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CHAPTER 1

Introduction

This thesis is centered around the antigen-recognition molecules produced by human B
cells, known as immunoglobulins (Froland and Natvig, 1972). Immunoglobulins are found in two
forms, either as membrane bound B cell receptors or the secreted effector molecules known as
antibodies (Hoffman, 2015). Antibodies bind foreign peptides, glycans, and proteins mediating the
adaptive immune response by circulating throughout the body and adhering to their specific
antigen, thus allowing it to be cleared from circulation (Kirkeby, 2000). In this thesis, I will
describe the ternary nature of antibody/antigen interactions and how antigen-distal residues
contribute to binding affinity, especially in the context of antibody affinity maturation. This first
chapter discusses the mechanisms through which the immune repertoire gains diversity, revolving
around the mechanisms that produce antibodies and allow B cells to proliferate. I will introduce
HIV as a means through which we can better understand affinity maturation. Finally, 1 will
describe technologies used to explore the relationship between conformational entropy and
antibody affinity maturation.

The second chapter of this thesis focuses on techniques for identifying the mechanisms
through which non-contact residues contribute to affinity maturation. Prior to my work, dozens of
studies had identified the heavy chain/light chain (HC/LC) interface as the primary mediator of
the geometry of the paratope (Chailyan, 2011; Masuda, 2006; Hsu, 2014; Dunbar, 2014).

Additionally, several studies have attempted to predict the range of motion through



computationally expensive means, and many others have sought to identify a single heavy chain —
light chain orientation for any given sequence (Bujotzek, 2016; Marze, 2016; Dunbar, 2013). Here,
I utilize a novel pipeline that pairs the Rosetta modeling suite with antibody orientation analysis
software to interrogates—how the composition of the HC/LC interface affects thermodynamic
stability and range of HC/LC orientations. In the final chapter, I discuss the results and the
thermodynamic implications. I propose several experiments to complement the work presented in

this thesis, inform the development of future technologies, and aid engineering endeavors.

Introduction to Antibodies

In humans, B cells begin their development in the bone marrow and complete their
maturation in the spleen. This development is delineated by marked changes in surface phenotype,
levels of gene expression, and the generation of a unique immunoglobulin molecule comprised of
a heavy chain and light chain (HC and LC) (Hardy, 2001). In the bone marrow, hematopoietic
stem cells (HSCs) in the bone marrow differentiate into multipotent progenitor cells, then to
lymphoid progenitor cells, which receive signals from bone marrow stromal cells and begin B cell
development.

Lymphoid progenitor cells become early pro-B cells by beginning the rearrangement of the
heavy chain diversity (D) and joining (J) segments, leaving the heavy variable (V) and all light
chain gene segments remain in their unrearranged configuration (Allman, 1999). The V(D)J
recombination process continues in late pro B cells, which appends a Vu gene segment to the
partially rearranged gene to form a fully functional HC gene (Nutt, 1999). A successful V(D)J
recombination results in the synthesis of the heavy chain and tested for functionality by binding to

the binding immunoglobulin protein (Bip) in the endoplasmic reticulum (ER) (Fritz, 2011). This



step of the selection process ensures that the heavy chain folds correctly; nascent heavy chains that
fail to bind Bip become targets for degradation, while successful heavy chains associate with a
surrogate light chain formed by the VpreB and AS proteins, which displace Bip from the Cul
domain, causing that domain to fold (Taduchi, 2018). At this juncture, they are classified as large
pre-B cells and express the rearranged HC alongside the proteins VpreB and A5, which act as a
surrogate light chain, on their surface (Mains, 1983). This trimer, known as the pre-BCR complex
(Zhang, 2004), signals the cell to undergo several rounds of proliferation.

The subsequent daughter cells, known as small pre-B cells, then rearrange V and J
segments to form light chains. The pre-BCR complex is internalized, and the newly formed light
chain replaces the surrogate light chain (Allende 2010). The newly formed B cell receptor, or BCR,
is expressed on the surface of the B cell, and the cell is tested for tolerance. Stromal cells and
hematopoietic cells express self-antigen on their surface; immature B cells that do not interact with
self-antigen are allowed to leave the bone marrow and circulate through the blood, the lymph, and
secondary lymphoid organs (SLOs) like lymph nodes and the spleen (Fritz 2014). Immature B
cells that bind self-antigen are retained in the bone marrow and undergo receptor editing. Binding
to self-antigen signals the B cell to maintain production of the RAG complex (Teigs, 1993). The
B cells halt the production of the old light chain, continue VJ recombination to form a new light
chain, attempt to form a functional BCR, and are tested against self-antigen again. This process
continues until either a new, functional BCR is produced and the B cell avoids interaction with
self-antigen, or all light chain VJ rearrangements are exhausted and the B cell undergoes apoptosis
(Luring Prak, 2011). Additionally, B cells that bind to soluble self-antigen cease their development
and become anergic. Anergic cells no longer continue to express functional BCR and die shortly

after. These two tolerance mechanisms are known as “central tolerance” as they occur in the bone



marrow (Nemazee, 2017). After leaving the bone marrow, B cells may encounter soluble-self
antigen. Upon recognition of self-antigen, auto-reactive B cells become anergic. This mechanism
is known and “peripheral tolerance”, as it occurs outside of the bone marrow in the periphery
(Pelanda, 2012). When immature B cells leave the bone marrow, they begin to circulate through
secondary lymphoid organs, blood, and the lymph. Upon entering the lymph node, B cells are led
into primary lymphoid follicles by a gradient of chemokines where they interact with follicular
dendritic cells and are stimulated with BAFF, which ensures survival of the B cell and completes
the development process (Beyer, 2008). Secondary lymphoid organs also house sites where these
mature, naive B cells are introduced to their specific antigen. Antigen from infected tissue migrates
to SLOs and either freely circulates or is presented on follicular dendritic cells (Janeway, 2001). B
cells specific for this antigen bind to and internalize it, processing it for presentation to T cells that
have T cell receptors specific to the same antigen. Interaction with T cells completes the activation
process causing the B cell to proliferate undergo somatic hypermutation, which I will discuss in

the next segment.

Antibody Diversity
As one might imagine, recognition of a virtually unlimited number of foreign pathogens
and particles requires an incredible amount of antibody diversity. This diversity is determined
through four mechanisms. First, during B cell development the immunoglobulin domains are
assembled through a process called somatic recombination (Arya, 2018). The variable domains
are pieced together from gene segments called the variable (V), diversity (D), and joining (J)

segments. The heavy chain is assembled by combining a segment from each of the V, D, and J,



genes, whereas the light chain contains only V and J fragments (Figure I.1). The heavy chain is
encoded by one each of 69 VH, 27 DH, and 6 JH gene segments (Lefranc, 2001).

The second mechanism of diversity occurs during V(D)J recombination as a result of
junctional diversity (Alt and Baltimore, 1982). Here, diversity is generated through the removal of
nucleotides at the recombination site and subsequent repair to join the segments (Jeske, 1984).
These genes have specific sequence motifs adjacent to them called Recombination Signal
Sequences, or RSSss. A protein complex containing RAG1 and RAG2 bind specifically to these
RSS motifs. The RAG protein complexes bring the the gene segments together and introduce nicks
in the dsDNA, cleaving the DNA at the junction which creates hairpin at the end of the gene
segments (Jones and Gellert, 2004). Cleavage of the hairpin leaves one side of each gene with a
single strand of DNA — an overhang known as Palindromic nucleotides (stemming from the pattern
of nucleotides left in the overhang) (Lafaille, 1989). The enzyme terminal deoxynucleotidyl
transferase (TdT) processes these overhangs, inserting up to 20 non-templated nucleotides (Figure
I.1) into the cleaved junctions (Motea and Berdis, 2010). While the exact mechanism through
which ligation occurs is still unknown, DNA ligases, protein kinases, and the Artemis nuclease are
incorporated into the RAG complex to join the ends of the gene segments together (Malu, 2012).
As the name implies, junctional diversity is limited to the junctions formed during recombination.
This in turn only generates diversity for the V(D)J junctions, which comprise the CDR3s of both
the heavy and the light chains (LeFranc, 2011).

The third mechanism of antibody diversity occurs with heavy chain — light chain pairing,
as the light chain is derived from either kappa or lambda genes (Smith, 2016). This light chain
diversity is generated through 31 IGKV genes, 5 IGKJ genes, 45 IGLV genes, and 7 IGLJ genes

(Lefranc, 2011). While in theory the number of potential light chains (470) when multiplied by the



number of potential unique heavy chains (~11,000) gives a total of around 5.2 x 10° unique V(D)J
HC/LC combinations, the reality is that the combinational diversity may not contribute as much to
diversity as expected. Many studies have shown that Vy gene usage can be restricted during
infections, and the heterodimeric form that antibodies inhabit provides a means to bind engage a
wide variety of antigens, but even if the response were completely random, it is constrained to the
immunoglobulin fold by selection mechanisms during B cell development (Wang, 2013).

To compensate for this, additional diversity is garnered through a processes known as
somatic hypermutation (SHM), also known as affinity maturation (Maul, 2010), and antibody
1sotype switching. After B cell activation via antigen recognition and T cell interaction, the enzyme
activation-induced cytidine deaminase, or AID, induces point mutations and causes a spike in the

rate of mutation by a factor of one million. AID deaminates cytosine nucleotides to uracil, which

V gene D gene J gene

—hGEGTFETAT— .. .GTGCAC =A€€ GGA..GTT =6F6 AGGCCA... =rechArkaEmmr—

e | N

...GTGCAC GGA...GTT AGGCCA...
AW ATCCAT S AN

Non-templated nucleotides Non-templated nucleotides

...GTGCAC ATCCAT GGA..GTT TTAGTA AGGCCA...

Figure I.1. Junctional diversity is generated during V(D)J recombination. Cartoon
representation junctional diversity in naive B cells.. The heavy chain is built by recombining V
(blue), D (green), and J (purple) segments. Cleavage of the RAG-mediated hairpin loops leaves
palindromic residues, shown in grey. TdT adds a series of random, non-templated nucleotides
(orange) at the junction of each cleaved segment. The segments are ligated together and
translated, resulting in an antibody with random amino acids in the VDJ junctions.



causes a uracil-guanine mismatch (Maul 2010). The mechanism through which this results in an
error-prone mismatch is still not fully understood (Baretto and Magor, 2011). The DNA is then
replicated, and the cells begin to divide. This population of B cells expresses these mutated BCRs
with arange of affinity for any given target and has undergone class switching. During proliferation,
these genomic rearrangements result in the expression of IgA, IgG, or rarely, IgE isotype
antibodies, each of which possesses unique characteristics, function, and structure (Stavnezer,
2004). Activated B cells in follicles change the morphology to secondary follicles containing
specialized SLO regions called “germinal centers” (Banerjee, 2016). In germinal centers, B cells
that have undergone SHM and class switching continually compete for the antigen presented on
FDCs, causing the activation cycle of proliferation and inclusion of mutations to continue
(Janeway, 2001). This process can last for weeks, and selects for the BCRs with the highest affinity
for their antigen. Some of the surviving B cells migrate to other host SLOs or return to the bone
marrow, where they differentiate into plasma cells and secrete high affinity antibody (Chang, 2015),

while others become resting, memory B cells that maintain a high affinity BCR (Budeus, 2015).

Antibody Structure
The most common of circulating antibodies is the IgG isotype, which is a homodimer that
consists of four polypeptides — two heavy chains, each of which is bound to each other, and
identical light chains (Figure 1.2). The general structure of an IgG molecule can be divided into
three segments: The fragment crystallizable (F.), which contains only the constant regions of the
two heavy chains; the fragment antigen-binding (Fav) which contains the variable domain of the
heavy and light chain, as well a constant domain for each of the chains; and the fragment variable

(Fv), which consists of the variable domains for a heavy chain and it’s light chain. This work



centers around the Fv region, which consists of two immunoglobulin folds named VH & VL, each
of whom is made up of a pair of  sheets (Figure 1.3). These are built of antiparallel B strands that
surround a central hydrophobic core, while VH-VL regions are held together by a series of
hydrophobic interactions and sparse hydrogen bonds. The properties inherent to the fold allow for
loops to be present at each end (Bork, 1994). Both the heavy and light variable domains contain
the complementarity-determining regions — CDRH1, CDRH2, and CDRH3 for the heavy chain
and CDRLI1, CDRL2, and CDRL3 for the light chain (Schroeder, 2010). Together, these six loops
are largely responsible for binding to and recognizing foreign targets or “antigens” (Dondelinger,

2018).

Figure 1.2 IgG molecules are homodimers of heterodimers. Cartoon representation
of a human IgG molecule. The heavy chain is shown in dark grey, the light chain is shown in
light grey. The paratope is shown in blue and red in the Fy region for the light chain and heavy
chain, respectively.



PDB ID - 3SM5

Figure 1.3. Structure of the Fy region. Cartoon representation of the CH65 variable
region (PDB 3SM5). The heavy chain is shown in dark grey (left), the light chain is shown in
light grey (right). CDRH1-3 are shown in red from light red to dark red, and CDRL1-3 is shown
in blue from light blue to dark blue, respectively. This representation was reconstructed using
PyMol (DeLano, 2002).

Introduction to HIV

The HIV pandemic is a devastating and potentially incurable global health risk. Since the
discovery of Human Immunodeficiency Virus as the causative agent of Acquired
Immunodeficiency Syndrome, or AIDS, roughly 35 million people have died AIDS-related deaths
(UNAIDS,2017). In 2017, it was estimated that 36.9 million infected people were living HIV in
2017, two-thirds of whom do not have access to antiretroviral therapy (UNAIDS, 2017). Nearly
2.0 million people previously uninfected people contracted the virus last year, and 940,000
individuals died AIDS-related deaths (UNAIDS, 2017). The virus is spread through unprotected

sexual contact and the bodily fluids associated with it, from mother to child through breastmilk
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and contact with blood during childbirth, and through penetration of the skin or contact with
mucosal membranes by HIV contaminated materials (such as used needles).

HIV is an enveloped retrovirus with a positive strand single-stranded RNA. The virus
infects human CD4" T cells, macrophages, and dendritic cells with its Env glycoprotein. Cell entry
centers around the CD4 receptor and a co-receptor, either CCRS or CXCR4. The envelope
glycoprotein forms a trimeric protein called gp160, which contains a transmembrane domain, a
series of highly glycosylated, highly variable loops named V1-V5, and the CD4 binding site. In
functional virions, gp160 is cleaved into to parts. The first, gp120, is highly glycosylated, contains
the variable loops V1-V5, and the CD4 binding site. This protein is responsible for cell adhesion

(Figure 1.4) and initiates a conformational change after binding host CD4 that allows it to interact

Binds CD4

—— .
Membrane fusion

CCR5 or CRCX4

CD4* T-helper cell / Virus empties
contents into

cell

Figure 1.4. HIV mechanisms of entry. HIV gp120 (purple) binds host CD4 (red) and
undergoes a conformational change that allows it to bind to host-co receptor CCRS or CRCX4.
This change brings gp41 into close proximity with the cell membrane, and initiates
gp4Imachinery involved in membrane fusion. The viral genome and associated proteins enter
the cell. Created using Microsoft PowerPoint.
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with the host co-receptor (Wilen, 2012). The second product of cleavage, gp41, contains the
transmembrane domain and mediates membrane fusion. Like all retroviruses, HIV encodes a
reverse transcriptase to create double stranded DNA from its RNA genome This newly synthesized
dsDNA genome is eventually integrated into the host genome using integrase, an enzyme that aids
the insertion of the viral DNA. HIV maintains a mutation rate of (4.1 = 1.7) x 1073 per base per
cell, which is higher than any reported rate for a virus (Cuevas, 2015). Because of this, the initial
antibody response to an HIV infection is highly mutated and polyreactive (Liao, 2011), though
typically incapable of neutralizing virions. Occasionally, either through the polyreactivity
generated by the initial response or random association and continued somatic hypermutation
(Mougquet, 2010), antibodies are generated against the HIV CD4 binding site (CD4BS). Broadly
neutralizing antibodies to the HIV CD4BS can prevent infection in cells as they target the primary
site associated with cell entry. Recent clinical studies have shown that some broadly neutralizing
antibodies have the potential to protect against infection or suppress viremia (Scheid, 2016; Bar-
on, 2018). These antibodies bind by mimicking host-CD4; the immunoglobulin fold of the heavy
chain is strikingly similar to that of host CD4, and uses part of the framework region to interact

with the CD4 binding loop (Zhao, 2010) (Figure L5).
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CD4-
binding
loop

L Asp368gp120
CDR H2
]
-
Arg59coa b _____
( N\
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LA
=

D

Q
Model of VRCO1
heavy chain
aligned to CD4-
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e 2

VRCO1

Figure 1.5. Structural mimicry of CD4 interaction by antibody VRC01. VRCO01
shows how a double-headed antibody can mimic the interactions with HIV-1 gp120 of a single-
headed member of the immunoglobulin superfamily such as CD4. A) Comparison of HIV-1 gp120
binding to CD4 (N-terminal domain) and VRCO1 (heavy chain-variable domain). Polypeptide chains
are depicted in ribbon representation for the VRCO1 complex (right) and the CD4 complex with the
lowest gp120 RMSD (left). The CD4 complex (3JWD) is colored yellow for CD4 and red for gp120,
except for the CDR-binding loop (purple). The VRCOI complex is colored as in Fig. 1.
Immunoglobulin domains are composed of two B-sheets, and the top sheet of both ligands is labeled
with the standard immunoglobulin-strand topology (strands G, F, C, C’, C”). B,C) Interface details
for CD4 (B) and VRCO1 (C). Close-ups are shown of critical interactions between the CD4-binding
loop (purple) and the C” strand as well as between Asp368gpl120 and either Arg59CD4 or
Arg71VRCO1. Hydrogen bonds with good geometry are depicted by blue dotted lines, and those
with poor geometry in gray. Atoms from which hydrogen bonds extend are depicted in stick
representation and colored blue for nitrogen and red for oxygen. In the left panel of C, the f15-strand
of gp120 is depicted to aid comparison with B, though because of the poor hydrogen-bond geometry,
it is only a loop. D) Comparison of VRCO1- and CD4-binding orientations. Polypeptides are shown
in ribbon representation, with gp120 colored the same as in (A) and VRCO1 depicted with heavy
chain in dark yellow and light chain in dark gray. When the heavy chain of VRCO1 is superimposed
onto CD4 in the CD4- gp120 complex, the position assumed by the light chain evinces numerous
clashes with gp120 (left). The VRCO1-binding orientation (right) avoids clashes by adopting an
orientation rotated by 43° and translated by 6-A. Adapted from (Zhao, 2010).
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The Rosetta Software Modeling Suite

The Rosetta software modeling suite is a collection of computational tools designed to
create biologically relevant protein models and simulate their interactions with other proteins,
peptides, small molecules, and DNA. The Rosetta energy function estimates in silico the total free
energy of the complex and also the binding free energy of an antibody. Rosetta includes tools to
construct comparative models for antibodies and antigens of interest. One of the most commonly
used applications of Rosetta is prediction of the structure of a complex between antibody and
antigen via docking. This application samples all possible interactions between the two protein
partners to identify the biologically relevant interface (Weitzner, 2017). It simultaneously
optimizes the conformation of the bound state. The docking algorithm is Monte-Carlo based, and
starts with a centroid-mode stage to interrogate the potential docking poses and is followed by an
all-atom refinement stage intended to optimize the docked pose and side chain conformations
(Gray, 2003), though the flexibility of the docking application allows for either of those steps to
be enacted individually. The protocol used for docking is determined by the user, and can be either
local or global. In global docking Rosetta randomly orients the two partner proteins; this method
is particularly useful when little biological information is known. Alternately, the application can
initiate local perturbations, which assumes the pose provided in the input PDB file is close to
optimal, and restricts the movements to small perturbations.

One of Rosetta’s most notable successes is the design of Top7, a 93 residue protein with a
topology previously undiscovered in nature (Kuhlman, 2003). The RosettaDesign algorithm
identifies the lowest-energy sequence for any given target structure by iteratively alternating
between optimizing the sequence for a static backbone and energetically minimizing the backbone

to accommodate the new sequence. Each designable position samples every amino acid (provided
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that the user does not limit this) using rotamers from the Dunbrack library (Dunbrack and Karplus,
1993). This robust process can be applied in several ways; common applications of this algorithm
include the redesign of existing interfaces to alter specificity and deriving the optimal sequence
for any given structure. In the following sections I review the Rosetta methods critical for the

research I performed in my thesis, centering around docking and design.

Rosetta Energy Function and Relax Protocol

Since its onset, the Rosetta protein modeling suite has been employed to inform a variety
of biological studies. Rosetta has been used to successfully design Top7, a 93 residue protein with
a topology previously undiscovered in nature (Kuhlman, 2003), redesign protein interfaces for
altered specificity (Lewis, 2013), engineer small antibody-mimetic proteins against viral proteins
(Fleishman, 2011), determine the structure of proteins from sparse experimental data (Thornburg,
2013; Wang, 2016; Sangha, 2017), create comparative models of antibodies (Weitzner, 2014), and
determine the antibody-antigen interface via docking (Weitzner, 2017). These feats are achieved
using the Rosetta energy function, which is responsible for scoring the models generated by the
aforementioned applications. This energy function is derived from the statistical distribution of
geometric parameters in proteins whose structure is known (knowledge-based) and, in some
instances, physics-based potentials (Alford, 2017). This is known as a knowledge-based energy
function, as it’s score terms are generated by analyzing experimental data. The total energy of a
system 1is calculated as a linear combination of van der Waals interaction, hydrogen bonds,
solvation using an implicit water model, electrostatic interactions, among a number of additional
terms (Leaver-Fay, 2013). Over the decades the scoring function has been succeeded by a series

of incarnations, each derived from and designed to more closely resemble the ever-growing
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collection of experimental data generated by the scientific community. This is made possible by
the continued efforts of the Rosetta community; Rosetta is co-developed by over 50 laboratories
around the world, comprised of protein engineers, structural biologists, computational biologists,
computer scientists, and experimental biologists.

For many applications, computational modeling using Rosetta centers around modifying a
naturally occurring protein backbone structure to accommodate new interactions, create new
functional sites, or alter biological activity (Nivon, 2013). Although Rosetta energy functions are
constantly being improved, experimental input protein structures almost always have regions that
are in a sub-optimal conformation according to the Rosetta energy function. This could be because
of inaccuracies in the energy function or in the input structure. Regardless, such frustrations must
be removed prior to docking or designing a protein to avoid artefacts in the calculation. For this
reason, it is often necessary to energetically minimize an input structure. This energetic
minimization, known as “relax”, explores the immediate conformational space — iteratively
optimizing the sidechain interactions and backbone angles of the protein (Figure 1.6B) (Tyka,
2011). These small structural changes are made stochastically and evaluated using the all-atom
energy function with the aim of identifying the lowest free energy conformation (Figure 1.6A).
This protocol has been shown to both lower the overall energy of a Rosetta model (Bradley, 2005;
Conway, 2014) and improve low-resolution crystal structure by refining interactions to more

closely mirror nature (Bender, 2016).
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Figure 1.6 An overview of Rosetta energetic minimization and all-atom refinement via the
relax protocol. (a) Simplified energy landscape of a protein structure. The relax protocol
combines small backbone perturbations with side-chain repacking. The coupling of Monte
Carlo sampling with the Metropolis selection criterion36 allows for sampling of diverse
conformations on the energy landscape. The final step is a gradient-based minimization of all
torsion angles to move the model into the closest local energy minimum. (b) Comparison of
structural perturbations introduced by the repack and minimization steps. During repacking, the
backbone of the input model is fixed, whereas side-chain conformations from the rotamer
library33 are sampled. Comparison of the initial (transparent yellow) and final (light blue)
models reveals conservation of the R135 rotamer but changes to the R11 and E15 rotamers.
Minimization affects all angles and changes the backbone conformation. Adapted from (Combs,
2013).
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Antibody Comparative Modeling including RosettaAntibody Server

High-resolution comparative modeling is crucial for biological engineering applications
for which no crystallographic structure is readily available. Comparative modeling in antibodies
merges three distinct protocols. The first, called “threading”, involves identifying homologous
antibody frameworks from existing crystal for a target sequence and aligning a target sequence to
that structure. The framework regions are highly conserved across antibodies, which aids the
production of biologically relevant models. Rosetta assesses the extent to which the sequence fits
that structure. The next step involves grafting non-HCDR3 complementarity determining regions
are grafted onto the framework regions. Previous studies have characterized the CDRs found in
known antibody structures in an effort to identify patterns in loop structure (Al-Lazikani, 1997,
North, 2011). Using a dataset of over 300 non-redundant antibody structures, North et al. found
that 85% on non-HCDR3 CDRs can be assigned to one of 72 clusters. Comparative modeling
protocols leverage the ordered, canonical nature of the non-HCDR3 CDRs, grafting loops from
other known structures onto the models based on the desired length and sequence. Unlike the other
CDRs, the HCDR3 does not inhabit “canonical” structures, and is often modelled using a de novo
approach. These methods often employ a modified kinematic closure (KIC) method, which
calculates the all of the conformations for the 6 torsion angles of a peptide chain, and samples N-
Ca-C bond angles (Mandell, 2009) (Figure 1.7). Recently, this modeling method has been paired
with HC/LC docking in an effort to modify the HC/LC orientation of the models, thus allowing
the HCDR3 to sample conformations across a spectrum of orientations (Sivasubramanian, 2009).
In an effort to streamline this process, several labs have generated optimized, standalone

algorithms or protocols that can produce comparative models (Adolf-Bryfogle, 2018; Norn, 2017)
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given when amino acid sequences for the heavy and light chain, the most notable of which is the

ROSIE webserver which houses the RosettaAntibody methodology (Sivasubramanian, 2009).

Rosetta antibody docking
While the generation of structurally accurate comparative models in informative, their
significance is dependent on establishing how they interact with antigen. High-resolution

antibody/antigen co-crystals provide insight into the molecular determinants of binding and
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Figure 1.7 Loop reconstruction with KIC. (a) In the KIC move, 3 Ca atoms of an N-
residue chain are designated as pivots (green spheres); the remaining N — 3 are non-pivot Ca
atoms (cyan spheres; left). In a 12-residue loop, 24 torsions are modeled. Non-pivot torsions
are sampled from a residue type-specific Ramachandran map, opening the chain (middle). KIC
then finds all values for the pivot torsions that close the loop, if any exist, keeping the endpoints
fixed (right). The previous state is shown in outline. (b) Performance of the Rosetta KIC
protocol and standard protocols on a 12-residue loop (Protein Data Bank (PDB): 1srp). Only
KIC densely sampled regions < 1.0 A r.m.s. deviation from the crystallographic loop. Asterisks
mark the lowest-scoring reconstructions from the two methods. The Rosetta all-atom score
includes the enthalpy plus the solvation contribution to the entropy but not the configurational
entropy. (c) The lowest scoring reconstructions from b are shown. KIC improved reconstruction
accuracy to 0.6 A from 2.6 A using the standard protocol. Figure adapted from (Mandell, 2009).
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neutralization, which in turn informs vaccine design and the development of therapeutic antibodies.
Occasionally, experimental methodology fails to produce a viable antibody/antigen co-crystal; the
discovery of novel antibody/antigen interactions and the subsequent elucidation of a viable
structure of the interaction is limited in throughput, and not all antibody/antigen interactions
produce viable, high-resolution structures. In these circumstances, protein-protein docking can be
used to predict the biologically relevant interface. This method, previously described in detail, was
developed to extensively sample potential interactions between two proteins. Although de novo
prediction of protein-protein interactions is difficult, antibodies interact with antigens using a
limited set of loops and framework regions — the epitope may still need to be determined, but the
sample space concerning the paratope is relatively limited. This process is greatly enhanced by the
inclusion of known experimental data; the Rosetta docking algorithm has been successfully used
to dock an anti-dengue antibody using NMR to limit search space to the predicted epitope
(Simonelli, 2013), predict the epitope and binding orientation of de novo modeled anti-inflenza
proteins against a conserved epitope (Fleishman, 2011), and determine the antibody-antibody,

idiotype-anti-idiotype complex by conserving known interface contacts (Vangone, 2014).

Rosetta multi-state and germline polyspecificity
During somatic hypermutation, antibodies gain mutations that either directly increase
binding affinity to a target by adding complementary interactions (increasing the enthalpic gain)
or pre-configure the paratope for binding (mitigating entropic loss). As described earlier in the
introduction, one of the defining features of the human antibody repertoire is its ability to recognize
an astonishing number of pathogens with a limited number of unique antigen-naive BCRs;

germline antibodies are polyspecific, and add diversity to our immune system through
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conformational flexibility. The polyspecificity of germline-encoded antibodies can be
recapitulated using a Rosetta design application termed “multi-state design”. Where traditional
design optimizes the sequence for a single antibody that binds a specific target, multi-state design
can be used to design an antibody that binds to multiple targets simultaneously (Leaver-Fay, 2011).
Using this method, Willis et al. showed that in contrast to antibodies that have accumulated
mutations during affinity maturation, germline-gene encoded antibodies are inherently better
suited for polyspecificity (Willis, 2013). The authors selected three mature antibodies each
targeting a different antigen but derived from Vy 5-51, and sought to design the antibodies against
the three antigens simultaneously. The germline sequence was favored when binding to multiple
antigens was a requirement of the design (Figure L.8). Additionally, the positions that were
reverted to the germline residue during the simulation showed greater deviation in their phi-psi
torsion angles when compared to the mature residues — an indication that the germline sequence is

inherently more flexible.

Rosetta design recapitulates antibody maturation

In contrast, the RosettaDesign algorithm provides a means to improve upon antibodies, and
given the stochastic nature of both antibody affinity maturation and “design”, sufficiently
recapitulate somatic hypermutation. The study performed by Willis et al. concerning germline
residues also revealed that allowing Rosetta to design somatically mutated positions often returned
the residue of the mature antibody (Figure 1.8) (Willis, 2013). While somatic mutations incurred
in vivo might be optimal at their respective positions for a particular interaction, the variable nature
of antibodies means that some known antibody/antigen interactions are potentially sub-optimal

and therefore prime targets for in silico maturation. Willis et al. re-designed the HCDR3 of PG9,
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an anti-HIV antibody with secondary structure in the HCDR3 (Willis, 2015). The authors used
Rosetta to re-design the HCDR3 loop in order to identify variants with an increased affinity to the
V1/V2 loops. While the majority of the HCDR3 residues were recovered in sequence (an
indication that these residues were already optimal), the authors isolated a variant that
demonstrated increased potency and neutralization of HIV by altering a single residue. Sevy et al.
employed multi-state design to redesign the HCDR3-mediated, anti-influenza antibody C05 with
increased potency and breadth across strains (Sevy, 2019). The resulting variants exhibited
improved binding affinity and an increase of breadth with respect to the binding profile of CO5.
These studies demonstrate how the RosettaDesign algorithm, in conjunction with stochastic
mutations and a robust energy function, can both mimic somatic hypermutation in antibodies and

continue where it left off.
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Figure 1.8 Multi-state designs toward the germline sequence, single-state to mature
sequences. Antibodies encoded by the same inferred germline Vy gene preferred germline
sequences when considered in the multi-state design, inferring a more flexible combining site.
(A) The bar graph shows the bit-score for each of the three different inferred germline groups
and then the sum of the scores in a grouped bar. A perfect design would have a normalized bit-
score of 1.0, and summated score of 3.0 for three germline groups. Multi-state design preferred
germline sequences for all complexes, while in contrast single-state design preferred mature
sequences (p<0.0001). (B) The change in bit-score is determined to be the proclivity to either
the mature (positive score) or the germline (negative score) sequence. Each complex was
assigned a change in bit-score. The change in proclivity between design protocols was
significant (p<0.0001). (C) Each complex was scored against mature and germline sequences
and a difference was calculated (Abit-score). Positive numbers returned showed a proclivity
towards mature sequences, while a negative score suggested a design toward germline. A tight
correlation was observed (r>=0.8263) for the in silico predicted optimization for specificity
versus polyspecificity (Abit-score) and the in vivo maturation process (plotted as the mutation
percentage away from Vy gene sequence). Adapted from (Willis, 2013).
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Computational derivation of HC/LC relative orientation

The relationship between the amino acid composition and the relative orientation between
heavy and light chain remains a point of interest among both computational biologists and antibody
engineers. Many previous studies have indicated that the interface between the heavy and light
chain determines the geometry of the paratope, and the relative orientation between the two
domains may act as an additional form of antibody diversity in naive B cells (Chothia, 1985;
Davies and Metzger, 1983; Stanfield, 1993). While each of these studies pointed out the
importance of the relative HC/LC orientation , they were unable to identify the determinants of
orientation. Early attempts at describing the HC/LC orientation from crystal structures ranged from
calculating a single packing angle (Abhinandan, 2010) to deriving four angles that account for
various metrics (Marze, 2016). Dunbar et al. developed software known as ABangle, which
calculates HC/LC orientation from the six degrees of freedom generated by the association of two
proteins (Figure 1.9D). ABangle uses consensus domains generated from structurally invariant
positions across all antibody crystals — these positions were the most conserved in relation to one
another, and provide the basis for the rest of the ABangle calculations (Figure 1.9A). This method
provides the greatest description HC/LC orientation as it accounts for all of the degrees of freedom
associated with the orientation of two rigid-body objects, and is the basis for the angle calculations

in Chapter II.
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Figure 1.9. Construction of consensus domains. A) Superposition of 30 representative
VH (green) domains showing the coreset positions (spheres) and the eight positions (red), 240
coordinates sets, used to generate the VH plane. In cyan is the corresponding image for VL. B)
The average coreset positions (consensus structure) and VH and VL reference planes aligned to
the antibody Fv 1B4] HL. C) Calculation of vector C, which runs through the points on the VH
and VL reference planes that have the most conserved distance over the 351 Fv structures in the
non-redundant set. D) Our coordinate system mapped onto 1B4J HL. H1 and H2 are vectors that
are parallel to the principal components used to create the VH reference plane in (B). L1 and L2
are similarly defined for VL. Adapted from (Dunbar, 2013).
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Significance

Previous studies have inferred that non-contact residues contribute to overall binding
affinity and activity of HIV antibodies, however they were not focused on the unique role of heavy
chain/light chain interactions in governing binding affinity or the thermodynamic implications
behind such a mechanism (Klein, 2013). In this work I apply a novel pipeline to observe and
interpret the changes in orientation that can be attributed to mutations in the HC/LC interface by
computational modeling and docking. The models generated for the HC/LC interface reversion
exhibited a shift in the range of HC/LC orientations sampled during docking, which is consistent
with the concept of mutations in the HC/LC interface as a means of mitigating entropic loss upon
binding and increasing the enthalpy for the bound conformation. The results show that highly
mutated HIV-specific CD4 binding site antibodies achieve unusual orientation features that are
distinguishable from most human antibody heavy chain/light chain orientations in order to bind
their epitope and that mutations in the HC/LC interface govern the overall orientation of the CDRs
by modulating the range of accessible orientations.

The mechanisms involved in B cell development and subsequently in affinity maturation
require a conserved HC/LC interface in order to achieve HC/LC pairing. As previously described
in the introduction, B cells undergo somatic hypermutation, incorporating random mutations in
their BCRs in order to increase the affinity of their receptors for antigen and compete for survival.
Traditionally, mutations in the HC/LC interface have been seen as disruptive to the aforementioned
process, as they may prevent efficient HC/LC pairing (Koenig, 2017). The work presented in this
thesis challenges this conventional notion of antibody affinity maturation. The findings show that

antigen-distal somatic mutations in the HC/LC interface indirectly affect binding affinity through
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mitigation of entropic loss and pre-configuration for the bound conformation of the antibody, and
extends the known molecular determinants of antibody/antigen binding and neutralization to
include non-contact residues, thus discerning an additional mechanism through which binding
affinity is mediated.

Additionally, while an increasing number of co-crystal structures become available, it is
still unknown whether the antibodies in complex are optimal in sequence and structure in terms of
affinity for the target. The work defined in this thesis suggests that antibodies devoid of mutations
in HC/LC interface can be improved using their bound conformation as a template for in silico
affinity maturation. The studies defined in chapter II and those proposed in chapter III are of critical
importance to antibody engineers that design high affinity interactions and computational

biologists looking to create stable proteins.
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CHAPTER IT
Role of antibody heavy and light chain interface residues in affinity maturation of binding

to HIV envelope glycoprotein

Adapted from Cisneros 3rd A, Nargi RS, Parrish EH, Haliburton CM, Meiler J, Crowe Jr. JE.
Role of antibody heavy and light chain interface residues in affinity maturation of binding to

HIV envelope glycoprotein. Mol. Syst. Des. Eng., 2019; Advance Article

Author contributions: I designed and ran all the experiments outlined in this chapter under the
mentorship of James Crowe and Jens Meiler. I analyzed all of the data with my mentors and created

all of the figures presented in this chapter.

Abstract

The Fv region of an antibody consists of the heavy chain (HC) and light chain (LC) variable
domains whose association is maintained by a series of conserved, non-polar interactions. During
chronic infections, somatic mutations are induced, often in the HC/LC interface. Sequence
variation in these interactions allows the HC and LC domains to inhabit a range of orientations
relative to one another. Thus, we hypothesize that these interface mutations are critical to orient
and rigidify the HC/LC interface to arrange the paratope for optimal interaction with the antigen,
thereby affecting antigen binding affinity allosterically. To test this hypothesis, we measured the
HC/LC orientation of a set of broad and potent human HIV neutralizing antibodies. The HC/LC

interface of these antibodies contained a large number of mutations and achieved unusual relative
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orientations compared to other human antibodies. We expressed and characterized a panel of
recombinant HIV CD4 binding site antibodies as the fully matured variant and compared these
with variants mutated to the HC/LC interface of the inferred unmutated common ancestor
antibody. We found that HC/LC interface reverted antibodies have a reduced affinity, confirming
that introduction of somatic mutations in the HC/LC interface was one of the critical steps in
affinity maturation. We then used the Rosetta software suite to examine the mechanisms through
which these mutations affect binding affinity. We determined to what extent the mutations were
critical in altering the relative orientation of HC/LC domains to a conformation that is competent
to bind the antigen. We further determined whether the mutations excluded alternative HC/LC
conformations that would be incompetent to bind the antigen. These findings suggest that somatic
mutations in the HC/LC interface, distant from the antigen/antibody contact region, play a critical
role in affinity maturation of HIV antibodies by preconfiguring the bound conformation of the
antibody in the orientation required for high affinity recognition of the antigen. Thus, optimization
of HC/LC interface could serve as an important tool for maximizing antibody/antigen binding

affinity without altering antigen contact residues.

Introduction

The adaptive immune response (occasionally referred to as the “acquired immune
response”), is the mechanism through which humans eliminate both bacterial and viral infections
(Alberts, 2002) The strength of the adaptive immune response lies in its ability to recognize a vast
number of foreign pathogens given a limited number of gene segments and options for gene
segment recombination (Koonin, 2015). Prior to B cell activation, the diversity of the antibody

repertoire is generated by V(D)J gene segment recombination (Roth 2014); using 69 Vu, 27 Dy,
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and 6 Juy gene segments, the immune system generates over 11,000 unique VDJ recombination
events for the heavy chain alone. Taking into account the 31 IGKV genes, 5 IGKJ genes, 45 IGLV
genes, and 7 IGLJ genes that comprise light chains in conjunction with the junctional diversity that
stems from recombination, an estimated 10'' antibodies can populate an individual’s antibody
repertoire (Glanville, 2009). These antibodies, while dwarfed in number by the theoretical possible
number of epitopes on pathogens that the immune system might encounter, provides compensatory
protection through structural flexibility. Germline antibodies that have yet to undergo affinity
maturation often are polyspecific and bind multiple targets at low affinity through a flexible
binding surface — the paratope (Willis, 2013). However, antibody/antigen complexes are ternary
structures (Sherrif, 1987). Since antibodies are formed by the combination of a heavy chain (HC)
and a light chain (LC), the complex with the antigen constitutes a three-way interaction (Figure
I1.1). This secondary interface in the Fy region of the antibody allows the variable HCs and variable
LCs to take on a wide range of orientations relative to one another and is responsible for
determining the geometry of the paratope (Chailyan, 2011; Abhinandan and Martin, 2011).
Additionally, activated B cells undergo affinity maturation — an iterative process involving
somatic hyper-mutation (Hwang, 2015), the process by which mutations are made in the rapidly
proliferating B cell, diversifying the B cell receptor, and positive selection that ultimately leads to
target-specific antibodies (Tiller, 2017). Antibodies that evolve in response to lifelong infections
like HIV are often mutated beyond what we see in transient infections (Burton, 2005); upwards of
48% of amino acids in the Vy gene for anti-HIV antibodies like VRCO1 are mutated from their
germline precursor (Georgiev, 2014). Fera et al. discerned that some anti-HIV CD4 binding-site

(CD4BS) antibodies incorporate somatic mutations in the VH-VL interface to alter the geometry

29



of the combining site, accommodating for the insertion of the HIV V5 loop (Fera, 2014) (Figure

IL.1). This change in orientation is thought to mediate breadth of binding and neutralization.
Several recent studies have shown that antigen-distal somatic mutations accumulated in the

framework regions (describe framework) of an antibody can drastically affect the breadth of

neutralization and binding affinity profile (Georgiev, 2014; Julien, 2017), though the mechanism

Figure II.1. The ternary nature of antibody/Antigen interfaces. Cartoon
representation of antibody-antigen and HC/LC interface using VRCO03 and 93THO057 gp120
(PDBID:3SES). The gp120 is shown in purple, the V5 loop is shown in yellow, the heavy chain
i1s shown in dark grey, and the light chain is shown light grey. The paratope was defined as
residues within a CB-CP cutoff of 8 A or a pair of non-hydrogen atoms within 5.5 A across the
antibody/antigen interface, and is shown in red. The HC/LC interface was defined using the
same interface parameters but excludes residues that are included in the paratope and is shown
in blue. (Explain method?)

30



through which these antigen-distal mutations increase binding affinity remains unknown.
Understanding the mechanism through which antigen-distal somatic mutations affect binding
affinity offers a new venue through which therapeutic antibodies may be improved and can aid
vaccine design. We postulate that a constrained relative orientation between the HC and LC is
needed for an antibody to engage its target with maximum affinity, as the relative orientation of
this interaction defines the geometry of the antibody paratope. We hypothesize further, that
mutations in the interface that enhance affinity of antibody/antigen interaction are introduced in
an allosteric manner during antibody maturation. We distinguish two principal mechanisms: A)
The HC/LC orientation needed to engage the antigen has an increased energy compared to the
most likely conformation in the germline antibody. Mutations in the HC/LC interface are needed
to ‘shift’ the HC/LC orientation in a binding competent conformation (Figure I1.2A). This change
largely would confer an enthalpic effect on antigen binding, stabilizing the HC/LC interface in an
orientation that allows optimal engagement of the antigen. B) In the second scenario, while the
germline antibody has its lowest free energy HC/LC orientation at the conformation needed to
engage the antigen, a large number of alternative conformations are possible. Mutations in the
HC/LC interface are needed to disfavor binding incompetent HC/LC arrangements, i.e.,
‘tightening’ of the conformational ensemble of HC/LC arrangements, thereby reducing the
entropic cost of binding by locking the HC/LC orientation in a preconfigured state optimal for
binding the antigen (Figure II.2B). This concept is consistent with our understanding that
recombined germline gene-encoded antibodies are capable of binding to a wide variety of epitopes
(Willis, 2013). We appreciate that in reality mixtures of both scenarios are not only possible but
also likely. To begin testing this hypothesis, we reverted the HC/LC interface of CD4BS antibodies

that contained a large number of somatic mutations. We then characterized the antibodies and their
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reverted counterparts. We found that mature antibodies bound to gp120 with an increased binding
affinity. We employed a structure-based computational approach to predict the amplitude of
‘shifting’, ‘tightening’, and ‘interface stabilization’, as illustrated in Figure I1.2. The models
generated for the HC/LC interface reversion exhibited a different range of HC/LC orientations
consistent with the concept of shifting. We also observed weaker and broader minima in the HC/LC
interaction, consistent with the concept of tightening. These findings suggest that selection of
clones with somatic mutations in the HC/LC interface that preconfigure high-affinity binding sites

can act as critical mechanistic component of affinity maturation.
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Figure I1.2. Energy landscape for the HC/LC complex before and after Somatic
Hypermutation. A) The germline antibody has one conformation for which the free energy is
minimal at Cgemline (shown in blue). After affinity maturation (shown in red), this lowest
energy conformation is shifted to create the optimal paratope conformation for the
antibody/antigen interaction at Cmawure. Somatic mutations that shift this free energy minimum
optimize the enthaplic gain for the antibody/antigen interaction. B) The germline antibody
(shown in blue) has its lowest free energy conformation already at the optimal conformation
for antibody/antigen interaction (Cgemiine) but is flexible, alternative low energy conformations
exist. After affinity maturation (shown in red), this flexibility is reduced to limit entropic cost
of binding and increased stability of the mature conformation for the antibody/antigen
interaction (AAAG).
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Results

Definition of the HC/LC interface. In order to define the HC/LC interface, we obtained the
coordinates of all available human antibody/antigen co-crystal structures with a resolution better
than 3A in the Protein Data Bank (PDB). The complete set of 466 human antibody/antigen
complex structures was downloaded from the PDB in February 2018. After eliminating redundant
structures, single-domain antibodies, and point mutants, 301 structures were used for this analysis.
We determined the structural parameters of the HC/LC interface for a representative structure
using in-house software, using PDB ID: 4M5Z containing the structure of human influenza-
specific mAb 5J8 that exhibited ABangle scores near the average for each parameter (Table S1-
S4). As interface residues, we counted all amino acids that had 1) CB atoms of two amino acids 1
and j within 8 A across the HC/LC interface or 2) any pair of non-hydrogen atoms within 5.5 A
across the HC/LC interface or 3) a CPi-Cai-Coyj angle of less than 75° across the HC/LC interface.
Using these criteria, we identified 18 HC and 17 LC interface residues in PDB ID: 4M5Z. Amino
acid sequences for the HC and LC variable regions for each antibody were curated from the PDB
and numbered with the AHo numbering scheme (Honegger and Pliickthun, 2011) using the
Antigen receptor Numbering And Receptor Classification (ANARCI) webserver (Dunbar and
Deane, 2016). The AHo numbering scheme then was mapped onto the structurally derived
interface positions, providing a structurally conserved, sequence-based definition of the HC/LC
interface (Table S2, Figure I1.3). We used this definition to create multiple sequence alignments
(Crooks, 2004) for antibodies that fail to bind CD4BS (Figure S2A) compared to antibodies that

bind CD4BS (Figure S2B).
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Maturation in the HC/LC interface stabilizes variable domain interactions. In order to test
the effect of somatic mutations in the HC/LC interface, we first determined the range of
orientations of HC and LC that have been described to date in high-resolution structures of ternary
antibody/antigen complexes. We used the ABangle software (Dunbar, 2013) to evaluate the
relative HC/LC orientation of each of the 301 antibody/antigen co-crystal structures. ABangle
determines six features of orientation of heavy and light chain, five angles (designated HL, HC1,
LC1, HC2 and LC2) and a distance (dc). The program uses the most structurally conserved residue
positions in HC and LC to define domain location and then maps a HC and LC frame plane onto
the Fv structure. The tool measures HC/LC orientation essentially by measuring the angles

between these two plane segments using a vector with the most conserved length in PDB Fv

VRCO3 (PDB ID: 3SE8) Variable Heavy VRCO3 (PDB ID: 3SE8) Variable Light

Figure IL1.3. Definition of HC/LC interface. Cartoon representations of the heavy
chain (left) and light chain (right) domains. The CDR3 of each domain has been colored red
(HCDR3) or blue (LCDR3) for reference. Interface positions are colored light grey and have

been numbered for clarity.
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structures (designated C) as the pivot axis of HC/LC orientation. H1 is the vector running parallel
to the first principal component of the HC plane, while H2 runs parallel to the second principal
component. L1 and L2 are defined in a similar way on the LC domain. HL is the torsion angle
between H1 and L1; HC2 is the bend angle between H2 and C; LC1 is the bend angle between L1
and C; LC2 is the bend angle between L2 and C; dc is the length of C.

The ABangle angle distributions identified antibodies that deviate significantly from the
typical HC/LC interface features, i.e., by one to two standard deviations. The distribution of the
six ABangle features for human antibody co-crystals is shown in Figure S1. We found that the
structure of anti-HIV gp120 CD4BS-specific antibodies represented a class of antibodies with
unusual features in interface orientation angle HC1 (Table 1, Figure 11.4). The average non-

CD4BS antibody had an HC1 angle of 71.3 + 1.72, while the CD4BS antibodies exhibited an

average HCI1 angle of 74.0 + 2.69. These HIV antibodies exhibited a tighter HC/LC interface in

CD4BS= —_—
= P<0.0001
Non-CD4BS= _
60 6IS 7I0 7I5 8I0 8I5

HC1 angle

Figure I1.4. Comparison of antibody HC1 angle orientations. Histogram showing
HC1 angle for CD4BS antibodies (magenta), and non-CD4BS antibodies (teal). CD4BS
antibodies possess a larger HC1 angle and smaller dc (distance between domains) than non-
CD4BS antibodies.
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terms of proximity of the heavy and light immunoglobulin domains. Also, the number of somatic
mutations from the inferred germline amino acid sequence in the HC/LC interface with a distance
over 5 A from the antigen ranged from 5 to 12 mutations, with an average of ~9 mutations per
antibody (Table 2). Unfortunately, the total number of antibody/antigen co-crystal structures is
still too small to confidently determine biases in the six ABangle parameters introduced by the
germline gene segments. Thus, while CD4BS-specific antibodies deviate statistically significantly
from non-CD4BS antibodies, it remains unclear how much of this bias is introduced by the

selection of specific germline gene segments.

Construction of Rosetta models of interface-reverted CD4BS antibodies. To determine the
effects that these naturally occurring somatic mutations had on the antibody bound conformation,
we used Rosetta to construct ensembles of models for the HC/LC interface germline-reverted
antibodies. In order to maintain the bound conformation, the protocol was limited to a rigid-body

threading, which fixes the backbone coordinates and replaces the side chains in question, followed

Table 1. Angle distribution for non-CD4BS and CD4BS antibodies

Angle Non-CD4BS CD4BS
N=281 n=20
HL -58.7+3.74 -57.6 £3.97
HC1 71.3+1.72 74.0 £2.69
LClI 120.2 £2.30 123.1 £2.75
HC2 118.4 +2.75 114.8 £3.22
LC2 82.9+2.01 83.9 £3.56
Dc 16.2+0.27 15.9£0.56

by a constrained minimization (Nivon,) that allows the structure to adjust to its new sequence while
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preserving the relative HC/LC orientation. The Rosetta total energy of a system is calculated as a
linear combination a series of weighted terms, such as van der Waals interactions, electrostatic
interactions, hydrogen bonds, and the Lazaridis-Karplus solvation energy. Using the Rosetta
scoring function as a surrogate for free energy, we calculated the HC/LC interface energy (AAG)
for both the mature and interface-reverted models. Computing AAAG = AAG ,qure —
AAG peyerteqas We found that that mutations in the HC/LC interface of CD4BS-specific antibodies
stabilized the bound conformation (Table 2). This finding was true in every case of HIV-specific
CD4BS antibody except that of VRCO1. This particular mAb differs from the others in that
reversion of one somatic mutation restored a canonical glutamine-glutamine interaction in the

interface upon reversion.
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Table 2. Quantification of differences in orientation between reverted and mature

antibodies
Antibody Tightening? Shift® AAAGS® Mutations!
VRCO1 0.76 £ 0.12 1.05 £0.05 6.28°+0.34 7
VRCO03 1.09 £0.18 1.68 £0.05 -1.77 £0.31 12
VRC-PG04 0.61 £0.15 1.33 £0.04 -5.79 £ 0.28 9
VRC23 1.64 +£0.32 1.54 £ 0.06 -3.65+0.45 8
VRCO06 0.92+0.13 0.47 +£0.07 -0.05+0.35 9
12al12 2.48 +0.86 0.92+0.12 -3.49+0.25 8
VRC-PG20 0.53 £0.04 0.66 = 0.02 -1.62 £0.48 11
VRCO07 0.92 +0.06 0.91 +£0.08 -2.50+£0.36 5
8ANCI131 10.9 +£2.96 1.53 £0.17 -2.23+0.33 12
3BNC117 N/Af N/A -11.89 £ 0.50 6

2The average tightening for each of the ABangle parameters generated by HC/LC docking.

Error was calculated for the average of the six ratios for each antibody.

®Normalized shift value for each set of distributions generated by HC/LC docking

¢ Change in stability at HC/LC interface. AAAG = Mature AAG — Reverted AAG.

4Number of mutations in the HC/LC interface that do not interact with the antigen

¢ Positive value can be attributed to re-establishing canonical Q-Q interaction in HC/LC interface

fReverted models did not conform to requirements of ABangle software
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Mutations in the HC/LC interface shift orientation towards the antigen-bound conformation.
Tightly-packed protein cores and interfaces are integral to overall protein stability and the free
energy of folding (Kellis, 1988; Geiger-Schuller, 2018). In order to determine how maturation of
the HC/LC interface affects the geometry of the paratope, we performed an iterative, small-
perturbation docking protocol using the RosettaDock algorithm (Gray, 2003) (Figure I1.5). Here,
we used an all-atom, rigid-body refinement method that incorporated small perturbations in terms

of translating and rotating, allowing the structure to explore conformations close to the starting

Starting Sequence Starting Structure
Mature
monoclonal ...LIPDKGFE...
antibody
- \ 4 . p v .
Revert :
Analysis of HC/LC
somatic ..QIPDQGIE... p| Analysis of HC/
. orientation
mutations \ J \ J
\ 4
( ) ( N\ ( )
Express in Rosetta Interface Rosetta HC/LC
> . ng . .
expiCHO cells Analysis docking
. J . J L I
A 4 \ 4
( ) ( )
Bio-layer Stability of HC/LC Shift in Tightening of
L Interferometry ) L interface (AAAG) orientation distributions
J

Figure I1.5. Flowchart representing methods of HC/LC interface interrogation. The
path on the left describes the process through which biophysical characterization of the antibodies
takes place; the mature antibodies are expressed in ExpiCHO cells alongside reverted antibodies,
and binding to YU2 gp120 is measured through BLI. The center path portrays a simplified
overview of the rigid-body modeling process: using a CD4BS antibody structure (cartoon
representation of PDB ID: 3se8) as a template, the corresponding reverted amino acid sequence
is threaded onto the structure. The reverted model and CD4BS structure are then subjected to
constrained minimization, and analysis of the HC/LC interface. The path on the right depicts an
overview of the HC/LC docking process. A CD4BS antibody structure and the corresponding
reverted model individually undergo small perturbation docking at the HC/LC interface to
identify changes in preferred orientation. The docked models are analyzed using ABangle, and
the resulting angles are used to identify shifts in orientation and tightening of distribution.
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point while preserving the structure of each domain (Figure I1.6). This procedure was followed
by a constrained minimization step that allowed for small adjustments to structure but did not alter
the structure enough to affect orientation. These small movements generate models with a wide
range of orientations; as the HC/LC interface is reorganized, the structure explores new
conformations and the models may converge on a different energetic minimum, generating

differences in observed angle distributions.

A.

Figure I1.6. Affinity maturation in HC/LC interface makes bound conformation
more favorable. The top scoring 5% docked models for SANCI131 were aligned to the light
chain (light grey) of the Fv found in the crystal structure (PDBID: 4RWY). A) The mature
models, shown in dark red (heavy chain) and light red (light chain), maintain the bound
conformation after docking, resulting in a “tighter” distribution of angles. B) The reverted
models, shown in dark blue (heavy chain) and light blue (light chain), vary in HC/LC orientation
more than the mature counterpart, resulting in a higher value for the Tightening metric (Table 2).
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The changes in orientation were calculated as follows:

(1) Normalized shift =

lz |)_(Reverted(HL,etc...) - )_(mature(HL,etc...)l
6

O Reverted(HLetc..) T Omature(HLetc...)
where X Reverted(HLetc..) 15 the mean ABangle value for any angle distribution generated by
docking a reverted HC/LC interface, )_(mature(m,etcm) is the corresponding mean ABangle value
for the mature antibody, where O geyerted(HLetc..) 1S the standard deviation for any given angle
distribution generated by HC/LC docking at a reverted interface, and Opmature(HLetc..)1S the
standard deviation for the corresponding mature antibody distribution. The Normalized Shift
metric provides an estimate of how much the orientation distributions differ between any given
mature antibody and its reverted counterpart as a whole. Values greater than one suggest a shift in
each category by an average of 1 standard deviation.
(2) Tightening =

aReverted(HL,etc...)

O mature(HLetc...)
The tightening equation generates a ratio of standard deviations. Values greater than 1 suggest that
the mature antibody models embody a tighter angle distribution during HC/LC docking. The
standard error (SE) for the shift was calculated using error propagation rules for addition: where

shift in HL angle =

>

XReverted(HL,etc...) — “Amature(HLetc...)

SE 1) =

2 2
\[SEReverted(HL) + SEmature(HL)
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normalized SE 1) =

2 2
\[SEReverted(HL) + SEmature(HL)

aReverted(HL) + amature(HL)

and SE Normaized shify) =

1 SE? SE?
g (HL) + (HC1)...

A total of 1,000 models was constructed, and the top scoring 5% models were used to evaluate the
magnitude of shift in mean angle and the tightening of each distribution (Table S2). We calculated
the changes in a normalized value for the shift in orientation (Equation 1), and the average
tightening between distributions for each angle (Table 2). While some variation was observed in
the details of how individual mature antibodies differed from their reverted counterparts, we
observed two distinct mechanisms through which changes in angle distributions were established:
1) Antibodies whose germline interfaces are not optimized for the orientation needed to interact
with the CD4 binding site shift their range of motion by accumulating somatic mutations that lock
in the necessary orientation — the optimal orientation is achieved by establishing new electrostatic
bonds and van der Waal’s interactions that pre-configure the paratope without necessarily
restricting the range of conformations accessible to the HC and LC domains, increasing affinity
through enthalpic contribution (Table 2, mAb VRC-PGO04); 2) Antibodies with a range of
conformations optimized for the orientation needed to interact with the CD4 binding site
accumulate mutations in the HC/LC interface that disfavor suboptimal orientations, tightening the
range of accessible conformations — greater affinity for the target is achieved by mitigating the
entropic loss upon binding (Table 2, mAb 12a12). In some cases, affinity maturation in the HC/LC
interface caused both a shift in the optimal orientation and limited the range of favorable
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conformations (Table 3, mAb 8ANC131 and mAb VRC23). 8ANC131 has a noticeably tighter
distribution than the other antibodies in the study. This can be attributed to the tight angle
distribution produced by docking at the mature HC/LC interface, whose average standard

deviation was ~0.13 (Table S2).

Binding Studies. We tested our hypotheses using binding assays with recombinant proteins (Table
3) to elucidate any change in binding affinity upon reversion to a germline HC/LC interface. We
compiled the sequences of the three pairs of antibodies, synthesized cDNAs encoding the antibody
variable regions, cloned them into a mammalian expression vector, and expressed each clone as a
full-length IgG protein in ExpiCHO cells followed by Protein G column purification. We expressed
a panel of three pairs of antibodies (each pair containing the wild-type and the interface-reverted
variants). We were able to express both variants for three pairs of antibodies at levels high enough
to test accurately in affinity of binding assays. While the antibodies used in this study bind to, and
neutralize, a wide variety of HIV strains, their breadth of reactivity for diverse strains converge on
select gp120 molecules. We used bio-layer interferometry (Octet RED96, Pall FortéBio) to
measure the apparent KD, Ka, and Kd for the interaction of each antibody with recombinant gp120
protein. In every case, the presence of inferred germline gene residues in the HC/LC interface
dramatically decreased binding affinity to HIV gp120 (Table 3). This apparent loss of binding

affinity was caused by a decrease in Ka, while the Kd remained relatively unchanged.
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Table 3. Binding affinity KD (nM) for reverted or mature antibodies using bio-layer

interferometry
Antibody Kp (nM) Kp error (nM) K. (1/Ms) Ka (1/s)
VRC-PG04 reverted 42.8 5.30 3.8x10° 1.4x10%
VRC-PG04 mature 38.4 0.04 1.2 x 10 2.6x10*
VRC-PG20 reverted 86.4 47.20 1.5x 10 1.0 x 102
VRC-PG20 mature 7.1 0.05 1.5 x10° 1.3 x 107
8ANCI131 reverted n.d. n.d. n.d. n.d.
8ANCI131 mature 51.1 48.30 3.2x10° 1.7 x 102

44



Discussion

Antibodies are increasingly used as therapeutic agents, and optimization of antibody
structure and function remains a chief concern for biochemical engineers (Chames and Batey,
2009; Leavy, 2010; Beck, 2010). Traditionally, the induction of somatic mutations during antibody
maturation was thought to increase binding affinity and specificity to a target by altering the
composition of the combining site and creating complementary interactions; pre-configuration of
the paratope is not an entirely new concept, but previous analyses have been limited to identifying
molecular determinants involved in stabilizing the CDRs (Xu, 2015; Ofek, 2010; Mishra, 2018)
or inducing mutations in the HC/LC interface and characterizing the mutants (Chetallier, 1996;
Huge, 2003). Many aspects of an antibody-antigen interaction are well-studied upon discovery of
a biologically interesting antibody: Da Silva and colleagues demonstrated that the light chain can
play in integral part of binding by performing a comprehensive mutagenesis study on the LCDRs
of the antibody D5 (Da Silva, 2010); Fera et al. found that the HIV V5 loop alters the orientation
of heavy and light domains in CD4BS antibodies by comparing the crystal structures of unbound
inferred germline precursors of CH103 antibodies to mature CH103-gp120 complexes; and
analysis of the near-pan broadly neutralizing antibody by Huang et al. revealed that N6 adopts a
unique heavy chain orientation relative to the binding mode of CD4 and other CD4BS antibodies
in order to avoid steric clashes stemming from glycosylation (Huang, 2016). While studies
centered around an antibody-antigen interaction often acknowledge unusual bound HC/LC
orientations and mention the inclusion of somatic, antigen-distal mutations, the relationship

between the two is often unexplored.
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Identifying the molecular determinants of binding affinity will facilitate the development
of new therapeutic antibodies and may provide an additional target for antibody optimization. In
this study, we determined that affinity maturation can take place in the HC/LC interface by
introducing mutations that shift the range conformational flexibility towards the optimal
configuration by establishing new interactions (enthalpic gain) or by introducing mutations that
restrict the conformational space of the Vi and Vi domains, mitigating the entropic loss associated
with binding. The concept of antibodies “shifting” the range of energetically favorable in response
to the affinity maturation is compatible with the induced fit model of protein-protein interactions
(Koshland, 1958). Conformational entropy provides the diversity needed to ensure that a limited
antibody repertoire can target and eliminate a virtually limitless number of foreign particles. Upon
binding to a target that selects for an orientation that strays from the most energetically favorable
apo conformation, internalization of the BCR-antigen complex, and successful B cell activation,
the B cell gains random mutations in the frameworks that may make the required interaction more
favorable.

In principle, the entropic contribution in a binding event involving an antibody and an
antigen involves changes in the internal conformational entropy of each participant, the entropy of
the solvent, and the entropy involved in association. Some antibodies may encounter an antigen
that selects for a conformation near the energetic minimum of the apo antibody. Affinity
maturation in this scenario centers around “tightening” the range of energetically favorable
conformations, minimizing the entropic loss associated binding to the antigen. While some new
interactions may be made in the HC/LC interface, this concept is consistent with the
conformational selection model of protein-protein interactions (Bosshard, 2001; Chakrabarti,

2016), our understanding that germline-encoded antibodies are inherently more flexible, allowing
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the paratope to explore a wide range of geometries but become more rigid during affinity
maturation (Wong, 2011) , and that mitigating the entropic loss upon binding is an effective means
of increasing binding aftinity (Lafont, 2007).

This study shows that antibodies that undergo a change in range of favorable HC/LC
orientations during affinity maturation experience conformational changes that fit the description
for both “shift” and “tightening” (Table S2). Although we observed that the HC1 angle for CD4BS
antibodies is significantly different from the average HC1 angle for non-CD4BS antibodies, we
see additional changes in many aspects of orientation between individual antibodies and their
germline-reverted counterparts. For instance, docking of the HC/LC interface in VRC-PG04 and
its reverted counterpart revealed changes in the HC1 and HC2 angles, as well as a narrowing in
the distribution of the HL, HC1, and HC2 angles.

We measured the effects of mutations in the HC/LC interface on antibody/antigen binding
affinity, Fv region thermodynamic stability, and relative orientation of the heavy and light chain.
Through a combination of in vitro BLI kinetic assays and computational experiments, we found
that antibody/antigen binding affinity can be increased by inducing mutations in the HC/LC
interface that preconfigure the combining site of the antibody. The antibodies used in this study
inhabit an unusual orientation; these antibodies neutralize HIV by inserting the HC domain into
the CD4-binding site on HIV gp120, causing the heavy chain to pull away from the light chain
slightly in order to accommodate the gp120 V5 loop (Figure I1.1).

There are several limitations with this study. First, we assumed that the germline-reverted
heavy and light chain interfaces were compatible with otherwise heavily mutated antibodies. By
focusing on reversions in the HC/LC interface of the antibodies used in this study, we created a

chimeric antibody that may disrupt heavy and light interactions in an unexpected manner. Second,
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we assume that Rosetta can find the optimal apo conformation during a docking simulation given
the bound conformation. Our computational approach only approximates antibody flexibility
through the range of orientations that the heavy and light chains can access through small
perturbation docking. While a direct comparison of the flexibility for each antibody is preferred, a
comprehensive sampling with techniques like nuclear magnetic resonance (Soares, 2004) or
molecular dynamics analysis (Margreitter, 2016) through conformational space for a molecule as
large as the antibody Fv region is both difficult and computationally expensive. To compensate for
this limitation, we adopted a method that truncates the computational time and can parallelize
experiments for multiple antibodies. Third, the Rosetta software can only approximate the
thermodynamic stability of a structure. The software uses an implicit water model, which may not
accurately account for hydrogen bonding networks formed in the interface (Alford, 2017). Water
coordination in an interface can contribute to the affinity of the interaction (Marino, 2016), though
in the case of the HC/LC interface, the disruption of intermolecular hydrophobic interactions may
lead to destabilization; the presence of water in the HC/LC interface may change the optimal
HC/LC orientation (Herold, 2017). Finally, the study was limited to the collection of relative Kp
of mature and germline-reverted antibodies. While a thermodynamic approach is preferred, the
reverted antibodies did not express at a high enough concentration for an accurate determination
of enthalpy and entropy through a resource demanding technique like isothermal titration
calorimetry.

Our findings suggest that during chronic infections such as HIV, as B cells in germinal
centers are exposed to repetitive rounds of somatic mutation of the antigen receptor and positive
selection, they incorporate mutations in the heavy and light chain interface that may indirectly

improve binding affinity. Though we did not see a universal trend in rigidification, or “tightening”,
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upon affinity maturation, a recent study by Jeliazkov et al. suggests that affinity maturation of the
HCDR3 loop does not always result in rigidification (Jeliazkov, 2018), which is consistent with
our results. Additionally, our findings suggest that the typically well-conserved HC/LC interface
can tolerate mutations and could serve as a hotspot for engineering antibodies with maximal
affinity.

Methods

Selection of antibody/antigen complexes. Every published, human antibody/antigen (protein)
complex was collected from the Protein Data Bank. The HC/LC orientation of each complex was
assessed using the downloadable version of the ABangle software (Dunbar, 2013) and angle
distributions were plotted using the Prism version 7 software (GraphPad). The complexes that
comprised the tails of each distribution were examined for mutations in the HC/LC interface, and
a subset of complexes that bound the same antigen was selected based on two criteria: 1) the
average angle of these complexes must be at least one standard deviation than the average angle
across all antibodies in at least one of the six ABangle metrics used to determine orientation, and
2) every antibody in the subset chosen must have at least one amino acid mutation from germline
in the HC/LC interface. Residues appropriate for consideration as HC/LC mutants were selected
using the Rosetta InterfaceAnalyzer module (Lewis, 2011). These interfaces were inspected
manually using PyMOL (version 1.8.4.0) to ensure that the residues in question do not make
contact the antigen. Mutations in the HC/LC interface were detected by submitting the nucleotide
sequence, found at GenBank ® (Benson, 2012) for the heavy and light chains to the international

ImMunoGeneTics information system (Lefranc, 2011) for alignment.
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Rigid-body analysis of HC/LC interfaces in gp120-CD4BS co-crystal structures. The PDB
files of each co-crystal were altered to isolate the Fv region of the antibody, removing all other
components of the antibody/antigen interaction, and Rosetta was used to revert mutated residues
in the HC/LC interface. This procedure was accomplished through rigid-body modeling, which
prevents perturbation of the backbone and preserves the HC/LC orientation. Minimization was
limited to repacking of the amino acids and 100 models were made for each antibody and its
HC/LC germline-reverted form using this protocol. Models were ranked according to the total
score assigned by Rosetta in Rosetta Energy Units (REU), and the top five models for each
antibody were used to calculate the change that these mutations have on the stability of the

interface (AAAG).

Docking and measuring change in HC/LC orientation. We used rigid-body docking to explore
the effects of mutations in the HC/LC interface on relative orientation on the heavy and light chains.
Briefly, using the RosettaDock algorithm (Chaudhury, 2011), iterative rounds of docking and
repacking were performed on the template PDB files. 1,500 models were generated using the
protocol, and the top scoring (total REU) 50 models were used for further analysis. ABangle
software was used to evaluate the orientation of each model, and the resulting angle distributions

were compared using the previously described equations.

Antibodies and gp120 expression. cDNAs encoding antibody heavy and light chains were
cloned into IgG expression vectors for mammalian cells (McLean, 2003). The DNA of the two
vectors was mixed together at a 1:1 molar ratio and transfected into ExpiCHO cells (Thermo-

Fischer) with a 1:1 ratio of DNA to ExpiFectamine CHO (Thermo-Fischer). Antibodies and their
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variants were cultured at a 1-liter volume, and the supernatant was collected at day 14.
Antibodies were purified from supernatant on MabSelect SuRe columns (GE Healthcare). cDNA
encoding the HIV envelope protein YU2 gp120 was cloned into the pCDNA3.4 plasmid vector

and transfected into 293-F HEK cells, as previously described (Willis, 2015).

Biolayer interferometry (BLI). The binding affinity for the panel of mature and interface reverted
CD4BS IgG to monomeric YU2 gpl120 core was determined by BLI using an Octet RED96
instrument (Pall FortéBio, CA, USA). The antibodies were diluted in PBS with 0.05% Tween 20
at pH 7.4, then captured using anti-human IgG Fc capture (AHC) tips. Testing using a series of
YU2 gpl120 protein concentrations (60, 30 or 15 pug/mL) was used to calculate the equilibrium
dissociation constant (Kp). An unliganded sensor (devoid of CD4BS IgG) was used as a reference
sensor in order to correct for non-specific gp120 binding. The binding traces were processed using
the FortéBio Data Analysis Software v9.0, and the processed binding curves were fitted using the

“Heterogeneous Ligand 2:1 interaction” model.
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CHAPTER III

Conclusions and future directions

Concluding remarks

Antibody affinity maturation is an integral part of the adaptive immune system. During a
chronic infection or persistent disease like HIV, somatic mutations are accumulated not only in the
interface between antibody and viral protein but also throughout the interface between the
antibody’s heavy and light chain (HC/LC interface). We find that these mutations can radically
change the relative orientation of the variable domains, preconfiguring the paratope for its bound
conformation. Additionally, these mutations indirectly affect binding affinity; for example,
CD4BS antibodies with a germline-reverted HC/LC interface have a dampened binding affinity to
HIV YU2 gp120 when compared to their mature antibody counterparts. I hypothesized that these
mutations induce alternate orientations through a combination of shifting the energetic minimum
and limiting the amount of conformational entropy by stabilizing the HC/LC interface in a way
that favours the bound conformation.

This study began by making an effort to determine the conformational diversity of bound
antibodies found in all the human, antibody-antigen co-crystals represented in the Protein Data
Bank. Prior to this study, we knew that the difference in HC/LC orientation between the apo and
bound conformations of an antibody differed by ~5 degrees when comparing the HL value as long
as the antibodies in question bind proteins (Dunbar, 2013). This suggests that most (if not all)

protein-binding, antibody/antigen interactions include some re-orientation of the heavy chain with
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respect to the light chain. The study presented in this thesis focuses on antibodies against the HIV
gp120 CD4 binding site. The reason for this is fourfold: 1) These antibodies are heavily mutated;
reverting the mutations in the interface back to their germline residue is less likely to cause
dissociation of the HC/LC interface than re-designing a germline interface as both mature and
reverted interfaces are known to have existed in nature; 2) these antibodies have been well-studied
it was known that a blanket reversion of all antigen-distal somatic mutations disrupts binding and
neutralization (Klein, 2013); 3) in order to bind the CD4 binding site, these antibodies inhabit a
unique orientation that resolves clashes with V5 loop (Fera, 2014); 4) high-resolution co-crystal
structures depicting the antibodies in complex with gp120 were readily available at the Protein
Data Bank. These conditions were optimal for the study, but it is unclear whether mutations in the
HC/LC interface affect all antibodies in the same way. Given the diversity of the results in Chapter
I1, it is likely that the “potency” associated with mutations that increase affinity allosterically is
conditional. Even amongst the CD4 antibodies studied in this thesis, we see a mixture of shift and
tightening during maturation. This may be caused by subtle differences between these antibodies
in CD4 buried surface area (Figure III.1) and types of interactions with gp120 (Figure I11.2). This
raises one important future questions to be studied: Are these observations, i.e. the shift and
tightening in orientation that was observed in Chapter II, translatable to other antibody/antigen
interactions?

As a ternary complex, antibody/antigen interactions can be divided into two categories
concerning the mode of binding. The first, which consists of antibodies that only interact with
antigen using the heavy chain, can take a variety of forms. For example, the interaction between
influenza hemagglutinin (HA1) head domain and the anti-influenza antibody CO05 is mediated

entirely by the HCDR3 (Ekiert, 2012), while the HA stem domain targeting antibody CR6261
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interacts with the antigen using HCDR1, HCDR2, and HCDR3. These antibodies differ in the
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Figure III.1 The CD4 supersite. A) Antibodies from 14 donors define an
immunological supersite of HIV-vulnerability. A composite of how the breadth-coded epitope
surfaces shown in B are mapped to the gp120 surface. The yellow outline defines the outer-
domain contact of the CD4 receptor. B) Epitopes of CD4bs antibodies colored by breadth. C)
Dendrogram constructed from similarities in neutralization fingerprint based on serologic
analysis with a 178-virus panel; insert shows the HIV-1 viral spike, with membrane at top, with
major epitopes labeled; epitope colors correspond to antibody colors in the dendrogram. D)
Potency of CD4-binding site antibodies mapped to the supersite. The worm representation of
HIV-1 gp120 is colored by averaged antibody potency, with thickness representing average
buried binding surface area of corresponding residues; notably, in addition to the outer domain
contact on gpl20 for CD4, neighboring regions in the inner domain and on strands [20/21
contribute to the supersite. Adapted from (Zhao, 2015).
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engagement of the light chain to the heavy chain; CR6261 moves the light chain out of the way to
prevent clashes with glycosylation at the base of the helix (Ekiert, 2012), while the CO5 light chain
is 12 A from the antigen in its bound conformation . The second mode of binding uses both heavy
and light chains to bind to the antigen. The paratope of CD4BS antibodies like 8ANC131 includes
both heavy and light chains, but the degree to which light chains are incorporated into the paratope
is highly variable, even among antibodies that target the same epitope due to small differences in

binding orientation (Huang, 2016).
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Figure I11.2 Paratopes of Effective CD4bs Antibodies Are Extremely Diverse A)
Antibodies from 14 donors define an immunological supersite of HIV-vulnerability. A
composite of how the breadth-coded epitope surfaces shown in B are mapped to the gp120
surface. The yellow outline defines the outer-domain contact of the CD4 receptor. B) Epitopes
of CD4bs antibodies colored by breadth. C) Dendrogram constructed from similarities in
neutralization fingerprint based on serologic analysis with a 178-virus panel; insert shows the
HIV-1 wviral spike, with membrane at top, with major epitopes labeled; epitope colors
correspond to antibody colors in the dendrogram. D) Potency of CD4-binding site antibodies
mapped to the supersite. The worm representation of HIV-1 gp120 is colored by averaged
antibody potency, with thickness representing average buried binding surface area of
corresponding residues; notably, in addition to the outer domain contact on gp120 for CD4,
neighboring regions in the inner domain and on strands f20/21 contribute to the supersite
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These differences in binding modes likely alter how mutation in the HC/LC interface might
affect binding affinity. Antibodies like CO5 do not need to shift the HC/LC orientation, as binding
1s mediated entirely by HCDR3; antigen distal mutations in the HC/LC interface are likely geared
toward mitigating entropic loss. In contrast, CR6261 must rotate its light chain in order to engage
its target optimally (Ekiert, 2012), and mutations in the HC/LC might contribute more to shifting
the optimal orientation in order to interact with the epitope (increasing enthalpic gain). Antibodies
that utilize both heavy and light chains, however, may require a combination of shifting and
tightening like the panel of CD4BS antibodies in Chapter II.

Additionally, the conformational selection model of protein-protein interactions is not
limited to antibody/antigen interactions; flexible, conformationally diverse interactions may
benefit from mutations that mitigate the entropic loss upon binding. A recent study by Li et al.
suggests that an alignment of the conformational entropy of the partner proteins is one of the most
important determinants of protein-protein interaction (Li, 2019). The authors use molecular
dynamics to interrogate the interactions between HIV gp120 and host CD4 in an effort to determine
the effects of CD4 binding on the conformational entropy and molecular motions of gp120. They
found that the association of gp120 and CD4 greatly reduces conformational fluctuations of gp120
while simultaneously increasing the stability of the bound conformation. Additionally, the
gp120/CD4 interaction greatly restricts the movement of the V1/V2 loops, preventing gp120 from
returning to its closed, unbound state. In this case, the authors conclude that the development of
small molecules to lock in the “open” conformation of gp120 would aid in viral neutralization, as
the interaction between CD4 and gp120 is completely dominated by conformational selection. One

future direction of this research could be to take this temporal aspect of dynamics into account as
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the study presented in this thesis exclusively modelled the structural dynamics excluding the time
scale.

An additional study that can be performed with existing technology involves creating and
characterizing antibodies with a “synthetic interface”, wherein the HC/LC is re-designed using the
mutated positions as mutational hotspots. Using the mature antibody in the bound conformation,
Rosetta can search for the “optimal” sequence of mutations in those positions. Should Rosetta
design a better (or different) HC/LC interface than the mature antibody, the in silico maturation
results will result in models with angle distributions that resemble the mature antibodies’ ranges
of orientation, as the stabilizing effects preconfigure the antibody for the bound conformation. In
order to determine how stabilizing mutations might affect the binding affinity and thermodynamic
profile of an antibody with an HC/LC orientation closer to the means of distributions for all human
antibody co-crystal structures, it is imperative that in silico maturation is enacted on a variety of
non-HIV interactions that reflect the “average” bound antibody structure in the PDB. After
expressing and testing these Rosetta-generated mutants, we should have a clearer picture of the

ternary nature of antibody/antigen interactions.
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APPENDIX

Protocol capture for Chapter I1

Introduction
The following is a protocol capture that demonstrates how to determine the stability at the
HC/LC interface using an antibody/antigen co-crystal and generate an ensemble of HC/LC

docked models. In this example, we will be making models of the antibody VRC-PGO04.

The version of Rosetta used for the entirety of this study is: Rosetta_2015.12.57698,

released on May 5%, 2015.

All  input materials for this protocol capture can be downloaded from

https://github.com/ac1546/HC_LC_docking.

The ABangle software can be found at http://www.stats.ox.ac.uk/~dunbar/abangle/.

Preparing input structures
The PDB structure 3se9 was downloaded from the Protein Data Bank
(https:www.rcsb.org/) and processed manually in PyMol. The gp120 component (Chain G), waters,
and salt ions were removed. Next, we remove the constant region of the Fab in order to lessen the

time needed to generate models. Here, we removed residues 113-216 of the heavy chain and
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residues 108-214 of the light chain. The molecule was saved as 3se9 Fv clean.pdb to denote the
type of fragment the pdb contains and whether or not this contains atoms that Rosetta cannot

process.

Defining the HC/LC interface
Here, we use the InterfaceAnalyzer application to define an HC/LC interface using the

following command:

/path_to_rosetta/rosetta/main/source/bin/InterfaceAnalyzer.linuxgccrelease -s
3se9_Fv_clean.pdb -tracer_data_print true -pack_input true -pack_separated true -

score:weights talaris2013.wts

Near the end of the output is a PyMol selection defining the residues that comprise the

HC/LC interface:

select 3se9_Fv_clean_interface,
/3se9 _Fv_clean//H/1+3+4+6+35+37+39+43+44+45+46+47 +48+49+50+57+58+59+89+
91+92+93+94+99+100+100+100+100+100+100+100+101+102+103+104+105+106+1
08+ +
/3se9 _Fv_clean//L/31+32+33+34+35+36+38+41+42+43+44+45+46+47+48+49+50+51

+52+53+55+56+57+58+85+87+89+90+91+96+97+98+99+100+101+
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In order to determine which of the HC/LC interface residues do not interact with the

antigen, this selection is modified so that it works with the unmodified 3se9 structure:

select 3se9_Fv_clean_interface, /3se9
//H/1+34+4+6+35+37+39+43+44+45+46+47+48+49+50+57+58+59+89+91+92+93+94 +
99+100+100+100+100+100+100+100+101+102+103+104+105+106+108+ + /3se9
//L/31+32+33+34+35+36+38+41+42+43+44+45+46+47+48+49+50+51+52+53+55+56

+57+58+85+87+89+90+91+96+97+98+99+100+101 +

To ensure that only antigen-distal residues are considered, the paratope residues are

defined using the following commands:

select paratope, byres(chain H+L within 5.5 of chain G)

color red, paratope

Next, we identified mutations in the HC/LC interface. To do this, we downloaded the
nucleotide sequences for VRC-PG04 from GenBank (accession numbers JN159466.1 — light
chain, and JN159464.1 — heavy chain). The nucleotide sequences are then entered into IMGT V-

Quest (http:// www.imgt.org/IMGT_vquest/vquest), and the mutations from germline in the HC/LC

interface were identified manually using the resulting alignments. Additionally, we only selected
for mutations whose side chains face the interface. The resulting mutations were formatted into a

residue file or “resfile”, which tells Rosetta which residue to place at any given position in a model.
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The mutations in the HC/LC interface of VRC-PG04 were reverted to their inferred germline

residue using 3se9 germline.resfile:

NATAA
EX1EX2

start

91 H PIKAAY #F
32 L PIKAAY #H
34 L PIKAA A #T
38 L PIKAA Q #K
43 L PIKAA A #P
44 L PIKAA R #K
49 L PIKAA'Y #F
46 L PIKAA G #A

53 L PIKAA S #K

Construction of Rosetta models of interface-reverted CD4BS antibodies

To determine the effects that these naturally occurring somatic mutations had on the

antibody bound conformation, we used Rosetta to construct ensembles of models for the HC/LC

interface germline-reverted antibodies. Since we want to understand how antigen-distal mutations
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contribute to the bound conformation, the protocol was limited to a rigid-body threading. The

following command was used to generate models for the mature antibody:

/path_to_rosetta/rosetta/main/source/bin/relax.default.linuxgccrelease -flip_ HNQ
-no_optH false -relax:constrain_relax_to_start_coords -score:weights talaris2013.wts -
relax:ramp_constraints false -s 3se8_Fv_clean.pdb -nstruct 100 -scorefile 3se9.fasc -

out:suffix "_mature”

Interface reverted models were generated using the following command:
/path_to_rosetta/rosetta/main/source/bin/relax.default.linuxgccrelease -flip_ HNQ
-no_optH false -relax:constrain_relax_to_start_coords -score:weights talaris2013.wts -

relax:ramp_constraints false -s 3se9_Fv_clean.pdb -nstruct 100 -out:suffix "_revert" -
relax:respect_resfile 1 -packing:resfile 3se9_germline.resfile -scorefile

3se9 _reverted.fasc

At this point, both the mature and interface reverted models have been generated, but we
still want to evaluate the effect that the mutations have on the interface. To ensure that we calculate
across the same interface that we defined earlier, we’re going to use the Interface Analyzer
application again, but in the form of a mover. For the sake of this example, it isn’t necessary, but
it makes batch processing much easier. This method takes a “flags” or “options” file, an xml file,
and the input pdb, all of which are available in the “inputs” folder on the github page. The interface

energy, AAG, was calculated for each model using the following commands:
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/dors/meilerlab/apps/rosetta/rosetta_2015.12.57698/main/source/bin/rosetta_sc
ripts.default.linuxgccrelease @iface_analyzer.flags -s *mature*pdb -parser:protocol

iface_analyzer_VH_VL.xml -out:file:score_only -scorefile iface_3se9_mature.fasc

/dors/meilerlab/apps/rosetta/rosetta_2015.12.57698/main/source/bin/rosetta_sc
ripts.default.linuxgccrelease @iface_analyzer.flags -s *revert*pdb -parser:protocol

iface_analyzer_VH_VL.xml -out:file:score_only -scorefile iface_3se9_reverted.fasc

Next, the top 10 scoring models for each treatment were identified and their metrics

collected using these commands:

cat iface_3se9_mature.fasc | sort -nk 2 | head -10 > top10_mature.fasc

cat iface_3se9_reverted.fasc| sort -nk 2 | head -10 > top10_reverted.fasc

The sixth column in these “top10” scorefiles represents the value for interface energy. The
change in average interface energy, AAAG, is equal to Mature AAG — Reverted AAG. Negative

values indicate a more favourable interface in the bound conformation.

HC/LC docking

Next, we determined how the mutations in the HC/LC interface affect HC/LC orientation

by performing small perturbation docking. The docking step also takes an options file, and xml,

78



and the starting model. In order to provide a direct comparison between mature and reverted
interfaces, we restricted the docking protocol so that it does not alter the structural integrity of the
domains; the minimization step employed an atom coordinate constraint, ensuring that the relax
protocol itself would not skew angle measurements. We use this to generate 1000 models for each
category, and analyse the top %35 for each, ranking by AAG. Small perturbation docking was

enacted using the following commands for the mature and reverted models:

Mature
/path_to_rosetta/rosetta/main/source/bin/rosetta_scripts.default.linuxgccrelease
@docking.flags -s 3se9_Fv_clean.pdb -parser:protocol small_pert.xml -out:file:scorefile

3se9_dock_mature.fasc -nstruct 1000 -out:suffix “_mature”

Reverted
/path_to_rosetta/rosetta/main
/source/bin/rosetta_scripts.default.linuxgccrelease @docking.flags -S
3se9_Fv_clean.pdb -resfile 3se9_germline.resfile -parser:protocol small_pert_revert.xml

-out:file:scorefile 3se9_dock_revert.fasc -nstruct 1000 -out:suffix _dock_revert

The models are then ranked by AAG, and the top %5 are used to evaluate change in

orientation.

cat 3se9_dock_mature.fasc | sort -nk 10 | head -50 > 3se9Top50Mature.fasc

cat 3se9_dock_revert.fasc | sort -nk 10 | head -50 > 3se9Top50Revert.fasc
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In order to determine how somatic mutations in the HC/LC interface affect heavy and light
chain relative orientation, we used ABangle to calculate the relative HC/LC orientation for each
of the top-scoring models. This software calculates six parameters by mapping two reference
planes onto the Fv domains, drawing a distance vector between them, and measuring five angles
— a torsion angle and four bend angles, between the two planes while using the distance vector as
a pivot axis. Additionally, ABangle can take in a list of PDB files to evaluate in the form of .dat

files. Generating the .dat file is accomplished through the following commands:

cat 3se9Top50*fasc | grep dock | awk {print($NF”.pdb”}’ > 3se9Top50.dat

ABangle was used to calculate relative orientation through the following command:

ABangle —i 3se9top50.dat —usernumbered

The resulting angles are found in /path_to_ABangle/ABangleData/UserAngles.dat.
The average values, standard deviations, and standard error were calculated for each type of model
(mature and revertant) across the six ABangle parameters. The resulting values were used in the

following equations to calculate the shift in average angle and tightening of each distribution.

(3) Normalized shift =

lz |)_(Reverted(HL,etc...) - )_(mature(HL,etc...)
6

aReverted(HL,etc...) + amature(HL,etc...)
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where Xgeperteauetc..) 15 the mean ABangle value for any angle distribution generated by
docking a reverted HC/LC interface, Xparure(np etc..) 1S the corresponding mean ABangle value for
the mature antibody, where Oreverteacnretc..) 15 the standard deviation for any given angle
distribution generated by HC/LC docking at a reverted interface, and 6 qureni etc..)1S the standard
deviation for the corresponding mature antibody distribution. The Normalized Shift metric
provides an estimate of how much the orientation distributions differ between any given mature
antibody and its reverted counterpart as a whole. Values greater than one suggest a shift in each

category by an average of 1 standard deviation.

(4) Tightening =

aReverted(HL,etc...)

O mature(HLetc...)

The tightening equation generates a ratio of standard deviations. Values greater than 1
suggest that the mature antibody models embody a tighter angle distribution during HC/LC
docking.

The standard error (SE) for the shift was calculated using error propagation rules for
addition where:

shift in HL angle = |)_(Reverted(HL,etc...) - )_(mature(HL,etc...)l
SE 1) =
2 2
\[SEReverted(HL) + SEmature(HL)
normalized SE 1) =

2 2
\[SEReverted(HL) + SEmature(HL)

aReverted(HL) + amature(HL)

and SE Normalized shify =

1 SE? SE?
g (HL) + (HC1)...
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Supplementary Data

Supplementary tables can be downloaded at:

https://github.com/ac1546/Dissertation
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Figure S1. Distribution of human antibody/antigen co-crystals. Human antibody/antigen co-crystals were analyzed with
ABangle. The resulting angle distributions for the HL (purple), HC1 (teal), LC1 (blue), HC2 (orange), LC2 (green), and dc (grey)
values were produced using Prism. These metrics have a mean value of -58.6 (HL), 71.33 (HC1), 120.32 (LC1), 118.236 (HC2),

82.9 (LC2), and 16.15 (dc).
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Moretti, R. (2016). Protocols for Molecular Modeling with Rosetta3 and
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Abstract:

Previously, we published an article providing an overview of the Rosetta suite of
biomacromolecular modeling software and a series of step-by-step tutorials [Kaufmann, K. W., et
al. (2010) Biochemistry 49, 2987-2998]. The overwhelming positive response to this publication
we received motivates us to here share the next iteration of these tutorials that feature de
novo folding, comparative modeling, loop construction, protein docking, small molecule docking,
and protein design. This updated and expanded set of tutorials is needed, as since 2010 Rosetta has
been fully redesigned into an object-oriented protein modeling program Rosetta3. Notable
improvements include a substantially improved energy function, an XML-like language termed
“RosettaScripts” for flexibly specifying modeling task, new analysis tools, the addition of the
TopologyBroker to control conformational sampling, and support for multiple templates in
comparative modeling. Rosetta’s ability to model systems with symmetric proteins, membrane

proteins, noncanonical amino acids, and RNA has also been greatly expanded and improved.

My contribution to this publication as co-author centered around describing caveats that a
user encounters while employing Rosetta as a modeling tool. I delineate the stochastic, abbreviated

nature of the score function and note that exhaustive sampling may be required in order to approach
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the local energy minimum (much less global energy minimum) for a structure or complex through

any given application.
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ABSTRACT: Previously, we published an article providing an overview of the Rosetta suite of
biomacromolecular modeling software and a series of step-by-step tutorials [Kaufmann, K. W,
et al. (2010) Biochemistry 49, 2987—2998]. The overwhelming positive response to this
publication we received motivates us to here share the next iteration of these tutorials that
feature de novo folding, comparative modeling, loop construction, protein docking, small
molecule docking, and protein design. This updated and expanded set of tutorials is needed, as
since 2010 Rosetta has been fully redesigned into an object-oriented protein modeling program
Rosetta3. Notable improvements include a substantially improved energy function, an XML-like
language termed “RosettaScripts” for flexibly specifying modeling task, new analysis tools, the
addition of the TopologyBroker to control conformational sampling, and support for multiple
templates in comparative modeling. Rosetta’s ability to model systems with symmetric proteins,
membrane proteins, noncanonical amino acids, and RNA has also been greatly expanded and
improved.

O btaining atomic-detail accurate models for all proteins, scoring challenge of developing an energy function that is rapid
natural and engineered, in all relevant functional states, but still accurately identifies biologically relevant, low-free
alone and in complex with all relevant interaction partners by energy states.

crystallography or nuclear magnetic resonance (NMR) is The Rosetta software suite represents a compilation of
impaired by the vast number of possible protein sequences computational tools aimed at obtaining physically relevant
and interactions. In some cases, it is complicated by structural models of proteins and their interactions with other
experimental obstacles and is often time and cost intensive. proteins, small molecules, RNA, and DNA. Rosetta has

Additional difficulties arise when the dynamic properties of
proteins and their interactions with other molecules are to be
studied from crystallographic snapshots. Here, computational
modeling of the structure and dynamics of proteins and
interactions can complement experimental techniques. Such
computational models add atomic detail not present in low-
resolution or limited experimental data, model states that are
not tractable for experimental structure determination, simulate
conformational flexibility and plasticity of states, and prioritize
states for crystallization or study with other experimental
techniques.

At the same time, prediction and design of protein structure
in silico is a formidable task: the need to model thousands of

contributed to the advancement of structural biology by
tackling challenges in de novo protein design,'™ comparative
modeling, " protein design,""" protein—protein docking,'*~"*
and protein—small molecule docking.'°”'® Additionally,
Rosetta can be applied to RNA/DNA structure prediction,'”*’
the incorporation of noncanonical amino acids,”""** and other
difficult structural challenges such as membrane protein
structure prediction”’ and modeling of symmetric proteins.”***

Rosetta developers follow the hypothesis that a single, unified
energy function should be able to accomplish all of these
complex tasks; furthermore, the continuous optimization of this

atoms instantiates the sampling challenge of testing a large Received: May $, 2016
number of possible arrangements or conformations. The need Revised:  July 29, 2016
to complete these calculations in a finite time creates the Published: August 4, 2016
ACS Publications @ 2016 American Chemical Society 4748 DOL: 10.1021/acs biochem 6b00444
X Biochemistry 2016, 55, 47484763
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Table 1. Publically Accessible Web Servers Running Rosetta”

server address
ROSIE rosie.rosettacommons.org
Robetta robetta.bakerlab.org
Rosetta.design rosettadesign.med.unc.edu
FlexPepDock flexpepdock.furmanlab.cs.huji.ac.il
RosettaBackrub kortemmelab.ucsf.edu/backrub
FunHunt funhunt.furmanlab.cs.hujiac.il
CS-Rosetta csrosetta.bmrb.wisc.edu
RosettaDiagrams rosettadiagrams.org

“All web servers listed are free for noncommercial use.

protocols offered
many, including small molecule docking, protein design, RNA design, etc. o

structure prediction®’

protein designlm

flexible peptide docking'®
backbone remodeling and design'*

classification of protein—protein complex interactions'®”
structure prediction based on chemical shift data

setup protocols through visual diagrams

energy function to improve one structural problem will
ultimately improve performance for other modeling tasks.
Important components of the energy function are statistically
derived, i.e., using protein models derived from high-resolution
crystallographic data in the Protein Data Bank (PDB) as a
knowledge base. "1 ¢326=35 Rop speed, the energy function is
pairwise decomposable and employs a distance cutoff. For
many sampling tasks, Rosetta employs a Monte Carlo search
steered by the Metropolis criterion (MCM).”” Rosetta is
continually developed and rigorously tested by a consortium of
international academic laboratories known as the RosettaCom-
mons (www.rosettacommons.org). Herein, we present a global
review of generalized Rosetta protocols and applications, as well
as descriptions of novel functionalities recently intro-
duced 263037

Detailed tutorials and examples are included as Supporting
Information. The tutorials herein supersede our previous
tutorials put forward in “Practically Useful: What the Rosetta

» 38

Protein Modeling Suite Can Do for You”.

B MAKING ROSETTA ACCESSIBLE

Rosetta is extremely powerful for many applications in
structural biology, but for many years, it was limited by the
fact that users needed an extensive background in C++ and the
Unix environment to be able to construct new protocols. An
ongoing effort by many groups has been taken to eliminate
these boundaries, allowing greater flexibility and ease of use for
the novice and intermediate user. These updates include
customizable protocols using XML or Python. The updates
using XML (RosettaScripts)’® or Python (PyRosetta)* allow
users to customize protocols without learning C++, by
combining prewritten Rosetta objects and defining their
behavior without having to write and recompile new C++
code. In addition, the Rosetta community now offers multiple
web interfaces for application-specific tasks.

Other tools have been added, not to run Rosetta but to
improve users’ experience, such as graphical user interfaces
(GUIs) to visualize Rosetta operations and to generate input
files,"" and PyMOL integration for real-time molecular
visualization." These tools offer users intuitive control over
structural modeling without sacrificing flexibility and power.

RosettaScripts. RosettaScripts is an XML-like language for
specifying modeling protocols through the Rosetta frame-
work.”® It allows users to define a set of Rosetta objects and
execute them in a defined order to develop full protocols.
Rosetta objects in RosettaScripts fall under four main
categories: Movers, which are objects that modify a structure
in some way; Filters, which evaluate properties of a structure;
TaskOperations, which control the degrees of freedom of
Rosetta’s side-chain placement routines; and ScoreFunctions,

4749

which evaluate the energy of a structure. By combining these
four elements, users are able to leverage many different
sampling and scoring algorithms, with fine control over
sampling degrees of freedom and protocol flow. All objects
defined under these categories are customizable, which is a
distinct advantage of RosettaScripts over conventional
command line applications. For example, a user can define
multiple score functions to be used in different sections of a
protocol and then combine several protocols into a single XML
protocol (i.e, protein—protein docking and design). This
flexibility has made a number of scientific advances possible,
such as de novo design of an influenza binder,'’ protein—protein
docking based on hybrid structural methods,"* and HIV vaccine
design.™

PyRosetta. Because of the popularity of Python as a
programming language in the computational biology commun-
ity, a Python-based implementation of Rosetta was developed,
termed PyRosetta.”” PyRosetta consists of Python bindings for
the major functions and objects of Rosetta, allowing all of these
objects to be run from a Python environment. One advantage is
the ability to combine Rosetta protocols with other popular
structural biology software, such as PyMOL™" and BioPython."
PyRosetta includes access to the same set of Rosetta objects for
sampling and scoring that are described above for Rosetta-
Scripts, as well as many others. Unlike RosettaScripts,
PyRosetta can be run in either script mode or interactive
mode. Interactive mode allows the user to inspect their objects
in real time while prototyping a new protocol.’” Notably,
PyRosetta is available for Windows in addition to Linux and
Mac OSX, expanding the availability of Rosetta to researchers
who use a Windows environment.

Web Interfaces. We are aware of eight Web servers that
have been created to allow nonexperts to make use of Rosetta’s
functionality (Table 1). These Web servers allow Rosetta to be
used with almost no learning curve, making the boundary to
entry even lower than that of the scripting protocols mentioned
above. In particular, ROSIE [the Rosetta Online Server that
Includes Everyone (http://rosie.rosettacommons.org)]™® has
been set up to easily provide a web interface for new Rosetta
protocols.

Other Tools. Since the publication of RosettaScripts and
PyRosetta, new tools have been developed to make running a
Rosetta protocol even more intuitive. An interface to PyMOL
was developed by Baugh et al., which allows users to visualize
their molecules being manipulated by Rosetta as the protocol is
being run."" While the viewer was originally developed for use
with PyRosetta, it has since been extended for RosettaScripts.
This visualization tool is especially useful for new users with
experience in structural biology but new to computation.

DOI: 10.1021/acs.biochem.6b00444
Biochemistry 2016, 55, 47484763
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Table 2. Standard Rosetta Score Function Terms

score term

low-resolution scoring terms

env

definition

hydrophobicity term for each amino acid

vdw steric repulsion between two residues
pair probability of two residues interacting
g radius of gyration

cbeta

hs_pair, ss_pair, and sheet secondary structure terms
high-resolution scoring terms (talaris2014)

fa_atr, fa_rep, and fa_intra_rep

solvation term based on a number of surrounding residues

decomposed 6—12 Lennard-Jones potential

fa_sol EEF1 solvation term

pro_close proline ring closure energy

omega omega backbone dihedral potential

dslf_fal3 updated disulfide geometry potential

rama potential of ¢ and  angles for each amino acid

p_aa_pp probability of an amino acid given a set of ¢ and y angles
fa_dun rotamer likelihood

hbond_sr_bb, hbond_Ir_bb,
hbond_bb_sc, and hbond_sc

yhh_planarity
fa_elec

Coulombic electrostatic potential between two residues with a distance

combined covalent—electrostatic hydrogen bond potentials for a-helices, f-sheets, side-chain backbone, and side-
chain—side-chain interactions, respectively

tyrosine hydroxyl out-of-plane penalty

dielectric (dep fa_pair)

d d
P

In addition, several GUIs for Rosetta have been developed to
eliminate the need to run Rosetta exclusively through the Unix
command line."’ The PyRosetta Toolkit was developed to serve
as a GUI for running PyRosetta, with menus to guide the user
through the relevant Rosetta options that are needed for a
protoco]."7 InteractiveRosetta is a GUI for running Rosetta
protocols with an integrated molecular visualization window
and user-friendly controls for implementing common Rosetta
protoco]s."0 Through these GUIS, users can generate input files
for Rosetta protocols using a “point and click” interface while
also running protocols seamlessly in the same window.

Bl SAMPLING AND SCORING IN ROSETTA

Rosetta Sampling. While the approaches used by different
protocols vary, in general Rosetta utilizes a Monte Carlo
Metropolis sampling algorithm to quickly and efficiently
determine the quality of structural trajectories. Rosetta further
differentiates between sampling backbone and side-chain
conformations within two separate refinement tasks. In
addition, backbone sampling can be performed on a global or
local scale. Large-scale backbone sampling utilizes 3-mer and 9-
mer fragments derived from the Protein Data Bank (PDB),
while local refinements of the backbone optimize ¢ and y
angles without disturbing the global fold. Side-chain sampling
also utilizes information derived from the PDB to create a
“rotamer” library of observed conformations to reduce the
conformational search space. For a more detailed discussion of
Rosetta sampling, see ref 27.

Rosetta Scoring. The Rosetta score, or energy function, is
a linear, weighted sum of terms combining knowledge- and
physics-based potentials gathered from protein structural
features within the PDB. The score function is used during
Rosetta modeling to evaluate Monte Carlo sampling and for
scoring the final output pose. With the implementation of
Rosetta3, the score function is treated as a separate entity such
that it can be repeatedly called and rapidly grocessed in a
manner independent of the protocol at hand. & Additionally,
score terms are grouped into a hierarchy based on potentials
related to one entity (i.e., y-angle probability), two interacting
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entities (i.e, hydrogen bonding potential), and terms that
require the analysis of the entire model (i.e,, radius of gyration).
Low- versus High-Resolution Scoring. In low-resolution
scoring, or “centoid” mode, the side chain of each residue is
removed and represented instead as a super atom (“centroid”),
at a position that roughly approximates the center of mass of
that side chain, averaged across likely side-chain states (or at
the Car atom for glycine). This greatly reduces the degrees of
freedom that must be sampled during low-resolution backbone
movement while preserving chemical and structural features of
a given residue. Typical low-resolution sampling involves
replacement of the backbone conformation with peptide
fragments three and nine amino acids in length that are
derived from the PDB. Peptide fragments are generated from
the primary sequence of the protein. Centroid-mode scoring
and sampling are used during the initial stages of protein
modeling where exhaustive searches of conformational space
are performed such as de novo protein folding, loop building,
and rigid-body protein—protein docking."'**”**  Common
score terms used in centroid mode are listed in Table 2.
High-resolution scoring, or “full-atom” mode, allows for full
representation of all atoms of each side chain. In full-atom
mode, conformational sampling relies on evaluating side-chain
rotamers (derived from the PDB) during a Metropolis Monte
Carlo simulated annealing protocol to find the global
minimum.” Full-atom scoring was originally developed for
protein design but has seen several improvements throughout
Rosetta’s history to the current talaris2014 score func-
tion.”**~>**” We have provided an additional example tutorial
for the user on the basics of Rosetta scoring; see the
scoring_and_prep folder in the Supporting Information.
Score Function Optimization. The score function is a
linear weighted sum of energy terms; therefore, the weights can
be parametrized to generate meaningful scores for predicted
models. These are often fit against benchmark sets of modeling
challenges to guide prediction of native structures. An
algorithm “optE” was developed to streamline this weighting
term optimization.”> This algorithm excels at setting reference
weights for amino acids. Using the approximation that a native,
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evolved sequence is close to the optimal sequence for a
structure,”’ optE attempts to find reference weights that
minimize the divergence from native sequence profiles. Via
optimization of the talaris2014 score function for sequence
recovery (~40%), performance in novel design tasks is also
improved.

Like previous iterations of the full-atom score function,
talaris2014 sums separate physics- and knowledge-based
potentials. It was found that combining physics- and knowl-
edge-based information in a given score term led to improved
Lennard-Jones and hydrogen bonding score terms.”’ The
combined covalent—electrostatic hydrogen bonding terms were
further updated with improved geometry and parametrization
for sp’-hybridized hydrogen bond acceptors.’” Scoring
potentials of knowledge-based score terms were smoothed
with the use of bicubic-spline interpolation.> An updated
rotamer library was included with an adaptive kernel
formulation, which allows for smoother potentials of
Ramachandran-based score terms.” Ideal atomic coordinates
for amino acids, the geometry of disulfide bonds, and the
hydroxyl sampling of serine and threonine residues were also
expanded and improved. The free energies of solvation
(LK_DGFREE) were updated to improve the EEF1 solvation
energy potential of buried residues. Lastly, a new term that
describes the Coulombic electrostatic potential between two
residues with a distance-dependent dielectric (fa_elec) was
introduced and replaces the previous statistics-based potential
(fa_pair).”> Further refinements were made to reduce the
influence of the hydrogen bonding terms. This resulted in
improved sequence recovery, rotamer recovery, and model
discrimination.”” As of writing, these updates culminated in the
talaris2014 score function, which is the default for current
versions of Rosetta. All talaris2014 score terms are listed in
Table 2.

Continual optimization of the Rosetta score function means
that the default score function varies with Rosetta version:
scorel2 for versions prior to Rosetta 3.5, talaris2013 for weekly
releases until 2016.10, and talaris2014 for Rosetta 3.6 and
weekly releases since 2016.11. Further score function refine-
ment is ongoing, and it is likely that future Rosetta releases will
have a different default score function. Additionally, while
Rosetta strives to have a single all-atom score function to
encompass all modeling tasks, several application-specific
scoring potentials have been developed to include new score
terms and optimized score term weights. These include, but are
not limited to, modified score functions for small molecule
docking,'® protein—protein docking,"*** and membrane
protein modeling* as well as specialized score functions
for low-resolution sampling stages.

Limitations and Caveats. Ongoing improvements made
by the Rosetta community have led to increasingly accurate
modeling protocols; however, there are still several hurdles that
must be overcome for Rosetta to accurately produce nativelike
models. First, Rosetta sampling is stochastic in nature.
Therefore, not every modeling trajectory will sample a regional
minimum on the score function. Second, the score function is
heuristic and abbreviated for speed. It fails to fully recapitulate
the fundamental forces. Therefore, minima of the energy
function are not guaranteed to describe biologically relevant
states. Third, even with its rapid score function, Rosetta is
unable to exhaustively sample all possible structural space due
to computational time restraints. Fourth, many Rosetta
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protocols are optimized for local resampling and require a
starting model, which may not exist for some systems.

Evaluating Interfaces. Some biological applications of
Rosetta focus on improving, creating, or otherwise altering a
well-defined protein—protein, protein—small molecule, or
protein—DNA interface. These protocols typically inhabit a
much smaller search space and in some cases rely solely on
rigid-body optimization to generate a desired interaction.”® In
these instances, a series of specific interactions is evaluated, and
the widely used “score vs RMSD” plot (see Figure Sh for an
example of a score vs RMSD plot) is repurposed to look at
small changes at the interface; here, plotting the “interface
score” against the “interface RMSD” prevents small, meaningful
changes from being lost in the larger fluctuations when scoring
the entire model or computing the RMSD over all atoms.
Additionally, analytical tools like the Interface Analyzer provide
a series of useful calculations that include binding energy,"9
shape complementarity, the number of buried, unsatisfied
hydrogen bonds, and the solvent accessible area buried at the
interface. These metrics can be used in conjunction with
RosettaHoles®” to generate a packing statistic score for the
interface.

B DE NOVO STRUCTURE PREDICTION

De novo protein structure prediction is one of the greatest
remaining challenges in computational structural biology. This
process models the tertiary structure of a protein from its
primary amino acid sequence. Importantly, de novo modeling
differs from template-based or comparative protein modeling in
that structural predictions are not based upon a known
homologous structure. To address the challenge of predicting a
protein’s structure de novo, Rosetta uses short peptide
“fragments” to assemble a complete protein structure.

The Rosetta de novo protein folding algorithm continues to
follow the steps described in our previous review.*® Briefly,
short peptide fragments of known protein structures are
obtained from the PDB and are inserted into an extended-chain
protein following a Monte Carlo strategy.' In that sense,
Rosetta de novo protein folding is not truly de novo; it combines
a very large number of small templates. The hypothesis is that
while not every protein fold is yet represented in the PDB, the
conformation of small peptide fragments is exhaustively
sampled. These peptide fragments are used to alter the
backbone conformation of the extended-chain protein, folding
it toward a low-energy tertiary structure. The process is
repeated to create an ensemble of models. Finally, these low-
resolution models can be filtered on the basis of pass/fail
criteria provided by the user. These models can be clustered,
and an energy minimization step applied to refine an all-atom
model with the high-resolution energy function.

Generating Peptide Fragments. De novo protein folding
relies on the assembly of short peptide fragments, usually
generated as a preprocessing step. First, the primary protein
sequence is used to generate secondary structure predictions.
Next, the sequence, secondary structure predictions, and NMR
data (if available) are used to pick candidate three- and nine-
amino acid fragments from the PDB. Finally, these candidate
fragments are scored, and the best N fragments are written to a
fragment library file. The ROBETTA Web server (http://
robetta.bakerlab.org) is available for noncommercial use and
allows users to generate fragment libraries using a simple
interface.”’  Additionally, Gront et al. have developed the
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Figure 1. Multitemplate comparative modeling with Rosetta. (A) General workflow of the RosettaCM protocol. (B) Fragment insertion (blue,
before insertion; red, after insertion). (C) Recombination of template segments. (D) Fragment insertion and minimization for loop closure.

Reprinted with permission from ref 5. Copyright 2013 Elsevier.

FragmentPicker that provides users with total control over the
fragment picking protocol.** )

TopologyBroker. The TopologyBroker,* a tool that allows
for more complex simulations, is an improvement added to
Rosetta since our last review. The conformational space
searched during a Rosetta de novo modeling simulation is
vast, and successful searches often integrate prior knowledge
with sampling. In de novo protein folding, this prior knowledge
may be in the form of f-strand pairing constraints or the
formation of a rigid chunk of the target fold based on a
structurally homologous domain. Previously, protocol devel-
opers were restricted to a sequential sampling approach in
which Rosetta could readily violate one set of these constraints
while sampling to satisfy the other. The TopologyBroker was
developed to create a consensus sampling approach that
satisfies all of the requested constraints without requiring
additional code development for each unique system; instead,
the Broker provides an Application Program Interface (API)
that allows for plug-and-play applications to generate complex
sampling strategies.

Benchmarking De Novo. The de novo modeling
capabilities of the object-oriented Rosetta software suite
(“Rosetta3”) were assessed in the CASP8 (Critical Assessment
of protein Structure Prediction) experiment.’ For 13 targets in
the assessment, no homologous templates were identified and
Rosetta’s de novo modeling protocol was used to predict the
structure of these targets. Following the observation that
Rosetta de novo structural predictions are sometimes improved
by using nonstandard fragment sizes, a range of fragment
lengths were used when modeling the CASP8 targets. Longer
fragment lengths were found to improve modeling of a-helical
proteins, while shorter fragment lengths mainly improved
modeling of f-strand proteins.

Limitations of De Novo. Because de novo structure
prediction is such a powerful tool and yet such a complex
challenge, it is critically important to understand the limitations
of the algorithm. Rosetta performs well at folding small,
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globular, soluble proteins as well as small, simple membrane
proteins containing 80—100 residues. However, large and
complex proteins present additional difficulties that are not
easily overcome by de novo techniques alone. Instead, users
must incorporate other biochemical information to obtain
nativelike models. Ongoing work shows that the incorporation
of residue—residue co-evolution information can significantly
improve the prediction accuracy during de novo modeling
trails.” Other techniques such as homology modeling and using
experimental constraints are discussed below.

Furthermore, because de novo structural prediction will
sample many potential protein folds, it is necessary to generate
large numbers of models (>10000) to adequately sample the
conformational space. Extensive computational resources are
needed to generate this number of models, and the use of
distributed computational methods (such as computational
clusters) is recommended. An example tutorial for the de novo
prediction of a protein structure with Rosetta is included in the
Supporting Information. This tutorial, protein_folding, pro-
vides an outline for a basic de novo protocol. Structural
prediction of a soluble protein is described, both with and
without the application of experimentally derived restraints.
Also, a brief review of model analysis is covered. Instructions on
how to run a membrane protein de novo protocol are included
in a subfolder of the protein_folding tutorial.

B COMPARATIVE MODELING

Comparative modeling differs from de novo methods in that it
utilizes a known protein structure as the starting scaffold or
template for structural prediction. If the template structure is a
homologous protein, one speaks often of “homology
modeling”. Comparative modeling is a useful strategy for
predicting protein structure and function when experimental
methods fail or would be too resource intensive to employ. It
increases the probability of obtaining realistic conformational
predictions, especially when the target, or desired protein, is
greater than 150 amino acids in length and/or adopts a
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complex tertiary fold. However, it requires that a related, often
homologous, structure has been determined experimentally;
this is termed the template. Ideally, the sequence identity
between the target and the template is >30%, although proteins
with lower sequence identity may still be used for comparative
modeling when their tertiary fold is conserved.

The latter case will be examined within the tutorial provided
with the Supporting Information. This tutorial, rosetta_cm,
outlines the basic steps necessary for comparative modeling in
Rosetta. The tutorial focuses on the use of RosettaRelax and
RosettaMembrane, as well as information for implementing
basic restraints.

Over the past several years, comparative modeling in Rosetta
has incorporated many improvements, specifically the use of
multiple templates and a specific low-resolution scoring
functions.” Previously published protocols of comparative
modeling with Rosetta suggested using multiple templates to
obtain diversity and flexibility.' However, models were built on
individual templates. The new RosettaCM protocol allows for
integration of multiple templates with de novo fragments into a
single structural model of the protein.® Hence, this multi-
template, multistage protocol samples a broader structural
landscape and can select well-scoring subtemplates for different
regions of the protein to be modeled.

A highly detailed description of RosettaCM design, sampling,
and scoring has previously been published.” Users are
encouraged to refer to this work for a comprehensive
assessment of RosettaCM applications, considerations, and
caveats. Herein, we will briefly describe features of RosettaCM
as they apply to the protocol presented.

Starting Templates. Before utilizing RosettaCM, starting
templates must be identified through remote homologue
detection methods such as PSIBLAST.* When homologues
are not found using sequence-based methods, three-dimen-
sional (3D) fold recognition software may be used to obtain
suitable templates. As with other modeling software,
RosettaCM performance improves with higher sequence
similarity and identity.

Three Stages of Multitemplate Comparative Model-
ing. Multitemplate RosettaCM is a three-stage process in
which the best scoring model from each stage is utilized as the
input for the following step (Figure 1). The output of stage 1 is
a full-length, assembled model that is generally correct in
topology. However, segment boundaries where templates are
mended can be suboptimal in geometry and energetically
frustrated. To resolve these energetic frustrations and to
explore the conformational space around this starting model,
stage 2 of RosettaCM iteratively improves local environments
through a series of fragment insertions, side-chain rotamer
sampling, and gradient-based energy minimization of the entire
structure using a RosettaCM-specific low-resolution energy
function. The best model from this cycle is then moved to stage
3 for a final round of all-atom refinement that improves side-
chain geometries, backbone conformations, and packing density
before converging on a final output model.

Modeling Loops. In previous Rosetta comparative
modeling protocols, a user-defined, “loop” closure step was
required to remove chain breaks, reconcile long unstructured
coils, or rebuild regions of low sequence similarity (all of which
are defined as “loops” within the Rosetta framework). Two
different algorithms are available: Cyclic Coordinate Descent
(CCD) and Kinematic Loop Closure (KIC). Briefly, CCD
quickly closes roughly 99% of loops utilizing a robotics-inspired
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iterative approach to manipulate dihedral angles of three
residue backbone atoms between user-specified C-terminal and
N-terminal anchor points. The second loop building algorithm,
KIC, explicitly determines all possible combinations of torsion
angles within the defined segment using polynomial resul-
tants.”> While being slower than CCD, KIC determines more
accurate loop structures, provided the anchor points are
optimally set. Both algorithms within Rosetta can be used in
conjunction with fragments derived from the PDB to build
regions of missing electron density, poor homology, or
backbone gaps.

Unlike the single-template loop building application,
comparative modeling with multiple templates closes chain
breaks and rebuilds loops internally during stage 2. De novo
fragment insertions are encouraged in regions of weak
backbone geometry, while template-based fragment insertions
anneal chain breaks and low-electron density regions. Addi-
tional smoothing occurs with the RosettaCM-specific scoring
function. This internal step removes the need for additional
loop closures by the user. However, it is encouraged for the
user to critically examine all output models to validate structural
accuracy.

B PROTEIN-PROTEIN DOCKING

Determining the optimal binding orientation and interface of
two or more protein binding partners has many biological and
pharmaceutical applications, yet determining the structure of
protein—protein complexes by biochemical techniques is slow
and laborious. RosettaDock is a useful tool for computationally
predicting protein—protein interactions by employing an
algorithm that simulates a biophysical encounter of two or
more binding partners and optimizes the conformation of the
bound state. The RosettaDock algorithm includes a multiscale,
Monte Carlo-based docking algorithm that begins with a
centroid-mode stage to identify docking poses, followed by an
all-atom refinement stage to optimize rigid-body position and
side-chain conformations.'

Global versus Local Docking. The initial pose for docking
is determined by either global docking or local perturbation.
Global docking randomly orients one of the two binding
partners in relation to the other to determine an initial binding
interface. This is useful when there is no biological or structural
evidence to suggest a starting pose. Local perturbation allows
the user to define a general starting pose for the binding
partners when prior experimental knowledge exists; this initial
placement greatly decreases the conformational search space
and improves the sampling density close to the starting pose,
although this may bias models toward the starting con-
formation. The tutorial included in the protein—protein_dock-
ing folder illustrates one application of Rosetta protein—protein
local docking by using two known binding positions of the
CR6261 antibody to influenza antigen hemagglutinin (HA)
subtypes H1 and HS.

Low-Resolution versus High-Resolution Docking. The
full RosettaDock algorithm begins with low-resolution docking.
The first step involves rigid-body movements of the binding
partners that rotate and translate in relation to one another."
The score function is used to achieve a threshold acceptance
rate of rigid-body moves.'” A high-resolution docking mode
follows in which the lowest-energy structures and/or largest
clusters assessed from the centroid-mode stage are selected for
high-resolution refinement. Centroid pseudoatoms are replaced
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with all-atom side chains in their initial unbound conformations
followed by additional fine-grained rigid-body docking.

Improvements to RosettaDock. The addition of Rosetta-
Scripts and PyRosetta to Rosetta now gives users the flexibility
to modularize the centroid mode and all-atom mode of
RosettaDock to suit case-specific applications. This was done
by splitting RosettaDock into three major classes: Dock-
ingProtocol, DockingLowRes, and DockingHighRes."” The
increase in flexibility showed an only marginal increase in
successful predictions; however, it is particularly adept at
predicting antibody—antigen complexes."> The modularization
of RosettaDock has allowed users to also incorporate additional
features within their docking protocols, including additional
parameters for nonprotein moieties and protonation
states,"”*%7 flexible peptide-chain docking using FlexPep-
Dock,'* and de novo peptide docking'®

FlexPepDock. The FlexPepDock de novo docking algorithm
is similar to the RosettaDock algorithm in that it begins with
sampling rigid-body moves from the initial protein—peptide
complex. Although not included in the tutorial, this step also
includes iterative peptide fragment insertions and random
moves of the peptide backbone using decreasing simulated
temperature weights. Next, the low-resolution model is
improved using an all-atom refinement stage by peptide side-
chain placement optimization using a Monte Carlo search of
“small” and “shear” moves described by Rohl et al." Each round
of refinement also includes a decreasing repulsive van der Waals
weight term and an increasing attractive van der Waals term to
allow a greater degree of perturbation within the binding
pocket without causing the peptide and protein to separate
during energy minimization. The FlexPepDock de novo
benchmark demonstrated that the protocol produces near-
native models with 86% accuracy (Figure 2)."°

Figure 2. Protein—peptide interface prediction using FlexPepDock ab
initio. Structure prediction of the Che-Z-derived peptide bound to
CheY (PDB entry 2FMF) from two opposite starting orientations
converges onto the same final conformation resembling the structure
of the native peptide. The left panel is a general view of the CheY
receptor (gray; interface residues colored light brown), the two initial,
extended peptide conformations (rainbow cartoons), and the final
helical peptide conformation (rainbow, transparent cartoon). The right
panel is a detailed atomic view of the top FlexPepDock ab initio
predictions from two simulations (yellow and orange) and the native
peptide conformation (green). Reprinted from ref 15.
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B PROTEIN-SMALL MOLECULE DOCKING

Protein—small molecule docking aims to capture the binding
interactions between a protein and a small molecule. This
includes recapitulating the binding pose and quantifying the
interaction strength. RosettaLigand, Rosetta’s protein—small
molecule docking protocol, is designefl to consider both
protein and small molecule flexibility.'®'” It uses a two-phase
docking approach similar to Rosetta’s protein—protein docking:
a low-resolution phase of rapid sampling based on shape
complementarity followed by a high-resolution phase of Monte
Carlo minimization of side-chain rotamers and small molecule
conformers. The models undergo a final gradient minimization
of the protein and molecule torsion degrees of freedom before
they are output along with an interface score as a proxy for
binding free energy. A small molecule docking tutorial
(ligand_docking) included in the Supporting Information
demonstrates this optimized protocol.

Improvements to Rosettaligand. In contrast to the
previously published RosettaLigand protocol,**** this tutorial
replaces the independent translation/rotation low-resolution
sampling steps with the new Transform algorithm.'® The
Transform algorithm couples translational, rotational, and
conformational sampling into a single Monte Carlo process.
In a benchmark case, the Transform algorithm demonstrated a
10—15% improvement in docking success rate and an effective
30-fold speed increase over the classical methods.'® The
improved search time permits the use of RosettaLigand for
screening medium-sized small molecule libraries, protocols for
which are found in the Supporting Information. For screening
work with much larger libraries, Rosetta’s Docking Approach
using Ray-Casting (DARC) is a GPU-accelerated method
demonstrated to be successful for protein—protein interface
small molecules.”” Tt should also be noted that screening
applications use a simplified scoring function because of the
computational complexity of fully flexible protein high-
resolution refinement.

Customizable Small Molecule Docking Protocols. The
RosettaLigand protocol can now be customized through the
RosettaScripts XML interface, allowing for greater flexibility of
use.*® Additional features now include docking with explicit
interface water molecules, which demonstrated 56% recovery
for failed docking cases across a CSAR (Community
Structure—Activity Resource) benchmark of 341 diverse
structures.’’ Design of interfaces can now be incorporated
into a single step for the docking and design of protein—small
molecule binding pockets.”’ These RosettaScripts-based
protocols have also been used to predict absolute binding
energies for HIV-1 protease—inhibitor complexes with an R
value of 0.71.%

Research questions often focus on small molecules binding to
a target protein without an experimentally determined
structure. Such cases require first building models of the
receptor using de novo Rosetta, RosettaCM, or similar protein
modeling protocols. When docking small molecules into
protein models, Kaufmann and Meiler observed a nativelike
binding pose among the top 10 scoring comparative models for
21 of 30 test cases.”> Furthermore, docking results were
significantly better in cases utilizing protein templates
containing a small molecule of similar chemotype compared
to templates with dissimilar small molecules or proteins in the
apo state. A full Rosetta protocol linking comparative modeling
and small molecule docking is available in ref 4. Combs et al.
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utilized the previously discussed independent translation/
rotation low-resolution sampling but can be easily modified
to the new Transform sampling.

Small Molecule Docking in Membrane Proteins.
Because of their biological importance and the challenges of
experimentally determining their structures, membrane pro-
teins are particularly attractive targets for the comparative
model docking strategy. While the comparative modeling
portion may be handled in a membrane environment, to date,
Rosetta handles small molecule docking in a soluble environ-
ment. Nguyen et al. demonstrated the applicability of the
soluble simplification for G protein-coupled receptors
(GPCRs).*! RosettaLigand sampled near-native poses when
docking small molecules into comparative models of GPCRs,
but selecting correct small molecule poses by Rosetta score
alone remains challenging (Figure 3). The use of templates

Residues when mutated reduce
MPEP affinity

3-10

fold

Figure 3. Application of RosettaLigand docking of negative allosteric
modulator MPEP into a comparative model of the mGluS trans-
membrane domain. The predicted lowest-energy MPEP docking
position (cyan) is close to residues demonstrating a change in MPEP
modulations upon mutation (yellow to red). Reprinted with
permission from ref 108. Copyright 2013 American Society for
Pharmacology and Experimental Therapeutics.

with high sequence identity, knowledge-based binding pocket
filters, and experimental contacts are recommended methods
for improving accuracy. Additional algorithm development and
benchmarking are being pursued to fully integrate RosettaLi-
gand with the RosettaMembrane framework.”™

B INCORPORATING EXPERIMENTAL DATA

While Rosetta can sample near-native structures in a variety of
situations, knowledge of limited experimental information can
guide sampling and discriminate conformations inconsistent
with experimental data, allowing more accurate determination
of structures with less sampling. The incorporation of
experimental data most commonly takes the form of
modifications to the energy function. Addition of experiment-
based scoring terms can make the energy landscape less rugged,
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allowing Rosetta sampling to more rapidly converge on relevant
conformations.

For the incorporation of such information, Rosetta has a
flexible restraint system (termed “constraints” in Rosetta
parlance). Rosetta constraints have a two-part organization:
specification of structural measurements such as distances or
angles and a function that converts the measurement into an
energetic penalty. A wide variety of measurements and
functional transformations are currently available within
Rosetta, and these can be freely mixed and matched according
to the particular use case. There are also built-in tools for
incorporating experimental data, allowing users to select only
the best of a set of potentially inaccurate restraints. The
flexibility of these restraints allows them to be applied in a
diversity of situations, from incorporation of nuclear Over-
hauser enhancement (NOE) distances from NMR spectrosco-
py” to the use of mass spectrometry cross-linking informa-
tion® to the use of custom potentials derived from _probability
distributions matching EPR/DEER measurements.®”**

Although the constraint system provides flexibility when
incorporating experimental data for most Rosetta protocols,
other experimental data types may reflect more complex
structural parameters and require specialized scoring terms.
Residual dipolar couplings,”” pseudocontact shifts,”” and small-
angle X-ray scattering’' have all been incorporated into Rosetta
using specialized score terms, as have several techniques for
working with electron microscopy (EM)- and X-ray-based
electron density.””’>”> An example tutorial for using X-ray
crystallography data and electron density maps with Rosetta,
structure_refinement, is provided in the Supporting Informa-
tion.

Improvements in image data analysis and electron detectors
have led to advances in electron microscopy, producing
electron density maps at resolutions as high as 3 A for complex
molecular machines. However, model building into these near-
atomic resolution electron density maps is still difficult and
error prone. DiMaio et al. have developed methods in Rosetta
that incorporate medium- to high-resolution (3—5 A) cryo-EM
maps for dgnsi_t?'-guided structure determination and structure
refinement.”* ™"

Protein Structure Prediction with Cryo-EM Restraints.
This method takes advantage of near-atomic-resolution cryo-
EM density maps for protein structure prediction. Using this
method, highly accurate models of proteins up to 660 amino
acids in length can be determined without homologous
structures. This method includes density-traced backbone
conformation and side-chain density agreement for sequence
assignment during structure prediction. Structure determina-
tion starts with obtaining nine-residue fragments centered on
each amino acid in the sequence using the Fragment Picker as
mentioned previously in the de novo folding section. These
fragments are then docked into the electron density map using
a translational and rotational search to identify possible
fragment placement. To further refine these placements, side-
chain information is used to identify fragments with physically
realistic side-chain conformations consistent with the exper-
imental data. Finally, the largest mutually consistent subset of
fragment placements is selected. A subset of placements is
scored with a low-resolution score function that evaluates their
pairwise consistency. Monte Carlo-simulated annealing finds a
subset of fragment placements optimizing this score function.
This assignment will not necessarily assign a position for each
residue. This process is conducted iteratively until 70% of the
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sequence has been assigned a backbone conformation. For
consecutive iterations, the portion of the density map already
covered in the previous step is excluded from fragment
placements. Finally, Rosetta loop modeling and an all-atom
refinement step, both guided by the cryo-EM density map, fill
in any missing regions in the model.

Cryo-EM-restrained protein structure prediction’” yielded
models within 2.0-3.1 A all-atom RMSD compared to
experimentally determined structures. Structure determination
of proteins rich in f-sheets is challenging for this method
because of the conformational variability of the structure.
Medium-resolution (4.8 A) density maps provide another
challenge during partial structure building for this method.

Density-Guided Iterative Local Refinement. This
structure refinement protocol”* includes techniques from X-
ray crystallographic refinement, de novo structure prediction,
segment rebuilding, and all-atom refinement from comparative
modeling in Rosetta to predict models of proteins at atomic-
level accuracy starting from a low-resolution model (with the
correct topology). Like comparative modeling techniques,
backbone fragments are inserted onto a template structure via
superposition and minimization to close the peptide bonds. In
density-guided structure rebuilding, before the peptide bonds
are closed the fragments are optimized to fit the density after
superposition. The backbone fragments that do not fit into this
density are replaced by backbone fragments derived from the
PDB. Peptide bond, backbone, and side-chain geometries are
maintained during this step by coordinate constraints at the
fragment end points and Ramachandran and rotameric
constraints, respectively. This density-guided rebuilding step
is followed by alternative refinement of model coordinates and
atomic B factors until a good correlation is obtained between
the model and the density map. Finally, the quality of the
refined model is evaluated using all-atom energies as well as
agreement with the experimental data, using the Fourier Shell
Correlation between the model and map.

With homologues as starting points, the structure of the 208
proteasome, periplasmic domains PrgH and PrgK of the needle
complex, and a peptide fiber assembly were refined using this
method.”* The accuracy of the refined models was tested
against the quality (sequence identity) of the starting model,
the number of images used for the reconstruction of the map,
and the resolution of the density map. Density-guided iterative
local rebuilding generated >75% accurate models for maps up
to 4.4 A resolution and less accurate models for maps with a
resolution lower than S A. This suggests that to successfully
refine a model, the helix pitch, individual #-strands, and some of
the aromatic side chains should be partially visible in the
density map.

Among many applications, the density-guided iterative local
rebuilding technique for structure determination in Rosetta has
been used to determine structures of the peroxisomal Pex1/
Pex6 ATPase complex with a unique double-ring,” type VI
secretion system contractile sheath in Vibrio cholerae,”® and
SIRV2 virion that infects the Sulfolobus islandicus hyper-
thermophilic acidophile.”

Refinement with Phenix and Rosetta. Phenix™® is state-
of-the art X-ray refinement software used to determine crystal
structures of biomolecules. The Rosetta structure modeling
methodology has been combined with the Phenix refinement
method to improve structure determination at low and high
resolutions. Phenix benefits from the detailed all-atom force
field and more effective conformational search and minimiza-
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tion procedures that exist in Rosetta. The Phenix.Rosetta
refinement approach" utilizes Phenix for bulk solvent
correction to calculate electron density maps and refine atomic
B factors while the Rosetta force-field, minimization, and
sampling techniques are used to optimize the model geometry.
This method includes alternative real and reciprocal space
refinement to improve model structure. Rosetta force-field
constrains the refinement to physically plausible conformations,
and density maps restrain the Rosetta side-chain and backbone
sampling during refinement.

The Phenix.Rosetta refinement method was tested against
conventional refinement in Phenix, CNS,” and REFMAC.*
On 26 models with density map resolution ranging from 3.0 to
4.5 A, PhenixRosetta refinement generated models with
superior geometry in terms of free R factor, MolProbity
score, and RMSD compared to that of the published
structures.”

Phenix.Rosetta refinement has been successfully adapted to
determine structures of the flavin binding center of the NqrC
subunit of sodium-translocating NADH:quinone oxidoreduc-
tase,” the full-length protcln and regulatory domain of
Pseudomonas aeruginosa OxyR,” the apo-TrmBL2 structure to
understand nonspecific binding of DNA by TrmBL2,* and the
af T cell antigen receptor (TCR)—CD1la complex.™

Phenix.mr_rosetta is another model rebuilding technique
that integrates structure modeling tools from Rosetta with
crystallographic structure determination tools in Phenix.*® This
technique can be used to determine challenging structures for
which simple molecular replacement procedures usually fail,
when starting models are based on a remote homologue with
<30% sequence identity."**” The phenix.mr_rosetta algorithms
allow users to identify suitable templates and refine them with
Rosetta before performing molecular replacement and then
rebuilding the models with Rosetta and Phenix autobuilding
tools. Electron density map-guided energy optimization,
combinatorial side-chain packing, and torsional space mini-
mization are used to improve molecular replacement models
before applying crystallographic model building techniques.
Phenix.mr_rosetta allows rapid structure determination without
experimental phase information given the availability of
homologues structures with >20% sequence identity, diffraction
data sets of better than 3.2 A resolution, and four or fewer
copies in the asymmetric unit cell.

B PROTEIN DESIGN

Inverse Folding Problem. Protein design is a unique
protocol in that instead of finding the optimal conformation of
a particular sequence, it aims to determine an optimal sequence
fm a given conformation. For this reason, it is often termed the

“inverse protein folding problem”.*® Generally, there are two
main design strategies: design for stability and design for
function. The stability protocol considers the entire protein for
design, and the score terms of interest are generally focused on
improved packing. The design for function protocol is usually a
localized design, centered on a specific region, domain, pocket,
etc., of a protein with a focused energy function that governs
precise interactions, such as electrostatics or hydrogen bonding.

Protein design involves iterative optimization of sequence
and structure. During the fixed backbone side-chain optimiza-
tion step, sequence space is sampled simultaneously with side-
chain conformational space using Monte Carlo-simulated
annealing by exchanging all possible amino acids at user-
specified designable positions while evaluating the predicted
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energy.’ This is followed by flexible backbone minimization to
optimize the model. The first successful use of de novo
RosettaDesign produced a sequence for a fold not seen in the
PDB.® The experimentally determined structure had an RMSD
of 1.1 A from the computationally design model. An example
tutorial for protein design, protein_design, is provided in the
Supporting Information.

Design for Stability. Protein stability can be affected by a
single-point mutation. Kellogg et al. evaluated several protocols
with varying levels of flexibility and sampling and determined
one method in particular to be useful for single-point
mutations.” This method was made into the application
ddg_monomer. When ddg_monomer was tested on a set of
1210 single-point mutants from the ProTherm database, the
correlation of predicted ddGs to experimental ddGs was 0.69
while the stability classification accuracy was 0.72.

While ddg_monomer is a tool for predicting how a single-
point mutation affects the stability of a protein, RosettaVIP
(void in packing) is a design strategy that has been developed
to identify single-point mutations that could improve the
stability of a protein.” When Borgo et al. fully designed
proteins, they found that the hydrophobic cores of the designed
models were poorly packed when compared to their respective
native proteins. RosettaVIP was able to identify packing
deficiencies and sample a much smaller sequence space to fill
the void in packing, resulting in a more stable design.

Design for Functionality. In addition to stabilizing
monomeric proteins, RosettaDesign can be used to design
interfaces between proteins. Fleishman et al. established a dock
design protocol that optimizes the sequence of a protein to
bind a surface patch of a target protein during design. Docking
was used to optimize the positioning of the interacting proteins
at the interface. Experimentally determined structures had an
interface very similar to those of the designed models.'’

Other types of interfaces of interest for design applications
are protein—small molecule interfaces. Tinberg et al."' provided
a great example of using RosettaDesign to design for affinity as
well as stability (Figure 4). First, RosettaMatch®® was used to
find a stable scaffold for design for binding a particular small
molecule. Next, RosettaDesign was used to maximize the
binding affinity between the protein and small molecule.
Finally, a second round of design was used to minimize
destabilization due to mutagenesis in the first round. To ensure
these mutations were meaningful, design was guided by a
multiple-sequence alignment. The resulting most energetically
favorable model was the highest-affinity binder in experimental
studies and had a cocrystal structure that agreed with the
computational model.

Most design algorithms in Rosetta are performed while
considering a single fixed backbone structure. Recently, efforts
to consider several structures during the design process have
been undertaken to tackle more difficult design problems. A
generalized multistate design protocol was introduced in 2011°
to help in cases in which design should occur to satisfy multiple
conformations or to design specificity toward one state and
negative design against other states. Willis et al.*” showed that
RosettaMultistateDesign was capable of predicting residues that
were important for polyspecificity when designing the heavy-
chain variable region of an antibody. Sevy et al. introduced a
new approach to multistate design that accelerates the process
of multistate design by reducing the sequence search space,”
allowing more complex backbone movements to be incorpo-
rated into a design protocol.
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Figure 4. Design of protein—ligand interactions for high affinity and
selectivity. (A) The design approach involved specifying binding
interactions between the protein and ligand followed by design of the
binding site. Finally, only designs in which shape complementarity was
better than what is seen in native complexes were selected for
experimental characterization. (B) Design crystal structure (purple)
and computational model (gray) of the protein—ligand complex
resulting from design for high affinity and selectivity. The RMSD was
0.54 A, while the bound form (C) had an RMSD of 0.99 A. Reprinted
with permission from ref 11. Copyright 2013 Macmillan Publishers
Ltd.
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B ADDITIONAL ROSETTA METHODS

Symmetry. Previously, Rosetta2 was limited in its ability to
model large symmetric complexes.”* In 2011, DiMaio et al.
introduced a new mode in Rosetta to model symmetric
proteins.” This allowed protocols to sample and score large,
symmetric complexes much more quickly and with less
memory usage as this approach samples only symmetric
degrees of freedom, greatly reducing the search space. The
underlying assumption, however, is that the interactions
between all subunits are symmetric. The current implementa-
tion of RosettaSymmetry can create complex symmetric
assemblies through the use of a symmetry definition file for a
symmetric or nearly symmetric structure from the PDB. In the
case of de novo folding, a symmetry definition file must be
generated from scratch.

Membrane. RosettaMembrane has been the method used
to model helical transmembrane proteins for several years.
RosettaMembrane consists of both low-resolution® and high-
resolution”" scoring functions that were developed to describe
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how the protein interacts with the membrane environment.
Recently, RosettaMP, a new framework for modeling
membrane proteins in Rosetta, was developed to facilitate
communication between model sampling and scoring.”> Work
is ongoing to adapt existing protocols to be compatible with
RosettaMP.

Noncanonical Amino Acids and Noncanonical Back-
bones. Rosetta was initially developed to predict the three-
dimensional structure of proteins using the 20 canonical amino
acids. However, the expansion to include noncanonical amino
acids (NCAAs) and noncanonical backbones (NCBs) is
important, as they allow for the flexibility to create more
precise interactions between proteins,gZ metal ions,w‘ or
antigens.”" While the expansion to include more diverse
structures is critical, the addition is nontrivial.

The addition of NCAAs requires the modification of both
the scoring function and how the space is explored. These
hurdles, however, are not easy to clear, as Rosetta is built on a
foundation of knowledge-based components within its scoring
function. Most of these knowledge-based score terms come
from published protein structures, and few NCAAs have a
statistically relevant representation in the PDB. Therefore,
developers need to rework key components of the Rosetta
scoring function.” All score terms were then reweighted to
account for the changes in the score terms. Along with the new
score terms, the authors created rotamer libraries for 114
NCAAs, as well as a tool, MakeRotLib, for creating rotamers for
user-supplied NCAAs.

An effort was also undertaken to add noncanonical
backbones to Rosetta, and in the initial attempt, five new
backbones were added.”” The first hurdle in the addition of an
NCB is defining what a “residue” is. In Rosetta,3%° the “residue”
became the central object; therefore, with NCBs, a repeating
subunit must be defined. Additionally, new backbone sampling
movers must be created, or the backbone must be fixed, as the
NCB will have flexibilities different from those of a linear chain
of three singly bonded atoms. The final key point in the
addition of NCBs is the creation of new rotamer libraries for
the side chain. Even if the side-chain atoms are identical to
those of a canonical side chain, the chemical change in the
backbone will cause different flexibilities, due to sterics or
electrostatics. A peptoid (a backbone structure identical to the
canonical backbone, with the only change being the side-chain
branches from the nitrogen instead of the a-carbon) rotamer
generator has been created” for users to create rotamers for
their own side chains. However, care must be taken when
creating rotamers for a blended backbone system.”

The main considerations for a user attempting to use NCAAs
and/or NCBs in Rosetta are understanding the chemical
properties of their side chain and/or backbone and properly
representing this knowledge in Rosetta. The correct score
terms need to be used, as the standard knowledge-based score
terms will not apply. An appropriate rotamer library and/or
mover must be added to allow for proper sampling of the
protein landscape. Finally, the user must understand that
because work on NCAAs and NCBs is still limited, novel score
terms or sampling methods may be required.

RNA. Structural predictions of RNA molecules require
confronting the same challenges as protein modeling: sampling
the conformational space of the heteropolymer and accurately
scoring different conformations. Rosetta applies the same
strategies developed for modeling proteins to address these
challenges in nucleic acids.'” An assembly of fragments that
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have been observed in known RNA structures is used to
produce nativelike tertiary models. This procedure also
captures sequence-dependent local conformational biases. A
centroid-based “low-resolution” scoring function is used for
selection of initial models. It is knowledge-based (statistically
derived from frequencies observed in known crystal structures)
and includes scoring terms for base pairing, base stacking, and
compactness and terms for maintaining coplanarity and
disfavoring steric clashes. In current protocols, models are
subsequently refined using a full-atom physics-based energy
potential and a Stepwise Ansatz.’’ This protocol is termed
FARFAR, Fragment Assembly of RNA with Full-Atom
Refinement, and is available using the distributed Rosetta
suite and the ROSIE Web server.*

The Stepwise Ansatz (Figure 5) has been benchmarked on
loops and hairpins up to 10 nucleotides in length. For larger
structures, additional information is needed to restrict the
conformational sampling to a tractable amount. This
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Figure 5. Stepwise assembly (SWA) structure modeling method for
RNA. Illustration of the J2/4 loop from the three-way junction of a
TPP-sensing riboswitch (PDB entry 3DV2). (A) Crystallographic
conformation of the five-nucleotide loop (colored). (B) Schematic of
the three-way junction. (C—F) The loop is built in a stepwise manner,
starting from the 3’ end. (G) A directed acyclic graph recursively
covers all possible build-up paths. The steps shown in panels C—F are
colored magenta. Gray vertices correspond to the starting point with
none of the loop nucleotides built. Black vertices are partially built
subregions. Red vertices correspond to the ending points with the loop
completely built. (H) Energy vs RMSD from the crystal for models
generated by SWA (blue points) and by the prior method (FARFAR,
red points). The SWA fourth lowest-energy cluster center (purple
circle) is within atomic accuracy of the crystallographic model (0.85 A
RMSD). Reprinted with permission from ref 109. Copyright 2011
National Academy of Sciences.
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information can come from both predictions and experimental
data. Secondary structure predictions can be made using
algorithms that take into account structures of homologous
sequence. Chemical mapping experiments provide useful
reactivity data that help assign base pairing status to each
nucleotide. Multidimensional chemical mapping, such as “M2,
mutate-and-map””” and Multiplexed -OH Cleavage Analysis by
paired-end sequencing (MOHCA-seq),” can provide specific
pairwise proximity information. Additional efficiency is gained
by the preassembly of helical structures as input to the fragment
assembly step. These methods have performed well in the
recent blind prediction experiments called “RNA-Puzzles”.””

The same techniques used for structure prediction can also
be applied to structure refinement, to improve the quality of
RNA crystallographic models in the presence of X-ray data.
This procedure has been implemented in the “Enumerative
Real-space Refinement ASsisted by Electron density under
Rosetta” ERRASER-Phenix pipeline'DO and was demonstrated
to improve the geometrical parameters and model quality of 24
RNA-containing structures in the PDB, including small
pseudoknots and large ribosomal subunits.'""

NMR structure determination of proteins or nucleic acids
typically relies on a large number of NOE measurements to
derive distance constraints for structure calculations. Using a
relatively small number of measurements of only "H chemical
shift values, CS-Rosetta-RNA was demonstrated to provide
sufficient information to determine the structures of 23
noncanonical RNA motifs at high resolution.'”> This
functionality is also available on the ROSIE Web server.'

RNA Design. RNA can be designed using Rosetta’s RNA
Redesign algorithm. It performs fixed backbone design on 3D
RNA structures to ?roduce sequences that best stabilize a given
3D conformation.'” The success rate for a benchmark set of 15
RNA crystal structures was 45% sequence recovery overall and
65% sequence recovery for noncanonical sequences (not
Watson—Crick or G-U). Finally, the algorithm was able to
predict a sequence that would increase the thermostability of
domain IV of the signal recognition particle.

Bl CONCLUSIONS

The Rosetta software suite represents a compilation of
computational tools aimed at obtaining physically relevant
structural models of proteins, RNA, and small molecule
interactions. Herein, we presented a general outline of updated
Rosetta applications, protocols, frameworks, and functionalities
with the aim of improving user success. All protocols are
generalizable and can be applied to an extended list of
biological queries that other structure-determining methods
may not be able address.

Improvements to the variety of Rosetta interfaces (Rosetta-
Script, PyRosetta, and many web interfaces) allow the user a
high degree of flexibility and personalization for each specific
structural problem, as well as providing a previously unavailable
entry point for novice users.

The current, default Rosetta score function (talaris2014) has
been optimized and improved with new score terms as well as
reweighted knowledge- and physics-based potentials. Rosetta
also incorporates a new release of the Dunbrack rotamer
library.*

De novo structure prediction has greatly improved with the
implementation of the TopologyBroker, which was developed
to create consensus sampling that satisfies all user-requested
constraints without requiring additional code development for
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each unique system. Recent progress in comparative modeling
applications has broadened the possible conformational search
space by incorporating multiple starting templates. Protocols
for protein—protein docking now include flexibility to
modularize the coarse-grained and high-resolution modes of
RosettaDock, giving the user more freedom to incorporate
additional features in the docking process while narrowing the
computational search space. Improvements in protein—small
molecule docking utilize an improved Transform algorithm that
increases both the speed and quality of this tool in obtaining
more nativelike conformations. Likewise, the flexibility in
incorporating experimentally derived constraints for most
protocols has also greatly improved. To tackle the challenge
of the inverse folding problem, new implementations of
multistate design permit users to optimize sequences while
considering several structures simultaneously.

Continuous developments in Rosetta have enhanced its
utility by adding functionality to model proteins embedded in
the membrane, expansion into nontraditional protein modeling
by adding noncanonical amino acids, noncanonical backbones,
and nucleic acids, and adding the ability to model ever-larger
proteins by the addition of symmetry.

Installation and Licensing. The Rosetta licenses are
available at http://www.rosettacommons.org/software free of
charge for academic and governmental laboratories. Rosetta is
compatible with most Unix-based operating systems and is
distributed as source code. A user manual describing
compilation, installation, and usage for the current release can
be found at http://www.rosettacommons.org/docs/latest/.
Demos and tutorials for additional Rosetta protocols can be
found at http://www.rosettacommons.org/demos/latest/. In-
terested developers can join the RosettaCommons organization
to contribute to the Rosetta software package.

Bl ASSOCIATED CONTENT

© Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.bio-
chem.6b00444.
Step-by-step tutorials for six of the protocols discussed in
the paper (de novo folding, comparative modeling,
protein—protein docking, protein—ligand docking, work-
ing with electron density, and protein design) (ZIP)
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Abstract:

Since 2011, over 300 human cases of infection, especially in exposed children, with the influenza
A H3N2 variant (H3N2v) virus that circulates in swine in the US have been reported. The structural
and genetic basis for the lack of protection against H3N2v induced by vaccines containing seasonal
H3N2 antigens is poorly understood. We isolated 17 human monoclonal antibodies (mAbs) that
neutralized H3N2v virus from subjects experimentally immunized with an H3N2v candidate
vaccine. Six mAbs exhibited very potent neutralizing activity (ICso < 200 ng/ml) against the
H3N2v virus but not against current human H3N?2 circulating strains. Fine epitope mapping and
structural characterization of antigen-antibody complexes revealed that H3N2v specificity was
attributable to amino acid polymorphisms in the 150-loop and the 190-helix antigenic sites on the
hemagglutinin protein. H3N2v-specific antibodies also neutralized human H3N2 influenza strains
naturally circulating between 1995 and 2005. These results reveal a high level of antigenic
relatedness between the swine H3N2v virus and previously circulating human strains, consistent
with the fact that early human H3 seasonal strains entered the porcine population in the 1990s and
reentered the human population, where they had not been circulating, as H3N2v about a decade
later. The data also explain the increased susceptibility to H3N2v viruses in young children, who
lack prior exposure to human seasonal strains from the 1990s.

Acquiring co-crystal structures for each of the biologically-interesting HA-antibody interactions
depicted in the study would be a time-consuming and expensive task. My contribution to this work
centered around the homology modeling of various H3 hemagglutinin head domains using Rosetta.
These models were used to visualize the epitopes for interpreting in-vitro binding data and
inferring the mechanism through which antibodies that target HA head can neutralize the virus

without inhibiting cell entry. After careful study we determined that antibodies like H3v-47

neutralize the virus by preventing budding.
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Since 2011, over 300 human cases of infection, especially in exposed children, with the influenza

A H3N2 variant (H3N2v) virus that circulates in swine in the US have been reported. The structural
and genetic basis for the lack of protection against H3N2v induced by vaccines containing seasonal
H3N2 antigens is poorly understood. We isolated 17 human monoclonal antibodies (mAbs) that
neutralized H3N2v virus from subjects experimentally immunized with an H3N2v candidate
vaccine. Six mAbs exhibited very potent neutralizing activity (IE50 < 200 ng/ml) against the H3N2v
virus but not against current human H3N2 circulating strains. Fine epitope mapping and structural
characterization of antigen-antibody complexes revealed that H3N2v specificity was attributable to
amino acid polymorphisms in the 150-loop and the 190-helix antigenic sites on the hemagglutinin
protein. H3N2v-specific antibodies also neutralized human H3N2 influenza strains naturally
circulating between 1995 and 2005. These results reveal a high level of antigenic relatedness
between the swine H3N2v virus and previously circulating human strains, consistent with the fact
that early human H3 seasonal strains entered the porcine population in the 1990s and reentered the
human population, where they had not been circulating, as H3N2v about a decade later. The data
also explain the increased susceptibility to H3N2v viruses in young children, who lack prior exposure
to human seasonal strains from the 1990s.

Introduction
Annual outbreaks of influenza A viruses (IAVs) in humans are a major global health problem, causing more
than 250,000 deaths every year (1). In addition to yearly epidemics, novel influenza viruses originating from
other animals periodically cross the species barrier to humans and cause pandemics with high morbidity and
mortality rates. IAVs are enveloped viruses that contain the antigenic hemagglutinin (HA) and neuramini-
dase (NA) surface glycoproteins. HA encodes the receptor-binding site (RBS) and fusion peptide essential for
attachment and entry into the host cell and is the primary target for potent neutralizing antibodies (2). The
globular head domain that contains the sialic acid-binding (SA-binding) pocket is the major antigenic portion
of the HA and tolerates high sequence variability. As a consequence, influenza viruses undergo constant
antigenic drift that allows escape from antibody-mediated immunity. There are currently 18 known subtypes
of TAVs that fall into 2 broad groups based on the HA sequences and phylogeny (3). Of these, only H1 and
H3 subtypes currently circulate in humans. Preferential binding of particular HA molecules to different types
of SA receptors on host cells is the major determinant of host specificity (4). The HA of avian IAVs has high
affinity for a 2,3-linked SA, whereas human influenza viruses have high affinity for a 2,6-linked SA (4-7).
The IAV genome is segmented, and the virus is capable of superinfecting cells with a heterologous IAV
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in a single animal. These features allow for reassortment of the influenza genome in intermediate hosts,
such as swine or poultry, enabling emergence of strains that are capable of crossing the species barrier to
humans (8). In particular, swine may act as a mixing vehicle for IAVs, because their upper respiratory tract
epithelial cells possess both a 2,3- and o 2,6-linked SA receptors, which allow infection with both avian
and human IAV (6). Although swine influenza viruses do not generally infect humans, sporadic cases of
human infections with swine HIN1 and H3N2 have been documented since 1958 (9). Reassorted swine
influenza viruses that are capable of infecting humans can cause severe disease and pose a pandemic threat
due to lack of preexisting immunity to the virus. The HIN1 influenza pandemic in 2009-2010 was associ-
ated with a virus of swine origins and is an example of a swine virus that was able to transmit easily in the
human population and cause disease (10).

Influenza viruses that circulate in pigs are designated “variant” viruses when they cause human infec-
tions. Swine-origin TAV H3N2v viruses containing the matrix gene from the 2009 HIN1 pandemic virus
were first detected in humans in July 2011. Since then, there have been atleast 345 reported cases of human
infections with H3N2v viruses, with a high prevalence in children (11-13). A recent study showed that all
children <5 years old and >80% up to 14 years old lack protective serum antibody titers against H3N2v
(14). Most cases of H3N2v-associated disease have been associated with exposure to swine, with very lim-
ited human-human transmission (12). H3N2v is antigenically distinct from the currently circulating H3N2
seasonal strains, and it has been determined that vaccination with 2010-2011 annual trivalent inactivated
virus does not induce neutralizing antibodies against the variant H3N2 virus (14). Lack of preexisting
immunity to the variant virus, especially in children, may be a major concern if a highly transmissible
H3N2v outbreak occurs (14-16).

Here, we describe the characterization of human mAbs to H3N2v HA isolated from individuals vacci-
nated with an experimental monovalent inactivated H3N2v vaccine candidate. We used these mAbs to define
the molecular basis of strain specificity or cross-reactivity for human neutralizing antibodies recognizing the
HA of H3 seasonal or emerging H3 variant viruses. The results indicate that polymorphisms in the 150 helix
and the 190 loop, located near the RBS on HA, play a major role in escape of H3N2v virus from immunity
induced by seasonal H3N2 vaccines. Furthermore, our results reveal that the HA protein of H3N2v strains
is antigenically similar to the human H3N2 TAV strains that circulated during the late 1990s, during which
several H3N2 spillover events have been suggested to occur from humans into US swine (17-19).

Results

Isolation of H3N2v-reactive human mAbs from vaccinated donors. Healthy adult donors received 2 doses of sub-
virion H3N2v vaccine (15 pg of HA/dose) 21 days apart in an open-label trial, the results of which were
reported previously (20). Peripheral blood samples were obtained from volunteers after informed consent
on the day of vaccination (day 0) and 21 days after the second dose of vaccine (day 42). Cryopreserved
peripheral blood mononuclear cells (PBMCs) were immortalized by EBV transformation, and we collect-
ed supernatants from the resulting lymphoblastoid cell lines. Supernatants were screened by ELISA for
binding to recombinant HA protein from the H3N2v strain A/Minnesota/11/2010 (designated here as
the MNv strain) or one of two representative H3N2 seasonal strains, A/Victoria/361/2011 (designated
here as the Victoria strain) or A/ Wisconsin/67/2005. The frequency of H3N2 seasonal or variant-reactive
B cell lines was reported previously in the description of the vaccine trial results, and those studies indi-
cated a significant B cell response to the H3N2v HA among the vaccinated individuals (20). The majority
of the B cells that secreted H3 HA-reactive antibodies on day 42 recognized the variant HA specifically,
with limited cross-reactivity between variant virus-reactive antibodies secreted by B cells and those secret-
ed by seasonal virus-reactive B cells (Supplemental Figure 1; supplemental material available online with
this article; doi:10.1172/jci.insight.86673DS1). Transformed B cell lines with supernatants that showed
reactivity against the MNv HA in ELISA were selected for fusion to generate human hybridoma cell lines
secreting mAbs. We used PBMCs collected on study day 42 from a total of 12 subjects to isolate 36 cloned
hybridomas secreting mAbs. The IgG subclass and light chain type of the 17 neutralizing antibodies are
presented along with the donor number for the sample from which they were isolated (Figure 1).

Binding and neutralization profile of H3N2v mAbs. The neutralization potential of the clones in this anti-
body panel against MNv virus was determined by microneutralization assay using the MNv virus. Sev-
enteen of thirty-six mAbs exhibited neutralizing activity against the variant virus when tested in concen-
trations as high as 10 pg/ml (Figure 1). The IC, values are shown as a heat map, with increased color
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ECso (ng/mL) for indicated strain
Monoclonal | Subject 19G Lioht chain | H3N2v H3N2 H3N2 H3N2 H3N2v H3N2v
antibody number subclass 9 Minnesota Perth Victoria Texas 1Cso HAl
2010 2009 2011 2012 (ng/mL) (ng/ml)

H3v-126 27 1 A 3 > > >

H3v-71 37 1 A 10 >

H3v-47 10 1 K 4 18 26 38

H3v-104 41 1 K 14 > > >

H3v-98 37 1 K 19 > > >

H3v-81 37 1 A 29 > > >

H3v-141 54 1 K 25 > > >

H3v-45 9 3 A 14 > > >

H3v-95 37 3 A 9 159 = 239

H3v-62 37 1 K 4 > 1,625 > 438 >5.0
H3v-84 37 1 K 2 88 5 135 482 >5.0
H3v-11 1 1 K 32 > 144 > 564 5.0
H3v-21 1 1 K 1 > 352 > 697 >5.0
H3v-86 37 1 K 27 357 13 368 956 >5.0
H3v-7 1 1 K 34 > > > 1,226 >5.0
H3v-9 2 1 K 38 > > > 1,301 >5.0
H3v-79 37 1 A 86 353 > 219 1,602 >5.0

Figure 1. Characterization of 17 neutralizing monoclonal antibodies {mAbs). The antibodies are arranged in the order of neutralization potency (column
9)with the most potent antibodies at the top. Seventeen mabs isolated by human B cell hybridoma generation exhibited neutralization potential (shown
as half-maximal inhibitory concentration [IESo]) at <5 pg/mlagainst the HIN2v virus by microneutralization assay. Nine antibodies exhibited hemaggluti-
nin inhibition (HAI) activity, indicating that they disrupt receptor-binding function of the virus. The maAbs were tested for binding against HA fram H3N2v
or 3 seasonal strains (shown as half-maximal effective concentration [EC,]). The = symbol indicates that binding was not detected at the maximum
concentration tested (2 pg/ml). The experiments for determining EC o (n = 4), IC,, (n = 3), and HAI (» = 3) were conducted twice independently.

insight.jci.org

intensity corresponding to an increase in neutralizing potency. Six mAbs (found at the top of Figure 1 and
designated as H3v-126, H3v-71, H3v-47, H3v-104, H3v-98, and H3v-81) showed very potent neutraliza-
tion against the virus, with IC, values of less than 100 ng/ml. We also determined the ability of 4 mAbs
(H3v-98, H3v-104, H3v-71, and H3v-45) to neutralize 4 H3N2 strains representing each antigenic cluster
circulating in swine, A/Swine/Texas/4199-2/98 (cluster I), A/Swine/Colorado/23619/99 (cluster II),
A/Swine/Oklahoma/18089/99 (cluster III), and A/Ohio/13/2012 (cluster IV) (Supplemental Table 1).
H3v-98 and H3v-104 showed potent inhibiting activity against 3 of 4 strains. H3v-71 and H3v-45 exhibited
activity against 2 strains at low concentrations.

The 17 H3N2v-neutralizing m Abs were tested forbinding to MNvand 3 seasonal strains A/Perth/16/2009,
Victoria, and A/Texas/50/2012. All of the antibodies had half-maximal effective concentrations (EC,) for
binding below 100 ng/ml to MNv HA (Figure 1). Increasing intensity of the orange cell fill color in the EC,,
column corresponds to increasing binding for the indicated HA. The antibodies displayed a differential binding
pattern — 9 mAbs bound specifically to the MNv HA, while the other 8 bound to both the variant HA and a
combination of seasonal HAs (Figure 1). Interestingly, all but one (H3v-47) of the potently neutralizing mAbs
exhibited a variant-specific binding phenotype without detectable cross-reactivity for the HA of H3 seasonal
strains (Figure 1) or other HA subtypes (Supplemental Table 2).

‘We determined the nucleotide sequence of the antibody heavy chain variable gene regions (Table 1).
The 17 neutralizing antibodies had unique HCDR3 sequences, indicating that the mAbs represented inde-
pendent clones. We also performed next-generation sequence analysis of antibody gene repertoires for a
subset of donors (donors 10, 27, 37, and 41). Interestingly, we were able to identify on the day of immuni-
zation (day 0) a member of the clonal lineage for 2 of the 6 mAbs dbtained from these donors, suggesting
that the clone was induced by prior infection (Supplemental Table 3). The frequency of those clones was
greatly expanded on day 7, the expected day of peak plasmablast circulation in peripheral blood (Supple-
mental Table 3). A clonal lineage of one of the clones, H3v-104, is shown in Supplemental Figure 2, with
the amino acid sequence alignment of 296 clonal variants shown in Supplemental Table 4.

Potently neutralizing mAbs blockthe RBS. Due to the HA specificity demonstrated by the mAbs, we anticipated
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Table 1. Antibody variable genes encoding 17 H3v-reactive human mAbs

mAb Heavy chain HCOR3 length HCDR3 amino acid sequence
VH o lll
H3v-126 2-70D*04 6-6%01 4%*02 16 ARTDGGSISSAAYFES
H3v-71 1-69*01 3-10%02 BT 16 AREGLGSVIIGPWEFDP
H3v-47 1-69%*05 2-2%01 3*02 21 ARCASKVEPAAPAYSDAFDM
H3v-104 1-69*13 5-12%01 4*02 e ARDYYRGEFSGYDFES
H3v-38 3-23*01 1-1*01 4*02 13 AKSSFTKGSPFDY
H3v-81 3-49%04 1-7*01 6%02 13 SREAANWNY PYHY SNGMDV
H3v-141 3-15*01 3-10%*01 4*02 a5 TTDNSFYYGSGYFDH
H3v-45 3-9*01 1-26%01 5*02 7 AKDCASGCTYYEAGFDP
H3v-35 3-21*01 5-18*01 3*02 15 ARDLSVYSYGGAFDI
H3v-62 3-30%04 2-15*01 5*02 14 ARRFCTGGSCYLDP
H3v-84 3-48*02 3-16%01 4%*02 14 ARDGAVVFGVPFDT
H3v-11 1-18%*01 2-21*01 4*02 17 ARRSRAWGLSKQGPLDY
H3v-21 1-2%*02 5-18%*01 4%*02 14 ARCYNLGYLVLFDY
H3v-86 6-1*01 3-22*01 4*02 15 ARGIQHWMMVVAFDH
H3v-7 3-33%04 2-15*01 4%*02 15 AKDRDGGVARAPLDY
H3v-3 4-34*01 3-3*01 4%*02 20 ARGRPSDESWSCYLDNGFDF
H3v-79 1-69%02 6-19*01 6%02 22 AVRAFSTAVAGKGPWHYY GMDV
that the majority of the potently neutralizing mAbs mediated neutralization by binding to the less conserved
head domain of HA. We performed hemagglutination inhibition (HAI) assays in order to identify mAbs that
interfered with the receptor-binding function of HA. A total of 9 of the 17 neutralizing mAbs exhibited HAI
activity against the MNv virus, suggesting that these mAbs function by blocking virus binding to the SA receptor
{(Figure 1). The most potent mAbs that displayed variant-specific binding phenotype also exhibited HAT activity,
suggesting that the variant-specific polymorphisms around the RBS in the head domain region on MNv HA
play a major role in determining the unique antigenic profile of the variant virus.
In vivo efficacy of Hiv-126, H3v-104, and Hiv-71. We tested representative mAbs as prophylaxis in a mouse
challenge study. Groups of 6- to 8-week-old ferale DBA/2J mice at 5 animals per group were injected with
100 pg of individual mAbs by the intraperitoneal route on the day prior to virus challenge. Controls (#=10)
were injected with PBS. The modestly increased body weight for all 3 groups of mAb-treated animals when
compared with the PBS-treated animals was not statistically different (Figure 2).
Competition-binding studies. In order to determine if the neutralizing mAbsbound to common or diverse
epitopes on HA, we performed competition-binding assays using biolayer interferometry with all of the
neutralizing antibodies. Fifteen of the seven-
teen neutralizing mAbs were classified into
Ly competition-binding groups based on their
e 1154 ability to block other mAbs from binding to
-g, the HA; we were unable to detect good bind-
g 1104 ing signal for H3v-81 or H3v-7 with biolayer
> @ H3v-126 interferometry. The 15 neutralizing mAbs
E 1051 4 H3v-104 tested fell into 3 major competition-bind-
2 4100 - H3v-71  ing groups, with some overlap between the
§ ¥ PBS
» 95 Figure 2, Prophylactic efficacy of H3v-104,
x H3v-126, and H3w-71 in mice. Groups of mice
90+ (n = 5)were treated with 100 pg of individ-
ual mabs 24 hours befare challenge with
85 . . . , . . . . r . mouse-adapted A/Minnesota /1172010 X203
-1 0 1 2 3 4 5 6 7 8 9 virus. Controls (n =10) were injected with PBS.
The weight loss of mice was measured daily for
Days Post Infection 14 days after inoculation (day 0).
insight.jci.org  doi101172/jci.insight 86673 4
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Figure 3. Competition binding of neutralizing antibodies ta

H3N2v A/Minnesota/11/2010 hemagglutinin (HA) protein.

104 | 71 f141 | 126 | 98 | 11 | 47 | 45 | o5 | 62 | 84 | 9 | 21 | 86 | 79 Biolayer interferometry was used to perform competi-
tion-binding assays. The HA was loaded onto Ni-NTA tips,
104 100 |y 86, 81 % L and binding to 2 successive antibodies was tested. The
- ws W2 o 220 s et 82 %5 hindinlg slignal foreach antibody was ohta?neq froma sir)gle
association step of the mAb onto HA. If binding of the first
141 107 106 62 70 61 antibody blocked the binding of the secand antibody by
reducing its binding signal by more than 70%, it was defined
126 7_»_“139 M4 89 9 71 8 72 75 as a competitor, indicated in black. The values in the table
¢ indicate the percentage of the maximum uncompeted
bl binding signal. The red box indicates group 1, the binding
%‘ » - group comprising the potently neutralizing mAbs. The green
o box and the blue box represent group 2 (partially overlaps
-:% 47 % with group 1) and group 3, respectively. The experiment was
c conducted twice independently.
E 45 73 107 12
&
i.l__ 95 84 98
62 82 8 groups designated groups 1 and 2 and a distinct group
o PR 3 (Figure 3). Notably, 4 of the most potent neutralizing
clones (H3v-98, H3v-104, H3v-126, and H3v-71) that
bl I also exhibited HAIT activity and variant specificity fell
21 | 54 15 104 into the same competition-binding group, group 1.
o w“ w Mutagenesis  experiments and  electvon  microscopy
revealed vegions on the HIN2v HA impostant for its immune
™ | 9t 101 a0z escape from antibodies induced by seasonal H3ND viruses.
The 6 most potently neutralizing mAbs that displayed a
: Percentage of max variant-specific phenotype (i.e., mAbs that bound spe-
i tepreiation un-competed signal cifically to the MNv HA and not to the seasonal HAs)
First antibody blocks the binding of <30% were chosen for fine epitope mapping, We sought to
second antibocy determine the residues important for immune escape
First a"'ib°:i::,ir?:‘a:"'i’::;;‘° binding of 31-60% of the H3N2v virus from antibodies induced by sea-
sonal vaccines. We considered that the HA of MNv
First antiboodfys::::dn::‘z::)oc:ythe binding >60% has 52 polymorphisms as compared with the Victoria
seasonal strain. We initially performed a mutagenesis
screen by introducing variant-specific polymorphisms
into a ¢cDNA encoding the Victoria HA protein to
identify mutations that would enhance binding to the variant-specific mAbs. 17 variant-specific polymor-
phisms were introduced into Victoria HA as single or double mutations. Three double-mutant HA mole-
cules, Victoria 1202V/T2031, A163E/L164Q, and R142G/N144V, enhanced binding to mAbs H3v-98 and
H3v-104 in comparison to wild-type Victoria HA (Supplemental Figure 3).

Based on the results of the initial mutagenesis screen, we targeted the region around the RBS and
introduced residues from seasonal strains into the H3N2v HA to identify residues that disrupted binding
to wild-type MNv. The EC, values for MNv HA mutants that disrupt binding to each antibody are shown
with representative binding curves (Figure 4). Mutation of Y155T/N156K/L157S disrupted binding to
both mAb H3v-71 and mAb H3v-81, whereas mutant MNv N158G/Y 1598/K160T did not bind to mAb
H3v-71 and MNv KI189N/T192I/N193R did not bind to H3v-81. A single-mutation Y1378 disrupted
binding to H3v-141. In addition, a triple alanine mutant, MNv L194A/Y195A/V196A, did not bind to
mAbs H3v-98, H3v-104, H3v-71, H3v-81, and H3v-104.

‘We also performed electron microscopy (EM) of MNv HA in complex with Fab portions of the 3 most
potent variant-specific antibodies, H3v-104, H3v-126, and H3v-71 {Figure 5, A-C), along with the Fab of
a stem-binding antibody CR9114 (used as reference in each complex). The EM reconstructions revealed
that all 3 antibodies bound to the RBS on HA, with overlapping footprints (Figure 5D). This finding was
consistent with the competition-binding data and demonstrated that H3v-126, H3v-71, and H3v-104 all
fall under the same competition-binding group (group 1). The H3v-104 mAb displayed a comparatively
broader footprint on HA, extending below the RBS, supporting our previous observation that the Victoria
R142G/N144V mutant enhanced binding to mAb H3v-104 but not to H3v-126 or H3v-71. H3v-71 bound
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& [N wild-iype 013 | 005 | 009 | 029 | 007 | 004
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Figure 4. Binding of H3 variant-specific antibodies to mutated Minnesota hemagglutinin (HA) proteins, Muta-
genesis of MNv HA was performed to determine antigenic residues impartant for recognition by variant-specific
mabs, Mutants of HIN2v A/Minnesota/11/2010 (MN) HA were generated by site-directed mutagenesis, and the
half-maximal effective cancentration (EC, ) values were determined by perfarming ELISA with serial dilutions of
each antibody against the mutant HAs. The table (A) shows EC_ values and the graph (B) shows binding curves.
The mutants that disrupted binding completely ordecreased the EC_ by greater than 5-fold are represented as
dashed ordotted lines, respectively, and are indicated by red EC_j values in the table. The > symbol indicates that
binding was not detected at the maximum concentration tested (10 ug/ml). The experiments for determining the
EC,, (= 4) values were performed twice independently.

similarly to H3v-126 butappeared to interact more with the upper rim of the RBS (Figure 5D). This finding
could explain why mutations in the 190 helix and 150 loop affected binding of H3v-71 but not of H3v-126.
Collectively, the results from mutagenesis and EM structural studies indicated that variant-specific HA resi-
dues residing in 2 major structural features surrounding the RBS, the 150 loop and the 190 helix, principally
account for antigenic distinction of the variant virus from current seasonal strains.

The HA of H3N2v vivus is antigenically velated to that of older human seasonal HAN2 IAVs. The majority of
the severe cases of influenza infection caused by H3N2v viruses to date in the US have occurred in chil-
dren, suggesting partial immunity in adults. We sought to identify the nature of preexisting immunity to
the variant virus in the adult population that might provide partial protection against severe disease. Sol-
uble HA proteins belonging to 12 different seasonal H3N2 strains that circulated in humans from 1968 to
2013 were cloned, expressed, and assayed for binding to 6 potently neutralizing mAbs with variant-specific
binding and neutralizing phenotypes. Interestingly, 3 mAbs, H3v-98, H3v-104, and H3v-71, showed strong
binding to H3N2 viruses that circulated between 1997 and 2004 but not to the HA of H3 subtype strains
that circulated before or after that period (Supplemental Figure 4). To determine if these mAbs had the
potential to neutralize these older seasonal strains, we performed microneutralization assays to test activity
against 12 viruses that circulated between 1968 and 2013. Indeed, H3v-98 and H3v-104 neutralized all
of the strains tested between 1995 and 2005, whereas H3v-71 neutralized all of the viruses between 1997
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Figure 5, Negative stain EM images of hemagglutinin-Fab complexes. In each case the stem-binding antibody CRI114 was added to the camplex in arder
to improve 30 reconstructions. (A) Reference-free 20 class averages of complex containing Fab 104 (left), single class average with Fab colored in red
(middle), and 30 recanstruction (right). (B) Reference-free 20 class averages of complex containing Fab 126 (left), single class average with Fab colored in
blue (middle), and 30 reconstruction (right). (C) Reference-free 20 class averages of complex containing Fab 71 (left), single class average with Fab colored
in green (middle), and 30 reconstruction (right). (D) Side and top views of HA-Fab 126-CRI114 with Fab 126 removed and crystal structure of H3V (4FNK)
fitted. Binding sites of the 3 antibodies described in A-Cis highlighted using colors corresponding to Fabs.

H3V-71

and 2002 (Figure 6). We used a representative panel of live-virus H3 seasonal strains for the neutralization
assays that matched as closely as possible the strains that we had used to make recombinant HA mole-
cules for the seasonal strain HA binding assays. Although we did not detect binding for mAbs H3v-98 or
H3v-104 to the HA from A/New York/55/2004 or A/Hiroshima/52/2005, we did observe potent neutral-
ization against the A/Wisconsin/67/2005 strain that was available for neutralization testing, In summary,
prior infection with seasonal H3N2 strains that circulated during 2004 and 2005 might induce antibodies
that cross-react with H3N2v viruses but likely does not guarantee the presence of protective antibodies
against H3N2v because of antigenic heterogeneity.

Discussion

‘We report here the isolation of human mAbs against H3N2v virus and the use of them to determine the
molecularbasis for the antigenic distinction between H3 seasonal strains and the H3N2v viruses. Seventeen
antibodies neutralized MNv H3N2v at concentrations of less than 10 pg/ml. Four of the seventeen neu-
tralizing mAbs exhibited ultrapotent neutralizing activity (IC,, < 10 ng/ml). Three of these four ultrapotent
neutralizing H3N2v mAbs also displayed potent inhibiting activity against swine H3N2 strains belonging
to different antigenic clusters. Collectively, these results suggest that some of these H3N2v mAbs could be
used in humans as therapeutics against many H3N2 strains circulating in swine in the case of zoonotic
transmission event.

The H3 HA-binding breadth of IgG secreted by memory B cells from individuals vaccinated with
monovalent inactivated H3N2v revealed that there is limited cross-reactivity between antibodies secreted
by variant-reactive B cells and H3 seasonal virus-reactive B cells. About half of the H3v-reactive clones that
were isolated displayed specific binding to the MNv HA, with no detectable cross-reactivity for HAs from 3
recent seasonal H3N2 strains. The potently neutralizing variant-specific antibodies clustered into the same
competition-binding group and used the same virus neutralization mechanism by blocking the RBS on HA.
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sented as baseline if neutralization was not detected at
any concentration less than 5 pg/ml. The micraneutral-
ization assay for determining the IC,, (n = 3) values was
perfarmed twice independently.

H3N2 seasonal strains from indicated year

This finding suggested that common antibodies induced by seasonal trivalent inactivated influenza virus
(TIV) vaccination that recognize immunodominant epitopes adjacent to the RBS on HA fail to contribute
to cross-protection against variant virus. A recent study showed that the molecular basis for antigenic drift
in human H3N2 seasonal strains from 1968 to 2006 was attributed to 7 single amino acid substitutions at
positions 145, 155, 156, 158, 159, 189, and 193 in HA (21). Six of these residues are located in the antigenic
site B (upper rim of RBS). Fine-epitope mapping of 5 potently neutralizing H3N2v-specific mAbs revealed
a similar pattern in context to H3N2v antigenicity. The residues important for variant specificity of these
mAbs were located primarily in the 150-loop and 190-helix antigenic elements near the RBS.

Historically, swine IAVs have caused sporadic human infections, but these outbreaks had been mostly
self-limiting. The 2009 HIN1 pandemic was an example of a swine IAV variant, containing the same sub-
type of HA and NA as that of the circulating human strain, which caused a human pandemic. A recent
rise in swine-origin H3N2v human infections has raised concerns of another swine-origin influenza virus
pandemic (11, 13). Surveillance of IAVs in live-animal markets in Minnesota that included human, swine,
and environmental samples provided evidence of interspecies transmission of IAVs from swine to human,
signifying a potential risk to persons attending live markets (22). Moreover, H3N2 was identified as the
predominant subtype circulating in the swine population; a majority of these swine H3N2 isolates had the
same genomic constellation as the H3N2v viruses isolated previously from humans (22). Vaccination with
seasonal TIV does not provide protection against H3N2v viruses, indicating these swine-origin viruses have
the potential to spread within unprotected human populations {14).

The HA from the swine-origin 2009 pandemic HINI strain is antigenically similar to human HINI
viruses that circulated between 1918 and 1943 (23). It is hypothesized that IAV classical swine HINI was
introduced into the domestic swine population sometime during the 1918 human pandemic and remained
relatively static in swine for greater than 80 years until the end of the 20th century (24, 25). In light of
the 2009 pandemic, swine have been thought to act as a potential frozen reservoir of human IAVs, which
can result in pandemics through reintroduction of the human-origin virus into a then susceptible human
population at a remote time decades later (23). The reactivity of the human mAbs that we isolated from
H3N2v vaccines revealed that the same phenomenon may be occurring now with H3 viruses, as human H3
seasonal strains from the past may be harbored in an antigenically static manner in farm swine in the US.

During late 1990s, there were several spillovers of H3N2 virus from humans to pigs resulting in the
introduction of H3N2 viruses into the US swine population {17-19). The H3N2v viruses that were isolat-
ed from humans in 2011 were phylogenetically closer to seasonal strains that circulated during late 1990s
than to current H3 human strains (19, 26). We hypothesized that the swine-origin H3N2v viruses might be
antigenically related to the seasonal H3N2 viruses from late 1990s, and thus the H3N2v-specific antibodies
that showed no reactivity against the current seasonal strains might recognize the older seasonal viruses.
Indeed, we found that 3 potently neutralizing variant-specific mAbs (H3v-98, H3v-104, and H3v-71) had
the ability to neutralize seasonal strains that circulated between 1997 and 2002. Additionally, H3v-98 and
H3v-104 also neutralized strains from 1995 and 2005. These results indicate that the H3N2v viruses that
caused human infections from 2011 to 2013 are antigenically related to the human ancestral H3N2 strains
that circulated from 1995 to 2005, Taken together, the data suggest that children who were born after 2005
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do not have any preexisting cross-reactive immunity against H3N2v virus because they were not exposed to
the earlier H3 seasonal strains. Therefore, these children should be the priority target population for vacci-
nation to prevent an H3N2v outbreak.

The phenomenon of antigenic similarity between swine IAVs and ancestral human strains might be
explained by several mechanisms. First, swine may act as a relatively static reservoir of human IAVs. Sec-
ond, differences in the location of the immunodominant antibody epitopes on HA for swine and humans
might allow preservation of antigenic epitopes targeted by humans. We compared the HA1 sequences from
H3N2v Minnesota virus and the seasonal Victoria 2011 virus with that of the Sydney 1997 strain (a possi-
ble ancestor to the H3N2v Minnesota virus). The HA1 subunit of H3N2v Minnesota and H3N2 Victoria
strains has 37 or 32 polymorphisms, respectively, when compared with the HA1 sequence of H3N2 Sydney
1997, suggesting that these strains have drifted at a relatively similar rate in swine compared with the drift in
humans. Thirteen of these positions that are situated primarily in the upper or lower rim of the RBS (anti-
genic sites A and B) showed variation in both Minnesota and Victoria HA. In contrast, there were compar-
atively more polymorphisms in the H3N2v Minnesota HA sequence in antigenic sites C and E, whereas
polymorphisms in the 220-loop (antigenic site D) were seen predominantly in the Victoria 2011 strain.
These host-based differences in the observed immunodominance pattern provide a possible explanation of
why H3N2 viruses in the swine population retain antigenic features of their human ancestral strains. This
recurring phenomenon, in which swine populations act as a static/divergent antigenic reservoir of previ-
ously circulating human IAVs should thus be taken into serious consideration for pandemic preparedness.

Methods

Influenza viruses. The seed stock of H3N2v strain MNv was obtained from Terrence Tumpey (US
CDC). The working stocks used for microneutralization assay and HA inhibition assays were made
from the supernatant of virus-infected MDCK cell culture monolayers in plain Dulbecco’s Modified
Eagle Medium (Gibco DMEM, Invitrogen, 11965) with 2 ng/ml of TPCK-trypsin. The seasonal H3N2
strains A /Fujian/411/2002 (FR-1146), A/Perth/16/2009 (FR-370), A/Wisconsin/67/2005 (FR-397),
and A/Texas/50/2012 (FR-1210) were provided by the Influenza Reagent Resource (http://www.
influenzareagentresource.org/) of the US CDC. Two H3N2 seasonal strains, Victoria (NR-44022) and
A/Sydney/5/1997 (NR-12278), were obtained from BEI Resources.

Recombinant soluble HA proteins. Sequences encoding the HA genes of interest were optimized for
expression, and cDNAs were synthesized (Genscript) as soluble trimeric constructs by replacing the trans-
membrane and cytoplasmic domain sequences with cDNAs encoding the GCN4 trimerization domain and
a His-tag at the C-terminus. Synthesized genes were subcloned into the pcDNA3.1(+) mammalian expres-
sion vector (Invitrogen). HA protein was expressed by transient transfection of 293F cells with polyeth-
ylenimine transfection reagent and was grown in expression medium (Freestyle 293 Expression Medium;
Invitrogen, 12338). The supernatants were harvested after 7 days, filter-sterilized with a 0.4-um filter, and
purified with HisTrap TALON FF crude columns (GE Healthcare Life Sciences).

PBMC isolation and hybridoma generation. A cohort of 25 donors was vaccinated twice, 21 days apart,
with 15 pg of HA/0.5-ml dose of reassortant MNv NYMC X-203, as part of NIH-sponsored clinical
research trials of this experimental vaccine (DMID protocol 12-0011). The details of the clinical trial were
described previously (20). PBMCs from these donors were isolated from day 0 (day of first vaccination)
and protocol day 42 (3 weeks after the second dose of vaccine) by density gradient separation on Ficoll and
cryopreserved. The human lymphocytes from day 42 were thawed and immortalized by transformation
with EBV substrain B95.8 in the presence of CpG10103, cyclosporin A, and a Chk2 inhibitor (27). The
cells were plated in a 384-well plate, and 8 days later the supernatants from these transformed B cells were
used to screen for the presence of antibodies that bound to soluble H3N2 MNv HA using capture ELI-
SA. The positive wells containing B cells secreting anti-H3N2v antibodies were expanded onto irradiated
human PBMC feeder layers for 4 days and then fused with HMMAZ2.5 myeloma cells using a Cytopulse
PA 4000 electrofusion device. After fusion, human hybridomas were selected in medium with HAT solution
containing ouabain, and several rounds of limiting dilution passages were performed in 384-well culture
plates to isolate cell lines of the hybridomas with the highest level of secretion of IgG (27).

mAb production and purification. The hybridoma cell lines with the highest level for IgG expression for
each clone were selected as single cells using flow cytometric sorting to obtain clones secreting mAbs.
Once hybridoma clones were obtained following sorting and growth in a 384-well plate, we expanded
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them first into wells of a 48-well plate and then further into a 75-cm? flask to 70% confluency in hybrid-
oma growth medium (ClonaCell-HY medium E from STEMCELL Technologies, 03805). The cells then
were washed and expanded equally to four 225-cm? flasks for antibody expression in serum-free medium
(GIBCO Hybridoma-SFM, Invitrogen, 12045084). The supernatant was harvested after 3 weeks, filtered
with a 0.4-um filter, and the monoclonal IgGs were purified by affinity chromatography using protein G
columns (GE Life Sciences, Protein G HP Columns).

EC,, binding analysis. The EC, concentration for each antibody was determined as described previously
(28). Briefly, we performed ELISA using plates coated with the HA of interest at 2 ug/ml overnight at
4°C and then blocked with 5% nonfat dry milk, 2% goat serum, and 0.1% Tween-20 in PBS for 1 hour.
Three-fold dilutions of the mAb starting from 10 pg/ml were added to the wells and incubated for 1 hour,
followed by incubation for 1 hour at 1:4,000 dilution of anti-human IgG alkaline phosphatase conjugate
(Meridian Life Science, W99008A). The plates were washed 3 times between each step with PBS contain-
ing 0.1% Tween-20. Phosphatase substrate solution (1 mg/ml p-nitrophenol phosphate in 1 M Tris amino-
methane) was added to the plates and incubated for 1 hour, and the optical density values were measured at
405-nm wavelength on a BioTek plate reader. Each dilution was done in triplicate, and the EC, values were
calculated in Prism software (GraphPad) using nonlinear regression analysis.

HAI and neutralization assays to determine IC, values. Neutralization potential of all of the mAbs was deter-
mined by microneutralization assay and HATI assay. For microneutralization, 50 ul of 2-fold serial dilutions of
each antibody starting at 20 ug/ml was incubated with 50 ul of 100 TCID, of the virus in viral growth medi-
um (VGM) for 1 hour at room temperature. VGM consists of plain DMEM with 2 pg/ml of TPCK-trypsin
and 50 pg/ml gentamicin. The MDCK cell monolayer cultures were washed 2 times with 100 ul PBS con-
taining 0.1% Tween-20, and the virus-antibody mixture then was added to cells and incubated for 32 hours
at 37°C. The cells were washed again and fixed with 100 ul of 80% methanol/20% PBS. The presence of
influenza nucleoprotein in the fixed cells was determined by ELISA using a 1:8,000 dilution of mouse anti-
NP antibody (BEI Resources, NR 4282) as the primary antibody and a 1:4,000 dilution of goat anti-mouse
alkaline phosphate conjugate as the secondary antibody (ThermoFisher Scientific, 31320). Each dilution was
tested in duplicate and the half-maximal inhibitory concentration (IC; ) was determined by nonlinear regres-
sion analysis of log,  (inhibitor) vs. response function, using Prism software (GraphPad). An IC, value of 2
ng/ml was used as the threshold to determine the presence of functional neutralization. For performing the
HAT assay, we used turkey red blood cells (Rockland) that were diluted to 0.5% in Alsever’s solution (Sigma,
A3551). 25 pl of 4 hemagglutination units of virus were incubated with 25 pl of 2-fold dilutions of the mAb,
starting at 10 pg/ml in PBS for 1 hour at 37°C. 501 of the virus-antibody mixture was incubated with turkey
red blood cells for 1 hour at room temperature. The HAT titer was defined as the highest dilution of antibody
that inhibited hemagglutination of red blood cells. Each dilution was performed in duplicate.

In vivo efficacy of H3N2v mAbs. On the day prior to infection, 6-to 8-week-old female DBA/2J mice (Jackson
Laboratories, 000671) (# = 5) were injected by i.p. route with 1, 10, or 100 ug of antibody H3v-71, H3v-104, or
H3v-126 in 50 pl PBS. Controls were treated with PBS (# = 10). On day 0, mice were inoculated intranasally
with 107 PFU of A/Minnesota/10/11 X-203 virus under isoflurane anesthesia and then weighed daily. All
treated mice survived for the duration of the study. One animal treated with PBS alone died.

Competition-binding groups. Biolayer interferometry using an Octet Red instrument (ForteBio) was
used to confirm mAb-HA binding and to perform competition-binding assays. The HA was loaded onto
ForteBio Ni-NTA tips at a concentration of 25 pg/ml, and binding to 2 successively applied mAbs at 100
ng/ml was tested. All of the dilutions were made in 1X kinetic buffer (ForteBio, 18-5032). The actual bind-
ing signal for each mAb was obtained after 300 seconds of a single association step of the mAb on to HA.
If binding of the first antibody blocked the binding of the second antibody by reducing its actual binding
signal by more than 70%, it was defined as a competitor. If binding of the first antibody did not block the
binding of the second antibody by reducing its actual binding signal by less than 30%, it was defined as a
noncompetitor. A signal reduction between 30% and 70% was defined as partial blocking.

Site-directed mutagenesis of genes encoding HA proteins. Primers for site-directed mutagenesis were designed
using the Agilent QuikChange Primer Design program (Agilent Technologies). The QuikChange Lightning
Multi-site Mutagenesis kit (Agilent, 210515-5) was used to introduce multiple mutations into cDNAs encoding
the HA genes of H3N2 MNv or H3N2 Victoria, according to the manufacturer’s instructions. These mutant
HAs were tested for antibody binding in ELISAs, as above, to determine EC, values for binding and to identify
amino acids that comprise the epitope.
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EM. SEC-purified MNv complexed with Fab H3v-104 and Fab CR9114 was diluted to 14.7 pg/ml,
applied to freshly glow-discharged 400-mesh carbon-coated copper grids, and negatively stained with 2%
uranyl formate. Similar complexes containing MNv and Fab CR9114 were then prepared separately with
both Fab H3v-126 and Fab H3v-71 at 7.2 ug/ml and 5.8 pg/ml, respectively. The complexes containing
Fab H3v-104 or Fab H3v-126 were imaged at x92,000 magnification on an FEI Talos at 200 keV, resulting
in a pixel size of 1.57 A/pixel (calibrated using catalase crystal diffraction), with a dose of 23.96 e/A?. The
complex containing Fab H3v-71 was imaged at X52,000 magnification on an FEI Tecnai T12 at 120 kV
TEM, resulting in a pixel size of 2.05 A/pixel, with a dose of 25.41 e/A?. All data were collected using
Leginon Multi-Scale Imaging (MSI-raster 3.1) software (29). The Talos is equipped with an FEI Ceta 4k x
4k CMOS and the T12 TEM is equipped with a Teitz F416 4 k x 4k CMOS.

EM data processing. For the complex containing Fab H3v-104 DoGpicker was used to automatically
select particles from 450 raw micrographs that were then binned by 2, resulting in a 3.14 A/pixel size,
and placed into 128 X 128 pixel boxes (30). Particles were aligned with Iterative MRA-MSA and ISAC,
resulting in a final stack of 3,618 raw particles (31, 32). Class averages from ISAC were used to create a
common lines initial model in EMAN2 (33). Model refinement was conducted in EMAN, resulting in a
21.3 A resolution reconstruction based on a 0.5 FSC cutoff value (34). The same processing pipeline was
used to prepare a reconstruction of the complex containing Fab H3v-126 from 306 raw micrographs and a
final stack of 3,202 particles. Because of variable occupancy of the Fab several rounds of MRA-MSA were
conducted to isolate particles containing a single-bound Fab, H3v-126. A model of HA bound with Fab
CR9114 only was used as an initial model for refinement, resulting in a resolution of 19.8 A. The complex
containing Fab H3v-71 also had variable Fab occupancy. Five rounds of MRA-MSA and one round of
ISAC were conducted to isolate particles with only 1 Fab H3v-71 bound, resulting in a final stack of 3,931
particles in 192 pixel boxes. A model of HA bound with Fab CR9114 only was used as an initial model for
refinement, resulting in a resolution of 27.2 A

Awntibody heavy and light chain variable gene sequence analysis. Antibody heavy and light chain genes for
each of the neutralizing mAbs were cloned from the hybridoma lines after single-cell flow cytometric sort-
ing to biologically clone the cell lines. RNA was extracted from these hybridoma clones using the RNeasy
mini kit (Qiagen, 74106), followed by RT-PCR amplification of antibody gene ¢cDNAs. PCR products
encoding antibody heavy or light chain genes were cloned individually into the pGEM.-T vector, and Sanger
nucleotide sequence analysis was used to determine the antibody cDNA sequences. Analysis of variable
gene sequences was performed using the international ImMunoGeneTics IMGT) information system
(http://imgt.org/). We also performed next-generation sequence analysis of antibody gene repertoires
from 4 selected donors and defined in detail clonal lineage for 1 clone. First, antibody heavy chain variable
gene sequences were obtained using RT-PCR and Illumina MiSeq 2 » 300 paired-end amplicon sequence
analysis from PBMCs collected on day 0, 7, or 42 after immunization. For donor 41 and the H3v-104 clone,
we identified those sequences sharing use of the V,1-69 and J, 4 gene segments that encode H3v-104; the
complete repertoire sequence database of donor 41 is available at the NCBI Sequence Read Archive at
accession SRP075907. Then, CD-HIT was used to identify the HCDR3 sequences of 296 sequences that
clustered within 85% identity with the HCDR3 sequence of H3v-104. We built a Phylip lineage using the
alakazam and shazam packages of the Change-O software suite and visualized the network in Cytoscape.

Statistics. The IC, values were calculated after log transformation of antibody concentrations using
a 3-parameter nonlinear fit analysis of antibody log, , concentration vs. response with R? values > 0.85.
The EC, values were calculated after log transformation of antibody concentrations using sigmoidal
dose-response nonlinear fit analysis with R? values of > 0.85. Change in mouse weights over days 1-8
were compared by antibody using repeated-measures analysis of covariance, controlling for weight at
day 0. All statistics were analyzed using Prism software version 5 (GraphPad). A Pvalue less than 0.05
was considered significant.

Study approval. PBMCs were collected at the Emory University Vaccine Treatment and Evaluation
Unit after informed consent from otherwise healthy subjects with prior history of experimental H3N2v
subunit vaccination, as described in the Methods. The protocol and consent form were approved prior
to study by the Emory University Institutional Review Board Committee, Atlanta, Georgia, USA. The
animal protocol covering the H3N2v influenza virus challenge infections of passively immunized mice
was reviewed and approved by the Institutional Animal Care and Use Committee at St. Jude Children’s
Research Hospital.
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Abstract:

Structural restrictions are present even in the most sequence diverse portions of antibodies, the
complementary determining region (CDR) loops. Previous studies identified robust rules that
define canonical structures for five of the six CDR loops, however the heavy chain CDR 3
(HCDR3) defies standard classification attempts. The HCDR3 loop can be subdivided into two
domains referred to as the “torso” and the “head” domains and two major families of canonical
torso structures have been identified; the more prevalent “bulged” and less frequent “non-bulged”
torsos. In the present study, we found that Rosetta loop modeling of 28 benchmark bulged HCDR3
loops is improved with knowledge-based structural restraints developed from available antibody
crystal structures in the PDB. These restraints restrict the sampling space Rosetta searches in the
torso domain, limiting the ¢ and y angles of these residues to conformations that have been
experimentally observed. The application of these restraints in Rosetta result in more native-like
structure sampling and improved score-based differentiation of native-like HCDR3 models,
significantly improving our ability to model antibody HCDR3 loops.

My contribution to this study involved building and preparing the benchmark set and the design
of the experiment. The initial, PDB-derived structures were processed, in some cases repacked,

before they were used as templates for the de novo modeling of HCD3 loops.

117



©PLOS | one

CrossMark

click for updates

E OPEN ACCESS

Citation: Finn JA, Koehler Leman J, Willis JR,
Cisneros A, Ill, Crowe JE, Jr, Meiler J (2016)
Improving Loop Modeling of the Antibody
Complementarity-Determining Region 3 Using
Knowledge-Based Restraints. PLoS ONE 11(5):
€0154811. doi:10.1371/journal. pone.0154811

Editor: Mitchell Ho, National Cancer Institute, NIH,
UNITED STATES

Received: February 4, 2016
Accepted: April 19, 2016
Published: May 16, 2016

Copyright: © 2016 Finn et al. This is an open access
article distributed under the terms of the Creative
Commons Atiribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: This work was supported by the National
Institute of Allergy and Infectious Diseases grants
R56 Al110750 and U19 Al117905, and the National
Institute of Allergy and Infectious Diseases Contract
HHSN272201400024C. The funders had no role in
study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

Improving Loop Modeling of the Antibody
Complementarity-Determining Region 3
Using Knowledge-Based Restraints

Jessica A. Finn', Julia Koehler Leman’, Jordan R. Willis®, Alberto Cisneros, llI°, James
E. Crowe, Jr'*>%%, Jens Meiler>*°+

1 Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee,
United States of America, 2 Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United
States of America, 3 Department of Pediatrics, Vanderbilt University, Nashville, Tennessee, United States of
America, 4 Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of
America, 5 Chemical and Physical Biology Program, Vanderbilt University, Nashville, Tennessee, United
States of America, 6 Vanderbilt Vaccine Center, Vanderbilt University, Nashville, Tennessee, United States
of America, 7 Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore,
Maryland, United States of America

* jens@meilerlab.org

Abstract

Structural restrictions are present even in the most sequence diverse portions of antibodies,
the complementary determining region (CDR) loops. Previous studies identified robust
rules that define canonical structures for five of the six CDR loops, however the heavy chain
CDR 3 (HCDRB3) defies standard classification attempts. The HCDRS3 loop can be subdi-
vided into two domains referred to as the “torso” and the “head” domains and two major fam-
ilies of canonical torso structures have been identified; the more prevalent “bulged” and less
frequent “non-bulged” torsos. In the present study, we found that Rosetta loop modeling of
28 benchmark bulged HCDRS3 loops is improved with knowledge-based structural restraints
developed from available antibody crystal structures in the PDB. These restraints restrict
the sampling space Rosetta searches in the torso domain, limiting the ¢ and g angles of
these residues to conformations that have been experimentally observed. The application
of these restraints in Rosetta result in more native-like structure sampling and improved
score-based differentiation of native-like HCDR3 models, significantly improving our ability
to model antibody HCDRS3 loops.

Introduction

The field of antibody-mediated immunity has long benefited from structural studies of pro-
tein-protein interactions, in most cases through the determination of co-crystal structures of
antibodies in complex with their antigens. Such studies often reveal the molecular mechanism
of pathogen neutralization [1-4]. However, the size and complexity of the antibody repertoire
coupled with the substantial resources needed for experimental structure determination
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prohibit such studies on a comprehensive scale. B cell development leads to the generation of a
large population of unique antibody proteins, and it is theorized that this diverse antibody rep-
ertoire may contain 10'" or more different protein sequences [5,6]. Recent studies determined
that the circulating antibody repertoire contains at least 10° unique sequences, a number still
far too large for comprehensive experimental structural studies [7,8].

Analysis of antibody structures determined by X-ray crystallography revealed conservation
of structural features even in the regions of the antibody with the most sequence diversity, the
six complementarity determining region (CDR) loops, which are responsible for antigen bind-
ing. Three of these loops are contributed by the heavy chain component of the fragment vari-
able (Fv) domain of the antibody (HCDRs), and three are contributed by the light chain Fv
domain (LCDRs). Two studies have identified robust rules that define canonical structures for
five of the six CDR loops [9,10]. However, the HCDR3 defies classification attempts. The
HCDR3 is encoded by the junction of three gene segments (V, D and ] genes) connected by
random nucleotide additions or deletions that are not encoded in the antibody germline gene
segments, but rather introduced by the host enzyme terminal deoxynucleotidyl transferase dur-
ing antibody gene recombination. The HCDR3 is therefore significantly more diverse in
sequence length and composition than the other CDR loops, which are encoded by either a sin-
gle gene segment (heavy and light chain CDRs 1 and 2) or by a simplified junction (LCDR3)
[11-13]. As a result a large and diverse conformational space is observed for HCDR3s. Accord-
ingly, HCDR3 is often especially important for antigen recognition and binding as has been
revealed in previous structural studies [14].

The Rosetta software suite for macromolecular modeling can de novo predict the structure
of a protein or portions thereof. The tertiary structure of a protein is determined from its pri-
mary sequence by pairing effective sampling techniques with knowledge-based energy func-
tions. These energy functions for the most part assume that optimal geometries within proteins
can be derived from a statistical analysis of the available structural information stored in the
Protein Data Bank [15,16]. Similar approaches are used during comparative modeling, when
structurally divergent regions (typically loops) of otherwise homologous proteins must be pre-
dicted [17]. Rosetta is capable of predicting antibody structures with low root mean square
deviation (RMSD) to experimental structures outside the HCDR3; however accurately model-
ing the HCDR3 loop remains a challenge [18-21].

In an effort to classify canonical structures of the HCDR3 loop, prior work has subdivided it
into two domains: the less diverse “torso” and the more variable “head” (Fig 1) [9,10]. Two
major families of canonical torso structures have been identified, and are referred to as
“bulged” and “non-bulged” torsos [10]. In this study, the geometries of the bulged torso
domain have been used to develop restraints that restrict the sampling space of the HCDR3
torso and result in more native-like models when de novo modeling the entire HCDR3 loop.

Previous studies have used restraints to model the bulged HCDR3 torso, following rules pre-
viously described by Shirai et al. wherein a pseudodihedral angle restraint was calculated from
the Co atoms of residues T5, T6, T7 and the following initial residue of Framework 4 to define
the bulged or non-bulged torso [18,21-24]. Weitzner et al. [18] utilized RosettaAntibody
implemented within the Rosetta 3 framework to predict the structures of 11 previously unpub-
lished antibody structures for the second antibody modeling assessment (AMA-II) [21]. The
longest HCDR3 loop in AMA-II contained 16 residues, and was predicted by the RosettaAnti-
body team with an RMSD of 3.70A to the native HCDR3 loop [18, 21]. Shirai et al. also com-
peted in AMA-II, and used their torso restraint rules to filter results generated by a pipeline
that includes both Spanner and OSCAR for loop structure prediction; in comparison to the
RosettaAntibody team described above, their best model for the longest HCDR3 loop had an
RMSD of 3.29A to the native HCDR3 loop [21, 23].

PLOS ONE | DOI:10.1371/journal.pone.0154811 May 16,2016 2/15

119



o o
@ : PLOS ‘ ONE Improving Antibody Loop Modeling with Restraints

Fig 1. Defining the HCDR3 torso. The torso is defined as the first three and last four residues of the HCDR3
loop, numbered from T1 to T7. Main chain atoms are shown for bulged (panel A; PDBID 1UYW) and non-
bulged (panel B; PDBID 2J88) torsos. In many (but not all) bulged torsos, a side-chain interaction between T2
and T6 causes the C-terminal side of the torso to bulge outward; the lack of such an interaction in non-bulged
torsos leaves the beta-strand structure intact.

doi:10.1371/journal.pone.0154811.9001

In this study, a novel set of restraints was tested on 28 previously crystallized human anti-
bodies with HCDR3 loops of increasing length and structural complexity. We expect that these
restraints will improve modeling of antibodies for which no structural information is available,
providing a means by which comprehensive structural studies of antibodies may be
accomplished.

Results
Measuring bulged and non-bulged torso dihedral angles

An annotated list of antibodies was used to cull experimentally derived structures from the
Protein Data Bank (PDB), expanding upon the list published by North et al. [10]. Following
the IMGT conventions for defining the HCDR3, where the first HCDR3 residue occurs imme-
diately following the V-gene residue Cys104 and the last HCDR3 residue occurs immediately
preceding the J-gene residue Trp118, the torso is defined as the first three and the last four resi-
dues of the HCDR3 [10,25]. Accordingly, torso domain regions were pulled from these struc-
tures as two short peptide fragments (T1-T3 and T4-T7) and clustered using Rosetta at a
threshold of 2 A to separate bulged and non-bulged torsos. Previous studies identified a
sequence motif (Arg or Lys at T2 and Asp at T6) that contributes to bulged torso formation in
some but not all cases; these key residues were conserved in our bulged cluster, with 80% of
bulged structures presenting Arg or Lys at T2, 73% presenting Asp at T6, and 65% retaining
the complete T2/T6 sequence motif (SI Fig) [9,10]. We found that germline-encoded regions
of the antibody sequence often contribute these critical residues, as the end of the V gene seg-
ment contributes the first two to three torso residues while the ] gene segment contributes the
last four torso residues. The T2/T6 sequence motif that is often found in bulged torsos is pres-
ent in 73% of naive V and 92% of ] germline gene allele segments (S1 Fig).

The ¢ and y angles of the seven torso residues of each antibody structure were measured,
with key differences between bulged and non-bulged torsos identified in the y angles of resi-
dues T4 and T6 (Table 1). However, upon further study of previously defined torso clusters we
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Table 1. Bulged and non-bulged dihedral angle measurements.

Torso Residue

T
T2
T3
T4
T5
T6
T7

Bulged Non-bulged
] [ ] [
-145+9 148+ 12 -146 £ 12 145+ 16
-101 £22 142 +13 -109 + 20 136 + 26
-107 + 32 137 £33 -119+ 44 138 £ 51
-121 + 49 161 £48 -82 + 49 3+59
-95+ 35 98 + 26 -126 + 43 136 +53
-87+18 -30 £ 26 -118 £ 34 129 + 24
-126 + 14 134 +10 -125+ 19 136 + 11

The average and standard deviation of ¢ and g angles were calculated from existing human and mouse antibody crystal structures available in the PDB.
Torso structures were clustered as bulged (n = 218) and non-bulged (n = 38) using a cluster radius of 2 A.

doi:10.1371/journal.pone.0154811.t001

observed that the y angle of T4 is able to form two distinct conformations in both bulged and
non-bulged torso clusters, and the T4 y angle does not distinguish between bulged and non-
bulged torso clusters; the differences we observed when comparing all bulged antibodies to all
non-bulged antibodies were due to the limited sample size of structures available in the PDB
for these sub-conformations (S2 Fig) [10]. This is in contrast to for example T5, where a larger
standard deviation is observed but still a statistically significant preference for a smaller y angle
in a bulged torso exists. Average ¢ and y angles were calculated as follows:

atan? (E_Z) (1)

n

An approximate standard deviation was found using the following equations. For the vector

sino coso
= (2 @
n n

Approximate standard deviation is calculated using:

2x 1] 3)

It is worth noting that straightforward average and standard deviation calculations are
insufficient when handling circular values such as dihedral angles.

Derivation of restraints for bulged torso conformation

It has been observed that Rosetta rarely samples the bulged torso conformation when modeling
HCDRS3 loops [14]. Due to this limitation, coupled with the greater amount of experimentally
derived structural data available for bulged torsos than non-bulged torsos and the fact that
bulged torsos are more prevalent in the human antibody repertoire, we chose to focus on devel-
oping restraints to improve modeling of HCDR3 loops with bulged torsos. Rosetta uses a
defined format to read in experimentally derived restraints. We used our measurements to gen-
erate dihedral angle restraints following a circular harmonic scoring function. Since the y angle
measurement of T4 varies by 180 degrees between known bulged torso clusters, this measure-
ment was omitted from our calculated restraints (S2 Fig).
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Table 2. Experimentally derived antibodies used to benchmark bulged torso restraints.

PDB ID HCDR3 Length Resolution (A) Source
1WT5 11 2.10 Humanized
2G75 11 2.28 Human
4G5Z 11 1.83 Human
3QRG 12 1.70 Human
4GBK 12 1.90 Humanized
4LLU 12 2.16 Human
1FVC 13 2.20 Humanized
3HI5 13 2.50 Human
4HFW 13 2.60 Human
4FQH 14 2.05 Human
4NM4 14 2.65 Human
8FAB 14 1.80 Human
3G6A 15 2.10 Human
3TNM 15 1.85 Human
3W9D 15 2.32 Human
1AQK 16 1.84 Human
1DQL 16 2.60 Human
10M3 16 2.20 Human
1UBA 17 2.81 Human
3AAZ 17 2.20 Humanized
4M5Y 17 1.55 Human
3INU 18 2.50 Human
3QEH 18 2.59 Human
4F58 18 2.49 Human
1HZH 20 2.70 Human
4LKC 22 2.20 Human
1RHH 24 1.90 Human
4FNL 26 2.30 Human

28 high-resolution antibody structures solved by X-ray crystallography were used to benchmark the bulged torso restraints. Each of these antibody
structures was solved in the absence of antigen (i.e., apo structures) and all residues in the HCDR3 loops were resolved.

doi:10.1371/journal.pone.0154811.t002

Modeling HCDR3 loops using bulged torso restraints

Following the protocol capture outlined in Supplemental Information, these restraints were
used to model and score the HCDR3 loops from 28 benchmark antibodies whose structures
had been previously determined by X-ray crystallography (Table 2). These 28 benchmark
structures represent HCDR3 lengths from 11 to 26 residues, with a mean length of 16 residues,
spanning a range regularly observed in human antibody repertoires that also have a mean
HCDR3 length of 16 amino acids [26]. Each of the benchmark antibodies was crystallized in
the absence of an antigen (i.e., apo) in order to avoid attempts to model conformations
achieved by induced fit with a binding partner.

Restraints function as a penalty during Rosetta’s scoring protocol, i.e., a positive energy
value is added when a dihedral angle leaves the allowed range. In this case, models formed with
native-like bulged torso dihedral angles would have no (or only a very small) penalty from the
restraint term, whereas models that deviated from the bulged torso dihedral angles would be
penalized with a positive energy score. When restraints were applied during modeling, we
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Fig 2. Bulged torso restraints improve native-like HCDR3 sampling and recovery. Using Rosetta LoopModel,
1,000 models of the benchmark antibody 4G5Z (circles) were generated with or without bulged restraints and these
models were then scored with or without bulged restraints (panel A, modeled and scored without restraints; panel B,
modeled without but scored with restraints; panel C, modeled with but scored without restraints; panel D, modeled
and scored with restraints). The native crystal structure 4G5Z was also minimized using Rosetta FastRelax,
generating 20 structures (black x’s). The total HCDR3 score (in Rosetta Energy Units, or REU) is shown versus the
Ca root mean square deviation of the HCDR3 loop, normalized to that of a protein loop containing 16 residues
(RMSD16, in A) to the native crystal structure. Models with scores ranked in the top 10% and RMSD16 < 2 A have
been colored blue, while models with scores ranked below the top 10% and RMSD16 > 2 A have been colored red.
Improved native-like HCDR3 sampling is observed as a greater density of low RMSD16 models (blue circles) in
comparison to Panel A, while improved model recovery is defined as a greater correlation between RMSD16 and
score (colored vs. gray circles) in comparison to Panel A, as seen in panels C and D.

doi:10.1371/journal.pone.0154811.g002

observed a higher density of low-scoring, low-RMSD models (Fig 2C, blue circles, n = 26) than
when modeling without restraints (Fig 2A, blue circles, n = 2). These low-scoring, low-RMSD
models are defined as scoring in the top 10% of models, with Co. RMSD16 to the native struc-
ture of < 2 A (represented as blue circles, whereas models scoring below the top 10% of models
with Co. RMSD16 > 2 A are represented as red circles in Fig 2 and S2 Fig. When restraints
were applied during scoring but not during modeling (Fig 2B) we found that the resulting mod-
els incur substantial restraint penalties due to non-native-like sampling of the torso domain,
however the correlation between score and RMSD16 is improved. During application of this
protocol wherein a native structure is unavailable, the ability to identify native-like models by
score alone is extremely valuable. When applying restraints during both modeling and scoring,
Rosetta generates a model population where an increased number of native-like structures cor-
relate with low scores (Fig 2D, blue circles, n = 30; also see S1 File) as compared to experiments
modeled and scored without restraints (Fig 2A, blue circles, n = 2; also see S1 File). Finally, we
found that the application of these restraints results in more models whose backbone structures
agree with bulged torso measurements defined in the literature (n = 719 with restraints, n = 33
without restraints; see S3 Fig) [14,22].
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The results of modeling the 28 benchmark HCDR3 loops with or without bulged torso
restraints can be found in Figs 3-5. We observed changes in both conformational sampling
and in model discretion by score when restraints were applied. To analyze improvements in
conformational sampling, models were ranked by RMSD16 to their native structure (Fig 3)
and to study changes in scoring discretion the models were ranked by HCDR3 score (Fig 4).
Finally, models were clustered using a package called Calibur and the best cluster by average
HCDR3 score was analyzed (Fig 5).

Bulged HCDRS restraints improve native-like conformational sampling

Modeling with bulged torso restraints improved native-like conformational sampling (the num-
ber of models with RMSD16 below 2 A) in 26 out of 28 benchmark cases (Fig 3); in the remain-
ing case of benchmark antibody 1RHH with an HCDR3 loop of 24 residues, no models below
2 A were observed when modeling with or without restraints, and in the case of 4FNL with an
HCDR3 loop of 26 residues, 2 models below 2 A were observed when modeling without
restraints, compared to no models sampled below 2 A when modeling with restraints. On aver-
age, 90 models below 2 A were generated with restraints, compared to only 12 models below 2 A
without restraints. The best RMSD sampled using bulged torso restraints was below 1 A in 18
out of 28 cases with restraints, compared to 10 out of 28 cases without restraints. The average dif-
ference in the best RMSD sampled was 0.33 A lower when restraints were applied during model-
ing. Furthermore, the average RMSD16 of the most native-like 10% of models (when ranked by
RMSD16) is below 1 A in 11 out of 28 cases when restraints are applied, compared to just 1 of 28
cases without restraints, revealing improved depth of high-resolution native-like sampling.
State-of-the-art computational methods to construct loop regions in proteins work reliably
until about eight residues, and provide good results from some loops up to twelve residues [18-
21]. Beyond this limit, the conformational space often becomes too large to be sampled exhaus-
tively. Many HCDR3 loops are longer and specialized methods are needed to limit the confor-
mational space. Our analyses describe better sampling of native-like structures during
modeling of these diverse HCDR3 loops when our torso restraints are used, with qualitative
changes in performance observed at 14 and 18 amino acids.

Bulged HCDRS restraints improve scoring discretion

The ability to identify native-like HCDR3 loops by score when de novo modeling using Rosetta is
of critical importance. Unfortunately, we found the predictive ability of Rosetta’s scoring function
in the absence of restraints to be lacking; when ranking models by HCDR3 score, only 2 of 28
benchmark cases resulted in a top-scoring model with RMSD16 < 2 A (Fig 4). However when
restraints were applied, ranking models by score resulted in 7 of 28 cases with an RMSD16 below
2 A and two of those with RMSD16 below 1 A (antibody 3QRG, 12 amino acids long and 4FQH,
14 amino acids long). On average, the RMSD16 of the best scoring model improved by 0.84 A
when restraints were used during modeling and scoring. Because restraints improve sampling,
there was also a marked improvement in the average RMSD16 of the top 10 models ranked by
score; when restraints are applied, the average is below 2 A in 9 out of 28 cases, but no results
below 2 A were found when restraints were not used. On average, there is an improvement of
1.22 A in the average RMSD16 of the top 10 models ranked by score. The average rank of the
first model below 2 A is 17 when restraints are applied and in 8 of 28 cases the first-ranking
model is below 2 A, compared to only 2 out of 28 cases resulting in a first-ranking model below

2 A and an average rank of 82 when restraints are not used. Altogether these analyses reveal that
the bulged torso restraints improve scoring discretion of native-like structures, but that further
improvement to the scoring of HCDR3 loops is needed [27].
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Without Restraints With Restraints

Average Average

Best  RMSD16 MouelS | gest  RMsDI6 pouer

PDBID Length | RMSD16  oftop oW | RMsD16  of top e
sampled R;nos![)))qe RMSD16 sampled R:nosl[))‘Qs RMSD16

3QRG 12 0.72 0.8 0.6

4G6K 12 | 093 119 50 | os

4HFW 13

4FQH 14 | o075 198 |

ANM4 14

8FAB 14

3G6A 15

3TNM 15

3WeD 15

1AQK 16

1DaL 16

10M3 16

1U6A 17

3AAZ 17

4M5Y 17

3INU 18

3QEH 18

4F58 18

1HZH 20

4LKC 2

1RHH 2

4FNL 2 175

Average 16 1.35 1.83 12 1.33 90

Fig 3. Torso restraints improve sampling of bulged HCDR3 loops. For each benchmark antibody
structure, 1,000 models were generated with or without bulged torso restraints. The number of models below
2 A RMSD16 to the native structure, the best RMSD16 sampled, and the average RMSD16 of the best 10
models ranked by RMSD16 are provided. For RMSD16-containing cells, blue shading represents

RMSD16 < 1 A; yellow shading represents RMSD16 between 1 and 2 A; red represents RMSD16 > 2 A. For
cells containing the number of models below 2 A, blue shading represents > 100 models; yellow shading
represents > 10 models; red shading represents fewer than 10 models.

doi:10.1371/journal.pone.0154811.g003
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Without Restraints

With Restraints

PDB ID

1WT5
2G75
4G52Z
3QRG
4G6K
4L
1FVC
3HI5
4HFW
4FQH
ANM4
8FAB
3G6A
3TNM
3W9D
1AQK
1DQL
10M3
1UBA
3AAZ
amsy
3INU
3QEH
4F58
1HZH
4LKC
1RHH
4FNL

Average

Length

26

16

Average Rank of
RMSD16  pmsDie first
of best of top model
scoring 44, <2A
model  score  RMSD16

— |
|

Average  Rank of
RMSD16  pyspie first
of best of top model
scoring 44y <2A
model  Score  RMSD16

Fig 4. Torso restraints improve recovery of native-like bulged HCDR3 loops. For each benchmark
antibody structure, 1,000 models were generated with or without bulged torso restraints. The number of

models below 2 A RMSD16 to the native structure, best RMSD16 sampled, average RMSD16 of the best 10
models ranked by RMSD16, RMSD16 of the best model ranked by Rosetta score, average RMSD16 of the
top 10 models ranked by Rosetta score, and the rank of the first model below 2 A when sorted by Rosetta
score are provided. For RMSD16-containing cells, blue shading represents RMSD16 < 1 A; yellow shading

represents RMSD16 between 1 and 2 A; red represents RMSD16 > 2 A. For rank-containing cells, blue
shading represents rank 1; yellow shading represents ranks 2 to 10; red shading represents ranks > 10.

doi:10.1371/journal.pone.0154811.g004
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Without Restraints With Restraints
PDBID  Length IgBeF;:tge Cluster %152‘22? Rlﬁgsntw AvBeer:tge Cluster gﬁ:gre Rlﬁggtw
uster (Rank) RMSD16 in Cluster (Rank) RMSD16 in
Score (Rank) Cluster Score (Rank) Cluster

1WTS 11 -10.24 -3.92 178 (3) 1.93 (1) 0.75
2G75 1 -8.88 -4.84 527 (1) 1.49 (1) 0.48
4G57 1 7.91 036 370 (2) | 198 (1) 037
3QRG 12 -8.30 945 132 (1) 091 (1) 0.61
4G6K 12 -7.40 124 (2) 1.78 (1) -8.13 129 (1) 117 (1) 0.85
4L 12 -7.95

1FVC 13 -11.02 268 (2) 1.62 -7.68 404 (1) 191 (1) 0.94
3HI5 13 9.88 64 (4) 192 (1) 1.21 -6.94 86 (1) 154 (1) 0.84
4HFW 13 -10.36 -5.18

4FQH 14 -11.26 -10.94 1.20 (1) 0.43
4NM4 14 -8.80 -3.68 258 (2) 1.80
8FAB 14 -11.70 -8.81 1.66 (2) 1.36
3G6A 15 -11.33 -5.45 238 (1) 217 (3) 0.77
3TNM 15 -14.16 291 (2) -9.52

3W9oD 15 -10.26 -6.39 281 (3)

1AQK 16 -10.82 19(1%)  4.07 (1% -8.98 39 (1) 233 (2) 1.90
1DQL 16 -12.76 11(1%) 284 (1 -9.44 66 (3) 1.74
10M3 16 -10.91 -7.07

1U6A 17 -16.88 3.08 (2 -3.53 71 (2)

3AAZ 17 -12.46 12(1%) 425 (1%) -12.60 252 (3) 1.41
4MS5Y 17 -17.06 2.02 (1) 1.09 -13.59 113 (2) 1.92 (1) 0.71
3INU 18 -15.69 16(3) 358 (2) -13.19 26 (2)

3QEH 18 -12.27 -12.13 11 (1%) 3.57 (1%)

4F58 18 N/A -7.89 2.88 (2)
Average 15 1111 28 (9)  3.48 (5) 2.77 -7.54 111 (6) 230 (3) 1.54

Fig 5. Cluster analysis of bulged HCDR3 loop modeling. Calibur was used to cluster the 1,000 models generated with or
without bulged torso restraints for each antibody, using a threshold of 2.0. Clusters containing less than 1% of the total models
were omitted from analysis; models generated for benchmark antibodies 4F58, 1HZH, 4LKC, 1RHH and 4FNL did not produce
any large clusters upon analysis (N/A). Average Rosetta score was calculated for each cluster, and the cluster with the lowest
average score was selected as the “correct” cluster. The size of this correct cluster (and it’s rank among cluster sizes), its average
RMSD16 to the native structure (and rank among average RMSD16 measurements) are provided. Cells containing rank data are
shaded blue if the value represents the top rank, yellow for ranks 2—3, and red for ranks >3; if only one cluster (1*) was found, the
cell is shaded gray. For RMSD16-containing cells, blue shading represents RMSD16 < 1 A; yellow shading represents RMSD16
between 1 and 2 A; red represents RMSD16 > 2 A. Values were omitted from column averages if <1 cluster was found.

doi:10.1371/journal.pone.0154811.g005

Clustering bulged HCDR3 loop models

Using the clustering package Calibur [28], we analyzed the HCDR3 models generated with and
without bulged restraints (Fig 5). Only clusters containing >1% of models (10 or more) were
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considered. For models made based on structures with 20 or more amino acids in the HCDR3
loop, no sufficiently large clusters were found. For the other benchmark structures, clusters
were sorted by average cluster HCDR3 score, with the lowest average HCDR3 score being cho-
sen as the “correct” cluster. This approach to selecting the “correct” conformation is common
when de novo modeling HCDR3 loops, as the native structure of the loop is not known outside
of benchmark studies. When restraints were used during modeling, the rank of the cluster size
(how large a cluster is compared to other clusters) improved in 18 out of 24 cases over experi-
ments where restraints were not used. When restraints were applied during modeling, the aver-
age RMSD16 of the correct cluster improved in 21 out of 24 cases. The average RMSD16 for
the best cluster by score was top-ranking in 9 out of 24 cases when restraints were applied dur-
ing modeling, compared to just 3 out of 24 cases when restraints were not used, which reveals
the predictive power of our scoring metrics when restraints are applied.

Discussion

There is a growing body of work surrounding canonical structures of antibody CDR loops, first
described by Chothia and colleagues and updated as recently at 2011 by the Dunbrack group
[9,10]. These groups have shown that that five of the six CDR loops take on canonical struc-
tures, and that the remaining HCDR3 forms only a few canonical classes of structure in its
torso domain. Our work builds upon this background, and has led to the development of
knowledge-based structural restraints from available crystal structures of HCDR3 loops with
bulged torsos. We have shown that these restraints can be used to restrict the sampling space
Rosetta searches during de novo loop modeling, limiting the torso domain to the ¢ and y angles
of these residues that have been experimentally observed. These torso restraints improve
native-like structure sampling and score-based differentiation of native-like HCDR3 models.
We have also shown that such structural restraints improve Rosetta’s ability to model longer
HCDR3 loops than previously possible, extending the range of the technique to cover more
biologically relevant HCDR3 loop lengths.

While this study focuses on benchmarking new knowledge-based restraints against antibod-
ies whose structures have been experimentally determined, the true value of these restraints is
in their ability to improve de novo antibody modeling. Such antibody structural predictions are
a more rapid approach than experimental structural techniques, and can improve our under-
standing of host-pathogen interactions, provide insight into mechanisms of viral infection, and
may lead to new monoclonal antibody therapeutics or vaccine candidates. Combined with our
prior understanding of canonical CDR loops, which had made it possible to homology model
much of the functional surface of the antibody (the “paratope”) using Rosetta, we can now pre-
dict the remaining HCDR3 which is critical in many antibody-antigen interactions. The central
dogma of structural biology, that structure dictates function, lets us expect that improved accu-
racy in modeling HCDR3 will lead to improved accuracy in modeling antibody/antigen inter-
actions which in turn leads to improved prediction of antibody function. We recognize that
further experiments would be needed to prove this. Finally, upcoming advances in antibody
sequencing, including the ability to sequence endogenously paired heavy and light chains, will
provide the last critical insight in antibody modeling; we must now come to understand restric-
tions at the heavy and light chain interface that alter the paratope, and incorporate such restric-
tions into our structural predictions.

Although we have applied this approach to improving human antibody modeling, we recog-
nize that this approach to structural restraint development is applicable to many other protein
families in which structurally diverse surface loops with key functional importance are sup-
ported upon more structurally restricted framework regions [27]. Obvious examples include
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proteins with the PDZ domain and peptidase C1 domain protein families, which were found to
use bulged HCDR3-like loops to recognize and bind their substrates [14]. Finally, we have
shown that knowledge-based structural restraints can be calculated easily and applied to
improve modeling of novel loops not previously solved by experimental techniques, provided
enough experimentally derived structural data is available for framework regions of functional
loops in other protein families, and that canonical classes of those regions can be defined.

Materials and Methods
Calculating bulged and non-bulged torso dihedral angles

A collection of antibody heavy chain variable domains was manually curated from the PDB,
building upon a published list [10] (S2 File). The torso residues of these structures were
extracted from the PDB files and were clustered using Rosetta Cluster with a cluster radius of

2 A to separate bulged and non-bulged antibody torsos. ¢ and v dihedral angles of the seven
torso residues were found using Biopython [29], with average and approximate standard devia-
tion calculated using Eqs 1 and 2 (Table 1).

Generating HCDRS3 loop models

The complete protocol for generating the HCDR3 loop models using Rosetta is described in S3
File and example file input and output is provided in S4 File. In brief, structure files for each
benchmark antibody were downloaded from the PDB and were cleaned such that only a single
variable domain remained. Input files for loop modeling were generated with the assistance of
a suite of python scripts, and fragments were selected using the fragment picker. Centroid loop
modeling was accomplished using cyclic coordinate descent (CCD), followed by a kinematic
closure (KIC) full-atom refinement [30-32].

HCDRS3 torso sequence analysis

Sequences of the seven torso residues were taken from each of the PDB files of the bulged anti-
body torso cluster found above and used to generate a WebLogo using the default webserver
settings [33] (S1 Fig). A second WebLogo was generated using the sequences of the torso resi-
dues taken from the IMGT human Vy and Ji; gene segments [34] (S1 Fig).

Supporting Information

S1 Fig. Bulged torso structures share similar sequences, which are germline-encoded. Previ-
ous studies identified a sequence motif in bulged torso structures, which are formed primarily
via a side-chain interaction between either Arg or Lys (R/K) at T2 and Asp (D) at T6. A con-
sensus sequence from bulged torsos culled from the PDB shows the prevalence of these resi-
dues at these positions (panel A). These residues are germline-encoded, as observed in a
consensus sequence of the Vi and Ji; gene segments that contribute to the torso domain (panel
B).

(TIF)

S2 Fig. Average ¢ and y angles observed for each torso residue in known bulged and non-
bulged clusters. North et al. [10] defined seven canonical torso conformations from experi-
mentally-determined antibody structures. Two of these clusters are considered bulged
(H3-anchor-1 and H3-anchor-3; blue) and two are considered non-bulged (H3-anchor-2 and
H3-anchor-5; red). ¢ and y angles are well defined for both bulged and non-bulged HCDR3
torso residues. Bulged and non-bulged torsos are differentiated by their y angle at T6. The y
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angle at T4 is bimodal for both bulged and non-bulged HCDR3 torsos, with ~180 degrees sepa-
rating the two clusters within each definition.
(TIF)

S3 Fig. Bulged torso restraints improve sampling of HCDR3 torso angles. Using Rosetta
LoopModel, 1,000 models of the benchmark antibody 4G5Z were generated without (red) or
with (blue) bulged restraints. The 1,9, angle and oo, dihedral angle defined by Weitzner et al.
[14] were calculated for each model. Gray regions of the plot denote + 30 of the mean angles
calculated for bulged HCDR3 torsos by Weitzner et al. [14]. Improved recovery of bulged tor-
sos was observed as a greater density of points in the center gray region when restraints were
applied (n = 719), versus when no restraints were applied (n = 33).

(TIF)

S1 File. Bulged torso restraints improve native-like HCDR3 sampling and recovery. As in
Fig 2, 1,000 models of each benchmark antibody were generated and scored with or without
bulged restraints using Rosetta LoopModel (comparable to Fig 2A and 2D). Models with scores
ranked in the top 10% and RMSD16 < 2 A have been colored blue, while models with scores
ranked below the top 10% and RMSD16 > 2 A have been colored red. The native crystal struc-
ture was also minimized using Rosetta FastRelax, generating 20 structures (black x’s). The total
HCDR3 score vs. the HCDR3 Co. RMSD16 to the native crystal structure is shown.

(PDF)

S2 File. HCDR3 definitions file. This file contains two comma separated value tables. The
first table represents the non-bulged antibody structures used to calculate dihedral angle values,
and lists the PDB file, chain ID, HCDR3 start residue and HCDR3 end residue when each
chain in the PDB file has been renumbered sequentially starting from 1. The second file lists
these values for the bulged antibody structures used to calculate the dihedral angle values.
(TXT)

S3 File. Rosetta protocol. A complete protocol has been provided, including Rosetta version
number, for individuals who wish to utilize our methodology.
(PDF)

$4 File. Rosetta protocol capture. This archive contains example input and output files
needed to run the Rosetta protocol described in S3 File.
(ZIP)
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