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ABSTRACT

Record linkage is the task of identifying records from multiple data sources that

refer to the same individual. Private record linkage (PRL) is a variant of the task in

which data holders wish to perform linkage without revealing identifiers associated with

the records. PRL is desirable in various domains, including health care, where it may

not be possible to reveal an individual’s identity due to confidentiality requirements. In

medicine, PRL can be applied when datasets from multiple care providers are aggregated

for biomedical research, thus enriching data quality by reducing duplicate and fragmented

information. Additionally, PRL has the potential to improve patient care and minimize the

costs associated with replicated services, by bringing together all of a patient’s information.

This dissertation is the first to address the entire life cycle of PRL and introduces

a framework for its design and application in practice. Additionally, it addresses how

PRL relates to policies that govern the use of medical data, such as the HIPAA Privacy

Rule. To accomplish these goals, the framework addresses three crucial and competing

aspects of PRL: 1) computational complexity, 2) accuracy, and 3) security. As such, this

dissertation is divided into several parts. First, the dissertation begins with an evaluation of

current approaches for encoding data for PRL and identifies a Bloom filter-based approach

that provides a good balance of these competing aspects. However, such encodings may

reveal information when subject to cryptanalysis and so, second, the dissertation presents

a refinement of the encoding strategy to mitigate vulnerability without sacrificing linkage

accuracy. Third, this dissertation introduces a method to significantly reduce the number

of record pair comparisons required, and thus computational complexity, for PRL via the

application of locality-sensitive hash functions. Finally, this dissertation reports on an

extensive evaluation of the combined application of these methods with real datasets, which

illustrates that they outperform existing approaches.
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CHAPTER I

INTRODUCTION

1.1 Overview

Record linkage is the task of identifying records from multiple data sources that refer to

the same individual. For example, in the medical domain, record linkage can be applied

to patient records held by various clinical care providers in order to identify records that

refer to the same patient. The primary benefit of record linkage is that it enables a more

complete picture of an individual by bringing together his information.

Record linkage in its most basic form, however, is not always possible due to regula-

tory constraints and social concerns about personal privacy [113]. For example, data sharing

policies, such as the Health Insurance Portability and Accountability Act (HIPAA) Privacy

Rule, prohibit sharing identifying patient information in some cases [112]. In light of these

concerns and restrictions, private record linkage (PRL) approaches have been developed,

based on the use of encoded values. PRL enables data holders to identify records referring

to the same individuals without revealing identifying information about the individuals [34].

1.2 Applications of Private Record Linkage

When analyzing a dataset resulting from the aggregation of data from multiple sources,

record linkage enriches data quality, prevents duplication, and ultimately enables more

accurate analysis [56]. If record linkage is not performed, the aggregated dataset may

contain multiple records corresponding to the same individual.

PRL can enhance data analysis in many domains. Several examples, both within

and beyond the field of medicine, are provided below.
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1.2.1 PRL as a Precursor to De-identified Data Sharing for Research

The medical domain is of particular interest to this dissertation because sharing patient

information is critical for biomedical research [98]. The U.S. National Institutes of Health

(NIH), for instance, requires that patient information used in federally funded research

studies be released for research only in a form “free of identifiers that would permit linkages

to individual research participants and variables that could lead to deductive disclosure of

the identity of individual subjects” [114]. In other words, information that could identify

an individual should not be shared.

For a practical example, imagine that a life science researcher wishes to conduct a

study on the relationship between two distinct biomedical attributes (e.g., genetic sequence

and disease status) and needs to use information from multiple data sources to meet a

minimal sample size for statistical significance. A patient may visit multiple health care

providers, where his information is collected and applied in distinct studies [84]. If the

patient’s information is duplicated across providers, and this information is then aggregated,

queries issued on the resulting dataset may overestimate correlations. Consider the example

shown in Figure 1.1(a). Only one individual has the genetic sequence “–AG–” and fatal

outcome, but the query result from the aggregated dataset indicates two individuals harbor

this variant.

On the other hand, if a patient’s information is fragmented, such that a particular

attribute (e.g., genetic sequence) is submitted from one provider and a separate attribute

(e.g., outcome) is submitted by another provider, the query results would be an underesti-

mate of the correlation of the two attributes. Consider the example shown in Figure 1.1(b).

One individual has the genetic sequence “–AG–” and fatal outcome, but the query result

from the aggregated dataset indicates no individuals have this sequence and outcome.

However, PRL can be applied as a precursor to de-identified data sharing to mitigate

bias in such statistical analyses – without requiring revelation of identifying information.

For an example, see Figure 1.2.
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(a) Duplicated data can lead to overestimates of correlation.

(b) Fragemented data can lead to underestimates of correlation.

Figure 1.1: Problems with aggregating data without performing record linkage. The records
referring to the same individual are shown in green.
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(a) Step 1: Private record linkage. Encoded identifiers (where “E” indi-
cates an encoding function) are sent to the centralized repository, where
record linkage is performed. A note is made that records V1 and R1 refer
to the same individual.

(b) Step 2: De-identified data sharing. The de-identified data is then sent
to the centralized repository, along with the record ID, so that records
identified in the previous step as referring to the same individual, can
then be merged.

Figure 1.2: PRL can be applied as a precursor to de-identified data sharing, to enable more
accurate data analysis. The records referring to the same individual are shown in green.
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1.2.2 PRL for Improving Medical Care

The decentralized nature of health care systems means that a patient’s medical information

is stored in a fragmented form across multiple health care providers. A more complete view

of a patient’s medical information can be realized by bringing together the separate pieces

of information held by providers. This has the potential both to increase patient safety

and decrease the cost of medical care by allowing a care provider to determine if certain

examinations have already been rendered, thus minimizing replication of services.

A universal patient identifier (UPI), a unique number assigned to each patient and

shared across providers, has been proposed for use in the United States health care system

and has been the topic of much debate [11, 28, 57, 106, 122]. While such an identifier, if

recorded consistently, would provide a straightforward means for aggregating a patient’s

information, this idea has met opposition on many fronts.

One objection to a UPI is the challenge of administering it on a large scale. For

example, consider another number that is intended to be a unique identifier – the Social

security number (SSN). It has been reported that more than 20 million people have been

assigned more than one SSN, and more than 40 million SSNs are associated with multiple

individuals [13].

Even if a unique number is assigned to each patient, missing data and data entry

errors can present a challenge in identifying all of a patient’s records. In one study, a

linkage of two medical datasets using SSN was performed as part of the Shared Pathology

Information Network project at the Regenstrief Institute for Health Care [51]. In this study,

35% of the records lacked SSNs and were therefore unable to be linked. Amongst records

where SSNs were present, the value of each SSN was recorded incorrectly in up to 9.2% of

the records. This demonstrates that even a supposedly unique identifier is not necessarily

a magic bullet that will provide for an efficient and accurate way to aggregate all of the

records corresponding to an individual.

In addition to the administrative challenges associated with a UPI, there are other
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social objections to human enumeration. Notably, a 1973 U.S. Department of Health and

Human Services report rejected any move toward “Standard Universal Identifiers” on con-

fidentiality grounds [28]. Therefore, due to social concerns and the administrative burden,

the use of UPIs has not come to fruition in the U.S. health care system.

To summarize, in the absence of a consistently recorded universal patient identifier,

PRL can add great value in medical care. A more complete view of a patient’s medical

information, afforded by record linkage, has the potential both to increase patient safety

and decrease the cost of medical care by minimizing replication of services.

1.2.3 PRL for Public Health Surveillance

PRL can also be applied to strengthen surveillance activities in the context of public health.

For example, the U.S. Food and Drug Administration (FDA) intends to monitor the safety

of drugs and FDA-regulated medical products in real time, rather than retrospectively. A

key aim of the FDA’s recently launched project, the Sentinel Initiative, is to develop a fully

operational active surveillance system for monitoring the safety of FDA-regulated medical

products [3]. The initiative will integrate information from electronic medical records with

existing methods for adverse event detection and post-market surveillance [117]. PRL has

the potential to aid the FDA’s efforts to monitor, in real time, the safety of drugs and

medical products by integrating information from multiple sources.

1.2.4 PRL for Monitoring Participation in Drug Trials

A clinical trial is a study commonly used in pharmaceutical development to determine the

safety and efficacy of a drug. Patients with a condition the drug is intended to treat are

recruited for participation in the trial. An important requirement is that participants take

part in only a single trial at a time; if a patient were to participate in multiple trials and

have an adverse effect, it would be unclear which drug caused the effect.

Clinical trials often compensate patients for their participation; however, this leads
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some patients to participate in multiple trials in order to receive compensation for each [6].

As trials are covered by the HIPAA Privacy Rule [112] and cannot release identifying infor-

mation about trial participants, detecting these “professional guinea pigs” can be difficult.

However, PRL provides a tool which trial administrators can use to detect and exclude

patients participating in multiple trials, thus facilitating more accurate pharmaceutical re-

search.

1.2.5 PRL Outside of the Medical Domain

PRL also has many applications outside of the medical domain. For an example, consider

PRL in the context of counter-terrorism efforts. When a terrorist suspect is identified by an

intelligence agency, PRL can be applied to identify records from multiple data sources that

cannot freely share identifying information. The intelligence agency can then detect aliases

or combine information about the individual to learn about his actions or co-conspirators

[37]. For example, the European Union recently started to share information about inbound

travelers (i.e., Passenger Name Records) to U.S. officials for inspection against terrorist

“watchlists” [73]. These actions have met significant opposition due to concerns over per-

sonal privacy and autonomy [47]. However, the adoption of PRL could alleviate this tension

because it could enable a protocol in which only records referring to suspects on watchlists

would be revealed [75].

1.3 Contributions of this Work and its Potential Impact on the Field of
Medicine

Now that we have considered several applications of PRL both within and beyond the field

of medicine, we examine the specific contributions of this research and consider its potential

impact on the field of medicine. The sharing of de-identified patient information for research

is a common practice in the medical field because it preserves clinically-relevant information

while complying with data sharing policies set forth in HIPAA. While de-identified data is
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useful for many research applications, performing record linkage on de-identified data is not

ideal because the goals of record linkage and de-identification are fundamentally at odds

with one another. The goal of de-identification is to “unlink” an individual’s record from

his identity. The goal of record linkage, in contrast, is not only to link one record to an

individual, but to link all of his corresponding records∗. Clearly, these goals are in conflict,

and de-identified data is ill-suited for record linkage.

A common method for performing PRL is to encode patient records such that the

contents are indecipherable but can still be compared to one another in order to estimate

the similarity of records. However, the sharing of encoded data for PRL has not yet become

widely accepted in the field of medicine. This is due, in part, to several open questions

about the feasibility and security of PRL. Specific open research questions are:

1. Can PRL be performed securely without revealing sensitive patient information?

2. Can highly accurate record linkage be achieved when records are encoded?

3. How well does PRL scale for the large datasets required for medical research?

The research described in this dissertation focuses on these core research questions

and makes the following specific contributions:

1. Evaluation of proposed encoding techniques for use in PRL.

While many encoding techniques have been presented in the literature, the extent

to which they protect patient information, and their accuracy with respect to one

another, has not been quantified on a common scale. Chapter 3 describes an eval-

uation of private string comparators (PSCs) in terms of correctness, computational

complexity, and security. We identify one of the encoding techniques as particularly

promising for use in PRL. However, additional work revealed a security vulnerability

of this encoding technique. Specifically, work performed jointly with collaborators

∗Note that while the goal of PRL is to link all records corresponding to an individual together, it is not
necessary to reveal the individual’s identity. In fact, the explicit goal of PRL is to bring together all records
corresponding to an individual without revealing his identity.
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demonstrated that, for given parameter settings, a frequency-based cryptanalysis at-

tack can reveal some plaintext values [76]. Building upon these results, a novel, more

robust encoding that addresses the security concern is described in Chapter 4.

2. Incorporation of a field weighting technique into a secure encoding method.

Different data fields have different discriminatory powers in resolving identity (e.g.,

Forename is more useful in discriminating between individuals than Gender), and an

accurate record linkage algorithm will leverage this information. Chapter 4 introduces

a method to incorporate field weights into an encoding technique in order to account

for the varying discriminatory powers of data fields. This provides a means for as-

signing greater weight to more discriminatory fields, thus facilitating highly accurate

record linkage.

3. Development of a method that reduces the computational complexity of

PRL.

Record linkage is a computationally intensive process and, in practice, its sheer com-

putational complexity is a barrier to its implementation. The matter of scalability

is addressed in Chapter 5, and a novel algorithm that reduces the computational

complexity of record linkage is developed, presented, and evaluated. This algorithm

demonstrates that PRL can be performed efficiently, and accurately, on very large

datasets.

The answers to these questions pave the way for a robust, real-world PRL applica-

tion. This PRL framework is presented and evaluated in Chapter 6.

1.4 Private Record Linkage and Policy

While the methods described in this dissertation will demonstrate that PRL is feasible and

secure from a technological standpoint, the policies governing this technology are equally

important. If sharing an encoded form of identifying information is not permissible with
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respect to organizational or legal policies, the fact that it is technologically possible ceases

to be relvant. Therefore, the implications for PRL of two key documents that govern the use

of medical data, HIPAA and the Health Information Technology for Economic and Clinical

Health (HITECH) Act of the American Recovery and Reinvestment Act (ARRA) stimulus,

are examined in Section 7.4 of this dissertation.

1.5 Dissertation Outline

In this chapter, we introduced the general idea of record linkage, a special case in the form

of PRL, and several applications both within and beyond the field of medicine.

The remainder of this dissertation is organized as follows. Chapter 2 presents the

steps involved in the record linkage process and describes the datasets and implementa-

tion details used throughout this dissertation. Chapter 3 evaluates PSCs to determine the

state of the art and to quantify the accuracy, security, and computational complexity of

existing methods on a common ground. This PSC evaluation identifies security concerns

for existing encoding techniques, which are addressed by work described in Chapter 4 to

develop a novel, more secure encoding technique. Chapter 5 presents a method for reducing

the computational complexity of PRL and therefore improving its scalability. Chapter 6

brings together the work of the previous chapters and presents an evaluation of the entire

PRL framework. Finally, Chapter 7 summarizes the dissertation and its implications while

discussing research questions that are left to future work.
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CHAPTER II

BACKGROUND AND EVALUATION SETTINGS

This chapter details the steps involved in record linkage. Additionally, it describes

the framework, implementation details, and datasets used throughout this research.

2.1 Steps Involved in Record Linkage

Record linkage, the task of identifying records that refer to the same individual, can be

viewed as a function where the inputs are sets of records, and the output is the set of

Predicted Matches – record pairs predicted to refer to the same individual – and Predicted

Non-matches – record pairs predicted not to refer to the same individual. The record

linkage function can be decomposed into several distinct steps. The steps central to the

record linkage process are described in detail in Sections 2.1.1 through 2.1.8 and are visually

shown in Figure 2.1.

While a comprehensive list of the notation used throughout this dissertation can be

found on page xxii, highlights are as follows. We consider the linkage of records from two

data holders, who we call Alice and Bob. Each record is comprised of f fields. A denotes

the set of records provided by data holder Alice, |A| is the number of records in dataset

A, ax indicates the xth record within set A, and ax[i] refers to the value of the ith field

in record ax, where i ∈ {1, . . . ,f}. Similarly, B, |B|, by, and by[i] correspond to the set

of records provided by data holder Bob. The goal of record linkage, then, is to correctly

classify all record pairs, the space of the Cartesian product of A and B, into the classes

M (Predicted Matches) and U (Predicted Non-matches) such that the record pairs in the

class Predicted Matches refer to the same individual (i.e., are True Matches) and the record

pairs in the class Predicted Non-matches do not refer to the same individual (i.e., are True

Non-matches).
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Figure 2.1: A sketch of the current record linkage process.

2.1.1 De-duplication

Record linkage becomes more straightforward if each individual is represented by only a

single record within each dataset. Therefore, the first step in record linkage, de-duplication,

is often an internal record linkage within each dataset to remove duplicate records.

2.1.2 Field Selection

In this step, a set of fields describing characteristics of an individual (e.g., Gender, Date

of Birth (DOB), Forename, etc.), is selected for use in record linkage. In the absence of a

unique identifier, quasi-identifiers can be used. The term “quasi-identifier” was first coined

by Dalenius [38] and refers to fields that reveal some information about an individual, but

not necessarily enough to uniquely identify an individual. For example, DOB and Gender

are quasi-identifiers. While no single quasi-identifier can necessarily uniquely identify an

individual, when considered in combination, a set of quasi-identifying attributes may be

able to uniquely identify an individual. It is important that, to the extent possible, the
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set of fields selected is sufficient for uniquely identifying an individual∗ (i.e., records should

have the same values for all fields only if they refer to the same individual).

Additionally, one should choose fields for which the records contain data of high

quality. For example, imagine that the set of quasi-identifiers {Forename, Surname, Gender,

DOB, Ethnicity, Telephone number} were, in combination, able to uniquely identify an

individual. However, suppose that Forename was not recorded for half of the records in

the datasets to be linked. In this case, additional fields may be needed to ensure that the

uniqueness property holds for the selected fields.

2.1.3 Data Standardization

The data holders involved in the linkage should agree upon a set of standardization and

pre-processing rules. The manner in which data values are recorded must be standardized

across all parties if accurate record linkage is to be performed. For example, it is not suitable

for one party to encode Gender as “male” and “female” while another party encodes gender

as “M” and “F”. Examples of pre-processing rules are that all text should be converted to

the same case, hyphens should be removed, etc.

While data standardization is imperative for accurate record linkage, it is not the

focus of this work. For additional information on data standardization, please see the work

by Herzog [56].

2.1.4 Blocking

When two datasets, A and B, are linked, each record in dataset A must be compared to each

record in dataset B. To reduce the number of record pair comparisons required, a technique

called blocking is often used, in which record pairs unlikely to be True Matches are removed

from consideration. Consider the example shown in Figure 2.2(a). In this example, datasets

A and B each contain four records (i.e., |A| = |B| = 4). In order to identify the two true

∗In some cases, it may not be possible to acquire enough fields to distinguish between two people. An
example of this situation is a dataset that contains records corresponding to twins, between whom it is often
difficult to differentiate in record linkage applications.
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(a) No blocking algorithm. (b) Blocking by first letter of Surname.

Figure 2.2: a) Each record from dataset A, shown in blue, is compared with each record
from dataset B, shown in purple, and the record pairs are then classified. When a blocking
algorithm is not utilized, 16 record pair comparisons are required. b) When the first letter
of Surname is invoked as a blocking variable, only record pairs having the same first letter
of their Surname are compared to one another. Other record pairs remain unexamined
and are shown in gray. Under this blocking scheme, only 5 record pair comparisons are
considered and subsequently classified.

matches, shown in green, 16 record pairs must be considered. In Figure 2.2(b), a blocking

strategy is utilized, such that only record pairs for which the first letter of the Surname

agrees are compared to one another. This removes from consideration 11 record pairs –

shown in gray – and reduces the number of record pairs that must be compared to 5.

Blocking can also be viewed as a partitioning problem, as demonstrated in Figure

2.3. Similar records are grouped into the same partition, and only record pairs within

the same partition are compared to one another, thus reducing the number of record pair

comparisons required.

While blocking has great potential for reducing the number of record pair compar-

isons required, it may also negatively affect linkage accuracy if record pairs that are True

Matches are removed from consideration during the blocking step. Therefore, care must be

taken to balance reducing computational complexity without reducing accuracy.

A blocking method for use in PRL is described in Chapter 5.
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Figure 2.3: Blocking can be viewed as a partitioning problem. In this example, the first
letter of Surname is invoked to partition the records.

2.1.5 Field Comparison

Records are composed of attributes called fields (e.g., Surname, Forename, and City). In

the field comparison step of record linkage, a similarity function is applied to measure the

similarity of two field values, as shown in Figure 2.4. The inputs to the field comparison

step are the field values for two records. The output is a vector, with an entry corresponding

to each field, representing the similarity of the field values of the record pair. This vector is

often called the γ vector. Depending upon the similarity function used, similarities may be

binary (i.e., a value drawn from the set [0,1]) or continuous (i.e., a real value drawn from

the range [0,. . . ,1]) to represent an approximate measure of similarity. Examples of binary

and approximate similarity are shown in Figures 2.4(a) and 2.4(b), respectively.

A key component of PRL is private field comparison – the process of determining

the similarity of two field values without knowledge of the plaintext values. Plaintext

values are those that are legible to the human eye. Encoded field values are referred to as
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(a) Binary field comparison

(b) Approximate field comparison

Figure 2.4: The field comparison step of record linkage. The field values of a given record
pair are input to a similarity function, and the γ similarity vector corresponding to the
record pair is output.

ciphertexts and are illegible to the human eye. Several techniques for performing private

field comparison are explored in Chapters 3 and 4.

2.1.6 Field Weighting

In this step, fields are weighted according to their discriminatory power in resolving iden-

tity. For example, Surname has greater discriminatory power than Gender and should

be weighted accordingly when determining record pair similarity. Fellegi and Sunter pro-

posed an algorithm for determining field weights that is commonly used in record linkage

applications today [46]. This algorithm is described below.

The Fellegi-Sunter Algorithm

The Fellegi-Sunter (FS) field weighting algorithm uses a statistical approach based on esti-

mation of the probability that a field agrees amongst record pairs that are True Matches,

the m value (Equation 2.1), and the probability that a field randomly agrees amongst record
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pairs that are True Non-matches, the u value (Equation 2.2).

m[i] = P (ax[i] == by[i] | (a, b) ∈M) ∀ ax ∈ A, by ∈ B (2.1)

u[i] = P (ax[i] == by[i] | (a, b) ∈ U) ∀ ax ∈ A, by ∈ B (2.2)

where m[i] is the m value for the ith field, u[i] is the u value for the ith field, ax is a record

in dataset A, by is a record in dataset B, and “==” denotes field agreement.

An example of m and u values for sample fields are shown in Figure 2.5(a). In this

example, Forename agrees amongst 80% of True Matches and agrees by chance amongst

0.035% of True Non-matches.

These calculations unfortunately require knowledge of the true match status of

record pairs. Sometimes a subset of record for which the true match status is known

can be used to calculate these probabilities. In the absence of such knowledge, an Expec-

tation Maximization (EM) algorithm can be used to estimate the conditional probabilities

associated with each field [49, 66, 108, 118].

The conditional probabilities are then used to calculate agreement weights, wa[i],

and disagreement weights, wd[i], for each field i = 1,. . . , f :

wa[i] = log

(
m[i]

u[i]

)
(2.3)

wd[i] = log

(
1−m[i]

1− u[i]

)
(2.4)

Agreement and disagreement weights for sample fields are shown in Figure 2.5(b). To

summarize, the conditional probabilities of field agreement given match status are calculated

(or estimated) for each field. These conditional probabilities are then applied to calculate

agreement and disagreement weights for each field. For an example, see Figure 2.5.
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(a) Conditional probabilities. (b) Agreement and disagreement
weights.

Figure 2.5: The FS algorithm for field weighting. Sample conditional probabilities, and the
associated agreement and disagreement weights, are shown.

2.1.7 Record Pair Comparison

In the record pair comparison step, the similarities of the fields in a record pair are consol-

idated into a single measure of record pair similarity, as demonstrated in Figure 2.6.

One method for record pair comparison is to apply the agreement and disagreement

weights associated with each field to calculate a similarity score for the record pair. The

similarity score is calculated for each record pair according to Equation 2.5.

similarity score(ax, by) =

f∑
i=1

wa[i]
γ(ax,by)[i] × wd[i]1−γ(ax,by)[i] (2.5)

Therefore, if field i agrees, the agreement weight associated with field i, wa[i], will

be added to the total score for the record pair; if field i disagrees, the disagreement weight

associated with field i, wd[i], will be added to the total score for the record pair, as shown

in Figure 2.6.

At this point, we would like highlight the terminology used when discussing field

values as compared to record pairs. We use the terms “agree” and “disagree” when refer-

ring to individual field values within a record pair, and the terms “Predicted Match” and

“Predicted Non-match” when discussing the classification status of the entire record pair.

Therefore, it is possible for some field values to disagree within a record pair classified as a

Predicted Match, and similarly for some field values to agree within a record pair classified

as a Predicted Non-match.
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Figure 2.6: The record pair comparison step of record linkage. In this step, the γ field
similarity vector, calculated in the field comparison step shown in the gray dotted box, and
the field weights are input to a record pair comparison function. The output is a single
measure of the similarity of the record pair.
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2.1.8 Record Pair Classification

In the record pair classification step, a classifying boundary is drawn between record pairs

to form the classes Predicted Matches and Predicted Non-matches. In traditional record

linkage, a third intermediate class may by included, in which record pairs are set aside for

clerical review to determine the true match status. However, in the context of PRL, clerical

review clearly compromises privacy and thus this third, intermediate class is excluded.

2.2 Protocol

Within this dissertation, we consider the linkage of records from two data holders, to whom

we refer as Alice and Bob. The following PRL protocol is then followed.

1. First, Alice and Bob exchange the information required to encode their records.

2. Next, Alice and Bob locally encode their records and send these encodings to a third

party, Charlie.

3. Finally, Charlie executes the linkage protocol.

We adopt the third party model based on the observation that such parties exist in

real world privacy-preserving data sharing environments (e.g., [94]). In addition, in many

cases, the involvement of third parties provides for more efficient protocols [34].

2.3 Implementation Details

Several computers were used for the experiments described in this research. Details of these

computational resources are summarized in Table 2.1. Several machines are required, due

to the computational complexity and scale of the experiments. Therefore, while running

times reported throughout this dissertation are not all comparable, each set of experiments

intended to be comparable are run on the same machine. Throughout the remainder of this
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Computer
ID

System memory Processor Operating system

δ 4 GB 2.5 GHz, quad-core Ubuntu

ε 16 GB 2 GHz, octa-core Ubuntu server

ζ 4 GB 2 GHz dual-core Microsoft Windows Server 2003

θ 16 GB 3.4 GHz, octa-core Ubuntu

ι 26 GB 2.2 GHz, 48 multi-core CentOS

Table 2.1: Computational resources used for experiments.

dissertation, when experiments are described, the set of computational resources utilized

for the experiments is noted.

Unless otherwise indicated, all methods are implemented in Perl, a language known

for its string handling capabilities. The running time is measured using the Time::HiRes

package. Datasets are stored as flat text files unless otherwise noted.

2.4 Description of Datasets

For the purposes of empirical evaluation, two datasets are studied in this work. The first,

described in Section 2.4.1, is a large, publicly available dataset based on voter registration

records. The second, described in Section 2.4.2, is based on patient information, and is

therefore not publicly available.

2.4.1 North Carolina Voter Registration Records

To provide others with the opportunity to evaluate our research on the same dataset, the

publicly-available North Carolina voter registration (NCVR) records [5] are used throughout

this research. The fields contained in these records are shown in Table 2.2. This dataset

contains 6,190,504 individual records.

Datasets for record linkage research are notoriously difficult to obtain for several

reasons. The first step in creating a dataset for record linkage research is to obtain records

from multiple data holders pertaining to a single population. However, regulations on data
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sharing can make this difficult [31]. The second step in creating a dataset for record linkage

research is to manually curate the records to determine the true match status of record

pairs. This can be laborious and unwieldy because the number of record pairs requiring

classification is quadratic with respect to the number of records in the files.

To sidestep this difficulty, we implement a “data corrupter” based on the research of

Christen and Pudjijono [31]. The corrupter introduces optical character recognition errors

(e.g., S swapped for 8), phonetic errors (e.g., ph swapped for f ), and typographic errors, such

as insertions, deletions, transpositions, and substitutions. The corrupter introduces errors at

rates consistent with the error rates seen in real datasets [31]. Phonetic errors are introduced

with probability 3%, optical character recognition errors with probability 1%, insertions

with probability 5%, deletions with probability 15%, substitutions with probability 35%,

and transpositions with probability 5%.

In addition to these character-level errors, we extend the data corrupter to introduce

token-level errors. These errors are introduced at frequencies estimated to be encountered

in real datasets. Nicknames are substituted for Forenames (and vice-versa) with probabil-

ity 15%, Street addresses are changed to represent an individual moving, with probability

10%, Surnames are changed with probability 10% for females (due to the common prac-

tice of taking the husband’s surname), 1% for males, and Surnames are hyphenated with

probability 1%. The Nicknames are based on the Massmind Nicknames Database [4], the

Surnames are based on the 2000 U.S. Census names dataset [111], and the Street addresses

are selected from a subset of the records not used in the record linkage datasets. Figure 2.7

provides an example of two records and their corrupted counterparts.

Therefore, for the NCVR dataset, given a dataset A, a second dataset B is generated

by corrupting each record in A. The record linkage experiments can then be tested using

record files A and B. While a “true” record linkage dataset – where the datasets are

constructed independently – would be ideal, datasets created in the manner described are

useful for benchmarking and testing new ideas.
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Figure 2.7: Sample records and their corrupted counterparts. Fields affected by corruption
are highlighted in bold.

Further details about the NCVR dataset are provided in Table 2.2. In general, there

are more unique values in the corrupt dataset (dataset B) because random errors have been

introduced. Additionally, there are fewer missing values in the corrupt dataset because

substitutions are sometimes introduced when the original value was missing.

2.4.2 Vanderbilt Patient Records

In addition to the NCVR dataset, we evaluate our work using a real dataset composed

of identifiers and demographics from patient records. The records were extracted from

StarChart, an electronic medical record system in use at Vanderbilt University Hospital.

Vanderbilt University Hospital is an academic tertiary care facility with over 500 adult beds

and 34,000 admissions annually.

The records were manually reviewed by the medical records department using re-

ports from clinicians, chart inspection, and consultation of demographics records to con-

struct a “gold standard” true match status. The review was accomplished in the context

of clinical operations and was completed before our study began. The Vanderbilt dataset

contains 36,658 patient records. The fields in this dataset and other details are provided in
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# Unique values # Missing values

Dataset A Dataset B Dataset A Dataset B

Surname 274,790 1,571,919 0 0

Forename 187,742 912,132 39 22

Middle name 263,689 986,388 409,843 250,309

Birth state 67 14,802 980,455 599,192

City 793 596,650 342 214

State 19 5,139 69 40

Street name 94,343 2,248,029 345 219

Street type 190 25,716 202,248 123,618

Street suffix 16 1,136 5,767,388 3,526,782

Ethnicity 11 1,282 66 38

Gender 7 1,030 1 0

Table 2.2: Details of the North Carolina Voter Registration dataset

Table 2.3.

As Table 2.3 indicates, many records in the Vanderbilt dataset contain missing field

values. We chose not to include these incomplete records in many of our experiments

because evaluating our methods without the complicating factor of missing data allows for

a straightforward evaluation of each method. Once our methods have been evaluated in the

straightforward setting, they can be modified to account for more complex scenarios, such

as when field values are missing. Properly handling missing field values is imperative for the

success of a PRL application however. Therefore in Chapter 6, we use the full Vanderbilt

patient data to evaluate the complete PRL framework presented, and we evaluate different

ways to handle missing data.
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# Unique values # Missing values

Dataset A Dataset B Dataset A Dataset B

SSN 25,552 23,069 11,084 13,571

Surname 12,479 14,335 13 37

Forename 7,878 7,778 3 10

Middle name 2,549 1,333 16,924 24,129

DOB 21,015 19,915 7 10

Gender 3 3 548 3,529

Ethnicity 7 7 19,465 26,166

Street address 27,534 23,972 8,481 11,903

City 988 861 8,261 11,047

State 43 44 8,265 11,235

Zip code 1,149 1,003 8,307 11,267

Telephone 30,351 25,780 5,385 10,203

Table 2.3: Details of the Vanderbilt dataset
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CHAPTER III

EVALUATION OF PRIVATE STRING COMPARATORS

PRL requires the application of field comparators that do not require knowledge

of the plaintext field values. A number of private string comparators have been proposed,

but little research has compared them in the context of a real record linkage application.

This chapter describes a principled and comprehensive evaluation of six private string com-

parators in terms of three key properties: 1) correctness of record linkage predictions, 2)

computational complexity, and 3) security. A publicly-available dataset, derived from the

North Carolina voter registration dataset, is used to evaluate the tradeoffs between the

aforementioned properties. A notable result is that private string comparators that tok-

enize, encode, and compare strings yield highly accurate record linkage results. However,

as a tradeoff, we observe that such private string comparators are less secure than those

that map and compare strings in a reduced dimensional space.

3.1 Introduction

As discussed in Chapter 1, the sharing of plaintext data for record linkage is not always

possible due to societal concerns and regulatory constraints. As a result, the process of

PRL has been established as a variant of the task in which the data owners can perform

record linkage without revealing the identities of individuals to whom records correspond

[34].

The focus of this chapter is the field comparison step of record linkage, as discussed

in Section 2.1.5. Specifically we examine methods for private field comparison that allow

one to determine the similarity of two field values without knowledge of the plaintext field

values.

A number of private string comparison techniques have been proposed in the litera-
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Figure 3.1: Private field comparison based on hashed field values.

ture, begging the question, “Which is the best method”? It should first be recognized that

PSCs are generally designed to compare encoded versions of an individual’s identifying val-

ues. Unfortunately, many of these approaches function only when field values are recorded

consistently and without error across disparate data sources [8, 18, 45]. This neglects the

fact that variation (e.g., Nickname used in place of Forename) or typographical error can

corrupt personal identifiers [55]. In such cases, the application of models that only detect

equivalence can result in subpar record linkage results. For example, the hashed value of

“Jon” appears equally distant from the hashed values of “John” and “Jiminy” whereas, in

fact, “Jon” is far more similar to “John” than to “Jiminy”∗. See Figure 3.1 for an example

of private field comparison based upon a hashed version of field values. Hashing is not a

similarity-preserving encoding, so the system loses the ability to determine the approximate

similarity of hashed values. The only measure of similarity, given this type of encoding, is

binary, meaning that it can be determined only if the field values agree completely (i.e., a

similarity of 1) or do not agree completely (i.e., a similarity of 0).

In recognition of this limitation, various approximate comparators have been devel-

oped to measure string similarity, some of which have been translated into PSCs [18, 32,

45, 103]. While there is clear evidence (e.g., Porter et al. [93] and Tromp et al. [110]) that

accounting for string similarity can improve record linkage results, it is unclear which PSC

∗A cryptographic hash function is a deterministic encoding function that converts a plaintext string into
a fixed-length encoding.
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is best for PRL applications.

We recognize that several reviews of PSCs have been conducted [109, 115], but they

lack either the breadth (i.e., range of methods considered) or the depth (i.e., a quantitative

evaluation of the correctness, security, and computational complexity) necessary to compare

approaches on a common scale. For instance, Elmagarmid and colleagues [44] presented a

comprehensive survey of record linkage techniques, but did not consider the privacy issues

and the related PRL techniques. Meanwhile, Trepetin [109] performed a brief review of

PSCs in association with the introduction of a new PSC, but the review focused more on a

qualitative discussion of computational complexity, rather than record linkage correctness

and security of the various approaches. Another paper [53] provides an overview of PRL,

current approaches, and open research questions, but again does not provide a formal,

quantified analysis of existing approaches. In another study, Verykios and colleagues [115]

performed a principled review of PSCs, but focused on string comparison more generally,

rather than string comparison within the context of record linkage. Moreover, the latter

study also neglected a formal security analysis of the PSCs.

3.1.1 Contributions

Given the current state of affairs, in order for data holders to perform PRL, they must

sift through a variety of approaches that have not been directly compared to one another.

Therefore, there is a need for a comprehensive evaluation of existing PSCs that places the

comparators on a level playing field. The research described in this chapter makes the

following contributions:

1. Taxonomy: We perform a comprehensive literature review of PSCs. In doing so, we

derive a taxonomy of existing approaches, which classifies PSCs into distinct classes of

techniques. Classifying the approaches allows for analysis of features that are common

to each class of methods.

2. Framework: We introduce a PRL framework suitable for PSCs that measure approx-

28



imate field similarity, rather than field equivalence alone. Notably, this is an aspect

of the broader PRL problem which has been neglected.

3. Common Criteria: We define several quantifiable measures to compare PSCs on

common scales. These measures enable data holders to investigate the tradeoffs be-

tween PSCs on three critical axes, namely 1) correctness in record linkage, 2) compu-

tational complexity as measured by running time, and 3) security.

4. Evaluation: We systematically investigate the relationship between six classes of

PSCs using a publicly available dataset. The fields in the dataset consist of personal

identifiers and demographics that have been proposed as key attributes for record

linkage (e.g., Forename and Street address).

3.1.2 Chapter Outline

The remainder of this chapter is organized as follows. In Section 3.2, we describe related

work and introduce a taxonomy of PSCs. In Section 3.3, we present the specific record

linkage methodologies used in this work and the details of the dataset utilized in this

evaluation. Additionally, Section 3.3 details the parameters used for each comparator in

addition to the evaluation metrics. Then in Section 3.4, the correctness, computational

complexity, and security metrics are reported for each comparator. Section 3.5 provides a

discussion of factors affecting the performance of each comparator, limitations, and future

work. Finally, we conclude and summarize this chapter in Section 3.6.

3.2 Related Work

In this section, we introduce a taxonomy for private field comparators. This enables us to

generalize the strengths and weaknesses of each class of methods.

A review of the literature surrounding private field comparators revealed the six

broad categories shown in Table 3.1. The PSCs empirically evaluated in this chapter are
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denoted in italics. Several noteworthy privacy-preserving field comparators, more suitable

for numerical fields [61, 71, 95], such as Age, are considered, but are excluded from this study

because our goal is to evaluate string, rather than numerical, comparators. We reiterate

that private numerical comparators are important methods that may be necessary for a

comprehensive PRL application; however, they are not the focus of the work described in

this chapter.

Equivalence Testing Exact Agreement [8, 18, 45]
n-gram Methods Number of Common Bigrams [32]

Bloom Filter [101]
Trigrams [60]

Reference Space Embedding Public Reference Space Embedding [92]
Private Reference Space Embedding [99]
Dissimilarity Matrix [61]

Teamwork Edit Similarity [12]
Secret Sharing [71]
Euclidean Distance [95]

Phonetic Filtering Phonetic Filter [70]
Guess & Encode Errors Random Introduction of Errors [103]

Systematic Introduction of Errors [40]

Table 3.1: Taxonomy of private field comparators.

3.2.1 Exact Agreement Methods

As alluded to, many PSC protocols use variations of an “encode-and-compare” model in

which identifiers are encoded and compared for equality [7, 8, 18, 45, 94]. When a plaintext

string is encoded, it is transformed into a form known as a ciphertext. Comparators based

on equivalence testing do not take into account the notion of similarity between the strings.

This means that plaintexts very similar to one another generally result in ciphertexts that

are very dissimilar to one another [104]. Our hypothesis is that leveraging similarity will

improve record linkage results. To gauge the degree of improvement achieved through the

use of approximate string comparators, we will use the Exact Agreement comparator as a

baseline.
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3.2.2 n-gram Methods

In the n-gram class of PSCs, strings are tokenized into the n-grams that compose the

string, where n is an integer that can range from 1 to the length of the string. n-grams are

commonly padded on both ends with n − 1 blank spaces to properly account for the first

and last letters. For example, the 2-grams, also called bigrams, associated with the name

“John” are “ J”, “Jo”, “oh”, “hn”, and “n ”. If padding were not used, all letters, except for

the first and the last, would be included in two bigrams, and the first and last letters would

only be included in a single bigram. In order to ensure that the first and last letters are

included in the same number of bigrams as all other characters, the string is padded with

a blank space. This means that the first and last letters are now included in two bigrams,

in the same manner as the other letters.

Number of common bigrams

Churches and Christen proposed an approximate PSC based on determining the number of

bigrams shared in common between strings [32]. However, previous evaluations have already

demonstrated this comparator did not perform well in record linkage and is too computa-

tionally intense to be practical [44, 109]. Therefore, we do not evaluate this comparator in

this study.

Trigrams

The comparator proposed by Hylton et al. [60] uses the set of encoded 3-grams, or tri-

grams, associated with the string. When two strings are compared, a difference vector D is

calculated (see Table 3.2) where each cell represents the difference in the number of times

a trigram appears in each string. To determine the similarity of two strings, a threshold T

is used†:

T = 2.486 + 0.025C (3.1)

†This threshold was experimentally determined by Hylton et al. [60] and was shown to work well in
practice.
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where C is the number of unique trigrams contained among the set of trigrams belonging

to both strings. If the magnitude of the difference vector D is less than the threshold T ,

the strings are assigned a similarity score of 1 (i.e., the strings are completely similar);

otherwise, the strings are assigned a similarity score of 0 (i.e., the strings are completely

dissimilar).

unique trigrams: h(“ j”) h(” jo”) h(“joh”) h(“jon”) h(“ohn”) h(“hn ”) h(“ on”) h(“n ”)

john: 1 1 1 0 1 1 0 1

jon: 1 1 0 1 0 0 1 1

D: 0 0 1 1 1 1 1 0

Table 3.2: The Trigrams comparator, where h represents a hash function. The vector D
contains the difference in the count of trigrams found in each bag. |D| =

√
5 = 2.24. T =

2.486 + 0.025C = 2.486 + (0.025 × 8) = 2.7. Since |D| < T , the similarity is determined
to be 1.

Bloom Filter Encoding

A Bloom filter is a data structure commonly used to determine set membership or to

compare sets of stored values [24, 25, 65]. It is represented as a bit array where all bits are

initialized to 0. To store a value in a Bloom filter, a hash function is applied to the value.

The hash value corresponds to an index in the Bloom filter, and the bit value at that index

is set to 1. This is repeated k times with k different hash functions.

As multiple values can be stored in the same Bloom filter, a bit set to 1 by the

previous item can be set again by the newly added item. In this case, the value of the bit

remains at 1.

A user can then issue a query to determine if a given value is stored in a Bloom

filter. To determine if a given value has been encoded in a Bloom filter, the query issuer

applies the k hash functions to the query value to generate the set of bits corresponding

to the value. If all k bits corresponding to the query value are set to 1, the value may be

stored in the Bloom filter. It may be the case that all k bits corresponding to the value were

incidentally set by other values stored in the Bloom filter, and that the value in question

was actually not stored in the Bloom filter. For this reason, false positives are possible. If
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(a) The Bloom filter encoding of the name “john”. (b) The Bloom filter encoding of the name “jon”.

Figure 3.2: The Bloom filter comparator. In this example k = 15, m = 2, and h1, h2 are
the hash functions applied. The Dice coefficient (Equation 3.2) is used to determine the
similarity of the Bloom filters. The number of intersecting bits in the Bloom filters is 6, the
number of bits set in the Bloom filter shown in part a is 8, and the number of bits set in
the Bloom filter shown in part b is 7, yielding a similarity of 0.8 according to Equation 3.2.

any of the k bits corresponding to the given value is not set to 1, the query issuer can be

assured that the value is not stored in the Bloom filter. This means that false negatives are

not possible.

Schnell et al. introduce an application for Bloom filters [101] in PRL in which each

field value is encoded in a Bloom filter. In this application, an encoding for each string

is generated by hashing the bigrams associated with the string into a Bloom filter using k

different hash functions. When Alice and Bob compare their strings, they agree upon the

number of bits, m, that compose the Bloom filter, the value n to use in n-gram generation,

the number of hash functions, k, to apply, and which hash functions to utilize. Alice then

encodes her string by hashing its corresponding bigrams into a new Bloom filter using all

of the k agreed upon hash functions. Bob encodes his string similarly. To determine the

approximate similarity of their strings, the corresponding Bloom filters are compared using

a set-based similarity measure, such as the Dice coefficient, d:

d(α, β) = 2

(
|α ∩ β|
|α|+ |β|

)
(3.2)

where α and β are the Bloom filters containing the hashed bigrams of Alice’s and Bob’s

encoded strings, respectively.
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3.2.3 Embedding Methods

The comparators in the Embedding class use a set of reference strings to define an embedding

space. Alice and Bob embed a string in this space by calculating the distance (determined

by some distance function‡) between their string and the reference sets, resulting in a vector

of distances. To compare the strings, Alice and Bob compare the distance vectors associated

with each of their strings. The idea behind this approach is that if the strings are similar,

they will also be of similar distance to the reference strings in the embedding space.

Embedding with a public reference space

The embedding approach proposed by Pang et al. [92] suggests using a publicly available

reference table to define the embedding space.

Embedding with a private reference space

The approach introduced by Inan et al. [61] recommends that Alice and Bob generate the

reference space, which is kept secret from Charlie. We select this comparator for evaluation

because a privately held reference space provides greater security than a publicly available

reference space. For simplicity, this comparator will henceforth be referred to as Embedding.

The Embedding approach [61] is based on the use of the Sparse Map variant of

Lipschitz embeddings. The general idea is that the embedding space is defined by several

reference sets, each of which contain randomly generated reference strings. When a string

is embedded in this space, its distance to each of those reference sets is measured. The

distance from a string s to a reference set is the minimal distance between s and each string

composing the reference set. The embedding of a string is therefore a vector of distances,

where each element j denotes the distance from the string to reference set j. To compare

strings, the Euclidean distance of their embeddings is calculated. A greedy resampling

heuristic is used to limit the computational complexity by reducing the dimensionality of

the embeddings such that, rather than using all possible reference sets, only a subset of the

‡While any distance function can be used, selection of an appropriate, informative function is important
for achieving accurate record linkage results.
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most information-rich reference sets are used. A proper explanation is beyond the scope of

this dissertation, but we refer the reader to Inan et al. [61] for the Embedding comparator

and Hjaltason et al. [58] for Sparse Map.

3.2.4 Teamwork Methods

The comparators in the teamwork class are so-called because they require that Alice and

Bob interactively cooperate throughout the protocol to compare their strings.

Edit Similarity

The Levenshtein edit distance between two strings is the minimal number of insertions,

deletions, and substitutions required to transform one string into the other [79]. A dynamic

programming algorithm is often used to calculate edit distance, such that the minimal

number of edits between the strings is iteratively calculated. For example, if the edit

distance between strings of length |ax[i]| and |by[i]| is calculated, a matrix of size |ax[i]|

times |by[i]| is set up. At the completion of the algorithm, the matrix cell M [|ax[i]|][|bx[i]|]

represents the minimal edit distance between the two strings. Further details can be found

in the work by Marzal et al. [85].

Atallah and colleagues present a comparator for securely calculating edit distance

without revealing either string [12]. In this protocol, the standard dynamic programming

algorithm for edit distance is applied with the exception that the matrix and its values are

split between Alice and Bob. Alice and Bob fill in the cells of their respective matrices using

a protocol that allows them to determine the optimal method for calculating matrix values,

without revealing any information to one another. At the completion of the protocol, Alice

and Bob encode and send the value in the final cell of the matrix to the third party Charlie.

Charlie sums the values he received from Alice and Bob to determine the final edit distance.

While the original method presented by Atallah and colleagues is edit distance, a

more informative variant of this metric, edit similarity, was selected for evaluation in this

manuscript. The difference between edit distance and edit similarity is discussed in Section
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john → soundex(john) = J500 → hash(J500)
(a) Encoding “john”.

jon → soundex(jon) = J500 → hash(J500)
(b) Encoding “jon”.

hash(J500) == hash(J500) → similarity = 1
(c) Comparing the encodings of “john” and “jon”.

Figure 3.3: The Phonetic Filter comparator. The Soundex code for each string is hashed and
checked for equality. The hashed Soundex codes are equivalent (“==” denotes equality),
so the similarity of the strings is 1.

3.3.2.

3.2.5 Phonetic Filtering Methods

Phonetic Filter

Phonetic filters are used to generate a phoneme-based representation of a string. This

representation can overcome various errors, such as typos and the use of nicknames. For

example, “john” and “jon” are mapped to the same phonetic encoding (see Figure 3.3).

Multiple phonetic encoding strategies, such as Soundex [70], Metaphone [23] , and NYSIIS,

[51] have been used in record linkage applications. Karakasidis and Verykios suggest use of

the Soundex phonetic filter to transform a string into its phonetic representation and then

encode the phonetic representation [70]. If the encoded phonetic representations agree, the

strings are assigned a similarity value of 1; otherwise, they are assigned a similarity value

of 0.

3.2.6 Guess & Encode Errors Methods

When strings are encoded and compared, small differences in the plaintext strings can

result in very different ciphertexts. To overcome the small differences that can be created

through typographical, spelling, or other errors in strings, a class of of approaches have

been proposed that attempt to preemptively generate errors that might be associated with

a string. Rather than compare a single pair of strings, the sets of error-riddled relatives of
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the original strings are compared [40, 68, 103]. When Alice and Bob compare their strings, if

any of the error-riddled relatives of Alice’s string match any of the error-riddled relatives of

Bob’s string, the strings are declared a match. However, these comparators result in many

false positives, weak matching precision, and require unreasonable amounts of storage [109].

3.3 Materials & Methods

The previous section presented a taxonomy of existing PSCs. However, string comparison

is only one part of the larger record linkage process as described in Section 2.1. In this

section, we provide the specific approaches used in each step of record linkage. Finally, the

dataset and implementation details are provided.

3.3.1 Details of Record Linkage Process

As briefly described in Section 2.1 and depicted in Figure 2.1, record linkage involves multi-

ple steps. In the field comparison step, each field in each record pair is compared, resulting

in a vector, called γ, of size f , where f is the number of fields in each record. Each cell

in the vector, γ(ax, by)[i], indicates the similarity of field i in record pair (ax, by). In the

record pair comparison step, the f -sized γ similarity vector for each record pair is converted

into a single similarity score for the record pair. In the record pair classification step, the

pairs are partitioned and classified into either the set M or U . The specific instantiations

of these steps in this study are as follows:

• Field comparison: Six experimental string comparators (Section 3.3.2) are used for

field comparison. Additionally, a plaintext string comparator shown to work well in

record linkage [35, 50] is used as a control.

• Record pair comparison: A modification by Porter and Winkler [93] to the FS field

weighting algorithm is used for record pair comparison. The details of this method

are provided below.
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• Record pair classification: We use the following approach to classify all record pairs

into M and U based on their similarity scores. Each dataset A studied in this chapter

contains 1,000 records and is linked to a dataset B that also contains 1,000 records.

Each record in A must be compared to each record in B, which results in 1, 000 ×

1, 000 = 106 record pairs that must be classified into the sets M and U . Each record

in A has a record in B that refers to the same individual, so we know 1,000 of the

record pairs, or 0.1%, are True Matches. Therefore, we classify the 1,000 record pairs

having the highest scores as M and all other record pairs as U §.

Throughout these experiments, we hold constant the methods for both record pair

comparison and classification so that we can clearly focus on the field comparison step.

Modification to FS field weighting algorithm to provide for approximate field
comparison

This section provides the details of Porter and Winkler’s modification to the FS field weight-

ing algorithm to provide for approximate field comparison. The original FS algorithm pro-

vides field weightings that can be applied during the record pair comparison step to assigned

an overall similarity score to the record pair (see Sections 2.1.6 and 2.1.7 for further details).

However, it is intended to work with only binary field comparison metrics. To incorporate

approximate field comparators, that detect similarity in addition to simply agreement or

disagreement, the FS algorithm must be modified.

Porter and Winkler introduced a modification that provides for approximate field

comparators, which yield a continuous score in the range [0,. . . ,1] [93]. Under the mod-

ification, the conditional probabilities, agreement weights, and disagreement weights are

calculated in the manner described in Section 2.1.6. However, the agreement weights now

lay out a scale onto which the field comparison scores are mapped. A field similarity of 0

maps to the value of the disagreement weight, and a field similarity of 1 maps to the value

§This method does not enforce a one-to-one mapping of records. In practice, this may be enforced through
an exhaustive linear sum assignment procedure or a greedy matching heuristic. Further details can be found
in the work by Lenz et al. [78]
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of the agreement weight. Intermediate field similarities map to intermediate score weights.

For example, if the field similarity score is 0.75, then the score at the 75th percentile on the

scale laid out by the agreement and disagreement weights is selected. For an example, see

Figure 3.4. More formally, the score calculated according to this method is given as follows:

score(ax, by) =

f∑
i=1

((wa[i]− wd[i])× γ(ax,by)[i]) + wd[i] (3.3)

3.3.2 Details of Methods Evaluated

We select a subset of the aforementioned PSCs for evaluation in this chapter. PSCs that

have performed poorly in previous evaluations were not considered [32, 40, 103]. To com-

prehensively evaluate the range of techniques, a comparator was selected from each of the

categories described above, with the exception of the Guess & Encode methods, which have

already been shown to perform poorly [109]. The PSCs selected, and the parameters in-

voked, are discussed in the remainder of this section. In all cases, we attempt to use the

parameters suggested in the original publications. Where this is not possible, or parameters

were not suggested, this is explicitly stated.

Exact Agreement

For the Exact Agreement comparator, each identifier is hashed (by the widely-used SHA-1

hash function) and compared. The output of the comparison is 1 if the hashed strings

match exactly, and 0 otherwise. Each string is concatenated with a random string known

as “salt” to prevent a dictionary attack, an exhaustive hashing of plaintexts to determine

which encoded value corresponds to each plaintext value [100].

Bloom Filter Encoding

The Bloom Filter comparator is evaluated because it showed promising results in a prelim-

inary evaluation we conducted [41]. As recommended in the original publication [101], we

use a Bloom filter of length 1,000 bits and use 30 hash functions, all variations of SHA-1,
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(a) Similarities are mapped to field weights.

(b) Record pair comparison using approximate measures of field similarity.

Figure 3.4: Porter-Winkler modification to the Fellegi-Sunter algorithm.
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to hash each bigram into the Bloom filter. Strings are padded with spaces on both ends in

bigram creation as described in Section 3.2.2.

Trigrams

The Trigrams [60] comparator was favorably reviewed [115] and is therefore selected for

evaluation in this work. Each string is padded on both ends with two spaces in tokeniza-

tion. SHA-1, in conjunction with “salt”, is applied to hash each trigram. A space-efficient

implementation is used where each string is represented as a bag of trigrams and their as-

sociated counts. This is in contrast to representing each string as a very sparse vector of all

possible trigrams, where the value for the cell associated with each trigram is the number

of times the trigram occurs in a given string.

Embedding

The Embedding approach described by Inan et al. [61] is selected to represent the Reference

Space Embedding class due to its ability to provide greater security. With respect to the

parameters for this comparator, we attempt to follow the recommendations of the authors

[61] as much as possible. As such, twenty strings were used in generating sixteen reference

sets. For each field, the length of the reference strings is the average length of strings in the

field. With respect to the greedy resampling heuristic, 10% of random pairs were sampled

(without replacement) as recommended by Hjaltason et al. [58]. To determine the optimal

number of coordinates in the final embeddings, we systematically test all values in the range

[2, 16]. We found that using 9 coordinates produces the most accurate record linkage results

in a small test set, and is therefore selected as the dimensionality of the final embeddings.

Details can be found in Appendix A.

Euclidean distance is used to determine the similarity between embeddings. For

each field, the Euclidean distance is normalized by the largest Euclidean distance seen to

ensure the similarities are in the range [0,1].
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Phonetic Filter

In the Phonetic Filter comparator, strings are transformed by the Soundex phonetic filter,

encoded, and tested for equivalence. Salting is used to protect against dictionary attack.

The Perl Text::Soundex package is used to encode field values.

Edit Similarity

The Edit Similarity approach [12] is selected for evaluation due to its rigorous treatment of

privacy protection. We draw attention to the distinction between distance and similarity.

Distance is in the range [0,∞], where lower distance indicates strings are more alike. Simi-

larity, on the other hand, is in the range [0,1], where 1 indicates strings are completely alike

and 0 indicates the strings are completely unalike. Distance can be converted to similarity

as follows:

similarity (string1, string2) =
distance (string1, string2)

max (|string1|, |string2|)
(3.4)

While the original comparator, as presented, returns the edit distance between two

strings, we believe that edit similarity is a more informative measure because it incorporates

string length. For example, an edit distance of three between the strings “Bob” and “Jan” is

very different from an edit distance of three between the strings “Catherine” and “Katerina”.

The edit distance protocol described above can be modified to report edit similarity when

Alice and Bob divide their final answers (i.e., the last cell in their matrices) by the maximum

string length. Note, this does not reveal any additional information as Alice and Bob already

know the string lengths because they are required by the protocol.

3.3.3 Controls

To compare the PSCs to a control comparator, we use the Jaro-Winkler distance, a com-

parator was designed for assessing plaintext strings, that has been shown to work very well

in record linkage [35, 50, 93]. Winkler introduced a modification to the Jaro distance that
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dj(john, jon) = 1
3(34 + 3

3 + 3
3) = 0.9167

djw(john, jon) = 0.9167 + (2× 0.1× 0.0833) = 0.9

Figure 3.5: The Jaro-Winkler distance between the strings “john and “jon”. The parameters
used are χ = 3, ψ = 0, v = 0.1, l = 2.

incorporated his observation that errors are more likely to occur at the end of a string,

rather than the beginning [93]. The modified comparator therefore places greater empha-

sis on the characters at the beginning of the string in determining string similarity. The

Jaro-Winkler string comparator is defined as:

djw(s1, s2) = dj(s1, s2) + (lv(1− dj)) (3.5)

where dj is the Jaro distance for strings s1 and s2, l is the length of the prefix common to

both strings (up to 4 characters), and v is a scaling factor. The default value for v is 0.1.

The Jaro distance [66] is defined as:

dj(s1, s2) =
1

3

(
χ

|s1|
+

χ

|s2|
+
χ− ψ
χ

)
(3.6)

where χ is the number of agreeing characters and ψ is the number of transpositions. A

transposition is the swapping of two adjacent letters (for example, “john” and “jonh”). Two

characters c1 and c2 are considered agreeing if they are no further than bmax(|c1|,|c2|)2 c − 1

characters apart.

The Jaro-Winkler (JW) comparator is highly dependent on heuristics, but it has

proven an excellent string comparator in record linkage by several evaluations [35, 50, 93].

Therefore, we use this comparator as the reference standard.

3.3.4 Evaluation Metrics

We evaluate each string comparator along three axes: 1) correctness in record linkage, 2)

security (the extent to which the encoded values are protected in the linkage process), and

3) computational complexity as determined by the running time.
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Correctness in Record Linkage

To evaluate correctness in record linkage, we examine the ability of each string comparator

to accurately classify record pairs into the sets M and U . As mentioned earlier, only 1,000

of the possible record pairs are True Matches. The number of True Non-matches (999,000)

dominates the number of True Matches to such an extent that some measures, such as

specificity, are not very informative. Therefore, to focus on the 0.1% of record pairs that

are True Matches, the True Positive (TP) rate¶ is examined for each comparator. The TP

rate is defined as:

TP rate =
TP

TP + FP
(3.7)

where TP is the number of true positives (i.e., Predicted Matches that are True Matches)

and FP is the number of false positives (i.e., Predicted Matches that are True Non-matches).

Therefore, the TP rate reports the proportion of Predicted Matches that are, in fact, True

Matches. A comparator that perfectly classifies the record pairs has a TP rate of 1.

Computational Complexity

We use the running time to evaluate the computational complexity of each comparator. In

this chapter, a record linkage method that requires more than one day to process the linkage

of two record files, each containing 1,000 records, is considered computationally infeasible

for real world use. We make this assumption because the datasets used in this work are

relatively small compared to typical real world record linkage datasets. Additionally, the

running time increases quadratically with the number of records. Therefore, comparators

that take more than one day to run on these small datasets would take much longer to run

on larger datasets.

¶The TP rate is also referred to as Precision.
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Security

We next study the extent to which each comparator protects the security of the records.

Recall that in the framework presented in Section 2.2, data owners Alice and Bob rely on a

third party, Charlie, to perform the record linkage. Specifically, Alice and Bob first exchange

the information required to encode their records (which varies for each comparator). This

information can be viewed as a “key” which is then used to encode the records. Charlie

receives the encoded records and performs record linkage without the key. To conduct a

security analysis of each comparator, we make the following standard assumptions with

respect to the knowledge and the behavior of all parties in the above protocol:

Assumption 3.1 All parties strictly follow the protocol in data operations and communi-

cations. This means that Alice and Bob always encode the records using the shared

encoding key. They will only send the encoded record to Charlie. None of the parties

will maliciously change the content of the records or the linkage results.

Assumption 3.2 Charlie sees the encoded records, but not the plaintext records.

Assumption 3.3 Charlie does not know the encoding key.

Assumption 3.4 Charlie has knowledge of the distribution from which the records are

drawn (in this case, the NCVR dataset).

Under these assumptions, the security analysis of the PSCs focuses on how much

information Charlie can acquire from the encodings to infer the plaintext value. Since

each field is independently encoded in all comparators, we pick one field, Surname, to

illustrate our metric for evaluating security. Here we use the mutual information entropy, a

standard practice in security evaluations, to quantify the dependence of the plaintext and

the ciphertext values [104].

Formally, let random variable N denote the original information for the selected

field, which takes values ω1 . . . ω|N |. Let P (ωt) be the probability mass function of outcome

ωt. The entropy (H) of N is then defined as:
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H(N) =

|N |∑
t=1

−P (ωt) logP (ωt) (3.8)

Similarly, we consider random variable O as the encoded form of this selected field, which

takes values o1, . . . , o|O| and let P (o) be its probability mass function. In our specific case, N

refers to the plaintext Surnames present in the dataset and ω refers to each specific Surname.

Thus, O refers to the encoded forms of each Surname associated with each comparator and o

refers to each specific encoding. For example, in the Bloom Filter comparator, the encoded

form is a string of 0s and 1s with length of 1,000 bits. The entropy (H) of O can be similarly

defined as: H(O) =
∑|O|

u=1−P (ou) logP (ou).

Let each pair of outcomes (ωt, ou) (i.e., the encoded form of ωt is ou) occur with

probability P (ωt, ou). The joint entropy of variables N and O is then defined as:

H(N,O) =

|N |∑
t=1

|O|∑
u=1

−P (ωt, ou) logP (ωt, ou) (3.9)

The mutual information (MI) of variables N and O is defined as:

MI(N,O) = H(N) +H(O)−H(N,O) (3.10)

Based on information theory, the mutual information measures the dependence of

the two variables. Thus, if an encoding scheme is secure, the plaintext and the ciphertext

should be independent of one another (i.e., N and O are independent), which would yield

MI(N,O) = 0. In general, lower MI indicates greater independence between the plaintext

and the ciphertext and thus greater encoding security‖.

3.3.5 Dataset

The NCVR dataset, described in Section 2.4.1, is used in this evaluation. We randomly

select (without replacement) 100 datasets from NCVR, each containing 1,000 records, which

‖Note that Edit Similarity is an exception to this analysis because records are not encoded under this
protocol.
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we refer to as A1, . . . , A100. The datasets B1, . . . , B100 to which we link the aforementioned

sets, are generated using the data corrupter, as described in Section 2.4.1.

The fields used are shown in Table 2.2. The fields Street direction, Ethnicity, and

Gender are compared using a binary measure of similarity. Each of these fields consists of

a single letter, so approximate field comparison does not add value.

When data is missing, the field receives a weight of 0, rather than the agreement

or disagreement weight, and therefore does not factor into the record pair similarity score.

This practice was also used by Gomatam et al. [48].

3.3.6 Implementation Details

Computer δ, as described in Table 2.1, is utilized for all experiments described in this

chapter.

3.4 Results

In this section, we examine the results with respect to 1) correctness in record linkage, 2)

computational complexity, and 3) security.

3.4.1 Correctness in Record Linkage

To ensure that the agreement and disagreement weights associated with each field are

in line with intuition, Figure 3.6 depicts the weights from a randomly selected (Az, Bz)

linkage. As expected, the agreement weights are always higher than the disagreement

weights, which means that the similarity score for a record pair increases when its fields

match and decreases when its fields do not match. Also as expected, information-rich

fields, such as Surname, are more important than information-poor fields, such as Gender,

as indicated by the high agreement weight for Surname. While Forename is still important,

it is not as discriminatory as Surname, as indicated by the lower agreement weight. This

fits with intuition as there are 274,790 unique Surnames as compared to 187,743 unique
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Figure 3.6: Agreement and disagreement weights for each field for one of the randomly
sampled datasets.

Forenames in the NCVR database, indicating that Surname contains more information.

In Figure 3.7, the TP rate is reported for each string comparator. The Bloom Filter

comparator performs best (TP rate = 0.9945) followed closely by the Trigrams (TP rate =

0.9883) and Edit Similarity (TP rate = 0.9854) comparators. The Embedding comparator

does not perform as well as the others and achieves only a TP rate of 0.1384. It is interesting

to note that all of the approximate PSCs, with the exception of the Embedding comparator,

outperform the baseline PSC Exact Agreement (TP rate = 0.8397). Also of note, several

of the approximate PSCs outperform the reference standard, Jaro-Winkler (TP rate =

0.9804). The implication of this result is discussed in Section 3.5.

3.4.2 Computational Complexity

It is also important to examine which comparators are computationally feasible for real

record linkage applications. Figure 3.8 provides the running time of each field comparison

method for comparing the fields in 106 record pairs. Edit Similarity required too much

time to complete, so a smaller record linkage with files containing 10 records each (resulting

in 100 pairs) was performed. The resulting running time, 74.09 ± 13.43 seconds, was then

extrapolated to provide an estimate of the time required to compare the fields in 106 record

pairs. In practice, this would take over two years to run and is clearly infeasible. Addi-

tionally, a time-consuming part of the protocol (specifically, an interactive cryptographic

technique, known as 1-out-of-n oblivious transfer) was not included in this implementation

48



Figure 3.7: TP rate for private string comparators evaluated. The values reported are the
averages over the 100 pairs of record files. Standard deviation error bars are shown.

and would only serve to further increase the running time.∗∗

The running time of the Embedding comparator was an order of magnitude greater

than the other comparators. The Exact Matching, Jaro-Winkler, and Phonetic Filter com-

parators all have comparable running times at around 330 seconds. The Bloom Filter is

slightly slower at nearly 400 seconds followed by the Trigrams comparator at nearly 700

seconds.

3.4.3 Security

We examine the MI between the plaintext and the encoded form of the Surname values

associated with each field comparator. These results are shown in Figure 3.9. The order

of security as indicated by low MI is Embedding > Phonetic Filter >> Bloom Filter u

Trigrams which agrees with intuition (see qualitative discussion below).†† Further details

of the calculations are provided in Table 3.3. For reference, H(Plaintext) = 8.9586 and

∗∗The values in Figure 3.7 were generated using an insecure, yet far quicker, version of edit similarity.
††The >> symbol indicates “much greater than”.
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Figure 3.8: Field comparison running times for field comparators evaluated. The values
reported are the averages, in log scale, over the 100 pairs of record files. Standard deviation
error bars are shown.

there are 274,790 unique last names in the NCVR database.

String Comparison H(Y) H(Plaintext,Y) MI(Plaintext,Y) # Unique
comparator Y Encodings

Bloom Filter 8.9581 0.0060 17.9106 274,430
Embedding 6.9008 0.0250 15.8344 55,097
Phonetic Filter 6.9214 0.0159 15.8641 5,815
Trigram 8.9586 0.0060 17.9111 274,790

Table 3.3: Entropy analysis.

As mentioned earlier, Edit Similarity is the most secure because the comparator does

not encode the strings and does not require a third party Charlie. The only information

revealed by this protocol is the length of strings in one’s dataset, and this information is

revealed only to the other data holder.
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Figure 3.9: The mutual information between the plaintexts and ciphertexts associated with
each field comparison comparator.

3.4.4 Summary of Results

The tradeoffs between correctness, computational complexity, and security are visualized in

Figures 3.10, 3.11, and 3.12.

Figure 3.10 shows that the highly accurate comparators, (Bloom Filter and Tri-

grams), tend to be less secure. The Embedding comparator is more secure but not as

accurate. An exception is the Phonetic Filter comparator which is both highly accurate

and secure.

Figure 3.11 shows the general trend that the faster comparators are not as secure.

Conversely, the Embedding comparator is very secure, but is also very slow. The Phonetic

Filter comparator is an exception to this trend as it is both secure and fast when compared

to the other comparators.

The tradeoff between correctness and computational complexity, shown in Figure

3.12, is more complex. The Edit Similarity comparator is highly accurate, yet is orders of

magnitudes slower than the other metrics. Many of the other comparators achieve both
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Figure 3.10: Tradeoffs between correctness, as measured by TP rate, and security, as mea-
sured by MI.

Figure 3.11: Tradeoffs between computational complexity (in log scale), as measured by
running time, and security, as measured by MI.
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Figure 3.12: Tradeoffs between correctness, as measured by TP rate, and computational
complexity (in log scale), as measured by running time.

high accuracy and expedient running times.

3.5 Discussion

In this section, we provide a summary and discussion of the results with respect to each of

the three axes evaluated. Finally, we present additional considerations and limitations of

this evaluation.

3.5.1 Correctness in Record Linkage

We measure correctness by TP rate, as defined in Equation 3.7. The Exact Agreement

comparator achieves a TP rate of 0.8397. We believe it is able to correctly classify some

record pairs due to the large number of fields (i.e., eleven) included in each record. When

there are many fields, even if several fields do not agree exactly, the number of additional

fields that do increase the record pair’s similarity score are enough to achieve a correct link

prediction. We hypothesize that when fewer fields are included in each record, the ability to

perform approximate string comparison will become even more important. This is because

there will be fewer additional fields to increase the record pair’s similarity score and push
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it over the classifying line. This idea is explored further in Chapter 4.

Perhaps surprisingly, several of the PSCs (Bloom Filter, Trigrams, and Edit Simi-

larity) achieve higher TP rates than the plaintext reference standard, Jaro-Winkler. One

explanation for this is that the data corrupter did not introduce errors in a way that Jaro-

Winkler expects. The corrupter introduces errors uniformly throughout the string, whereas

Jaro-Winkler expects to see fewer errors at the beginning. This may have handicapped

Jaro-Winkler, and it may perform better on datasets that contain fewer errors at the be-

ginning of strings. Additionally, Jaro-Winkler is particularly well-suited for Names, and in

these experiments it was applied to non-name strings, such as City and Street address.

The Embedding approach did not perform as well as other PSCs. One reason for

this may be the use of edit distance, rather than edit similarity, as the distance function.

Another factor may be the use of randomly generated reference strings. If the reference

strings are chosen more systematically such that they better cover the comparison space, the

results might improve. While testing on a small sample indicated that using nine reference

sets to define the embedding space is optimal (see Appendix A for further details), further

calibration of this parameter may yield better results.

Although the Bloom Filter approach already performs very well, further improve-

ments may be realized if the parameters (i.e., filter length m and the number of hash

functions k used) are tailored to the expected length of the strings in each field. For exam-

ple, far fewer bits are set when the bigrams of the two-digit State abbreviation are hashed

into a Bloom filter than when the bigrams of the longer field, Street address, are hashed.

We test this hypothesis in Chapter 4.

The Phonetic Filter comparator is limited in that only the first several characters

of a string are integrated into its encoding. In long or multi-token strings, such as “Lori

Beth” (double name) or “Windy Hills” (street address), often the first token is the only one

captured by this approach.
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3.5.2 Computational Complexity

While Edit Similarity provides excellent security and high accuracy, its computational com-

plexity renders it unrealistic for use in large scale PRL applications. The other comparators

perform the relatively expensive encoding process once per record (2,000 times in the case

of linking two 1,000-record datasets), and then perform an inexpensive record pair compar-

ison process for each record pair (106 times). However, Edit Similarity does not include an

up-front encoding process, so the expensive edit distance matrix calculation must be per-

formed for each record pair. Since the number of record pairs is quadratic with respect to

the number of input records, the running time of this approach quickly becomes intractable.

Additionally, this comparator relies on a computationally-intensive form of encryption, a

secure minimum finding protocol, which requires six expensive cryptographic operations for

each cell of the matrix. Another expensive operation required by this protocol, 1-out-of-n

oblivious transfer, was not implemented but would serve to further increase the running

time.

The Embedding approach involves multiple steps. Generating the initial string em-

beddings and record pair comparison are relatively fast steps. However, the greedy resam-

pling heuristic, during which the reference sets used are whittled down from all reference

sets to a subset of “good” information-rich reference sets, is computationally expensive. If

reference strings are selected with care so as to use information-rich reference strings (as

opposed to randomly generated reference strings), the time-intensive greedy resampling step

could be eliminated and the correctness of the results may improve.

A tradeoff between the running time and the storage space exists with the Trigrams

comparator. While we used a space-efficient implementation, a vectorized implementation

would yield reduced running times.
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3.5.3 Security

Edit Similarity is the most secure in that the only information revealed to the other data

holder is the string length. To prevent this exposure, all strings could be padded with an

agreed-upon character up to the length of the longest string. This would prevent revelation

of the string lengths and would not change the edit distance results, but it would increase

running time. This would also prevent conversion of edit distance into the more informative

measure of edit similarity.

As indicated by the MI values, Embedding and Phonetic Filter are the most se-

cure and approximately equivalent. Little information is revealed by Embedding because

Charlie is unaware of the strings defining the reference space, thus the embeddings provide

little information. Each phonetically filtered string is a Soundex code consisting of a letter

followed by three numbers, resulting in 26,000 possible Soundex codes. In practice, the

274,790 unique last names in the NCVR database map to only 5,815 phonetic filter encod-

ings, resulting in information loss. Therefore, the Phonetic Filter approach also does not

provide much information.

The Bloom Filter and Trigrams approaches are the least secure, as indicated by MI.

In both of these comparators, salt is used to prevent a dictionary attack; however, these

comparators are still subject to frequency analysis. The frequency distribution of n-grams

is not as well-defined as the frequency distribution of Forenames, for example; however, an

attacker may still be able to use this information to determine the values associated with

some n-grams. The Trigrams comparator additionally reveals the length of each string to

Charlie. He can derive this information based on the number of trigrams associated with

each string (as the string length is the number of trigrams plus two, when the strings are

padded with two spaces on both ends). The Bloom Filter comparator does not directly

reveal the length of each string due to the fact that false positives and “crowding” (i.e., the

setting of a single bit multiple times) in the Bloom filter can occur, but it likely provides

Charlie with the ability to bound the string length based on the number of bits set.
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Additional work [76], performed jointly with collaborators, explores the extent to

which this frequency information can be leveraged to determine plaintext values. A sum-

mary is that, for given parameter settings, a frequency-based cryptanalysis attack can reveal

some plaintext values encoded in the Bloom filter. Work described in Chapter 4 describes

how this vulnerability can be mitigated.

3.5.4 Additional Considerations

Firstly, these experiments were performed with relatively small datasets, but record linkage

is often performed on a much larger scale. In such cases, blocking can used to reduce the

number of record pair comparisons required [15]. We believe it is reasonable to consider

each of the 1,000-record datasets analyzed in our experiments as representative of a single

partition output from a blocking algorithm in a larger record linkage. To support this claim,

we note that several private blocking methods exist (e.g., [10, 62, 69]) but direct the reader

to Chapter 5 for proper treatment of this topic.

Secondly, the goal of record linkage is to use the available information to determine

which records refer to the same individual. Therefore in practice, fields used in record

linkage may be numerical, rather than just string-based. Some of the PSCs considered are

more extendable to numerical fields than others. We believe Bloom Filter, Exact Matching,

and Trigrams should work well on numerical fields. If the distance function and embedding

space were selected specifically for numerical fields, Embedding would also be applicable for

numerical fields. The Jaro-Winkler and Phonetic Filter approaches are specifically tuned

to work for strings and are therefore not applicable to numerical fields.

Thirdly, some of the comparators are more sensitive to the way in which information

is partitioned into fields. For example, residential address can be represented as a single

field, such as {Street Address}, or can be broken into more granular bits such as {Street

Number}, {Street Name}, {Street Suffix}, and {Street Direction}. The Exact Agreement

approach will perform best when fields are partitioned into segments because this approach
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cannot leverage the similarity information within a field. The Phonetic Filter and Jaro-

Winkler approaches also perform better when fields are represented at more granular levels

as both of these comparators rely on the tokens at the beginning of a string. The other

approximate PSCs are less sensitive to the way in which information is divided into fields,

but only to a certain extent. If too many fields are combined, one loses the ability to

distinguish between more and less informative fields. For example, in the extreme case,

all fields could be concatenated into a single field. In this case, less informative fields,

such as Gender, cannot be distinguished from more important fields, such as Surname, and

therefore one would expect classification accuracy to decrease.

Fourthly, one of the limitations of this research is that, though fields were selected to

only contain strings, the inclusion of some numerical tokens was unavoidable. For example,

although street number was excluded, sometimes the street name itself contains numbers

(i.e., “Highway 194”). Although this was very rare and efforts were made to include only

string fields, this may have provided a slight advantage to string comparators more tolerant

of numerical fields. In future research, we intend to determine how to best handle fields

with a mixture of strings and numeric information.

3.6 Conclusions

In this chapter, we provide a principled and comprehensive evaluation of the state-of-the-art

PSCs. The evaluation considered three axes critical to PRL applications: 1) correctness,

2) computational complexity, and 3) security. This research uses a real dataset, evaluates

the PSCs on a common quantified scale, and provides information needed to support deci-

sions in designing a PRL protocol in the real world. Using this analysis, a data manager

can clearly model the tradeoffs and choose the best string comparator, based on his re-

source constraints. In summary, the Bloom Filter and Trigrams comparators are found

to be the most accurate. The Edit Similarity comparator is most secure, followed by the

Embedding and Phonetic Filter comparators. The Edit Similarity comparator proved to
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be computationally expensive, whereas the Phonetic Filter, Exact Match, and Bloom Filter

comparators were the fastest PSCs.

3.6.1 Future Work

Based on the results of this evaluation, we select the Bloom Filter comparator for further

evaluation. This work is described in Chapter 4.
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CHAPTER IV

RECORD-LEVEL BLOOM FILTER ENCODINGS

In this chapter, we present a method for creating Bloom filter encodings that is

more secure than existing approaches, yet maintains high accuracy in PRL.

4.1 Introduction

The evaluation presented in Chapter 3 identifies a promising encoding method, based on

Bloom filters, for use in PRL. This encoding method yields highly accurate results while still

running in a reasonable amount of time [42]. This method encodes field values in a Bloom

filter in a way that enables an approximate measure of similarity [101]. However, recent

work, performed jointly with collaborators, has questioned the security properties of the

Bloom filter encodings [76] and has shown that, for certain parameter settings, a frequency-

based cryptanalysis attack can reveal some plaintext values encoded in the Bloom filter.

In this chapter, we propose a method for encoding field values in a Bloom filter

that is more secure and resistant to attack. Rather than encoding each individual field

value in its own Bloom filter, we propose to encode all the field values in a single Bloom

filter. We refer to field-level Bloom filter encodings as FBFs, and record-level Bloom filter

encodings as RBFs. The principle behind the proposed method is that when each field is

encoded individually, an attacker may utilize his knowledge about the frequency of values

in this field to derive information about the encoded values. Our proposed data structure,

a RBF, contains all field values for a given record, resulting in an encoding more resistant

to frequency analysis. This is because the frequency distribution for the composition of

fields is less distinct and less available, and therefore more difficult to use in a cryptanalysis

attack (see discussion in Section 4.5.1 for further details).

The contributions of the work described in this chapter are the development of an
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encoding for use in PRL that has the following properties:

1. Secure: We present a more secure form of Bloom filter encodings for use in PRL

such that all field values for a record are encoded in a single Bloom filter. These RBF

encodings are resistant to an attack known to compromise FBFs, as proposed in the

literature [76].

2. Distance-preserving: The RBFs presented in this chapter provide for a distance-

preserving transformation from the plaintext space to the ciphertext space such that

records similar to one another in the plaintext space are also similar to one another in

the ciphertext space. This paves the way for the application of PRL in the ciphertext

space to identify records that correspond to the same individual.

4.1.1 Chapter Outline

The remainder of this chapter is organized as follows. In Section 4.2, we summarize the

FBFs proposed in the literature as well as the results of our recent evaluation and security

analysis of this encoding method. Section 4.3 describes several methods we have devel-

oped for creating a RBF encoding. This section also describes the experiments we use to

systematically appraise the accuracy and security of RBFs, the evaluation metrics used to

measure these properties, and the controls we use in these experiments. In Section 4.4, we

present the results of these experiments to measure the accuracy and security of the RBFs.

In Section 4.5, we discuss the practical implications of these results, and in Section 4.6, we

conclude and summarize this chapter.

4.2 Related Work

A common method for performing PRL is to encrypt each field value [7, 8, 18, 45, 94]

and send the encodings to a centralized third party, who then performs record linkage by

comparing the encoded field values [34, 94]. A drawback to the use of traditional encryption
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methods is the loss of the ability to detect field similarity in the encrypted space. This stems

from the fact that secure encryption methods are not similarity-preserving transformations.

Therefore, the transformation from plaintext to ciphertext can cause a loss of information,

and records that exhibit high similarity in the plaintext space may be quite dissimilar in the

ciphertext space. As a result, the encoded records may be incorrectly classified as Predicted

Non-matches.

To address this drawback, the encoding methods evaluated in Chapter 3 [12, 32, 40,

60, 63, 68, 70, 71, 92, 95, 99, 101, 103] enable similarity detection in the ciphertext space.

The ability to measure the approximate similarity of encoded values means that the trans-

formation from plaintext to ciphertext is not as lossy. Therefore, encodings which provide

for approximate field comparison have the potential to improve record linkage accuracy. In

fact, the evaluation presented in Chapter 3 and published in [41, 42] shows this to be the

case.

4.2.1 Field-level Bloom Filter Encodings

The results of the evaluation in Chapter 3 also highlight a method, based on Bloom filter

encodings, that provides highly accurate record linkage results while still running in a rea-

sonable amount of time [42]. To review, a summary of how to generate encodings according

to this technique [101] is shown in Figure 3.2 and consists of the following steps.

• Each string is padded with n− 1 blank characters on each end.

• The set of n-grams for each string is then computed.

• Each n-gram is hashed into a Bloom filter of length m bits using k hash functions.

The encoded values can be compared using a set-based similarity measure, such

as the Dice coefficient (Equation 3.2), in a way that yields an approximate measure of

similarity [101]. This encoding method provides a foundation for the more secure encoding

that we propose in this chapter.
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4.2.2 Security Flaw of FBFs

Recall that in Section 3.4.3, the security of several PSCs is measured by the amount of

mutual information (described in Section 3.3.4) shared between the plaintext and ciphertext

values. The idea is that the plaintext and ciphertext values should be indendent of one

another, and therefore have a low mutual information value. These results showed that

FBFs were not as secure as some other encoding methods.

This result led to additional work to further examine the security properties of FBFs

[76], where the goal was to determine how much information about plaintext values could

be revealed by a cryptanalysis of the encoded ciphertext values. Specifically, the question

of interest is “How much information can Charlie gain about the sensitive plaintext data by

examing the encoded data?” Recall that Charlie is the third party who receives the encoded

values from Alice and Bob and performs PRL using these encoded values.

The cryptanalysis made the following assumptions about the information Charlie

has.

Assumption 4.1 Charlie knows the global dataset from which Alice’s and Bob’s records

are drawn.

Assumption 4.2 Charlie knows the number of hash functions (k) that are part of the

encoding function.

We believe Assumption 4.1 is reasonable because record linkage is typically per-

formed with demographic information, which is often publicly available. With respect to

Assumption 4.2, Charlie can infer k by examining the number of bits set in the Bloom

filters. More specifically, due to hash collisions, Charlie can only estimate this number, but

it can be restricted to a small range, such that the proposed attack can be applied for all

values in the range.

A common method for cryptanalysis attacks is based upon examination of the fre-

quencies of values seen in the ciphertext. Once these frequencies are tallied, one can attempt

to map them back to the frequency values seen in the plaintext. In this specific attack, we
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observe the frequencies with which bits are set in the Bloom filter encodings and attempt

to map bits back to the plaintext n-grams to which they correspond. This mapping of

frequencies is modeled as a constraint satisfaction problem (CSP).

The results of this analysis show that, for some parameter settings, Bloom filter en-

codings are vulnerable to attack, and that Charlie can successfully execute a frequency-based

cryptanalysis to reveal some plaintext values. However, as n grows, the attack becomes less

successful. Therefore, the analysis also demonstrated that Bloom filter encodings based on

trigrams or quadgrams, rather than bigrams, are more resistant to this type of attack.

However, as n grows, accuracy declines. In this work, we explore more secure

encoding methods to further increase security and to apply in cases where a large n value

is not suitable.

4.3 Materials & Methods

The results of the PSC evaluation presented in Chapter 3 (which were recently published

[42]) and the cryptanalysis of Bloom filter encodings [76] led us to develop a novel encoding

method. The proposed method builds upon the strengths of the FBFs, such as its high

accuracy and expedient running time, while improving upon its security properties. In

Section 4.3.1, we present two changes we make to FBF encodings to generate a more secure

encoding. Section 4.3.2 describes the control measures that serve as a reference standard.

Section 4.3.3 presents metrics used to evaluate the encodings, and Section 4.3.4 describes

the dataset used in this chapter.

4.3.1 Experimental Methods

We introduce two improvements to increase the security of FBF encodings. The first is

based upon consolidating FBFs into a single RBF, and the second is based upon selecting

parameters for FBF creation to improve the security properties.
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Figure 4.1: Record-level Bloom filter generation. Bits are sampled from each FBF to create
a RBF. The bits are then permuted to increase security.

RBF generation

Rather than encoding each field value in its own Bloom filter as proposed in [101], we

recommend that a single Bloom filter be used for encoding the entire record. We hypothesize

that this composite encoding, when carefully designed, provides greater security. We now

describe, at a high level, how to create a RBF, given the FBFs corresponding to the fields

in the record.

The big picture behind this approach is that bits are sampled from each FBF and

concatenated to create a single RBF for the record. The bits in the RBF can then be

permuted such that it is unclear from which field a given bit was drawn. The general

architecture for this approach is illustrated in Figure 4.1.

Two questions must be addressed to guide RBF generation:

1. How many bits should be drawn from each FBF for inclusion in the RBF?

2. Which bits should be sampled from the FBFs for inclusion in the RBF?

Both of these questions are answered in the remainder of Section 4.3.1.
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Guidance on how many bits should be sampled from each FBF

We now describe two methods for determining how many bits should be sampled from each

FBF. The first is based upon unifom bit selection, and the second proposes a more intelli-

gent manner for weighted bit selection based on the discriminatory power of the field. We

hypothesize that weighted bit selection will provide RBF encodings that yield more accurate

record linkage results.

Uniform bit selection

In the most straightforward case, bits are sampled uniformly from each FBF to create the

RBF such that an equivalent number of bits are drawn from each field. For example, if the

goal is to create a RBF of length 1,000 bits, and each record has 10 fields, then 100 bits are

sampled from each FBF.

While this approach is very simple, when bits in the RBF are permuted, it removes

some of the information that an attacker can leverage to determine the corresponding en-

coded field values. Specifcally, if an attacker does not know which bits correspond to which

field, it becomes more difficult to leverage the knowledge of the frequency at which certain

field values appear.

Weighted bit selection

We hypothesize that sampling bits based on the discriminatory power of each field will

provide a RBF that will yield more accurate record linkage results than the uniform bit

sampling strategy described above.

We now discuss methods for determining the weight associated with each field. Data

holders Alice and Bob may already have an idea of the discriminatory power of each field,

and can weight each field accordingly. However, in the absence of this knowledge, there

are methods to determine the weightings for each field. One such method is the FS field

weighting approach [46] described in Section 2.1.6. This method outputs an agreement

weight and a disagreement weight associated with each field. In traditional record linkage
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Surname Forename City Street Ethnicity Gender

m 0.54 0.58 0.57 0.62 0.63 0.66

u 5.5x10−4 1.5x10−3 7.9x10−3 1.7x10−4 3.6x10−1 3.1x10−1

wa 6.9 6.0 4.3 8.2 0.6 0.8

wd -0.8 -0.9 -0.8 -1.0 -0.5 -0.7

range 7.7 6.9 5.1 9.2 1.1 1.5

w 24% 22% 16% 29% 4% 5%

Table 4.1: Weighted RBF creation. FS weights can assist in determining the extent to
which each FBF should contribute to the RBF.

applications, these weights are used in the record comparison step (see Section 2.1.7) to

calculate a similarity “score” for each record pair.

We propose a new application for these weights. In Equations 4.1 and 4.2, we present

a means for combining these agreement and disagreement weights into a single weight, w,

associated with each field i.

range[i] = wa[i]− wd[i] (4.1)

w[i] =
range[i]∑f
i=1 range[i]

(4.2)

This weight is a measure of the relative discriminatory power of each field, as com-

pared to other fields. We propose this weight be used to determine how many bits are

drawn from each FBF for inclusion in the RBF. The weight associated with each field is

derived by dividing by the sum of the ranges over all fields (i.e., normalizing) to determine

the percentage of bits in the RBF that should be drawn from that field. The m, u, wa, wd,

range, and w values for the dataset used in this chapter (see Section 4.3.4 for additional

details) are shown in Table 4.1.

Returning to our example in Figure Table 4.1, it can be seen that by applying this

approach, we sample a varying number of bits from each field. For instance, the Surname

and Forename fields comprise 24% and 22% of the bits to the FBF, respectively.

Setting the mRBF value
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Surname Forename City Street Ethnicity Gender

# bits in FBF 100 100 100 100 100 100

% RBF com-
position

24% 22% 16% 29% 4% 5%

Possible mRBF

values
415 455 625 345 2,500 2,000

Table 4.2: mRBF determination.

Surname Forename City Street Ethnicity Gender Sum

RBF % com-
position

24% 22% 16% 29% 4% 5% 100%

RBF composi-
tion

600 550 400 725 100 125 2,500

Table 4.3: An example of RBF composition.

Given a strategy for determining RBF composition, in order to determine the actual number

of bits to be drawn from each FBF, we must select a value for the number of bits to be

included in the RBF, which we call mRBF. To provide a baseline, we assume that all

information (i.e., bits) from each field should be included in the RBF. Given this assumption

and the weight associated with each field, we can calculate the necessary value for mRBF if

each field is included in full and at the relative discriminatory power calculated. We take

the maximum of these values to be mRBF. An example is shown in Table 4.2 where the

length of each FBF is 100 bits. If the 100-bit long FBF for the field Ethnicity is to comprise

4% of the record-level Bloom filter, then mRBF must be 2,500 bits. As this is the maximal

value for mRBF required across all fields, this is selected as mRBF. The number of bits to

be drawn from each FBF is then selected in accordance with field weight w, and the final

composition of the RBF is shown in Table 4.3.

To adhere to the selected percent compositions, some bits must be resampled for

inclusion in the RBF. For example, 600 bits from the FBF encoding of City are to be

included in the RBF; however, the FBF encoding of City only has 100 bits. This implies

that these bits will be included multiple times in the RBF.

This method selects the value mRBF based on the assumption that all bits from each
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FBF should be included in the RBF. To check whether this assumption is reasonable, we

perform a “condensation analysis” by progressively condensing the RBF. In the experiments

below, we consider mRBF values in {50; 100; 500; 1,000}.

Guidance on which bits should be sampled from each FBF

While we have discussed methods to determine how many bits should be sampled from

each FBF, which bits should be sampled remains unaddressed. We propose random bit

sampling, with repetition, for the following reasons:

1. Any strategy would give an adversary knowledge of which bits are included in the

RBF and thus better knowledge of how to attack the data structure.

2. Recall that k hash functions are used to hash each n-gram into the FBF. This results

in a non-uniform bit distribution in which some bit values are highly correlated. This

conditional dependency must be taken into account when determining which bits are

informative and should be included in the FBF. This would make any intelligent

sampling strategy complex.

3. As PRL can be a computationally intense process, an efficient encoding function

is important. For example, some secure multi-party computation techniques, such

as the Edit Distance approach evaluated in Chapter 3, provide excellent security

guarantees, but are too computationally intense for real world use. A benefit of

the Bloom filter-based encodings is the speed with which they can be generated and

compared. Random bit sampling, in contrast to a more intelligent strategy, allows us

to maintain the efficiency of the encoding.

Throughout the remainder of this work, random bit sampling, with replacement, is

used in RBF generation.

FBF sizing

We now discuss how FBF parameters can affect encoding security and draw a distinction

between static and dynamic FBF sizing. Recall from Section 3.2.2 that the parameters
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involved in Bloom filter encoding are n, the size of the substring used in string tokenization,

k, the number of hash functions used for each n-gram, and m, the number of bits in the

Bloom filter. We let mFBF refer to the number of bits in each FBF.

Static FBF sizing

When FBFs are statically sized, the k and m values are held constant across all fields,

regardless of the expected number of n-grams to be encoded in the field. In this case,

observation of the percentage of bits set may allow an attacker to determine some informa-

tion about the length of the encoded value and the number of hash functions, k, used in

encoding.

Shorter fields, such as Gender, result in Bloom filter encodings with fewer bits set

than longer fields, such as Forename. Consider an example where n=2, k=15, and m=500.

Gender, encoded “M” or “F”, will contain only two n-grams for field value (i.e., “ M” and

“M ” for the male gender). Therefore, for each gender encoding, a maximum of 30 bits can

be set (15 per n-gram), which corresponds to 6% of the bits in the Bloom filter. However,

if Forename has an average of 6 letters, this corresponds to 7 n-grams when n = 2, and a

maximum of 105 bits can be set, which corresponds to 21% of the bits in the Bloom filter.

As a consequence, when static parameters are used across fields, an attacker can

observe the percentage of bits set in a FBF. With this information, an attacker can determine

information about the length of the value encoded in the Bloom filter and the number of

hash functions, k, used in encoding.

Dynamic FBF sizing

Recall that, in Section 3.5.1, the suggestion was made to tailor encoding parameters to

the specific properties of each field, rather than use static encoding parameters across all

fields. In order to limit the extent to which an attacker can determine information about

the field from which a bit was drawn, we propose dynamically sizing the Bloom filters (i.e.,

setting the m value) such that we expect the same percentage of bits to be set in each FBF

across all fields. Additionally, we let the expected frequency at which a given bit is set in

70



Surname Forename City Street Ethnicity Gender

Average field length 6.3 5.8 8.8 8.7 1.0 1.0

Average # n-grams (g) 7.4 6.8 9.8 9.7 2.0 2.0

mRBF 159 149 214 212 44 44

Table 4.4: Example of dynamic Bloom filter sizing where k=15, n=2, p=0.5.

the Bloom filter encoding equal 0.5. In order to maximize entropy, and therefore maximize

security, half of the bits should be set and half of the bits should remain unset [97]. In this

case, an attacker would see approximately half of bits set and would gain little information

about the field values encoded in the Bloom filter.

More formally, let p be the expected frequency at which a bit is set and let g be the

number of items (e.g., n-grams) stored in the Bloom filter. Therefore, let p = 0.5.

The work by Roozenburg [97] states that if g elements have been stored in a Bloom

filter, the probability that a certain bit remains unset (i.e., a value of 0) is p = 1 − 1
m

kg
.

Therefore, we select a value for k, and hold it constant, we can calculate the number of bits

needed in the Bloom filter according to Equation 4.3. An example of the application of this

principle is shown in Figure 4.4.

m =
1

1− kg
√
p

(4.3)

Using this approach, we can measure the information content associated with each

field and adjust the Bloom filter length accordingly.

We hypothesize that RBFs composed of dynamically-sized FBFs will be more secure

than RBFs composed of statically-sized FBFs. This is because dynamic sizing means an

observer will not be able to determine information about the length of the encoded values

by observing the percentage of bits set in the FBF.

RBF Variations

This chapter has introduced two ways to determine the composition of bits in the RBF

using either uniform bit selection or weighted bit selection. Additionally, this chapter has
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Figure 4.2: Static/Uniform RBFs are generated by sampling uniformly from statically sized
FBFs.

proposed two methods for determining the FBF encoding parameters – static parameters

regardless of expected field length, and dynamic parameters based on the expected length

of the field to be encoded. In this section, we describe all four variations of RBFs that

result from combining the two possibilities for FBF sizing and bit selection. The naming

convention for the different variations is method for FBF sizing / method for bit selection.

For illustration, throughout this section, we assume there are six fields and the

length of the RBF (referred to as mRBF) is 1,000 bits. We discuss methods for determining

mRBF in Section 4.3.1. Also, throughout this section, we let k = 15 as recommended by

Schnell et al. [101].

Static/Uniform RBFs

For the Static/Uniform RBF, the FBFs are sized statically, such that m = 500 as recom-

mended by Schnell et al. [101]. In this example, there are six fields, 1, 000/6 ≈ 167 bits are

drawn from each FBF∗. An example is shown in Figure 4.2.

Static/Weighted RBFs

For the Static/Weighted RBF, the FBFs are sized statically such that mFBF = 500, and

again mRBF is 1,000 bits. The number of bits to be sampled from each field is determined

∗In some cases, rounding is required if mRBF is not evenly divisible by the number of fields.

72



Figure 4.3: Static/Weighted RBFs are generated by sampling, according to a weight repre-
senting the discriminatory power of each field, from statically sized FBFs.

by multiplying the percentages shown in Table 4.1 by the total length of 1,000 bits. An

example is shown in Figure 4.3.

Dynamic/Uniform RBFs

In this instance, FBFs are sized dynamically according to the parameters shown in 4.4.

Bits are sampled uniformly from each field, so ∼167 bits are taken from each FBF. This is

illustrated in Figure 4.4.

Dynamic/Weighted RBFs

In this instance, FBFs are sized dynamically according to the parameters shown in 4.4. The

number of bits to be sampled from each field is determined by multiplying the percentages

shown in Table 4.1 by the total length of 1,000 bits. An example is shown in Figure 4.5.

As previously mentioned, to provide a baseline, we assume that all information

from each field should be included in the RBF. Tables 4.5 and 4.6 show the details of mRBF

determination for Dynamic/Weighted RBFs. If the 214-bit long FBF for the field City is

to comprise 16% of the record-level Bloom filter, then mRBF must be 1,315 bits. As this is

the maximal value for mRBF required across all fields, this is selected as the length for the

RBF. The number of bits to be drawn from each FBF is then selected in accordance with

the field weight, as calculated in Table 4.1 and Equation 4.1. The final composition of the

RBF is shown in Table 4.6.
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Figure 4.4: Dynamic/Uniform RBFs are generated by sampling uniformly from dynamically
sized FBFs.

Figure 4.5: Dynamic/Weighted RBFs are generated by sampling, according to a weight
representing the discriminatory power of each field, from dynamically sized FBFs.

Surname Forename City Street Ethnicity Gender

mFBF 159 149 214 212 44 44

% RBF com-
position

24% 22% 16% 29% 4% 5%

Possible mRBF

values
651 683 1,315 726 1,245 934

Table 4.5: mRBF determination for Dynamic/Weighted RBFs.
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Surname Forename City Street Ethnicity Gender Sum

RBF % com-
position

24% 22% 16% 29% 4% 5% 100%

RBF composi-
tion

321 287 214 384 46 62 1,315

Table 4.6: An example of RBF composition for Dynamic/Weighted RBFs.

4.3.2 Controls

The following field comparison techniques are used as controls for the experimental RBF

techniques:

1. Binary field comparison, in which field values are checked for equality, resulting in a

binary measure of similarity, and

2. The plaintext JW string comparator, as defined in Section 3.3.3.

The controls are used to determine field similarity. To convert these field similarities

to record pair similarities, the field similarities are multiplied, as indicated below, by either

a uniform value ( 1
f ) or the weighted percentages calculated in Table 4.1.

4.3.3 Evaluation Metrics

“Neighborhood test” to measure accuracy

To determine the extent to which proximity is preserved in the transformation to the en-

coded space, we developed the “Neighborhood test”. In this experiment, we sample a subset

of the records and measure the similarity of each sample to each record in the dataset to

which the sample is to be linked. We then rank order all records in the other dataset by

their similarity to the sample record. The index in this rank ordered list at which the

sample record’s True Match falls is called the neighbor rank for the sample record. If the

transformation preserves similarity well, the True Matches should be very close to one an-

other and therefore close neighbors. In the best case, a sample’s neighbor rank is 1 (i.e.,

the sample is closest to its True Match), and in the worst case, the sample’s neighbor rank
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is the number of records in the opposing dataset (i.e., the sample’s True Match is the most

distant record in the dataset to which the sample is being linked).

Frequency analysis to examine security

An attacker may try to map bits in the RBF back to the fields from which they were

drawn. If an attacker is successful, he could then mount an attack such as the one described

in Section 4.2.2, using the FBFs as inputs. Therefore, evaluating the extent to which an

attacker can map bits in the RBF back to the field from which they were drawn is important

to characterize the security of the RBF.

To perform a frequency analysis, the encodings are examined and the frequencies

at which bits are set are calculated over these encodings. In this case, the frequencies are

calculated over all of the encoded NCVR records, both clean and corrupt, as described in

Section 4.3.4.

4.3.4 Dataset

For these experiments, we use 100,000 records from the NCVR dataset. A second set of

records to which the original is linked is generated using a data corrupter as described in

Section 2.4.1. We exclude records with missing field values to obtain a clear idea of the

performance of each method without this complicating factor. We address handling missing

values in the context of Bloom filter encodings in Section 6.3.1.

4.3.5 Implementation Details

Computer ε, as described in Table 2.1, is utilized for all experiments described in this

chapter.
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4.4 Results

4.4.1 Frequency Analysis Results

In this section, we examine how much information an attacker could obtain by analyzing

the frequencies with which bits in the RBFs are set. The average, taken over all bits within

a field, frequency at which bits within each field are set is shown in Figure 4.6.

The FBFs of dynamic size have a more uniform average frequency across fields than

the FBFs of static size. This suggests that it may be easier for an attacker to determine

from which FBF a bit was drawn if the FBFs are statically sized.

Next, we look beyond the averages to more detailed information about the frequency

with with each bit is set. Figure 4.7 shows a heat map of the frequencies at which bits are

set across all NCVR encodings in FBFs of static size. Figure 4.8 shows these values for

the FBFs of dynamic size. Figures 4.7 and 4.8 indicate that the frequency distributions

for categorically-valued fields (Figures 4.7(e), 4.7(f), 4.8(e), 4.8(f)) are less uniformly dis-

tributed than for string-based fields (Figures 4.7(a) - 4.7(d), 4.8(a) - 4.8(d)). Due to the

fact that categorical variables can take on a limited number of values, many of the bits in

the Bloom filter are never set. Those bits that are set, are generally set frequently, because

many people in the population may have that value.

In general, the evidence illustrates that FBFs of dynamic size are more uniformly

distributed than the FBFs of static size. This finding indicates that an attacker would have

greater difficulty using this frequency information in an attack. Therefore, we focus on

RBFs composed of dynamically sized FBFs in the remainder of this chapter.

4.4.2 Neighborhood Test Results

We use the Neighborhood test to measure the accuracy afforded by different encoding meth-

ods. An ideal encoding technique preserves distance in the transformation from plaintext

to ciphertext such that the record nearest a sample record is its True Match, resulting in a

neighbor rank value of 1. Figure 4.9 presents the results of the Neighborhood test. Notably,
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(a) Static FBFs.

(b) Dynamic FBFs.

Figure 4.6: The effect of FBF sizing on the average percentage of bits set. Standard
deviation error bars are shown. The probabilities for Static FBFs are shown in part (a) and
for Dynamic FBFs in part (b).
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(a) Surname.

(b) Forename.

(c) City.

(d) Street address.

(e) Ethnicity.

(f) Gender.

Figure 4.7: A heat map representation of the frequencies at which bits in the FBFs of static
size are set. In all cases, mFBF = 500.

(a) Surname, mFBF = 159 bits.

(b) Forename, mFBF = 149 bits.

(c) City, mFBF = 214 bits.

(d) Street address, mFBF = 212 bits.

(e) Ethnicity, mFBF = 44 bits.

(f) Gender, mFBF = 44 bits.

Figure 4.8: A heat map representation of the frequencies at which bits in the FBFs of
dynamic size are set.
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Figure 4.9: The results of the neighborhood test where each color indicates the neighbor
rank of the sample’s True Match. The controls include binary field comparison and the
JW string comparator. The experimental techniques are the RBFs based on statically or
dynamically sized FBFs.

the experimental RBFs outperform the controls. This indicates that RBFs are more robust

in accurately measuring similarity in the face of the types of errors present in this dataset.

When comparing the results based on the FBF sizing method, we see that RBFs composed

of dynamically-sized FBFs perform nearly as well as the RBFs composed of statically-sized

FBFs.

In all cases, weighted bit sampling from FBFs, in accordance with the discriminatory

power of the field, performs better than uniform bit sampling. Therefore, we recommend

weighted bit sampling in RBF creation and explore this variant in further experiments

below.

Recall that in determining mRBF, we make the assumption that all bits in each

FBF should be included in the RBF. We now test whether this assumption is necessary.

Figure 4.10 presents the results of the Neighborhood test on condensed RBFs. These results

indicate that as mRBF decreases, the extent to which RBF encodings are able to accurately
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Figure 4.10: The results of the neighborhood test for dynamic/weighted RBFs where each
color indicates the neighbor rank of the sample’s True Match. mRBF is indicated for each
data series.

measure similarity decreases as well. For example when mRBF = 1,315, the number of

samples having a neighbor rank of 1 is 981. When mRBF = 50, only 792 samples have

a neighbor rank of 1. However, it does not seem to be vital that the RBF should be

sufficiently long to accommodate all bits from all FBFs as RBFs of length less than 1,315

bits still provide nearly as accurate results. For example when mRBF = 1,000 and 500, the

number of samples having a neighbor rank of 1 are 974 and 978, respectively.

4.4.3 Leveraging Frequency Information to Provide Security Guarantees

As mentioned previously, when an attacker tries to determine the plaintext values encoded

in a RBF, a first step may be to map RBF bits back to the fields from which they were

drawn, based on the frequency with which a bit is set. For example, if P(bit set) = 0,
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where P indicates probability, one may conclude that the bit was likely drawn from either

the FBF associated with Ethnicity or the FBF associated with Gender. This is because, as

the bit frequency heat maps in Figures 4.7 and 4.8 indicate, Ethnicity and Gender are the

only FBFs containing bits with P(bit set) = 0.

By breaking down the frequencies into ranges, an attacker may use the ranges found

in FBFs to map bits in the RBF back to the FBF from which they were drawn. In this

analysis, we consider frequency ranges in increments of 0.01. Figure 4.11 shows the number

of frequency ranges that be mapped back to q fields where q ∈ 1, . . . , 6. Figure 4.11(b)

indicates that 26 frequency ranges are not represented in any FBFs and are therefore,

obviously, not available for inclusion in the RBF. 17 frequency ranges are represented by

bits in only a single field. A secure RBF encoding would avoid including these bits because

an attacker could easily map these backs to the FBFs from which they were drawn. The

extent to which these frequency ranges allow an attacker to map bits back to a FBF is further

examined in Figure 4.12, which presents the number and identity of FBFs containing bits

in each frequency range, broken down by hundredths.

We can use this information to quantify the extent to which an attacker may be

able to map bits back to the FBFs from which they were drawn. However, we can also

proactively incorporate this information into a bit selection algorithm for RBF creation to

provide security guarantees about the ease with which an attacker may be able to map RBF

bits back to fields. It is obvious that bits which can only be mapped back to a single field,

such as bits with frequency range (0.78 - 0.79) in dynamic FBFs should be avoided, since

these bits can only have been drawn from the field City (see Figure 4.12(b)). Data holders

may want to introduce more stringent security constraints, such as “Only bits that can be

mapped, by frequency range, back to ≥ q fields can be included in the RBF”.

Figures 4.13 and 4.14 demonstrate the relationship between the security constraint

q and the number of bits that are eligible for RBF inclusion under that constraint. For

example, consider the FBFs of dynamic size shown in Figure 4.14(b). If q = 6 (i.e., only
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(a) Static FBFs.

(b) Dynamic FBFs.

Figure 4.11: Frequency ranges broken down by q, the number of fields containing bits in
the specified frequency range.

bits can be included in the RBF that can be mapped back to ≥ 6 fields), no bits that would

meet that security requirement. However, if a slightly more relaxed security constraint is

used such that q = 5, then 312 bits are eligible for inclusion in the RBF.

The relationship between the security constraint q and the number of bits eligible

for inclusion in the RBF implies there may also be a relationship between q and accuracy.

To examine this relationship, we perform the same Neighborhood test described in Section

4.3.3 on RBFs generated under various security constraints. These results are shown in

Figure 4.15. The results in Figure 4.15 indicate that accuracy decreases very slightly (981

samples have a neighbor rank of 1 when q = 1, and 970 samples have a neighbor rank

of 1 when q = 5) when more stringent security constraints are introduced. However, the

relationship seems to not significantly affect accuracy and is also not linear. To further

explore this relationship, the affect of security constraints is examined in the context of

condensed RBFs. These results are shown in Figure 4.16. Again, the results shown in

Figure 4.16 indicate that, within a given mRBF value, as q increases, accuracy tends to

decrease, as indicated by the decreased number of samples having a neighbor rank of 1,
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(a) Static FBFs.

(b) Dynamic FBFs.

Figure 4.12: Field frequency histograms show the number of FBFs containing bits set at
frequencies in the given ranges.
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(a) Static FBFs.

(b) Dynamic FBFs.

Figure 4.13: Bit frequency histograms show the number of bits, and the FBFs in which
they can be found, set at frequencies in the given ranges.
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(a) Static FBFs.

(b) Dynamic FBFs.

Figure 4.14: The number of bits eligible for RBF inclusion, given various values for the
security constraint q.
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Figure 4.15: Neighborhood test results show that the effect of the security constraint q on
accuracy, as determined by the Neighborhood test. Each color indicates the neighbor rank
of the sample’s True Match. The upper horizontal axis refers to the value of the security
constraint q. The lower horizontal axis refers to the value of mRBF. The RBFs used are
Dynamic/Weighted.

although again, the relationship is not linear.

These results are broken down further in Figure 4.17. In this figure, the data series

where neighbor rank is 1 (shown in blue in Figure 4.16) is examined in greater detail to model

the tradeoffs between q, mRBF and accuracy.The results shown in Figure 4.17(a) indicate

that q does not significantly affect accuracy until very small RBF sizes (mRBF ≤ 100)

are used. Figure 4.17(b) shows that mRBF more significantly affects accuracy – as mRBF

decreases, accuracy also decreases – than the security constraint q.

4.4.4 Summary of Results

In Section 4.4.1, we examined the frequencies with which bits are set in both FBFs of static

and dynamic size. The average frequency with which a bit is set differs markedly from field

to field within FBFs of static size. This is in contrast to FBFs of dynamic size, where the

average frequency with which a bit is set is approximately the same across fields.

87



Figure 4.16: These neighborhood test results show the effect of RBF sizing and the security
constraint q. Each color indicates the neighbor rank of the sample’s True Match. The RBFs
used are Dynamic/Weighted.

Section 4.4.2 showed that Bloom filter-based encodings provide for more accurate

record pair similarity detection than several control measures. Additionally, weighted bit

sampling in RBF generation provides higher accuracy than uniform bit sampling across

FBFs. Also, we saw that as the RBF is condensed (i.e., the mRBF value is lowered), the

accuracy decreases.

Finally, in Section 4.4.3, we demonstrate how an examination of bit frequency

ranges, and the number of fields that contain bits in each frequency range, can provide

a method for constructing RBFs that are more resistant to attack. Specifically, users can

specify constraints, such as “Only bits that can be mapped back to ≥ q fields, by examina-

tion of frequency ranges, can be included in the RBF.” As q grows, the more difficult it is for

an attacker to map bits from a RBF back to the field from which they were drawn. RBFs

created under this security constraint are only slightly less accurate than those created

without any constraints.
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(a) Breakdown by mRBF.

(b) Breakdown by security constraint q.

Figure 4.17: A detailed view of the effect of RBF sizing and security constraints on accuracy.
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4.5 Discussion

The goal of the work described in this chapter is to develop an encoding for use in PRL

that has two properties:

1. Secure: The encoding should not compromise the encoded plaintext information.

2. Distance-preserving: Records that are similar in the plaintext space should remain

similar to one another in the ciphertext space.

In the remainder of this section, we demonstrate that the RBF encoding method

satisfies these properties. In Section 4.5.1, we show that RBFs are resistant to the known

attack described in Section 4.2.2. In Section 4.5.2, we look at the design decisions involved

in RBF generation and how these decisions affect the security and comparison accuracy of

the resultant encodings.

4.5.1 Record-level Bloom Filters are Resistant to a Known Attack

In Section 4.2.2, we describe a known attack on FBF encodings based on an analysis of

the frequencies at which bits in the FBF are set. The attack is modeled as a constraint

satisfaction problem where the task is to map the bits in the encoding back to the plaintext

n-grams to which they correspond. This is done by leveraging the frequency with which the

bits are set and the frequency with which n-gram values are seen in the general population.

Some preliminary information is needed for this attack. Below we walk through the

information required for the attack, and explain why this information is not available, or

significantly more difficult to obtain, in the context of RBF encodings.

1. An attacker must be able to calculate the frequency at which n-grams

are present in the general population. An attacker can use publicly available

demographic information, such as census records, to estimate these frequencies. How-

ever, when field values are grouped together in a disordered way (e.g., in a permuted

RBF), this becomes far more difficult. For example, the frequency distribution of
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Forename may be available and relatively distinct. However, the frequency distribu-

tion of {Surname, Forename, City, Street address, Ethnicity, Gender} is more difficult

to calculate and less distinct. Additionally, an attacker must determine which bits

in the RBF correspond to each field in order to apply this attack. As discussed in

Section 4.4.3, security constraints can be put in place that make this very difficult.

2. An attacker must know k, the number of hash functions used in encoding.

When FBFs of static size are used, an attacker can observe the percentage of bits set

on average to estimate k. However, when FBFs of dynamic size are used, the attacker

loses the ability to estimate k based on observation of bits set.

In addition to not being able to gather the background information needed for this

attack, the computational complexity of the attack grows quadratically when field values are

grouped together into a single RBF. Previously, an attacker could handle each field individ-

ually. Therefore, in order to map the FBFs corresponding to the six fields used throughout

this Chapter back to their plaintext value, in the worst case, the attacker would have to

perform |Surname| + |Forename| + |City | + |Street address| + |Ethnicity | + |Gender | op-

erations. Consider as an example the values shown for the NCVR dataset in Table 2.2. In

this case, an attacker would have to perform 388,718 operations. However, when these fields

are encoded in the same data structure, an attacker must perform |Surname| × |Forename|

× |City | × |Street address| × |Ethnicity | × |Gender | operations. Using the NCVR dataset

as an example again, in this case, an attacker would have to perform 2.97×1019 operations!

This number of computations is outside the scope of current computing power.

As the attacker cannot gather the background information necessary to mount this

kind of attack, and the computational complexity renders it infeasible, the RBF encodings

presented in this chapter are resistant to this attack.
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4.5.2 RBF Design Decisions

In this section, we discuss design decisions encountered in RBF generation and how these

decisions affect the security of the resultant encodings, as well as the speed and accuracy

with which they can be compared with one another.

Field selection

The field values encoded can affect the extent to which a frequency attack yields information

about the field values. For example, consider the categorical variables Gender and Ethnicity.

The bit frequency distributions of the FBFs corresponding to these fields appear to be

dramatically different from the FBFs corresponding to string-based fields, as shown in

Figures 4.7 and 4.8. Based on the evidence, we can make a few observations about how the

schema affects the resultant security.

The first observation is that categorical variables produce distinct frequency dis-

tributions, and are therefore more subject to information leakage as a result of frequency

analysis. However, these fields (e.g., Ethnicity and Gender) also tend to have the least

discriminatory power in resolving identity. The second observation is that when fields are

drawn from the same domain (e.g., string-valued fields), the less distinguishable they will

be in the resultant RBF. Therefore, it will be more difficult to map the RBF bits back to

the FBFs from which they were sampled when fields are drawn from the same domain.

Determining mFBF

The next decision in RBF creation is how to determine what should be the value for mFBF.

Two alternatives have been put forward and examined in this work. The first is to use

FBFs of static size regardless of the values to be encoded, and the second is to dynamically

determine FBF size based on the expected length of the field values to be encoded.

The FBFs of dynamic size offer several benefits. They prevent an attacker from

determining the k value, which is required for the CSP attack described in Section 4.2.2.

When FBFs of dynamic sized are used, the expected number of bits set when g n-grams
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are encoded can be controlled by varying the m value, as described in Section 4.3.1. In this

work, we let p, the expected percentage of bits set, equal 0.5 in order to maximize entropy.

The results shown in Figure 4.6(b) confirm that this is the average percentage of bits set

across all FBFs of dynamic size, regardless of field type. Thus, no information is revealed

by the percentage of bits set in the FBF. This is in contrast to the FBFs of static size,

shown in Figure 4.6(a), where the average percentage of bits set is distinct across the fields.

Therefore, an attacker who seeks to estimate the k value by observing the percentage of

bits set, would gain no information about the k value when FBFs of dynamic size are used

because the average percentage of bits set is always 0.5.

Another property of the dynamic versus static sizing of FBFs relates to the signal-

to-noise ratio. While the same signal is encoded in each, as indicated by the very similar

accuracy measures in Figure 4.9, the amount of noise is far greater in the FBFs of static

size. In this case, the “noise” corresponds to the many bits that remain at their initial

value of 0 in the FBFs of static size. Minimizing the noise, while retaining the signal, is

desirable for several reasons. Firstly, when more bits are retained in a Bloom filter encoding,

it provides an attacker with more inputs to a frequency analysis, which he can then exploit

to aid in inferring information about the encoded values. Secondly, bits will be compared

in PRL to estimate the similarity of the record pair. Including the extraneous, “noisy” bits

in these calculations increases the runtime of an already computationally intensive process.

Therefore, eliminating the noise retained in FBFs of static size by dynamically sizing the

FBFs is desirable.

How many bits from each field to include in the RBF

Bits can be sampled either uniformly across all fields, or according to a weighting determined

by the discriminatory power of each field. The weighted technique seems more intuitive,

given the knowledge that different fields are useful at resolving identity to varying extents.

Therefore, RBFs that leverage this variation in discriminatory power by sampling more

heavily from more informative fields are expected to provide for a more accurate measure of
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record pair similarity. The results of the Neighborhood test, shown in Figure 4.9, confirm

this expectation. In all cases, RBFs created by a weighted sampling of bits from FBFs,

facilitate a more accurate measure of record pair similarity than RBFs created by a uniform

sampling of bits from FBFs.

Which bits to include in the RBF

Now that we have determined that bits should be sampled from FBFs commensurate with

the discriminatory power of the field, the question of which bits should be sampled is yet

unanswered. We considered two strategies for bit sampling. The first is to randomly sample

bits from FBFs and the second is to sample bits from the FBFs using an informed strategy.

For several reasons, we believe that random sampling of bits is the better option.

Firstly, use of a more informed strategy would provide a “weakness” an attacker could

exploit. If an attacker determined the method used in bit sampling, this may enable him

to map bits in the RBF back to the field from which they were drawn more effectively.

Secondly, an informed strategy is difficult to develop due to the highly correlated nature

of the data structure. As k bits are used to hash each n-gram into the FBF encoding,

these bits are highly correlated. Therefore, any informed sampling strategy would have to

account for the conditional dependency of bits, which would require additional time. Since

one of the benefits of Bloom filter based encodings is the speed with which they can be

generated and compared, employing a computationally costly bit sampling strategy would

conflict with the goal of a rapid encoding mechanism.

Determining mRBF

Another decision required in RBF generation is determining mRBF, the number of bits

to compose the RBF. We test several methods for RBF sizing, including allowing for the

inclusion of all bits from FBFs, or setting an arbitary size for the RBF. The results are

shown in Figure 4.10. As the results indicate, it is not necessary for all bits in FBFs to

be included in the RBF. However, as the size of the RBF is made smaller, the accuracy of
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record pair comparisons decreases as well.

There are also implications of mRBF for the security of the resultant encodings and

for the speed with which the encodings can be compared. As mRBF grows, an attacker has

more bits he can input to a frequency analysis. Additionally, the number of bits comparisons

required to compare encodings increases, resulting in longer computation time.

In summary, the size of the RBF presents a tradeoff between three desirable prop-

erties of encoding mechanisms – security, accuracy, and the speed with with they can be

compared. As mRBF increases, security decreases, accuracy increases, and the speed with

which they can be compared increases. As mRBF decreases, security increases, accuracy

decreases, and the speed with which encodings can be compared decreases.

Determining security constraints

The final decision encountered in RBF generation is what security constraint, q, to enforce.

Recall that each bit in the RBF is drawn from a FBF. An attacker may try to map bits in the

RBF back to the field from which they were drawn. He observes the frequencies with which

bits are set in RBFs and his knowledge of the frequency with which bits are expected to be

set in RBFs. By avoiding bits set at frequencies that are unique to a single field, or a small

number of fields, the resultant RBF encodings are more secure as it becomes more difficult

for an attacker to leverage frequency information to map RBF bits back to the FBFs from

which they were drawn. A user can establish a security constraint, q, by allowing only bits

that can be mapped back to ≥ q fields, by leveraging frequency information, to be included

in the RBF. Therefore, the value for this parameter can be determined in each application

to be consistent with the desired level of security.

Figures 4.15, 4.16, and 4.17 indicate that enforcing a strong security constraint has

little effect the accuracy of similarity comparisons on the resultant encodings.
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4.6 Conclusions

We presented a method to make a RBF encoding for use in PRL. Several design choices

can be made by users to best suit their requirements with respect to security, the speed at

which the encodings can be compared to one another, and the desired accuracy of similarity

comparisons based on the encodings. However, our results have shown that using FBFs of

dynamic size and sampling random bits from FBFs in a measure commensurate with the

discriminatory power of the field are important for secure RBF encodings that facilitate

accurate similarity calculations. These encodings are more resistant to an attack that has

been successful against previously proposed forms of FBF encodings, and therefore provides

an encoding for use in PRL that is more secure, yet still facilitates highly accurate similarity

comparisons of the encodings.

4.6.1 Future Work

We now describe work left to future research. Preliminary work has shown that RBF

encodings are suitable data structures to serve as inputs for blocking methodology in the

record linkage process. We explore this further in Chapter 5. Additionally, we believe

that the similarity of RBFs are an accurate measure of record pair similarity and can be

used directly in PRL to replace the record pair comparison step described in Section 2.1.7.

Finally, we plan to investigate how to handle missing field values in the context of Bloom

filter encodings. We test these ideas in Chapter 6.
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CHAPTER V

PRIVATE BLOCKING

In this chapter, we propose a method for private blocking (PB) based on the RBF

encodings presented in Chapter 4. We demonstrate that this method significantly reduces

the computational complexity of PRL while maintaining accuracy.

5.1 Introduction

Record linkage, the task of identifying records that refer to the same individual, can be

computationally expensive because each record in a dataset must be compared to each

record in the dataset to which it is being linked. Consider two data providers, Alice and

Bob, holding datasets A and B respectively. Suppose |A| = |B| = 100,000. Since each record

in dataset A must be compared to each record in dataset B, |A| × |B| = 100, 000× 100, 000

= 10,000,000,000 record pair comparisons are required. In summary, as the number of

records input increases linearly, the number of record pairs that must be classified increases

quadratically.

Blocking is a technique to reduce the number of record pair comparisons required

by removing record pairs from consideration that are unlikely to be True Matches. Briefly,

blocking is a method to partition records, from datasets A and B, such that the partitions

contain records similar to one another. Then, only record pairs within the same partition

are compared to one another and classified into the classes Predicted Match and Predicted

Non-match. Since the records not placed in the same partition are not evaluated and

classified, they are essentially classified as a Predicted Non-match by default. Blocking is

further described in Section 2.1.4 and an example of blocking by first letter of Surname is

shown in Figure 2.2.

While blocking is intended to reduce the number of record pair comparisons required,
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and thus reduce the computational complexity of record linkage, the specific blocking al-

gorithm and parameters should be chosen carefully since blocking also has the potential

to reduce linkage accuracy. Specifically, when record pairs that are True Matches fail to

be placed into the same partition, they are not compared and are classified as a Predicted

Non-match by default. Therefore, they are false negatives.

The primary goal of blocking is to reduce the time required to perform record linkage,

so it is also important that the blocking algorithm itself does not take long to run. It should

be the case that Time(Blocking)� Time(Compare(|A| × |B|)).

In summary, an ideal blocking algorithm achieves the following goals:

1. reduces the number of record pair comparisons required,

2. does not reduce the accuracy of record linkage, and

3. runs in significantly less time than that required to compare all record pairs.

5.1.1 Private Blocking

Blocking – in the context of PRL – must satisfy some additional properties to ensure

privacy is maintained. Specifically, the blocking algorithm must not require knowledge of the

plaintext values, and the properties of the resultant partitions must not reveal information

about the originating plaintexts. An example of a blocking algorithm that satisfies the

first property, but not the second, is when Alice and Bob agree to send all records where

the first letter of the Surname is a particular letter (e.g., ‘A’, then ‘B’, then ‘C’ and so

on throughout the alphabet), partition by partition, to Charlie for linkage. Though this

method does not require revelation of the plaintext values, an attacker who observes these

partitions may be able to use their relative size to map each partition back to its associated

letter using the frequency information shown in Figure 5.1, generated from the 2000 U.S.

Census data [111]. If an attacker is able to attack the data in this manner, it makes the

task of mapping encoded values within each partition back to their plaintext values far more

98



Figure 5.1: The frequency distribution for first letter of Surname in the 2000 U.S. Census.

straightforward. Therefore, this protocol does not satisfy the properties of a PB algorithm.

5.1.2 Steps in Blocking

Blocking can be viewed as a function where the inputs are the records from datasets A and

B, and the outputs are the set of record pairs to be examined further and classified. Several

steps are undertaken in the blocking process, as shown in Figure 5.2. We refer the reader

to Section 2.1 and Figure 2.1 to understand how blocking fits into the larger record linkage

process.

Further details on the steps involved in blocking are outlined as follows:

1. Blocking variable identification

The blocking variable is the criteria by which the records are partitioned. In the

example shown in Figure 2.2, the first letter of Surname is applied as the blocking

variable.

2. Spatial partitioning

Once a blocking variable has been identified, this variable serves as an input to a
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Figure 5.2: The steps in the blocking process.

spatial partitioning process where the output is a set of partitions.

3. Record pair generation

Given a partition of the space, the set of record pairs to be considered further is

generated.

In this work, we use the RBF described in Chapter 4 as the blocking variable.

An advantage of this data structure is that it includes information from all fields in the

record. Blocking variables based on a single, or a small number of fields, are more likely

to result in false negatives if a field value is not recorded accurately. For example, if first

letter of Surname is used as a blocking variable, all records where the Surname is recorded

incorrectly, or where the Surname has changed, will be placed in different partitions and

therefore incorrectly classified as Predicted Non-matches. Incorporating multiple fields in

the blocking variable, or iteratively partitioning using different blocking variables, avoids

“putting all of one’s eggs in one basket” and minimizes the chance of false negatives.

The remainder of this chapter describes a novel method for spatial partitioning of

RBFs based on locality-sensitive hashing (LSH). LSH is a class of hash functions where

similar inputs are placed in the same bucket with high probability. LSH functions are

described further in Section 5.2.4.
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5.1.3 Chapter Outline

In Section 5.2, we describe research others have done on blocking in general, and PB in

particular. Section 5.3 provides the details of the PB approach proposed in this chapter, the

controls against which this new method will be benchmarked, the dataset used in evaluation,

and the metrics used to evaluate the methods. Section 5.4 describes the experimental results,

and in Section 5.5 their implications, are discussed. Finally, Section 5.6 summarizes this

chapter.

5.2 Related Work

This section describes previous work performed on the topic of blocking. Sections 5.2.1 and

5.2.2 describe methods for blocking variable selection and techniques for spatial partitioning,

respectively. In Section 5.2.3, we highlight findings of reviews and evaluations of blocking

techniques. In Section 5.2.4, we provide details on LSH since it lays the groundwork for the

methods proposed in this chapter.

5.2.1 Blocking variable selection

The first step in blocking is to identify a blocking variable which will guide the partitioning

process. The blocking variable may be composed of information from a single field, or

multiple fields. Some examples of blocking variables are:

• Surname

• first letter of Surname

• first letter of Surname AND Month of Birth

Michelson et al. present a machine learning approach to identify the best blocking

variable or variables [87]. Another work on blocking variable selection [21] takes an analyt-

ical approach to finding the best combination of field values, and portions of field values, to
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comprise the blocking variable. The authors prove that finding a globally optimal solution

is NP-hard and present a greedy approximation algorithm.

5.2.2 Spatial Partitioning

This section presents previous work on partitioning records, given a blocking variable. The

term “spatial partitioning” is particulary relevant when each record is viewed as a single

point in a multidimensional space. The goal of this step of the blocking process is to generate

a partition of this space, such that similar records are placed in the same partition.

Many of the approaches share properties and are broken into four classes: 1) token-

based blocking approaches, 2) sorting-based blocking approaches, 3) n-gram based ap-

proaches, and 4) clustering approaches. Throughout the remainder of this section, we

describe the properties of these classes and provide examples of each.

Another property of partitions that spans the categories below is that a partition

can either be hard or fuzzy. We mention this distinction because the partition type affects

how the record pair generation step must be performed. When a hard partition is created,

each record is placed in only a single partition, as shown in Figure 5.3(a). By contrast, a

fuzzy partitioning method allows each record to be placed in multiple partitions, as shown

in Figure 5.3(b).

When a hard partition is created, the record generation step is straightforward be-

cause the records from disparate datasets within each partition are compared to one another.

Consider the example shown in Figure 5.3(a). The record pair comparisons generated from

partition 5 are {(a7, b9), (a7, b7), (a5, b9), (a5, b7), (a6, b7), (a6, b9)}. Partitions 6 and 7 do

not generate any record pair comparisons because they do not contain any records. Par-

titions 3 and 8 do not generate any record pair comparisons because they only contain a

single record, and thus there is no record from the opposing dataset to which it can be

compared. Partitions 1 and 2 do not generate any record pair comparisons because they

contain records from the same dataset. Since the goal is to link records across the two
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(a) Hard partitions.

(b) Fuzzy partitions.

Figure 5.3: An example of hard versus fuzzy spatial partitions. In hard partitions (5.3(a)),
a record is placed in only a single partition. For illustration, each partition is assigned a
number. In fuzzy partitions (5.3(b)), a record can be placed in multiple partitions. For
illustration, each partition boundary is assigned a number.
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datasets, records in the same dataset are not compared to one another.

However, when a fuzzy partitioning method is used, record pair generation is less

straightforward. Consider the example shown in Figure 5.3(b). If the set of record pair

comparisons generated by each partition boundary is used as input to the subsequent steps

of record linkage, some record pair comparisons would be generated multiple times. For

example, record pair (a8, b6) is included in partitions 2, 4, and 5. However, comparing this

record pair more than once in the context of record linkage would be redundant. Therefore

a global hash table that does not allow for the inclusion of duplicates should be applied to

maintain a unique list of record pair comparisons required for a record linkage protocol.

It is also noteworthy that any hard partitioning method, when applied repeatedly,

results in fuzzy partitions, as shown in Figure 5.4.

In the remainder of this section, we discuss specific spatial partitioning approaches.

When appropriate, we point out whether each approach creates hard or fuzzy partitions.

Token-based blocking approaches

Token-based blocking approaches create a hard partition by leveraging a token, selected

from the field values in the record, to place the record into a partition. The blocking

example shown in Figures 2.2 and 2.3, where first letter of Surname is used as the blocking

variable, is an example of token-based blocking.

Fellegi and Sunter [46] proposed that all records with the same value for the blocking

variable are inserted into the same partition. In this case, each record is inserted into only

a single block. However, Christen points out that errors in the blocking key result in false

negatives and that the sizes of blocks generated depend on the distribution of the blocking

variables values [29].

An approach presented by Tejada et al. seeks to overcome the false negative rate

associated with blocking algorithms that place each record into a single partition by break-

ing up each field into a set of tokens, which are subsequently used as a blocking variable

[107]. For example, if the field Restaurant name has the value “Art’s Delicatessen”, the

104



Figure 5.4: Fuzzy partitions can be derived from the repeated application of a hard par-
titioning strategy. In this example, a second hard partition, shown with dashed lines, is
applied.
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corresponding tokens are “Art”, “s”, and “Delicatessen”.) Tejada also presents several

“transformations” that can be applied to tokens. Valid transformations are stemming –

which converts a token to its “root” (i.e., “Delicatessen” is converted to “Deli”), applying

a phonetic filter, and abbreviation expansion (e.g., “St.” is converted to “Street”). All

record pairs are considered for further evaluation if any token, or transformed token, agrees

amongst the record pairs. This approach is ad hoc and requires knowledge of the plaintext

values and is therefore not suitable for PB.

Al-Lawati et al. presents a multi-pronged approach to blocking [10]. In the first

step, every pair of records becomes a candidate pair if they share at least one token. In

the second step, the binary representations of each record’s hash signature is compared

using the Jaccard coefficient, a set-based similarity function. If this value is greater than a

predefined threshold, the record pairs are compared.

Another approach is based on using the suffix of the blocking variable to insert a

record into each partition corresponding to the values in its suffix array [9]. The suffix

array is created by inserting the suffixes of the blocking variable into the array until some

minimum length is reached. For example, if the blocking variable value for a given record

is “durham” and the minimum length is 3, the suffix array contains the values “durham”,

“urham”, “rham”, “ham”. The record is inserted into the four partitions corresponding

to the values in the suffix array. This approach also attempts to control partition sizes by

setting a maximum partition size. Partitions containing a number of records that exceeds

the maximum partition size are considered too general, and the record pair comparisons

indicated by these partitions are not considered for further evaluation.

Sorting-based blocking approaches

The blocking algorithms in this category involve sorting all records, by blocking variable,

and sliding a “window” along the set of sorted records [54]. All records in the same window

frame are placed into the same partition. Therefore, the window size dictates partition size

and in how many partitions each record will be placed. One problem with this approach,
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pointed out in an evaluation [15], is that if the number of records having the same value for

the blocking key are larger than the window size, then all records having the same blocking

key are not compared.

Monge et al. [88] use a similiar approach, but propose a different sorting algorithm

that involves sorting in the traditional manner, and a second sorting pass where blocking

variable values are read in reverse order.

One challenge associated with applying these techniques in PB is that there is no

clear way to sort records in a privacy-preserving way. Additionally, the process of sorting

itself can be very expensive. The aforementioned approaches control partition size, as the

size of the partitions is dictated by the window size. However, they do not control for the

number of partitions, as each record is part of a partition “centered” at that record. As the

number of records becomes large, this approach may not guarantee suitable time savings.

n-gram based approaches

This class of approaches involves breaking down the blocking variable values into their

associated n-grams to guide the spatial partitioning.

One approach is based on bigram indexing [15] in which the blocking variable value

is used to generate a bigram list, a subset of combinations of the bigrams composing the

value. A threshold is applied to calculate the length of the bigram lists and thus influence

how many partitions each record is placed.

For example, if the blocking variable value is “durham”, the set of bigrams associated

with this values is “du”, “ur”, “rh”, “ha”, “am”. If the threshold is 0.8, the bigram lists

should be of size |set of bigrams| × threshold = 5× 0.8 = 4. Therefore, all permutations of

size 4 of the set of bigrams are generated as follows.

{“du”, “ur”, “rh”, “ha”}

{“du”, “ur”, “rh”, “am”}

{“du”, “ur”, “ha”, “am”}
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{“du”, “rh”, “ha”, “am”}

{“ur”, “rh”, “ha”, “am”}

Each record is inserted into the partitions associated with its bigram lists. Therefore, a

record where the blocking variable value is “durham” is inserted into five blocks in this

example.

One downside of n-gram based blocking algorithms is that the resultant partitions

are subject to frequency analysis in the same way demonstrated in Figure 5.1.

Clustering and data partitioning

This set of blocking algorithms views blocking as a data clustering problem where clusters

of records are identified and then partitioned.

Ordonez et al. propose the use of c-means clustering, an approach where the number

of clusters, c, can be determined by the user [82], for partitioning binary data [90]. While

this approach initially seems promising for use on binary Bloom filter encodings, we do

not believe it is a good fit for partitioning RBF encodings for several reasons. Firstly, this

approach assumes that when comparing bit values, a “0/0” agreement (where the values of

both bits being compared is 0) is as informative as a “1/1” agreement (where the values of

both bits being compared is 1). However, this does not hold for Bloom filter based encodings

because “0/0” agreements are not informative in determining the similarity of the encoded

values due to the fact that all unset bits are initialized with the value ‘0’. Additionally, it

can be difficult for a user to foreknow the most appropriate c value, making this approach

difficult to parameterize. Finally, c-means clustering is known to be an NP -hard problem,

and therefore heuristic algorithms must be used.

Another blocking approach is based upon binary matrix decomposition [80], but is

too computationally intense. Recall that the primary goal of blocking is to speed up the

record linkage process; therefore, computationally intensive blocking schemes are undesir-

able. This approach also requires foreknowledge of the expected number of clusters.
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Others have suggested using an r-tree, a data structure for storing and accessing

spatial data, for spatial partitioning [59] in conjunction with the String map algorithm [67].

However, a comparative evaluation of blocking approaches indicated this approach does not

perform well [15].

One of the more popular blocking algorithms, used by several others with success

[20, 22, 36, 39], is called the Canopy approach [86]. As we use this approach as a control

method for the experiments in this chapter, we will provide details about the way it works.

This approach is based on the use of a “canopy”, the set of records for which the blocking

variable value is within some distance from a central point. Users can specify the distance,

or similarity, metric used, as well as the threshold. Two threshold values, t1 and t2, are

required where t1 > t2. Let S be the set containing all records from datasets A and B.

Select a random record r from S, which will serve as the centroid for this canopy, and

measure the distance from this record to all other records. All records within a distance

of t1 are placed in this canopy. All records within a distance of t2 are removed from S.

This process is repeated until S is empty. Therefore, an element may appear in more than

one canopy, and every element must appear in at least one canopy. This approach differs

from the sliding window approach [54] approach in that rather than each record serving as

the centroid of a partition, only a subset of the records serve as a partition (i.e., canopy)

centroid. The idea is that a cheap distance metric is used in canopy creation and that a more

expensive, accurate distance metric is used to evaluate the record pairs that are flagged for

further evaluation. However, the computational complexity can still be excessively large

since many record pair comparisons may be required (depending on the threshold values

used).

5.2.3 Blocking evaluations

Baxter et al. performed a review and evaluation of several blocking algorithms [15]. Three

performance metrics, first introduced by Elfeky et al. [43], are used to evaluate these
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algorithms. We define them here because we also use these evaluation metrics in this

chapter. Let e be the number of record pairs output by a blocking method and let L =

|A| × |B|.

To examine the extent to which each blocking algorithm reduces computational

complexity, a metric called the Reduction ratio (RR) is introduced and defined in Equation

5.1.

RR = 1− e

L
(5.1)

Let etp be the number of True Matches in the set of record pairs produced for

comparison by the blocking method and Ltp be the total number of True Matches in the

dataset. Pairs completeness (PC), defined in Equation 5.2, is a measure of how well the

blocking algorithm retains the record pairs that are True Matches for further processing.

PC =
etp
Ltp

(5.2)

The F-score is the harmonic mean of two variables and reflects the extent to which

each blocking algorithm balances these desiderata. In this chapter, we examine the F-score

of PC and RR.

F − score(τ, υ) =
2× τ × υ
τ + υ

(5.3)

The results in Baxter et al. [15] show that a token-based blocking technique (where

the blocking variable is the first four letters of Surname) performs approximately as well

as the sorted neighborhood method. The n-grams based blocking algorithm described in

Section 5.2.2 outperforms both of these methods, but the Canopy approach described in

Section 5.2.2 performs best overall.

Guidance on blocking variable selection is also provided in the review by Baxter et

al. [15]. For instance, it was found that less informative variables, such as Gender, do not

greatly decrease the computational complexity. However, a very informative field, such as
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SSN, may decrease accuracy if it is not always recorded correctly. A “middle ground” field,

or combination of fields, is desirable. Additionally, use of the least error-prone fields was

found to be desirable in a blocking variable.

Elmagarmid et al. also present a qualitative discussion of blocking approaches [44]

and Yancey notes the difficulties associated with blocking variable creation [121]:

“Hence the choice of blocking criteria is something of an art and since any

choice may result in overlooking some pairs of likely matched records, a record

linkage project usually involves successive runs using different blocking criteria.

Recent matching projects have used up to 10 blocking passes.”

5.2.4 Locality Sensitive Hash Functions

We now provide background information on locality sensitive hashing (LSH) generally and

how it has been used in blocking. We introduce two locality sensitive hash function fami-

lies, based on the Jaccard and Hamming distances, respectively. We describe the blocking

algorithm based on the Jaccard family of locality sensitive hash functions. We provide

background on the Hamming family of locality sensitive hash functions, which provides the

basis for the blocking algorithm we propose in this work and is discussed further in Section

5.3.

LSH is a probabilistic method for dimensionality reduction, where a set of hash

functions are used to map objects into partitions, such that similar objects share a bucket

with high probability, while dissimilar ones do not. LSH has been used for nearest neighbor

search [102], genetic sequence comparison [27], and image retrieval [74].

LSH involves the use of locality sensitive hash function families, which are defined

as follows. Let r1 and r2 be two distances such that r1 < r2. Let p1 and p2 be two

probabilities such that p1 > p2. Then a family of hash functions G = {h : F 7−→W} is said

to be (r1, r2, p1, p2)-sensitive if for any f1, f2 ∈ F and for any h ∈ G

• if dist(f1, f2) ≤ r1, then P [h(f1) = h(f2)] ≥ p1.
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• if dist(f1, f2) ≥ r2, then P [h(f1) = h(f2)] ≤ p1.

The family of hash functions G can be chosen such that they approximate other

functions. In the remainder of this section, we describe hash function families for approxi-

mating the Jaccard and Hamming distances, respectively.

Jaccard LSH

MinHash is a class of hash functions that approximate the Jaccard distance and have been

used in blocking [72]. We call this approach Jaccard-based locality-sensitive hashing, or

JLSH. The Jaccard coefficient is used to measure the similarity of two sets I and J and is

defined in Equation 5.4.

Jaccard(I, J) =
|I ∩ J |
|I ∪ J |

(5.4)

The MinHash function accepts binary input, randomly permutes the bits, and

scans from left to right until a bit with a value 1 is reached. The index of this bit is the

hash value. All records with the same hash value are then mapped to the same partition.

We refer the reader to the work by Broder [26] for a more thorough explanation and

proof that MinHash approximates Jaccard distance.

Hamming LSH

Hamming distance is the number of positions at which strings differ and is defined in

Equation 5.5.

Hamming(I, J) = I ⊕ J (5.5)

where ⊕ indicates the “exclusive or”, or XOR, operation.

Given an understanding of Hamming distance, we take a look at the family of

hash functions that approximate this distance (HLSH). The applicable hash function is

hρ(I) = I[ρ]. A random ρ is selected, and the value of the ρth index of I is the hash

value. Essentially, this process is the same as the random bit sampling strategy described
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in Section 4.3.1. We refer the reader to the work by Indyk et al. [64] for a more thorough

explanation and proof that random bit sampling approximates Hamming distance.

5.3 Materials & Methods

5.3.1 Experimental Methods

We believe that the class of LSH hash functions approximating Hamming distance (HLSH),

as described in Section 5.2.4, when applied to RBF encodings, creates a set of partitions

useful for blocking. The RBFs are made from FBFs of dynamic size by a weighted sampling

of random bits in a measure commensurate with their discriminatory power. The value of

mRBF used in this work is 1,000 bits. Please see Chapter 4 for further details. To summarize,

each RBF, containing m bits, can be viewed as a single point in an m-dimensional space,

and we propose partitioning this space using HLSH.

We introduce two parameters, φ and µ. Let φ be the number of individual hash

functions applied in the family and let µ be the number of iterations used. Therefore, for

HLSH the φ randomly selected bits must agree in order for records to be placed into the

same partition. Since each bit can have two values, a maximum of 2φ hard partitions are

created. True Matches do not always agree for each bit value in the Bloom filter encoding,

so it is possible that the records will fail to agree on all φ randomly selected bits. Therefore,

this procedure is applied iteratively, and another φ random bits are sampled in the next

iteration. Although a hard partition is created at each iteration, when µ > 1, a fuzzy

partition results, as shown in Figure 5.4. In this case, we use a global hash table in record

pair generation, as described in Section 5.2.2.

In experiments, we evaluate HLSH, with multiple parameter settings. Specifically,

we consider values for φ in {14, 16, 18, 20} and values of µ in {0, . . . , 100}.
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5.3.2 Controls

We use a “token-based” blocking approach where multiple iterations are applied based on

the first letter of each field. Therefore, if the first letter of the first field agrees, the record

pairs are evaluated; if the first letter of the second field agrees, the record pairs are evaluated;

and similarly for any number of fields adopted for the token-based blocking approach. We

use the parameter ν to refer to each iteration. We exclude two fields – Ethnicity and

Gender – because their domains are composed of only a few values, such that the resultant

partitions would not sufficiently reduce the number of record pair comparisons. Therefore,

in this control method, we let ν = 4, and create partitions based on the first letter of the

fields Surname, Forename, City, and Street address.

We also compare to theMinHash family of LSH functions that approximate Jaccard

distance. This class of function has recently been proposed for use in blocking and has shown

promising results [72]. The input to this function is the RBF encoding.

Finally, we also compare to the Canopy approach. As mentioned earlier, this ap-

proach has been widely used for blocking [20, 22, 36, 39]. This approach requires the user to

set several parameters. Specifically, we must define a distance function, a loose threshold,

t1, and a tight threshold, t2. The specific applications we use are as follows:

• Data structure: For the input data structure, we use a subset of the bits in the

RBF. The reasoning here is that the calculations required in canopy creation should

be cheap and therefore efficient. To facilitate this aspect of the process, we perform

calculations over a random subset of the bits in the Bloom filter encoding. The number

of bits sampled is called φ, in the same way discussed in Section 5.3.1, and we test

several φ values.

• Distance measure: Hamming distance, as defined in Equation 5.5 is used for mea-

suring the distance between RBF encodings. This is selected because it is one of the

cheapest, in terms of running time, distance metrics for binary data.
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• Threshold values: We test several values for t1 and t2. The values selected depend

upon the φ value selected in input data structure creation.

5.3.3 Evaluation Metrics

We use several metrics introduced by Elfeky et al. [43] to evaluate the accuracy and reduc-

tion in computational complexity afforded by each blocking algorithm. These metrics are

RR, PC, and the F-score of these values, and are defined in Equations 5.1, 5.2, and 5.3,

respectively. To examine the computational complexity of the blocking algorithm itself, we

record the running time required for algorithm execution.

5.3.4 Dataset

We use 100,000 records from the NCVR datase, and a second set of records, to which the

original is linked, is generated using a data corrupter, as described in Section 2.4.1. This

dataset was also used for the experiments presented in Chapter 4.

We exclude records with missing field values so that we get a clear idea of the

performance of each method without this complicating factor. We address handling missing

values in the context of Bloom filter encodings in Section 6.3.1.

5.3.5 Implementation Details

As noted in Section 5.2.2, a global hash table is required for record pair generation when

fuzzy partitions are created. The use of a global hash table requires that the number

of record pair comparisons required be of sufficiently small size that they can be stored

in system memory. If, however, the number of record pair comparisons required exceeds

system memory, an alternate method is required such that the output record pairs are

written to disk in such a way that duplicate values are not allowed. To accomplish this,

we use a MySQL database for record pair generation where the record pair ID serves as

the primary key to ensure that duplicate record pairs are not allowed. When the number
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(a) HLSH. (b) JLSH. (c) Canopy. (d) Token.

Figure 5.5: The Pairs Completeness for various blocking strategies. The darker color
corresponds to PC, and the lighter color corresponds to the percentage of True Matches
that were not flagged for further evaluation and therefore incorrectly classified as Predicted
Non-matches.

of record pair comparisons is sufficiently small that it can be stored in system memory, we

use a hash table for record pair generation because it is the faster method. However, when

the number of record pair comparisons exceeds system memory and the database method

is required , it is explicitly denoted by a “DB” marker.

All experiments in this chapter were performed on computer ε with the exception of

the record pair generation steps that required the use of a database. These computations

were performed on computer θ. Further details on the computation resources can be found

in Table 2.1.

5.4 Results

We consider various parameter settings for each method, but only show the results for the

best (as indicated by the F-score of PC and RR) parameter settings for each method in

Figures 5.5 and 5.6 and Table 5.1. Figures 5.5 and 5.6 depict the PC and RR values,

respectively. The F-score of the PC and RR values for the methods are shown in Table

5.1. Further details on various parameter settings for each method are provided in Sections

5.4.1 through 5.4.3.
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(a) HLSH. (b) JLSH. (c) Canopy. (d) Token.

Figure 5.6: The Reduction Ratio for various blocking strategies. The darker color corre-
sponds to the RR and the lighter value corresponds to the percentage of possible record
pair comparisons that are required.

F-score(PC,RR)

HLSH 0.9864

JLSH 0.9797

Canopy 0.8841

Token 0.9768

Table 5.1: F-score, as defined in Equation 5.3, of PB methods. The F-score reflects the
parameter settings that provide for the highest PC value.

5.4.1 Additional Results for the HLSH and JLSH methods

We now examine how the parameters φ and µ affect the output record pairs (Figure 5.7)

and running time (Figure 5.8). We consider values of {8, 10} for φ in JLSH and values of

{14, 16, 18, 20} for φ in HLSH. We consider values of µ in {0, . . . , 100}, as shown on the

horizontal axis. We believe that these parameter settings provide a sufficient view of the

trends associated with different parameters.

5.4.2 Additional Results for the Canopy method

Table 5.2 provides the results associated with various parameter settings tested for the

Canopy approach. To further explore the behavior of the Canopy approach applied to

RBFs, we select a sample of 100 records from datasets A and B such that each sample’s

True Match is included in the opposing dataset. We then calculate the Hamming distance

between all record pairs. These results are shown in Figure 5.9 and provide insight on why
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Figure 5.7: The performance of various parameter settings for the LSH methods. The
number of record pairs generated for each parameter setting, shown in dotted lines, reads
from the right axis on a log scale. The number of True Matches amongst the output record
pairs, shown in solid lines, reads from the left axis. HLSH variations are shown in shades
of blue, and JLSH variations are shown in shades of red.
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Figure 5.8: The running times of LSH methods. The time to create partitions and generate
record pairs are shown with solid and dotted lines, respectively. HLSH and JLSH variations
are shown in shades of blue and red, respectively. Please note the use of a log scale.
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Parameters Results

φ t1 t2 Number of partitions Number of True Matches Number of record pairs

10 4 2 50 2,243 104,334,264

10 3 1 275 2,477 82,713,649

10 2 0 1,024 3,938 48,204,773

20 4 2 9,595 85,043 794,646,563

20 3 1 198,131 1,881 1,332

Table 5.2: Details for various parameter settings for the Canopy method.

Field Number of True
Matches

Number of record
pairs

Record pair genera-
tion time (seconds)

Surname 81,496 610,358,017 64,466

Forename 16,034 601,443,824 437,865

City 2,282 665,453,763 234,990

Street address 174 452,629,042 312,492

Sum 99,986 2,329,884,646 1,049,813

Table 5.3: Token results broken down by iteration.

the results of the Canopy approach, applied to RBF encodings, does not perform as well as

expected based on the experience of other users who applied it successfully [20, 22, 36, 39].

Essentially, in the RBF encoding space, True Matches are very close (the average Hamming

distance is 114 ± 50 for True Matches in the sample) to one another, yet far from all other

records (the average Hamming distance is 470 ± 39 for True Non-matches in the sample).

Based on the evidence, it appears that the Canopy approach functions best when applied

in a space composed of a more continuous distribution of distances. We discuss this issue

in further detail in Section 5.5.1.

5.4.3 Additional Results for the Token method

Recall that the Token method is applied in an iterative fashion such that if the first letter

of field 1 agrees, the record pairs are compared; if the first letter of field 2 agrees, the record

pairs are compared; and so on. Table 5.3 provides a breakdown, by iteration, of the results.

The results are presented in the order in which they were run, and only record pairs

not previously identified in prior iterations are reported. In the first pass, 610,358,017 record

pairs agree on first letter of Surname. Of these record pairs, 81,496 are True Matches. In
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Figure 5.9: The hamming distance from a sample of records. True Matches read from the
left axis, and True Non-matches read from the right axis.

the second iteration, 601,443,824 record pairs, that had not already been output, agreed on

first letter of Forename. Of these, 16,034 True Matches were not identified in the previous

iteration.

5.4.4 Summary of Results

The experimental analysis yields several core findings of note. First, both of the LSH-based

methods considerably reduce the number of record pair comparisons required while correctly

flagging the majority of True Matches for further evaluation. However, the time JLSH

requires to partition the space is several orders of magnitude larger than HLSH. Second,

the Canopy approach does not perform as well as expected, and we suspect this is because

the distribution of distances of RBFs is not ideal input for this approach. Finally, the Token

approach correctly flags nearly all (99.986%) of the True Matches for further evaluation, but

also requires a significant number (> 2 billion) of record pair comparisons and the runtime
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of this algorithm itself (> 1 million seconds, or over 291 hours) is significantly slower than

other approaches.

5.5 Discussion

We first discuss the results for the control measures, followed by a discussion of the experi-

mental measure, HLSH.

5.5.1 Controls

The control measures – JLSH, Canopy, and Token – were evaluated to provide a reference

standard, and are discussed in the remainder of this section.

JLSH

The JLSH approach achieves a PC of 98.27%, meaning that it correctly flagged 98.27% of the

True Matches for further evaluation. Additionally, it removes 97.06% of the possible record

pairs from consideration, greatly reducing the number of record pair comparisons required.

However, the time required to create partitions under this algorithm is non-trivial. As

shown in Figure 5.8, the partition time is on the order of hundreds of thousands to millions

of seconds. This is because, at each iteration, all encodings are randomly permuted φ times,

and subsequently scanned from left to right until a value of ‘1’ is reached. However, we

implemented a more rapid implementation that does not actually permute the encodings,

but accesses the bit value in the original array specified by the permutation. The running

times shown reflect this quicker implementation. However, partitioning still takes orders of

magnitude longer than partitioning under HLSH.

Canopy

While the Canopy approach has been successfully applied as a blocking technique, it is

highly dependent upon its parameters (i.e., the distance or similarity function, the thresh-

olds t1 and t2, and the input data structure). This approach begins by centering a partition
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at each record and comparing this centroid to all other records. Records that are “suffi-

ciently close” (i.e., within a distance less than t2), are grouped with the centroid represented

by the initial record and are removed from the list of records which are available to serve

as partition centroids. However, in the worst case, this leads to a record centered at each

block. Since each block centroid is compared to all records, the Canopy approach has a

worst case complexity of |A| × |B|, which is equivalent to not performing blocking at all.

We now describe the parameter values we evaluate for the Canopy approach. We use

Hamming distance as the distance metric, and test various values for t1, t2, and the input

data structure. For the input data structure, we consider random samples of size φ = {10,

20} from the RBF. However, the results yielded either very low PC or low RR. To explore

the factors that cause this problem, we analyze the distances from an arbitrary record to all

other records. Figure 5.9 shows the similarity of the True Matches and True Non-matches.

Essentially, the encoded data is very similar to its True Match and very dissimilar to all

other records. While this property of the encodings is highly desirable for record linkage, it

is not conducive to an efficient application of the Canopy approach, which performs better

when the function of distances between record pairs is more smooth. Figure 5.9 suggests

that the RBF landscape is sparsely populated, like the sample landscape shown in Figure

5.10.

Several factors explain why the RBF landscape is sparsely populated: 1) While

records are expected to be similar on any single field value (e.g., it is not uncommon for

individuals to have the same Forename), records are generally not expected to be similar

on the composition of all field values (e.g., it is uncommon for individuals to have the same

Forename, Surname, City, Street address, and Gender). This is, in fact, exactly what the

RBF encoding is – a composition of all field values. Therefore, we believe that the Canopy

approach is better suited for inputs that have a more uniform (as shown in Figure 5.3(b)),

as opposed to sparse (as shown in Figure 5.10), distribution of distances amongst records.

2) Another property that contributes to the sparsity of the multidimensional space that
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Figure 5.10: An example of a sparse distribution of records in a multidimensional space
akin to that representative of the RBF encodings.

characterizes RBFs is the manner by which RBF encodings are created. Recall that when

FBFs are dynamically sized, P(bit set) = 0.5. Therefore, on average, P(bit agrees) = 0.25,

and P(φ bits agree)= 0.25φ and, it is unlikely that RBFs will be near to one another by

chance. This makes parameter selection very difficult. If a large threshold is chosen, such

as is shown for Partition 1 in Figure 5.10, a significant number of record pair comparisons

will be required. On the other hand, if a small threshold is chosen, such as Partition 2 in

Figure 5.10, each record, or pair of records, will serve as a block centroid, which will result

in |A| × |B| record pair comparisons and insignificant computational savings.

In summary, we believe the Canopy approach is better suited for inputs that have a

more uniform distribution of distances between records, in contrast to the RBF encodings

used in this work, which are sparsely distributed.
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Iterative token

This approach partitions records by the first letter of the field, resulting in a hard partition

of the space. However, this approach is applied iteratively, using multiple fields as the

blocking variable, resulting in a fuzzy partition. While this approach yields a very high

PC value of 99.986%, we have several concerns with the application of such a technique in

practice. First, it outputs over 2 billion record pair comparisons on this dataset. Second,

the algorithm itself is computationally intensive. While it takes just seconds to create the

partitions in this example, it takes over a week to loop over the very large partitions to create

the list of record pairs. There are two reasons this step takes so long. The first is that block

sizes may be excessively large because block sizes depend on the frequency distribution of

the blocking variable. For example, partitions based on the first letter of Surname will have

a frequency distribution similar to the one shown in Figure 5.1. Secondly, many record

pairs exist in multiple blocks. For example, if all field values are recorded correctly, the

True Match corresponding to an individual will be placed in the same partition for each

field value invoked to partition the space.

Recall that the fields Ethnicity and Gender were not applied as a blocking variable

for this algorithm. The reason for this decision is that the domains of these fields is small

(i.e., Gender can take only two values), such that the partitions based on these fields do

not result in a significant reduction in the number of record pair comparisons. For example,

if blocking is not used, |A| × |B| record pair comparisons are required. If Gender is used as

a blocking variable, one expects |A|2 ×
|B|
2 record pair comparisons, resulting in a reduction

ratio of only 25%. Therefore, feature selection is important for this blocking approach.

Fields that are recorded with high accuracy, yet take on a large number of values, will

provide for the greatest reduction in the number of record pairs required.

In summary, the Token blocking approach is accurate, but does not result in sig-

nificant time savings because it has a large running time and outputs a large number of

record pair comparisons. Moreover, and perhaps most importantly, this method is not
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privacy-preserving.

5.5.2 Experimental algorithm: HLSH

Now we discuss the results for the experimental algorithm that uses a class of LSH functions

which approximate Hamming distance. Recall that an ideal blocking algorithm maintains

accuracy, significantly reduces the number of record pair comparisons required, and runs

efficiently. HLSH achieves all of these objectives. When the parameter settings φ = 14, µ =

100 are used, HLSH yields a PC value of 99.02% and a RR of 98.2%. The associated F-score,

0.9864, is the highest of all approaches evaluated. Additionally, this algorithm satisfies the

properties of a private blocking algorithm. Specifically, 1) it does not require knowledge of

the plaintext values to create partitions. Rather, it operates on the secure RBF encodings.

2) The properties of the blocks do not reveal information about the plaintext values. While

the an attacker can observe the frequency distribution of records in blocks, he does not have

access to a mapping table that can link this information back to the plaintext values.

The HLSH algorithm has two parameters: φ and µ. In the remainder of this section,

we discuss parameter selection.

Parameter selection

The parameter φ corresponds to the number of bits that randomly sampled. As φ grows,

more bits are required to agree in value, so fewer records will end up in each partition. As

a result, the number of record pair comparisons will be lower. However, if φ becomes too

large, the accuracy may decrease because even True Matches may not agree on all bits and

will therefore be placed in different partitions.

In contrast, as µ grows, the number of record pair comparisons grows, but the

accuracy may improve. This is because if a True Match was not equivalent on the previously

selected set of φ bits, it may agree on the set of φ bits selected in the next iteration.

126



Stopping criteria

We now discuss an approach to determine how many iterations µ to perform, to inform

the parameter selection process in practice. In short, in each iteration, the method will

capture an additional similar record pairs that were not identified in previous iterations.

Therefore, when the rate at which the method captures additional record pairs becomes

very small, iterating can cease because most of the similar record pairs in the dataset have

been identified.

5.6 Conclusions

This chapter presented a method, HLSH, to support private blocking. This method uses a

class of LSH functions, that approximate Hamming distance, based on bit sampling. HLSH

accepts as input the RBF encodings corresponding to a set of records and outputs the

set of record pairs that should be considered for classification in PRL. HLSH performed

on RBF encodings is privacy-preserving in the sense that it does not require knowledge

of the plaintext values, and there is no clear way to use properties of the partitions to

determine information about the plaintext values. This method runs more quickly than

all other methods evaluated and also significantly reduces the computational complexity of

PRL while maintaining a high degree of accuracy.

5.6.1 Future Work

In Chapter 4, we bring together the ideas presented throughout this dissertation into a

single “cradle-to-grave” framework for PRL and evaluate this framework on a real medical

dataset.
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CHAPTER VI

A FRAMEWORK FOR PRIVATE RECORD LINKAGE

6.1 Introduction

The work described in this chapter brings together all the ideas presented in previous

chapters into a single cradle to grave framework for PRL. We have called it “cradle to

grave” because it begins with a set of records held by two data holders, presents a method

for each step of the PRL process, and outputs a set of Predicted Matches and Predicted

Non-matches. In this chapter, we also address some of the practical issues associated with

PRL (and record linkage in the more general sense), such as how to handle missing data. We

evaluate several experimental approaches, based on the work presented in this dissertation,

and compare them to several control approaches.

In addition to bringing together the methodology presented in previous chapters,

we introduce a new method for field and record pair comparison that is enabled by the

RBF encodings, which we hypothesize will result in time savings. Specifically, we propose

using the similarities of the RBFs, calculated via the Dice coefficient (Equation 3.2), as a

comparison of the records. This eliminates the need for a distinct record pair comparison

step. The proposed PRL framework is shown in Figure 6.1.

6.1.1 Chapter Outline

This chapter is organized as follows. In Section 6.2, we summarize the related work and

specifically consider how others have handled missing data values in record linkage applica-

tions. Section 6.3 describes the methods used in this chapter and presents ways for handling

missing data values. This section also describes the control methods evaluated, the datasets

used, and the evaluation metrics utilized. Section 6.4 presents the results of the evaluation,

and Section 6.5 discusses their implications. Finally, Section 6.6 concludes and summarizes
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Figure 6.1: A workflow diagram for the proposed PRL framework.
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the chapter.

6.2 Related Work

One major challenge associated with record linkage, in practice, is how to handle records

with missing field values. In this section, we describe work done by others on handling

missing field values in record linkage.

One approach to handling missing data values is to eliminate them by returning to

the source to collect the information, as described by Winkler for a linkage of U.S. Census

data [120]:

“In a very large 1990 Decennial Census application, the computerized procedures

were able to reduce the need for clerks and field follow-up from an estimated 3000

individuals over 3 months to 200 individuals over 6 weeks. The reason for the

need for 200 clerks is that both first name and age were missing from a small

proportion of Census forms and Post Enumeration Survey forms. If the clerks

cannot supply the missing data from auxiliary information, then a field visit is

often needed to get the missing information.”

However, this requires significant resources and is not always feasible. For example, in the

application in question, hundreds of individuals were required to collect the missing data

values. Additionally, in the context of medical data, contacting individuals to fill in missing

values may not be appropriate.

Another approach for handling missing field values, in the context of record pair

comparison using the FS field weights (see Figure 2.6), is to assign missing fields a weight

of 0, rather than the agreement or disagreement weight [48]. This practice for handling

missing field values was used in the evaluation described in Chapter 3.

Regardless of how missing field values are handled, it is well-documented that they

are a considerable challenge for record linkage. Moreover, records where all data fields are

not present are more likely to be misclassified [33, 89, 105].
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Figure 6.2: A component-based summary of the specific methods and strategies applied in
each variation of the proposed private record linkage framework.

6.3 Materials & Methods

In Section 6.3.1, we discuss three different methods for encoding missing field values in

RBF encodings. These will be compared to two control methods, described in Section

6.3.2. All methods, and how different steps of the record linkage process relate to each, are

summarized in Figure 6.2.

6.3.1 Experimental Methods

In this section, we describe the three experimental methods, CG1 through CG3, which are

distinctive because they are based on three different methods for encoding missing field

values in RBF encodings.
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Treatment of missing data

Missing data transpires when a field value is not documented by the data holder. This may

happen because the information is unavailable or when an individual lacks certain features

(e.g., not all people have a Middle name). In this section, we discuss how missing data

influences different aspects of the record linkage process.

Missing data and field weighting

The FS field weighting algorithm, described in Section 2.1.6, uses the conditional probability

of field agreement given match status to assign a weight to each field. Specifically, two values

are calculated for each field: m[i], the probability the ith field value agrees amongst record

pairs that are True Matches; and u[i], the probability the ith field value agrees amongst

record pairs that are True Non-matches. However, this algorithm does not specify how

missing field values should factor into the algorithm. As alluded to in Section 6.2, the

literature on this topic is sparse.

We consider two options, which we call Treat missing as disagreement and Exclude

missing and discount.

Treat missing as disagreement

The FS field weighting algorithm takes as input the set of γ vectors, which represent the field

similarities of record pairs. The first option is to treat a missing field value as a disagreement

when comparing fields to create the γ vectors. Essentially, any field value, when compared

to a record where that field value is missing, receives a similarity of 0. In this method,

the discriminatory power of fields is implicitly discounted because it is not seen to agree as

often. This is in contrast to the Exclude missing and discount method, described below,

where field weights are explictly discounted. The Treat missing as disagreement approach

is used in field weighting for experimental methods CG1 and CG2, as shown in Figure 6.2.

Exclude missing and discount

Another option is to only input records in which all field values are present to the FS

algorithm. However, this may lead to an overestimate of field discriminatory power. If the
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Surname Forename City Street Gender Sum

range 10 8 3 12 2

% values missing 25% 50% 0% 67% 50%

rangediscounted 7.5 4 3 4 1

w 38% 21% 15% 21% 5% 100%

Table 6.1: Handling missing data in field weighting: Exclude missing and discount.

weighting method estimates a field’s discriminatory power using only samples where the

field value is present, but the field value is missing most of the time in practice, then the

estimates of the field’s discriminatory power will not be accurate. Therefore, we propose

discounting the weights based on only complete records by the percentage of missing values

for each field. An example is shown in Table 6.1. This approach is adopted by experimental

method CG3, as shown in Figure 6.2.

Encoding missing data in Bloom filters

The previous section considered how to determine field weights in the face of missing data.

Now we consider various ways missing data can be encoded in Bloom filters. To demonstrate

various techniques, throughout this section, we use two sample Bloom filters, α and β.

These encodings are RBFs and contain bits drawn from three different fields, each shown

in a different color.

α : |0|1|0||0|1|1|0|1||1|0|1|1|

β : |1|1|0||1|0|1|0|0||1|1|0|1|

Now, we consider the case when the corresponding field value for the bits shown in

red are missing in the record encoded in β. We can choose to encode the missing values

in three ways: 1) let the bits remain at their initial value of ‘0’, 2) randomly set the bits

corresponding to missing field values, or 3) explicitly denote the bits using a non-binary

value.

Case 1: Missing bits are encoded as ‘0’

If the bits corresponding to the missing field are encoded as ‘0’, β will be presented as

follows.
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βmissing,1 : |1|1|0||0|0|0|0|0||1|1|0|1|

This is the strategy adopted by experimental framework CG1.

Case 2: Fill in missing bits at the expected frequency

In Section 4.3.1, we introduced a method to dynamically size FBFs such that p% of bits

are set on average. We selected p = 0.5 to maximize entropy. Based on this strategy, we

propose to randomly set 50% of the bits corresponding to missing field values to a value of

‘1’. When this approach is applied, β is represented as follows:

βmissing,2 : |1|1|0||1|0|1|0|0||1|1|0|1|

Thus, when comparing two encodings, P(bit agrees) = P(bit set) × P(bit set) = 0.5

× 0.5 = 0.25 and, we expect a background agreement rate of 25%. By randomly setting p%

of bits corresponding to missing field values, we essentially bring the expected agreement

rate for these bits up to the background agreement rate. In contrast, leaving these bits

unset means that the background agreement rate associated with missing field values is 0%.

Therefore, this approach brings missing field values in line with the background agreement

rate generally seen when comparing RBF encodings.

Case 3: Missing bits are explicitly denoted

We can also represent the missing field values using some non-binary character, such as a

wildcard ‘*’. In this case, β is represented as follows:

βmissing,3 : |1|1|0|| ∗ | ∗ | ∗ | ∗ | ∗ ||1|1|0|1|

This is the strategy adopted by experimental framework CG3.

Later in this section, we will consider how these various encoding forms can be

compared to one another.

Missing data in blocking

Chapter 5 presents a method, HLSH, for private blocking using Hamming distance based

on LSH families. We evaluate this technique in the context of a full PRL application. We

134



Figure 6.3: An example application of the m-HLSH algorithm. Bit indices 2, 4, 5, and
10 are selected during the first four iterations. π[ρ] indicates the ρth bit in RBF π. The
trajectory of α is shown with a solid line, and the trajectory of βmissing,2 is shown with a
dotted line.

also introduce a variant of this approach, m-HLSH, that can be applied when missing data

is explicitly denoted, using a non-binary character, in Bloom filter encodings.

The m-HLSH variation works as follows. Recall that φ hash functions are applied at

each iteration µ. Each hash function essentially selects a random bit index. Typically, the

record is placed into a partition corresponding to the value of the bit at this index, which

is either ‘0’ or ‘1’. The principle behind m-HLSH is that when this bit value is missing,

the record is placed into the partitions corresponding to both ‘0’ and ‘1’. For illustration,

suppose that encodings α and βmissing,2 are input to m-HLSH and that bit indices 2, 4,

5, and 10 are selected during the first four iterations. The corresponding bit selections, a

step-by-step picture of how the algorithm works, and the output are shown in Figure 6.3.
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As can be seen, when πm bits are missing in encoding π, the record will be placed in

2πm partitions at each iteration. We propose using multiple iterations to provide additional

opportunities to identify True Matches that were not identified in previous iterations. If

µ is the number of iterations, each record is placed in µ × 2πm partitions in total. As an

example, when 0 bits correspond to missing values, each record is placed in a single partition

at each iteration, or µ partitions in total. When the number of missing values is high, the

number of record pairs resulting from the blocking algorithm increases exponentially.

When missing data is explicitly denoted using a non-binary value (i.e., experimental

method CG3 ), m-HLSH is used for blocking.

Missing data and encoding comparison

The way in which missing data is encoded in the Bloom filter affects how the resultant

Bloom filters can be compared. For illustration, we refer back to the sample Bloom filters

α, βmissing,1, βmissing,2, and βmissing,3. According to Equation 3.2, the actual similarity of

record pair (α,β) is 2× 4
7+7 = 0.57.

Case 1: Missing bits are encoded as ‘0’

When the Dice coefficient is applied, the similarity of the record pair (α, βmissing,1) is

2× 3
7+5 = 0.5. This reflects that the record pair is less similar than it actually is. The Dice

coefficient is used to measure encoding similarity in experimental method CG1.

Case 2: Fill in missing bits at the expected frequency

The standard Dice coefficient can be applied in this case as well, resulting in a similarity of

2× 4
7+6 = 0.62 for record pair (α, βmissing,2), a measure of similarity that is actually higher

than the true value in this case. The Dice coefficient is used to measure encoding similarity

in experimental method CG2.

Case 3: Missing bits are explicitly denoted

When bits corresponding to missing field values are explicitly denoted, we introduce a

weighted form of the Dice coefficient, shown in Equation 6.1, that can be used. Let |α| denote

the number of bits in the Bloom filter encodings, let ρm indicate the bits corresponding to
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a missing field value in Bloom filter ρ. Then, the weighted Dice coefficient, wd, is defined

as:

wd(α, βmissing,3) =
d(α, β)× (|α| − |αm ∪ βmissing,3,m|)

|α|
(6.1)

Essentially, the Dice coefficient is weighted by the number of bits representing a non-missing

field value. In this example, the weighted Dice coefficient of record pair (α,βmissing,3) is 0.5×7
12

= 0.29. The weighted Dice coefficient is used to measure encoding similarity in experimental

method CG3.

Methods for each step

In this section, we describe the proposed experimental methods used at each step of PRL.

The methods are summarized in Figure 6.2. We call the experimental methods for the

cradle to grave evaluation CG1, CG2, and CG3.

Field selection

When selecting fields, it is essential to select a sufficiently large number of fields to uniquely

identify an individual. Selecting fields of high quality, that are consistently and accurately

recorded, is also important. For the experiments performed in this chapter, we utilize a

dataset, described further in Section 6.3.4, corresponding to patients at Vanderbilt Univer-

sity. While additional fields, such as SSN, were available in this dataset, we believe it is

important to create a dataset representative of those typically encountered in PRL appli-

cations. Unique identifiers∗, such as SSN, may not generally be available, so we select a

subset of the fields that we believe is more representative of fields likely to be encountered

in practice.

We now describe how we prepared the dataset for the cradle to grave evaluation

described in this chapter. We began with six possible fields: Surname, Forename, City,

Street address, Ethnicity, and Gender. However, we observed that over 50% of the records

did not have an Ethnicity value recorded. Therefore, we did not expect this field to be useful

∗See discussion in Section 1.2.2.
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in record linkage for this dataset and so we exclude it from our empirical investigations. An

alternative approach we could have utilized is to perform linkage using all fields excluding

Ethnicity. Records not linked in this first linkage process could be input to a second linkage

process where Ethnicity is used as a field value. This iterative approach to handling missing

field values is discussed further in Section 7.2.1.

We then confirmed that all records were unique when defined over the five fields –

Surname, Forename, City, Street address, and Gender – to ensure that a sufficient number

of fields had been selected.

At this point, we made the decision to exclude records where multiple field values are

missing. If a single field is missing, four fields are still available, and this information may

be sufficient to classify the record. However, if more than one field is missing, a maximum

of three fields are available which may not be sufficient for unique identification. If these

records were carried forward in the linkage, then the parameterization of field weights may

be inaccurate. In turn, this will lower the chance that records which contain sufficient

information for classification will be correctly classified.

The resultant dataset is described further in Section 6.3.4.

Data standardization

In this step, we attempt to ensure that the data is represented consistently across datasets.

We also identify and standardize values used to missing data, such as “NULL” and “N/A”,

to a single representation.

Field weighting

We calculate field weights in both ways described in Section 6.3.1 (i.e., Treat missing as

disagreement and Exclude missing and discount). In both cases, we use a subset of the

records as input to the FS field weighting algorithm. Specifically, we use subsets of size

1,000, where each record in dataset A has a True Match in dataset B. This results in

1,000,000 record pairs, 1,000 of which are True Matches and 990,000 of which are True

Non-matches.
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Parameters Surname Forename City Street Gender

m 81% 80% 79% 26% 98%
Treat u 0.10% 0.20% 14.00% 4.8 x 10−3% 50.12%

missing wa 6.73 5.97 1.71 8.55 0.67
as wd -1.65 -1.58 -1.34 -0.29 -2.99

disagreement range 8.38 7.56 3.05 8.83 3.66
w 26.63% 24.00% 9.69% 28.06% 11.62%

m 81% 80% 79% 26% 98%
u 0.09% 0.22% 13.71% 4.8 x 10−3% 50.12%

Exclude wa 6.77 5.90 1.75 8.59 0.67
missing wd -1.65 -1.61 -1.41 -0.30 -2.99

and range 8.43 7.51 3.16 8.89 3.66
discount % values missing 0.00% 0.21% 0.15% 2.13% 0.03%

rangediscounted 8.43 7.49 3.15 8.70 3.66
wdiscounted 26.81% 23.83% 10.03% 8.69% 11.64%

Table 6.2: Field weights for the various ways of handling missing data values: Treat missing
as disagreement and Exclude missing and discount.

The EM algorithm, which can be applied to estimate the m and u values in the

absence of knowledge of the true match status, tends to yield inaccurate estimates when a

significant number of field values are missing [14]. Therefore, in this chapter, we use our

knowledge of the true match status to calculate the actual m and u values. We appreciate

that obtaining accurate field weights in the face of missing data is an open research question,

and we discuss this further in Chapter 7.

The resulting field weights for the Treat missing as disagreement and Exclude miss-

ing and discount methods are shown in Table 6.2. Since the number of record pairs with

missing values is small, as shown in Table 6.1, there is not a significant difference between

the outputs of the methods.

Encoding

In CG1, CG2, and CG3, we use RBFs created by weighted bit sampling from dynamically-

sized FBFs, as described in Section 4.3.1 and shown in Figure 4.4. The parameters specific

to this dataset are shown in Table 6.3. The length of the RBFs is 1,000 bits, and we enforce

a security parameter q = 4. Further details on this methodology can be found in Section

4.4.3.
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Surname Forename City Street Gender

Average field length 6.4 5.9 9.2 15.8 1.0

Average # n-grams (g) 7.4 6.9 10.2 16.8 2.0

mRBF 161 151 222 365 44

Table 6.3: Summary statistics for dynamic Bloom filter sizing where k=15, n=2, p=0.5.

Surname Forename City Street Gender Sum

range 8.38 7.56 3.05 8.83 3.66
CG1, CG2 w 26.63% 24.00% 9.69% 28.06% 11.62% 100%

RBF composition 266 240 97 281 116 1,000

rangediscounted 8.43 7.49 3.15 8.70 3.66
CG3 wdiscounted 26.81% 23.83% 10.03% 27.69% 11.64% 100%

RBF composition 268 238 100 277 117 1,000

Table 6.4: RBF composition for CG1, CG2, and CG3 encodings.

In this context, we explore the three variations for encoding missing data in Bloom

filters described in Section 6.3.1. Bits corresponding to missing values are encoded as ‘0’s

in CG1, are set with p = 0.5 in CG2, and are explicitly denoted using the non-binary value

‘*’ in CG3.

The RBF composition resulting from field weights calculated under the Treat missing

as disagreement method are used in experimental methods CG1 and CG2. The RBF

composition resulting from field weights calculated under the Exclude missing and discount

method are used in experimental method CG3. The resulting RBF compositions are shown

in Table 6.4.

Blocking

When bits corresponding to missing fields are explicitly indicated, we use m-HLSH for

blocking (CG3); otherwise, HLSH is used.

Field comparison

Recall that when RBFs are used, no explicit field comparison step is necessary because the

field values are encoded in a single unit.

Record pair comparison

The Dice coefficient (Equation 3.2) is applied to the RBFs to measure record pair similarity
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in experimental methods CG1 and CG2. The weighted Dice coefficient (Equation 6.1) is

applied in CG3.

Record pair classification

Recall that record pair classification corresponds to the process of determining which record

pairs are True Matches and which are True Non-matches, given a measure of the similarity

of each record pair. We explore four different methods for record pair classification: Most

similar, Force A, Force B, and Force Both. All of these methods are heuristics we have

developed because this is an area that is not well-addressed in the literature.

Most similar

In this classification method, the λ record pairs with the highest similarity values are clas-

sified as Predicted Matches, where λ is the expected number of True Matches.

Force A

Under this classification strategy, we assume that dataset A is a subset of dataset B. We

create a set of potential matches by forcing each record in dataset A to link to the record

in dataset B to which it is most similar. However, we know that dataset A is not actually

a subset of dataset B, so we apply a threshold of 0.8. This is a tunable parameter that a

user can set based on his tolerance for minimum similarity of Predicted Matches. Potential

matches having a similarity greater than or equal to this threshold are classified as Predicted

Matches, and Predicted Non-matches otherwise.

Force B

This is similar to Force A, but in this case, it is assumed that dataset B is a subset of

dataset A. Again, a threshold of 0.8 is applied.

Reciprocity

Recall that with Force A, the set of potential matches is created by forcing each record

in dataset A to match to the record in dataset B to which it is most similar. We call

this set Potential(A). A similar set, Potential(B) results from the Force B classification

method. We let the set of Predicted Matches for the classification method Force Both be the
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intersection of the sets Potential(A) and Potential(B) (i.e., Predicted Matches(Reciprocity)

= Potential(A) ∩ Potential(B)).

6.3.2 Controls

We now describe two control methods, CG4 and CG5, used to create a reference standard.

The remainder of this section presents the details of each step of record linkage as relevant

to the control methods.

Field selection

The same five fields used in the experimental methods are also used for the control methods

(i.e., Surname, Forename, City, Street address, and Gender).

Data standardization

The same methods use for for data cleaning and standardization in the experimental meth-

ods are applied to the dataset input to control methods.

Field weighting

The field weights calculated using the Exclude missing and discount method, shown in Table

6.1, are applied in control methods CG4 and CG5. This is because the method described

in Section 3.3.5 for handling missing field values during record pair comparison is used for

the control methods. Essentially, missing field values receive neither the agreement nor

disagreement weight in the similarity score. Since they are not treated as disagreeing, using

the field weights calculated by treating missing values as disagreement is not logical.

Encoding

For control method CG4, FBFs, as described in Section 3.2.2, are used for encoding field

values. The bits corresponding to missing field values are left at their initial value of ‘0’.

The parameters used are n = 2, k = 15, and m = 500. In control method CG5, SHA-1, in

conjunction with salting, is used to encode field values.

Blocking

A token-based blocking approach is included in both control methods CG4 and CG5. The
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blocking variable corresponds to the first character of each field value, and this approach is

applied iteratively over all fields, as described in Section 5.3.2.

Field comparison

The Dice coefficient, defined in Equation 3.2, is used for field comparison in control method

CG4. Binary field comparison is used for field comparison in control method CG5, as

described in Section 3.1.

Record pair comparison

The agreement and disagreement weights associated with the FS algorithm are applied to

determine the record pair similarity score, as described in Sections 2.1.6 and 2.1.7. When a

field value is missing, neither the agreement nor disagreement weight are added to the record

pair similarity score. This practice is also applied in Chapter 3 and used by Gomatam et

al. [48].

Record pair classification

The four methods for record pair classification invoked for the experimental methods – Most

similar, Force A, Force B, and Force Both – are also used for the control methods.

6.3.3 Evaluation Metrics

Since the cradle to grave evaluation considers all steps of the record linkage process, we

utilize different evaluation metrics at each step. The evaluation metrics are described in

the remainder of this section.

Encoding

To examine how the RBF encodings are affected by the application of the security constraint

q = 4, we calculate the number of bits available under the constraint and which fields contain

bits that satisfy the constraint. We also look at the similarity of the True Matches, as well

as a sample of True Non-matches, to determine which encoding methods best separate the

two. Finally, we take a closer look at the set of True Matches containing a missing value

by examining their similarity.
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Blocking

We use the metrics introduced in Chapter 5, RR (Equation 5.1) and PC (Equation 5.2),

to evaluate the blocking algorithms. We also examine the running times of the blocking

algorithms themselves.

Record pair classification

To examine the final output of the record pair classification step, we use the Precision and

Recall measures, as defined in Equations 6.2 and 6.3.

Precision =
TP

TP + FP
(6.2)

Recall =
TP

TP + FN
(6.3)

where TP is the number of true positives (i.e., Predicted Matches that are True Matches),

FP is the number of false positives (i.e., Predicted Matches that are True Non-matches),

and FN is the number of false negatives (i.e., Predicted Non-matches that are True Non-

matches).

6.3.4 Dataset

The dataset used in this chapter is composed of identifiers and demographics from real

patient records. Background information on the dataset can be found in Chapter 2.4.2.

As described in Section 6.3.1, the fields Surname, Forename, City, Street address,

and Gender are included for the record linkage study described in this chapter. Records

missing more than one field value were excluded based on the earlier justification.

The properties of the resultant dataset are |A| = 28,415 records, |B| = 25,668

records, and |A ∩ B| = 19,482 records (i.e., there are 19,482 True Matches). Additional

information on the extent to which field values are absent is provided in Table 6.5. Of the
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Surname Forename City Street Gender

Number missing
from A

8 10 25 244 5

Number missing
from B

26 105 56 906 10

Number missing
total

34 115 81 1,152 20

% missing total 0.1% 0.2% 0.1% 2.1% 0.0%

Table 6.5: Summary statistics for the field values missing in the Vanderbilt dataset.

19,482 True Matches, 3,051 agree on all fields. This means that approximate field compar-

ison techniques, such as that provided by RBF encodings, are expected to be important

in correctly classifying the other True Matches. However, it is possible that some True

Matches are very dissimilar. Imagine, for instance, that a patient has changed her Surname

and moved between the times her information was recorded in datasets A and B. In this

example, two of the five field values will not agree. Therefore, we use control measures,

described in Section 6.3.2 below, to indicate the extent to which records in the dataset are

capable of being correctly classified.

6.3.5 Implementation Details

Computer ζ is utilized for encoding and creating partitions, computer θ for record pair

generation, and computer ι for the remainder of the experiments described in this chapter.

Additional details on these computational resources can be found in Table 2.1. While the

use of multiple computers affects the specific running times reported, it does not influence

the findings and conclusions of this study.

A global hash was used in the record pair generation step of blocking for HLSH

because the number of record pairs generated could be stored in system memory. This

was not the case for the Token blocking method, so a database was used in record pair

generation. Further details on this can be found in Section 5.3.5.
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Figure 6.4: The number of bits satisfying security constraint q, where bits corresponding to
missing fields are encoded as ‘0’.

6.4 Results

We now present the results for each step of the blocking process. Specifically we consider

results with respect to the different methods of encoding and blocking missing data. Then

we evaluate the final results produced in the record pair classification step.

6.4.1 Encoding Results

Figures 6.4 and 6.5 show the number of bits available, broken down by field, under each

value of the security constraint q, when missing values are encoded as ‘0’ and randomly,

respectively. Under the security constraint q = 4, 606 and 598 bits satisfy this constraint

when missing values are encoded as ‘0’ and randomly, respectively.

To explore how the various methods for encoding missing values affect the separation
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Figure 6.5: The number of bits satisfying security constraint q, where bits corresponding to
missing fields are randomly set with 50% probability.
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of True Matches and True Non-matches, we evaluate the similarity of the True Matches

under each encoding method. Evaluating all True Non-matches is too computationally

intense (there are 729,336,738 True Non-matches), so we evaluate a sample of 1,000,000

True Non-matches to estimate the similarity of the set of True Non-matches.

The ideal encoding mechanism separates True Matches and True Non-matches such

that the True Matches have high similarity values and the True Non-matches have low sim-

ilarity values. We call the similarity range that contains both True Matches and True Non-

matches the “gray zone”. Separating True Matches and True Non-matches is equivalent to

minimizing this gray zone area. Figure 6.6 shows the similarities of True Matches and True

Non-matches. The least similar True Match and most similar True Non-match are labelled

and indicated with vertical green and red dotted lines, respectively. These demarcate the

gray zone boundaries. Figure 6.6 indicates that the encoding mechanism used in CG2 (size

of gray zone = 0.38) better separates True Matches and True Non-matches than CG1 and

CG3 (size of gray zone = 0.43, 0.48, respectively).

Different ways of encoding missing values

Finally, we take a closer look at the set of True Matches that have a missing field value

by examining their similarity under the different methods for encoding missing field values.

Ideally, True Matches would be similar to one another. Figure 6.7 illustrates that True

Matches are most similar under the encoding methods used in CG1 and CG2 (the average

similarities are 0.80 ± 0.07 and 0.83 ± 0.06, respectively) and least similar given the CG3

(the average similarity is 0.68 ± 0.06) encoding method. In summary, CG1 and CG2 are

statistically superior to CG3, but not one another.

6.4.2 Blocking Results

We now examine the results of the blocking step. With respect to the LSH methods, we

test various values for φ, the number of bits in each sample and µ, the number of iterations

applied. The number of record pairs output from each approach, and the number of True
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(a) CG1.

(b) CG2.

(c) CG3.

Figure 6.6: Separation of True Matches and True Non-matches under different methods of
encoding missing data.
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Figure 6.7: The similarity of True Matches with a missing field value.
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Figure 6.8: The number of record pairs output for various parameter settings and blocking
algorithms. Each method is indicated by a different color, and various parameter settings
are indicated with the same symbol across methods.

Matches amongst those output record pairs, are plotted in Figure 6.8. The parameter

settings selected and used for the remainder of the evaluation are indicated by colored

arrows. In all cases, the settings φ = 18 and µ = 100 are applied. The ideal blocking

algorithm, indicated with a black X in Figure 6.8, would return all of the True Matches,

and only True Matches, and corresponds to perfect Precision and Recall.

Note that the parameter settings selected and used for the remainder of the evalua-

tion are shown with colored arrows in Figure 6.8. While alternate parameter settings could

be used to retain a greater number of true positives, we believe that these true positives

are actually not very similar. If they were, they would have been identified in a previ-

ous iteration of the partitioning algorithm. Therefore, they will likely be misclassified in

the record pair classification step. We believe that incurring significant additional com-
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putational expense to retain these True Matches does not seem productive. Consider the

evidence presented in Figure 6.9 that supports this hypothesis. This figure shows the per-

centage of record pairs that are True Matches, broken down by iteration. In iteration 1, a

significant number of the record pairs output are True Matches. However, as the iterations

progress, the percentage of record pairs that are True Matches drops dramatically. Also,

note that this figure only shows iterations 1 through 100 because the percentage of record

pairs that are True Matches decreases to negligible levels in further iterations.

In all HLSH methods, we propose sampling 18 bits per iteration (φ = 18) and

iterating 100 times (µ = 100). We explore these parameters settings by examining the

similarity of false negatives – True Matches not retained by a blocking algorithm – under the

parameter settings. The idea is that if false negatives are very similar, the parameter settings

should be adjusted to better identify these True Matches. However, if the false negatives

are dissimilar, they are unlikely to be correctly classified by any blocking algorithm. The

average similarity of false negatives for these parameter settings under CG1, CG2, and CG3

are 74.6% ± 6.2%, 75.9% ± 5.4%, and 75.9% ± 6.7%, respectively. This provides further

support for the hypothesis that the True Matches not identified under these parameter

settings are not very similar and are, therefore, likely to be misclassified in later stages of

the linkage process.

Figure 6.9 shows the percentage of output record pairs that are True Matches,

broken down by iteration for the Token blocking algorithm. Figure 6.9(b) also shows the

running time for the Token blocking algorithm, which emphasizes that, as the iterations

continue, not only do the number of output record comparisons increase, but the running

time of the blocking algorithm also increases. The information shown in this figure supports

the exclusion of the fields City and Gender from use as a blocking variable. Therefore, we

use ν = 3 for the Token blocking algorithm, and retain the fields Surname, Forename, and

Street address.

The running times for all algorithms and parameter settings are shown in Figure
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(a) HLSH methods.

(b) Token method.

Figure 6.9: Breakdown of the blocking results by iteration with the Vanderbilt dataset.
Each field represents a single iteration, ν, of the token blocking algorithm.
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Figure 6.10: Cumulative running times for blocking algorithms on the Vanderbilt dataset.

6.10. When it was obvious that 1,000 iterations would yield unreasonable running times

and number of output record pairs (as was frequently the case when φ = 16), the evaluation

was halted at µ = 100. As µ increases, the running time also increases. A general trend

is that as φ increases, the running time decreases. However, CG3 is an exception to this

trend for the reasons discussed in Section 6.3.1.

The PP and RR values for the selected blocking methods and parameter settings

for methods CG1 through CG4 are shown in Figures 6.11 and 6.12, respectively. The

experimental HLSH and m-HLSH methods identify approximately 93% of True Matches

while reducing the number of record pair comparisons by more than 97%. The control

Token method identifies over 98% of True Matches, but reduces the number of record pair

comparisons by only 77.4%.
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(a) CG1 : HLSH, φ =
18, µ = 100.

(b) CG2 : HLSH, φ =
18, µ = 100.

(c) CG3 : m-HLSH, φ =
18, µ = 100.

(d) CG4,CG5 : Token, ν
= 3.

Figure 6.11: The darker color corresponds to Pairs Completeness, and the lighter color cor-
responds to the percentage of True Matches that were not identified for further evaluation.

(a) CG1 : HLSH, φ =
18, µ = 100.

(b) CG2 : HLSH, φ =
18, µ = 100.

(c) CG3 : m-HLSH, φ =
18, µ = 100.

(d) CG4,CG5 : Token, ν =
3.

Figure 6.12: The darker color corresponds to the Reduction Ratio, and the lighter value
corresponds to the percentage of possible record pair comparisons that are required under
a given blocking algorithm.
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6.4.3 Linkage Results

Following the blocking step, record pairs are compared to one another and then classi-

fied into the set of Predicted Matches and Predicted Non-matches. Figure 6.13 shows the

Precision, Recall, and the F-score, as defined in Equation 5.3, of Precision and Recall for

methods CG1 through CG5, broken down by method for record pair classification. The

Reciprocity classification always outperforms the other classification methods in terms of

F-score. Binary does not do a good job of picking up True Matches, as indicated by the low

Recall values. The highest F-score, 0.89, is achieved by CG4 , followed by CG2 at 0.88.

CG3 has a F-score of 0.87 while CG3 and CG5 have a F-score of 0.86.

6.5 Discussion

We now discuss the results with respect to each step of the record linkage process.

6.5.1 Field Selection

In field selection, a set of fields is identified as input to record linkage. In this work, we

choose five fields for inclusion in record linkage (Surname, Forename, City, Street address,

and Gender), and ensured that all individuals were unique given those fields. Ethnicity was

not included because over 50% of records were missing the Ethnicity value.

6.5.2 Field Weighting

In this dissertation, we have focused on the FS algorithm for field weighting (described in

Section 2.1.6). This requires either a subset of records for which the true match status is

known, or a method to estimate the conditional probabilities of field agreement given match

status. In this chapter, we assume that a subset of records for which the true match status

is known, is available. Specifically, we use a subset of 1,000 records from datasets A and B

such that each record in the subset drawn from A has a True Match in the subset drawn

from B. We calculate the γ similarity vectors for these record pairs, and used these to
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(a) CG1. (b) CG2.

(c) CG3. (d) CG4.

(e) CG5.

Figure 6.13: The Precision, Recall, and F-score of these values, for CG1 through CG5.
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calculate the conditional probabilities of field agreement given match status.

We test two methods for field weighting in the context of missing field values: 1)

Treat missing as disagreement (used in CG1 and CG2 ), and 2) Exclude missing and discount

(used in CG3, CG4, and CG5 ). The field weights associated with both methods are shown

in Table 6.2. Since so few records in this dataset have missing values (see Table 6.5), there

was little difference in the field weights output by the different methods.

In the subsection to follow, we discuss how the PRL framework can be modified to

provide for privacy-preserving field weighting.

PRL Framework that Provides for Field Weighting

Recall that Alice and Bob are the data holders linking their records. Charlie is a third party

who receives encoded data from Alice and Bob and performs the linkage. In order for Alice

and Bob to calculate the field weights associated with their datasets, we propose the use of

an additional third party, who we call Dan. A protocol for PRL based on RBFs encodings

created by weighted sampling of bits from FBFs encodings involves the following steps:

1. Alice and Bob agree upon data standardization conventions, a hash function, and a

key to use.

2. Alice concatenates the key to each field value in each of her records and hashes each

field value and sends it to Dan.

3. Bob concatenates the key to each field value in each of her records and hashes each

field value and sends it to Dan.

4. Dan compares the record pairs he has received and uses the resulting similarity values

as input to the Expectation Maximization algorithm.

5. Dan sends the results of the EM algorithm to Alice and Bob.

6. Alice and Bob agree upon n, q, m, k, the hash functions and keys (i.e., salts) to use

in generating FBF encodings, a sample of bits to pull from FBFs (that is weighted
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based on the field weights received from Dan) to create the RBFs, and a random

permutation of the bits in the RBF.

7. Alice encodes her data and sends it to Charlie.

8. Bob encodes his data and sends it to Charlie.

9. Charlie optionally performs blocking on the RBF encodings.

10. Charlie compares the RBF encodings using the Dice coefficient.

11. Charlie classifies record pairs as either a Predicted Match or Predicted Non-match.

12. Charlie reports the results of the linkage to Alice and Bob.

This protocol differs from the one used throughout this work (see Section 2.2) in

that it requires an additional third party, Dan. Dan provides a means for Alice and Bob to

determine field weights relevant to their datasets to use in creating encodings. The reason

that Charlie should not play this role is that since he will see the resulting encodings, he

should not be privy to the information used in the encoding process.

6.5.3 Encoding

RBF encodings are generated by dynamically sizing FBFs, based on expected field length,

and sampling from the FBF encodings according to field weights. In this work, we use a

security constraint q = 4, such that only bits that can be mapped back to four FBFs, by

examining the frequency at which they are set, can be included in the RBF. When missing

values are encoded as ‘0’, 606 of the FBF bits satisfy this constraint, but 337 bits are

excluded from inclusion in the RBF. These FBFs are used to create the RBFs for methods

CG1 and CG3. When missing values are set randomly, 598 of the FBF bits satisfy this

constraint, but 345 bits are excluded from inclusion in the RBF. These FBFs are used to

create the RBFs for method CG2. Additional details can be found in Figures 6.4 and 6.5.
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In this chapter, we explore three methods for encoding missing field values in Bloom

filter encodings:

1. Missing bits are encoded as ‘0’. The bits corresponding to missing field values remain

at the default value of 0. This method is used in method CG1.

2. Fill in missing bits at the expected frequency. The bits corresponding to missing field

values are randomly set with probability p, where p is the average probability with

which bits are expected to be set to dynamically size FBFs. In this dissertation, we

let p = 0.5. This method is used in method CG2.

3. Missing bits are explicitly denoted. The bits corresponding to missing field values

are explicitly denoted with a non-binary character and a weighted form of the Dice

coefficient is used such that these bits are not included in similarity calculations (see

Equation 6.1). This method is used in method CG3.

In terms of security, CG2 is the most secure, followed by CG1, then CG3. Recall

that one major benefit a RBF encoding provides is that it makes it more difficult for an

attacker to determine to which field a given bit corresponds. When the bits corresponding

to a missing field value are explicitly denoted in CG3, an attacker can see the non-binary

value indicating a missing field value, and use this information to map RBF bits back to

fields. Similarly, when bits corresponding to a missing field value are represented by ‘0’

in CG1, an attacker can observe that certain bits are not set at the expected frequency

p, and can use this information to map RBF bits back to fields. However, when the bits

corresponding to missing field values are set with the background probability p in CG2, an

attacker does not gain any information to aid in mapping RBF bits back to fields.

Additionally, the empirical results suggest that the encodings produced under method

CG2 result in encodings more reflective of true similarity, thus facilitating more accurate

linkage results. Specifically, CG2 better separates True Matches and True Non-matches

(see Figure 6.6), True Matches appear more similar (see Figure 6.7), and results in more
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accurate linkage predictions (see Figure 6.13). By contrast, explicitly indicating missing

field values and calculating a weighted similarity (see Equation 6.1), under method CG3,

results in encodings that tend to underestimate the true similarity, thus facilitating less

accurate linkage results. Encoding missing data fields with ‘0’ in Bloom filter encodings, as

done in method CG1, results in a performance intermediate to CG2 and CG3.

6.5.4 Blocking

In the blocking step, records are partitioned, and only records within each partition are

compared to one another, with the goal of reducing the number of record pair comparisons

required. HLSH is used in methods CG1 and CG2 while a variation, m-HLSH, is used

when bits corresponding to missing field values are explicitly denoted in method CG3 (see

Figure 6.3). The idea behind the m-HLSH approach is that if partition decisions are based

on bits corresponding to present (i.e., not missing) field values, fewer True Matches will

be incorrectly excluded from further evaluation. For all HLSH methods, we test various

parameter settings for φ, the number of bits sampled, and µ, the number of iterations

performed. A token-based blocking approach is used for methods CG3 and CG4 such that

if the first letter of a field agrees, the record pairs are placed in the same partition. We let

ν refer to the number of fields used for this approach.

Figure 6.8 shows the number of record pairs output for each method and parameter

setting plotted against the number of True Matches output. When m-HLSH is used, more

of the True Matches are retained, as hypothesized, but at the expense of additional record

pair comparisons. Other general trends are that for a given value of µ, as φ decreases, the

number of True Matches output increases. However, for a given φ value, as µ increases, the

number of True Matches output increases.

For the token blocking approach, we consider values of ν in {3, 5}. When ν = 3, we

partition based on the first letters of Surname, Forename, and Street address. If the first

letter of any of these field values agree, the record pair will be output from this blocking
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algorithm. When ν = 5, we also partition based on the first letter of City and Gender.

Since this is a geographically localized dataset, many of the represented individuals live

in the same city. Therefore, partitioning on this field does not result in a significantly

reduced number of record pair comparisons required. Similarly, because the domain of

the field Gender is so small, partitioning based on this field does not result in significant

savings. While including these fields slightly increases the number of True Matches output

(by approximately 400), it comes at significant computational cost, both in terms of the

additional number of record pair comparisons output (> 300 million additional record pair

comparisons), but also in terms of the time required for the blocking algorithm itself (>

16 additional hours to partition based on these two fields). This is highlighted in Figure

6.9(b).

In selecting a parameter setting for each method to carry forward in the evaluation,

we consider the “return on investment” afforded by each iteration µ. Figure 6.9 shows the

percentage of record pairs output at each iteration that are True Matches. When φ = 1, the

percentage of record pairs that are True Matches is significant (>20% in some cases). As φ

increases, this percentage drops, and while you still pick up record pairs at each iteration,

very few of these are True Matches. This observation raises a question about the goal of

blocking, and the answer is user-specific based on his resources and desires. If the goal of

blocking is to identify, with high probability, similar record pairs, then halting at µ = 100

seems sufficient. However, if the goal of blocking is to identify, with high probability, True

Matches, then using increased values of µ is more in line with this goal, pending the user is

willing to accept the additional computational burden required to identify these dissimilar

True Matches.

In this chapter, we select φ = 18 and µ = 100 for CG1, CG2, and CG3. The idea

behind this decision is that True Matches that don’t agree on 1.8% of their bits 100 times

in a row are unlikely to be similar. If the True Matches are dissimilar, they are likely to

be misclassified as Predicted Non-matches in later steps of the linkage. Therefore, we do
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not believe the significant additional computational effort to retain these dissimilar True

Matches in the blocking step is justified.

6.5.5 Record Pair Classification

We consider four different ways to classify record pairs into the sets of Predicted Matches

and Predicted Non-matches, given a set of record pair similarities: 1) Most similar, 2)

Force A, 3) Force B, and 4) Reciprocity. Further details on these methods can be found

in Section 6.3.1. Figure 6.13 shows the Precision, Recall, and the F-score of these values

for all methods. In general, the Reciprocity classification method outperforms the other

classification methods.

One drawback associated with the Most similar method of classification is that it

allows for a single record in dataset A to be linked to multiple records in dataset B, and

vice versa. However, if both datasets A and B are de-duplicated (see Section 2.1.1), this

should not be the case. For example, in method CG1, when the Most similar classified

method is used, 1,989 records in dataset A are involved in more than one link prediction,

and 2,171 records in dataset B are involved in more than one link prediction.

6.5.6 Overall Linkage Results

If we consider only the results of the Reciprocity classification method in Figure 6.13, we

see that CG4 has the highest F-score (0.89), followed by CG2 (0.88). One reason that CG2

may not perform as well is that we have enforced a stringent security constraint q = 4. This

means that many bits (345 in the case of CG2 ) from FBFs are not eligible for inclusion in

the RBF. This increased security may come with a slight cost to accuracy.

One reason that all methods do not identify more True Matches (the highest Recall

value is 0.86 for CG4, Reciprocity) is that this is a very challenging dataset. 1,402 records

have a missing field value (see Table 6.5 for details), and of the 19,482 True Matches,

only 3,051 agree on all fields. Also, we believe that the context in which this dataset
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was generated (i.e., for clinical care) leads to some additional properties that make record

linkage more difficult. For example, it may have been more useful to use a name when

referring to a patient, even if the name was not accurate. Examination of the dataset

leads us to hypothesize that when fields are missing, sometimes this data has been filled in

with inaccurate information. For example, several individuals are “John Doe”. While we

attempted to identify and remove data that is not meaningful, this was not always possible.

6.6 Conclusions

This chapter presents a PRL framework that provides for efficient, accurate, and secure

linkage. We believe method CG2, based on RBF encodings, where missing field values are

randomly set, offers the best performance in terms of accuracy and security.

6.6.1 Future Work

In Chapter 7, we summarize the work presented in this dissertation, discuss its implications,

and highlight open research questions.
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CHAPTER VII

CONCLUSIONS AND FUTURE WORK

In this chapter, we summarize the work presented in previous chapters, reflect upon

its implications and limitations, and discuss open research questions.

7.1 Summary of Chapters

Chapter 1 defined record linkage and its privacy-preserving instantiation, PRL. PRL has

broad implications across multiple domains, but is particularly useful in the field of medicine,

where regulations governing health data limit the disclosure of identifying patient data.

Chapter 2 provided an overview of the steps involved in record linkage and additional

background information.

Chapter 3 presented the results of a survey and evaluation of existing methods for

privately comparing field values. The encoding methods were evaluated in terms of their

correctness, efficiency, and security. An encoding technique, based on the use of Bloom

filters, was found to be both highly accurate and efficient. This portion of the research has

resulted in several publications [41, 42].

Chapter 4 presented a novel method for encoding field values in Bloom filters that

addresses security vulnerabilities identified in existing Bloom filter encoding techniques.

Briefly, rather than encoding each field value in a distinct Bloom filter, a single RBF is

used. This makes it more difficult for an attacker to leverage field-level frequency distribu-

tions to determine information about the plaintext values from which the encoded values

were derived. Additionally, a method to dynamically size Bloom filters, based on the ex-

pected length of field values, further impedes the extent to which an attacker can leverage

frequency information. Finally, a security constraint, q, was introduced that users can tune

to provide security guarantees based on their requirements. We show that this novel encod-
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ing technique is distance-preserving and provides for accurate comparisons of the encoded

values.

Chapter 5 laid out a private blocking algorithm that paves the way for a rapid, yet

accurate, record linkage application. This algorithm is based on the application of LSH

functions that approximate Hamming distance, to the RBF data structure developed in

Chapter 4. This algorithm was compared to several controls and both the extent to which

it reduces computational complexity and preserves accuracy were evaluated. This algorithm

was found to be superior to controls in both categories.

Finally, Chapter 6 brings together the entire PRL framework and presents an eval-

uation using the Vanderbilt dataset that addresses how to handle missing values.

7.2 Lessons Learned

We now highlight some of the lessons, as they relate to each step of the record linkage

process, learned throughout this research.

7.2.1 Field Selection

In field selection, a set of fields is identified as input to record linkage. Field selection is

related to the task of feature selection, a first step in machine learning algorithms, and

can significantly affect algorithm accuracy [81]. It is imperative that the set of field values

chosen be sufficient to uniquely identify an individual. Otherwise, the linkage predictions

could not be meaningful and could not support the claim “Since these records agree on all

fields, they likely refer to the same individual”.

When considering fields for inclusion, fields with the following properties are best

suited for record linkage:

1. Highly discriminatory. Fields that are highly discriminatory in their ability to

distinguish between individuals are ideal for record linkage.

2. Accurately recorded. Fields that are likely to contain errors are not preferred.
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3. Consistently recorded. Fields that are often missing introduce complications.

4. Stable over time. Field values that are likely to remain unchanged over time are

preferred over fields that may change over time, such as Surname.

5. Drawn from the same domain. With respect to security, fields that are drawn

for the same domain (i.e., all string-based fields, all categorically-valued fields, etc.)

are more difficult to differentiate between when encoded in a RBF (please see Section

4.5.2 for further details).

Records that lack sufficient information to uniquely identify an individual should

not be input to a linkage algorithm. In addition to being unable to correctly classify the

record, these records may throw off parameterization methods based on the set of input

records, and thus adversely affect the linkage exercise as a whole.

Rather than creating a record linkage framework tolerant of missing field values,

an alternative approach is to perform iterative linkages where records not linked in initial

linkages are held over to latter linkages that are performed on a subset of the fields. For

example, if five fields are available for linkage, the records where all five fields are present

are input to the initial linkage. Records with missing field values are set aside. A second

linkage is then performed using four fields. Records where these four fields are present, and

records not linked in the initial linkage, form the input to the second linkage. The iterations

should halt when a set of fields that are not sufficient for uniquely identifying an individual

are reached. A complication associated with this method is that it can be computationally

complex, and the order in which the linkages should be performed is unclear.

7.2.2 Field Weighting

In this dissertation, we have focused on the FS algorithm for field weighting (described in

Section 2.1.6). This requires either a subset of records for which the true match status is

known, or a method to estimate the conditional probabilities of field agreement given match
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status.

Practical Challenges Associated with Field Weighting

While an EM algorithm can be used to estimate these conditional probabilities [49, 66, 108,

118], the estimates are highly dependent upon the quality of the input dataset. Estimates

in the face of missing field values are particularly unreliable [14].

Additionally, just determining which information to input to EM can be a challenge.

For instance, EM accepts as input a set of binary γ similarity vectors. Since the similarity

vectors associated with all record pairs can generally not be computed efficiently (hence,

the need for blocking algorithms), a subset of record pairs must be used instead. A ran-

dom sampling of record pairs is unlikely to yield a sufficient number of True Matches for

reliable parameter estimation [119] because the number of True Non-matches significantly

dominates the number of True Matches. Therefore, a method for enriching True Matches

is required. One approach to do so is to use a blocking method to select a subset of record

pairs likely to contain True Matches. However, the sample resulting from the blocking

technique is not necessarily representative of the entire dataset. We hypothesize that using

a True Match enrichment technique similar to the blocking technique employed in record

linkage will yield estimates relevant for the linkage.

Even when representative inputs are available, EM is not guaranteed to return

accurate parameter estimates. EM is a maximum likelihood estimation algorithm that

seeks to select the most likely parameter set given the inputs. In the case of record linkage,

the parameters estimated are the conditional probabilities of field agreement given match

status, and the inputs are the γ vectors. However, in searching the landscape of possible

parameters, the algorithm is not guaranteed to select the globally optimal parameter set.

Several variables that affect how the algorithm performs are the convergence criteria used

and the initial seed values for parameter estimates.

In summary, while EM can theoretically be used to estimate field weights, there are

some challenges associated with its implementation in practice. Additionally, it does always
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yield reliable parameter estimates, particularly in the face of missing data. Field weighting

using the EM algorithm is an aspect of the record linkage process not addressed in this

dissertation and is left to future work.

7.2.3 Encoding

We propose RBF encodings that are generated by dynamically sizing FBFs, based on ex-

pected field length, and sampling from the FBF encodings according to field weights. We

introduce a security constraint q, such that only bits that can be mapped back to ≥ q FBFs,

by examining the frequency at which they are set, can be included in the RBF.

Missing field values must be carefully handled in encoding so that they do not

reveal information an attacker can leverage. We found that randomly setting the bits, with

background probability p, corresponding to missing field values, in the context of Bloom

filter encodings, provides the best balance of security and accuracy.

7.2.4 Blocking

In the blocking step, records are partitioned and only records within each partition are

compared to one another, with the goal of reducing the number of record pair comparisons

required. Generally, blocking presents a tradeoff between accuracy and computational com-

plexity – when more record pairs are identified for further evaluation, more True Matches are

retained; when fewer record pairs are identified for further evaluation, fewer True Matches

are retained.

Users must decide at which point on this scale between computational complexity

and accuracy they prefer based on their computational resources and their desired level of

accuracy, and set blocking parameters accordingly. This principle applies for all blocking

algorithms, but the specific parameters relevant to the HLSH algorithm presented in this

work are φ, the number of bits selected from the RBF to partition the records, and µ,

the number of iterations applied. Computational complexity and accuracy have an inverse
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relationship with the parameter φ and a direct relationship with the parameter µ.

7.2.5 Record Pair Classification

In this work, we presented four heuristics for record pair classification (see Section 6.3.1).

However, the most appropriate method for record pair classification is dependent upon the

application and desired results in practice. For example, if Precision is more important

than Recall for a particular record linkage application, that must be taken into account in

record pair classification.

One drawback associated with some record pair classification methods (i.e., the Most

similar method of classification used in Chapter 6 or the application of a single threshold

where record pairs having a similarity greater than this threshold value are classified as

Predicted Matches) is that a single record in dataset A may be predicted to link to multiple

records in dataset B, and vice versa. However, if both datasets A and B are de-duplicated

(see Section 2.1.1), this should not be the case. This results in a problem similar to the

stable marriage problem [52], which must then be addressed by applying an algorithm to

ensure each record in dataset A is linked to at most one record in dataset B (and vice

versa) in an optimal way. In practice, this may be enforced through an exhaustive linear

sum assignment procedure or a greedy matching heuristic. Further details can be found in

the work by Len et al. [78].

Fellegi and Sunter suggest a method for record pair classification based on an es-

timate of the error rates associated with given boundaries [46]. An alternative method

for classifying record pairs is based on an extension to the FS algorithm [77] to estimate

P ((a, b) ∈M |γ(a, b)). One challenge associated with this method, in practice, is determina-

tion of this probability. This becomes an even greater challenge when approximate measures

of field similarity are allowed, because the size of the problem increases. Other machine

learning algorithms, such as support vector machines [30], artificial neural networks [16],

and clustering algorithms [19], could also be considered for classifying record pairs.
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7.3 Limitations and Open Research Questions

We now discuss limitations of this work and several open research questions that are left to

future work.

This work utilizes two datasets. The first is composed of publicly available records

drawn from the NCVR dataset and a corrupted version of these records. While errors

are introduced at rates consistent with those expected in practice, this dataset is semi-

synthetic, and the extent to which the results will generalize to other datasets is unclear.

The second dataset consists of demographic information drawn from patient records at

Vanderbilt University. A significant number of field values are missing from records in this

dataset, and therefore this dataset is a “difficult” case, and we anticipate that the methods

presented will result in better performance on more complete, clean datasets. The semantics

of the data may have affected the results, and the parameters may not generalize to other

datasets, but we consider this work a demonstration of the feasibility of the approach.

Additionally, multiple computational resources were used throughout this work.

While the use of multiple computers affects the specific running times reported, it does not

influence the findings and conclusions of this study.

In the remainder of this section, we discuss practical challenges to implementing

PRL and extending PRL to other scenarios.

7.3.1 Practical Challenges to Implementation

In this section, we discuss issues that need to be addressed for a PRL implementation to be

realized in practice. The protocol used throughout this dissertation utilizes a third party,

Charlie, to perform the record linkage. Charlie should be a trusted entity, and data sharing

agreements should be used to supplement the security properties of encoded data.

Also, Alice and Bob need to agree on some information. Specifically, they need to

agree upon the fields to use, data standardization practices and pre-processing rules, the

information required to generate FBF encodings (i.e., n, mFBF for each field, k, which hash
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functions to use, and salts to apply in hashing) and the information required to generate

RBF encodings (i.e., the security constraint q, field weights, which bits to include in the

RBF, and a random permutation of bits in the RBF). In practice, Alice and Bob could talk

directly to one another to agree upon these items. However, this does not scale if linking

across additional data providers is desired, as discussed below. Alternatively, an additional

third party can be used to aid in determining and distributing the required information∗.

When parameter determination requires data from Alice and Bob (i.e., field weighting using

EM, or determining which bits in FBF encodings satisfy security constraints), an additional

third party, Dan, can be utilized, as discussed in Section 6.5.2.

A work recently published by Weber et al. [116] essentially notes that while the

approach is precise, the lack of a publicly available software toolkit is a barrier to its

implementation:

“Other approaches [such as] Durham et al. are far more precise... Note that

the complexities of [the] Bloom filter approaches require retaining the services

of highly specialized programmers to implement, which is why we did not pursue

either of these options for our study.”

To address this barrier, an extension to the Open Enterprise Master Patient In-

dex software (OpenEMPI) [1] is under development. The software toolkit, called Secure

OpenEMPI (SOEMPI) will be open source and publicly available at http://hiplab.org/

SOEMPI.

7.3.2 Extending PRL

Extending PRL to a Decentralized Setting

If Alice and Bob prefer to perform PRL without using a third party, Charlie, they can use

the secure dot product protocol [83] to calculate the intersection of bits in the Bloom filter

∗However, it is important that Charlie does not play this role. If he is to receive the encoded data, and
also has knowledge of the information used in encoding the data, he may be able to use that information to
determine the plaintext values.
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Figure 7.1: The pairwise linkages required to link six datasets.

without requiring sharing of the encoding. They can then determine the number of bits

set in total in each of their Bloom filters using additively homomorphic encryption, such as

the Paillier cryptosystem [91]. This information is then sufficient for calculating the Dice

coefficient and determining the similarity of the record pair without requiring sharing of the

encoding or the use of a third party. However, this procedure requires more time than the

protocol based on sharing Bloom filter encodings with a trusted third party who calculates

the Dice coefficient.

Extending PRL to More than Two Datasets

Throughout this work, we have considered a pairwise linkage of records; specfically that

of linking a dataset A, held by Alice, to another dataset B, held by Bob. However, in

practice, data holders Alice, Bob, Camille, Darius, Emily, and Fred might like to link all

of their datasets. If a pairwise linkage approach is used, in this example involving six data

holders, 15 linkages must be performed as shown in Figure 7.1†. In general, the number of

linkages that must be performed is

ξ∑
☼=1

☼− 1 where ξ is the number of data holders. As ξ

grows, this approach can become laborious and impractical.

One alternative is to create a centralized data repository to which data holders

can iteratively link their datasets. This raises several questions that must be answered in

†This assumes the linkage relationship is symmetrical (i.e. , Link(A,B) is equivalent to Link(B,A))
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practice:

1. How should the initial repository be created?

2. In what order should other data holders link to the centralized repository and how

does it affect the results?

3. When links are identified, how does this change the information stored for an individ-

ual?

Recall that the field weights used in RBF generation, as described in Section 4.3.1,

are specific to the datasets of Alice of Bob. One benefit to determining field weights in

this manner is that the values will be representative of the discriminatory power of the

fields in the datasets to be linked, and will therefore facilitate an accurate linkage of these

datasets. However, the extent to which those field weights generalize to other datasets

is unclear. For example, in the case of the NCVR dataset, the State field has the same

value for all records and therefore essentially no discriminatory power in resolving identity.

However, if the dataset contained records from many states, the field State may have greater

discriminatory power. Therefore, when linking across multiple data providers, a global set

of field weights, that are applicable to all datasets involved, should be used. However, the

scalability this affords may come at a cost of decreased accuracy.

Extending PRL to More than Two Datasets in a Decentralized Setting

Finally, we consider the extension of PRL to multiple datasets in a decentralized setting.

This is related to entity resolution [17], a task similar to record linkage, but differing in

several ways in practice [2]. First, entity resolution involves pulling together the records

referring to an individual in real time and is referred to as an “online” process. This in

contrast to the one-off, “offline” linkage of two datasets. Second, record linkage is usually

performed in batch mode (i.e., all records in datasets A and B are linked), whereas entity

resolution is typically used to identify all records referring to a specific entity of interest.
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An application for entity resolution in clinical care is identification of a patient’s

records held by other care providers. In the context of the PRL framework presented in

this dissertation, one idea that could be explored is the use of commutative hash functions to

generate RBF encodings that can be used to link across multiple datasets in a de-centralized

way.

7.4 Implications for Policies Governing the Use of Medical Data

Finally, we recognize the importance of the policies that govern application of the technology

described in this dissertation. In this section, we discuss this work as it relates to the policies

governing medical data, with a particular focus on the U.S. health care system. Two key

questions are of interest:

1. Does encoded data satisfy the requirements for de-identified data? Since

HIPAA only covers identified data, if encoded data satifies the requirements for de-

identification, encoded data can be shared for PRL.

2. Is an RBF encoding considered an identifying code? To meet the “Safe

Harbor” criteria for de-identification under the HIPAA Privacy Rule, all “identifying

codes” must be removed [112]. An identifying code is information derived in from iden-

tifying patient information. Since RBF encodings are derived from identifying patient

information, it is unclear if they satisfy the Safe Harbor criteria for de-identification.

We begin by considering the policies relevant to the first question. Recently, in the

HITECH Act of the ARRA stimulus, it was stated:

“Protected health information (PHI) is rendered unusable, unreadable, or inde-

cipherable to unauthorized individuals if one or more of the following applies:

1. Electronic PHI has been encrypted as specified in the HIPAA Security Rule

by the use of an algorithmic process to transform data into a form in which there

is a low probability of assigning meaning without use of a confidential process or
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key (45 CFR 164.304 definition of encryption) and such confidential process or

key that might enable decryption has not been breached. To avoid a breach of the

confidential process or key, these decryption tools should be stored on a device

or at a location separate from the data they are used to encrypt or decrypt. The

encryption processes identified below have been tested by the National Institute

of Standards and Technology (NIST) and judged to meet this standard.

(ii) Valid encryption processes for data in motion are those which comply, as

appropriate, with NIST Special Publications . . . or others which are Federal In-

formation Processing Standards (FIPS) 140-2 validated.”

The ARRA statement seems to imply that encrypted data satisfies the requirements

of de-identified data, with the caveat that a sufficiently secure encoding function is used (“a

low probability of assigning meaning without use of a confidential process or key”) and the

key is held privately and not breached. The low probability phrasing is ambiguous, but we

believe a case can be made that the probability is sufficiently low for protection of PHI.

However, an important stipulation made in the statement is that the key may not

be breached. In the context of PRL, Alice and Bob must both use the same key values in

encoding their data if the resulting encodings are to be comparable. The following exchange

sheds light on the sharing of key values for encoded data and generating encodings derived

from patient information. As clarification to the HIPAA Privacy Rule [112], the following

comment was made:

“Several commenters who supported the creation of de-identified data for re-

search asked if a keyed-hash message authentication code (HMAC) can be used

as a re-identification code even though it is derived from patient information,

because it is not intended to re-identify the patient and it is not possible to iden-

tify the patient from the code. The commenters stated that use of the keyed-hash

message authentication code would be valuable for research, public health and

bio-terrorism detection purposes where there is a need to link clinical events on
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the same person occurring in different health care settings (e.g. to avoid double

counting of cases or to observe long-term outcomes).”

To which, officials in the Federal Government responded:

“The HMAC does not meet the conditions for use as a re-identification code for

de-identified information. It is derived from individually identified information

and it appears the key is shared with or provided by the recipient of the data

in order for that recipient to be able to link information about the individual

from multiple entities or over time. Since the HMAC allows identification of

individuals by the recipient, disclosure of the HMAC violates the Rule. It is not

solely the publics access to the key that matters for these purposes; the covered

entity may not share the key to the re-identification code with anyone, including

the recipient of the data, regardless of whether the intent is to facilitate re-

identification or not.”

In the scheme proposed by the commenter, each de-identified record contains a

“tag” generated by encrypting an identifier (such as SSN ) associated with each individual,

using a keyed hash function. This keyed hash function is a one-way hash in that given the

hash code, there is no mechanism for determining the associated plaintext value‡. This

essentially creates a unique identifier associated with each individual. However, the tag

cannot be used to identify the individual without the presence of a linking table of the form

[ID, HMAC(ID)].

The government response states that the HMAC allows identification of individuals

by the recipient. However, this is not the case. By definition, given HMAC(key, ID), one is

not able to determine ID. The government response also suggests that revelation of the key

allows the recipient to determine ID. This is also not explicitly the case. The recipient can

‡At this point, we would like to highlight the distinction between hashing and encryption. Encryption
is intended to be a “two way” street – an encryption key exists for transforming a plaintext value to
a ciphertext value, and a decryption key exists for transforming a ciphertext value to a plaintext value.
Hashing, in contrast, is intended to be a “one way” street, where a single key exists to transform plaintext
values into ciphertext values
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associate an ID with its de-identified record only if they know the plaintext value of the ID.

As they already know the key and HMAC(key, ID), they can simply calculate the HMAC

value for all of the IDs they have. However, in the general case, given HMAC(key, ID) and

key does, a recipient can mount a dictionary attack. In such an attack, the recipient can

calculate the HMAC(key, ID) for all possible values of ID, thus creating a linking table of

the form described above. When the attacker finds the ID with hash value equivalent to

the received hash value, the attacker can link the ID to the de-identified record.

Quantin et al. have proposed a scheme involving two pads that prevents such a

dictionary attack [94]. In this case, two distinct groups are involved in the protocol – the

set of senders and a receiver. Two keys are used: k1 and k2. k1 is static and all senders

know its value. k2 is generated by the receiver and is only known to him. A sender pads the

identifier with k1, hashes it, encrypts it with another form of encryption, such as the Rivest

Shamir Adleman cryptosystem [96], and sends the value to the receiver. The reason the

padded, hashed identifier is encrypted again is so that it cannot be intercepted by another

sender during transmission. If this were to happen, the devious sender could launch a

dictionary attack to determine the value of the identifier since they know the key k1. The

receiver then decrypts the value such that they then have the hashed, salted identifier. They

then pad this value with k2 and hash it again. The file can then be released and is not

subject to a dictionary attack by senders as the senders only know the value of k1, but not

k2.

The model proposed by Quantin can work if the model uses a centralized third

party who receives records from a group of senders. However, the protocol requires that the

sender not reveal the value of k1 to the receiver. Since a sender cannot be both a sender

and a receiver, this model does not work for distributed data exchange amongst a group of

hospitals.

However, we believe that as technology is developed, policies can also develop to

reflect and support newly enabled applications. The security analyses performed in this
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work, and in particular discussed in Chapter 4, emphasize the idea that sharing encoded

patient data provides comparable privacy protection to the more well-established idea of

sharing de-identified patient data§, pending a sufficiently strong encoding function is used.

Such an encoding function has been developed in this research and is described in Chapter

4. Therefore, this technology can be used to inform policy decisions such that its benefits

can be realized in practice.

7.5 Conclusions

This dissertation describes a framework for PRL and addresses in detail three crucial as-

pects of PRL: 1) security, 2) accuracy, 3) and computational complexity. The primary

contributions of this work relate to the security and efficiency with which PRL can be per-

formed. Specifically, the RBF encodings described in Chapter 4 provide for approximate

field comparison while providing increased security guarantees over FBF encodings. This is

achieved by obscuring to which fields bits correspond, thus making a cryptanalysis attack

more difficult. Additionally, bits can be sampled from FBFs according to the discrimina-

tory power of the field. The resulting RBF encodings are meaningful representations of

the entire record enabling the consolidation of the field and record pair comparisons steps,

resulting in time savings. Another major contribution of this dissertation is the application

of the HLSH blocking technique to RBF encodings in a way that significantly reduces the

computational complexity of record linkage, thus removing a barrier to its implementation.

This research provides a framework for secure, accurate, and efficient PRL and paves the

way for PRL to be performed in practice to further the field of medicine.

§The sharing of patient data in any context should be caveated with the disclaimers that data should
only be shared with trusted research or clinical care partners and appropriate data use agreements should
govern the transaction.
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APPENDIX A

EMBEDDING PARAMETER SELECTION

The Embedding comparator [61] evaluated in Chapter 3 of this dissertation uses the

Sparse Map variant of Lipschitz embeddings. A detailed description of Sparse Map can be

found in [58]. Rather than using all reference sets that compose the embedding space, Sparse

Map employs a greedy resampling heuristic to whittle down to a subset containing the most

informative strings. These reference sets serve as coordinates that define the embedding

space. A recommended number of coordinates was not specified in [61]; therefore, we

systematically evaluated all possible subset sizes from 2 coordinates up to the maximum

number of coordinates. In this case, the maximum number of coordinates was determined

to be 16 (as recommended in [61]). The results are shown in Figure A.1. The highest true

positive rate was achieved using subsets of size both 9 and 13. We selected the subset of

minimal size and use 9 coordinates to define the embedding space used in this work.
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Figure A.1: The TPR achieved for the Embedding comparator is dependent upon the num-
ber of reference sets used in estimating distance between strings.
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