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CHAPTER I 
 
 

INTRODUCTION 
 
 

Organelle Inheritance 

 Eukaryotic cells contain membrane bound compartments called organelles 

that perform various essential cellular functions. Organelle function is critical for 

proper cellular function; and each time eukaryotic cells divides they ensure that 

each of the progeny cells inherits a full complement of organelles.  

There are two main non mutually exclusive strategies used by cells to 

ensure high fidelity transmission of organelles to their progeny. Stochastic 

inheritance requires that an organelle is present in multiple copies and evenly 

distributed throughout the cell. Division of the cell approximately in half by 

cytokinesis then ensures that both progeny contain a nearly equal amount of a 

multicopy organelle. The second strategy used by eukaryotic cells is an ordered 

process requiring the active transport of organelles to ensure equal partitioning. 

This second strategy is required for the accurate dispersal of low copy number 

organelles 1. 

My studies have focused on how the ordered process of organelle 

inheritance is regulated. To study the regulation of organelle inheritance I have 

used the genetically tractable organism S. cerevisiae. One advantage to studying 

organelle inheritance in budding yeast is that they divide asymmetrically, as 

opposed to symmetrically down the center.  Therefore, organelles must be 
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actively transported into the bud to ensure that the daughter cell receives an 

equal share of organelles. 

 

Budding and actin cable formation 

 Budding occurs through a stereotypical pattern of growth and division. 

Just prior to entry into S-phase polarized growth forms the nascent bud which 

emerges from the mother cell. This bud continues to grow throughout G2 and 

mitosis until cytokinesis. Cytokinesis yields a mother and a smaller daughter cell. 

Under nutrient rich conditions the mother cell quickly initiates another round of 

budding. The daughter undergoes a brief period of growth until it reaches a 

critical size and begins budding. 

Budding yeast require the polarization of the actin cytoskeleton to 

establish polarity. There are three different actin structures found in budding 

yeast: patches, cables, and rings 2. Actin cables are composed of bundled actin 

filaments and are the primary tracks along which secretory vesicles are 

transported to direct polarized growth. During late G1, the Rho-like GTPase 

Cdc42 is activated at a predetermined cortical site. Active GTP bound Cdc42 

activates the formins Bni1 and Bnr1. Actin cables are then formed by the actin-

nucleating activity of formins and the actin binding protein profilin 3-6. Secretory 

vesicles are transported along actin cables by the processive myosin V motor, 

Myo2. 

Actin cables, which are almost exclusively localized along the cortex of the 

cell, are dynamic structures and undergo spatial rearrangements during the cell 
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cycle.  During late G1, actin cables are polarized to the nascent bud site. While 

the bud is growing actin cables are polarized within the bud. Finally, as cells exit 

mitosis the actin cytoskeleton polarizes towards the mother bud neck in 

preparation for cytokinesis 7. 

 

Vacuole inheritance in budding yeast 

My research has focused on the regulation of vacuole inheritance in 

budding yeast. The yeast vacuole is a membrane bound organelle that is often 

considered analogous to the mammalian lysosome because of its acidification 

and the hydrolase activities that are localized to the vacuole. The vacuole is also 

the terminal degradative compartment of the endocytic pathway. In addition to its 

degradative capacity, the vacuole serves as a storage site for amino acids and 

polyphosphate 8. Additionally, the vacuole plays a role in regulating cytoplasmic 

pH and in modulating water and ion concentration within the cell 8-11. 

 Vacuoles can be observed in living cells by at least three different 

methods. First, differential interference contrast (DIC) microscopy is used to 

examine vacuole morphology and partitioning; however, unambiguous 

identification of the vacuole can often be difficult with this method 12. Second, 

ade2 mutant cells accumulate amino-imidazole ribotide polymers within the 

vacuole that are fluorescent and allow vacuole visualization by fluorescence 

microscopy 13 14. Third, vacuoles can be visualized by pulse-chase of cells with 

the fluorescent dye N-(3-triethylammoniumpropyl)-4-(p-diethylaminophenyl-

hexatrienyl) pyridinium dibromide (FM 4-64). FM 4-64 is imported into cells by 
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endocytosis and accumulates specifically on the vacuole membrane. FM 4-64 

staining has several advantages in comparison to other methods. Specifically, 

FM 4-64 staining of the vacuole is quick, strain background independent, and the 

membrane localization of FM 4-64, as opposed to luminal accumulation of 

amino-imidazole ribotide polymers, allows for unencumbered visualization of 

organelle structure especially when differentiating clusters of small vacuoles 15. 

 On average wild type yeast cells contain 1-3 large vacuole lobes 16. These 

vacuole lobes are dynamic and undergo continuous fission and fusion 17. Early 

experiments designed to visualize the vacuole showed that a portion of the 

vacuole forms a tubular and vesicular structure, termed the “segregation 

structure”, that is partitioned into the bud to found the daughter vacuole 13, 18. This 

high fidelity partitioning of vacuole material from the mother into the bud 

prompted the search for mutants defective for vacuole partitioning. 

 Two large-scale methods have been developed to search for vacuole 

partitioning (vac) mutants. The yeast vacuole contains many proteinases and 

these proteinases are transported to the vacuole as inactive precursors that must 

be cleaved for activation. One of these proteinases, carboxypeptidase Y, is 

activated by a proteinase cascade consisting of proteinase A cleaving and 

activating proteinase B, which in turn cleaves and activates carboxypeptidase Y. 

A simple plate assay exists to measure carboxypeptidase Y activity. To screen 

for vacuole inheritance mutants, cells are mutagenized and proteinase A is 

produced for a short period of time under the control of the GAL promoter in a 

pep4 (proteinase A gene) mutant. This leads to proteinase B and subsequent 
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carboxypeptidase Y cleavage and activation. Proteinase A transcription is then 

squelched by the addition of glucose. Daughter cells that inherit vacuolar material 

from their mothers maintain carboxypeptidase Y activity for up to 20 generations 

due to transmission of activated proteinase B from mother into daughter cells. 

However, vac mutants have to make a vacuole de novo and all of their 

proteinase B is therefore inactive. Screening mutants for loss of 

carboxypeptidase Y after proteinase A was shutoff by glucose has revealed 

multiple vac mutants 19-21. 

 FM 4-64 has also been used to screen for vac mutants. After FM 4-64 

pulsing cells, FM 4-64 accumulates on the vacuole membrane. Each cell division 

approximately half the mother’s FM 4-64 stained vacuole membrane is 

partitioned to the daughter. Mother cells that fail to partition vacuole material to 

the daughter will maintain high levels of FM 4-64 fluorescent membrane after 

several divisions and daughters will have very little or no stained vacuole 

membrane. To screen for vac mutants, mutagenized cells are FM 4-64 stained 

and sorted by FACS to isolate highly fluorescent and very low fluorescent cells. 

Isolates then are subjected to secondary screens to confirm that mutants are 

legitimate vac mutants 22, 23. 
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Table 1-1. Classes of vacuole partitioning (vac) mutants 
WT Gene  Corresponding gene product 

Class I mutants   
act1 Actin 

24
 

pfy1 Profilin 
24

 

Normal vacuole 
morphology, often 

multilobed. myo2 Myo2, class V myosin 
24

 
vac8 Vac8, vacuole membrane protein binds Vac17 

25
 

vac9 Unknown 
25

 
vac10 Unknown 

25
 

vac16 Unknown 
26

 
vac17 Vac17, vacuole specific Myo2 receptor 

20, 27
 

 

vac19 Unknown 
26

 

Class II mutants   

vac5 Pho80 
28

 
vac6 Unknown 

19
 

Enlarged vacuole, often 
the vacuole is positioned 
towards bud. vac11 Unknown 

25
 

vac12 Unknown 
25

 
vps3 Vps3, subunit of CORVET tethering complex 

18
 

pep12/vps6 Syntaxin, t-SNARE 
vps8 Vps8, subunit of CORVET tethering complex 
vps9 Vps9, GEF for Vps21 
pep7/vps19/vac1 Pep7, Vps21 effector 

 

vps21/ypt51 Vps21, Rab 
 vps45 Vps45, Sec1-like 

Class III mutants   
fab1 Fab1, PtdIns(3)P 5-Kinase  

29, 30
 Highly enlarged vacuole 

membrane fission defects.  vac7 Vac7, regulator of Fab1 
31

 
vac14 Vac14, regulator of Fab1 

10
 

fig4 Fig4, PtdIns 5’ phosphatase 
10

 
atg18 PtdIns(3,5)P2 binding protein 

32
 

vps15 Vps15, activator of Vps34 
33

 

 

vps34 Vps34, PtdIns 3-Kinase 
34

 

 

Based on vacuole morphology all of the presently known vac mutants can 

be divided into one of three different classes (Table 1-1) 22. Class I vacuole 

partitioning mutants have normally sized vacuoles but often contain multiple 

vacuole lobes. To date, each of the class I vac mutants, for which the 

corresponding gene has been identified, identifies a part of the physical 

machinery necessary for transport of the segregation structure into the bud. 

Class II mutants display a moderately enlarged vacuole, normal vacuole 
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morphology, and a portion of the vacuole is often positioned towards the bud. 

Class II vac mutants include a number of vacuole protein sorting (vps) mutants 

which fail to transport carboxypeptidase Y to the vacuole. The mechanism by 

which class II mutants abrogate vacuole inheritance is not known 14. Class III 

mutants have a greatly enlarged vacuole which is defective for vacuole fission. 

All of the known class III mutants identify proteins required for the production of, 

or that bind to PtdIns(3,5)P2. 

 

Transport of the segregation structure 

 Vesicle transport requires both a track along which a vesicle must travel 

and a motor protein to physically transport the vesicle. Eukaryotic cells have 

three main cytoskeletal tracks: actin filaments, microtubules, and intermediate 

filaments. In mammalian cells, organelle transport commonly utilizes 

microtubules 35. However, microtubules are not necessary for vacuole inheritance 

as cell treated with the microtubule depolymerizing drug nocodazole (NZ) 

partition vacuoles normally 36. Instead, budding yeast transport the vacuole along 

polarized actin cables 24. Multiple actin mutants are defective for vacuole 

inheritance. In particular act1-!DSE, which eliminates three NH2-terminal amino 

acids, shows no observable cytoskeletal defects except a vacuole inheritance 

defect. Importantly, the three NH2-terminal amino acids form a portion of the 

myosin binding site and other actin mutants in the actin-myosin binding site also 

show vacuole inheritance defects 24, 37. Immunofluorescence also shows the 

segregation structure is juxtaposed along actin cables 24. 
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Figure 1-1. Proteins involved in transport of the vacuole into the bud. (Details in the text) 

 
 

Myosin V motors are composed of two heavy chains that dimerize to form 

a processive two-headed molecular motor with a large step size 38. Budding 

yeast contain two myosin V motors, Myo2 and Myo4, which travel along actin 

cables. Myo4 is not involved in vacuole partitioning. Multiple lines of evidence 

show that Myo2 is the motor protein that transports the vacuole into the bud. 

First, temperature sensitive alleles of MYO2 when grown at the restrictive 

temperature disrupt vacuole movement into the bud 24.  Second, Myo2 localizes 

to punctate structure on the vacuole and is enriched at the tip of the segregation 

structure oriented towards the bud 24. Third, mutations in MYO2, which 

specifically abrogate the Myo2-Vacuole interaction, have been isolated 21, 23.  
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Further analysis of the Myo2 globular tail domain, that is known to bind cargo, 

has revealed it to be composed of two subdomains, SDI and SDII. SDI and SDII 

dimerize in vitro and in vivo and this dimerization is required for cargo binding. 

SDI and SDII bind different cargo. SDI binds to the vacuole-specific myosin 

receptor Vac17 (described below). Mutants in MYO2 that disrupt vacuole 

inheritance all map to SDI. SDII binds to secretory vesicles 39-41. 

 Attachment of Myo2 to the vacuole is accomplished through the vacuole 

transport complex consisting of Myo2-Vac17-Vac8. Vac8 is both myristoylated 

and palmitoylated on residues at the NH2-terminus, and these modifications are 

necessary for Vac8 localization to the vacuole 25, 42-45. Vac8 plays many roles in 

the cell, including roles in caffeine resistance, homotypic vacuole fusion, nucleus-

vacuole junction (NVJ) formation, cytoplasm to vacuole transport (CVT), and 

vacuole inheritance 11, 25, 42, 43, 46-49. Vac8 contains eleven armadillo repeat 

domains. Armadillo repeats are known to mediate protein-protein interaction and 

Vac8 is known to bind at least nine different receptors 49. Vac8 is enriched on 

three different subdomains of the vacuole associating with the NVJ, sites of 

homotypic vacuole fusion, and domains that act in vacuole transport 44. 

 The Vac8 receptor protein Vac17 connects Vac8 to Myo2 and is the final 

member of the vacuole transport complex. Vac17 binds directly to both Myo2 and 

Vac8 through separable protein domains 20, 27. Vac17 production and degradation 

play key roles in the spatial and temporal regulation of vacuole inheritance. 

VAC17 mRNA levels oscillate with the cell cycle and increase as cells begin 

budding 50, 51. Concordantly Vac17 levels increase during early budding. Vac17 
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contains a region abundant in proline (P), glutamic acid (E), serine (S), and 

threonine (E) known as a PEST sequence which acts as a signal for rapid 

turnover. Intriguingly, turnover of Vac17 is spatially dependent and requires 

transport of Vac17 into the bud. The vacuole inheritance mutants vac8 and 

myo2-2 fail to degrade Vac17 and Vac17 accumulates to high levels 20. 

Examination of the timing of Vac17 degradation shows that it is normally 

degraded prior to cytokinesis. The spatial and temporal regulation of Vac17 is 

necessary to ensure that the vacuole is not transported back to the mother-bud 

neck when the actin cytoskeleton concentrates at the mother-bud neck in 

preparation for cytokinesis. When Vac17 missing the PEST sequence 

(vac17!PEST) is expressed in cells, Vac17!PEST localizes to the vacuole but is 

not degraded. Furthermore, both the mother and daughter vacuole are 

transported to the mother-bud neck 20. 

 Vac17 is degraded in a bud-specific manner, but how this is achieved 

remains unknown. One model posits that factors specifically localized to or 

activated in the bud promote Vac17 degradation 14. Thus Vac17 does not come 

into contact with these factors until Vac17 enters the bud. The identity of these 

factors remains unknown. 

 

Formation of the segregation structure 

Isolation of the class III vac mutants shed light on the machinery 

necessary for forming the segregation structure. Like wild type yeast, class III vac 

mutants transport a portion of the vacuole into the bud. Unlike wild type cells the 
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class III mutants usually contain an enlarged single lobed vacuole. During 

inheritance the vacuole is transported into the bud, but the vacuole is commonly 

seen as one enlarged contiguous vacuole stretched from the mother into the bud 

that is constricted at the neck, forming what looks like an “open-figure-eight” 

(Table 1-1) 29, 30. The enlarged vacuole and the persistence of the vacuole in the 

neck of the most severe class III vac mutant, fab1, adversely affects spindle 

positioning leading to aploid and binucleate cells 29. Proteins identified by the 

class III vac mutants have been proposed to form the tubules and vesicles 

making up the segregation structure, allowing vacuolar material to pass easily 

through the confined space of the mother bud neck 14, 26. 

 Cloning of the class III vac mutants helped elucidate the mechanism of 

segregation structure formation (Table 1-1). Each of the class III vac mutants are 

in genes that code for proteins that produce, regulate the production of, or bind to 

PtdIns(3,5)P2. Vps15 binds to and activates the sole PtdIns 3’-Kinase in yeast, 

Vps34, and PtdIns(3)P is required as a precursor for PtdIns(3,5)P2 production 33, 

34, 52, 53. Fab1 is the sole PtdIns(3) 5-kinase in yeast 54 and it is positively 

regulated by Vac7 and Vac14 10, 31. 

 Importantly PtdIns(3,5)P2 production has physiological affects on vacuole 

morphology. PtdIns(3,5)P2 levels are 18-28 fold lower than PtdIns(3)P, 

PtdIns(4)P, and PtdIns(4,5)P2 under normal physiological conditions but rapidly 

rise 20-fold after hyperosmotic stress 10.  Concomitant with the rise in 

PtdIns(3,5)P2 levels the vacuole fissions to form multiple small lobes. The 

fissioning of the vacuole is linked to the production of PtdIns(3,5)P2; and  fab1 
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and vac14 mutants do not fission under hyperosmotic conditions 10, 31. The rapid 

fissioning of the vacuole may mitigate problems caused by the rapid efflux of 

water out of the cell under hyperosmotic conditions by releasing water from the 

vacuole. A sphere with a given diameter can produce four spheres with a total of 

half the volume 10. Under hyposmotic conditions the vacuole undergoes fusion 

and vac8 mutants are defective for hyposmotic induced homotypic vacuole fusion 

11.  

 How does PtdIns(3,5)P2 promote the fissioning of the vacuole? Fission of 

the vacuole requires, at least in part, the recruitment of PtdIns(3,5)P2 effector 

proteins.  One effector, Atg18, binds directly to PtdIns(3,5)P2 and atg18 mutants 

display an enlarged vacuole phenotype like all known class III vac mutants 32, 55. 

Atg18 was originally isolated in a screen for mutants defective in autophagy. 

However, PtdIns(3,5)P2 does not appear necessary for autophagy as fab1 

mutants are not defective for autophagy 32. Cells lacking ATG18 additionally have 

a 5-10 fold higher levels of PtdIns(3,5)P2 under normal physiological conditions 

while retaining an enlarged vacuole 32.  Atg18 and other fission machinery (Fab1 

and Vac14) localize to punctate structures on the vacuole. In a small number of 

cells FM 4-64 stained vesicles bud from the Atg18-GFP punctate structures and 

Atg18-GFP containing vacuoles travel into the bud and fuse with what is 

presumably the daughter vacuole. This is especially intriguing as Atg18 binds 

Vac17 by 2-hybrid and coimmunoprecipitation 55. Thus it has been proposed that 

Atg18 serves a nonessential role in facilitating the formation of the segregation 

structure by promoting vesicle fission 55. 
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 Inhibition of vacuole fusion also plays a role in maintaining vacuole 

fragmentation after exposure to hyperosmotic conditions and in forming the 

segregation structure. The yeast casein kinase, Yck3, negatively regulates 

homotypic vacuole fusion by inhibiting the tethering of vacuoles. Inhibition of 

homotypic vacuole fusion is essential to maintain vacuole fragmentation after 

PtdIns(3,5)P2 levels have returned to normal after hyperosmotic shock 56. 

Inhibition of vacuole fusion is also important for the efficient partitioning of the 

vacuole into the bud. Mutant yck3 cells have a moderate vacuole inheritance 

defect, reduced daughter vacuole size in cells inheriting vacuole material from 

the mother, and tubular and vesicular segregation structures were not observed 

in the mutant 56. These data combined lead to the current model for segregation 

structure formation which proposes that vacuole fission is required to form the 

vesicles and tubules that compose the segregation structure 57.  

Despite the added clarity that recent experiments have shed on how the 

segregation structure is formed, many unanswered questions exist about the 

process and several key experiments to test the model remain undone. One of 

the major roadblocks to analyzing vacuole partitioning revolves around the 

transience of segregation structures. Based on the rate of vacuole movement 

and the distance of travel, segregation structures can be around for as little as 30 

seconds during the cell cycle 14. During this 30 seconds a complex set of 

reactions has been proposed to occur, including the production of PtdIns(3,5)P2 

14, the recruitment PtdIns(3,5)P2 binding proteins, segregation structure formation 

32, 55, 58, 59, transport of the segregation structure into the bud, and resolution of  
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the segregation structure (discussed below). The transient nature of the 

segregation structure and the impossibility of reliably synchronizing a population 

with intact segregation structures have made testing if PtdIns(3,5)P2 levels 

transiently rise during segregation structure formation difficult. Visualization and 

quantification of Atg18, or other potential PtdIns(3,5)P2 effectors, on segregation 

structures is also difficult or impossible due to the transience of the segregation 

structure.  Identification of mutants defective for resolving the segregation, 

therefore extending the amount of time the segregation structure persists, could 

potentially be useful to further study these problems. 

 

Resolution of the segregation structure 

Once formed, the segregation structure is transported into the bud. Upon 

entry into the bud the segregation structure is resolved to form a discrete mother 

and daughter vacuole. Over the years various strides have been made in forming 

a model for how the segregation structure is resolved.  

Together the experimental data suggests that the segregation structure is 

resolved by the fusion of tubular and vesicular structures in the bud. The data 

that support this model are reviewed below. (1) Formation of the vacuole 

segregation structure requires PtdIns(3,5)P2  production on the vacuole which 

promotes fission of the vacuole, suggesting that the opposing process fusion is 

required for resolution 10, 30, 31, 60-62. (2) Examination of labeled vacuoles by 

microscopy showed transport of vesicular structures from the mother into the 

daughter and fusion of these vesicles to form a larger daughter vacuole 63. (3) 
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Studies on vacuoles in semi-permeabilized cells show the formation of tubular 

and vesicular structures followed by vacuole fusion 63-66. (4) Resolution of 

segregation structure in zygotes involves vacuole fusion and merging of vacuole 

contents 67. (5) Formation of the segregation structure is promoted by Yck3 which 

maintains fragmentation through inhibition of homotypic vacuole fusion 56.  

Together these data suggest a model in which the vesicles and tubules 

composing the segregation structure are formed by fission machinery and 

resolved by fusion of the tubules and vesicles in the bud. A non-exclusive 

alternate model suggests that both formation and resolution of the segregation 

structure is accomplished by fission of the tubules to form the daughter vacuole. 

However, this possibility has not been rigorously tested and is solely supported 

by the observation that class III vac mutant often have vacuoles which span the 

mother bud neck 57. Missing from these models of segregation resolution, is a 

mechanism for not only promoting, but insuring, that the segregation structure is 

only resolved after arriving in the bud. As was proposed for Vac17 degradation 

14, there may be proteins localized specifically to the bud which promote vacuole 

fusion (or fission) to resolve the segregation structure as it enters the bud. 

However, as with the daughter-specific degradation of Vac17, potential daughter 

localized proteins that promote resolution of the segregation structure after it has 

entered the bud have not been identified. 
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Coordination of vacuole inheritance with the cell cycle 

Cells must coordinate organelle inheritance with other cell cycle driven 

events including mitosis and cytokinesis. This coordination ensures that each 

time an eukaryotic cell divides, each of the progeny receives an accurate copy of 

each of the chromosomes and a full complement of organelles. Checkpoints can 

delay cell cycle progression in response to a failure to complete earlier events 

through transduction of a negative signal to the cell cycle machinery 68, 69. Recent 

evidence has shown that checkpoints exist to ensure the faithful propagation of 

organelles to each progeny cell.  

In mammalian cells the Golgi apparatus is composed of 4-8 cisternae 

anchored at pericentriolar region of the cell. During prophase this Golgi ribbon 

fragments into smaller vesicles and tubules that are subsequently dispersed 

during metaphase 35. Failure to fragment the Golgi activates the Golgi mitotic 

checkpoint and delays cells at G2/M 70. 

Organelle partitioning checkpoints are not exclusive to mammalian cells. 

In budding yeast the cortical endoplasmic reticulum (cER) is transported along 

actin cables by the myosin V family motor Myo4 into the bud where it becomes 

anchored at the tip of the bud and expands to fill the bud 35. Cells lacking proteins 

required for cER inheritance also delay in G2/M.  This cER inheritance 

checkpoint requires the morphogenesis checkpoint proteins which acts to delay 

the cell cycle by negatively regulating the cyclin B-CDK complex essential for 

mitotic progression 71.    
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Checkpoints may also be required to ensure that segregation structure 

resolution occurs prior to mitosis. Budding yeast have a relatively narrow neck 

through which both the segregation structure and the nucleus must pass. Early 

studies noted that segregation structures are oriented towards the emerging bud 

early in the cell cycle and inheritance was completed prior to nuclear division 12, 

13, 36.  This opens the possibility that budding yeast monitor and delay cell cycle 

progression until segregation structures are resolved, thus clearing the neck for 

karyokinesis. How segregation structure resolution is coordinated with the cell 

cycle is unknown 57. 

Currently there are two known checkpoints that delay mitotic progression 

in response to failure to complete organelle inheritance: the Golgi mitotic 

checkpoint and the cER inheritance checkpoint. Mitogen-activated protein 

kinases regulate (MAPKs) regulate the inheritance of both of these organelles. In 

mammalian cells the Golgi mitotic checkpoint delays cells in G2/M 70. While the 

mechanism for this checkpoint has not been fully elucidated, inhibition of MAP 

kinases involved in Golgi fragmentation results in checkpoint activation 72, 73. cER 

inheritance is also regulated by a MAP kinase pathway 74.  

 

Mitogen-activated protein kinases 

The Ste20 group kinases are regulators of mitogen-activated protein 

kinase (MAPK) cascades and are divided into two main groups the p21-activated 

kinases (PAKs) and the germinal center kinases (GCKs) 75. My studies have 
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focused on the role of PAKs in regulating vacuole inheritance. Yeast contain two 

main p21-activated kinases, the founding member of the family, Ste20, and Cla4. 

Ste20 and Cla4 contain multiple domains and share similar domain 

structures. Both Ste20 and Cla4 have a kinase domain towards the C-terminus of 

the protein. There are multiple known targets of the PAKs in budding yeast. Both 

Ste20 and Cla4 are known to phosphorylate the myosin-I isoforms Myo3 and 

Myo5 76, 77. Ste20 phosphorylates the MAPKKK Ste11 78. Cla4 has several 

known targets including the Cdc42 guanine nucleotide exchange factor (GEF) 

Cdc24 79, 80, septins 81, Swe1 82, 83, and Lte1 84-86.  Despite the increasing data 

about Ste20 and Cla4 substrates, it must be noted that a complete catalog of 

substrates for either kinase remains undetermined and the data on the 

redundancy of Ste20 and Cla4 substrates remains elusive. 

Ste20 and Cla4 activity is carefully controlled by both positive and 

negative regulation. Regions in the N-terminal halves of the PAKs interact with 

the kinase domain in the C-terminal half of the PAKs leading to autoinhibition. 

This model is supported by genetic and structural data on Ste20, Cla4, and other 

PAKs 87-89. Autoinhibition is relieved when PAKs bind to activated GTP bound 

Cdc42 through the p21 binding domain (PBD) located within the N-terminal half 

of the protein 89-91. In budding yeast the adaptor protein Bem1 facilitates the 

interactions between Cdc42 and the PAKs. Bem1 is a multidomain protein and it 

binds both Cdc42 and Cdc24 92-95. Bem1 contains two SH3 domains and the 

second SH3 domain interacts with proline rich domains in Ste20 and Cla4 79, 80, 

96. The adaptor protein Bem1 thus brings together Cdc42 with its GEF leading to 
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Cdc42 activation. Activated Cdc42’s interaction with Ste20 and Cla4 relieves 

PAK autoinhibition and activates the PAKs. Cla4 activity is also cell cycle 

regulated and peaks near mitosis 88. 

 Both Cla4 and Ste20 localize to sites of polarized growth 87, 97-99. To 

ensure that Ste20 and Cla4 localize to regions where potential targets reside, 

both proteins contain domains necessary and sufficient to bind 

phosphatidylinositides. Cla4 contains a pleckstrin homology (PH) domain. PH 

domains are known to vary in their specificity for different phosphatidylinositides 

100. In vitro analysis by protein-lipid overlay analysis demonstrates that Cla4’s PH 

domain binds to PtdIns(3)P, PtdIns(3,5)P2, PtdIns(4)P, and PtdIns(5)P. Surface 

plasmon resonance showed strong binding to both PtdIns(4,5)P2 and 

PtdIns(3,5)P2. In vivo analysis finds that Cla4-GFP localization to the plasma 

membrane requires PtdIns(4)P but not PtdIns(4,5)P2 
100, 101. Functional analysis 

of Cla4 mutants unable to bind phosphatidylinositides shows that 

phosphatidylinositide binding acts in conjunction with Cdc42 localization and 

activation to promote Cla4 activity 101. Ste20 also binds to phosphatidylinositides 

using a basic-rich (BR) domain, but the phosphatidylinositide specificity of the 

Ste20’s BR domain has not been tested. Like the PH domain in Cla4, the BR 

domain in Ste20 acts in conjunction with the PBD to both localize and activate 

Ste20 102. 

Ste20 was originally isolated in a screen for suppressors of a dominant 

negative mutant of the "-subunit of a heterotrimeric G-protein coupled receptor, 
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Ste4, involved in mating 103. Ste4 binds to Ste20 through a noncatalytic region in 

the extreme C-terminus of Ste20 104.  

 

Cellular functions of Ste20 and Cla4 

 Ste20 and Cla4 are not only similar in their domain structure but they also 

share many overlapping functions. However, they also perform nonoverlapping 

functions. In budding yeast PAKs are known to play roles in signal transduction 

involved in mating, filamentous growth, and in responding to osmotic stress. 

Additionally, they promote polarized growth, septin formation, and cell cycle 

progression. 

 

Signal transduction 

 Signal transduction networks are necessary for cells to respond to 

external signals and to coordinate intracellular changes with the extracellular 

environment.  In budding yeast the best studied of these signal transduction 

networks is the pathway required for mating. Haploid yeast excrete peptide 

pheromones which bind to cell-surface receptors on yeast of the opposite mating 

type. Pheromone binding causes G1 cell cycle arrest and polarized growth 

towards a partner cell of the opposite mating type. Once the two cells come into 

contact they fuse to form a diploid cell. A G-protein coupled receptor (GPCR) 

activated MAPK cascade is required to coordinate the process of mating. This 

kinase cascade requires the MAPKKKK Ste20, a MAPKKK Ste11, a MAPKK 

Ste7, and two MAPKs Fus3 and Kss1 which are all connected by the scaffolding 
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protein Ste5 105. Ste20 directly interacts with Ste4, the "-subunit of the GPCR 104. 

After binding Ste4, Ste20 directly phosphorylates Ste11, relieving its 

autoinhibition and thus promoting Ste7 phosphorylation 78. The scaffolding 

protein Ste5 also binds to Bem1 allowing for the efficient activation of Ste20 by 

GTP-Cdc42 106. Cla4 is not known to bind to Ste4. However, genetic and 

biochemical data suggest that Cla4 does participate in the mating type pathway " 

though probably by negatively regulating it 107. 

 

 

Figure 1-2. Ste20 and Cla4 are involved in signal transduction. (Details in the text) 

 

 Although less understood than the mating type cascade, Ste20 also plays key 

roles in regulating filamentous growth (also called invasive growth in haploid cells 

and pseudohyphal growth development in diploid) under nutrient deprivation 

conditions. The filamentous growth MAPK cascade causes cells to become 

elongated and fail to separate after division causing cells to penetrate into the 

agar. The filamentous growth MAPK cascade consists of Ste20 (MAPKKKK)  # 
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Ste11 (MAPKKK) # Ste7 (MAPKK) # Kss1 (MAPK) 108. Unlike in the mating 

type cascade, Fus3 is not activated, the scaffolding protein Ste5 is not used, and 

Cdc42 is activated by Ras2 105. Thus Ste20 plays key roles in regulating both 

mating and filamentous growth. 

 In response to hyperosmotic stress, vacuoles fragment immediately to 

accommodate osmotic changes. Prolonged hyperosmotic change requires long-

term cellular adaptations to the new environment. In response to hyperosmotic 

shock cells arrest and begin producing the compatible solute glycerol 109. 

Budding yeast contain two putative osmosensors, Sln1 and Sho1. Sln1 and Sho1 

activate different branches of the pathway but both culminate in the activation of 

the same MAPK cascade consisting of Pbs2 (MAPKK) # Hog1 (MAPK). The 

Sho1 branch of the pathway requires Ste11 (MAPKKK) activation of Pbs2. Both 

Ste20 and Cla4 play roles in activating Ste11 in response to hyperosmotic stress 

as assayed in a reporter strain 110. Further evidence supporting a role for Cla4 in 

hyperosmotic stress response is found in the early findings that cells lacking 

CLA4 are normally elongated and this elongation is suppressed by growth under 

hyperosmotic conditions but not in the absence of either PBS2 or HOG1 91. 

Intriguingly hyperosmotic stress can cause cells to arrest in G1 or delay in G2. 

This G2 delay requires the Hog1 dependent phosphorylation of the Nim1-related 

protein kinase in yeast Hsl1 (discussed further below) 111.  
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Polarized Growth 

 Polarized growth requires the activation of Cdc42 by Cdc24 and 

temperature sensitive cdc42 and cdc24 mutants arrest as large unbudded cells 

at the restrictive temperature 112, 113. Cdc24 is normally localized to the nucleus 

during G1 and is exported into the cytoplasm at bud emergence 114, 115. Cdc24 is 

initially localized to the site of bud emergence by proteins that mark the 

presumptive bud site 116. Stabilization of Cdc24 at the site of polarized growth is 

accomplished by interactions with the adaptor protein Bem1 93, 117. Cla4 and 

Ste20 interact with Bem1, and Cla4 (and possibly Ste20) phosphorylates Cdc24. 

The effect of Cdc24 phosphorylation, however, is an unresolved issue with 

separate groups reporting contradictory results. Gulli et al. find that 

phosphorylation of Cdc24 by Cla4 causes Cdc24 to dissociate from Bem1 79. In 

contrast Bose et al. find that phosphorylation of Cdc24 by Cla4 causes a 

stabilization of the Cdc24-Bem1 interaction 80. Therefore, Cla4 regulates 

polarized growth by regulating Cdc24 localization, though the consequences of 

this regulation are disputed. 

 Ste20 and Cla4 also indirectly regulate actin branching. Neither Ste20 nor 

Cla4 are necessary for the polarization of actin cables required for bud 

emergence 91, 118, 119.  However, Ste20 and Cla4 are involved in promoting actin 

polymerization through the Arp2/3 complex. Cdc42 activates Arp2/3 dependent 

branching through a defined pathway. Cdc42 activates the Wiskott-Aldrich 

syndrome protein (Las17) bound to the WASP-interacting protein (Vrp1) 120-124 

and Las17/Vrp1 activates the Arp2/3 complex to promote actin polymerization 3, 
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125. Ste20 and Cla4 phosphorylate the type I myosins, Myo3 and Myo5 76, 77, 126. 

In turn, phosphorylated Myo3 and Myo5 activate the Las17/Vrp1 complex 126, 127. 

Through modulating Arp2/3 mediated branching it has been proposed that the 

PAKs regulate the actin cytoskeleton in S. cerevisiae and other organisms 128. 

 

Septin Formation 

 Septins are evolutionarily conserved GTP-binding proteins that form 

hetero-oligomeric filaments. In budding yeast these septin filaments form at the 

mother bud neck where they act as a scaffold on which other proteins assemble 

129. In G1 cells, septins are localized to the nascent bud site but are highly mobile 

and fluid as judged by fluorescence recovery after photobleaching (FRAP) but 

they quickly reorganize to form a protein collar concomitant with bud emergence 

130, 131. During cytokinesis the septin collar splits into two rings.  

A role for PAKs in septin organization was recognized in early studies. In 

cells lacking both Ste20 and Cla4 activity the mother bud neck appears 

particularly wide and the septin Cdc3 is mislocalized 91. PAKs appear to promote 

reorganization of the septins leading to their immobilization and in both cdc42 

and cla4 mutant cells septins remain more dynamic throughout budding 130-132. 

Cla4 directly phosphorylates the septins Cdc3, Cdc10, and Cdc11, and removal 

of the Cla4 phosphorylation site on Cdc10 causes septin organization defects 81. 

Ste20 also plays a role in regulating septin formation. Evidence supporting this 

conclusion include the findings that Cdc10 has residual phosphorylation in a cla4 

mutant, Ste20 phosphorylates Cdc10 in vitro, and septins mislocalize to a greater 
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extent in cells lacking both CLA4 and STE20 than in cells lacking either PAK 

individually 81, 91. 

 

Cell Cycle Progression 

 Each time budding yeast reproduce, bud formation must be coordinated 

with organelle partitioning and mitotic progression. In the event of a failure to 

properly form a bud, checkpoints ensure that mitotic progression is delayed until 

a bud is formed. The checkpoint linking bud formation with cell cycle progression 

is called the morphogenesis checkpoint and it delays cells in G2 133. The 

morphogenesis checkpoint is thought to monitor proper bud formation by 

monitoring proper formation of the septin collar. In response to a failure to 

properly form the septin scaffold, cells delay or arrest at G2. To delay cell cycle 

progression the morphogenesis checkpoint modulates the localization and 

stability of the Wee1 kinase in budding yeast, Swe1. Swe1 is a dual specificity 

kinase that prevents cell cycle progression by phosphorylating the mitosis-

promoting cyclin B/CDK complex on a conserved tyrosine residue 134. When 

septin rings are properly formed at the mother-bud neck the Nim1-family protein 

kinase Hsl1 recruits the protein methyltransferase Hsl7 to the mother bud neck. 

Hsl7 interacts directly with Swe1 and recruits Swe1 to the mother bud neck 

where it is negatively regulated 135-140. 

 Multiple lines of evidence show that Cla4 and Ste20 regulate Swe1. 

Failure to negatively regulate Swe1 leads to cells with elongated buds. The 

Cdc42 mutant cdc42V44A has elongated buds. This elongated bud phenotype is 
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suppressed by deletion of SWE1 or by overexpression of CLA4 or STE20 141. 

Cells lacking both Cla4 and Ste20 activity arrest in G2 in a SWE1 dependent 

manner 91, 118, 119. Cells lacking CLA4 are elongated and this elongation is 

suppressed by SWE1 deletion 135. Finally, Cla4 is targeted to the mother bud 

neck and directly phosphorylates Swe1 82, 83. In this way PAKs act to promote cell 

cycle progression through G2. The yeast Polo-like kinase, Cdc5, also interacts 

with Swe1 and phosphorylates Swe1 to promote cell cycle progression 82, 83, 142. 

 In addition to promoting progression into mitosis PAKs act to promote 

mitotic exit. In budding yeast mitotic exit is driven by the protein phosphatase 

Cdc14 that acts to reverse CDK phosphorylation events. From the beginning of 

the cell cycle until metaphase, Cdc14 is kept inactive within the nucleolus. In 

order to promote mitotic exit, sustained Cdc14 release from the nucleolus 

requires a network of proteins called the MEN (mitotic exit network). The MEN 

consists of the GTPase Tem1; its putative GEF Lte1; a two-component GTPase 

activating protein (GAP) Bub2/Bfa1; the protein kinases Cdc5, Cdc15, Dbf2; a 

Dbf2 associated factor Mob1, and a scaffold protein Nud1 143. The GTPase Tem1 

is localized to the spindle pole body entering the bud. Once transported into the 

bud Tem1 comes into contact with and probably activated by Lte1 localized at 

bud cortex. Cla4 phosphorylates Lte1 regulating its initial localization and binding 

to the bud cortex 84-86.  Ste20 is not necessary for Lte1 phosphorylation or 

localization but is synthetically lethal with lte1. The ste20 lte1 synthetic lethality 

combined with other genetic and molecular biological data show that Cla4 and 

Ste20 act in parallel pathways to promote mitotic exit 84, 119. 
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Vacuole Fusion 

 The yeast vacuole is a dynamic structure and constantly undergoes fusion 

and fission. Fusion of separate lobes of the vacuole requires a multistep process. 

First vacuoles are primed for fusion by the ATP dependent activation of fusion 

factors. Second, vacuoles are reversibly tethered together. Next unpaired 

SNAREs assemble into a trans-complexes leading to docking. Finally, lipid 

bilayer mixing and fusion of vacuoles occurs 144. Both Cdc42 and actin 

polymerization are required for the docking stage of vacuole fusion 122, 124, 145, 146. 

In vitro and in vivo studies show that inhibition of actin branching by inhibiting 

either Las17 or the Arp2/3 complex inhibits docking 122. Importantly, Cla4 and 

Ste20 both indirectly activate Las17 by phosphorylating Myo3 and Myo5 76, 77, 126, 

127. Therefore, PAKs may play a role in vacuole fusion. In further support of a role 

for PAKs in vacuole fusion, Cla4 localizes to purified vacuole and cla4 mutants 

have fragmented vacuoles 16, 122. Additionally, the Cla4 and Ste20 interacting 

protein Bem1 promotes vacuole fusion 147, 148. 

 

Conclusions 

 Cla4 and Ste20 play many roles in regulating various biological processes 

in S. cerevisiae. In the chapters that follow I will present data showing that Cla4 

and Ste20 act to regulate vacuole inheritance. In chapter two I identify a novel 

class I vac mutant. Boi1 and Boi2 are functionally redundant proteins that interact 

with Bem1. Mutant boi1 boi2 cells display a class I vac defect which is 



 

 28 

suppressible by deletion of CLA4 or STE20. Unlike all other known class I vac 

mutants which are part of the physical machinery transporting the segregation 

structure into the bud, Boi1 and Boi2 play no known structural role in inheritance 

and may instead be regulators of vacuole inheritance.  

In chapter three I address an open question in the vacuole inheritance 

field of how Vac17 is degraded in a spatially dependent fashion. It has been 

previously hypothesized that bud-specific degradation of Vac17 is promoted by 

bud localized factors. However, the identity of these factors was not known. In 

chapter three I show that Cla4 and Ste20, which localize specifically to the bud, 

are required for Vac17 degradation. I also show that CLA4 and STE20 

overexpression causes a vacuole inheritance defect that is suppressed by non-

degradable Vac17. 

In chapter four I address the question of how the segregation structure is 

resolved. I show that Cla4 localizes to the segregation structure just prior to 

segregation structure resolution placing it in the right time and place to resolve 

the segregation structure. I additionally show that PAKs are required for daughter 

vacuole formation. 

Checkpoints delay cell cycle progression in response to a failure to 

complete earlier events through transduction of a negative signal to the cell cycle 

machinery. Vacuole inheritance is finished before mitosis occurs. In chapter five I 

present data supporting a novel vacuole inheritance checkpoint. Together this 

data advances our understanding of how vacuole inheritance is regulated in a 

spatially dependent manner and how it is coordinated with cell cycle progression.
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 CHAPTER II 
 
 

BOI1 AND BOI2 REGULATE VACUOLE INHERITANCE. 
 

Abstract 

 Each time eukaryotic cells divide, they ensure that each of the progeny 

cells receives a full complement of organelles. The budding yeast vacuole 

(lysosome) fissions to form a tubular-vesicular structure called the “segregation 

structure” which is transported along actin cables by myosin into the bud. Upon 

entering the bud the segregation structure is resolved, probably by fusion of the 

tubules and vesicles, to form a discrete daughter vacuole. The machinery 

ensuring the resolution of the segregation structure in a spatially dependent 

manner, specifically in the bud, has not been identified. Boi1 and Boi2 are a pair 

of functionally redundant proteins that localize to the bud cortex.  boi1 boi2 

mutant cells were found to be defective for vacuole inheritance. The boi1 boi2 

vacuole inheritance defect was dependent on the presence of the p21-activated 

kinases, Cla4 and Ste20. These results suggested a model in which Boi1 and 

Boi2 negatively regulate Cla4 and Ste20 insuring they are only active in the bud 

where they potentially act as daughter-specific factors to provide spatial 

regulation of vacuole inheritance. 
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Introduction 

 Under normal physiological conditions the yeast vacuole is a low-copy 

number organelle containing on average 1-3 lobes and requires ordered 

transport to ensure its inheritance by the daughter cell 1. At the time of bud 

emergence, proteins necessary for PtdIns(3,5)P2 production are required to form 

the tubular and vesicular structure called the segregation structure 2, 3. Transport 

of the segregation structure into the bud requires attachment of the vacuole to 

the myosin V motor Myo2 4-6. Attachment between the vacuole and myosin 

requires the vacuole-specific Myo2 receptor Vac17. Vac17 binds both Myo2 and 

Vac8 directly and is degraded after transport into the bud thus providing 

directionality to the transport process 7, 8. Vac8 is myristoylated and palmitoylated 

and is inserted into the vacuole membrane 9, 10. Once attached to myosin, 

vacuoles, like most of the organelles in budding yeast, are transported into the 

bud along polarized actin cables 11-16. Upon entering the bud, the segregation 

structure is resolved, probably by fusion of the tubules and vesicles, to found the 

daughter vacuole 17-21.   

While the machinery necessary for the formation and transport of the 

segregation structure has been identified, the machinery regulating segregation 

structure resolution in a spatially dependent manner has not been identified. The 

fusion of tubules and vesicles leading to the formation of a separate daughter 

vacuole does not take place until after entering the bud. What restricts fusion to 

the bud? How Vac17 is degraded in a bud-specific manner is unknown. It has 
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been hypothesized that the bud specific degradation of Vac17 is promoted by 

factors specifically localized to the bud 22. However, these factors have not been 

identified.  Similarly, I hypothesized that factors promoting vacuole fusion were 

specifically localized to the bud, thus creating spatial regulation of segregation 

structure resolution. In support of this hypothesis I identified Boi1 and Boi2 as 

factors localized to the bud. Double mutant boi1 boi2 cells have a vacuole 

inheritance defect. The boi1 boi2 vacuole inheritance defect was dependent on 

the p21-activated kinases Cla4 and Ste20. 

Vacuole inheritance requires transport along polarized actin cables. Actin 

cable formation requires the Rho-like GTPase Cdc42 activated by the guanine 

nucleotide exchange factor (GEF) Cdc24 23, 24. Cdc24 is brought into contact with 

Cdc42 by its direct interaction with the scaffolding protein Bem1 25, 26. Bem1 also 

binds the p21-activated kinases Cla4 and Ste20 through Bem1’s second SH3 

domain 27-30. Cla4 and Ste20 are activated by Cdc42 and act as Cdc42 effectors 

30-34. However, neither Cla4 nor Ste20 are required for polarization of the actin 

cytoskeleton, but they do promote septin organization 31, 35-37.  

Boi1 and Boi2 are a pair of functionally redundant proteins which also bind 

Bem1 on the second SH3 domain 38-40 and which show multiple direct and 

indirect protein-protein interactions with Cla4 and Ste20 38, 40-42. Cells deleted for 

both BOI1 and BOI2 grow slowly, have poor viability, and populations of boi1 

boi2 cells contain a high percentage of unbudded cells 38, 40. A spontaneously 

faster growing boi1 boi2 strain was isolated to further investigate the roles of Boi1 

and Boi2 in living cells, as has been done previously 40, 43.  
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Materials and Methods 

 
 
Plasmid and Strain Construction 

Yeast strains and sources are listed in Table 2-1. Yeast strains were 

constructed by genetic crosses followed by tetrad dissection or by transformation 

using the lithium acetate method 44. GFP and the adjacent HIS3 marker were 

amplified by PCR and integrated to generate BOI1-GFP and BOI2-GFP as 

described 45, 46. Plasmid sources and construction methods are listed in Table 2-2 

and DNA manipulations were performed as described 47.  

 

Microscopy 

Digital images were taken with a 100X objective on an Olympus 

microscope. NIH image 1.62 (written by Wayne Rasband) was used for image 

acquisition. Cells were visualized by fluorescence and differential interference 

contrast microscopy (DIC). Within each experiment, all images were collected 

and scaled identically. Images were processed with Photoshop 9.0 software 

(Adobe). Video microscopy was performed with mid-log phase cells placed on a 

drop of 2% agarose in YPD flattened by an uncoated glass slide as described 48. 

Cells were visualized every three to five minutes. Small, medium, and large 

budded cells were grouped into size categories as described 49. Scale bar = 2.5 

mm throughout all figures. 

 



 

 42 

 

Table 2-1. Strains 
Strain Genotype Source 

BY4741 MATa his3D1 leu2D0 met15D0 ura3D0 (S288c) 
50

 

YCH463 MAT" BOI2-GFP-HIS3 his3 leu2 ura3 (S288c) This Study 
YCH928 MAT" BOI1-GFP-HIS3 his3 leu2 ura3 (S288c) This Study 
YCH1043 MATa boi1::kanMX4 his3D1 leu2D0 met15D0 ura3D0 (S288c) 

51
 

YCH1220 MATa boi1::kanMX4 boi2::URA3 (S288c) This Study 
YCH1342 MATa boi1::LEU2 boi2::URA3 cla4::LEU2 (S288c) This Study 
YCH1478 MATa vac8::kanMX4 his3D1 leu2D0 met15D0 ura3D0 (S288c) 

51
 

YCH1511 MATa ste20::kanMX4 his3D1 leu2D0 met15D0 ura3D0 (S288c) 
51

 

YCH1642 MATa cla4::kanMX4 his3D1 leu2D0 met15D0 ura3D0 (S288c) 
51

 

YCH1872 MATa boi1::LEU2 boi2::URA3 ste20::KanMX4 (S288c) This Study 
YCH1959 MATa boi1::kanMX4 his3D1 leu2D0 met15D0 ura3D0 (S288c) 

51
 

YCH3576 MATa pRS414-pBOI1-BOI1 boi1::kanMX4 boi2::URA3 (S288c) This Study 
YCH3578 MATa pRS414-pBOI1-boi1-W53K boi1::kanMX4 boi2::URA3 (S288c) This Study 
YCH3580 MATa pRS414-pBOI1-boi1-P7A7 boi1::kanMX4 boi2::URA3 (S288c) This Study 
YCH3582 MATa pRS414-pBOI1-boi1-K795A,R797A boi1::kanMX4 boi2::URA3 

(S288c) 
This Study 

YCH3584 MATa pRS414-pBOI1-boi1-D5-733 boi1::kanMX4 boi2::URA3 
(S288c) 

This Study 

 

Table 2-2. Plasmids 
Plasmids Description Source 

pCH1542 pRS414-pBOI1-BOI1. Made by insertion of a 4.5 kB BamHI-SalI 
fragment of pPB939 

52
 into the BamHI-SalI site of pRS414 

53
. 

This Study 

pCH1543 pRS414-pBOI1-boi1-W53K. Made by insertion of a 4.5 kB BamHI-
SalI fragment of pPB952 

52
 into the BamHI-SalI site of pRS414 

53
 

This Study 

pCH1544 pRS414-pBOI1-boi1-P7A7. Made by insertion of a 4.5 kB BamHI-SalI 
fragment of pPB954 

52
 into the BamHI-SalI site of pRS414 

53
 

This Study 

pCH1545 pRS414-pBOI1-boi1-K795A,R797A.Made by insertion of a 4.5 kB 
BamHI-SalI fragment of pPB967 

52
 into the BamHI-SalI site of 

pRS414 
53

 

This Study 

pCH1546 pRS414-pBOI1-boi1D5-733. Made by insertion of a 4.5 kB BamHI-
SalI fragment of pPB1004 

52
 into the BamHI-SalI site of pRS414 

53
 

This Study 

 

In vivo labeling of vacuoles 

 To visualize vacuoles, yeast cells were concentrated and incubated for 1 

hour with N-(3-triethylammoniumpropyl)-4(6(4(diethylamino)phenyl)hexatrienyl) 

pyridium dibromide (FM 4-64; Molecular Probes) at a final concentration of 16.5 

#M 54. Cells were then washed with appropriate media and grown for $3 hours 

before being viewed by fluorescence microscopy.  
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Other methods 

YP media containing 1% yeast extract and 2% Bacto Peptone was used 

with addition of glucose (YPD) as a carbon source at 2% final concentration. 

Alternately, strains with plasmids were grown on synthetic media (SC) lacking 

tryptophan to maintain plasmids.  
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Results 

 

Boi1 and Boi2 are inherited by the daughter cell 

To determine Boi1 and Boi2 localization, BOI1-GFP cells and BOI2-GFP 

cells were visualized by fluorescence microscopy. Boi1-GFP and Boi2-GFP had 

identical localization patterns (data not shown) and only Boi2-GFP localization is 

presented (Figure 2-1). Boi2-GFP localized to the (I) mother-bud neck prior to 

separation. (II-III) Boi2-GFP then localizes to the nascent bud site of mother cells 

and to the cortex of buds but remained on the daughter after cell separation. (IV-

VI) Boi2-GFP localized to the nascent bud site and the cortex of the bud in 

daughter cells and a small amount of Boi2-GFP remained at what is presumably 

the birth scar where it gradually disappeared as the new bud grew.  These 

findings have been corroborated by other researchers 55. However, the daughter-

specific inheritance of Boi1 and Boi2 has not been previously reported. 

 

 
 

Figure 2-1. Boi2-GFP has a dynamic localization during the cell cycle and is inherited by 
daughter cells. 
Boi2-GFP (YCH463) localization was visualized by fluorescence microscopy and represenative 
images are shown. Arrows indicate Boi2-GFP localization to nascent bud sites and arrowheads 
indicate Boi2-GFP inheritance. Pedigree analysis: M (mother) d (daughter). 
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boi1 boi2 mutant cells display a daughter-specific budding delay 

 The daughter-specific inheritance of Boi1 and Boi2 led me to reexamine 

previous phenotypes of boi1 boi2 mutant cells. Asynchronous cultures of boi1 

boi2 cells, in addition to other phenotypes, display a high proportion of unbudded 

cells 38, 40. After confirming this result (data not shown) I hypothesized that in the 

absence of BOI1 and BOI2, daughter cells were delayed for budding and this 

might account for the high proportion of unbudded cells. 

 To test this hypothesis wild type and boi1 boi2 cells were observed by 

time-lapse video microscopy. Cell division led to the production of a larger 

mother and a smaller daughter cell. After cell separation, wild type mother cells, 

which have already reached a critical size, almost immediately rebudded. 

However, smaller daughter cells were delayed for bud emergence an average of 

42 minutes while they grew to a critical size (Figure 2-2A,C). The boi1 boi2 

mutant mother cells budded with similar kinetics to wild type mother cells. In 

contrast the boi1 boi2 daughter cells were greatly delayed for bud emergence 

and were delayed on average 88 minutes longer than wild type daughter cells 

(Figure 2-2A,C). This daughter-specific budding delay suggested that there was 

some difference between boi1 boi2 mother and daughter cells that led to the 

daughter-specific budding delay. 
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Figure 2-2. boi1 boi2 and vac8 cells have a daughter-specific budding delay. 
(A-B) Wild type (BY4741), boi1 boi2 (YCH1220), and vac8 (YCH1478) cells were grown to early log 
phase and examined by video microscopy and pedigree analysis was performed. (C) The 
budding time, defined as the interval in minutes between cell separation and subsequent bud 
emergence for mother (light bar) and daughter (dark bar) cells, was determined. Black dots 
represent independent bud emergence events. Pedigree analysis: M (mother), d1-3 (primary - 
tertiary daughters) and gd1 (primary granddaughter). 
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boi1 boi2 cells have a vacuole inheritance defect 

 It has been previously shown that cells which fail to inherit a vacuole are 

delayed for bud emergence until daughter cells form a vacuole de novo and thus 

exhibit a daughter-specific budding delay 56. I therefore hypothesized that 

vacuole inheritance mutants, when examined by time-lapse video microscopy, 

should have similar delays in daughter, but not mother, budding times after cell 

separation. 

 To test this hypothesis I examined a Class I vacuole inheritance mutant 

vac8. Vac8 contains 11 armadillo repeats serving in protein-protein interactions 

and is both myristoylated and multiply palmitoylated allowing its insertion into the 

vacuole membrane. At the vacuole membrane it interacts with the vacuole 

specific myosin receptor Vac17 enabling transport of vacuolar material into the 

bud 7-9. Examination of vac8 mutants revealed that, similar to boi1 boi2 mutants, 

vac8 mutants have a daughter-specific budding delay and on average are 

delayed 65 minutes longer than wild type daughter cells (Figure 2-2B,C). 

Because vac8 cells have a daughter-specific budding delay and daughter 

cells bud with similar kinetics to boi1 boi2, I hypothesized that, like vac8 mutants, 

boi1 boi2 cells had a vacuole inheritance defect. Vacuole inheritance can be 

visualized by pulse chase experiment using the fluorescent dye FM 4-64 which 

accumulates specifically on the vacuole membrane. FM 4-64 stained vacuoles 

can be seen to form segregation structures which transport vacuolar material into 

the bud, and cells which fail to inherit a vacuole have daughter cells devoid of FM 

4-64 stained vacuole membranes 54. Pulse chase experiments were performed to 
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determine if boi1 boi2 cells had a vacuole inheritance defect. Wild type and boi1 

or boi2 single mutants formed segregation structures and 100% of large budded 

cells contained FM 4-64 stained vacuoles (Table 2-3). In contrast, segregation 

structures were only very infrequently observed in boi1 boi2 cells and only 13% 

of large budded cells contained FM 4-64 stained vacuole material. Additionally, 

boi1 boi2 vacuoles were frequently multilobed (Figure 2-3A). 

 
Table 2-3. boi1 boi2 cells have a vacuole inheritance defect dependent on CLA4 
and STE20. 

Genotype Vacuole Inheritance of Large 
Budded Cells 

Wild type 100% 
boi1 100% 
boi2 100% 
ste20 100% 
cla4 100% 
boi1 boi2 13% 
boi1 boi2 ste20 100% 
boi1 boi2 cla4 100% 

 
 
Other yeast organelles have been reported to have cortical anchors within 

the bud that ensure organelle retention. Organelles in cells lacking these cortical 

anchors are not retained within the bud and are subsequently transported back 

into the mother 57, 58. Because Boi1 and Boi2 are cortically localized they could 

potentially be cortical anchors within the bud, and the vacuole inheritance defect I 

saw was solely due to a failure to retain the daughter vacuole.  To assess this 

possibility time-lapse video microscopy was performed on FM 4-64 stained boi1 

boi2 cells and cells were examined every 5 minutes. Over the time course of the 

experiment vacuole inheritance structures did not form and FM 4-64 stained 

vacuole materials were never observed in buds (Figure 2-3C). Thus it is unlikely 

that Boi1 and Boi2 are acting, at least solely, as cortical anchors.  
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Figure 2-3. boi1 boi2 cells have a vacuole inheritance defect. 
(A) Wild type (BY4741) and boi1 boi2 (YCH1220) strains were FM 4-64 labeled with the vacuole 
specific dye FM 4-64 and then observed by fluorescence microscopy. (B) Pedigree analysis was 
performed by video microscopy of FM 4-64 stained boi1 boi2 (YCH1220) cells and DIC and 
fluorescent images are shown. Pedigree analysis: M (mother), d1-3 (primary - tertiary daughters). 
Min (minutes). Cell Outline Color Code, Red: bud contains segregation structure; Blue: bud has 
inherited vacuole material from mother cell; Yellow: medium or large bud lacking inherited 
vacuole material from mother cell. 

 
 
boi1 boi2 daughter-specific budding and vacuole inheritance defects are 
suppressed by CLA4 or STE20 deletion 
  
 Because Boi1 and Boi2 are not known to have a catalytic function, I 

hypothesized that Boi1 and Boi2 effects on vacuole transport might be indirect 

through an interacting protein. Boi1 and Boi2 have multiple direct and indirect 

protein-protein interactions with the p21-activated kinases Ste20 and Cla4 in 
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budding yeast 38, 40-42. I hypothesized that Boi1 and Boi2 might negatively 

regulate Cla4 and or Ste20, and that in the absence of BOI1 and BOI2, that 

Ste20 and Cla4 were overactive, or were active somewhere in the cell that they 

were not usually active, and therefore the PAKs were responsible for the vacuole 

inheritance defect. 

 To test this model I determined if the deletion of STE20 or CLA4 

suppressed the boi1 boi2 daughter-specific budding delay and/or vacuole 

inheritance defects. Time-lapse video microscopy was performed on boi1 boi2 

ste20 and boi1 boi2 cla4 cells (Figure 2-4A) and the elapsed time between cell 

separation and mother and daughter budding events was determined (Figure 2-

4B). The deletion of either STE20 or CLA4 fully suppressed the boi1 boi2 

daughter-specific budding delay. 

 In addition I determined if the deletion of STE20 or CLA4 suppressed the 

boi1 boi2 vacuole inheritance defect. Mutant boi1 boi2 ste20 and boi1 boi2 cla4 

cells were FM 4-64 stained and examined by fluorescence microscopy.  

Segregation structures were common in these strains (Figure 2-4C) and 100% of 

large budded cells contained a daughter vacuole (Table 2-3). As expected ste20 

and cla4 cells did not have a vacuole inheritance defects (Table 2-3). Thus I 

conclude that CLA4 and STE20 are required for the boi1 boi2 daughter-specific 

budding delay and vacuole inheritance defect. 
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Figure 2-4. boi1 boi2 daughter-specific 
budding delay and vacuole inheritance 
defects are suppressed by CLA4 or STE20 
deletion. 
(A-B) boi1 boi2 ste20 (YCH1872) and boi1 boi2 
cla4 (YCH1342) cells were grown to early log 
phase and examined by video microscopy. 
The average budding time, defined as the 
interval in minutes between cell separation and 
subsequent bud emergence for mother (light 
bar) and daughter (dark bar) cells, was 
determined. Black dots represent independent 
bud emergence events. (C) Strains in A were 
FM 4-64 labeled with the vacuole specific dye 
FM 4-64 and then observed by fluorescence 
microscopy. Pedigree analysis: M (mother), 
d1-2 (primary - secondary daughters) and gd1 
(primary granddaughter). Min. (minutes). Cell 
Outline Color Code, Red: bud contains 
segregation structure; Blue: bud has inherited 
vacuole material from mother cell; Yellow: 
medium or large bud lacking inherited vacuole 
material from mother cell. 
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The PH domain of Boi1 is required for vacuole inheritance 

 Finally, in hopes of further elucidating how Boi1 and Boi2 regulated 

vacuole inheritance, I determined what portion of Boi1 was necessary for vacuole 

inheritance. Boi1 and Boi2 contain an SH3 domain, a proline-rich domain, and a 

PH domain. To determine the region necessary for vacuole inheritance boi1 boi2 

cells were transformed with plasmids containing full length BOI1 (pBOI1), BOI1 

with a specific mutation in the coding sequence for the SH3 domain which coding 

for a conserved tryptophan codon (pboi1-W53K), BOI1 with mutations in seven of 

the nine prolines in the proline-rich domain changed to alanines (pboi1-P7A7), 

BOI1 containing only the coding sequence for the PH domain and the C-terminus 

of the protein (pboi1D5-733), and full length BOI1 with mutations in the PH 

domain coding sequence which disrupt the PH domain of other PH domain 

containing proteins 40, 55.  

 Vacuole inheritance was examined by FM 4-64 straining. Cells 

transformed with plasmids contained wild type BOI1, BOI1 with SH3 domain or 

proline-rich domains mutations, and the PH domain alone all inherited vacuoles 

(Figure 2-5). In contrast, cells transformed with a BOI1 containing plasmids with 

mutations affecting the PH domain alone were not able to restore vacuole 

inheritance. Taken together this data suggests that the SH3 and proline-rich 

domains of Boi1 are not required for vacuole inheritance, but an active PH 

domain is required for vacuole inheritance in cells lacking BOI2. 
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Figure 2-5. The PH domain of Boi1 is required for vacuole inheritance in the absence of 
BOI2. 
Asynchronous cultures of FM 4-64 stained boi1 boi2 pBOI1 (YCH3576), boi1 boi2 pboi1-W53K 
(YCH3578), boi1 boi2 pboi1-P7A7 (YCH3580), boi1 boi2 pboi1-D5-733 (YCH3584), and boi1 boi2 
pboi1-K795A,R797A (YCH3582) were examined by fluorescence microscopy, and representative 
pictures are shown. Cell Outline Color Code, Red: bud contains segregation structure; Blue: bud 
has inherited vacuole material from mother cell; Yellow: medium or large bud lacking inherited 
vacuole material from mother cell. 
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Discussion 

 I here report that boi1 boi2 mutants display a vacuole partitioning defect. 

Previously vacuole partitioning mutants have been classified into three classes 

based on vacuole morphology and transport. Class I mutants contain multilobed 

vacuoles and fail to form a segregation structure or transport any vacuole 

material into the bud. Class II mutants have moderately enlarged vacuoles and 

often have a node on the vacuole oriented towards the bud. Class III mutants fail 

to form lobes, contain a single highly enlarged vacuole and fail to form a 

segregation structure; but they do partition a portion of the vacuole into the 

daughter. Based on its vacuole morphology and failure to inherit I propose that 

boi1 boi2 is a Class I vac mutant. 

 All of Class I vac mutants for which the corresponding gene has been 

identified identify components of the physical machinery necessary for transport 

of the vacuole into the bud, such as actin, profillin, and the vacuole transport 

complex (Myo2, Vac8, and Vac17). Currently there are no known Class I mutants 

identified that regulate the transport process. I propose Boi1 and Boi2 as the first 

Class I vacuole partitioning mutants that play a role in regulating vacuole 

inheritance. In support of this proposal I found that deletion of CLA4 or STE20 

suppressed both the daughter-specific budding delay and the vacuole partitioning 

defect of boi1 boi2 cells. Therefore, it is unlikely that, like other Class I vac 

mutant, Boi1 and Boi2 are part of the physical machinery necessary for vacuole 

inheritance. 
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 How do Boi1 and Boi2 regulate vacuole inheritance? Boi1 and Boi2 show 

multiple direct and indirect interactions with Cla4 and Ste20 as assayed by either 

two-hybrid or coimmunoprecipitation 38, 40-42. Cla4 and Ste20 are autoinhibitory 

and only become active by binding activated GTP-Cdc42 31, 33, 59-61. Cla4 and 

Ste20 activation is facilitated by binding of the proline-rich domain in Cla4 and 

Ste20 to the second SH3 domain of the adaptor protein Bem1 28-30. Bem1 also 

binds to Cdc42 and its GEF Cdc24, thus bringing together GTP-Cdc42 with its 

effectors Cla4 and Ste20 62-65. Importantly Boi1 and Boi2 also bind to the second 

SH3 domain of Bem1 38-40 and therefore could potentially negatively regulate 

Cla4 and Ste20 by competitive inhibition of PAKs for access to Bem1. In this 

model the vacuole inheritance defect in boi1 boi2 cells would be caused by 

overactive PAKs in the bud. I do not favor such a model since boi1 boi2 cells 

expressing plasmid born BOI1 lacking the proline-rich domain necessary for 

Bem1 binding do not exhibit a vacuole inheritance defect (Figure 2-5). 

 While boi1 boi2 pboi1-P7A7 cells did not have a vacuole inheritance 

defect, I found that boi1 boi2 cells with boi1 covered by a plasmid expressing 

BOI1 with a mutation in the PH domain or BOI1 containing only the PH domain 

and the C-terminus of the protein did not suppress and suppressed respectively 

the boi1 boi2 vacuole inheritance defect (Figure 2-5). How does the PH domain 

alone act to regulate vacuole inheritance? PH domains bind 

phosphatidylinositides and are the 11th most common domain in the human 

genome. Studies examining the PH domain of all 33 proteins in yeast showed 

that most PH domains, including the PH domains of Boi1 and Boi2, have little 
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specificity towards different phosphatidylinositide species and usually bound with 

very low affinity 66. However, a growing number of examples indicate that PH 

domains also bind to activated small GTPases and specifically to Rho type 

GTPases, of which Cdc42 is a member 67-72. In support of this possibility, Bender 

et al. show that the PH domain of Boi1 interacts with GTP but not GDP bound 

Cdc42. Additionally, the overexpression of the PH domain and C-terminus of 

Boi1 inhibits bud emergence and this defect is suppressed by co-overexpression 

of CDC42 40. Thus Boi1 and Boi2 may negatively regulate PAKs by directly 

interacting with Cdc42 and either negatively regulating Cdc42 or more likely 

restricting access to Cdc42. 

 Formation of the tubular and vesicular segregation structure requires 

PtdIns(3,5)P2. Cells defective for PtdIns(3,5)P2 production have one contiguous 

vacuole stretched from the mother into the bud that is constricted at the neck 2, 73. 

PtdIns(3,5)P2 is produced in response to hyperosmotic shock and leads to 

vacuole fission, thus leading researchers to hypothesize that the segregation 

structure is formed using the fission machinery 3, 5, 22. In addition to fission, 

efficient segregation structure formation also requires the inhibition of fusion 21. 

How then might deletion of Boi1 and Boi2 prevent segregation structure 

formation? Cdc42 and Bem1 localize to the vacuole and promote homotypic 

vacuole fusion in vitro and in vivo 74-77. Cla4 is found on isolated vacuoles and 

cla4 mutants have a vacuole fusion defect in vivo 1, 78. Therefore, I suggest that 

Boi1 and Boi2 negatively regulate Cla4 and Ste20 by restricting access of PAKs 

to Cdc42. In boi1 boi2 cells residual Cla4 and Ste20 in the mother cell may bind 
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Cdc24 on the vacuole promoting vacuole fusion thus inhibiting vacuole 

segregation structure formation. Deletion of either CLA4 or STE20 suppresses 

the boi1 boi2 vacuole inheritance defect. This suggests that Cla4 and Ste20 are 

required for vacuole fusion and that Cla4 and Ste20 likely have an additive or 

synergistic affect on vacuole fusion.  
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CHAPTER III 

 

THE P21-ACTIVATED KINASES CLA4 AND STE20 REGULATE THE 
DESTRUCTION OF THE VACUOLE SPECIFIC MYOSIN RECEPTOR VAC17 

 

 

Abstract 

The budding yeast S. cerevisiae vacuole (lysosome) is transported along 

actin cables by the myosin V motor, Myo2, bound to the vacuole-specific myosin 

receptor Vac17 1, 2. Directionality in vacuole transport is ensured by the bud-

specific degradation of Vac17. It has been proposed that bud-specific 

degradation of Vac17 is promoted by proteins localized to and/or activated solely 

in the bud 3. However, these factors have not been identified. The p21-activated 

kinases (PAKs) Cla4 and Ste20 are localized to and are activated in the bud, and 

overexpression of either inhibited vacuole inheritance. Inhibition of vacuole 

inheritance by CLA4 or STE20 overexpression was suppressed by the 

expression of non-degradable VAC17. Additionally, PAK activity was required for 

Vac17 degradation in late-M and CLA4 overexpression promoted Vac17 

degradation. I conclude that Cla4 and Ste20 are the bud-specific proteins that 

promote the bud-specific degradation of Vac17. 
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Introduction 

Directionality in vacuole transport is achieved by spatial degradation of 

Vac17 in a bud-specific manner. The vacuole inheritance mutants vac8 and 

myo2-2 (a point mutant within Myo2 which specifically disrupt the Myo2-Vac17 

interaction) fail to transport Vac17 into the bud and Vac17 accumulates to high 

levels. Bud-specific degradation of Vac17 requires a PEST sequence within 

Vac17. Cells expressing VAC17 without the PEST sequence (vac17#PEST) 

accumulate Vac17 to high levels and the vacuole is transported back to the 

mother bud neck prior to cytokinesis when the actin cytoskeleton is polarized to 

the mother bud neck 1, 2. 

 

Figure 3-1. Proposed model for bud-specific degradation of Vac17. 
Vac17 acts within the mother cell to transport the segregation structure into the bud. After 
entering the bud Vac17 comes into contact with unidentified factors localized to and/or activated 
specifically in the bud that prime Vac17 for degradation prior to cytoskeletal rearrangements 
towards the mother bud neck in preparation for cytokinesis. 

 

 It has been proposed that the spatial degradation of Vac17 solely in the 

bud is promoted by factors specifically localized to and/or activated in the bud 

(Figure 3-1) 3. However, these factors have not yet been identified. In the 

previous chapter, I described four factors (Boi1, Boi2, Cla4, and Ste20) that 

localize specifically to the bud and that regulate vacuole inheritance (Chapter 2) 
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4-8.  Here, I provide evidence that the p21-activated kinases Cla4 and Ste20 are 

bud-localized factors promoting Vac17 degradation. 
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Materials and Methods 

 
Table 3-1. Strains 

Strain Genotype Source 

W303-1A MATa  ade2-1 his3-11,15 leu2-3,112 trp1-1 ura3-1 (W303) 
9
 

YCH4774 MATa  VAC17-ProA-HIS3-URA3 (W303) This Study 
YCH4826 MATa  boi1::LEU2 boi2::URA3 vac17::kanMX4 pRS313-pVAC17-

VAC17 (W303) 
This Study 

YCH4827 MATa boi1::LEU2 boi2::URA3 vac17::kanMX4 pRS313-pVAC17-
vac17DPEST (W303) 

This Study 

YCH4837 MATa pRS314-GAL-GST-STE20 (W303) This Study 
YCH4843 MATa  pRS314-GAL-GST-STE20 VAC17-ProA-HIS3-URA3 (W303) This Study 
YCH4852 MATa  cdc14-1 VAC17-ProA-HIS3-URA3 (W303) This Study 
YCH4862 MATa  cdc15-2 VAC17-ProA-HIS3-URA3 (W303) This Study 
YCH4869 MATa  dbf2-2 VAC17-ProA-HIS3-URA3 (W303) This Study 
YCH4882 MATa  his3::GAL-CLA4-HIS3 VAC17-ProA-HIS3-URA3 (W303) This Study 
YCH4893 MATa  ura3::4X URA3::GAL1-CLA4t swe1::LEU2 VAC17-ProA-

HIS3-URA3 (W303) 
This Study 

YCH4894 MATa  ura3::4X URA3::GAL1-CLA4t VAC17-ProA-HIS3-URA3 
(W303) 

This Study 

YCH4912 MATa  his3::GAL-CLA4-HIS3 ura3::GFP-PTS1-URA3 (W303) This Study 
YCH4914 MATa ura3::GFP-PTS1-URA3 (W303) This Study 
YCH4974 MATa  his3::GAL-CLA4-HIS3 vac17::kanMX4 pRS414-pVAC17-

VAC17 (W303) 
This Study 

YCH4975 MATa  his3::GAL-CLA4-HIS3 vac17::kanxMX4 pRS414-pVAC17-

vac17!PEST (W303) 

This Study 

YCH4978 MATa SEC7-GFP-HIS3 pRS316 (S288c) This Study 
YCH4980 MATa SEC7-GFP-HIS3 pRS31-GAL-GST-STE20 (S288c) This Study 
YCH4992 MATa  pRS316-GST-STE20 vac17::kanMX4 pRS414-pVAC17-

VAC17 (W303) 
This Study 

YCH4993 MATa  pRS316-GST-STE20 vac17::kanMX4 pRS414-pVAC17-

vac17!PEST (W303) 

This Study 

YCH5162 MATa  PDS1-HA-LEU2::leu2 VAC17-ProA-HIS3 (W303) This Study 
YMG694 MATa  bar1-1 his3::GAL-CLA4-HIS3 (W303)  

10
 

 
Plasmid and strain construction 

Yeast strains and sources are listed in Table 3-1. Yeast strains were 

constructed by genetic crosses followed by tetrad dissection or by transformation 

using the lithium acetate method 11. ProA and the adjacent HIS3 and URA3 

marker were amplified by PCR and integrated to generate VAC17-ProA as 

described 12. Plasmid sources and construction methods are listed in Table 3-2 

and DNA manipulations were performed as described 13.  
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Table 3-2. Plasmids 
Plasmid Description Source 

pCH1915 pRS414-pVAC17-VAC17. Made by insertion of 1.94 kB 
BamHI-SalI fragment of pVAC17 

1
 into the BamHI-SalI 

site of pRS414 
14

. 

This Study 

pCH1916 pRS414-pVAC17-vac17#PEST Made by insertion of 
1.75 kB BamHI-SalI fragment of pVAC17($97-259) 

1
 into 

the BamHI-SalI site of pRS414 
14

. 

This Study 

pCH1924 pRS313-pVAC17-VAC17 Made by insertion of 1.94 kB 
BamHI-SalI fragment of pVAC17 

1
 into the BamHI-SalI 

site of pRS313 
14

. 

This Study 

pCH1925 pRS313-pVAC17-vac17#PEST. Made by insertion of 
1.75 kB BamHI-SalI fragment of pVAC17($97-259) 

1
 into 

the BamHI-SalI site of pRS414 
14

. 

This Study 

pCH1926 pRS314-GAL-GST-STE20. Made by insertion of a 4.53 
kB SacII-KpnI fragment of pRD20-STE20-ATG 

8
  into the 

SacII-KpnI  site of pRS314 
14

.  

This Study 

pRD20-STE20-ATG pRS316-GST-STE20. 
8
 

pRS316 pRS316 
14

 

 
 
Microscopy 

Digital images were taken with a 100X objective on an Olympus 

microscope. NIH image 1.62 (written by Wayne Rasband) was used for image 

acquisition. Cells were visualized by fluorescence and differential interference 

contrast microscopy (DIC). Within each experiment, all images were collected 

and scaled identically. Images were processed with Photoshop 9.0 software 

(Adobe). Video microscopy was performed with mid-log phase cells placed on a 

drop of 2% agarose in YPD was flattened by an uncoated glass slide as 

described 15. Cells were visualized every three to five minutes. Scale bar = 2.5 

#m throughout all figures. 

 

In vivo labeling of vacuoles and nuclei staining 

 To visualize vacuoles, yeast cells were concentrated and incubated for 1 

hour with N-(3-triethylammoniumpropyl)-4(6(4(diethylamino)phenyl)hexatrienyl) 
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pyridium dibromide (FM 4-64; Molecular Probes) at a final concentration of 16.5 

#M 16. Cells were then washed with appropriate media and grown for $3 hours 

before being viewed by fluorescence microscopy. Nuclei were visualized by 

fixation in 70% ethanol followed by staining with DAPI at 0.1 mg/ml.  

 

Sizing cells and quantification of organelle inheritance 

Small, medium, and large budded cells were grouped into size categories 

as described 17. Peroxisomes and late Golgi inheritance were determined by 

fluorescence microscopy and bud sizes were determined by measuring the cross 

sectional area of mothers and buds using NIH-Image 1.62. Each cell was 

grouped into a category according to bud cross-sectional area expressed as a 

percentage of mother cell cross-sectional area. Bud size categories for late Golgi 

inheritance were: category I 4.0 -7.4%, II, 7.5–10.9%; category III, 11.0–14.4%; 

category IV, 14.5–17.9%; and category V, 18.0–21.4% as previously described 

18. Bud size categories for peroxisome inheritance were: category I, 0–24%; 

category II, 24–39%; category III, 39–50%; category IV, 50–61%, and category V 

61-100% as previously described 19. Six different focal planes were examined for 

each bud to quantify organelle inheritance. 

 

SDS-PAGE and western blot analysis 

Yeast protein levels and gel mobility were assayed by TCA precipitation 

followed by SDS-PAGE (7.5%) and western blot analysis using Rabbit-a-Mouse 
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IgG 1:1000 (Promega), Mouse-a-HA 16B12 1:1000 (Covance), and Goat-a-Actin 

antibodies 1:2000. 

 

Vac17-ProA immunoprecipitation and phosphatase treatment 

Pelleted cells where resuspended in lysis buffer (20mM Tris-HCl (pH 6.5), 

5mM MgCl2, 2% Triton X-100, 150 mM NaCl, 1x protease inhibitor (Roche), 1mM 

PMSF, 5mM EDTA, 50 mM NaF, 10 mM Na4P2O7, 0.5mM NaVO4, and 1X 

phosphatase inhibitor (Calbiochem)). Cells were lysed using a French Press, 

lysates were incubated with 300#l of IgG sepharose beads (Amersham 

Biosciences), and washed with wash buffer (20mM Tris-HCl (pH6.8), 5mM 

MgCl2, 2% Triton X-100, 150 mM NaCl). Immunoprecipitates were then split and 

treated with l-protein phosphatase (NEB) and phosphatase inhibitor 

(Calbiochem) as indicated. 

 

Cell cycle arrests 

Cell cycle arrests were performed by the addition a-factor (ZymoResearch) or 

nocodazole (Sigma) at the final concentration of 3 #M and 15 #g/ml respectively 

as described or by shifting temperature sensitive mutants from the permissive 

temperature (23°C) to the nonpermissive temperature (37°C) for three hours. 

Conditions for growth and release of synchronous cultures from arrest by a-factor 

were as described 20. 
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Other methods 

YP media containing 1% yeast extract and 2% Bacto Peptone was used 

with addition of glucose (YPD), raffinose (YPR), and/or galactose (YPG) as 

carbon sources at 2% final concentration. Alternately, strains with plasmids were 

grown on synthetic media (SC) lacking tryptophan, uracil, or histidine to maintain 

plasmids.  
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Results 

 

Cells overexpressing CLA4 have a daughter-specific budding delay and a 
vacuole inheritance defect 
 

I have previously shown that boi1 boi2 and vac8 mutant cells had a 

daughter-specific budding delay (Figure 2-2) and boi1 boi2 cells had a vacuole 

inheritance defect suppressed by CLA4 (Figure 2-4). In light of those results, I 

hypothesized that Cla4 regulates vacuole inheritance. To test this hypothesis I 

determined if cells overexpressing CLA4 had a daughter-specific budding delay 

and/or a vacuole inheritance defect like boi1 boi2 and vac8 cells. 

 CLA4 overexpression from a MET promoter causes defects in growth and 

actin polymerization 10. However, overexpression of CLA4 from the GAL 

promoter integrated at the HIS3 locus was not lethal and cells grew well on 

YP+2%Galactose plates (data not shown). I used this strain to determine if CLA4 

overexpressing cells had a daughter-specific budding delay like boi1 boi2 and 

vac8 (Figure 2-2). 

 Wild type and GAL-CLA4 cells were observed by time lapse video 

microscopy with cells grown on agar pads containing YP+2% glucose or YP+2% 

galactose to induce CLA4 overexpression. Cell division led to the production of a 

larger mother and a smaller daughter cell. After cell separation, wild type mother 

cells, grown on media containing either glucose or galactose quickly rebudded 

(Figure 3-2A). Smaller daughter cells grown on either glucose or galactose 

budded with similar kinetics but were delayed for bud emergence an average of 

48 and 65 minutes respectively while they grew to a critical size (Figure 3-2A). 
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GAL-CLA4 mother cells grown on either glucose or galactose budded with similar 

kinetics to wild type mother cells. In contrast the GAL-CLA4 daughter cells grown 

on either glucose or galactose did not bud with similar kinetics and daughter cells 

overexpressing CLA4 were delayed on average 135 minutes longer than GAL-

CLA4 daughter cells grown on glucose (Figure 3-2).  

 
Figure 3-2. Cells overexpressing CLA4 have a daughter-specific budding delay. 
(A-B) Wild type (W303-1A) and GAL-CLA4 (YMG694) cells were grown to early log phase in 
either YP+2% Glucose or YP+2% Galactose and where examined by video microscopy. The 
budding time, defined as the interval in minutes between cell separation and subsequent bud 
emergence for mother (light bar) and daughter (dark bar) cells, was determined. Black dots 
represent independent bud emergence events. Pedigree analysis was performed. Pedigree 
analysis: M (mother), d1-3 (primary - tertiary daughters) and gd1 (primary granddaughter). 
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Video microscopy of FM 4-64 stained wild type and GAL-CLA4 cells was 

performed to determine if CLA4 overexpression inhibited vacuole inheritance. 

Wild type (data not shown) and GAL-CLA4 cells were grown on YP+2% 

galactose media. Unlike wild type cells in which segregation structures were 

frequently observed and 100% of cells inherited a vacuole (data not shown), 

segregation structures were formed in cells overexpressing CLA4 (Figure 3-3A). 

To further explore the ability of CLA4 to inhibit vacuole inheritance, FM 4-

64 stained wild type and GAL-CLA4 cells were grown in YP+2% raffinose to mid-

log phase at which time the cultures were split and 2% galactose was added to 

half the sample, and samples were examined every two hours. The presence of 

a segregation structure in small and medium budded cells and the presence of a 

daughter vacuole in large budded cells was scored for each sample. Segregation 

structures were present in ~30% of all wild type small and medium budded cells 

and 100% of all large budded cells contained a daughter vacuole in the presence 

or absence of galactose throughout the time course of the experiment  (data not 

shown). GAL-CLA4 cells grown in non-inducing conditions had similar vacuole 

inheritance percentages as wild type cells. In contrast, GAL-CLA4 cells grown 

under inducing conditions exhibited a decrease in vacuole inheritance as early as 

2 hours, rapidly decreasing vacuole inheritance between 2 and 4 hours, and by 6 

hours post induction 0% of small and medium budded cells had segregation 

structures, and only 2% of large budded cells contained a daughter vacuole 

(Figure 3-3B,C). 
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Figure 3-3. Cells overexpressing CLA4 have a vacuole inheritance defect. 
(A) Video microscopy and pedigree analysis of FM 4-64 stained GAL-CLA4 (YMG694) cells was 
performed on cells grown in YP+2%Galactose. (B-C) FM 4-64 strained GAL-CLA4 (YMG694) 
cells were grown in YP+2% raffinose to mid-logarithmic stage. At time 0 2% galactose was added 
to half the clture and the presence of segregation structures in small and medium budded cells 
and of daughter vacuoles in large budded cells was quantified by fluorescence microscopy. 
Representative pictures at the 6 hour time point are shown. Cell Outline Color Code, Red: bud 
contains segregation structure; Blue: bud has inherited vacuole material from mother cell; Yellow: 
medium or large bud lacking inherited vacuole material from mother cell. Pedigree analysis: M 
(mother), d1-3 (primary - tertiary daughters). 
 
 
 

Cells overexpressing STE20 have a vacuole inheritance defect 

 Cla4 and Ste20 play many unique and overlapping roles in the cell 21, 22. 

Since deletion of either CLA4 or STE20 suppressed the boi1 boi2 daughter-

specific budding and vacuole inheritance defects (Figure 2-4). I therefore 

hypothesized that STE20 overexpressing cells might also have a daughter-

specific budding delay and vacuole inheritance defect. 

 When examined, GAL-STE20 cells grown under either inducing or 

noninducing conditions did not display a daughter-specific budding delay (data 

not shown). However, because not all vacuole inheritance mutants have a 

daughter-specific budding delay 3, I proceeded to test for a vacuole inheritance 

defect. A culture of FM 4-64 stained GAL-STE20 cells was grown to mid-log 

phase at which time the culture was split and 2% galactose was added to one 

100% of all large budded cells contained a daughter vacuole throughout the time 

course of the experiment (Figure 3-4). GAL-STE20 cells grown under inducing 

conditions had decreasing amounts of vacuole inheritance as early as 2 hours, 

rapidly decreasing vacuole inheritance between 2 and 4 hours, and by 6 hours 

post induction only 4% of small and medium budded cells had a segregation 
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structure and only 18% of large-budded cells had a discrete daughter vacuole 

(Figure 3-4). 

 

 

Figure 3-4. Cells overexpressing STE20 have a vacuole inheritance defect. (A-B) FM 4-64 
strained GAL-STE20 (YCH4837) cells were grown in SC-TRP+2% raffinose to mid-logarithmic 
stage. At time 0 2% galactose was added to half the culture and the presence of segregation 
structures in small and medium budded cells and of daughter vacuoles in large budded cells was 
quantified by fluorescence microscopy. Representative pictures at the 6 hour time point are 
shown. Cell Outline Color Code, Red: bud contains segregation structure; Blue: bud has inherited 
vacuole material from mother cell; Yellow: medium or large bud lacking inherited vacuole material 
from the mother cell. 
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 vac17!PEST expression suppresses the vacuole inheritance defect of 

CLA4 or STE20 overexpressing and boi1 boi2 cells 
  
 One possible explanation for the vacuole inheritance defect exhibited in 

cells overexpressing CLA4 or STE20 was that the PAKs are the bud-specific 

factors that promote Vac17 degradation. I hypothesized that CLA4 or STE20 

overexpression caused a vacuole inheritance defect by promoting the premature 

degradation of Vac17. If this model was correct then I would have expected that 

expression of the non-degradable VAC17 (vac17!PEST) should suppress the 

vacuole inheritance defect caused by CLA4 or STE20 overexpression. 

 FM 4-64 stained GAL-CLA4 vac17 and GAL-STE20 vac17 cells covered 

by a plasmid containing VAC17 or vac17!PEST were examined for vacuole 

inheritance. As expected 100% of all GAL-CLA4 and GAL-STE20 large budded 

cells contained a daughter vacuole in the presence of VAC17 or vac17!PEST 

under noninducing conditions. Under inducing conditions GAL-CLA4 and GAL-

STE20 cells containing VAC17 exhibited vacuole inheritance defects after 6 

hours of overexpression. However expression of vac17!PEST fully suppressed 

the vacuole inheritance defect in GAL-CLA4 and GAL-STE20 cells under 

inducing conditions (Table 3-3). 

 I have previously shown that boi1 boi2 exhibited a vacuole inheritance 

defect suppressible by CLA4 or STE20 deletion (Table 2-3). To further test my 

hypothesis I determined if the boi1 boi2 vacuole inheritance defect was 

suppressible by vac17!PEST expression. FM 4-64 stained boi1 boi2 vac17 

covered by a VAC17 containing plasmid displayed vacuole inheritance defects as 
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expected (Table 3-3). Expression of vac17!PEST in the boi1 boi2 vac17 cells 

fully suppressed the boi1 boi2 vacuole inheritance defect (Table 3-3). 

 
Table 3-3. vac17#PEST expression suppresses the vacuole inheritance defect of 
CLA4 or STE20 overexpressing or boi1 boi2 cells. 

Genotype Vacuole Inheritance of Large 
Budded Cells 

GAL-CLA4 vac17 pVAC17 (-GAL) 100% 
GAL-CLA4 vac17 pvac17#PEST (-GAL) 100% 
GAL-CLA4 vac17 pVAC17 (+GAL) 2% 
GAL-CLA4 vac17 pvac17#PEST (+GAL) 100% 
GAL-STE20 vac17 pVAC17 (-GAL) 100% 
GAL-STE20 vac17 pvac17#PEST (-GAL) 100% 
GAL-STE20 vac17 pVAC17 (+GAL) 19% 
GAL-STE20 vac17 pvac17#PEST (+GAL) 100% 
boi1 boi2 vac17 pVAC17 15% 

boi1 boi2 vac17 pvac17!PEST 100% 

 
  

The ability of vac17!PEST expression to suppress the vacuole inheritance 

defect of CLA4 or STE20 overexpressing and boi1 boi2 cells provided me with 

support for a model that PAKs are the bud specific factors that promote Vac17 

degradation. I then set out to test two predictions of this model. (1) If PAKs are 

required for Vac17 degradation then cells lacking PAK activity should not 

degrade Vac17. (2) Cells overexpressing CLA4 or STE20 should degrade Vac17. 

However, to perform these experiments further information was required 

concerning the timing of Vac17 degradation. 
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Vac17 is a phosphoprotein degraded in late-M phase 

 Vac17 levels oscillate during the cell cycle. Vac17 levels increase as cells 

bud and decreases prior to cytokinesis 1. I examined Vac17 levels throughout the 

cell cycle to further characterize when Vac17 was degraded.  

I tagged Vac17 with a ProA tag. Vacuole inheritance was assayed in 

VAC17-ProA cells and the kinetics of vacuole inheritance were identical to wild 

type cells suggesting that Vac17-ProA was functional (data not shown). Vac17-

ProA levels were then examined in asynchronous cells by SDS-PAGE followed 

by western-blot analysis. I found that Vac17 ran as multiple bands suggesting the 

possibility that Vac17-ProA was a phosphoprotein (Figure 3-5A). Vac17-ProA 

was immunoprecipitated and treated with %-phosphatase or %-phosphatase plus 

phosphatase inhibitor. Vac17-ProA treated with %-phosphatase collapsed down 

to a single band and phosphatase inhibitors blocked this collapse (Figure 3-5B). 

The timing of Vac17 degradation was further examined during the cell 

cycle. VAC17-ProA PDS1-HA cells were arrested in G1 with a-factor and 

released. Samples were taken every 10 minutes, and Vac17 and Pds1 protein 

levels were examined throughout a single cell cycle. Pds1 is degraded as cells 

enter anaphase 23 and Vac17 degradation occurred after this point (Figure 3-5C). 

Additionally, phosphorylated Vac17 appeared common in G2/M cells arrested 

with nocodazole (Figure 3-5D). Together these data suggested that Vac17 

destruction did not occur until after entry into anaphase. 
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Figure 3-5. Vac17 is a phosphoprotein and is degraded in late-M phase. 
(A) Vac17-ProA and actin proteins were examined by western blot analysis in untagged (W303-
1A) and VAC17-ProA (YCH4774) cells. (B) Vac17-ProA was immunoprecipitated from protein 
extracts of 4X GAL-CLA4t swe1! VAC17-ProA (YCH4893) or untagged (UT) 4X GAL-CLA4t 
swe1! (Piatti2711) strains grown on YP+2%galactose media for 6 hours. Immunoprecipitated 

material was split and treated with buffer alone, %-phosphatase, or %-phosphatase plus 

phosphatase inhibitors. (B) Vac17-ProA and actin proteins were examined by western blot 
analysis in untagged (W303-1A) and VAC17-ProA (YCH4774) cells. (C) VAC17-ProA PDS1-HA 
(YCH5162) cells were arrested in G1 with a-factor, released, samples were taken every 10 
minutes, and Vac17-ProA and Pds1-HA were examined by western blot analysis. (D) Vac17-ProA 
levels were assayed by western blot in cdc15-2 (YCH4862), dbf2-2 (YCH4869), and cdc14-1 
(YCH4852) cells grown at 23°C or arrested at telophase in 37°C media. Additionally, Vac17-ProA 
levels were examined in asynchronous and nocodazole arrested cells (YCH4774). 
 

 
Because Vac17 degradation occurred after anaphase onset I examined if 

mitotic exit was required for Vac17 degradation. CDC15, DBF2, and CDC14 are 

required for mitotic exit and temperature sensitive mutants in these genes arrest 

prior to mitotic exit 24, 25. Vac17-ProA levels were examined in cdc15-2, dbf2-2, 

and cdc14-1 cells grown at the permissive and non-permissive temperature to 

arrest cells at mitotic exit. Phosphorylated Vac17-ProA was common in cells 

grown at the non-permissive temperature. However, cells arrested at mitotic exit 

only contained a small amount of what appeared to be unphosphorylated Vac17 



 

 81 

(Figure 3-5D). This suggested that Vac17 was destroyed after anaphase entry 

and before mitotic exit during Late-M phase. 

 

PAK function is required for Vac17-ProA degradation in late-M 

 If PAKs are required for Vac17 degradation, then in the absence of Cla4 

and Ste20 activity Vac17-ProA should not be degraded. A CLA4 allele with a 

truncated C-terminus (CLA4t) when overexpressed causes Cla4 and Ste20 to 

delocalize from the bud cortex and cells display similar defect as seen in cells 

lacking PAKs 26. 4X GAL-CLA4t VAC17-ProA cells were arrested in G1 and 

released, and Vac17 levels and mitotic progression were examined. As in wild 

type cells (Figure 3-5C), Vac17-ProA is phosphorylated and cells arrest at G2/M 

in a SWE1 dependent manner (Figure 3-6A). Since Vac17 is stable at G2/M, the 

same experiment was performed in the absence of SWE1, a situation in which 

cells progress to Late-M when Vac17 protein levels were low (Figure 3-5D). I 

observed that even though cells progressed to late-M, Vac17-ProA levels 

remained high with large amounts of phosphorylated Vac17 present (Figure 3-

6B). Thus I concluded that active PAKs were required for Vac17 degradation in 

late-M. 

 

CLA4 overexpression promotes Vac17-ProA degradation 

 After examining the requirement for PAKs in Vac17 degradation I 

determined if PAK overexpression caused Vac17 degradation. Asynchronous 

cultures of wild type and GAL-CLA4 cells were grown to mid-log phase, 2% 
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galactose was added at the zero time point, and samples were taken every hour 

for examination of Vac17-ProA levels. Over the 6 hour time course of the 

experiment, Vac17 remained constant in wild type cells (Figure 3-6D). However, 

Vac17-ProA levels decreased in GAL-CLA4 cells over the 6 hours time course. A 

reduction in Vac17-ProA levels was observed as early as 2 hours with the 

phosphorylated Vac17-ProA disappearing quickest and Vac17-ProA levels 

reached very low levels at the six hour time point (Figure 3-6C). Importantly the 

decrease in Vac17-ProA levels occurred with similar kinetics to vacuole 

inheritance defects (Figure 3-3C). Therefore, CLA4 overexpressing cells have a 

severe vacuole inheritance defect like the Class I vacuole inheritance mutants 

vac8 and myo2-2 which fail to inherit vacuoles. However, unlike vac8 and myo2-

2 cells, CLA4 overexpressing cells do not accumulate Vac17 to high levels like 

other Class I vacuole inheritance mutants 1, but instead Vac17 levels drop after 

CLA4 overexpression is initiated. Thus I concluded that CLA4 promotes Vac17 

degradation.  

 Additionally the ability of STE20 to promote Vac17-ProA degradation was 

examined. Asynchronous cultures of GAL-STE20 were grown under inducing 

conditions, and while vacuole inheritance defects were seen as in Figure 3-4B 

(data not shown), Vac17-ProA levels remained constant throughout the six hour 

time course of the experiment (Figure 3-6E).  
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Figure 3-6. PAK function is required for Vac17-ProA degradation in late-M and CLA4 
overexpression promotes Vac17-ProA degradation. 
(A-B) 4X GAL-CLA4t VAC17-ProA (YCH4894) and 4X GAL-CLA4t swe1! VAC17-ProA (YCH4893) 

were a-factor arrested, released, samples taken at the indicated times, and subjected to western 
blot analysis. Additionally the percentage of telophase cells was determined by DAPI staining and 
scoring the number of cells with mother and bud nuclei staining. (C-D) Mid-logarithmic phase 
GAL-CLA4 VAC17-ProA (YCH4882) and VAC17-ProA (YCH4774) were grown in YP+2% raffinose. 
At the 0 time point 2% galactose was added to induce CLA4 overexpression, samples were taken 
every hour, and western blot analysis was performed. (E) Mid-logarithmic phase GAL-STE20 
VAC17-ProA (YCH4843) was grown in SC-TRP+2% raffinose. At the 0 time point 2% galactose 
was added to induce STE20 overexpression, samples were taken every hour, and western blot 
analysis was performed. 
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CLA4 or STE20 overexpression inhibits peroxisome but not late Golgi 
inheritance 
 
 In addition to the yeast vacuole, Myo2 transports the late Golgi and 

peroxisomes along actin cables into the bud 18, 27.  I therefore investigated if 

CLA4 or STE20 overexpression perturbed either late Golgi or peroxisome 

inheritance as they had vacuole inheritance. 

 Inheritance of the late Golgi was investigated by examination of SEC7-

GFP cells. The SEC7 gene codes for a guanine nucleotide exchange factor 

(GEF) for ADP ribosylation factors and is found on Golgi associated vesicles and 

serves a marker for the late Golgi 18. Inheritance of the late Golgi is not an 

essential process, and in the absence of transport into the bud late Golgi is made 

de novo. Therefore, I used standard criteria for assaying late Golgi inheritance 

relying on the examination of small buds of various sizes 18.  Overexpression of 

either CLA4 or STE20 had no effects on the inheritance of the late Golgi in 

comparison to wild type cells (Figure 3-7A,C). 

 Inheritance of peroxisomes was examined using GFP fused in frame with 

the peroxisome localization signal, PTS1 19. Cultures of wild type, GAL-CLA4, 

and GAL-STE20 cells were grown under inducing conditions and peroxisome 

inheritance was examined by fluorescence microscopy. Peroxisome transport 

into buds of different sizes was quantified using established criteria 19, 27. While 

wild type cells inherit peroxisomes, GAL-CLA4 cells showed a severe 

peroxisome inheritance defect with only 25% of large budded cells having 

peroxisomes (Figure 3-7B,D). By comparison 30% of type IV cells lacking the 

peroxisome-specific Myo2 receptor Inp2 inherit a peroxisome 27. 
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Figure 3-7. PAK overexpression inhibits peroxisome but not late Golgi inheritance. 
(A) SEC7-GFP (YCH4978), GAL-CLA4 SEC7-GFP (YCH4979), GAL-STE20 SEC7-GFP (YCH4980), 
(B) GFP-PTS1 (YCH4914), GAL-CLA4 GFP- PTS1 (YCH4912), and GAL-STE20 GFP-PTS1 (YCH 
4913) were grown in SC or SC-URA +2% raffinose/ 2% galactose for 6 hours for wild type and 
GAL-STE20 and 12 hours for GAL-CLA4 cells. Sec7-GFP and GFP-PTS1 were visualized by 
fluorescence microscopy. (C-D) Quantization of Sec7-GFP and GFP-PTS1 inheritance was done 
as described in Materials and Methods. 

 

 GAL-STE20 overexpressing cells also have a peroxisome inheritance 

defect with only 58% of large budded cells having peroxisomes in the bud (Figure 

3-7B,D). Thus STE20 overexpression caused a substantial, but lesser, inhibition 

of peroxisome inheritance in comparison to CLA4 overexpression.  
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Discussion 

 Organelles are often localized to specific areas of the cell, placing them in 

the correct locale to perform their function and in correct spatial relation to other 

organelles. In order to be localized correctly, many organelles are actively 

transported along the actin or microtubule cytoskeletons by motor proteins. While 

many aspects of organelle transport are understood, there are still many 

unanswered questions about the delivery process. (1) How does the organelle 

ensure that once it has reached its destination that it is not subsequently 

transported to an incorrect location when it comes in contact with other motor 

proteins or when the cytoskeleton rearranges? (2) How does the transport 

complex and organelle know that they have arrived at the correct destination? 

 Studies in budding yeast focusing on vacuole transport during cell division 

have provided insights into these questions. Transport of vacuoles occurs during 

a short span of time from the time of budding to mitosis. Transportation is 

restricted to this brief period of time in part by carefully controlling the production 

and destruction of the vacuole specific myosin receptor Vac17. Transcription of 

VAC17 oscillates with the cell cycle increasing very early in the cell cycle and 

subsequently decreasing 28, 29. Vac17 protein level parallel its RNA level and 

increase as cells begin budding (Figure 3-5C) 1. Once Vac17 accumulates, the 

vacuole transport complex consisting of Myo2, Vac17, and Vac8 assembles, the 

segregation structure forms, and it is transported into the bud. 

 Once it has arrived in the bud the segregation structure is resolved 

possibly by fusion of tubules and vesicles making up the segregation structure to 
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found the daughter vacuole. The cell ensures that the vacuole, which has already 

arrived at its correct destination, is not incorrectly repositioned after mitotic exit, 

when the actin cytoskeleton rearranges at the mother bud neck, by degrading 

Vac17 during late-M phase (Figure 3-5) 1. The degradation of Vac17 requires 

transport of Vac17 into the bud as vac8 and myo2-2 accumulate high levels of 

Vac17.  

However, how does the vacuole know it has arrived at its destination in 

the first place? This question may be answered by answering another question 

about Vac17. How is bud-specific degradation of Vac17 achieved? It has been 

proposed that factors specifically localized to or activated in the bud promote the 

bud-specific degradation of Vac17 thus acting as destination markers 3.  

 I have shown here that the p21-activated kinases CLA4 and STE20 

regulate vacuole inheritance (Figure 3-3,4). Both CLA4 and Ste20 are localized 

to the bud thus spatially separating them from the forming segregation structure 

4-6, 8. Additionally, Cla4 and Ste20 are normally kept inactive by autoinhibition 

relieved by binding the activated Rho-GTPase Cdc42 30-35. I propose a model in 

which Cla4 and Ste20 localization and activation in the bud marks the bud as the 

destination for the transported vacuole. Upon entry of the segregation structure 

into the bud, the vacuole transport complex comes into contact with activated 

Cla4 and Ste20, or proteins activated by Cla4 and Ste20 phosphorylation, that 

prime Vac17 for degradation (Figure 3-8). In this study I have provided multiple 

experimental lines of evidence supporting this model. 
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Figure 3-8. Model for PAK priming of Vac17 for degradation. 
Vac17 acts within the mother cell to transport the segregation structure into the bud. After 
entering the bud Vac17 comes into contact with Cla4 and Ste20 localized to and activated 
specifically in the bud that prime Vac17 for degradation prior to cytoskeletal rearrangements 
towards the mother bud neck in preparation for cytokinesis. 
 
  

 Overexpression of either CLA4 or STE20 led to vacuole inheritance 

defects (Figure 3-3,4). Overexpression of the PAKs may have led to Cla4 and 

Ste20 localizing in the mother. In support of this I found that GFP-CLA4 when 

overexpressed was easily seen in both the mother and daughter cytoplasm (data 

not shown). Additionally Cla4 and Ste20 could potentially be activated at the 

mother vacuole where Cdc42 is constitutively localized 36-38. In further support of 

this possibility, the scaffolding protein Bem1 that brings together Cdc42 with its 

guanine nucleotide exchange factor (GEF) Cdc24 39, 40 is localized to the vacuole 

where it plays a role with Cdc42 to promote homotypic vacuole fusion 41, 42. Cla4 

and Ste20 bind directly to the second SH3 domain of Bem1 10, 43-45 therefore 

bringing it into the proximity of the Cdc42 allowing potential PAK activation. Thus 

overexpression of PAKs disrupts the spatial separation necessary for the bud-

specific degradation of Vac17. 

 Overexpression of CLA4 led to the enhanced degradation of Vac17 

(Figure 3-6C) and the timing of this degradation coincides temporally with the 
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vacuole inheritance defect (Figure 3-3C). However, STE20 overexpression did 

not cause a decrease in Vac17 levels (Figure 3-6E). Several explanations can be 

given for this phenomenon. I noticed throughout my experiments that CLA4 

overexpression had more pronounced effect than STE20 overexpression on 

either vacuole or peroxisome inheritance. STE20 overexpressing cells must still 

have some Vac17 around since 18% of the cells still inherit vacuoles (Figure 3-

4B). The remaining 82% of cells may have some Vac17 but not enough to inherit 

a vacuole. Thus one explanation of the difference between CLA4 and STE20 

overexpression to degrade Vac17 may simply be that Cla4 is much more 

effective at promoting Vac17 degradation. Additionally the unaltered levels of 

Vac17 in STE20 overexpressing cells do not preclude the possibility that STE20 

overexpression promotes Vac17 destruction as these cells have a vacuole 

inheritance defect but still do not accumulate Vac17 to high levels as in myo2-2 

and vac8 cells 1. Alternatively STE20 overexpression may abrogate vacuole 

inheritance through a different mechanism, possibly by promoting homotypic 

vacuole fusion.  

Despite the possibility that PAKs may regulate vacuole inheritance 

through vacuole fusion, the data suggests a more direct connection between 

PAKs and Vac17 degradation. I found that expression of vac17#PEST 

suppressed the vacuole inheritance defects of cells overexpressing CLA4 or 

STE20 (Table 3-3).  This data combined with my finding that PAK deficient cells 

do not degrade Vac17 during Late-M (Figure 3-6B), a time in which Vac17 is 
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usually degraded, argue for a model in which PAKs are the daughter-specific 

factors that promote Vac17 degradation.  

How might Cla4 and Ste20 promote Vac17 degradation? The kinase 

activity of Ste20 is required for the vacuole inheritance defect seen in STE20 

overexpressing cells (data not shown). Therefore Cla4 and Ste20 might directly 

phosphorylate Vac17 priming it for destruction. Vac17 is phosphorylated in cells 

overexpressing CLA4t, suggesting that PAKs regulation may be indirect. Further 

research is therefore required to understand how PAKs regulate vacuole 

inheritance and Vac17 degradation. 

During the course of my studies I found evidence that Cla4 and Ste20 

might also regulate the inheritance of other organelles. Overexpression of Cla4 

and Ste20 did not inhibit late Golgi inheritance. The finding that late Golgi was 

inherited with a normal efficiency suggested that PAK overexpression does not 

generally affecting the transport of all Myo2 cargo. Interestingly, PAK 

overexpression did inhibit inheritance of peroxisomes. Therefore the mechanisms 

that regulate vacuole inheritance may provide useful information on the 

regulation of organelle inheritance more generally. Peroxisomes are transported 

along actin cables by Myo2 bound to the peroxisome-specific Myo2 receptor 

Inp2. Similar to Vac17, Inp2 production is cell cycle regulated and Inp2 

destruction occurs prior to cytokinesis. Further research is required to determine 

if Inp2 degradation is regulated by Cla4 and Ste20 in a similar fashion to Vac17.  
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CHAPTER IV 
 
 

THE P21-ACTIVATED KINASES CLA4 AND STE20 ARE REQUIRED FOR 
RESOLUTION OF THE VACUOLE SEGREGATION STRUCTURE 

 

 
Abstract 

 Each time budding yeast divide they ensure that both the mother and 

daughter cell inherit a vacuole. Because budding yeast divide asymmetrically by 

budding, the vacuole must be actively transported into the bud. As the mother 

cell begins budding, a tubular and vesicular segregation structure forms which is 

transported into the bud 1, 2. Formation of the segregation requires the inhibition 

of vacuole fusion and production of PtdIns(3,5)P2, which usually promotes 

vacuole fission3-5. The segregation structure is transported into the bud along 

actin cables by the myosin V motor, Myo2. Upon arriving in the bud the 

segregation structure is resolved to found the daughter vacuole. How the 

segregation structure is resolved in a spatially dependent manner after entering 

the bud is unknown. During my investigation I found the p21-activated kinase 

(PAK) Cla4 localized to the segregation structure just prior to segregation 

structure resolution. In addition I showed that cells lacking active PAKs failed to 

resolve the segregation structure. I propose that Cla4 and Ste20 localize to the 

bud where they promote segregation structure resolution. 
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Introduction 

The yeast vacuole is partitioned into the bud along polarized actin cables 

6. Partitioning begins late in G1, continues through S phase, and is finished by 

the onset of mitosis 7. Vacuole movement is mediated by the myosin V receptor, 

Vac17, which interacts with both Myo2 and the vacuole membrane protein, Vac8 

8, 9.  This complex of three proteins transports the segregation structure into the 

bud. Upon entry into the bud the tubules and vesicles making up the segregation 

structure are resolved in what likely involves fusion to form the daughter vacuole 

10-14. The mechanisms that promote the fusion of the tubules and vesicles in a 

spatially dependent manner specifically in the bud are not known. 

 The p21-activated kinases (PAKs) Cla4 and Ste20 localize specifically to 

the bud. Cla4 has been shown to localize to isolated vacuoles and cla4 mutants 

have a fragmented vacuole, a hallmark of mutants defective for vacuole fusion 15, 

16. Vacuole fusion requires actin polymerization and Cla4 and Ste20 promote 

actin polymerization through phosphorylation of Myo3 and Myo5 17-20. Ste20 and 

Cla4 have overlapping functions and double mutants lacking both functions are 

delayed in metaphase and are synthetically lethal 21, 22.  I here report that Cla4 

localized to the segregation structure after it enters the bud and just prior to 

resolution of the segregation structure, placing it at the right place at the right 

time to promote segregation structure resolution. Additionally, I have shown that 

in the absence of PAK function that the segregation structure was formed, was 

transported into the bud, but the segregation structure failed to resolve. 
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Materials and Methods 

 

Strains, plasmids, and media 

Details of yeast strains and plasmids used in this study can be found in 

Table 4-1. The yeast strains used in this study are all derivatives of W303 except 

for the CLA4-GFP strains (BY4741 derivatives). Yeast strains were grown in YPD 

(1% yeast extract, 2% peptone, and 2% glucose, raffinose or 

raffinose/galactose).  

Table 4-1. Strains 

Strain Genotype Source 

FM452 MATa  cdc34-2 (W303) 
23

 
K2944-1B MATa  cdc15-2 (W303) 

24
 

KN3591 MATa  cla4::LEU2 (W303) 
21

 
KN3621 MATa  ste20::URA3 (W303) 

21
 

KN4580 MATa  bar1::hisG cla4::LEU2 YCp-TRP1-cla4-75 ste20::URA3  
21

 
Piatti2625 MATa  ura3::4X URA3::GAL1-CLA4t (W303) 

22
 

Piatti2711 MATa  ura3::4X URA3::GAL1-CLA4t swe1::LEU2 (W303) 
22

 
RSY136 MATa  ura3::GAL-SWE1-12Myc-URA3 (W303) 

25
 

W303-1A MATa  ade2-1 his3-11,15 leu2-3,112 trp1-1 ura3-1 (W303) 
26

 
YCH146 MATa  cdc14-2 (W303) This Study 
YCH1028 MATa  cdc15-2 CLA4-GFP (S88c) This Study 
YCH1665 MATa  vac8::kanMX4 CLA4-GFP (S88c) This Study 
YCH1752 MATa  myo2-2 CLA4-GFP (S88c) This Study 
YCH3250 MATa  CLA4-GFP (S88c) This Study 
YCH 5233 MATa  cdc7-4 ura3::URA3::3xGAL-CLA4t (W303) This Study 
YCH 5342  MATa  vac8::kanMX4 (W303) This Study 

 

Synchronization and cell cycle arrests 

Conditions for growth and release of synchronous cultures from arrest by 

a-factor were as described with %-factor (ZymoResearch) used at a final 

concentration of 3#M 27. Centrifugal elutriation was performed in a Beckman-

Coulter type J centrifuge as recommended by Beckman-Coulter and as 

described 28. Fractions with greater than 98% unbudded cells were pooled and 
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used for each experiment. Cell cycle arrests were performed by addition of 

hydroxyurea (Sigma) or nocodazole (Sigma) at the final concentration of 200 mM 

or 15 #g/ml respectively as described or by shifting temperature sensitive 

mutants from the permissive temperature (23°C) to the nonpermissive 

temperature (37°C) for three hours.  

 

Microscopy  

Images were acquired using two microscopes. All images, with the 

exception of those for Figure 2A and Figure 4, were taken using a microscope 

(BX60; Olympus) with a UPlanApo 100x NA 1.30 oil immersion objective 

(Olympus) and a camera (DAGE ISIT-68) using NIH image 1.62 (Wayne 

Rasband). Images for Figure 2A and Figure 4 were acquired using a microscope 

(BX50; Olympus) with a UPlanF1 100x NA 1.30 oil immersion objective 

(Olympus) and a camera (CoolSNAP HQ; Photometrics). Images were collected 

using MetaVue version 4.6 (Molecular Devices). GFP was visualized using an X-

cite 120-UV lamp and a Chroma filter set. Within each experiment, all images 

were collected and scaled identically. Images were processed with Photoshop 

9.0 software (Adobe). Small, medium and large budded cells were grouped into 

size categories as described 29. Scale bar = 2.5 #m throughout all figures. 

 

In vivo labeling of vacuoles 

To visualize vacuoles, yeast cells were concentrated and incubated for 1 

hour with N-(3-triethylammoniumpropyl)-4(6(4(diethylamino)phenyl)hexatrienyl) 
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pyridium dibromide (FM 4-64; Molecular Probes) at a final concentration of 16.5 

mM. Cells were then washed with appropriate media and grown for $3 hours 

before being viewed by fluorescence microscopy 30.  

 

In vivo fusion assay 

In vivo fusion assays were performed as described 31. In brief flow cells 

were prepared by treating coverslips and slides with cannavalin-A (1mg/ml in 50 

mM HEPES, pH 7.5, 20mM calcium acetate, and 1 mM MnSO4) that were then 

allowed to air-dry. Coverslips were attached to slides using double-sided tape. 

FM 4-64 stained cells grown in YPD as described were harvested in a 

microcentrifuge at 10,000 rpm for 15 seconds. Cells were introduced into the flow 

cell and incubated for 5 minutes. A hypertonic solution of 25% yeast 

extract/peptone/dextrose, 75% H2O was flushed through the flow cell and 

images were taken at the indicated times. 
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Results 

 

Cell cycle progression is not required for segregation structure resolution 

Prior studies reported that the vacuole segregation structure is resolved to 

form the daughter vacuole prior to nuclear division 7. I found that cells arrested in 

late G1 uniformly inherited and formed a daughter vacuole (Figure 4-1). 

Additionally cells arrested in S-Phase by HU, at G2/M by either overexpression of 

SWE1 or NZ treatment, or at telophase using the temperature sensitive MEN 

mutants cdc15-2 or cdc14-2 formed daughter vacuoles. Thus, the determinants 

for daughter vacuole formation are set up early in the cell cycle.  

 

Figure 4-1. Cell cycle progression is not required for segregation structure resolution. 
Cells were stained with FM 4-64 to visualize vacuoles. G1/S cells were obtained by growth of 

cdc34-2 (FM452) cells at 37°C or a-factor arrest release of cdc7-4 cells (YCH5233) into 37°C 
media. S-phase arrested cells were obtained by hydroxyurea (HU) (W303-1A) treatment. G2/M 

cells were obtained by either nocodozale (NZ) (W303-1A) treatment or by a-factor arrest of GAL-
SWE1 (RSY136), followed by induction of SWE1 overexpression by the addition of 2% galactose 
for 60 minutes, and released into YP+2% galactose media for 120 minutes. Telophase arrested 
cells were obtained by arresting cdc15-2 (K2944-1B) and cdc14-2 (YCH146) strains at 37°C. 
 

 

Cla4 localizes to the vacuole segregation structure 

In addition to its reported localization at the bud cortex, I found that Cla4 

localized to a non cortex localized punctate structure within the buds of small, 
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Figure 4-2. Cla4 localizes with the vacuole. 
(A) Cla4-GFP was visualized in asynchronous Wild type (YCH3250) cells. Arrows indicate peri-
vacuolar Cla4-GFP localization and arrowheads indicate cortex localization. (B) CLA4-GFP 
(YCH3250) cells were FM 4-64 stained and examined by fluorescent microscopy 
 
 

medium, and some large budded cells (Figure 4-2A). Biochemical studies 

indicate that Cla4 is enriched on isolated vacuoles 15. Therefore, I postulated that 

the Cla4 punctate structure might colocalize with the vacuole. To determine if 

Cla4 colocalized with the vacuole, CLA4-GFP strains were FM 4-64 stained. I 
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found that in 100% of cells in which the punctate Cla4-GFP structure was 

visualized that it colocalized with the segregation structure or the daughter 

vacuole  (Figure 4-2B).   

 
 

Figure 4-3. Cla4 remains on the daughter vacuole until late-M phase. 
(A) Cla4-GFP (YCH3250) and FM 4-64 stained vacuole localization was quantified in small, 
medium, and large budded cells (>200 cells were counted for each bud size). (B) CLA4-GFP 
(YCH3250) localization was visualized in cells of various bud sizes and cells arrested in S-phase 
with hydroxyurea (HU), at G2/M with nocodazole (NZ), or at mitotic exit by arresting cdc15-2 
(YCH1028). Percentages indicate the percentage cells with the displayed Cla4-GFP localization. 

 

Further quantification of the vacuole morphology and Cla4 localization to 

the vacuole showed that Cla4 localized to the vacuole almost immediately upon 

entry of segregation structure into the bud as only a very small percentage of 

cells with a segregation structure in the bud did not colocalize with Cla4 (Figure 

4-3A). Most cells with Cla4 colocalizing with the vacuole had resolved the 

segregation structure and formed a daughter vacuole (Figure 4-3A). Cla4 

persisted on the vacuole until late-M and cells arrested in S-phase or G2/M, but 

not at mitotic exit, had Cla4 spots in the bud (Figure 4-3B).  
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The machinery required to form and transport the segregation structure to 

the bud consists of a myosin V motor, Myo2, a vacuole receptor, Vac17, and a 

vacuole-associated protein, Vac8. I observed that cells that did not form vacuole 

segregation structures, including vac8 and myo2-2 mutants, lacked a Cla4 spot 

in the mother or bud (Figure 4-4). Thus, Cla4 localization at the vacuole was 

dependent on vacuole partitioning. Cla4 leaves the vacuole late in mitosis and 

localizes to the mother bud neck prior to cell separation (data not shown). 

 
Figure 4-4. Cla4-GFP requires vacuole inheritance for vacuole associated punctate 
structure localization. 
(A) Cla4-GFP was visualized in vac8 (YCH1665) and myo2-2 (YCH1752) cells. Arrowheads 
indicate Cla4-GFP localization at the cortex. (B) Cla4-GFP and FM 4-64 stained vacuole 
localization was quantified in small, medium, and large budded wild type (YCH3250), vac8 
(YCH1665), and myo2-2 (YCH1752) cells (>200 cells were counted for each bud size). 

 
Cla4 accumulation at the incipient bud site early in the cell cycle and its 

localization at the vacuole segregation structure prior to daughter vacuole 
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formation places Cla4 in right place at the right time to play a role in resolving the 

segregation structure.  

 

PAKs are required for resolution of the vacuole segregation structure 

Cla4 is proposed to have overlapping functions with the PAK, Ste20, as cla4 and 

ste20 single mutants are viable but the cla4 ste20 double mutant is synthetically 

lethal 21. Consistent with these observations I found that cla4 and ste20 single 

mutants formed daughter vacuoles (Figure 4-5A). In order to characterize cells 

lacking both Cla4 and Ste20 function I used a cla4-75 ste20 strain with mutant 

cla4 and ste20 kept alive by plasmid based expression of a temperature sensitive 

cla4-75 allele 21. When grown at the permissive temperature, vacuoles in the 

cla4-75 ste20 cells were similar to vacuoles in ste20 cells (data not shown).  After 

cells were synchronized by centrifugal elutriation in G1 and released at the 

restrictive temperature, the cla4-75 ste20 double mutant cells initially were similar 

to wild type cells and formed a segregation structure that was directed toward the 

bud tip (Figure 4-5B,C). Strikingly, after 120 minutes, 98% of the cla4-75 ste20 

cells maintained the segregation structure (Figure 4-5C). After 240 minutes 95% 

of the cells arrested with an intact segregation structure (Figure 4-5D). This was 

in sharp contrast to wild type cells that resolve their segregation structures soon 

after they enter the bud (Figure 4-5B). The failure of the cla4-75 ste20 cells to 

resolve the segregation structure is a novel phenotype.  
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Figure 4-5. Cells lacking PAK function form but do not resolve segregation structures.  
(A) Mid-logarithmic phase FM 4-64 strained wild type (W303-1A), cla4 (KN3591), and ste20 
(KN3621) strains were examined by fluorescence microscopy. (B-D) Asynchronous FM 4-64 
stained wild type (W303-1A) and cla4-75 ste20 (KN4580) cells were elutriated to obtain a uniform 
population of G1 cells, grown at 37°C, and examined at the indicated times by fluorescence 
microscopy. Percentage in (B-C) are the percentage of cells with a daughter vacuole. Cell Outline 
Color Code, Red: bud contains segregation structure; Blue: bud has inherited vacuole material 
from mother cell; Yellow: medium or large bud lacking inherited vacuole material from mother cell. 
 
 

 
Cells overexpressing CLA4t fail to form a daughter vacuole and have a 
partial in vivo vacuole fusion defect 
 
 Overexpression of truncated CLA4 missing the final C-terminal 67 amino 

acids (CLA4t) causes mislocalization of both Cla4 and Ste20 and CLA4t 

overexpression likely inhibits both endogenous Cla4 and Ste20 22. Because cla4-

75 ste20 cells fail to form a daughter vacuole, I hypothesized that cells 

overexpressing CLA4t may also fail to form a daughter vacuole.  In support of 

this hypothesis I found that FM 4-64 strained 4X GAL-CLA4 and 4X GAL-CLA4t 

swe1 cells arrested in G1 by the addition of %-factor and released into YP + 2% 

galactose media to induce the overexpression of CLA4t failed to form a daughter 

vacuole (data not shown and Figure 4-6). 

 It has previously been shown that vacuole fusion promotes the formation 

of the daughter vacuole 5, 10-13.  In response to hyposmotic conditions vacuole 

lobes fuse to form a single large vacuole. Using an in vivo vacuole fusion assay 

the vacuole of vac8 cells do not fuse under hypotonic conditions 31.  In support of 

these experiments I found that the vacuoles of wild type but not vac8 cells fuses 

under hyposmotic conditions (Figure 4-6). However, the vacuoles in 4X GAL-

CLA4t and 4X GAL-CLA4t swe1 cells overexpressing CLA4t have a partial 

vacuole fusion  defect in  comparison  to  wild type  cells  (Figure 4-6).  Therefore  
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Figure 4-6. Cells overexpressing CLA4t fail to form a daughter vacuole and have a partial 
in vivo vacuole fusion defect. 
Wild type (W303-1A), vac8 (YCH5342), 4X GAL-CLA4t (Piatti2625), and 4X GAL-CLA4t swe1 
(Piatti2711) cells were grown in YP+ 2% raffinose and FM 4-64 stained. After staining 4X GAL-

CLA4t and 4X GAL-CLA4t swe1 were a-factor arrested and all strains were grown in YP+2% 
galactose for 4 hours and in vivo fusion assays were performed.  
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Cla4 and Ste20 may promote daughter vacuole formation by promoting vacuole 

fusion in the bud to promote segregation structure resolution. 

 

 

Discussion 

 Over the last years various strides have been made in forming a model for 

how the segregation structure is resolved. Together the experimental data 

suggests that the segregation structure is resolved by the fusion of tubular and 

vesicular structures in the bud. The data that support this model are reviewed 

below. (1) Formation of the vacuole segregation structure requires PtdIns(3,5)P2  

production on the vacuole which promotes fission of the vacuole 4, 32-36. Since the 

production of the segregation structure requires the fission machinery, it has be 

postulated that upregulation of fusion or down regulating fission by decreasing 

the levels of PtdIns(3,5)P2 promotes resolution of the segregation structure 37. (2) 

Examination of labeled vacuoles by microscopy showed transport of vesicular 

structures from the mother into the daughter and fusion of these vesicles to form 

a larger daughter vacuole 10. (3) Studies of isolated vacuoles from semi-

permabilized cells show the formation of tubular and vesicular structures followed 

by vacuole fusion 10-13. (4) Resolution of segregation structures in zygotes 

involves vacuole fusion and merging of vacuole contents 14. (5) Formation of the 

segregation structure is promoted by Yck3 maintaining fragmentation through 

inhibition of homotypic vacuole fusion 5. 

 Together these data suggest a model in which the segregation structure is 

formed by fission of the yeast vacuole. Fission is promoted by both production of 
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PtdIns(3,5)P2 and the inhibition of fusion by Yck3. After the tubular and vesicular 

segregation structure is formed, the segregation structure is transported into the 

bud along actin cables. Finally, fusion of the tubules and vesicles in the bud 

leads to the resolution of the segregation structure and the founding of the bud 

daughter vacuole. Missing from this model of segregation structure formation and 

resolution, however, is a mechanism for not only promoting, but insuring, that the 

segregation structure is only resolved after arriving in the bud. Several potential 

models could exist to explain this spatial regulation of vacuole inheritance. 

 First, cell cycle progression could be responsible for regulating vacuole 

inheritance. In this model, fusion would be inhibited during S phase when 

vacuole inheritance takes place and is promoted during either G2 or M to resolve 

segregation structures. However, my results make this model unlikely because 

segregation structure resolution and fusion occurs in cdc34-2 and cdc7-4 

arrested cells that fail to enter S-phase (Figure 4-1). 

 Second, segregation structure resolution could be caused by actin cable 

rearrangements. In budding yeast actin is polarized at the tip of the emerging bud 

but undergoes an apical-isotropic switch in G2 leading to depolarization of the 

actin cables caused by the accumulation of active Clb/CDK during G2. However, 

my results suggest this model is unlikely because cells overexpressing the Wee1 

kinase in yeast (Swe1) arrest at G2 with elongated buds due to a failure to 

undergo the apical-isotropic switch 38-40 but still have resolved segregation 

structures (Figure 4-1). Additionally, some common strain backgrounds of 
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budding yeast such as the S288c strain do not undergo an apical-isotropic switch 

yet still resolve segregation structures normally 41. 

 Third, degradation of Vac17 (the vacuole specific myosin-receptor 

necessary for vacuole inheritance) in the bud may also promote segregation 

structure resolution. However, this model is also unlikely since segregation 

structures are resolved prior to Vac17 degradation (Figure 4-1 and Figure 3-5)42. 

 Fourth, as has been proposed for Vac17 degradation 6, there may be 

factors specifically localized and/or activated in the bud that promote segregation 

resolution. Thus segregation structure resolution could be spatially controlled 

with resolution by vacuole fusion only taking place when the segregation 

structure enters the bud. Here I provide evidence supporting this model and 

propose that Cla4 and Ste20, which are specifically partitioned to and activated 

in the bud, promote the spatial regulation of segregation structure resolution. 

 I reported that Cla4 colocalized with the vacuole (Figure 4-2B). This, 

however, is not the first report of Cla4 localization to vacuole as others have 

previously identified Cla4 on isolated vacuoles 15. However, my findings add 

substantially to our understanding of the timing of Cla4 localization to the 

vacuole. I did see Cla4-GFP localized to the cortex of small, medium, and some 

large budded cells as previously reported 43-45. I additionally found that Cla4-GFP 

localized to segregation structures when they entered the bud. Almost every 

segregation structure that entered the bud and no segregation structures that 

had not entered the bud had Cla4-GFP localized to them (Figure 4-3A). I found 

that Cla4-GFP localization to the vacuole is dependent on the vacuole transport 
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machinery Vac8 and Myo2 (Figure 4-4A,B), further suggesting that Cla4-GFP 

localization to the vacuole is dependent on transport of vacuoles into the bud. 

Together these data demonstrate that Cla4 is at the right place at the right time 

to promote segregation structure resolution in a spatially dependent manner. 

  So how does Cla4 promote the resolution of the segregation structure?  

The current model for segregation structure resolution proposes that the 

segregation structure is resolved by homotypic vacuole fusion of tubules and 

vesicles. Intriguingly Cla4 has been implicated both directly and indirectly in 

vacuole fusion. Mutant cells lacking CLA4 have fragmented vacuoles, a key 

indicator of a vacuole fusion defect 15, 16. Cdc42, the upstream regulator of both 

Cla4 and Ste20, is also required for vacuole fusion15, 46-48. The adaptor protein 

Bem1, to which Boi1, Boi2, Cla4, and Ste20 bind, also promotes homotypic 

vacuole fusion 47, 49. Finally, vacuole fusion requires actin polymerization and 

Cla4 and Ste20 promote actin polymerization through phosphorylation of Myo3 

and Myo5 17-20. I propose that Cla4 localizes to the segregation structure where it 

promotes homotypic vacuole fusion leading to resolution of the segregation 

structure. Ste20 may promote vacuole fusion when the segregation structure 

comes into contact with the bud cortex or is just localized to the vacuole at low 

levels below the detection limit by fluorescence microscopy. 

 In support of this model I found that a G1 population of cla4-75 ste20 cells 

grown at the non-permissive temperature form and transport segregation 

structures into the bud but failed to resolve the segregation structure (Figure 4-

5C,D). Additionally, the overexpression of a dominant negative Cla4t which is 
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thought to eliminate Cla4 and Ste20 22 function also shows a similar phenotype 

further strengthening the model that PAK function is required for segregation 

structure resolution. Finally, the finding that cells overexpressing CLA4t have little 

vacuole fusion when placed in hypotonic conditions suggests that PAK function 

promotes fusion (Figure 4-6). However, this experiment must be interpreted with 

caution because the segregation structure could potentially be resistant to 

vacuole fusion. However, while hyposmotic conditions caused a regression or 

resolution of segregation structure in WT cells (data not shown), this was not the 

case for cells overexpressing CLA4t (Figure 4-6). 

 Study of segregation structures in yeast has been a daunting task due to 

this transient existence. Based on the rate of vacuole movement and the 

distance of travel, segregation structures can be around for as little as 30 

seconds during the cell cycle 6. During this 30 seconds a complex set of 

reactions has been proposed to occur, including the production of PtdIns(3,5)P2 

6, the recruitment of PtdIns(3,5)P2 binding proteins 50-53,  formation of the 

segregation structure, transport of the segregation structure into the bud, and 

fusion to resolve the segregation structure. The very transient nature of the 

segregation structure and the impossibility of reliably synchronizing a population 

with intact segregation structures have made further analysis of the segregation 

structure difficult if not impossible. The identification of vacuole segregation 

structure resolution mutants cla4-75 ste20 and 4X GAL-CLA4t may provide much 

the needed tool to further study these steps in vacuole inheritance. 
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CHAPTER V 
 
 

THE VACUOLE SEGREGATION STRUCTURE IS A SENSOR FOR 
REGULATING ENTRY INTO MITOSIS. 

 
 

Abstract 

The vacuole of budding yeast is partitioned along actin cables into the bud 

via a tubular and vesicular segregation structure. Prior to nuclear division the 

segregation structure is resolved to form the daughter vacuole.  Here I have 

reported the identification of a novel checkpoint that monitors the inheritance of 

the yeast vacuole and prevents nuclear division in cells that failed to resolve their 

vacuole segregation structure. My results indicate that the vacuole segregation 

structure acts as a sensor for regulating entry into mitosis through inhibition of a 

key promoter of mitosis, the polo kinase Cdc5. The p21-activated kinases (PAKs) 

play roles in relieving this inhibition by binding to the segregation structure after it 

enters the bud and promoting formation of the daughter vacuole.  
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Introduction 

Checkpoints delay cell cycle progression in response to a failure to 

complete earlier events through transduction of a negative signal to the cell cycle 

machinery 1, 2. The signaling mechanisms used to delay cell cycle progression in 

response to chromosome segregation defects have been well characterized 3. In 

contrast the mechanisms used to delay cell cycle progression in response to 

defects in organelle distribution have not been identified 4. To better understand 

how organelle distribution is coordinated with the cell cycle I am studying 

organelle inheritance in the budding yeast S. cerevisiae and focusing on vacuole 

inheritance. 

 Most Ste20 group kinases are activators of mitogen-activated protein 

kinase (MAPK) cascades and have been divided into two main groups the p21-

activated kinases (PAKs) and the germinal center kinases (GCKs) 5. Budding 

yeast contain two main p21-activated kinases, the founding member of the family 

Ste20 and Cla4. Ste20 and Cla4 accumulate in the bud at sites of polarized bud 

growth where they are effectors of the small GTPase, Cdc42 6.  My findings 

suggest that Cla4, which localizes to both the segregation structure and cortex of 

the bud, and Ste20, which localizes to the bud cortex, act as spatial markers to 

promote segregation structure resolution in the bud (Chapter 4). 

Ste20 and Cla4 have overlapping functions and double mutants lacking 

both functions are delayed in metaphase and are synthetically lethal 7, 8. The 

metaphase arrest of PAK deficient cells is dependent on Swe1 8. Swe1, the 

homologue of the mitotic Cdk inhibitor Wee1, inhibits the G2/M transition by 
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phosphorylation of the Clb(B-type cyclin)-bound Cdc28. The polo kinase Cdc5 is 

a key promoter of mitosis 9 including a role as a negative regulator of Swe1 10-12. 

Additionally, Cla4 phosphorylates Swe1 and Cla4 and Ste20 indirectly negative 

regulate Swe1 by promoting septin formation where Swe1 is negatively regulated 

7, 13-15.  

In this chapter I provide evidence for a vacuole segregation checkpoint. 

Cells lacking PAK arrest in G2 and fail to resolve their vacuole segregation 

structures. The delay in cell cycle progression is connected to resolution of the 

segregation structure and to inhibition of Cdc5. The PAKs relieve this inhibition 

by binding to the segregation structure and promoting its resolution, to form the 

daughter vacuole. In this manner nuclear division is dependent on the completion 

of an earlier event, the resolution of the vacuole segregation structure. 
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Materials and Methods 
 

 
Strains, plasmids, and media 

Table 5-1. Strains 
Strain Genotype Source 

KN4580 MATa  bar1::hisG cla4::LEU2 YCp-TRP1-cla4-75 ste20::URA3  
7
 

PJ69-4a MATa  LYS2::GAL1-HIS3 GAL2-ADE2 met2::GAL7-lacZ gal4! 
gal80! trp1-901 leu2-3,112 ura3-52 his3-200 

16
 

W303-1A MATa  ade2-1 his3-11,15 leu2-3,112 trp1-1 ura3-1 (W303) 
17

 
YCH 2752 MATa  cla4::LEU2 YCp-TRP1-cla4-75 ste20::URA3 swe1::kanMX4 

(W303) 
This Study 

YCH 5335 MATa  bar1::hisG cla4::LEU2 YCp-TRP1-cla4-75 ste20::URA3 
vac8::kanMX4 (W303) 

This Study 

YCH 5359 MATa bar1::hisG cla4::LEU2 YCp-TRP1-cla4-75 ste20::URA3 
vac17::kanMX4 (W303) 

 

YCH 5361 MATa  atg11::kanMX4 (W303) This Study 
YCH 5363 MATa  atg11::kanMX4 bar1::hisG cla4::LEU2 YCp-TRP1-cla4-75 

ste20::URA3 (W303) 
This Study 

YCH 5414 MATa ura3::3X URA3::GAL-CDC5-HAx3 cla4::LEU2 YCp-TRP1-
cla4-75 ste20::URA3 (W303) 

This Study 

YCH 5521 MATa atg11::kanMX4 cdc5-DG-URA3 cla4::LEU2 YCp-TRP1-cla4-
75 ste20::URA3 GAL-UBR1-HIS3 (W303) 

This Study 

YCH 5518 MATa atg11::kanMX4 cdc5-dg-URA3 cla4::LEU2 YCp-TRP1-cla4-75 
ste20::URA3 (W303) 

This Study 

 
Details of yeast strains and plasmids used in this study can be found in 

Table 5-1 and 5-2 respectively. The yeast strains used in this study are all 

derivatives of W303. Plasmid cloning was performed according to standard 

molecular biology strategies. Yeast strains were grown in YPD (1% yeast extract, 

2% peptone, and 2% glucose, raffinose or raffinose/galactose) or in synthetic 

complete (SC) media with 2% glucose, raffinose or raffinose/galactose and 

lacking appropriate amino acids. Centrifugal elutriation was performed in a 

Beckman-Coulter type J centrifuge as recommended by Beckman-Coulter and as 

described 18. Fractions with greater than 98% unbudded cells were pooled and 

used for each experiment. Two-hybrid analysis was performed in strain PJ69-4a 
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and as described 16. Nuclei were visualized by fixation in 70% ethanol followed 

by staining with DAPI at 0.1 mg/ml. 

 
 

Table 5-2. Plasmids 
Plasmid Description Source 

pCH441 GAD-DBf4 (LEU2) 
19

 
pCH608 GBD-CDC5 (URA3) 

10
 

pCH1775 GAD-atg11#1-686 This Study 

 
 

Microscopy  

Images were acquired using two microscopes. All images, with the 

exception of those for Figure 5-4, were taken using a microscope (BX60; 

Olympus) with a UPlanApo 100x NA 1.30 oil immersion objective (Olympus) and 

a camera (DAGE ISIT-68) using NIH image 1.62 (Wayne Rasband). Images for 

Figure 5-4 were acquired using a microscope (BX50; Olympus) with a UPlanF1 

100x NA 1.30 oil immersion objective (Olympus) and a camera (CoolSNAP HQ; 

Photometrics). Images were collected using MetaVue version 4.6 (Molecular 

Devices). GFP images were visualized using an X-cite 120-UV lamp and Chroma 

filter sets. Within each experiment, all images were collected and scaled 

identically. Images were processed with Photoshop 9.0 software (Adobe). Small, 

medium and large budded cells were grouped into size categories as described 

20. Scale bar = 2.5 #m throughout all figures. 
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In vivo labeling of vacuoles 

To visualize vacuoles, yeast cells were concentrated and incubated for 1 

hour with N-(3-triethylammoniumpropyl)-4(6(4(diethylamino)phenyl)hexatrienyl) 

pyridium dibromide (FM 4-64; Molecular Probes) at a final concentration of 16.5 

mM. Cells were then washed with appropriate media and grown for $3 hours 

before being viewed by fluorescence microscopy 21.  
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Results 
 
 

cla4-75 ste20 cells fail to form a daughter vacuole and arrest at G2/M  

Cla4 has overlapping functions with the PAK, Ste20, as cla4 and ste20 

single mutants are viable but the cla4 ste20 double mutant is synthetically lethal 

7. After cells were synchronized by centrifugal elutriation in G1 and released for 

growth at the restrictive temperature, the cla4-75 ste20 double mutant cells 

formed a segregation structure that was directed toward the bud tip but strikingly, 

after 240 minutes, 95% of the cla4-75 ste20 cells maintained the segregation 

structure and 98% arrested with a single nucleus (Chapter 4-5 and Figure 5-1). 

 

 
 

Figure 5-1. cla4-75 ste20 cells fail to form a daughter vacuole and arrest at G2/M. 
(A-B) FM 4-64 stained cla4-75 ste20 (KN4580) G1 cells were obtained by elutriation, shifted to 
37°C for 240 minutes, and viewed by fluorescence microscopy to image vacuoles or DAPI 
stained to image nuclei.  
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Figure 5-2. cla4-75 ste20 vac8 and cla4-75 ste20 vac17 cells do not arrest at G2/M. 
(A-B) FM 4-64 stained cla4-75 ste20 vac17 (YCH 5359) and cla4-75 ste20 vac8 (YCH5335) G1 
cells were obtained by elutriation, shifted to 37°C for 240 minutes, and viewed by fluorescence 
microscopy to image vacuoles or DAPI stained to image nuclei.  
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Metaphase arrest of cla4-75 ste20 is linked to the vacuole segregation 
structure 
 
The persistence of the segregation structure in metaphase arrested cla4-75 

ste20 cells suggested that the segregation structure itself might act as a sensor 

for regulating entry into mitosis. To test this model, I constructed cla4-75 ste20 

vac8 and cla4-75 ste20 vac17 triple mutants. The cla4-75 ste20 vac8 and cla4-

75 ste20 vac17 cells were synchronized in G1 by centrifugal elutriation and then 

shifted to the restrictive temperature. After 4 hours, 40% of all cells and 80% of 

all large budded cells had 2 nuclei indicating that the cells were no longer 

arrested in metaphase (Figure 5-2, 5-3B). These results suggest that the cell 

cycle arrest of cla4-75 ste20 cells is linked to the vacuole segregation structure.  

 

Deletion of SWE1 uncouples daughter vacuole formation and mitotic 
progression 
 

Related studies have reported that G1 cells from the cla4-75 ste20 strain 

arrest in metaphase at the restrictive temperature 7 and that the metaphase 

arrest of PAK-deficient cells is dependent on Swe1, the homolog of the Cdk 

inhibitor, Wee1 8. To test for the role of Swe1, I shifted a population of G1 

synchronized cla4-75 ste20 swe1 cells to the restrictive temperature for 4 hours. 

53% of the cells entered mitosis and yet 95% of all cells in the population failed 

to form a daughter vacuole (Figure 5-3A). Because the cytoskeleton is 

depolarized when cells enter anaphase 22 the segregation structure is dissolved 

and no longer stretched toward the bud tip in cla4-75 ste20 swe1 cells that enter 

anaphase. These results are consistent with a requirement for PAKs to form the 
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daughter vacuole and suggest a possible role for Swe1 in ensuring that daughter 

vacuole formation is completed before nuclear division initiates.  

 
Figure 5-3. Deletion of SWE1 partially suppresses the cla4-75 ste20 G2/M arrest but not the 
failure to resolve segregation structures. 
 (A) FM 4-64 stained cla4-75 ste20 swe1 (YCH2752) G1 cells were obtained by elutriation, shifted 
to 37°C for 240 minutes, and viewed by fluorescence microscopy to image vacuoles or DAPI 
stained to image nuclei. (B) Wild type (W303-1A), cla4-75 ste20 (KN4580), cla4-75 ste20 swe1 
(YCH2752), cla4-75 ste20 vac17 (YCH5359), and cla4-75 ste20 vac8 (YCH5535) G1 cells grown at 
the  permissive temperature were obtained by elutriation, shifted to 37°C, and samples were 
DAPI strained to determine the percentage of cells having undergone nuclear division at the 
indicated times.  
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Hsl1 was mislocalized in cla4-75 ste20 and cla4-75 ste20 vac8 cells 

 Microscopic observation of the cla4-75 ste20, cla4-75 ste20 vac17, and 

cla4-75 ste20 vac8 strains showed that they all failed to form a normal mother 

bud neck when grown at the restrictive temperature (Figure 5-2). Hsl1 is localized 

to the bud neck and it is required for localization and negative regulation of Swe1 

at the bud neck. As a further test of the state of the mother bud neck I decided to 

examine the localization of Hsl1 in these strains. The different strains were 

synchronized in G1 by centrifugal elutriation then shifted to the restrictive 

temperature and examined after four hours. Strikingly, I found that the pattern of 

Hsl1 in cla4-75 ste20 and cla4-75 ste20 vac8 cells was similar (Figure 5-4). Hsl1 

localized exclusively to the bud neck at permissive temperatures in these strains 

but at the restrictive temperature the Hsl1 was very weak in the majority of the 

cells (greater then 74% in all strains), and in those cells where it was detectable it 

was delocalized over the entire cortex or at the bud tip. Therefore, the 

maintenance of the segregation structure in the mother bud neck of the cla4-75 

ste20 cells was not responsible for the defective morphology of the mother bud 

neck. These results suggest that the segregation structure is functioning 

independent of the bud neck to restrict cell cycle progression in the cla4-75 ste20 

cells.  
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Figure 5-4. Hsl1 is mislocalized in cla4-75 ste20 and cla4-75 ste20 vac8 cells. HSL1-GFP 
(YCH5352), cla4-75 ste20 HSL1-GFP (YCH5340) and cla4-75 ste20 vac8 HSL1-GFP (YCH5341) 
cells were synchronized by centrifugal elutriation in G1 then shifted to 37° for the indicated period 
of time. 
 

Cdc5 through interaction with Atg11 is a target of the vacuole segregation 
checkpoint 
 

To determine how the segregation structure communicates with the cell 

cycle machinery to prevent cell cycle progression, I focused on the polo kinase, 

Cdc5, which is a negative regulator of Swe1 10, 11, as a potential target of a 

vacuole segregation checkpoint. Strikingly, in a two-hybrid screen using Cdc5 as 

bait the cytosol to vacuole transport (Cvt) pathway component, Atg11 23, 24 was 

identified as a Cdc5 interactor (Figure 5-5A). Atg11 localizes to a structure on the 
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vacuole, called the pre-autophagic structure (PAS), thus suggesting that Cdc5 

may be regulated at the vacuole. 

 

Deletion of ATG11 suppresses the metaphase arrest of cla4-75 ste20 cells 
in a Cdc5 dependent manner 
 

To directly test if Atg11 was acting in the vacuole inheritance checkpoint, 

cla4-75 ste20 atg11 cells were examined to determine if nuclear division 

occurred with similar kinetics to the cla4-75 ste20 swe1 cells. G1 cells for each 

strain were isolated by centrifugal elutriation and then grown at 37°. Interestingly, 

in response to inactivation of Cla4, the cla4-75 ste20 atg11 cells underwent 

nuclear division with similar kinetics to the cla4-75 ste20 swe1 cells (Fig 5-5B). In 

addition, I found that the cla4-75 ste20 atg11 cells failed to form a daughter 

vacuole like cla4-75 ste20 swe1 cells (Figure 5-5B). This suppression of the cla4-

75 ste20 arrest is ATG11 dependent as reintroduction of ATG11 on a plasmid, 

but not an empty plasmid, restored the G2/M arrest (data not shown). One model 

to explain the above results is that when a segregation structure is present that 

Atg11 acts to negatively regulate Cdc5 thus allowing active Swe1 to arrest the 

cell cycle. One prediction of this model is that cla4-75 ste20 atg11 cells 

containing a temperature sensitive version of Cdc5 that is degraded at 37° (cdc5-

DG) 25 should arrest at G2/M. If Cdc5 activity is rate limiting for mitotic 

progression in the cla4-75 ste20 cells, then a second prediction of my model is 

that overexpression of CDC5 in GAL-CDC5 cla4-75 ste20 cells should override 

the metaphase arrest of these cells. To test the first prediction, G1 cla4-75 ste20  
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Figure 5-5. Cdc5 is a target of the vacuole segregation checkpoint. (A) Two-hybrid analysis 
between pGAD-Cdc5 and pGBD-Atg11#1-686 or pGBD-Dbf4 (positive control). Growth on Sc-
Leu-Ura-His-Ade indicates protein-protein interactions. (B) Wild type (W303-1a), cla4-75 ste20 
(KN4580), cla4-75 ste20 swe1 (YCH2752) and cla4-75 ste20 atg11 (YCH5363) cells in YP+2% 
glucose at 23° were synchronized in G1 and then shifted to 37°. (C) cla4-75 ste20 atg11 
(YCH5363) and cla4-75 ste20 atg11 cdc5-dg (YCH5518) cells  in YP+2% galactose were 
synchronized in G1 and then shifted to 37° in YP+2% galactose. (D) GAL-CDC5 cla4-75 ste20 
(YCH5414) cells in YP+2% raffinose at 23° were synchronized in G1 then shifted to 37° for 2 hours 
when galactose was added to 2%. Nuclear division assayed by DAPI staining and 
synchronization by centrifugal elutriation B-D. 
 

atg11 and cla4-75 ste20 atg11 cdc5-DG cells were isolated by centrifugal 

elutriation and then grown at 37°. Interestingly, in response to inactivation of 

Cla4, cla4-75 ste20 atg11 cdc5-DG cells arrested at G2/M with a single nuclei 

while cla4-75 ste20 atg11 cells grown under the same conditions underwent 
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nuclear division with similar kinetics as seen previously (Figure 5-5C). As further 

support for the checkpoint model, CDC5 overproduction overrode the cla4-75 

ste20 metaphase arrest, suggesting that Cdc5 activity in the arrested cells is 

indeed rate limiting for cell cycle progression (Figure 5-5D).  
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Discussion 
 
 

Cells must coordinate organelle inheritance with nuclear inheritance. 

Previously research shows that cells lacking PAK function arrest at G2/M in a 

SWE1 dependent manner 8, 13. In this report I provide evidence for a vacuole 

segregation checkpoint. My results indicate that nuclear division is delayed in 

cells that have not resolved their vacuole segregation structure (Figure 5-2). The 

delay in cell cycle progression is linked to inhibition of Cdc5 (Figure 5-5C,D). The 

PAKs relieve this inhibition by binding to the segregation structure and promoting 

its resolution to form the daughter vacuole. In this manner nuclear division is 

dependent on the completion of an earlier event, the resolution of the vacuole 

segregation structure (Figure 5-6). 

 

Figure 5-6. Model of the vacuole segregation checkpoint. 
 

How might Atg11 inhibit Cdc5 function? Atg11 is a peripheral membrane 

protein and contains multiple coiled coil domains 26. Through these coiled coils 

Atg11 functions as a scaffold that coordinates the formation of the protein 

complexes that make up the core of the Cvt pathway 26. I propose that Atg11 

takes on a Cdc5 inhibitory function in the presence of the segregation structure. 

The formation of the segregation structure may release Atg11 from its Cvt 
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functions at the vacuole and in the process make it available for interaction with 

Cdc5. Furthermore, the PAK-mediated resolution of the segregation structure 

regulates the Cdc5-Atg11 interaction by altering the function or localization of 

Atg11, perhaps through mediating formation of the PAS following daughter 

vacuole formation. Alternatively, the PAKs might directly regulate the Atg11-Cdc5 

interaction through modification of either Atg11 or Atg11-interacting proteins such 

as Atg1 23, which also interacts with Cla4 (data not shown). Further work is 

required to understand the role of Atg11 in regulation of Cdc5.  

Vacuole resolution is now the third example in which the nuclear 

machinery delays at G2/M in response to failure to complete organelle 

inheritance. In yeast the cortical endoplasmic reticulum (cER) is transported 

along actin cables by the Myosin V motor, Myo4, into the bud where it becomes 

anchored at the tip of the bud and expands to fill the bud 4. Cells lacking SCS2 

and ICE2, which are required for cER inheritance, have perturbed septins, 

activate Swe1, and delay in G2/M 27. Thus the organelle inheritance checkpoints 

for cER and vacuole inheritance show many similarities. Both scs2 ice2 and cla4 

ste20 mutants have septin defects, delay at G2/M, and depend on Swe1 for the 

checkpoint to function. Intriguingly, cER is also regulated by a MAP kinase 

pathway 28, and Cla4 works synergistically with Scs2 and Ice2 to promote proper 

septin localization 27. 

In mammalian cells the Golgi apparatus is composed of 4-8 cisternae 

anchored at pericentriolar region of the cell. During prophase this Golgi ribbon 

fragments into smaller vesicles and tubules that are subsequently dispersed 
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during metaphase 4. Failure to fragment the Golgi activates the Golgi mitotic 

checkpoint 29. However, the mechanism for this checkpoint has not been 

elucidated. Known, however, is that inhibition of MAP kinases involved in Golgi 

fragmentation results in significant delays during the G2/M transition 30, 31.  

Additionally the polo-like kinase PLK1 is also required for fragmentation of the 

Golgi stacks and involved in Golgi checkpoint signaling 32, 33. Thus, not only do 

mechanisms which regulate vacuole inheritance and coordination with the cell 

cycle show similarities with regulation of other organelles in yeast, but the key 

proteins involved in this regulation, namely polo-kinases and proteins 

participating in MAP kinase cascades, are conserved in mammalian cells. 

Further study of how vacuole inheritance is coordinated with the cell cycle may 

shed further insights on the coordination of organelle inheritance with cell cycle 

more generally in both yeast and mammalian cells. 
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CHAPTER VI 

 

FUTURE DIRECTIONS 

 

The work presented in chapters two through five provides a substantial 

step forward in our understanding how vacuole inheritance is regulated spatially 

and how vacuole inheritance is coordinated with mitosis. However, these new 

insights about vacuole inheritance also provoke new questions and inspire new 

lines of research. In this concluding chapter I will discuss some remaining issues, 

suggest further experiments to test the various models presented, and suggest 

future directions based on the experimental data provided in the proceeding 

chapters. 

 

How do Cla4 and Ste20 promote resolution of the segregation structure? 

Cla4 and Ste20 localize to and are activated specifically in the bud, thus 

spatially separating them from the forming segregation structure 1-4. In chapter IV 

I proposed that the segregation structure was resolved by Cla4 and Ste20 when 

it entered the bud. In support of this model I found that (1) overexpression of 

either CLA4 or STE20 suppressed vacuole inheritance (Figure 3-3,4), (2) Cla4 

localized to the segregation structure when it entered the bud (Figure 4-2,3A), 

and that (3) cla4-75 ste20 cells failed to resolve the segregation structure (Figure 

4-5D). I then proposed that Cla4 and Ste20 promote segregation structure 

resolution through vacuole fusion and showed that cells overexpressing CLA4t 
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had a partial vacuole fusion defect (Figure 4-6). In further support of this model 

others show that Cla4 localizes to isolated vacuoles 5, cla4 mutants have 

fragmented vacuoles 5, 6, Cla4 and Ste20 phosphorylate Myo3 and Myo5 7-9 

which promote actin polymerization, and that actin polymerization promotes 

vacuole fusion 5, 10-12. I propose the following experiments to further test this 

model. 

A role in vacuole fusion for Ste20 is not as well supported by documented 

evidence, as is the case for Cla4. To remedy this situation I propose to look for 

vacuole enrichment of Ste20. To perform this experiment immunoblot analysis of 

isolated vacuoles and cell lysates should be performed as described 5. As 

positive controls actin, Cla4, and carboxypeptidase Y could be used. A simple 

and reliable in vitro assay for vacuole fusion also exists which is based on the 

maturation and activation of pro-alkaline phosphatase by proteinase A 13. I 

suggest using this assay with vacuoles isolated from cla4 strains and determine if 

depletion of Ste20 using anti-Ste20 antibody inhibits vacuole fusion as has been 

done previously to show that Las17 and Ypt7 promote vacuole fusion 5. I could, 

furthermore, look for an in vivo role for Ste20 in vacuole fusion by examining the 

effects of STE20 overexpression on vacuole morphology in cla4 and cdc42ts 

mutants which normally have fragmented vacuoles 5, 11. 

While Cla4 localizes to isolated vacuoles and has a fusion defect in vivo, 

finding that Cla4 promotes vacuole fusion in vitro would provide additional 

evidence in support of the model. In the first paper that proposes a role for Cla4 

in vacuole fusion, Eitzen et al. propose that vacuole fusion is promoted by actin 
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polymerization controlled by the following cascade: Cdc42#Cla4#Las17/Vrp1# 

Arp2/3#actin. Eitzen et al. then go on to show that inhibition of Las17, Vrp1, 

Arp2/3, and actin inhibits vacuole fusion in vitro. Noticeably absent from their 

analysis are in vitro fusion assays on vacuoles from cla4 mutant cells. I propose 

to look at fusion rates of vacuole derived from cla4, ste20, cla4-75 ste20, and 

cells overexpressing CLA4t and determine rates of vacuole fusion as compared 

to fusion rates for vacuoles derived from wild type and vac8 mutants as controls. 

One important control would be to add back purified Cla4 or Ste20 to vacuoles 

isolated from cla4-75 ste20 cells in the in vitro assay to determine if this 

promotes homotypic vacuole fusion. Additional in vivo evidence supporting a role 

for Cla4 in vacuole fusion could be found by examining the effects CLA4 

overexpression on vacuole morphology in cdc42ts and las17-6 cells. Together 

these experiments could potentially strengthen the model that Cla4 and Ste20 

resolve the segregation structure by promoting vacuole fusion.  

 

How do Boi1 and Boi2 regulate Cla4 and Ste20? 

In chapter two I proposed that Boi1 and Boi2 negatively regulate residual 

Cla4 and Ste20 that remain in the bud by restricting PAK access to Cdc42. This 

hypothesis is consistent with my findings that (1) boi1 boi2 mutants had a 

vacuole inheritance defect (Figure 2-3), (2) the boi1 boi2 vacuole inheritance 

defect was suppressed by deletion of CLA4 or STE20 (Figure 2-4), and (3) the 

Boi1 PH domain interacts with Cdc42 14, and (4) that the PH domain of Boi1 was 
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necessary and sufficient to suppress the boi1 boi2 vacuole inheritance defect 

(Figure 2-5). 

 This model has a number of predictions that could be tested. First if Boi1 

and Boi2 act at the vacuole then Boi1 and Boi2 should be detectable on isolated 

vacuoles like Bem1, Cla4, and Cdc42 5, 15, 16. To determine if Boi1 and Boi2 

localize to the vacuole, immunoblot analysis of isolated vacuoles and cell lysates 

should be performed as described 5. As positive controls actin, Cla4, and 

carboxypeptidase Y could be used. If found at the vacuole the domain necessary 

for vacuole localization could be tested with the mutants used to determine which 

region of Boi1 was necessary to suppress the boi1 boi2 vacuole inheritance 

defect (Figure 2-5). Overexpression of BOI1-GFP and BOI2-GFP may also allow 

visualization of Boi1-GFP or Boi2-GFP localization at the vacuole. 

 The above model also predicts that Boi1 and Boi2, and specifically the PH 

domain, interacts with Cdc42. The Boi1-Cdc42 interaction has been previously 

shown only by two-hybrid. In these experiment Bender et al. found that PH 

domain interacts by 2-hybrid with the predominately GTP bound Cdc42Q61L but 

not with the predominantly GDP bound Cdc42D118A or the other the other Rho-

type GTPases Rho1, Rho2, Rho3, or Rho4 14. To further determine if Cdc42 

interacts with Boi1 or Boi2 in vivo coimmunoprecipitation experiments should be 

performed using Bud1 or Bem1 as positive controls 17-19. If 

coimmunoprecipitation detects a Boi1-Cdc42 interaction then the domain 

necessary for coimmunoprecipitation could also be determined. GTP-Cdc42 but 

not GDP-Cdc42 binds Cla4 or Ste20 in vitro. To further test the model I propose 
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testing if the in vitro interaction between Cdc42-Cla4 or Cdc42-Ste20 is disrupted 

by the addition of either Boi1 or Boi2. The above experiments could potentially 

strengthen our model or suggest alternative models by which Boi1 and Boi2 

regulate Cla4 and Ste20. 

 

How do Cla4 and Ste20 regulate Vac17? 

 In chapter III I proposed that Cla4 and Ste20 are the bud-specific proteins 

localized to and activated in the bud that prime Vac17 for degradation. In support 

of this hypothesis I found that CLA4 overexpression causes Vac17 degradation 

(Figure 3-6C) and that active PAKs were required for Vac17 degradation in late-

M (Figure 3-6B). The mechanism whereby Cla4 and Ste20 prime Vac17 for 

degradation remains unknown. I propose the general hypothesis that Cla4 and 

Ste20 promote Vac17 degradation directly by phosphorylating Vac17 or indirectly 

through proteins activated by Cla4 or Ste20. 

 In vitro phosphorylation assays for Cla4 and Ste20 are established 20-22. I 

propose using these in vitro assays to determine if PAKs directly phosphorylate 

Vac17. Cla4 overexpression had a stronger effect on Vac17 degradation than 

Ste20. To further test if Cla4 phosphorylates Vac17, I propose using the 

previously characterized analog sensitive version of Cla4 (cla4-as3) whose 

nucleotide binding specificity is altered to allow it to use a modified form of ATP 

23. To perform this experiment kinase assays will be performed in cla4-as3 

VAC17-ProA cell extracts by adding radiolabelled N6-benzyl-ATP as described 24. 

Vac17-ProA will then be immunoprecipitated and examined by SDS-PAGE for 
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the incorporation of the radiolabelled N6-benzyl-ATP. As positive controls Cdc24 

or Lte1 could be used, and as a negative control cells containing wild type CLA4 

could be used. If Cla4 and Ste20 are shown to phosphorylate Vac17 then I 

propose mapping the phosphorylation sites then mutating the serines and/or 

threonine to determine their function in vivo. 

 Alternately, Cla4 and Ste20 could regulate Vac17 indirectly. In support of 

this possibility I have found that deletion of LTE1 or ATG11 partially suppressed 

the vacuole inheritance defects of CLA4 overexpressing cells. The MEN mutant 

cdc5-1 suppressed the vacuole inheritance defect of STE20 overexpressing 

cells. Since Cla4 and Ste20 may regulate vacuole inheritance both by modulating 

Vac17, and through promoting vacuole inheritance, then Vac17 protein levels 

need to be carefully examined for each of the above cases. If PAK regulation of 

Vac17 is indirect, then dissecting exactly how Cla4 and Ste20 regulate Vac17 

may be exceedingly difficult. 

 It is presently unclear if Vac17 degradation by CLA4 overexpression 

(Figure 3-6C) is dependent on cell cycle progression. To further clarify this point I 

suggest looking at Vac17 levels in cells overexpressing CLA4 that are arrested in 

S-phase using a cdc7-4 mutant and at G2/M with nocodazole. As negative 

controls cells not overexpressing CLA4 or overexpressing kinase-dead cla4 

could be used 25. It would also be interesting to examine the ability of CLA4 and 

STE20 overexpression to promote degradation of Vac17 in the Class I vac 

mutants vac8 and myo2-2. This would provide further evidence that Cla4 and 

Ste20 are the daughter-specific factors that promote Vac17 degradation. 



 

 143 

Because Vac17 accumulates to such high levels in vac8 and myo2-2 cells, it may 

be necessary to arrest cells in G1 with %-factor to see an effect. As controls I can 

examine vacuole inheritance in cells overexpressing neither CLA4 nor STE20 or 

that overexpress kinase dead versions of these kinases 4, 25. 

 

Is PAK regulation of vacuole inheritance connected to Vac17 degradation? 

 One of the ongoing questions that I have pursued is if Vac17 degradation 

by PAKS is separable from PAK resolution of the segregation structure. It is 

possible that segregation structure resolution causes Vac17 degradation. If 

correct then premature segregation structure resolution by overexpression of 

Cla4 is the cause of Vac17 degradation (Figure 3-6C). The failure to degrade 

Vac17 in late-M phase could be caused by a failure resolve the segregation 

structure (Figure 3-6B). Separating these two processes has been difficult.  

Initially I tried to separate the two processes by %-factor arresting cdc7-4 

4X GAL-CLA4t swe1 bub2 VAC17-ProA cells and releasing them at 37°C in 

YP+2% raffinose. Cells arrested just prior to S-phase with a resolved segregation 

structures (Figue 4-1). Once cells were uniformly arrested, 2% galactose was 

added to induce CLAt overexpression. Cells were then subsequently released by 

shifting to 25°C. Under these conditions the cells did not exit mitosis 

synchronously making assaying for Vac17-ProA degradation ambiguous since 

cells could not be arrested in G1 with %-factor. I also FM 4-64 stained cells under 

the same conditions and looked for movement of vacuole back to the neck. I did 

not find movement back to the neck. However, cells were defective for cell 
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separation suggesting that actin polymerization to the mother bud neck may be 

defective under CLA4t overexpression conditions. Therefore, I have been unable 

to resolve this question. I do think that the process of inhibition of vacuole 

inheritance by promoting fusion is separable from Vac17 destruction as boi1 boi2 

cells have a vacuole inheritance defect and accumulate Vac17, though to a 

lesser degree than in vac8 cells (data not shown). 

 

Do PtdIns(3,5)P2 levels increase during segregation structure formation? 

 In the absence of the machinery necessary to produce PtdIns(3,5)P2 the 

tubules and vesicles that make up the segregation structure are not formed 26-29. 

However, it remains to be shown that PtdIns(3,5)P2 levels increase during 

segregation structure formation. Because the segregation structure is transient, it 

has been impossible to show that PtdIns(3,5)P2 rise during this period of time. I 

propose to look at PtdIns(3,5)P2 levels in cla4-75 ste20 and GAL-CLA4t cells. It 

would be interesting to examine the timing of PtdIns(3,5)P2 levels increase and 

decrease during inheritance. It could be that the enlarged vacuole morphology in 

the cla4-75 ste20 vacuole could be due to a decrease in PtdIns(3,5)P2 after 

prolonged stasis as a segregation structure leading to small amounts of fusion 

that increase the size of the vacuole. 

 Atg18 is a PtdIns(3,5)P2 binding protein that is thought to localize to  

segregation structures 30. However, this hypothesis has been difficult to verify 

due to the transience of the segregation structure. It would be interesting to test 

this hypothesis by examining Atg18-GFP localization in the cla4-75 ste20 and 
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GAL-CLA4t strains that have persistent segregation structures. These reagents 

could be used with future PtdIns(3,5)P2 effectors to show they localize to the 

segregation structure. 

 

How do PAKs regulate peroxisome inheritance? 

Peroxisomes are transported along actin cables by the myosin V motor 

protein Myo2. Peroxisomes are attached to Myo2 through a peroxisome-specific 

Myo2 receptor, Inp2. Like Vac17, Inp2 production is cell cycle regulated and Inp2 

is degraded prior to cytokinesis 31, 32. I found that overexpression of either CLA4, 

and to a lesser extent STE20, suppressed peroxisome inheritance (Figure 3-

7B,D). I hypothesize that, like Vac17, PAK overexpression causes a degradation 

of Inp2 and that Inp2 destruction requires PAK activity. To test this hypothesis I 

propose looking at Inp2 stability in cells overexpressing CLA4 and STE20. 

Additionally, I propose looking at Inp2 stability in cells overexpressing GAL-

CLA4t as performed for Vac17 (Figure 3-6). If positive results are found then 

phosphorylation of Inp2 by Cla4 and Ste20 could be examined as described 

above for Vac17. Alternately, peroxisome inheritance could be regulated instead 

by phosphorylation of Myo2 which is phosphorylated in a cell cycle dependent 

manner 33. 

 

Vacuole inheritance checkpoint 

 Cla4 and Ste20 both have many roles in the cell. Particularly, Cla4 and 

Ste20 play roles in regulating septin formation and Swe1 degradation. To show 
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that septin defects are not responsible for the failure to resolve the segregation 

structure I looked at vacuole morphology in temperature sensitive septin mutant 

that had been %-arrested then released at the restrictive temperature. These cells 

formed a bud vacuole suggesting failure to form a bud vacuole was not linked to 

septin defects. Additionally, it would be a good idea to perform the same 

experiment with elutriated cells. 

 To further differentiate cla4-75 ste20 septin defects from the vacuole 

inheritance defect it would be a good idea to look for a cla4 mutant that doesn’t 

localize to the vacuole. One possible method for creating this mutant would be to 

mutagenize the PH domain to inactivate it or to exchange it with a domain which 

binds PtdIns(4)P or PtdIns(4,5)P2 strongly. However, it may be possible for the 

segregation structure to be resolved even if it doesn’t directly localize to the 

vacuole as I think is happening for Ste20. Alternately, Cla4 could be localized 

specifically to the mother bud neck by fusion with Hsl1 or Hsl7.   
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