dyskinesia. The key attributes of dyskinesia include anatomical distribution, 

phenomenology, duration, intensity, disability, and patient perception [32].  Different 

scales base their severity ratings on different sets of attributes of dyskinesia. The most 

recently developed scale is the Unified Dyskinesia Rating Scale (UDysRS), which may 

become the standardized dyskinesia rating scale equivalent to the UPDRS scale for 

Parkinson’s disease symptoms [35]. The UDysRS is a five part scale that assesses general 

patient perceptions, patient perception with Off Dystonia impact, objective impairment 

based on anatomical distribution and intensity while performing four specific tasks and 

the objective disability based on the Rush Dyskinesia Rating Scale. A total objective 
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score is computed based on the impairment and disability scores. The UDysRS is a 

combination of several rating scales in such a way that all attributes of dyskinesia are 

assessed using a single rating scale. The results of the clinimetric testing of this scale over 

a range of 70 patients indicated an inter-rater and intra-rater reliability with correlation 

coefficients ranging from 0.37 to 0.87 for various tasks. Further validation and 

responsiveness testing is underway.   

We have already stated the disadvantages of rating scales and stressed the need for an 

objective quantitative measure of dyskinesia. All rating scales are based on a discrete five 

point scale.  This lack of resolution leads to the possibility of misclassifying patients with 

symptoms that fall in between two rating intervals. These factors encourage the 

development of a quantitative measure that is based on a continuous scale. In chapter 1 

we have discussed previous work in quantitative assessment techniques.  In chapter 2, we 

have described our work, which is an example of a video-based, marker-less, model-free 

human motion tracking and estimation problem using the standardized UPDRS videos of 

Parkinson’s disease patients which are generally a part of the patient’s clinical records. A 

severity score (SVS) developed using this technique is assigned to each video sequence 

to describe the severity of dyskinesia exhibited by the patient [54]. Extensive validation 

studies were performed on SVS and we discuss these studies in detail in this chapter. We 

carried out three studies to this effect.  In chapter 2, only a small cohort of patients was 

evaluated using SVS. The VUMC videos were of poor quality with lighting defects, 

noisy background and the distance between the camera and the patient constantly 

changing. Our goal was to evaluate SVS on a larger number of patients using longer 

video sequences. The UDysRS study [35] carried by Dr. Christopher Goetz of the Rush 
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University Medical Center (RUMC), utilized 70 patient videos evaluated by 20 

neurologists all over the country. A sample of 35 videos from this study was used to 

validate SVS. Due to good quality of these videos, longer sequences could be extracted 

for analysis Though UDysRS is a five-point rating scale, the average of the total ratings 

of twenty neurologists resembles a continuous score and hence, for our comparison 

purposes, we will refer to them as UDysRS scores, which can be ranked similarly to the 

SVS scores. As a continuous variable, SVS could not be directly compared to the discrete 

rating scales. The ranking scheme used in chapter 2 could not be used for the larger set of 

patients. Hence, we developed a rating based ranking protocol that can be used by the 

neurologists’ to rate and rank these patients. By comparing the neurologists’ and 

UDysRS rankings to the SVS rankings, we validate the utility of SVS. The ranking 

protocol itself is validated by studying the rater variability while using the protocol. 

Additionally, we also observed the effect of converting SVS into a discrete rating and 

compared it with neurologists’ ratings. Thus, we acquired the following parameters for 

each patient in the study: 1) neurologist ratings and rankings obtained using the new 

ranking protocol, 2) UDySRS rankings computed from the UDysRS score, and 3) SVS 

rankings and SVS ratings after the scores were thresholded. In order to analyze these 

parameters comprehensively, three studies were performed: (a) Validation of Ranking 

protocol:  analysis of intra- and inter-neurologists agreement while using the ranking 

protocol; (b) Utility of SVS – comparing SVS vs. neurologists’ and UDysRS rankings, 

evaluating the robustness of SVS to variation in landmark points and length of video 

sequences; and (c) Effect of ratings vs. rankings. Statistical analysis using Kendall’s Tau-

b correlation coefficient and intra-class correlation coefficient were performed to test our 
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hypotheses. Our results indicate that the ranking protocol is effective in validating SVS; 

and that SVS is a robust score that correlates moderately with neurologists’ and the 

UDysRS rankings. We finally discuss the rationale of preferring a continuous score such 

as SVS over a discrete score. 

II. Methods  

Our analysis used a dataset of 35 patient videos with varying dyskinesia severity obtained 

as part of the extensive clinimetric testing of the UDysRS [35]. The videos were captured 

in a controlled environment with plain backgrounds in a well-illuminated room with no 

occluding furniture. Details regarding the video protocol and the informed consent 

obtained from patients have been previously published. The patients were rated based on 

four tasks that are activities of daily living (ADL). Part IV UDysRS scores for each task 

was also available. Our task of interest was the communication task, where the patients 

were asked to read while seated on a chair. The communication task was the simplest task 

to track using our semi-automatic technique. Though speech disorders were primarily 

rated using this task, the patients also exhibited movement of the face, head, neck, hands 

and legs. Additionally, we observed that the patients with severely impaired speech also 

showed dyskinetic movements of these body parts. The average length of the 

communication task was one minute. A 10s excerpt from the middle of each 60s 

sequence was analyzed using our semi-automatic technique discussed in [54]. A segment 

from the middle of the video was chosen to avoid the effects of any starting and stopping 

movements. The patient’s head, shoulders, chest, forearms, knees, feet, and the reading 

material were manually selected as seen in Figure 3.1 and semi-automatically tracked 

using the Adaptive Bases Algorithm (ABA), which is an intensity-based non-rigid image 
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registration algorithm [27].  Since it was not possible to track the forearms of the patients 

without occlusion problem, the reading material held in the patient’s hands was tracked. 

The tracked anatomical points of interests were analyzed by applying PCA on the cluster 

of points from every frame of the video sequence as described in our prior work in [54]. 

A severity score was computed for each video sequence using the parameters obtained 

from the PCA analysis 

SVS = (TV * NSM) / (STDEV *NF) 

TV: total variance of all eigenmodes, where the total variance is the sum of the 

magnitude of all the eigenvalues. 

NSM: Number of significant modes of variation, which defines the number of modes of 

variations that capture 90% of the variations in the patient movements 

STDEV: standard deviation of the percentage contribution of the eigenvalues to the total 

variance, which represents the rate of fall of eigenvalues. A gradual fall of eigenvalues 

indicates complex patient movements in various directions and a steep fall indicates 

simple movements in fewer directions. 

NF: Number of frames in the video sequence 
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Fig. 3.1: Landmark points (in green circles) are chosen on the head, shoulders, chest, 
elbows, knees, feet and the reading material. These anchors are tracked using intensity-
based registration. 
 

The 10s sequences were ranked in the increasing order of SVS. These videos were also 

ranked based in the increasing order of the part IV UDysRS communication task scores. 

Four movement disorder neurologists, N1, N2, N3, and N4, from the Vanderbilt 

University Medical Center ranked the 35 ten seconds video sequences based on the 

clinical definition of dyskinesia. We developed a rating based ranking protocol to 

accomplish this task. The attributes used by the neurologists included amplitude and 

speed of dyskinetic movement, anatomical distribution of dyskinesia and the extent of 

disability seen in the patient. Dyskinesia in the patient’s head, arms, trunk and legs was 

observed. The speech disability caused by dyskinesia was excluded from the protocol, but 

was accounted for in the UDysRS score. Each neurologist independently rated and 
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ranked the 35 video segments using this ranking protocol. Three sets of such ratings and 

rankings on the same dataset were obtained with a time lapse of one month between 

rankings to ensure the ratings and rankings were not voluntarily repeated. Thus, each 

neurologist had three sets of ratings and rankings – ratings: SET IR, SET IIR, and SET 

IIIR and rankings: SET Ir, SET IIr, and SET IIIr.  

 

II.1 Rating based ranking protocol 

(a) Ratings: The videos were first rated on a scale of one to four with one 

representing no dyskinesia, two - mild dyskinesia, three - moderate dyskinesia 

and four - severe dyskinesia.  

(b) Rankings: The videos in each rating category, except the no dyskinesia category, 

were viewed simultaneously on a single screen and ranked according to 

increasing order of severity within that category.  

(c) The first two and the final two videos in each rating category were then compared 

with the correspondingly ranked videos of the immediately next category to 

confirm that these rankings were still valid. Thus the neurologist could view 

videos across categories to finalize their ranks.  

(d) In case of rank changes, steps (b) and (c) were repeated until ranks were finalized 

and the corresponding rating categories in step (a) were also modified to ensure 

coherence between ratings and ranking. 

Each patient in the study had the following parameters: three sets of neurologist ratings 

and rankings, UDysRS ranking and SVS ranking. 
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II.2 Data Analyses 

Three studies were conducted from the data obtained using the above methods. 

(a) Validation of ranking protocol: Evaluation of intra- and inter-neurologist ranking 

consistency. 

(b) SVS Utility: (i) Robustness of SVS to longer video sequences and variations in 

landmark points, and (ii) evaluation of (SVS rankings vs. UDysRS rankings) and 

(SVS rankings vs. neurologists’ rankings). 

(c) Effect of ratings vs. rankings: Comparison of SVS ratings and rankings with 

neurologists’ ratings and rankings. 

The original rankings obtained from neurologists were modified as follows to permit 

statistical analysis because the number of non-dyskinetic patients (neurologist rating of 1) 

was different in both the inter- and intra-neurologist ratings. Hence the total number of 

patients ranked by each neurologist was not necessarily equal. To ensure statistical 

consistency in the analyses, for each set of rankings, two types of rank data sets were 

developed.  

(1) Type I: All 35 video sequences were part of this dataset. A tied rank was assigned 

to non-dyskinetic patients such that its value is the average of the ranks the 

patients would have received if there were given distinct ranks [48]. This process 

ensured the maximum ranking in each ranking was 35, but the minimum rank 

would depend on the number of non-dyskinetic patients. 

(2) Type II: Seven patients were consistently labeled non-dyskinetic by the senior 

neurologist in all the three rank sets. These patients were uniformly eliminated 

from the original rank sets of all the neurologists and the remaining 28 patients 
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were re-ranked keeping the order unchanged. UDysRS and SVS rankings were 

also modified accordingly.  

Table 3.1 shows an example of Type I and Type II rankings of SET Ir of neurologists N1, 

N2, N3, and N4. 

 

II.2.1 Study I: Validation of ranking protocol: intra- and inter-neurologist 

agreement 

Step (a) of the ranking protocol was based on the clinical definition of dyskinesia and not 

a specific rating scale. The ranking protocol was developed to facilitate the comparison of 

discrete neurologists’ ratings in Step (a) to the continuous SVS score. By evaluating the 

intra- and inter-neurologist consistency in using the ranking protocol, the validity of the 

protocol can be determined. A high intra- and inter- neurologists consistency indicates 

that the protocol, based on clinical definition of dyskinesia, can be used to rank severity 

of dyskinesia by neurologists and in turn can be used to evaluate the utility of SVS. 

Independent analyses were performed to observe intra- and inter-neurologist agreement 

on the Type I and Type II ranking datasets. Kendall’s tau-b correlation coefficient was 

computed pairwise between the four neurologists in each type to evaluate the inter-

neurologist agreement [48]. Intra-class coefficient for each neurologist across SET Ir, 

SET IIr, and SET IIIr was computed to study the intra-neurologist agreement.  [52]. 
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Table 3.1. PN is the patient number and N1, N2, N3, and N4 represent the neurologists. 
The shaded rows in the raw and Type I rankings are the patients rated as non-dyskinetic 
by the respective neurologist. 
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II.2.2 Study II: Validation of SVS Utility 

II.2.2.a SVS vs. Neurologists, UDysRS 

In Chapter 2 we have shown that the SVS is a good indicator of the severity of dyskinesia 

in a small sample set of patients. In this chapter we further test the validity of SVS, which 

is based on total movement of the patients, on a larger set of patient videos with a more 

stringent statistical measure of Kendalls Tau-b correlation coefficient.  As opposed to the 

2s video sequences we use 10s video sequences and track more number of body parts on 

the patients simultaneously. We compared the SVS scores to the UDysRS scores, which 

are used as a gold standard, by computing the Kendall’s Tau-b correlation coefficient 

between SVS rankings and the UDysRS rankings. The SVS was also compared to 

neurologist’s performance by computing the Kendall’s Tau-b correlation coefficient 

between the SVS rankings and the neurologists’ rankings. The statistical analysis was 

performed on Type I and Type II rankings of SET Ir, SET IIr and SET IIIr. A good 

correlation would indicate that the SVS can quantify dyskinesia as well as neurologists 

and can complement UDysRS scores by providing an objective dimension to it. 

 

II.2.2.b Robustness of SVS 

 We study the robustness of SVS when using videos sequences longer than 10s and the 

effect of varying the positions of landmark points to be tracked. Patients in video 

sequences ranging in length from 20s to 30s were tracked using ABA and their SVS 

computed. The goal was to observe if 10s is a significant period of time to quantify 

dyskinesia and if there were significant changes in the SVS that affected the ranking of 

patients. The patients were generally filmed for one minute on the communication task.  
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Variation in landmark points: 

Picking the landmark points is the only manual aspect of our quantifying technique which 

makes it semi-automatic. We have picked 11 landmark points – forehead, shoulders, 

chest, knees, feet and reading material as seen in Figure 3.1. Different neurologists’ can 

pick these 11 points in the first frames with slight variations, paying attention to the fact 

that areas of intensity inhomogeneity are supportive of good tracking results. Landmark 

points were picked in three different trials with small variations in the positions as seen in 

Figure 3.2.  

 

This study was done to emulate the scenario of three different neurologists picking the 

landmark points using a general guideline of their positions on each of the 35 patient 

video sequences. The SVS scores were computed for each trial set and the patients were 

ranked based on the SVS scores. The Kendall Tau-b correlation coefficient for each pair 

of rankings was computed. A high correlation coefficient would reflect the robustness of 

the SVS to the variation in the landmark points.  

 

SVS for longer video sequences 

In chapter 2, we quantified dyskinesia for short 2s video sequences. We wanted to 

observe if this short span of movement was sufficient to capture the actual severity of 

dyskinesia. In other words, even if longer video sequences were used, would the severity 

score remain the same? Two sets of analyses were performed to study this effect. Eight 

patients from the VUMC database were used as sample datasets covering a range of mild, 

moderate and severe dyskinesia. Since only 10s of usable video data was available in the 
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VUMC dataset, the tracking and SVS calculations were performed for a minimum of 2s 

and a maximum of 10s with an increment of 1s for each new trial. 

 

 

Fig. 3.2.Eleven landmark points plotted on the first frame in three different trials on two 
patientsThe three different trials are shown in three colors (red, green and blue circles) 
 

As before, these videos focused only on the patient’s upper body and hence only the head 

and shoulders were tracked and analyzed. We ensured that starting and stopping effects 
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were not included in both datasets. The trend of SVS values was observed with the 

increase in the length of the sequences. For a robust measure, we would expect the trend 

to plateau out beyond a particular time length making that a sufficient period to use for 

quantification purposes. Only a small sample of patients was used for this study as 

registration is a time consuming process. SVS is inherently dependent on the quality of 

tracking, poor tracking leading to incorrect measurement of movement and hence 

severity. Since tracking is registration based, and the accuracy of the points on the final 

frame is dependent not only the previous frame, but on all other frames preceding it. 

Once the landmark points drift in a given frame, it is difficult to bring them to the back to 

correct position without manual manipulation. Drifting can easily occur when intensity is 

homogenous in the vicinity of the tracked points, hence the requirement of picking points 

in areas of intensity inhomogeneity. Hence our goal was to observe the extent of variation 

in SVS when the quality of tracking declines.  

II.2.3 Study III: Effect of ratings vs. rankings 

We propose that ranking the severity of dyskinesia within each rating category of mild, 

moderate or severe dyskinesia assists in quantifying the differences between patients at a 

finer level. It is easier for neurologists to use a discrete five point rating scale which 

allows them to assign more than one patient in a single category than to use a ranking 

system which compels them to observe differences in severity more closely in order to 

assign individual ranks to each patient. By thresholding the SVS appropriately and 

converting it to a discrete scale, we wanted to compare the discrete SVS ratings to the 

neurologists’ discrete ratings in SET IR, SET IIR and SET IIIR. Based on the a-priori 

information that approximately an equal number of patients were present in each rating 
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category, the SVS was thresholded into four levels of severity – absent, mild, moderate 

and severe. Kendall Tau-b correlation coefficient was computed between these SVS 

ratings and the neurologists ratings. These correlation coefficients were compared to the 

correlation coefficients obtained in Study II which compares SVS rankings to 

neurologists’ rankings. We would expect a higher correlation using the ratings than the 

rankings. In rankings, we compare the ordering of patients based on severity, whereas in 

ratings, groups of patients, irrespective of their ordering within the group, are compared. 

Our severity score SVS, in association with the ranking technique, can thus be used to 

complement rating scales to observe differences in dyskinesia severity in large patient 

databases. 

III. Results 

III.1 Study I: Validation of ranking protocol - intra- and inter-neurologist 

agreement 

III.1.1 Intra- neurologist agreement 

Intra-class correlation coefficient (ICC) was computed only for Type I rankings for each 

neurologist as this measure was used to study intra-neurologist consistency. Hence Type 

II rankings, which were developed mainly for inter-rater studies, would not apply in this 

experiment.  High ICC values were observed as follows: N1 – 0.9525; N2 – 0.948; N3 – 

0.9496; N4 – 0.9928 (p <= 0.0001).  

A more detailed analysis was performed by computing pairwise Kendall tau-b values 

between the three sets of rankings for each neurologist and between the neurologists’ 

rankings and the UDysRS rankings.  Table 3.2 indicates that neurologist N1 and N4 are 



51 
 

more consistent across the three sets of rankings compared to neurologist N2 and N3 

which was also observed from the ICCs. 

N1 Set I Set II Set III N2 Set I Set II Set III
Set I 1 0.9199 0.9129 Set I 1 0.849 0.8128
Set II 0.9199 1 0.8815 Set II 0.849 1 0.8017
Set III 0.9129 0.8815 1 Set III 0.8128 0.8017 1

N3 Set I Set II Set III N4 Set I Set II Set III
Set I 1 0.8642 0.7941 Set I 1 0.9628 0.9899
Set II 0.8642 1 0.8258 Set II 0.9628 1 0.9595
Set III 0.7941 0.8258 1 Set III 0.9899 0.9595 1

 

Table 3.2 Kendall tau-b Correlation matrix for set-wise intra-neurologist agreement.  

 

III.1.2 Inter-neurologist agreement 

Though the neurologists independently ranked the videos based on the clinical definition 

of dyskinesia, high inter-neurologist agreement was observed between them. Type I and 

Type II rankings showed similar trends of agreement as seen in Table 3.3 and Table 3.4. 

Figures 3.3 and 3.4 are correlation plots of the values represented in Tables 3.3 and 3.4. 

Kendall tau-b values ranged from 0.7754 to 0.8746 for Type I rankings, and from 0.6931 

to 0.8095 for Type II rankings. All tau values were statistically significant with p 

<=0.0001. 
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Table 3.3 Kendall Tau-b correlation matrix for Type I inter-neurologists agreement 
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Fig. 3.3. Scatter plots showing inter-neurologist Type I ranking correlations. (First row) 
N1 vs. N2, N3 and N4; (second row) N2 vs. N3 and N4; (third row) N3 vs. N4 Kendall 
tau-b coefficient is indicated in parenthesis 
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Table 3.4. Kendall Tau-b correlation matrix for Type II inter-neurologist agreement 

III. 2 Study II: Validation of SVS Utility 

III.2.1 SVS vs. neurologists’ and UDysRS rankings  

Table 3.5 and Figure 3.5 show that Type I rankings across the three ranking sets 

exhibited higher Kendall tau-b values than Type II rankings. The tau values of the 

UDysRS rankings vs. SVS rankings and the neurologist’s rankings vs. SVS rankings 

were comparable and indicated a moderate utility of the SVS as a dyskinesia quantifying 

score. The tau values ranged from 0.657166 to 0.7563 for Type I rankings, and from 

0.5561 to 0.7143 for Type II rankings. All tau values were statistically significant with p 

<=0.0001. 
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Fig. 3.4. Scatter plots showing inter-neurologist Type II ranking correlations. (First row) 
N1 vs. N2, N3 and N4; (second row) N2 vs. N3 and N4; (third row) N3 vs. N4 Kendall 
tau-b coefficient is indicated in parenthesis 
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Table 3.5: Kendall Tau-b correlation matrix for Type I and Type II SVS vs. neurologists SVS vs. 
UDysRS Rankings. 
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Fig. 3.5 Scatter plots showing correlation between SVS and Type I neurologist’ rankings 
(first row); SVS and Type II neurologists’ rankings (second row); Kendall tau-b 
coefficient is indicated in parenthesis. 
 
 
III.2.2 Robustness of SVS 

Variations in landmark points 

From Table 3.6 we can see that SVS does not change significantly, but given that it is a 

continuous score, even small changes may lead to changing in the ranking order. Hence 

we compare the rankings of the score as opposed to the absolute score itself. The Kendall 

Tau-b correlation coefficients for the pairwise correlation between the rankings of each 

trial are seen in Table 3.7. In spite of being a conservative statistical measure, we do 

achieve high correlation between the rankings, which indicate the robustness of the score 

with respect to variations in the landmark points. Rows highlighted in Table 3.6 indicate 



58 
 

rankings which varying by more than an absolute difference of 4 ranks computed 

pairwise.  

 

Table 3.6. SVS scores and corresponding ranking for the three sets of trials. 
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Table 3.7. Kendall Tau-b correlation matrix between the SVS rankings obtained from the 
three sets of landmark trials. 
 

Length of video sequences 

  

Fig 3.6 SVS of 6 VUMC patients with varying lengths of video sequences, P11,P12: 
patients with dyskinesia rank of 1; P21,P22: rank 2, P31,P32: rank 3. All rankings are by 
expert neurologist. 
 

P41  P42 
Time (s) SVS  Time (s) SVS 

1 3.803667  1 5.5784733 
2 1.471167  2 3.0322217 
3 1.152444  3 1.9084667 
4 0.837583  4 1.499848 
5 0.701133  5 1.226791 
6 0.926313  5 and 1/3 1.137157 
7 0.676476    8 0.59571    9 0.55248    10 0.53253    
     Table 3.8 SVS values of two severely dyskinetic patients. P41, P42: rank 4 
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Figure 3.6 shows the variation of SVS with video sequences of different lengths. Due to 

the higher range of SVS values for the two severely dyskinetic patients, we have shown 

their SVS values in Table 3.8. Figure 3.6 indicates that beyond 7s, the SVS values tend to 

remain more or less constant and a similar effect is seen in Table 3.8. Sufficient data was 

not available for patient P42 to test with longer sequences.  

III.3 Study III: Effect of ratings vs. rankings 

Table 3.9 shows that Kendall tau-b coefficients ranged from 0.6833 to 0.8519 for SVS 

ratings vs. neurologists’ ratings which are higher when compared to the tau-b coefficients 

obtained in Study II while comparing rankings. These higher values indicate a more 

global agreement between the neurologists and the SVS. 

 

Table 3.9: Kendall Tau-b correlation between SVS ratings and neurologists’ ratings 

IV. Discussion 

To the best of our knowledge this is the first study to report validation analyses on a 

severity score. SVS is a video-based objective measure of severity of dyskinesia. 

Previous studies on quantifying dyskinesia [37, 38, 39, and 40] have used classification 

based approaches to determine various metrics of dyskinesia using devices. We not only 

parameterize dyskinesia, but also combine these parameters mathematically to form the 

severity score, SVS. SVS can help neurologists evaluate and place dyskinetic patients on 
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a continuous scale and perform retrospective analyses on relative and absolute severity of 

dyskinesia in these patients. 

A reliable and robust objective technique to quantify severity of dyskinesia has several 

potential advantages over clinical scales. In order to validate the utility of our score, we 

developed a ranking protocol which facilitates the comparison of our continuous score 

with the discrete ratings of neurologists.  This chapter reports results on three studies that 

were performed to (1) validate the ranking protocol; (2) evaluate the robustness and 

utility of SVS; and (3) compare the utility of rankings over ratings. We have focused on 

quantifying the severity of dyskinesia while performing the communication task as it is 

easy to track using image registration without resorting to more complicated tracking 

algorithms needed for  tasks such as buttoning a coat or drinking from a cup. The 

advantages of using our quantifying technique include the widespread availability of 

video recording equipment, its ease of use in clinical settings and the portability of the 

datasets for retrospective analyses and longitudinal studies 

The advantage of using a continuous score over a discrete five point rating scale and 

hence the necessity to develop a ranking protocol was presented. The ranking protocol 

was designed based on the ratings assigned using the clinical definition of dyskinesia as 

opposed to a particular rating scale such as the CDRS or AIMS. Our results from Study I 

indicate that our ranking protocol was valid and produced high inter- and intra-

neurologists’ consistency while using it. Previous studies perform comparative analyses 

of their techniques with one of the standard rating scales. As mentioned earlier, all rating 

scales do not account for all attributes of dyskinesia. By using the general definition of 

dyskinesia as the basis of our ranking protocol, we are not biased towards any particular 
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attribute of dyskinesia. Our technique gives the participating neurologists the freedom to 

prioritize the different attributes including amplitude, velocity and directions of 

movement, degree of disability, anatomical distribution and type of dyskinesia. To further 

analyze the effect of this variable prioritization, three of the four neurologists were asked 

to record their priorities during their ranking process. The priorities seen in Table 3.10 

indicate that our ranking protocol took most of the attributes of dyskinesia (as mentioned 

in Chapter 1) into account without the aid of a specific rating scale. The intensity of 

dyskinesia is a collective measure of amplitude, speed and general disability. 

 

  

Table 3.10: Priority of Dyskinesia attributes 

We should state that the neurologists were asked not to determine the severity based on 

the most disabling type of dyskinesia – chorea, dystonia and tremor, but look more 

closely at the overall movement deficiencies.  Hence the rankings of neurologist are 

inclusive of choreic and dystonic movement, but without explicit weightage given to 

either of them. Since SVS does not account for the most disabling type of dyskinesia or 

its severity, we believe that this protocol was most suited to our data. 
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Our results from Study II, based on amplitude and directions of movement, indicate that 

the SVS moderately correlates with the UDysRS and the neurologists’ rankings. The 

lower correlation coefficients in Type II rankings can be attributed to two possibilities:  

(a) reduction in the sample size from 35 to 28 video sequences and (b) the number of 

dyskinetic patients removed from each set was based on the observation of only the most 

senior neurologist.  Amplitude and directions of movement are necessary but not 

sufficient parameters to completely quantify dyskinesia. SVS was successfully tested on 

larger set of patient data with longer video sequences and simultaneous tracking of 

multiple body parts. The anatomical distribution of dyskinesia varies from person to 

person and we can see from Table 3.7 that neurologists consider this a significant 

parameter to evaluate the severity in patients. By performing simultaneous tracking and 

analysis of multiple body parts, we internally account for the anatomical distribution of 

dyskinesia in our severity score. This process emulates a neurologists’ assessment more 

closely than previous studies that look at the movement data (obtained using devices) 

from multiple body parts individually.  A significant point to note is that we had control 

data within our sample set in the form of seven non-dyskinetic patients. It can be seen 

that out of the seven patients, four of them had low severity scores, a trend similar to the 

13 non-dyskinetic patients in chapter 2. The remaining three patients had the following 

issues – (a) one of them had a slightly higher rank since the patient exhibited voluntary 

motion using the limbs that were tracked and (b) the other two patients showed poor 

tracking quality with significant drifting of the landmark points. Table 3.11 shows the 

SVS and neurologists ranks of these 7 patients. 
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PN SVS 
rank N1 N2 N3 N4 UDysRS 

10 12 4 4 4.5 2 6 
14 2 4 4 4.5 8 7 
18 9 4 4 4.5 7 3 
21 5 4 4 4.5 2 1 
25 10 4 4 4.5 5 2 
26 3 4 4 4.5 2 4 
33 7 4 4 4.5 4 5 

Table 3.11. Ranks of seven non-dyskinetic patients. The highlighted rows indicate the 
four patients who are within the rank of 1 – 7 (corresponding to a tied rank of 4). Patient 
18 exhibited voluntary motion that occluded a landmark point; and patients 25 and 18 
showed drifting of landmark points owing to intensity homogeneity of their clothes. 
 

SVS is inherently dependent upon tracking as the parameters of SVS are variance based 

and incorrect tracking can lead to inaccurate training shapes and inaccurate SVS scores. 

We have shown that SVS is robust to small variations to landmark points. Given the 

general guidelines for picking landmark points, the natural tendency is to pick these 

points on approximate joints especially for the shoulder, elbows, and knees. Variation can 

arise, when picking points on the forehead, reading material or feet. Our trials included 

such possible variations as seen in Figure 3.2.  By looking at the tracking results of the 

patients highlighted in Table 3.6, we found that drifting of the landmark points had taken 

place due to: (a) point picked in areas such as broad horizontal stripes which can create 

small clusters of pixels with uniform intensity and (b), when trajectory of a given points 

crossed over the trajectory of other points. Thus, there are two main concerns in picking 

the landmark points – (a) maintain the sequence in which landmark points are picked; as 

different sequences can result in different training shapes for different patients, and (b) 

pick points on areas of intensity inhomogeneities ( this includes areas of contrast, texture 

differences or presence of buttons, pins etc.). Even though we pick points on the clothes 

of the patients as opposed to actual joints, which is the case for motion capture studies, 
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with good tracking, our technique is successful is capturing dyskinesia.  Since we are 

looking at involuntary movement, cases of occlusion cannot be avoided and can be 

overcome by re-picking the landmark points on the affected frame(s). 

We observed that tracking longer sequences using our image registration technique not 

only increases machine time, but also causes tracking quality to deteriorate; as drifts in 

landmark points are now propagated across more number of frames. This problem 

intensifies especially when tracking video sequences of severely dyskinetic patients or in 

patients wearing clothing without intensity variations. Ten seconds of video was found to 

be sufficient to capture the severity of dyskinesia without losing tracking quality. We do 

wish to specify that we did not evaluate the neurologists’ rankings for longer video 

sequences and hence cannot attest to the fact that there will not be a change in the 

rankings when longer video sequences are rated and ranked. However, from our studies, 

we believe that these changes will be minimal and not affect the overall correlation 

between our score and the neurologists’ evaluations.  

Study III was performed to observe the effect of using SVS as a continuous variable as 

opposed to discretizing it to compare it directly with conventional discrete rating scales. 

A higher correlation between the SVS ratings and neurologists’ ratings when compared to 

the correlation coefficients observed in Study II using Type I and Type II rankings 

indicate that SVS has a high global correlation with the neurologists as we were 

comparing groups of patients within rating categories irrespective of their ordering within 

the group. But in Study II, the ranking or the ordering of the patients within each group 

was compared thus requiring a more stringent quantifying technique which is capable of 

capturing the subtle differences between patients within that group. Hence we believe 
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that using a ranking technique can initiate the development of better quantifying 

measures. Two patients can be assigned the same category of severity using a rating 

scale, but not necessarily the same rank. This variation can occur  as the neurologist is not 

restricted to the standard rating scale definition and may be inclined to assess the motor 

disability of one patient as more severe than the other, but not significant enough to 

assign the next higher rating on the scale. We do not reject the possibility of two patients 

receiving the same severity score and hence the same rank, but such an occurrence might 

be uncommon as SVS is a continuous variable.  

An added advantage of using an objective score based ranking technique such as ours is 

its utility in handling large patient databases which get updated frequently with new 

patient records. If a new patient is added to the existing sample set, the current rankings 

and the SVS for the new patient can be used to determine the relative severity of the new 

patient with respect to the other patients with the SVS specifying the absolute dyskinesia 

severity, thus avoiding the manual re-ranking of the entire dataset by the neurologists. 

Thus the SVS and the corresponding rank can guide the neurologist in clinically rating 

the patient’s dyskinesia severity based on their relative ranking to other patients. Further 

work is being done to improve and to automate the video tracking on longer video 

sequences and to include contributions from dystonia and chorea into the SVS. We 

believe that these factors will increase the correlation between the SVS and the 

neurologists’ rankings. Such a severity score can be applied to other assessments tasks 

similar to the activities of daily living and used to quantify longer video sequences. 

Dyskinesia exhibits diurnal variations and our study is based on 10s video sequences of a 

specific task. Hence even though our semi-automatic technique is comparable to 
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conventional rating scales, which take such diurnal variations into account, it may not 

necessarily replace them.  
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CHAPTER IV 

DEVELOPMENT OF SVSCD – CHARACERTIZING CHOREA AND DYSTONIA 

I. Introduction 

One of the key attributes of dyskinesia is assessing the most disabling movements of the 

patients. Dyskinesia is the general terminology used for abnormal involuntary 

movements. Levodopa induced dyskinesia can appear as dystonia, chorea or tremor. The 

presence of any one or a combination of these types of movements indicates the side-

effects of levodopa in a Parkinson’s disease patient. In this chapter, we will discuss the 

characteristics of dystonia, chorea and tremor; develop parameters to quantify these 

movements, modify our severity score SVS developed in chapter 2 to include these 

parameters, and finally validate the new score.  

Dystonia is a general term used for twisting movements which occur with sustained 

muscle contractions of opposing muscles [55]. These movements are repetitive in nature 

and severe cases of dystonia can exhibit sustained muscle contractions leading to 

abnormal body postures and hence, disability. Figure 5.1 shows an example of a 

Parkinson’s disease patient with severe cervical dystonia. If dystonia occurs in a single 

body part, it is termed at focal dystonia. Typically focal dystonia affects the face, neck, 

voice and hand. When dystonia occurs in more than one body part, it is called generalized 

dystonia, which typically manifests itself in the trunk and legs.  Initially, dystonia occurs 

with the presence of voluntary movements, but with progression of its severity, it can also 

occur in body parts that are at rest and not involved in the voluntary movements. This 

feature of dystonia further supports our technique in looking at multiple body parts of the 
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patients simultaneously to capture this inherent correlation in movement as opposed to 

individual analysis of body parts as prior research indicates. The key kinematic principle 

of dystonia we wish to capture is the presence of periodicity in the movements and 

reduced speed of movement due to sustained muscle contractions. 

 

 

Fig 4.1. Parkinson’s disease patient with severe cervical dystonia. This patient performed 
the entire communication task with this neck posture 
 

Chorea, on the other hand, is exhibited as irregular, non-rhythmic and rapid involuntary 

movements which typically involve more than one body part. Severe chorea can cause 

violent movements in patients and interfere with almost all the activities of daily living. 

Figure 4.2 shows consecutive frames of a Parkinson’s disease patient affected with severe 

chorea. As the severity of chorea increases, movements tend to have larger amplitudes 

and higher speed in more directions. Patients tend to hide their movements by forcefully 

holding back their limbs by gripping a chair tightly or by keeping knees and feet crossed 
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over one another, though they can do so only for short periods of time. It is hard to 

incorporate them into voluntary tasks as they are unpredictable and irregular. Higher 

speed of movement and the lack of periodicity are the parameters of interest in 

quantifying chorea since we have already incorporated amplitude and directions of 

movement in our score. 

 

 

Fig. 4.2. Eight consecutive frames of a patient with severe chorea performing the 
communication task. Note the gripping of the chair with the right arm to provide stability. 
This patient was severely dyskinetic and she was falling off the chair. 
 

Tremor is characterized by rhythmic oscillatory movements. It is usually produced by the 

alternate contraction of opposing muscles [55]. Resting tremor is a common symptom of 

Parkinson’s disease, but can occur even in the ON medication state. It is classified as a 
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dyskinetic movement due to its abnormal and involuntary nature. Typically tremors are 

the easiest type of dyskinesia to quantify. We can quantify the severity of tremor by 

analyzing its amplitude and frequency components. Low amplitude - high frequency 

tremors are difficult to detect by video tracking unless high speed cameras and accurate 

tracking algorithms are used. The RUMC dataset contains two patients with this type of 

tremor and our technique could not track it successfully, especially if they occur in 

extremities such as fingers.  

Even though, we have identified the features of interest in quantifying dystonia, chorea 

and tremor, it is important to note that these movements may not necessarily occur 

separately in patients. Most often, dyskinesia is exhibited as a combination of two or 

more of these movements. Hence quantifying each type individually is neither possible 

nor rational. While securing the ratings and rankings of the RUMC dataset by the four 

neurologists, we had not asked them to explicitly rate or rank dystonia, chorea and 

tremor, but use the general definition of dyskinesia which would effectively include the 

extent of disability caused by these movements. Hence our goal was to further modify 

our severity score to incorporate these parameters into the SVS and validate the new 

score using the techniques seen in chapter 3. Several studies have used entropy, 

frequency spectrum and time series analyses on various forms of motion data based on 

position, velocity and acceleration [53, 36, 42, 47]. These studies are performed on data 

collected on individual body parts. Daffertshofer et al. have used PCA in studying 

movement coordination in gait using similar techniques as ours, but their study was 

focused more on using PCA for synthesis than analysis [45]. We will use the PCA 

parameters obtained in chapter 2 in combination with frequency spectrum analysis to 
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develop features that differentiate dystonia, chorea and tremor movements embedded in 

the patient’s dyskinetic movements. We also proceed to show which of these parameters 

are applicable to our dataset. A new score is developed using these parameters and a 

validation study is conducted by comparing the new SVS rankings to the neurologists’ 

and UDysRS rankings. Our results indicate that the new SVS score captures the severity 

of dyskinesia more accurately and shows a higher correlation coefficient with the 

neurologists’ and UDysRS rankings.  

II. Methods 

The RUMC dataset used in chapter 3 provides us with longer video sequences of better 

image quality than the VUMC dataset. Hence we have used only this dataset to conduct 

our analyses. We used 35 ten seconds video sequences of patients with varying degrees 

of dyskinesia in our study. The data was tracked using ABA, an intensity-based image 

registration algorithm as in chapter 3. Since we have good tracking results for the 

communication task, we have used the same for analyses. We performed one study for 

testing our parameters and one validation study using only Type I ranks of the 

neurologists.  The disadvantages of a smaller sample set due to the elimination of certain 

patient ranks as seen in chapter 3 prompted us to use only Type I rankings. The same 

eleven landmark points – forehead, shoulders, chest, elbows, knees, feet and reading 

material were tracked and their trajectories computed and stored as [x,y] position 

coordinates. 
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II.1 Dystonia, Chorea and tremor parameters and development of SVSCD 

As in chapter 2, we have maintained our preference for using a combined trajectory 

approach as opposed to looking at the trajectories of the individual landmark points. 

Using the equations specified in chapter 2, PCA was performed on all the trajectories 

together and corresponding eigenvalues and eigenvectors computed. Daffertshofer et al. 

study the evolution of each mode of variation by projecting the set of training shapes, T, 

onto the eigenvector vector space spanned by 𝑉𝐾as derived in equations (2.1) and (2.5) 

                         𝐸𝑘 =  𝑉𝐾 .𝑇……………….(4.1) 

In [45], 𝐸𝑘 are defined as eigenmodes. For our analysis we use only a subset of 𝑉𝐾 in 

(4.1). This subset consists of eigenvectors corresponding to the most significant modes of 

variation.  These eigenmodes are in decreasing order of the contribution to the total 

movement. For example, if a patient exhibits more chorea than dystonia, choreic 

movements are captured in the first few eigenmodes and vice versa. Instead of using the 

individual trajectories in T, we use the eigenmodes to analyze variations among patients. 

Frequency spectrum analysis was performed to determine the best suited parameter that 

captures the differences between dystonia, chorea and tremor.  

The Fast Fourier Transform (FFT) of the eigenmodes was computed and the power 

spectra were analyzed. It has been reported in the literature that dyskinesia is 

concentrated in the 1 – 3 Hz band of frequencies [42, 53, 36, 37]. But this was observed 

in acceleration data and does not specify frequency bands corresponding to dystonia and 

chorea. Tremor is usually in the higher frequency ranges of 6 – 8Hz [28]. The power 

spectrum of each of the eigenmodes was analyzed in different frequency bands – B1: 0.5 

– 1.5 Hz; B2: 1.5 – 3.5 Hz; B3: 3.5 – 10 Hz. The total power in the frequency range of 
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0.5 – 10 Hz was computed as TP. The distribution of power in these bands of interest was 

computed as 

Pi =  
Total power in Band Bi

TP
 x 100 

where i = 1:3, denoting the three bands of interest. 

Thus each mode had a set consisting of three ratios, P = {P1, P2 and P3}. The power 

spectrum of all 35 patients were observed and analyzed. These observations and analyses 

will be discussed in the results section along with the basis for the new score called the 

SVSCD – SVS with chorea and dystonia parameters.  

II.2 Validation Study 

Since the new score was also a continuous variable, we followed a procedure similar to 

the validation study in chapter 3. The rankings for the 35 patients using SVSCD were 

computed. These rankings were compared to neurologists’ and UDysRS rankings using 

the Kendall’s Tau-b correlation coefficient. Only Type I rankings were used for the 

validation study.  Instead of eliminating the non-dyskinetic patients as in the Type II 

rankings, a different strategy was used to create uniformity in comparing the tied 

neurologists’ rankings to the tie-less SVSCD rankings. If the number of patients correctly 

identified as non-dyskinetic ( i.e. with low SVSCD scores) were comparable to the seven 

patients identified by senior neurologist N1, they were assigned tied ranks based on the 

number identified correctly. We argue that this strategy is rational as the ranking of non-

dyskinetic patients is irrelevant and by assigning tied ranks, we can achieve a more 

meaningful correlation. We could not use this strategy in chapter 3 as only 50% of the 



75 
 

patients were correctly identified as non-dyskinetic, though the other truly non-dyskinetic 

patients had very low SVS scores. 

III. Results 

We present our results in two sections – (a) Development of SVSCD, and (b) Validation 

of SVSCD.  

III.1 Development of SVSCD 

There were four main observations noted from the power spectrum. 

1) Non-dyskinetic patients normally exhibited fewer significant modes and a 

uniform distribution of power across B1, B2, and B3. In cases of tracking issues 

such as drifting, the power of the frequencies in the higher modes was 

significantly lower, thereby contributing negligibly to TP. Figure 4.3 shows the 

power spectrum of the six eigenmodes of patient 10, who is non-dyskinetic but 

had drifting issues during tracking. 

2) Dyskinetic patients with predominantly choreic movements showed higher 

concentrations of frequencies in the B2 (1.5 – 3.5 Hz) band. We did not have a 

patient with only chorea. Hence, patient 32’s movements were a good example of 

dyskinesia that did not show a lot of repetitive patterns.  Note that in mode 1, the 

predominant frequency in band B2.  

3) Dystonic patients, as seen in the example in Figure 4.5, exhibited frequencies 

concentrated in band B1 (0.5 – 1.5 Hz). 

4) None of the patients exhibited significant frequency concentrations in band B3 

(3.5 – 10 Hz) which includes tremor frequency band (6 – 8 Hz). Since our 
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tracking technique could not pick the tremor exhibited by two patients, our 

observation was valid. The power spectrum of these two patients showed only 

dystonic fetures. The power spectrum of the first two and the last eigenmode of 

one of the patients is shown in Figure 4.6 to illustrate our observation. 

Most of the patients exhibited both chorea and dystonia in varying degrees. In order to 

observe quantifiable differences, the trend of the ratios P1, P2, and P3, was analyzed. The 

spread of powers P1, P2, and P3 for each mode differentiated patients as more choreic  
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Fig 4.3. Power spectra of six eigenmodes of a non-dyskinetic patient with poor tracking. 
Note the low power of the frequencies in the higher modes and presence of frequency 
components > 3 Hz. 
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Fig 4.4. Power spectra of six eigenmodes of  a patient who exhibited predominantly 
choreic movements. This patient did not show large amplitude of movements, but 
exhibited random uncorrelated movements of the head and feet explaining the presence 
of multiple frequency bands in the spectrum. 
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Fig 4.5 Power spectra of five eigenmodes of a predominantly dystonic patient. 
Note the concentration of frequencies in band B1 in all of the modes. 
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Fig 4.6 Power spectra of modes 1, 2 and 7 shown for patient with tremor of hand. 

than dystonic and vice versa. Table 4.1 shows the {P1, P2, P3} values for each of the 

modes for selected number of patients. To compute the spread of {P1, P2, P3}, their 

standard deviation was calculated and the average of the standard deviations for all the 

eigenmodes was computed and denoted as STDP. It was observed that the non-dyskinetic 

patients had the lowest STDP, followed by the choreic patients and the dystonic patients 

had the highest STDP. Table 4.2 shows the STDP values, for the patients shown in Table 

4.1, illustrating this trend. 
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Table 4.1 {P1, P2, P3} values for selected patients with specified types of dyskinesia, 
where EM denote eigenmodes. 
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Thus, we determined that STDP was low for non-dyskinetic patients and higher for 

dyskinetic patients, irrespective of the type of dyskinesia. Thus, 

Dyskinesia severity α STDP 

Hence, we modified our severity score SVS, which was 

SVS =  
TV x NSM

STDEV
 

to include STDP. All the previous parameters were retained as they described only the 

amplitude and directions of movements. Based on the relationship between dyskinesia 

and STDP, we propose the new severity score, SVSCD, denoting SVS with chorea and 

dystonia, as: 

SVSCD =  
TV x NSMx STDP

STDEV
 

Where TV: Total variance; NSM: number of significant modes of variation; STDP: 

average standard deviation of {P1, P2, P3} and STEV: standard deviation of the 

contribution of the eigenvalues to the total variance. 

 

Type Case STDP 
Non-

dyskinetic 1 22.4995 

  2 29.2349 
Choreic 1 38.1936 

  2 43.1691 
Dystonic 1 51.8623 

Combination 1 48.548 
 
Table 4.2 STDP values for the patients in Table 5.1 
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III.2 Validation of SVSCD 

Table 4.4 shows the STDP, SVSCD and the corresponding rankings; neurologists’ and 

UDysRS rankings of the 35 RUMC patients. Kendall Tau-b correlation coefficients 

between the SVSCD rankings and the neurologists’ and UDysRS rankings show 

considerable improvement from those observed using the SVS as seen in Table 4.3. All 

tau values were statistically significant with p <=0.0001. 

 

Table 4.3 Kendall Tau-b correlation matrix for SVS and SVSCD. The highlighted rows 
show the improvement with using SVSCD 
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PN STDP SVSCD SVSCD 
Rank N1 N2 N3 N4 UDysRS 

1 45.96619 7.0948 25 23 24 22 24 24 
2 30.7019 0.0834 2 8 11 10 10 15 
3 43.16914 15.0505 32 27 26 27 23 30 
4 32.49801 0.2394 6 10 12 13 12 12 
5 44.84424 14.0782 31 32 28 29 31 31 
6 34.22355 0.3687 8 9 9 12 11 10 
7 40.29787 0.9953 13 20 21 15 20 18 
8 38.71286 1.7973 17 12 13 16 17 27 
9 46.96165 1.2642 14 19 17 18 14 16 
10 22.49949 0.4913 9 4 4 4.5 2 6 
11 51.65184 12.9262 30 33 31 32 32 33 
12 37.23642 4.1699 20 18 20 14 18 22 
13 32.44837 2.1883 19 22 29 23 26 21 
14 24.5219 0.039 1 4 4 4.5 8 7 
15 48.54796 205.1266 35 35 35 35 35 35 
16 32.51816 1.3324 15 16 15 17 15 25 
17 41.37078 0.5253 10 11 10 11 13 14 
18 31.5318 0.1753 4 4 4 4.5 7 3 
19 42.05907 8.8748 26 24 22 24 25 23 
20 33.43582 1.8294 18 13 14 9 9 11 
21 26.13197 0.2256 5 4 4 4.5 2 1 
22 47.25518 27.3533 33 34 34 34 34 34 
23 40.25066 6.0723 23 28 23 25 21 20 
24 45.4451 6.0421 22 14 8 4.5 6 8 
25 29.23488 0.5708 12 4 4 4.5 5 2 
26 23.71956 0.1576 3 4 4 4.5 2 4 
27 42.61222 10.4013 29 30 27 28 29 32 
28 46.66236 5.8248 21 26 32 31 33 29 
29 45.98504 6.7369 24 21 19 21 19 17 
30 45.00643 32.7318 34 29 30 30 22 26 
31 45.42109 8.9403 27 25 25 26 28 19 
32 38.19355 0.5363 11 15 18 19 16 13 
33 25.33456 0.3251 7 4 4 4.5 4 5 
34 37.15962 1.3455 16 17 16 20 27 9 
35 51.86232 10.2268 28 31 33 33 30 28 

 
Table 4.4. STDP, SVSCD, SVSCD rankings and neurologists’ and UDysRS rankings of 
35 RUMC patients. Highlighted rows indicate non-dyskinetic patients as rated by senior 
neurologist 
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It must be noted that the SVS Kendall Tau-b coefficients reported in chapter 2 are 

different from the values reported in Table 4.3 This change is attributed to the fact that 

the two patients who exhibited voluntary movements were analyzed again after removing 

the landmark point causing occlusion or involved in the movement. Hence, the SVS 

correlated better, but still failed to recognize all the non-dyskinetic patients correctly as 

opposed to SVSCD, which could recognize five out of seven patients correctly. However, 

one of the patients, PN 2 in table 4.4, classified as mildly dyskinetic by the neurologists 

(rank 1 for the dyskinetic category, not including tied ranks) was misinterpreted as non-

dyskinetic by the SVSCD. We do not assign a tied rank to this patient as that would bias 

the correlation coefficient towards the SVSCD. Instead, we remove him from the sample 

set.  Table 4.5 shows the Kendall Tau-b correlation matrix showing a slight improvement 

in correlation coefficients compared to those observed in Table 4.3 

 

  SVSCD N1 N2 N3 N4 UDysRS 
SVSCD 1 0.792 0.715 0.7215 0.6691 0.6781 

N1 0.792 1 0.8778 0.863 0.7943 0.7667 
N2 0.715 0.8778 1 0.8891 0.8344 0.7631 
N3 0.7215 0.863 0.8891 1 0.827 0.7406 
N4 0.6691 0.7943 0.8344 0.827 1 0.7328 

UDysRS 0.6781 0.7667 0.7631 0.7406 0.7328 1 
 

Table 4.5 Kendall Tau-b correlation matrix patient PN 2 removed from the sample set. 
Thus our validation study indicates a moderate improvement in the capability of the 
severity score to quantify dyskinesia.  
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IV. Discussion 

We have proposed a new objective measure to quantify dyskinesia incorporating 

information about the type of dyskinesia – dystonia, chorea and tremor, based on 

frequency spectrum analysis. Consistent with the results reported in previous studies, we 

have also observed dyskinetic movements manifested in lower frequencies in the range of 

0.5 – 3.5 Hz. All these studies look at the frequency spectrum of the kinematic signals 

obtained individually from different parts of the body as opposed to our study, which 

captures similar information from the composite signals obtained in the form of 

eigenmodes after PCA analysis on the set of training shapes [53, 42]. Thus, we eliminate 

the need to cross correlate the results obtained at one body part with those obtained at a 

different part as in [38].  

We also conducted a study using approximate entropy as a parameter to quantify the 

differences between dystonia and chorea [56]. Entropy of a signal is defined as the 

amount of uncertainty in the given signal. In our application, this metric translates to 

estimating the randomness in the set of trajectories. Patients who are predominantly 

choreic would be expected to have highest entropy, followed by patients with dystonia 

who exhibit repetitive patterns, followed by patients with tremor having the lowest 

entropy. The two parameters required to compute approximate entropy of the eigenmodes 

are the approximate length of the pattern to be identified, and the similarity measure. 

Since most patients have a combination of dystonia, chorea and tremor, we found that 

approximate entropy did not provide consistent results in distinguishing dystonic and 

choreic patients. If our dataset had several cases of severely dystonic or choreic patients, 

this measure could have been used, but that would imply using a parameter that is highly 
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suited to a particular type of dataset.  We believe that the STDP parameter is a general 

parameter that can be used in all datasets. Similar studies with a different dataset can be 

done to validate this claim. We did not validate SVSCD on the VUMC dataset due to 

lack of data; since we had determined in chapter 3 that at least 10s of video data showing 

the entire patients in the image is essential for capturing the actual severity of dyskinesia.  

We do not explicitly quantify dystonia, chorea and tremor. We have developed SVSCD 

in such a way that it includes this information inherently. By this process, our final result 

is a single number that represents the severity of dyskinesia. STDP can be used as a 

metric independently to classify choreic and dystonic measurements. The 35 patients in 

the RUMC dataset can be re-ranked based on chorea and dystonia and their rankings can 

be correlated to the rankings obtained using STDP. We have not performed this 

validation; as it tedious and several patients have a combination of dystonia and chorea 

which might be difficult to distinguish visually. Due to lack of good tracking data, we 

have not shown any example of tremor being quantified using our score. Since our score 

is based on parameters measuring frequency dispersion, patients with tremor, that have 

been tracked successfully, should exhibit peaks in the range of 6 – 8 Hz.  

Apart from repetitive movements, dystonia is also characterized by presence of sustained 

contractions and hence, twisted postures as seen in Figure 4.1. Simple parameters such as 

angles between the neck and the shoulders, knees and ankle can be analyzed to quantify 

such twisted postures. This analysis was not conducive to our data as it was difficult to 

judge in certain patients if they had voluntarily chosen to cross their feet or bend their 

knees outwards or if it was a dystonic posture. Hence, it becomes vital to design a study 

that includes conditions which clearly specify patients not to sit with crossed legs or read 
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with animated gestures of the head and hands. These voluntary movements, unless 

characterized using pose analysis methods, can be misinterpreted as dystonic movements 

by objective techniques such as ours. Trained neurologists can perceive these differences 

between a voluntary posture and a dystonic posture and this benefit exists for all cases of 

dyskinesia assessment. Hence, there is always a certain degree of compromise needed 

when quantifying movement that is involuntary and unpredictable. Our goal is to 

minimize this compromise; and hence, the improvement of the SVS to SVSCD with a 

future objective of quantifying voluntary movements. 
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CHAPTER V 

DISCUSSION AND FUTURE WORK 

I. Discussion 

This dissertation is a thorough study of the attributes of dyskinesia, the requirement of an 

objective measure to quantify this motor dysfunction and the development and validation 

of severity scores SVS and SVSCD, which assess the severity of dyskinesia using patient 

videos. Prior work in this area is limited and has focused mainly on establishing 

parameters that correlate well to various attributes of dyskinesia and in general to a rating 

scale. These parameters are predominantly kinetic and kinematic in nature and have been 

obtained using sensor-based devices. We have presented a low-cost, widely usable 

alternative technique to detect these parameters and combined them to form a severity 

score that can help the neurologists assess the severity of dyskinesia.  

Chapter I discussed the various attributes of dyskinesia, its clinimetrics, advantages and 

disadvantages of the conventional dyskinesia rating scales. Hence the requirement of an 

objective dyskinesia rating technique is stressed. We mentioned the existing handful of 

objectively quantifying techniques, all of which use a sensor-based approach and emulate 

a discrete rating scale by classifying patients into categories of mild, moderate and severe 

dyskinesia. At this point, we emphasized the advantages of moving towards a continuous 

scale. We ended this chapter with a brief description of our technique, validation studies 

performed on it and an overview of the dissertation. There are three main contributions of 

this work and we discussed each of these contributions in detail in Chapters 2, 3 and 4.  
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In chapter 2, we have stressed three novel and significant features:-   

1) Patient videos, which are part of patient clinical records, are used to perform 

movement analysis by tracking the patients’ dyskinetic motion. Most Parkinson’s 

disease patients are elderly people and it is not an easy task to recruit them for 

research studies that requires their participation, wearing devices and specialized 

motion capture suits. In contrast, we have proposed to extract equivalent 

information from existing/new patient videos, which makes our technique a 

patient friendly, low-cost option that allows retrospective analysis of large 

amounts of patient data without the need for setting up new studies. One 

advantage of sensor-based approaches is the availability of 3D movement data, 

whereas, our technique uses only 2D image data. We can capture side-ways 

movement, but not to and fro movement. We do not see this as a major 

disadvantage as dyskinetic movements are rarely uni-planar and are usually 

random involving significant sideways swaying. We believe that our score will 

not be largely affected by the depth information. 

2) The adaptive bases algorithm, an intensity-based registration algorithm was used 

to track the movement of patient body parts. In our pilot study, we showed that 

the head and shoulders can be simultaneously tracked to quantify dyskinesia in 

the reading task of UPDRS patient videos. Good tracking results were observed 

for short 2s video sequences. This is equivalent to the position data one might 

obtain using a kinematic sensor. One of the disadvantages of registration based 

tracking is the machine time required to perform the registration.  
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3) The severity Score SVS was developed using PCA of the trajectories obtained by 

frame-by-frame tracking of the head and shoulders of the patients. The total 

variance, the number of significant modes of variation, and the standard deviation 

of the percentage contribution of the eigenvalues to the total variance represented 

the total amplitude of movement, directions of simultaneous movement of body 

parts and the distribution of movement along these random directions 

respectively.  

Based on these preliminary results, we performed extensive validation studies that were 

discussed in Chapter 3. The SVS was tested on longer video sequences of 10s and 

multiple body parts comprising of heads, shoulders, chest, knees, feet, arms and the 

reading material were tracked successfully. By this process of simultaneous tracking, we 

emulated a neurologist’s strategy to assess dyskinesia looking at the entire patient instead 

of focusing on individual body parts. Since the SVS is a continuous score, we developed 

a ranking protocol based on general dyskinesia ratings and compared the rankings of the 

SVS with the rankings of four expert neurologists and to the UDysRS rankings. We 

observed a moderate correlation between our semi-automatic score and manual rankings. 

These findings were based on the communication task videos obtained from the UDysRS 

trial studies at the Rush University medical center. 

The tracking method was applied on drinking and walking tasks as well, but the results 

exhibited poor tracking quality and did not qualify for further testing of the score. Figure 

5.1 shows an example of failed tracking in the drinking task. One of the possible 

directions of future work is to utilize a better image tracking method to track patients 

performing activities of daily living. Since these movements are complex, we would need 
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control data comprising of non-dyskinetic patients or normal people performing these 

tasks, to observe the differences between normal and pathological movements. 

 

Fig. 5.1 A moderately dyskinetic patient performing the drinking task. The first figure is 
the first frame with the landmark points in blue circle. The second frame shows the 
trajectories of these landmark points and due to occlusion of the landmark point on the 
chest by the point on the hand, the tracking fails. 
 

We also validated the robustness of SVS by studying its variability with (a) variations in 

the landmark points which are picked manually on the first frame, and (b) longer video 

sequences between 2s – 10s. The SVS is reasonably robust to variations in the positions 

of landmark points and exhibited a high correlation coefficient of 0.9 between the three 

trials. The two main concerns  in picking these landmark points is to maintain the 

sequence in which the landmark points are picked in all the trials in every patient; and to 

pick points in regions of high intensity inhomogeneity. We have shown that 10s of data is 

sufficient to capture the severity of dyskinesia.  
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We also validated our ranking protocol by performing intra- and inter-rater variability 

studies. A high agreement between and within the neurologists showed that our ranking 

protocol was appropriate for validating SVS. We would like to further emphasize the 

significance of our ranking protocol in future studies involving other tasks. Since we have 

already established the validity of the SVS score and the ranking protocol for the 

communication task, new patient data can be analyzed easily without re-ranking the new 

dataset. Given the SVS of a new patient, their relative position in the ranking can be 

determined and comparing their position to the existing patients in the dataset, a 

dyskinesia rating can be determined for them. Simple software could be written to 

perform this analysis automatically. 

In chapter 2 and 3, our score was based on the movement amplitude and directions 

without any information on the type of dyskinesia – dystonia, chorea or tremor. In 

chapter 4, we revisited the SVS and experimented with power spectrum parameters of the 

eigenmodes obtained from the PCA analysis. Approximate entropy of the eigenmode 

time series was found to be redundant as both dystonia and chorea do not occur 

exclusively in all patients. To resolve these components from dyskinetic movements, we 

found frequency dispersion analysis beneficial and the SVS was modified based on these 

findings. The new SVS rankings showed considerable improvement when correlated with 

the neurologists’ and UDysRS rankings. The frequency dispersion parameter gives 

additional information as to the presence of patterns in the movement trajectories. We 

have shown that this technique is sound and it follows results published previously on the 

frequency content of dyskinetic movement. Instead of performing analysis on individual 
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body parts, our technique is streamlined in the aspect that it looks at the net movement of 

all the body parts of the patients simultaneously. 

One aspect of SVS that we have not discussed is its units. Based on its formula, the units 

of SVS is pixel4 per Hz, where distance is measured in pixels and hence units of variance 

is pixel2 and the units of STDP is pixel2 per Hz. . The position coordinates are in image 

domain and since we use uncalibrated videos, we cannot accurately compute their real 

world equivalent. The software used to pick these points translated 1 pixel as 1mm x 

1mm, but it would not be an accurate assumption without actually calibrating the 

cameras. Since all the videos are captured using the same camera, in the same room with 

the same background and approximately the same focal distance between camera and 

patients, our comparison across the RUMC dataset is valid. But if videos, for example 

from the VUMC dataset, are used; we would have to normalize them to make appropriate 

comparison. Since focal distances from the camera were not the same for all VUMC 

videos, by performing simulations, we determined the effect of scaling factors on SVS. It 

was observed that when a scaling factor was applied to the positions of the landmark 

points making them appear zoomed in (scaling factor > 1) or zoomed out (scaling factor 

< 1) , the eigenvalues were scaled by the square of the scaling factor. The distance 

between eyes is approximately similar for most people and we used this measure to 

determine the scaling factor in videos. One of the patients, P, was assigned to have a 

scaling factor of 1 and the distance between the eyes (measured in number of pixels) of 

all other patients was normalized to this patient. So any patient who was farther away the 

camera as compared to P, exhibited a zoomed out effect and their scaling factor was less 

than 1 and patients closer to the camera than P had a scaling factor greater than 1. A 
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similar normalizing procedure can be applied to compare SVS scores of videos obtained 

from different sources, thereby making our score readily usable for retrospective analysis 

of existing videos in several databases. 

Though we have made significant progress in quantifying dyskinesia in patients using 

video data, there still exist certain areas which can be improved upon. We discuss these 

briefly in the following section. 

II. Future Work 

Though the main focus of this work is to quantify dyskinesia, the parameters of the score 

are dependent on the tracking of the patients in the video sequences. Hence there are two 

parts to our approach – tracking and score development. Given that this is the first body 

of work using this approach in this field, we have made substantial progress in 

establishing a strong foundation to our approach. Our technique can be further improved 

in the following aspects. 

II.1 Tracking 

We have used an intensity-based registration algorithm, ABA, for tracking the movement 

of patients in the consecutive frames. Our tracking fails in instances when there is 

insufficient intensity inhomogeneity on the patient’s clothes and there is a tendency for 

the landmark points to slip away. One of the simplest solutions to continue using the 

registration technique is to apply stickers of contrasting colors on patients on the parts to 

be tracked. These stickers are easier to track given their color contrast. Stickers are non-

invasive compared to markers or devices, but this technique can only be applied to new 

data. One of the biggest disadvantages to registration is the time taken to registration a 
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sequence of 300 frames. It takes an average of three hours to complete this process. 

Hence some of the more complex, model-free computer vision approach such as   

predictive filters, optical flow etc. can be applied to track the patients. We advocate 

model free approaches as dyskinesia severity is rated using various tasks, even though we 

have focused only on the communication task. Hence, a separate model would need to be 

developed for each new task which will make tracking a tedious process and less 

universally applicable. Better tracking results can also be obtained by using high speed 

cameras to collect patient data. We have used a regular commercially available camera 

with a recording rate of 30 frames per second. High speed cameras of up to 75,000 

frames per second are available and will be especially useful in tracking patients with 

severe dyskinesia characterized by high speed movements. Since our goal was primarily 

to determine the attributes of dyskinesia and its kinematic equivalents, studying the effect 

of various tracking techniques was out of scope of this work. We do wish to add that by 

improving the tracking process, more accurate trajectories can be obtained and hence, a 

severity score that correlates better with neurologists’ rankings. 

II.2 Score Development  

We have introduced a new way of quantifying dyskinesia, which comprehensively 

combines various attributes of dyskinesia instead of using individual parameters that can 

be correlated with rating scales. We have already stated the advantages of such a 

continuous score. Our score was developed and validated using the communication task. 

We have not looked at tasks which require voluntary actions to be performed.  
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Voluntary motion can be of two types – a sudden voluntary action performed during the 

task such as animated hand movement or toe tapping or repetitive voluntary actions such 

as finger tapping, heel tapping etc. The first type of movement in unpredictable and hence 

harder to quantify which is the reason most research studies specify that patients suppress 

all voluntary movements. The repetitive movements are easier to quantify provided they 

do not occur in the same band of frequencies as dyskinesia. As we have seen, dyskinesia 

manifests itself in the lower frequency bands of 0.5 – 3.5 Hz. and hence any repetitive 

motion performed at low frequencies can be misinterpreted as dystonia. This problem can 

occur in patients whose disability in performing the task due to Parkinson’s disease may 

cause slowness in their movements. Gesture analysis and pose analysis can otherwise be 

used to quantify the voluntary movement. By including the quantification of voluntary 

motion, we feel that our severity score would be a comprehensive measure that can be 

used to quantify dyskinesia in patients successfully.  

Sensor based approaches claim that their techniques can be used to capture diurnal 

changes in dyskinesia over 24 hour periods. Capturing and processing 24 hours of patient 

video is a tedious process and this may be one potential advantage of sensor techniques 

over ours. But we could still capture diurnal fluctuations of dyskinesia over different time 

periods in a day to study ON-OFF states. The accuracy of such studies remains to be seen 

as image quality is a limiting factor for the success of tracking and hence the score. 

Another interesting application of our work is studying movement inconsistencies in 

autism, palsy seizures etc. Though the pathologies are significantly different and the 

severity score may need to be modified, we believe that this idea could be used 



98 
 

successfully in these areas as well.  Thus we have developed a novel technique to 

quantify drug-induced dyskinesia in Parkinson’s disease patients using patient videos. 
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