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Chapter 1

Introduction

Abstract topological spaces have been studied for over a century. A standard tool for

studying path connected spaces is the fundamental group. There are questions about fun-

damental groups of Polish (separable, completely metrizable) spaces that can be answered

using descriptive set theory. If one further restricts attention to the fundamental group of a

Peano continuum (a connected, locally connected compact metrizable space) then there are

interesting dichotomies. In [Sh] Shelah demonstrated the following dichotomy: The funda-

mental group of a Peano continuum is either finitely generated or of cardinality continuum.

Using a theorem by Cannon and Conner [CC] one can replace the word “generated” in the

conclusion of Shelah’s theorem with the word “presented”. Pawlikowski later gave a sim-

plified proof of Shelah’s result [P]. Using similar methods Conner and the author obtain

the same result for first homology [CoCo].

In this thesis we are going to present improvements on these techniques and numerous

applications, which give a great deal of information about fundamental groups of path

connected Polish spaces.

In Chapter 2 we provide some preliminary definitions and key ideas, as well as some

motivation for the results in the succeeding sections. Chapter 3 provides some useful gen-

eral theorems which provide dichotomies on quotients of the fundamental group. In Chap-

ter 4 we give some examples of topologically defined subgroups of the fundamental group

and exhibit upper bounds on their topological complexity. An alternative characterization

of the shape kernel is provided for locally path connected spaces. In Chapter 5 we define

comonster groups and show an interesting dichotomy on the fundamental group of a Peano

continuum. In Chapter 6 we show that subgroups of the fundamental group of a covering

space are not more complex than their images under the covering map. Chapter 7 provides
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an array of results related to the first homology of Peano continua. One such result is the

interesting fact that if the torsion-free quotient of H1(X) is not of cardinality continuum

then H1(X) is a direct sum of cyclic groups. A definition for the strong abelianization of

the fundamental group is also provided and computations. In Chapter 8 we demonstrate

that subgroups of arbitrarily high Borel complexity exist in the fundamental group of the

Hawaiian earring. Finally in Chapter 9 we provide some new theorems regarding n-slender

groups. We present the concept of n-slenderness and prove that all torsion-free word hy-

perbolic groups are n-slender. We also exhibit stronger closure properties for the class of

n-slender groups than were previously known.
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Chapter 2

Preliminaries

Given a topological space X and distinguished point x ∈ X we obtain the fundamental

group π1(X ,x) as follows. Recalls that a loop based at x in X is a continuous function

l : ([0,1],{0,1})→ (X ,x). Two loops l0 and l1 at x are homotopic if there exists a continu-

ous function H : [0,1]× [0,1]→ X called a homotopy such that H(s,0) = l0(s), H(s,1) =

l1(s) and H(0, t) = H(1, t) = x for all s, t ∈ [0,1]. The relation defined by homotopy is an

equivalence relation. Letting Lx denote the space of all loops at x in X we have the binary

operation concatenation, denoted ∗, on Lx defined by l0∗ l1(s)=


l0(2s) if s ∈ [0, 1

2 ]

l1(2s−1) if s ∈ [1
2 ,1]

.

This definition also works as a partial binary operation on paths, defined whenever the first

path ends where the second path starts. For specificity, we mean l0∗(l1∗(· · ·∗(ln−1∗ ln) · · ·)

when we write l0 ∗ l1 ∗· · ·∗ ln. There is also a unary operation −1 given by l−1(s) = l(1−s).

The fundamental group is the set Lx modulo homotopy, the binary operation is given by

[l0]∗ [l1] = [l0 ∗ l1], the equivalence class of the constant loop is the identity and inverses are

given by [l]−1 = [l−1]. Clearly the fundamental group π1(X ,x) is the same as the funda-

mental group of π1(C,x) where C is the path component of x. Thus we generally consider

our spaces to be path connected to avoid trivialities.

We assume some familiarity with notions in topology such as metrizability and sepa-

rability. Let Z be a topological space. A pointclass is a collection P of subsets of Z that

are of a particular topological description, usually in terms of countable unions, countable

intersections, complements, or projections. For example, the collection of open subsets

(topology) of Z, the collection of closed sets of Z, and the collection of countable unions

of closed sets of Z are all pointclasses of Z. Another example is the class of Borel subsets

of Z. When we restrict our attention to specific types of topological spaces, we get more

information about sets in pointclasses.
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We now define the central concept for this paper. Take (X ,d) to be a path connected

metric space with distinguished point x ∈ X . Again, we let Lx denote the set of all loops at

x, and topologize Lx by the sup metric. That is, the distance in Lx between loops l0 and l1

is sups∈[0,1] d(l0(s), l1(s)). Since uniform convergence is equivalent to convergence in the

compact-open topology, we may suppress the particular metric d on the space X (since any

other metric gives the same topology on Lx). Through the remainder of Section 2 we

assume that X is metrizable and path connected.

Definition 2.0.0.1. A subgroup G ≤ π1(X ,x) is of pointclass P if the collection of loops

belonging to elements of G is in the pointset P in Lx. In other words, G ≤ π1(X ,x) is of

pointclass P if
⋃

G is in pointclass P in Lx.

Lemma 2.0.0.2. If G≤ π1(X ,x) is open and G≤ H ≤ π1(X ,x) then H is open.

Proof. Let G be open and let l ∈
⋃

H, with {ln}n∈ω a sequence in Lx converging to l. Since

l ∗ l−1 ∈ ∪G there exists ε > 0 such that B(l ∗ l−1,ε)⊆
⋃

G. The sequence {l ∗ l−1
n }n∈ω is

eventually in B(l ∗ l−1,ε), so that {l ∗ l−1
n }n∈ω is eventually in

⋃
G⊂

⋃
H, so {l−1

n }n∈ω is

eventually in
⋃

H, so {ln}n∈ω is eventually in
⋃

H.

Lemma 2.0.0.3. If P is closed under continuous preimages and H ≤ π1(X ,x) is P then:

1. The equivalence relations E,R⊆ Lx×Lx defined by l0El1 iff [l0]H = [l1]H and l0Rl1

iff H[l0] = H[l1] are P .

2. Each equivalence class in E and R is P .

Here we mean [l]H to be the set of all loops based at x which are homotopic to a loop

of the form l ∗ l′ where l′ ∈
⋃

H and the definition for H[l] is analogous.

Proof. The function Lx×Lx→ Lx given by (l0, l1) 7→ (l0)−1 ∗ l1 is continuous and E is the

preimage of
⋃

H under this function, so by assumption we have E is P . The proof that

R is P is similar. This proves (1). For (2) we notice that for a fixed l0 ∈ Lx the function
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Lx→ Lx given by l 7→ (l0)−1 ∗ l is continuous and the set [l0]H is the continuous preimage

of
⋃

H.

Lemma 2.0.0.4. If H ≤ π1(X ,x) is open then H is also closed.

Proof. Supposing H is open we have by Lemma 2.0.0.3 that the set
⋃

l /∈
⋃

H [l]H is a union

of open sets in Lx, and this is precisely Lx− (
⋃

H).

We notice that open and closed subgroups of a path connected metric space X enjoy the

property of being basepoint-free in the following sense:

Lemma 2.0.0.5. Let x,y ∈ X and ρ a path from y to x. Let φ : Lx→ Ly be the map such

that φ(l) = ρ ∗ l ∗ρ−1 and ψ : Ly→ Lx be given by ρ−1 ∗ l ∗ρ . Then the following hold:

1. φ and ψ are isometric embeddings and induce isomorphisms φ : π1(X ,x)→ π1(X ,y),

and ψ : π1(X ,y)→ π1(X ,x).

2. G≤ π1(X ,x) is open (resp. closed) iff φ(G) is.

3. G≤ π1(X ,x) is open (resp. closed) iff every conjugate of G is.

Proof. The first part of (1) is clear, and the second is a standard exercise. We prove (2).

Suppose G is not open. Let l ∈ Lx be such that [l] ∈ G and there exists a sequence of loops

{ln}n∈ω such that ln→ l and [ln] /∈ G. Then ρ ∗ ln ∗ρ−1→ ρ ∗ l ∗ρ−1 and [ρ ∗ ln ∗ρ−1] /∈

φ(G), so φ(G) is not open. If φ(G) is not open then by the proof for the other direction we

have that ψφ(G) = G is not open.

Suppose that G is not closed and let l ∈ Lx be such that [l] /∈ G and there exists a

sequence {ln}n∈ω such that [ln] ∈ G and ln→ l. Then ρ ∗ ln ∗ρ−1→ ρ ∗ l ∗ρ−1 and [ρ ∗

ln ∗ρ−1] ∈ φ(G) and [ρ ∗ l ∗ρ−1] /∈ φ(G). Again, for the other direction we consider the

application of the map ψ .

The last claim is true by letting ρ be a loop from x to itself and applying the previous

claim.
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By the above Lemma 2.0.0.5 we may consider open or closed normal subgroups as base

point free. We shall see in Proposition 8 that if X is semilocally simply connect then all

subgroups are open. For example, any subgroup of the fundamental group of the wedge of

two circles is open.

Lemma 2.0.0.6. Let GEπ1(X) be open. Then there exists an open cover U of X such that

any loop contained entirely in an element of U is in
⋃

G.

Proof. For each point x ∈ X we have GE π1(X ,x) is open, and the constant loop c at x

is in ∪G, so we may pick εx > 0 such that B(c,εx) ⊆
⋃

G. Selecting the εx neighborhood

B(x,εx) around x gives the desired open cover U = {B(x,εx)}x∈X .

The converse to the above lemma is not true in general, but there is a partial converse.

Definition 2.0.0.7. A topological space Z is locally path connected if for every z ∈ Z and

neighborhood U of z there exists a neighborhood V ⊆U of z such that V is path connected.

Lemma 2.0.0.8. Let X be locally path connected GEπ1(X). If there exists an open cover

U of X such that any loop contained entirely in an element of U is in G then G is open.

Proof. Assume the hypotheses and fix x ∈ X . Let l ∈
⋃

G ⊆ Lx. Cover the image of

l with a finite subcollection {U0, . . . ,Um−1} ⊆ U , so that the images of each inclusion

ι∗ : π1(Ui)→ π1(X) are in G. Let δ > 0 be a Lebesgue number for the covering of the

image of l by {U0, . . . ,Um−1}. Cover l with finitely many open balls {B0, . . . ,Bp−1} of

radius δ

2 . Cover the image of l with finitely many path connected open sets {V0, . . . ,Vq},

each of which is contained in one of the {B0, . . . ,Bp−1}. Let ε be a Lebesgue number

for the covering {V0, . . . ,Vq} of the image of l. Pick N ∈ ω sufficiently large so that for

0 ≤ n ≤ N− 1 we have that l([ n
N ,

n+1
N ]) is contained inside Vjn . Now assuming l′ ∈ Lx is

less than distance ε from l we have that d(l′(s), l(s)) < ε . For each 1 ≤ n ≤ N− 1 let pn

be a path in Vjn from l( n
N ) to l′( n

N ) and let p0 and pN be the constant path at x. Notice that

the loop l|[ n
N ,

n+1
N ] ∗ pn+1 ∗ (l′|[ n

N ,
n+1

N ])−1 ∗ p−1
n is contained in one of the Ui, and so is a

6



representative of an element of G based potentially at a different point. Then l−1 ∗ l′ is an

element of
⋃

G, so l′ ∈
⋃

G. Thus G is open.

For the next proposition we recall the following definition.

Definition 2.0.0.9. A topological space Z is semilocally simply connected if for every z ∈

Z there exists a neighborhood U of z such that the map induced by inclusion ι∗ : π1(U,z)→

π1(Z,z) is the trivial map. For a locally path connected space we may obviously select U

to be path connected.

Proposition 2.0.0.10. Let X be locally path connected in addition to being metrizable and

path connected. The following are equivalent:

1. The trivial subgroup of π1(X) is open.

2. All subgroups of π1(X ,x) are open.

3. X is semilocally simply connected.

Proof. The implication (1)⇒ (2) follows from Lemma 2.0.0.2. For (2)⇒ (3) we let x ∈ X

be given along with a neighborhood U of x. Since in particular the trivial subgroup of

π1(X ,x) is open and the constant map c : [0,1]→ {x} is trivial, we may select ε > 0 such

that B(c,ε)⊆
⋃
[c]⊆ Lx, where without loss of generality B(x,ε)⊆U . Now any loop with

image in B(x,ε) must be in B(c,ε) and therefore nulhomotopic in X .

For (3)⇒ (1) we let U be an open cover of X by path connected open sets U whose

inclusion maps induce a trivial map π1(U)→ π1(X). Then we are in the situation of Lemma

2.0.0.8 and we see that the trivial subgroup is open, so we are done.

We now enter into some technical lemmas.

Definition 2.0.0.11. A topological space Z is Polish if it is completely metrizable and

separable.
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Many commonly used spaces such as the real lineR, compact metric spaces, and count-

able discrete spaces are Polish. Polish spaces are closed under countable disjoint union and

countable products. When X is path connected and Polish the space Lx is also Polish. There

are certain pointclasses defined for Polish spaces which are extremely well behaved, a dis-

cussion of which will be given in Section 8. We let Hx denote the space of homotopies

of loops in Lx, topologized by the sup metric. This is also a Polish space. The following

lemma provides a sense of base point independence as in Lemma 2.0.0.5.

Lemma 2.0.0.12. Suppose the pointclass P contains the closed sets and is closed under

continuous images between Polish spaces, products, and finite intersections. Let X be

Polish. Let ρ be a path from x to y in X . Letting φ be the map defined in Fact 2.0.0.5 a

subgroup G≤ π1(X ,x) is of type P if and only if φ(G) is.

Proof. Assume the hypotheses. We prove the forward direction of the biconditional and

the other direction follows similarly. Let G≤ π1(X ,x) be of type P . Let D⊆ Lx×Hx×Lx

be defined by D = {(l0,H, l1) : H is a homotopy from l0 to l1}. It is easy to see that D is

closed. Since the map l 7→ ρ−1 ∗ l ∗ ρ is an isometric embedding from Lx to Ly we have

that ρ−1 ∗G∗ρ is in pointclass P in Ly by assumption. Then ρ−1 ∗G∗ρ×Hy×Ly is in

pointclass P in Ly×Hy×Ly by hypothesis. Then D∩ρ−1 ∗G∗ρ×Hy×Ly is in pointclass

P . Letting p3 : Lx×Hx×Lx→ Lx be the projection to the third coordinate (obviously a

continuous map), we have that
⋃

φ(G) = p3(D∩ρ−1 ∗G∗ρ×Hy×Ly) is in the pointclass

P .

For K ⊆ Lx let [K] ⊆ π1(X ,x) denote the subset of equivalence classes of loops which

have representatives in K.

Lemma 2.0.0.13. Let P and X satisfy the hypotheses of Lemma 2.0.0.12. If K ⊆ Lx is P

then the set
⋃
[K]⊆ Lx is P .

Proof. Letting D = {(l0,H, l1) : H homotopes l0 to l1} ⊆ Lx×Hx×Lx we have that D is

closed, and therefore P . The set K is P and therefore so is K×Hx×Lx. Then (K×Hx×

8



Lx)∩D is P , and letting p3 be projection in the third coordinate we have p3((K×Hx×

Lx)∩D) =
⋃
[K] is P .

Lemma 2.0.0.14. Let P and X satisfy the hypotheses of Lemma 2.0.0.12. Assume further

that P is closed under countable unions. If K ⊆ Lx is P then 〈[K]〉 is a P subgroup of

π1(X ,x).

Proof. Notice that the inversion map l 7→ l−1 is an isometry and therefore continuous.

Thus K−1 is P , and K ∪K−1 is also P . For each n ∈ ω let mn : ∏
n−1
i=0 Lx→ Lx be given

by (l0, . . . , ln−1) 7→ l0 ∗ l1 ∗ · · · ∗ ln−1. This is clearly a continuous map. Each mn(∏
n−1
i=0 (K∪

K−1)) is of type P . Thus
⋃

∞
n=0 mn(∏

n−1
i=0 (K ∪K−1)) is P . By Lemma 2.0.0.13 we have

that
⋃
[
⋃

∞
n=0 mn(∏

n−1
i=0 (K∪K−1))]is P . We are done since

⋃
〈[K]〉=

⋃
[
⋃

∞
n=0 mn(∏

n−1
i=0 (K∪

K−1))].

Lemma 2.0.0.15. Let P and X satisfy the hypotheses of Lemma 2.0.0.14. If K ⊆ Lx is P

then the normal closure 〈〈[K]〉〉 is P .

Proof. Let c : Lx×Lx → Lx be given by (l0, l1) 7→ l0 ∗ l1 ∗ l−1
0 . This is easily continuous.

We have Lx×K is P , and so is c(Lx×K). Then 〈〈[K]〉〉= 〈[c(Lx×K)]〉 is P by Lemma

2.0.0.14 .

The preceeding lemmas motivate the following:

Definition 2.0.0.16. A pointclass P defined on Polish spaces is nice if it contains the

closed sets, is closed under continuous images and preimages, and countable intersections.

Remark 2.0.0.17. A nice pointclass is also closed under countable products, for if An ⊆ Zn

is of nice pointclass P for each n ∈ ω then ∏n∈ω An =
⋂

n∈ω p−1
n (An) is P in the polish

space ∏n∈ω Zn. A nice pointclass is also closed under countable unions, for suppose An⊆ Z

are P for each n ∈ ω . If
⋃

n∈ω An = /0 then as /0 is closed we have
⋃

n∈ω An is P . On the

other hand if
⋃

n∈ω An 6= /0 then say Am 6= /0 and let tn∈ωZ be the disjoint union of countably

many copies of Z. Letting z ∈ Am be some point in Am we let f : tn∈ωY → ∏n∈ω Z take

9



yn to (z,z, . . . ,z,y,z,z . . .) (here y is in the nth coordinate) where yn is a copy of y in the

nth copy of Z in the disjoint union. This is easily seen to be continuous by the universal

and couniversal properties of product and disjoint unions, respectively. Then ∏n∈ω An is

P as we have seen. Letting g : tn∈ωZ → Z map each copy of Z via identity we get that

g( f−1(∏n∈ω An)) =
⋃

n∈ω An is P .

Under set inclusion, the smallest nice Polish pointclass is that of the analytic sets. If Z

is Polish we say a Y ⊆ Z is analytic if there exists a Polish space W and a continuous map

f : W → Z such that f (W ) = Y . All Borel sets of a Polish space are analytic (see [Ku]).

Lemma 2.0.0.18. If X = ∏n∈ω Xn where each Xn is metrizable, then the loop space of X

is homeomorphic to the product of the loop spaces of the spaces Xn and can be metrized

thereby.

Proof. By applying a cutoff metric dn to each space Xn we may assume diam(Xn) ≤ 2−n.

The metric d({sn}n∈ω ,{tn}n∈ω) = ∑
∞
n=0 dn(sn, tn) is compatible with the product topology

on ∏n Xn. Fix a point xn in each Xn and let x = {xn}n∈ω ∈∏n Xn. The metric d induces the

sup metric on the loop space Lx so that Lx is homeomorphic with the space ∏n Lxn where the

distance between loops {ln}n∈ω and {l′n}ω is ∑n sups∈[0,1] dn(ln(s), l′n(s)). This follows from

the fact that uniform convergence of a sequence of loops in Lx occurs precisely when the

loops in each coordinate converge uniformly. Thus we metrize Lx with the metric defined

by the metric on the product ∏n Lxn .

We cover some basic functoriality properties. Recall that if (X ,x) and (Y,y) are two

pointed spaces and f : (X ,x)→ (Y,y) is a continuous function then there is an induced

homomorphism f∗ : π1(X ,x)→ (Y,y) defined by f∗([l]) = [ f ◦ l]. The map f also induces

a continuous map f : Lx → Ly given by l 7→ f ◦ l. We also recall that the wedge (X ,x)∨

(Y,y) is the topological space obtained by identifying the distinguished points, which has

distinguished point corresponding to the identified points which we denote x∨y. There are
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obvious inclusion maps from the spaces (X ,x) and (Y,y) to the wedge as well as retraction

maps from the wedge to the two spaces.

Proposition 2.0.0.19. The following closure properties hold:

1. If f : (X ,x)→ (Y,y) is continuous, P is a pointclass closed under continuous preim-

ages and G≤ π1(X ,x) is P , then ( f∗)−1(G) is also P .

2. If G0 ≤ π1(X ,x) and G1 ⊆ π1(Y,y) are both of pointclass P and P is closed under

products, then G0×G1 ≤ π1(X×Y,(x,y))' π1(X ,x)×π1(Y,y) is P .

3. If f : (X ,x)→ (Y,y) is continuous between Polish spaces and P is nice and G ≤

π1(X ,x) is P then f∗(G) is P .

4. If G0≤ π1(X ,x) and G0≤ π1(Y,y) are P , with P nice, then the subgroup generated

by the images of G0 and G1 under the inclusion maps is P in (X ,x)∨ (Y,y).

Proof. (1) We notice that
⋃
( f∗)−1(G) = f−1

(
⋃

G).

(2) This follows from lemma 2.0.0.18, and applies to countable products if P is closed

under countable products.

(3) The map f induces the continuous map f from Lx to Ly by composition. The image

of
⋃

G under this map is P because P is nice, and
⋃

f∗(G) = [ f (
⋃

G)].

(4) Follows immediately, since
⋃
〈ιX∗(G0)∪ ιY∗(G1)〉 =

⋃
〈[ιX(

⋃
G0)∪ ιY (

⋃
G1)]〉 is

evidently P .

The following theorem gives a catalogue of closure properties for nice subgroups.

Theorem 2.0.0.20. Let f : (X ,x)→ (Y,y) be a continuous function between Polish spaces

and let P be a nice pointclass. The following hold.

1. If H ≤ π1(Y,y) is P then f−1
∗ (H)≤ π1(X ,x) is P .

2. If G≤ π1(X ,x) is P then f∗(G)≤ π1(Y,y) is P .
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3. The subgroups 1 and π1(X ,x) are analytic.

4. If Gn ≤ π1(X ,x) are P then so are
⋂

n∈ω Gn and 〈
⋃

n∈ω Gn〉.

5. Countable subgroups of π1(X ,x) are analytic.

6. If G≤ π1(X ,x) is P then so is 〈〈G〉〉.

7. If G is P then so is any conjugate of G.

8. If w(x0, . . . ,xk) is a reduced word in the free group F(x0, . . . ,xk) and the groups

G0, . . . ,Gk ≤ π1(X ,x) are P then so is the subgroup 〈{w(g0,g1, . . . ,gk)}gi∈Gi〉.

9. If G,H ≤ π1(X ,x) are P then so is the subgroup [G,H].

10. If G is P we have that each countable index term of the derived series G(α) and each

term of the lower central series Gn are P . Recall that the derived series is defined by

letting G(0) = G, G(α+1) = [G(α),G(α)] and G(β ) =
⋂

α<β G(α) if β is a limit ordinal.

The lower central series is defined by letting G0 = G and Gn+1 = [G,Gn].

Proof. Claim (1) follows from (1) in Proposition 2.0.0.19. Claim (2) is claim (3) in Propo-

sition 2.0.0.19. For (3) we have that π1(X ,x) is a closed subgroup and 1 is the subgroup

generated by the constant map to x, and so is analytic by Lemma 2.0.0.14 (since a singleton

is closed in Lx). Claim (4) follows from the definition of nice pointclasses and Lemma

2.0.0.14. Claim (5) follows from the fact that singletons are closed in Lx and claim (4).

Claim (6) is an instance of Lemma 2.0.0.15. Claim (7) is an instance of Lemma 2.0.0.12.

For claim (8) we notice that the map w : ∏
k
i=0 Lx→ Lx given by (l0, . . . , lk) 7→ w(l0, . . . , lk)

is continuous, and so {w(l0, . . . , lk)}li∈
⋃

Gi is a P subset in Lx and the claim follows from

Lemma 2.0.0.14. Claim (9) is an instance of claim (8). For claim (10) we iterate claim (9),

applying claim (4) at limit ordinals.
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Chapter 3

Some General Theorems

We begin with some definitions. If Z is a topological space, we say that Y ⊆ Z is

nowhere dense if Y ⊆ Z has empty interior, Y is meager if it is a union of countably many

nowhere dense sets in Z, Y has the property of Baire (abbreviated BP) if there exists an

open set O⊆ Z such that Y ∆O = (Y −O)∪ (O−Y ) is meager, and Y is comeager if Z−Y

is meager. We say a pointclass P on Polish spaces has the property of Baire if each set in

P has the property of Baire. For example, the pointclass of open sets obviously has BP. In

fact, the class of analytic sets also has BP. Recall that a loop in a space is essential if it is

not nulhomotopic.

The following was proven in [P], using a result from [M].

Lemma 3.0.0.21. Suppose≈ is an equivalence relation on the Cantor set {0,1}ω such that

if α and β differ at exactly one coordinate then α ≈ β fails. If ≈ has the property of Baire

as a subset of {0,1}ω ×{0,1}ω , then ≈ has 2ℵ0 many equivalence classes.

Throughout the rest of Section 3 we assume X is path connected and Polish.

Theorem 3.0.0.22. Suppose that GEK ≤ π1(X ,x) with G of pointclass P and K closed,

that P has BP and is closed under continuous preimages in Polish spaces, and that there

exist arbitrarily small loops at x which are in
⋃

K and not in
⋃

G. Then K/G has cardinality

2ℵ0 .

Proof. Assume the hypotheses and let {ln}n∈ω be a sequence of loops at x in
⋃
(K−G)

such that the diameter of ln is ≤ 2−n. Let l0
n be the constant loop at x and let l1

n be the loop

ln. Given an element α ∈ {0,1}ω we define lα to be the loop lα(0)
0 ∗ (lα(1)

1 ∗ (lα(2)
2 ∗ (· · ·)))

(which must also be in
⋃

K as K is closed). In other words, lα restricted to the interval

[0, 1
2 ] is either the constant loop or l0 in case α(0) is 0 or 1 respectively, lα restricted to
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the interval [1
2 ,

3
4 ] is either the constant loop or l1 in case α(1) is 0 or 1 respectively, etc.

The function from the Cantor set {0,1}ω to Lx given by α 7→ lα is clearly continuous. For

l, l′ ∈ Lx letting l ∼ l′ if and only if [l]G = [l′]G, we have by Lemma 2.0.0.3 that∼⊆ Lx×Lx

is of pointclass P . Defining an equivalence relation≈ on {0,1}ω so that α ≈ β if and only

if lα ∼ lβ , we see that ≈⊆ {0,1}ω ×{0,1}ω is of pointclass P as a continuous preimage.

As P has BP we know that ≈ has BP. By Lemma 3.0.0.21 we shall be done if we show

that if α and β differ at exactly one point then α ≈ β fails. Suppose that α(n) 6= β (n) and

that α(m) = β (m) whenever m 6= n and that lα ≈ lβ . Letting without loss of generality

α(n) = 1 and β (n) = 0 we see that [(lβ )−1lα ] ∈ G. Let h = lα(n+1)
n+1 ∗ (lα(n+2)

n+2 ∗ (· · ·)) and

g = lα(0)
0 ∗(lα(1)

1 ∗(· · · lαn−1
n−1 ) · · ·). Then [(lβ )−1lα ] = [h−1 ∗g−1 ∗g∗ ln ∗h] = [h−1 ∗ ln ∗h]∈

G, so by normality of G in K we have [ln] ∈ G, a contradiction. Thus there are at least 2ℵ0

many elements in K/G by the above lemma, and there are at most 2ℵ0 elements because

there are at most 2ℵ0 loops at x.

Theorem 3.0.0.23. Suppose X is locally path connected. If GE π1(X ,x) is P and P

is nice with BP, then π1(X ,x)/G is either of cardinality ≤ ℵ0 (in case G is open) or of

cardinality 2ℵ0 (in case G is not open).

Proof. If G is open then the collection of left cosets {[l]G}l∈Lx is a covering of Lx by pair-

wise disjoint open sets, and since Lx is separable we know that the collection {[l]G}l∈Lx is

countable. Supposing on the other hand that G is not open, we have by the contrapositive of

Lemma 2.0.0.8 that there must exist some point y ∈ X such that for any open neighborhood

U of y there is a loop in U which is not in G. Since X is locally path connected we get a

sequence of loops {ln}n∈ω based at y which are not in G. Considering G as a subgroup of

π1(X ,y) we see that G is P since P is nice, and thus we have satisfied the hypotheses of

Theorem 3.0.0.22 and we are done.

The above may be strengthened if X is also compact. Recall that a Peano continuum

is a path connected, locally path connected compact metric space.
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Theorem 3.0.0.24. If X is a Peano continuum and GE π1(X ,x) is P with P nice with

BP, then π1(X ,x)/G is either finitely generated (in case G is open) or of cardinality 2ℵ0 (in

case G is not open).

Proof. By the previous theorem we need only show that π1(X)/G is finitely generated if

G is open. For this we will use a theorem from [CC] which will require a definition. Let

φ : π1(X)→ H be a group homomorphism. We say an open cover U is 2-set simple rel φ

if each element of U is path connected and any loop in the union of two elements of U is

in the kernel of φ . This property of a cover implies that for any nerve associated with with

U there is a homomorphism from the fundamental group of the nerve with the same image

as φ . The following is a part of Theorem 7.3 in [CC]:

Theorem. Let X be path connected, φ : π1(X)→H a homomorphism and U a 2-set simple

cover rel φ . If U is finite then φ(π1(X)) is finitely generated.

Now, assuming G is open we get by Lemma 2.0.0.6 an open cover U1 for X such that

any loop contained in an element of U1 is in G. Let ε > 0 be a Lebesgue number for the

cover U1 and let U2 be a cover of X by open balls of redius ε

4 . By local path connectedness

let U be an open cover of X by path connected sets, each of which is contained in an

element of U2. By compactness we may pick U to be finite, and it is clear that U is

2-set simple rel the quotient projection π1(X)→ π1(X)/G. We are done by the theorem of

Cannon and Conner that is quoted above.

The conclusion of Theorem 3.0.0.24 cannot be strengthened by replacing “finitely gen-

erated” by “finitely presented” by the following basic example.

Example 3.0.0.25. Let X be the bouquet of two circles and G be a 2-generated group

which is not finitely presented (for example, the lamplighter group). The fundamental

group π1(X) is the free group of rank 2. Let φ : π1(X)→ G be the homomorphism given

by taking each of the free generators of π1(X) to a distinct generator of G. The space X is

a semilocally simply connected Peano continuum and ker(φ) is open by Proposition 8, but
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π1(X)/ker(φ) ' G is not finitely presented. Similar examples can be given by replacing

the number 2 by any finite number ≥ 2 and letting G be replaced by any other n-generated

group which is not finitely presented.

The above theorems can be refined. Towards this we give the following technical

lemma.

Lemma 3.0.0.26. Let P be a pointclass with BP which is closed under continuous preim-

ages between Polish spaces. Let X be a path connected Polish space (as we have been

assuming throughout this section). Suppose N EK ≤ π1(X ,x) is such that
⋃

N =
⋃

∞
n=0 Nn

with each Nn closed under inverses and homotopy and containing the trivial loop, and that

K is closed. Assume also that NnNm ⊆ Nn+m. If each Nn is P and there exist loops at x of

arbitrarily small diameter in
⋃

K not contained in Nn, then K/N is of cardinality 2ℵ0 .

Proof. Let ε > 0 be given. By the proof of Theorem 3.0.0.22 we need only show that

there is a loop at x in
⋃

K of diameter less than ε that is not in
⋃

N, since N is P . For

contradiction we assume that no such loop exists. For each loop in
⋃

K of diameter less

than ε let φ map that loop to the minimal k such that l ∈Nk. For two loops l1, l2 of radii less

than ε we have that φ(l1 ∗ l2) ≤ φ(l1)+φ(l2) and φ(l1) = φ(l−1
1 ). Let {ln} be a sequence

of loops such that diam(ln) < ε2−n and that φ(l1) > 1 and φ(ln) > n+∑
n−1
m=0 φ(lm). In

particular none of the ln is nullhomotopic. Define lα as before for each α in the Cantor set.

Abuse notation by letting φ : {0,1}ω → ω be defined by φ(α) = φ(lα).

Let En = {α ∈ {0,1}ω : lα ∈ Nn}. As we are assuming that there is no loop in
⋃

K of

diameter less than ε that is not in
⋃

N, we have in particular that
⋃

∞
n=0 En = {0,1}ω . We will

derive our contradiction if we show that each En is meager, which would imply that {0,1}ω

is meager in itself. Each En is clearly P , and so has the property of Baire. Supposing En

is not meager there exists a nonempty open set in which En is comeager. In particular there

exists a basic open set U(δ0, . . . ,δk) = {α ∈ {0,1}ω : α(0) = δ0, . . . ,α(k) = δk} such that

En∩U(δ0, . . . ,δk) is comeager in U(δ0, . . . ,δk). For each p≥ k+1 let ip : U(δ0, . . . ,δk)→
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U(δ0, . . . ,δk) be the homeomorphism that changes the p coordinate. Then U(δ0, . . . ,δk)\

ip(En) is meager for each p≥ k+1. Then in fact there exists α ∈U(δ1, . . . ,δk) such that

switching finitely many of the coordinates beyond the kth coordinate gives an element of

En. It cannot be that the support of α is finite, for if N ∈ ω is a bound on the support of

α (we can assume N > 2n), then n ≥ φ(lα ∗ fN+1) ≥ φ(lN+1)−φ(lα) > N +1−n > n, a

contradiction. Thus taking a subsequence of the ln, we may assume that α = (1,1, . . .) and

that U(δ1, . . . ,δk) = {0,1}ω . We assume that this subsequence was the original sequence.

Let βk,γk ∈ {0,1}ω be given by βk(m) =


0 if m < k

1 if m≥ k
and γk(m) =


1 if m < k

0 if m≥ k
.

We have that φ(γk) ≥ k and φ(βk) ≥ φ(γk)− φ(α) ≥ k− φ(α), so that if k = 2n+ 1 we

have on the one hand that βk ∈ En and on the other hand φ(βk)≥ k−φ(α)≥ (2n+1)−n,

a contradiction.

This gives the following:

Theorem 3.0.0.27. Let P be nice with BP and X be a Peano continuum. There does not

exist a strictly increasing infinite sequence of P normal subgroups {Gn}n∈ω of π1(X) such

that
⋃

n∈ω Gn = π1(X).

Proof. For each n ∈ ω let the set of loops
⋃

Gn play the role of the Nn in the previous

lemma. If π1(X ,x)/Gn is finitely generated for some n, then the sequence {Nn}n∈ω cannot

be strictly increasing. Then π1(X ,x)/Gn must be uncountable for each n, and so there exist

arbitrarily small loops not in each Gn by the proof of Theorem 3.0.0.23. By picking an

appropriate basepoint by local path connectedness, we are done by the previous lemma.

Example 3.0.0.28. The dual analog of the previous theorem does not hold: there exists a

Peano continuum with an infinite strictly descending chain of analytic (in fact closed) nor-

mal subgroups whose intersection is the trivial subgroup. The example can be constructed

as follows. Let P be a projective plane and X = ∏ω P. Then X is a Peano continuum

whose fundamental group is isomorphic to the countably infinite product of Z/2 which we

17



may denote {0,1}ω . We change the superscript ω for Q and the group {0,1}Q remains

unchanged since the cardinality of ω and Q are the same. Given any subset S⊆Q the sub-

group of π1(X) corresponding to the subgroup {α ∈ {0,1}Q : α(q) = 1⇒ q∈ S}≤ {0,1}Q

is closed. For each r ∈ R let Gr ≤ π1(X) be the subgroup corresponding to the subgroup

{α ∈ {0,1}Q : α(q) = 1⇒ q < r}. Then each Gr is a closed subgroup and the following

hold:

1. rn↗ r implies
⋃

n Grn � Gr

2. rn↘ r implies
⋂

n Grn = Gr

3.
⋂

r∈RGr is the trivial subgroup

Picking a sequence rn ↘−∞ gives a strictly descending sequence of normal analytic

subgroups Grn as claimed. The subgroup
⋃

r∈RGr cannot be equal to π1(X) (else we could

pick any sequence rn↗ ∞ and the ascending chain Grn would contradict the previous the-

orem). For example the sequence over Q which is constantly 1 is not in
⋃

r∈RGr.

We name some of the numerous applications of the above theorems.

Theorem 3.0.0.29. Suppose X is a locally path connected, connected Polish space. The

following groups are of cardinality 2ℵ0 or ≤ ℵ0, and in case X is compact they are of

cardinality 2ℵ0 or are finitely generated.

1. π1(X)

2. π1(X)/(π1(X))(α) for any α < ω1 (derived series)

3. π1(X)/(π1(X))n for any n ∈ ω (lower central series)

4. π1(X)/N where N is the normal subgroup generated by squares of elements, cubes

of elements, or n-th powers of elements
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In case X is compact then countability of the fundamental group is equivalent to being

finitely presented.

Proof. The noncompact case in parts (1)-(4) immediately follow from Theorem 3.0.0.23.

For parts (2)-(4) in the compact case we apply Theorem 3.0.0.24. That π1(X) would be

finitely presented follows from Theorem 7.3 in [CC] in part (1) assuming X is compact.

Part (1) in the compact case is the main result of the papers [Sh] and [P], and part (2)

with α = 1 (both compact and noncompact cases) is proven in [CoCo].

We state another result of Continuum Hypothesis type:

Theorem 3.0.0.30. Suppose X is path connected Polish and K ≤ π1(X) is Gδ . Then π1(X)

has either ≤ℵ0 or 2ℵ0 many left or right cosets over K.

Proof. It is obviously sufficient to prove the claim for left cosets. We have by Lemma

2.0.0.3 that the relation E ⊆ Lx× Lx defined by lEl′ iff [l]K = [l′]K is Gδ . Then by a

theorem in [Sr] there is a Borel set B⊆ Lx such that card(B∩ [l]K) = 1 for all l ∈ Lx. Thus

the number of left cosets is precisely the number card(B). Since a Borel subset of a Polish

space does not violate the Continuum Hypothesis we are done.
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Chapter 4

Some Examples of Topologically Defined Subgroups

We give some standard examples, and introduce some new examples, of subgroups of

the fundamental group which are topologically defined. These are intended to illustrate the

richness of the theory and give a grab-bag of examples to which to apply the theorems.

4.1 The Shape Kernel

One well known subgroup of the fundamental group is the shape kernel. We discuss

this subgroup by first giving preliminary definitions towards defining the shape group and

the shape kernel and then prove that the shape group is a closed subgroup.

We assume some familiarity with geometric simplicial complexes. Given a topological

space X and a open cover U of X let N(U ) denote the nerve of the cover-that is, the

geometric simplicial complex which has a distinct vertex vU for every U ∈ U and which

contains the n-simplex [vU0 ,vU1, . . . ,vUn] if and only if U0 ∩U1 ∩ ·· · ∩Un 6= /0. If V is an

open cover of X that refines U (i.e. for each V ∈ V there is a U ∈ U such that V ⊆U)

then any map from the vertices of N(V ) to the vertices of N(U ) such that vV 7→ vU implies

V ⊆U extends to a simplicial map from N(V ) to N(U ).

If the topological space has a distinguished basepoint x, then one can distinguish an ele-

ment U in an open cover U such that x∈U , which in turn gives a distinguished vertex in the

nerve N(U ). With this added structure, if V refines U with distinguished elements V and

U such that V ⊆U then a simplicial map as described above extending a vertex assignment

satisfying vV → vU , say p(V ,V ),(U ,U) : (N(V ),vV )→ (N(U ),vU) preserves basepoint and

is unique up to basepoint preserving homotopy. Assuming X is path connected all nerves

are connected, and the refinement relation on open covers gives an inverse directed system
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(π1(N(U ),vU), p(V ,V ),(U ,U)∗). The shape group of X is defined as the inverse limit

π̌1(X ,x) = lim
←

(π1(N(U ),vU), p(V ,V ),(U ,U)∗)

The index of the inverse limit will generally be of uncountable cardinality. Assum-

ing (X ,x) is also paracompact and Hausdorff we have for each open cover with distin-

guished neighborhood of x, (U ,U), a refinement (V ,V ) such that V is the unique ele-

ment of V containing x. A partition of unity subordinate to V (which necessarily ex-

ists by our assumption of paracompactness and Hausdorffness) induces a barycentric map

fU : (X ,x)→ (N(V ),vV ) which is unique up to based homotopy. The induced map fU ∗ on

the fundamental group π1(X ,x) can be checked to commute with the maps of the inverse

system in the apprporiate way, and since the set of all such open covers V described are

cofinal in the inverse system we get a map Ψ : π1(X ,x)→ π̌1(X ,x).

The natural object used to assess the loss of information when passing from the fun-

damental to the shape group is the shape kernel ker(Ψ). The following demonstrates an

alternate characterizaion of the shape kernel.

Theorem 4.1.0.31. Suppose (X ,x) is a path connected metrizable space. Then the shape

kernel is a closed subgroup of π1(X ,x). If in addition X is locally path connected then the

shape kernel is equal to the folowing two subgroups:

1.
⋂

f ker( f∗) where f is taken over all continuous maps to semilocally simply connected

spaces

2.
⋂

Gopen, normal

G

Proof. It is clear from the definition that the shape kernel is equal to
⋂

f ker( f∗) where f is

taken over all baricentric maps of open covers. Fix a barycentric map f to the nerve N(V ).

As N(V ) is a geometric simplicial complex it is not difficult for each loop l ∈ Lx to select

ε > 0 such that for each l′ ∈ Lx that is ε close to l we have f ◦ l is homotopic to f ◦ l′ in
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N(V ). This shows that ker( f∗) is open, and therefore also closed by Lemma 2.0.0.4. Then

the shape kernel is a closed subgroup as an intersection of closed subgroups.

Now suppose that X is also locally path connected. Since each nerve is a geometric

simplicial complex, each nerve is also semilocally simply connected. Thus the shape kernel

contains the subgroup (1). Furthermore, if f : X → Y is continuous with Y semilocally

simply connected, then we can find an open covering U of X such that the image of any

loop in an element of U has nulhomotpic image under the map f . This gives an open cover

satisfying the criteria of Lemma opencover and since X is locally path connected we have

that ker( f∗) is open. Thus subgroup (1) contains subgroup (2).

We conclude by proving that subgroup (2) contains the shape kernel. Let G be an

open normal subgroup in π1(X) (since G is open, normal we may consider π1(X ,x) as

basepoint free by Lemma 2.0.0.5). Let q : π1(X)→ π1(X)/G be the canonical quotient

homomorphism. We introduce some terms and a theorem given in [CC].

Assuming Y is a path connected topological space and φ : π1(Y )→ H is a group ho-

momorphism we say an open cover V of Y by path connected sets is 2-set simple rel φ

provided any loop whose image lies in the union of two elements of V is in ker(φ) (as

defined in the proof of Theorem 3.0.0.24). Two paths p0 and p1 are V -related if there is

some parametrization for p0 and p1 such that for all s ∈ [0,1] are in a common element of

V . To be V -related is not necessarily an equivalence relation; we say that paths p0 and

p1 are V -equivalent if they are in the same class under the equivalence class generated by

V -relatedness. The following is part (1) of Theorem 7.3 in [CC]:

Theorem. Let Y be a path connected topological space, φ : π1(Y )→ H a homomorphism

and V a 2-set simple cover of Y rel φ . If two loops l, l′ ∈ Ly are V -equivalent then h([l]) =

h([l′]).

By Lemma 2.0.0.6 we have an open cover U0 of X such that each loop in an element

of U0 is in G. For each z ∈ X we may select Uz ∈ U0 satisfying z ∈Uz. Define r0(z) =

d(z,X−Uz). Letting U1 = {B(z, r0(z)
3 )}z∈X it is straightforward to check that if for U,U ′ ∈
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U1 we have U ∩U ′ 6= /0 then U ∪U ′ is contained in an element of U0. By local path

connectedness we let U2 be a refinement of U1 by path connected open sets. It is easy

to see that U2 is a 2-set simple cover rel q. For each z ∈ X pick a Uz ∈ U2 such that

z ∈Uz and let r2(z) = d(z,X −Uz). Letting U3 = {B(z, r2(z)
5 ) it is straightforward to check

that if U,U ′,U ′′ ∈ U3 satisfy U ∩U ′ 6= /0 and U ′ ∩U ′′ 6= /0 then U ∪U ′ ∪U ′′ is contained

entirely in an element of U2. Let U4 be a refinement of U3 by path connected open sets.

Finally for each z ∈ X select a Uz ∈ U4 such that z ∈ Uz, let r4(z) = d(z,X −Uz) and

U = {B(z, r4(z)
3 )}z∈X . Again, it is straightforward to see that if U,U ′ ∈U satisfy U∩U ′ 6= /0

then U ∪U ′ is entirely contained in an element of U4. Without loss of generality we can

assume U is refined so that x is contained in exactly one element of the cover U .

Let b : X → N(U ) be a barycentric map associated to some partition of unity subordi-

nated to U . Then b(x) = vU where U ∈ U is unique such that x ∈U . We define a map

f from the 1-skeleton N(U )1 to X . Let f (vU) = x and for all other vertices vU ′ ∈ N(U )0

simply let f (vU ′) ∈ U ′. By our choice of U if [vU ′,vU ′′ ] is a 1-simplex in N(U ) then

U ′∩U ′′ 6= /0 and so there exists a path contained entirely in an element of U4 from f (vU ′)

to f (vU ′′). Let f |[vU ′,vU ′′] map via this path.

We will be done if we show that ker(b∗) ≤ G. Suppose now that l ∈ Lx is such that

[l] ∈ ker(b∗). Then b ◦ l is a loop in N(U ) based at vU which is nulhomotopic. Recall

that b has the property that b−1(StvU ′)⊆U ′ where StvU ′ is the open star of the vertex vU ′ .

There exists a combinatorial loop p(vU ,vU1,vU2, . . . ,vUn−1,vUn = vU) which is homotopic to

b◦ l such that b◦ l(s)∈ StvUk where s∈ [ k
n ,

k+1
n ]. Letting l0 : [0,1]→N(U ) be a topological

realization of this loop we see that l is U2-related to f ◦ l0.

By assumption there exists a nulhomotopy of l0, and so in particular there exists a

combinatorial nulhomotopy of p(vU ,vU1 ,vU2, . . . ,vUn−1 ,vUn = vU). In other words, there

exists a finite sequence of combinatorial paths:

p0 = p(vU ,vU1,vU2 , . . . ,vUn−1,vUn = vU)

p1 = p(vU ,vU1,1,vU1,2, . . . ,vU1,n1
= vU)
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p2 = p(vU ,vU2,1),vU2,2, . . . ,vU2,n2
= vU)

...

pm = p(vU)

such that one obtains pk from pk−1 by performing one of the following elementary path

homotopies:

1. Exchanging the subpath vUp,vUp+1 for the subpath vUp assuming Up =Up+1, or vice

versa.

2. Exchanging the subpath vUp,vUp+1,vUp+2 for the subpath vUp assuming Up+2 = Up,

or vice versa.

3. Exchanging the subpath vUp,vUp+1 ,vUp+2 for the subpath vUp,vUp+2 assuming [vUp,vUp+1,vUp+2]

is a 2-simplex in N(U ), or vice versa.

Letting lk : [0,1]→ N(U ) be a topological realization of the combinatorial path pk, it

is easy to see that f ◦ lk is U2 related to f ◦ lk+1. By the theorem of Cannon and Conner

quoted above, we have that q([l]) = q([ f ◦ l0]) = q([ f ◦ l1]) = · · ·= q([ f ◦ lm]) = q(1), and

so [l] ∈ G.

As a direct consequence of Theorem 3.0.0.30 we get the following

Corollary 4.1.0.32. If X is a path connected Polish space then the quotient of π1(X) by the

shape kernel is of cardinality ≤ℵ0 or 2ℵ0 .

4.2 The Spanier Group

Another useful subgroup of the fundamental group is the Spanier group, which we

denote πs
1(X ,x) (first defined in [Spa]). We give the necessary definitions for this group,

then give some results about the topological properties.
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Let X be a path connected topological space and x ∈ X . If U is an open cover of

X we define π1(U ,x) to be the subgroup of π1(X ,x) generated by loops of the form

ρ ∗ l ∗ ρ−1 where ρ(0) = x and l is a loop based at ρ(1) and contained in some element

of U . This subgroup is easily seen to be normal. The Spanier group is defined to be

πs
1(X ,x) =

⋂
U π1(U ,x) where the parameter U is taken over all open covers. The first of

the following two lemmas does not assume metrizability of X .

Lemma 4.2.0.33. If X is path connected then πs
1(X ,x) is contained in the shape kernel.

Proof. Let b be a barycentric map from X to some nerve. Since a nerve is semilocally

simply connected we have a cover U of X such that any loop contained in an element of

U is in ker(b∗). Obviously π1(U ,x) ≤ ker(b∗) and taking the appropriate intersections

gives the claim.

Lemma 4.2.0.34. Let X be a path connected metric space, U an open cover of X and

x ∈ X .

1. If X is locally path connected then π1(U ,x) is open.

2. If X is Polish and U is countable then π1(U ,x) is analytic.

Proof. Assume the hypotheses for part (1). The open cover U is such that any loop con-

tained in an element thereof (considering loops to be base point free) is an element of

π1(U ) (we switch here to a basepoint free notation for emphasis). Then by Lemma 2.0.0.8

we have that π1(U ) is an open subgroup.

Assume the hypotheses for part (2). Let Lx,U,n = {l ∈ Lx : (∀s∈ [0, 1
2 ])[l(s) = l(1−s)]∧

(∀s ∈ [1
3 ,

2
3 ])[d(l(s),X −U)≥ 1

n ]} where U ∈U and n ∈ ω . It is clear that Lx,U,n is closed

as a subset of Lx. The set
⋃

U∈U ,n∈ω Lx,U,n is a countable union of closed sets (and therefore

analytic). Then π1(U ,x) = 〈〈
⋃

U∈U ,n∈ω Lx,U,n〉〉 is analytic by Lemma 2.0.0.15.
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That the shape kernel is equal to the Spanier group holds for all locally path connected,

path connected paracompact Hausdorff spaces was recently shown in [BF]. Part (1) of the

following theorem gives a rather short proof of a slightly less general fact.

Theorem 4.2.0.35. The following hold:

1. If X is a path connected, locally path connected metric space then πs
1(X ,x) is equal

to the shape kernel, and in particular closed.

2. If X is a path connected compact metric space then πs
1(X ,x) is analytic.

Proof. (1) Assume the hypotheses. That the Spanier group is contained in the shape kernel

was proved in Lemma 4.2.0.33. That the shape kernel is contained in the Spanier group

follows from characterization (2) of Theorem 4.1.0.31 and from Lemma 4.2.0.34 part (1).

For (2) we assume the hypotheses. As X is a compact metric space there exists a

sequence {Un}n∈ω of finite open covers such that Un+1 refines Un and which is cofinal

in the inverse directed system of open covers. Thus πs
1(X ,x) =

⋂
n∈ω π1(Un,x) is analytic

as a countable intersection of analytic subgroups (Lemma 4.2.0.34 part (2) and Theorem

2.0.0.20 part (4)).

4.3 Subgroups reflecting local behavior

We give a couple of subgroups that can be thought of as indicating local behavior.

Firstly, recall that a space X is homotopically Hausdorff at x if each loop based at x which

can be homotoped into any neighborhood of x is in fact nulhomotopic. This notion has

found many uses (as, for example, in [BS] and [FZ]). If X is a Polish space, let Lx,n be

the set of all loops given by l ∈ Lx,n if and only if (∀s ∈ [0,1])[d(l(s),x) ≤ 1
n ]. Then Lx,n

is clearly a closed subset of Lx, so the subgroup 〈[Lx,n]〉 is analytic by Lemma 2.0.0.14.

The subgroup
⋂

n∈ω〈[Lx,n]〉 is trivial if and only if X is homotopically Hausdorff at x. This

subgroup is analytic and can be thought of as the indicator subgroup for the property.

26



If X is compact, metrizable and path connected, then it is easy to see that the cone over

X , C X = X × [0,1]/X ×{1}, is also compact, metrizable and path connected. We shall

consider X as a subset of C X by identifying X with X×{0}.

Let S ⊆ X be nonempty. Fixing a metric on C X we let Yn,S ⊆ C X be given by X ∪

(C X −B(S, 1
n)). Let fn,S be the inclusion map from X to Yn,S. Then fn,S is a continuous

map to a compact metric space, and ker( fn,S∗) is analytic. Since Yn,S =Yn,S there is no gen-

erality lost in assuming that S is compact. Also, the choice of metric on C X does not change⋃
n ker( fn,S∗) (by compactness). Let N(S) denote the normal subgroup

⋃
n ker( fn,S∗). This

subgroup is intended to convey a sense of the importance of the subspace S in the funda-

mental group of X . If the subgroup N(S) is all of π1(X) then the points of S carry little

significance in the fundamental group. If N(S) is trivial, then the points of S can be thought

of as holding importance. If S⊆ S′ then Yn,S ⊇ Yn,S′ and so N(S)≤ N(S′).

Example 4.3.0.36. Let X be compact, metrizable and path connected. Letting S = X we

get that for every n ∈ ω −{0}, the path component in Yn,S including all elements of X is

simply the subset X . Thus any nulhomotopy of a loop in X taking place in Yn,S must in fact

already take place in X , so N(S) is trivial.

For the next example we first prove the following.

Example 4.3.0.37. Let S ⊆ X be a compactum such that any map f : S1→ X can be ho-

motoped to have image disjoint from S. Then given x ∈ X and a loop l ∈ Lx there is a

homotopy of l to a loop ρ ∗ l′ ∗ρ−1 such that l′ is a loop with image disjoint from S. By

compactness there is some positive distance between S and the image of l′, and so l′ can be

nulhomotoped in Yn,S for some n, so that l is also nulhomotopic in Yn,S. Then N(S) = π1(X).

Example 4.3.0.38. Let X = S1 and S = {x} be any singleton. For each n ∈ ω−{0} there

is a superset Z ⊇ Yn,S such that Z strongly deformation retracts to the set X , so that N(S) is

trivial. This holds true as well if X is a wedge of finitely many circles and x is the wedge

point by the same proof.
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Lemma 4.3.0.39. If r : X → Y is a retraction with Y ⊃ S then the monomorphism induced

by inclusion π1(Y )→ π1(X) induces a monomorphism π1(Y )/NY (S)→ π1(X)/NX(S) (here

we use the subscript to denote the ambient space).

Proof. This follows from the fact that the retraction r extends to a retraction R of the cones

R : C(X)→C(Y ) given by R(x, t) = (r(x), t) where t ∈ [0,1].

Example 4.3.0.40. Let X be the Hawaiian earring and S = {x} where x is the wedge point.

The wedge Ym of the outer m circles is a retract of X and each NYm(S) is trivial by the

previous example. Then NX(S) has no elements of the cannonical free group retracts. Then

NX(S) is trivial by the standard fact that the Hawaiian earring fundamental group injects

naturally into the inverse limit of the retract free groups.

Example 4.3.0.41. Let X be the Hawaiian earring again and S = {x} be any other point in

X besides the wedge point. Then for some n ∈ ω−{0} the ball B(x, 1
n) does not intersect

any other circle on the Hawaiian earring besides that on which x lies. Then N(S) contains

the kernel of the retract induced homomorphism r∗ where r fixes the circle on which x lies

and takes all other points to the wedge point. On the other hand, N(S) must be precisely

the kernel of the induced homomorphism by the lemma.
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Chapter 5

Comonster Groups

As an application of the above theory we give the following definition.

Definition 5.0.0.42. We say a group G is comonster if for every finite subset S ⊆ G we

have 〈〈S〉〉 6= G. More generally G is κ-comonster if for every S⊆ G with S of cardinality

< κ we have 〈〈S〉〉 6= G.

Thus comonster groups are ℵ0-comonster groups. One easily sees that any abelian

group of cardinality κ > ℵ0 is κ-comonster. Also, if h : G→ H is an epimorphism with H

comonster (respectively κ-comonster), then G is also comonster (resp. κ-comonster).

We have the following:

Theorem 5.0.0.43. Let X be a Peano continuum and N Eπ1(X) be of type P with P nice

with BP. If π1(X)/N is comonster then π1(X)/N is ℵ1-comonster. In particular, if π1(X) is

comonster, then π1(X) is ℵ1-comonster.

Proof. Suppose for contradiction that π1(X)/N is comonster but not ℵ1-comonster. Let

S = {g0, . . .} ⊆ π1(X ,x) be a countably infinite set such that 〈〈S〉〉 = π1(X ,x). The nor-

mal groups Gn = 〈〈N ∪{g0, . . . ,gn}〉〉 are easily seen to be P and
⋃

n Gn = π1(X). On

the other hand the sequence Gn cannot stabilize since π1(X ,x) is comonster. Thus one

can pick a strictly increasing subsequence of normal P subgroups whose union is π1(X),

contradicting Theorem 3.0.0.27.

Example 5.0.0.44. Let HE denote the Hawaiian earring. We have an epimorphism h :

π1(HE)→ ∏ω Z given by letting the n-th coordinate of h([l]) be given by counting the

number of times a loop traverses the n-th circle of the infinite wedge that defines HE in

an oriented direction. Then π1(HE) is 2ℵ0-comonster, since ∏ω Z is abelian of cardinality

2ℵ0 .
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Example 5.0.0.45. If X is a one-dimensional Peano continuum with π1(X) uncountable,

then X retracts to a subspace that is homeomorphic to HE, so that again π1(X) is 2ℵ0-

comonster.

Even if π1(X) is uncountable, it may still be the case that π1(X) is not comonster, as

illustrated in the following example.

Example 5.0.0.46. Let Y be a Peano continuum with π1(Y ) ' A5. This can be done by

taking a finite presentation for A5 and constructing the finite 2-dimensional CW complex

by letting loops correspond to generators in the presentation and gluing on the boundary

of a disc along a path that gives the relators. Such a space is compact, metrizable, path

connected and locally path connected. Then Y is a Peano continuum, and so is X = ∏ω Y .

We have π1(X) ∼= ∏ω A5. Letting g ∈ ∏ω A5 have every entry be the 3-cycle (123), we

claim that 〈〈g〉〉= ∏ω A5. This demonstrates that π1(X) is not comonster.

To see that 〈〈g〉〉 = ∏ω A5, notice that all 3-cycles are conjugate (in A5) to each other.

Thus for each h∈∏ω A5 whose each entry is a 3-cycle we have h∈ 〈〈g〉〉. Each 3-cycle is a

product of two 3 cycles (if (abc) is a 3-cycle then (abc) = (abc)−1(abc)−1 = (cba)(cba)).

Since the trivial element in A5 is a product of two three cycles and each 5-cycle and each

product of two disjoint transpositions (ab)(cd) is a product of two 3-cycles then in fact

every element in ∏ω A5 is a product of exactly two conjugates of g and we are done.

In all the above examples of Peano continua with comonster fundamental group, we

used the fact that if the abelianization is uncountable, then the fundamental group is comon-

ster.

Question 5.0.0.47. Does there exist a Peano continuum whose first homology is trivial and

whose fundamental group is comonster?

A negative answer would be very interesting as it would imply a theorem for finitely

presented perfect groups (groups with trivial abelianization).
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Theorem 5.0.0.48. Suppose the answer to the above question is no. Let Pn be the class of

groups whose elements are products of n or fewer commutators. For each n∈N there exists

k(n) ∈ N such that if G ∈Pn is finitely presented there exists a set F ⊆ G with |F | ≤ k(n)

and ∏k(n)FG = G (each element of G is a product of k(n) or fewer conjugates of elements

of F).

Proof. Suppose for contradiction that for some n ∈ N there is no such k(n). Select finitely

presented groups Gm ∈Pn such that for any F ⊆Gm with |F | ≤m we have that ∏m FGm 6=

Gm. For each m there is a finite CW complex Ym of dimension at most two whose fun-

damental group is isomorphic to Gm. Each Ym is a Peano continuum. Then ∏mYm is a

Peano continuum, with fundamental group isomorphic to ∏m Gm. It is easy to see that

∏m Gm ∈Pn and is also comonster.

This is adjacent to a question of Wiegold: Does every finitely generated perfect group

contain an element which normally generates the group?

31



Chapter 6

Covering Spaces

We begin by reminding the reader of some relevant concepts.

Definition 6.0.0.49. Let X be a topological space. A covering space for X is a topological

space X̃ together with a map p : X̃ → X such that for every x ∈ X there exists an open

neighborhood U such that p−1(U) is a disjoint union of open sets {U j} j∈J such that p|U j

is a homeomorphism onto U for each j ∈ J. Such a U is said to be evenly covered.

It is easy to see that the map p is a continuous, open mapping. The covering space map

satisfies the following conditions proven in the classical theory:

Lemma 6.0.0.50. If p : X̃ → X is a covering map, x ∈ X and p(x̃) = x then p∗ : π1(X̃ , x̃)→

π1(X ,x) is injective. If [l] ∈ p∗(π1(X̃ , x̃)) then l lifts to a loop l̃ ∈ Lx̃.

Recall the classic metrization theorem of Nagata and Smirnov:

Theorem. A space is metrizable if and only if it is regular and has a basis which is count-

ably locally finite.

A collection of subsets B of X is locally finite if for each x ∈ X there is an open

neighborhood U of x such that the set of elements of B with nonempty intersection with U

is finite. A collection B of subsets of X is countably locally finite if it can be written as a

countable union B =
⋃

n∈ω Bn where each Bn is locally finite.

Assuming X is a metrizable space, the above theorem implies that a covering space

p : X̃ → X is also metrizable. The regularity of X̃ follows easily from the normality of X .

Let B be a countably locally finite basis, say B =
⋃

n Bn. The set of those elements of B

which are evenly covered by p is also a basis and obviously also countably locally finite,

so we may assume that elements of B are evenly covered. Letting B̃n = {U ⊆ X̃ : p|U is
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a homeomorphism onto an element of Bn} and B̃ =
⋃

n B̃n it is easy to see that each B̃n

is locally finite and B̃ is a basis.

In keeping with the rest of the paper, we shall focus on path connected metrizable spaces

and those covers which are also path connected (and metrizable).

Theorem 6.0.0.51. If p : (X̃ , x̃)→ (X ,x) is a covering map with X path connected metriz-

able, then p∗(π1(X̃ , x̃)) is an open subgroup in π1(X ,x).

Proof. Fix a metric d on X . Let l ∈ Lx be such that [l] ∈ p∗(π1(X̃ , x̃)) and l̃ ∈ Lx̃ be the lift

of l. By compactness of l([0,1]) let δ > 0 be a number small enough that for all s ∈ [0,1]

we have B(l(s),δ ) is evenly covered by p. Let Us ⊆ X̃ be the unique open set such that

l̃(s) ∈Us and p|Us is a homeomorphism onto B(l(s),δ ).

Suppose l′ is distance less than δ away from l in Lx. Then l′(s) ∈ B(l(s),δ ) for all

s ∈ [0,1]. Let ρ : [0,1]→ X̃ be the unique path such that p ◦ρ = l′ and ρ(0) = x̃. Notice

that {s ∈ [0,1] : ρ(s) ∈Us} is open in [0,1]. Also, {s ∈ [0,1] : ρ(s) /∈Us} is also open in

[0,1] since if ρ(s) /∈Us then ρ(s) is in another, disjoint neighborhood U ′s such that p|U ′s is a

homeomorphism with B(l(s),δ ) (this is because l′(s) ∈ B(l(s),δ ).) By connectedness we

have ρ(s) ∈Us for all s ∈ [0,1]. Then ρ(1) = x̃ and [l′] is in p∗(π1(X̃ , x̃)).

Assuming X̃ is path connected we know each fiber p−1(z) is of the same cardinality and

is equal to the index π1(X) : p∗(π1(X̃ , x̃)). By lemma 2.0.0.3 this index is countable since

the set of left cosets is a partition of the separable space Lx into disjoint open sets. Thus if

Q ⊆ X is countable, dense we easily see that p−1(Q) is as well. Thus any path connected

cover of a path connected separable metrizable space is also separable, metrizable. To see

that the property of being Polish lifts as well, we use the following (see [Ke] 8.19).

Theorem. (Sierpiński) Let Z be Polish and W separable metrizable. If there is a continuous

open surjection of Z onto W then W is Polish.

Proposition 6.0.0.52. If X is path connected Polish and X̃ is a path connected then X̃ is

Polish.
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Proof. We have already seen that X̃ is separable, metrizable. Let U be a countable open

cover of X by open evenly covered sets. Let Z be the topological disjoint union of countably

many copies of each of the U ∈U . As Z is a disjoint union of Polish spaces we know Z is

itself Polish. Let f : Z→ X̃ be any map such that f |U ′ is a homeomorphism to one of the

stacked disjoint open sets which compose p−1(U) for each of the countably many copies

of each U ∈U and such that f is surjective. It is clear that f is continuous and open. We

are done by the quoted theorem.

Theorem 6.0.0.53. Suppose P is a Polish pointclass containing the open or the closed

sets which is closed under continuous preimages and let p : (X̃ , x̃)→ (X ,x) be a covering

map with X and X̃ Polish path connected. Then G ≤ π1(X̃ , x̃) is P if and only if p∗(G) is

P .

Proof. As p∗ is injective, assuming p∗(G) is P we have that G = p−1
∗ (p∗(G)) is also P .

Let p : Lx̃→
⋃

Lx be the induced map on the loop spaces given by composition with p. We

show that p is a homeomorphism onto
⋃

p∗(π1(X̃ , x̃))⊆ Lx. We know that p∗ is continuous,

and also onto
⋃

p∗(π1(X̃ , x̃)) (by considering the lift of a loop one detects the preimage).

As lifts are unique we get that p is injective as well. Finally, suppose that loops {ln}n∈ω

in Lx converge to l. We must show that the lifts {l̃n}n∈ω converge to the lift l̃. Letting

{U0, . . . ,Um} be an open cover of the image of l by evenly covered open sets, we pick

N ∈ ω large enough that for each 0 ≤ k ≤ N−1 we have l([ k
N ,

k+1
N ]) ⊆Uik . By passing to

a subsequence if necessary, we may assume that ln([ k
N ,

k+1
N ])⊆Uik for all n ∈ ω . For each

0≤ i≤ m let U ′i ⊆ X̃ be such that p|U ′i is a homeomorphism to Ui and l̃([ k
N ,

k+1
N ])⊆U ′ik .

Since p|U ′i0 is a homeomorphism we know that l̃n|[ 0
N ,

1
N ] converges pointwise to l̃. In

particular we have l̃n( 1
N ) is eventually inside U ′i1 . Since p|U ′i1 is a homeomorphism we have

that l̃n|[ 1
N ,

2
N ] must eventually converge pointwise to l̃|[ 1

N ,
2
N ]. Continuing in this manner,

we see that the restrictions of the l̃n to the closed intervals [ k
N ,

k+1
N ] converge pointwise,

which is sufficient for l̃n converging pointwise to l̃. Thus p is a homeomorphism. Then

assuming G is P we have that p∗(G) is a subset of the clopen subset
⋃

p∗(π1(X̃ , x̃))⊆ Lx.
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If G is not all of π1(X̃ , x̃) then we select l ∈ Lx̃−
⋃

G and since p∗(π1(X̃ , x̃)) is clopen we

may retract Lx to
⋃

p∗(π1(X̃ , x̃)) by letting Lx−
⋃

p∗(π1(X̃ , x̃)) map to the point p ◦ l. If

G = π1(X̃ , x̃) then p∗(G) is clopen and again we are done.

Theorem 6.0.0.54. If X is a path connected, locally path connected metric space and

GEπ1(X ,x) is open, then there exists a covering space p : (X̃ , x̃)→ (X ,x) associated with

G (i.e. p∗(π1(X̃ , x̃)) = G.)

Proof. Let Px be the set of all paths γ : [0,1]→ X such that γ(0) = x. Notice that Lx is a

subset of Px. Define an equivalence relation∼ on Px by letting γ0∼ γ1 if and only if γ0(1) =

γ1(1) and γ0 ∗ γ1 ∈
⋃

G. This relation is clearly reflexive. If γ0 ∼ γ1 then γ0 ∗ γ
−1
1 ∈

⋃
G, so

that (γ0 ∗ γ
−1
1 )−1 = γ1 ∗ γ

−1
0 ∈

⋃
G, so symmetry holds. If γ0 ∼ γ1 and γ1 ∼ γ2 then γ0 ∗ γ

−1
2

is homotopic to γ0 ∗ γ
−1
1 ∗ γ1 ∗ γ

−1
2 ∈

⋃
G and so transitivity holds as well. Obviously if two

paths are homotopic rel endpoints then they are equivalent under ∼.

Letting X̃ be the set Px/ ∼ and x̃ be the equivalence class of the constant path at x, we

have a function p : (X̃ , x̃)→ (X ,x) given by p : γ 7→ γ(1). We describe the topology of X̃ .

By Lemma 2.0.0.6 we have an open cover U of X such than any loop with image in an

element of U is an element of G (considering G as basepoint free by normality.) By taking

a finer cover if necessary we may assume the elements of U are path connected. Given

γ ∈ p−1(U) we let Uγ ⊆ Px/ ∼ be defined to be set of all those paths γ0 ∈ Px such that for

some γ ′0 : [0,1]→U we have γ ′0(0) = γ(1) and γ ∗γ ′0∼ γ0. Notice that the restriction p|Uγ is

injective, for if γ0,γ1 ∈Uγ with γ ′0 and γ ′1 witnessing this, we have γ1 ∗ (γ ′1)−1 ∗γ−1 ∈G and

γ0∗(γ ′0)−1∗γ−1 ∈G. Supposing p(γ0) = p(γ1) we have that γ0∗(γ ′0)−1∗γ−1∗γ ∗γ ′1∗γ
−1
1 ∈⋃

G, which is homotopic to γ0 ∗ (γ ′0)−1 ∗ γ ′1 ∗ γ
−1
1 and since (γ ′0)

−1 ∗ γ ′1 is a loop in U we

know it represents an element of G with basepoint p(γ0) = p(γ1), and so γ0 ∗γ
−1
1 represents

an element of G, so γ0 ∼ γ1. By path connectedness of U we see that p|Uγ is also onto.

Notice that if γ0,γ1 represent elements in Uγ then by definition there exist paths γ ′0,γ
′
1 such

that γ ∗ γ ′0 ∼ γ0 and similarly for γ ′1. We have that γ1 ∼ γ0 ∗ (γ ′0)−1 ∗ γ ′1, so that defining Uγ0

in the comparable way as Uγ we get that γ1 represents an element of Uγ0 as well. Thus in
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fact Uγ ⊆Uγ0 and the proof of the other inclusion is symmetric.

Define each Uγ to be open and declare each restriction p|Uγ to be a homeomorphism.

This defines a basis for a topology on X̃ under which p is a continuous local homeomor-

phism. Moreover, for each point y ∈ X we may pick U ∈U such that y ∈U and notice that

the Uγ associated with U evenly cover U (they are disjoint since we have shown that any

nonempty intersection gives equality.)

Letting l ∈ Lx̃ be a loop, the loop p ◦ l as an element of the path space Px is such that

p◦ l is∼ the constant loop, so p◦ l is a loop in
⋃

G. On the other hand, given a loop l ∈
⋃

G

we consider l ∈ Px and notice that by definition l(1) ∈ x̃. Then the lift of l in Lx̃ is a closed

loop. We have shown p∗(π1(X̃ , x̃) = G.
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Chapter 7

Applications to First Homology

The theory developed around the pointclasses of subgroups of the fundamental group

has applications to the structure of the abelianization of the fundamental group of a path

connected Polish space: the first homology. To start, we have the following which first

appeared in [CoCo], which is an instance of Theorem 3.0.0.29.

Theorem 7.0.0.55. If X is a path connected, locally path connected Polish space then

H1(X) is either of cardinality ≤ℵ0 or 2ℵ0 . In case such an X is also compact, then π1(X)

is either a finite direct sum of cyclic groups or of cardinality 2ℵ0 .

We also give a theorem which can be interpreted as a type of small loop compactness.

Definition 7.0.0.56. Recall that in a group G the commutator length of g ∈ G, which we

will denote cl(g), is the smallest number n such that g can be written as a product of n

commutators. We write cl(g) = ∞ in case g is not in the commutator subgroup of G.

Theorem 7.0.0.57. If X is a Peano continuum with H1(X) of cardinality < 2ℵ0 then there

exists ε > 0 and N ∈ ω such that any loop of of diameter less than ε is of commutator

length ≤ N.

Proof. Suppose the conclusion fails. We may then pick a sequence of loops {ln}n∈ω such

that diam(ln) ≤ 2−n and the commutator length of [ln] ∈ π1(X ,xn) is greater than n. As X

is locally path connected, we may pass to a subsequence if necessary and assume that all

loops are based at the same point, say x. Letting Nn be the set of all loops at x which are of

commutator length at most n, we have that
⋃
[π1(X ,x),π1(X ,x)] =

⋃
n∈ω Nn. It is clear that

NnNm = Nm+n and the set of products of n commutators is easily analytic, so by Lemma

3.0.0.26 we get that H1(X) is of cardinality 2ℵ0 .
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If A is an abelian group let Tor(A) denote the subgroup of A consisting of the torsion

elements. Let Torfree(A) denote the quotient A/Tor(A). It is not always the case that

Tor(H1(X)) is a direct summand, by the following example adapted from [Fu].

Example 7.0.0.58. Let P be the set of primes and for each p ∈ P let Xp be a Peano con-

tinuum with fundamental group isomorphic to Z/p. Then X = ∏p∈P Xp has fundamental

group isomrophic to ∏p∈PZ/p, so H1(X)'∏p∈PZ/p as well.

Suppose a ∈ ∏p∈PZ/p is torsion. If the p coordinate of a is nonzero then p divides

the order of a, so in particular a must have finite support. Conversely any finite sup-

ported element is torsion, so Tor(∏p∈PZ/p) =
⊕

p∈PZ/p. Now for a = (1,1,1, , . . .) ∈

∏p∈PZ/p we have that for any n ∈ ω there exists b ∈ ∏p∈PZ/p such that bn = a in

∏p∈PZ/p/
⊕

p∈PZ/p. This is seen by letting b(p) be such that b(p)n = 1 mod p for

all p that do not divide n and b(p) = 0 otherwise. In ∏p∈PZ/p there is no nontrivial ele-

ment which has all roots (for example a p-th root would not exist if the p-th coordinate is

not zero). Thus
⊕

p∈PZ/p cannot be a direct summand.

Theorem 7.0.0.59. If X is a path connected locally, path connected Polish space then

Torfree(H1(X)) is either of cardinality ≤ ℵ0 or 2ℵ0 . If in addition X is compact then

H1(X)/Tor(H1(X)) is a finite rank free abelian group or of cardinality 2ℵ0 .

Proof. It suffices to show that the kernel of the map φ : π1(X)→ H1(X)/Tor(H1(X)) is

analytic. Notice that l ∈
⋃

ker(φ) if and only if (∃n ∈ ω −{0})[ln ∈
⋃
[π1(X),π1(X)]].

Since
⋃
[π1(X),π1(X)] is analytic and each map l 7→ ln is continuous we have that ker(φ) is

a countable union of continuous preimages of analytic sets, and is therefore analytic.

In case Torfree(H1(X)) is countable, it is a finite rank free group and we get the splitting

of the short exact sequence of abelian groups

0→ Tor(H1(X))→ H1(X)→ Torfree(H1(X))→ 0

so that H1(X)' Tor(H1(X))⊕
⊕n

m=0Z.
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Remark 7.0.0.60. One can obtain the same dichotomies to the above theorem by consid-

ering Torm(H1(X)) (the subgroup of all elements whose order divides m ∈ ω) by arguing

similarly.

Recall that a torsion group is a p-group if the order of every element is divisible by p.

A basic fact about torsion abelian groups is the following (see, for example, Theorem 2.1

in [Fu]):

Theorem. Every abelian torsion group A may be decomposed into a direct sum of the

p-groups Ap ≤ A where Ap is the subgroup of elements whose order is divisible by p.

Theorem 7.0.0.61. Let X be a Peano continuum. If card(Torfree(H1(X))) < 2ℵ0 then

H1(X) is a direct sum of cyclic groups and Tor(H1(X)) is of bounded exponent.

Proof. Let P = {p0, p1, . . .} be the set of prime numbers. Notice that for each prime p

the p-subgroup H1(X)p ≤ H1(X) is such that [l] ∈ π1(X) maps to H1(X)p if and only if

(∃k ∈ ω)[lpk ∈
⋃
[π1(X),π1(X)]]. Then the kernels of each of the maps φp : π1(X) →

H1(X)/H1(X)p are analytic subgroups. Writing H1(X)' Tor(H1(X))⊕
⊕k

m=0Z we select

loops l0, . . . , lk such that [lk] generates the k-th copy ofZ in
⊕k

m=0Z. Then the map π1(X)→

H1(X)/
⊕k

m=0Z has kernel which is precisely 〈{[l0], . . . , [ln]}∪ [π1(X),π1(X)]〉, and so this

kernel is also analytic.

Now the kernels of the maps

π1(X)→ H1(X)/(
k⊕

m=0

Z⊕H1(X)p0⊕·· ·⊕H1(X)p j)

are all analytic, and their union is all of π1(X). Thus by Theorem 3.0.0.27 we have

that the ascending sequence eventually stabilizes. Then we have that H1(X) '
⊕k

m=0Z⊕

H1(X)p0 ⊕·· ·⊕H1(X)p j for some j ∈ ω . For a torsion abelian group A write Apq for the

subgroup of those elements whose order divides pq, where p is a prime. We similarly have
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that the kernels of the maps

π1(X)→ H1(X)/(
k⊕

m=0

Z⊕H1(X)pq
0
⊕H1(X)p1 · · ·⊕H1(X)p j)

are analytic for all q∈ω−{0}. The union of all these subgroups is the whole of π1(X),

so the sequence must stabilize. Proceeding similarly for p1, p2, etc., we get that Tor(H1(X))

is a finite direct sum of p-subgroups, each of bounded power. Thus Tor(H1(X)) is a torsion

group of bounded power, and so is a direct sum of cyclic groups by a theorem of Prüfer

(see [Fu] Theorem 11.2).

A theorem of Kulikov (see Theorem 12.2 of [Fu]) states that subgroups of direct sums

of cyclic groups are direct sums of cyclic groups. Thus if card(Torfree(H1(X))) < 2ℵ0

we see that H1(X) has no nontrivial divisible subgroup. Recall that an abelian group is

divisible if each element has all roots.

Since the divisible abelian groups are injective, each torsion-free abelian group A de-

composes as a direct sum A = Div(A)⊕Red(A) where Div(A) is the maximal divisible

group in A and R is a reduced subgroup (i.e. contains no nontrivial divisible subgroups.)

The reduced subgroup is not necessarily unique as a subgroup of A, but is unique up to

isomorphism as it is isomorphic to A/Div(A).

Theorem 7.0.0.62. If X is a Peano continuum then Red(Torfree(H1(X))) is either a free

abelian group of finite rank or of cardinality 2ℵ0 .

Proof. We need only show that the kernel K of the map π1(X)→ Red(Torfree(H1(X))) is

analytic. We have already seen that the kernel K1 of the map π1(X)→ Torfree(H1(X)) is

analytic. Now l is in
⋃

K if and only (∀n ∈ ω)(∃l1 ∈ Lx)[(l1)nl−1 ∈
⋃

K1]. Then K is an

analytic subgroup as a countable intersection of countinuous preimages of analytic subsets

of Lx.

From the example earlier where π1(X) ' ∏p∈PZ/p we have that reach element of
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Torfree(H1(X)) is divisible by the same explanation as given for (1,1, . . .). Thus Torfree(H1(X))

is a torsion-free divisible group, of cardinality 2ℵ0 by cardinality considerations. Thus

by considering Torfree(H1(X)) as a vector space over Q we may select a basis, so that

Torfree(H1(X)) '
⊕

2ℵ0 Q. In this case the reduced summand of Torfree(H1(X)) is triv-

ial, and by taking a product of X with a finite dimensional torus T n we easily get that

Torfree(H1(X × T n)) '
⊕

2ℵ0 Q⊕∏
n−1
i=0 Z. By taking the product of X with the infinite

torus T ∞ we get Torfree(H1(X × T n)) '
⊕

2ℵ0 Q⊕∏n∈ω Z, so all cases of the previous

theorem obtain.

Given an abelian group A there is a largest quotient of A with no infinitely divisible

elements. To see this, let S0 be the set of infinitely divisible elements in A. Let S1 be the

set of those elements in A which map under the quotient map A→ A/〈S0〉 to an infinitely

divisible element. In general let Sα+1 be the set of those elements which map to an infinitely

divisible element under the quotient map A 7→A/〈Sα〉 and Sβ =
⋃

α<β Sα for a limit ordinal.

It is clear that S0 ⊆ 〈S0〉 ⊆ S1 ⊆ 〈S1〉 ⊆ · · · . The subgroup B =
⋃

α<ω1
Sα =

⋃
α<ω1

〈Sα〉 is

evidently such that A/B has no infinitely divisible elements and any homomorphism to an

abelian group with no infinitely divisible elements must evidently contain B. Let InfFree(A)

denote this maximal quotient with no infinitely divisible elements.

For the next result we state Theorem 4.4 in [CC]:

Theorem. Let X be a topological space, let φ : π1(X ,x0)→ L a be a homomorphism to the

group L, U0 ⊇U1 ⊇ ·· · be a countable local basis for X at x0 and Gi be the image of the

natural map of π1(Ui,x0) into π1(X ,x0). If L is of cardinality < 2ℵ0 and abelian with no

infinitely divisible elements then φ(Gn) = 0 for some n ∈ ω .

Theorem 7.0.0.63. If X is a Peano continuum with card(InfFree(H1(X))) < 2ℵ0 then

InfFree(H1(X)) is a free abelian group of finite rank.

Proof. The homomorphism π1(X)→ InfFree(H1(X)) is, by the previously stated theorem,

such that given any point x ∈ X there is a neighborhood Ox such that any loop in Ox maps
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trivially under the map. This implies by Lemma 2.0.0.8 that the kernel is open, and so

InfFree(H1(X)) is a finitely generated abelian group with no torsion.

Theorem 7.0.0.64. If X is a Peano continuum then Hom(π1(X),Z/p) is either countable

or of cardinality 22ℵ0 and Hom(π1(X),Q) is either countable or of cardinality 22ℵ0 .

Proof. Notice that the set {lp : l ∈ Lx} is an analytic set in Lx as the continuous image

of Lx. The subgroup 〈[{lp : l ∈ Lx}]∪ [π1(X),π1(X)]〉 is analytic, being generated by two

analytic sets. Any homomorphism π1(X)→ Z/p must factor through a homomorphism

π1(X)/〈[{lp : l ∈ Lx}]∪ [π1(X),π1(X)]〉 → Z/p. Thus the homomorphisms π1(X)→ Z/p

are in correspondence with the homomorphisms π1(X)/〈[{lp : l ∈ Lx}]∪ [π1(X),π1(X)]〉→

Z/p. The group π1(X)/〈[{lp : l ∈ Lx}]∪ [π1(X),π1(X)]〉 is a vector space over Z/p, so we

may pick a basis and write π1(X)/〈[{lp : l ∈ Lx}]∪ [π1(X),π1(X)]〉 '
⊕

T Z/p. Now by

Theorem 3.0.0.24 we know T is either finite or of cardinality 2ℵ0 . In case T is finite, there

are finitely many homomorphisms from
⊕

T Z/p to Z/p, and in case T is of cardinality

2ℵ0 there are 22ℵ0 many.

For the claim regarding Q we notice that any homomorphism π1(X)→ Q must factor

through Torfree(H1(X)). We have seen that Torfree(H1(X)) is either a finite rank free

group or of cardinality 2ℵ0 . In case Torfree(H1(X)) is a finite rank free group we have

Hom(π1(X),Q) countable. Suppose Torfree(H1(X)) has cardinality 2ℵ0 . Recall that the

rank of an abelian group A is the rank of the largest free abelian group in A, and satisfies the

inequality card(A) ≤ rank(A)ℵ0. Thus Torfree(H1(X)) has a free abelian subgroup F of

rank 2ℵ0 . There are 22ℵ0 many homomorphisms from F toQ, and sinceQ is an injective Z-

module, each of these homomorphisms extends to all of Torfree(H1(X)). This establishes

22ℵ0 -many distinct homomorphisms from Torfree(H1(X)) to Q, and there cannot be more

than 22ℵ0 , so we are done.

We introduce a notion of strong abelianization:

Definition 7.0.0.65. If X is a path connected metrizable space, define H1(X) to be the
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quotient π1(X)/[π1(X),π1(X)] where G is defined to be the smallest closed subgroup con-

taining G≤ π1(X).

The strong abelianization H1(X) corresponds more with our intuition of abelianization

for the fundamental group of a space and we shall see that it is easier to understand. We

establish some functorial properties.

Theorem 7.0.0.66. Suppose that Xn is a path connected metrizable space for each n ∈ ω .

Then H1(∏n Xn)'∏n H1(X).

Proof. For each n ∈ ω fix a point xn ∈ Xn and assume without loss of generality that

diam(Xn) ≤ 2−n. We recall that by lemma 2.0.0.18 the loop space L{xn}n∈ω
is homeomor-

phic to the space ∏n∈ω Lxn and so can be metrized with the metric inherited by the product

metric. Let pn : Lx→ Lxn denote projection to the n-th coordinate.

Supposing l, l′ ∈ Lx we have that the loop l ∗ l′ ∗ l−1 ∗ (l′)−1 projects under pn to pn(l)∗

pn(l′)∗ pn(l)−1 ∗ pn(l′)−1. Thus by taking products we see that the commutator subgroup

[π1(X),π1(X)] is naturally a subgroup of ∏n[π1(Xn),π1(Xn)]. For each n ∈ ω the map

ιnLxn → Lx which takes a loop l ∈ Lxn to the loop l′ ∈ Lx such that pn(l′(s)) = l(s) and

pm(l′(s)) = xm for m 6= n demonstrates the inclusion
⊕

n[π1(Xn),π1(Xn)]≤ [π1(X),π1(X)].

For each n we have that the continuous preimage p−1
n∗ ([π1(Xn),π1(Xn)])=∏m<n π1(Xm)×

[π1(Xn),π1(Xn)]×∏m>n π1(Xm) is closed and contains ∏n[π1(Xn),π1(Xn)]. Hence the

intersection of such groups, ∏n [π1(Xn),π1(Xn)], contains the subgroup [π1(X),π1(X)].

On the other hand we have
⊕

n[π1(Xn),π1(Xn)] ≤ [π1(X),π1(X)]. Since the set of loops⋃⊕
n[π1(Xn),π1(Xn)] is dense in the set of loops

⋃
∏n[π1(Xn),π1(Xn)] we see that

⊕
n[π1(Xn),π1(Xn)]=

∏n[π1(Xn),π1(Xn)]. The equality ∏n[π1(Xn),π1(Xn)] = ∏n [π1(Xn),π1(Xn)] is similarly

clear and so we see that ∏n [π1(Xn),π1(Xn)] = [π1(X),π1(X)] from which we get the iso-

morphism H1(∏n Xn)'∏n H1(X).

Example 7.0.0.67. The circle S1 is a semilocally simply connected metric space whose

fundamental group is isomorphic to Z, and so we can compute the strong abelianization of
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the infinite torus by the above theorem: H1(T ∞)'∏n∈ω H1(S1)'∏n∈ω Z.

The standard abelianization of abstract groups does not behave in nearly so nice a man-

ner. If G = ∏n∈ω Gn is a product of groups, then the abelianization of G needn’t be the

product of abelianizations of the Gn, since an element of [G,G] needs to have finite com-

mutator length and elements of ∏n[Gn,Gn] can have infinite commutator length.

Definition 7.0.0.68. Let Xn be a sequence of metrizable spaces with distinguished points

xn. Using a cutoff metric if necessary we endow each space with metric dn such that

diam(Xn) ≤ 2−n. Define the shrinking wedge of spaces
∨s

n∈ω(Xn,xn) to be the set which

identifies the points xn with topology given by the metric d(y,z)=


dn(y,z) if y,z ∈ Xn

dn(y,xn)+dm(z,xm) if y ∈ Xn−{xn},z ∈ Xm−{xm} with m 6= n
.

It is not difficult to see that the topology does not depend on the metrics chosen and is home-

omorphic under any reordering of the index set. If we let all but finitely many of the spaces

Xn be a single point then we obtain the standard (finitary) wedge of spaces.

Theorem 7.0.0.69. If {(Xn,xn)}n∈ω is a collection of path connected, metrizable pointed

spaces then H1(
∨s

n∈ω(Xn,xn))'∏n∈ω H1(Xn).

Proof. Let f :
∨s

n∈ω(Xn,xn)→∏n∈ω Xn be the obvious map. That f∗ is onto follows from

the fact that dn ≤ 2−n. As f is continuous we know ( f∗)−1([π1(∏n∈ω Xn),π1(∏n∈ω Xn)])

is a closed subgroup of π1(
∨s

n∈ω(Xn,xn)) and must contain the commutator subgroup. For

each m let rm :
∨s

n∈ω(Xn,xn)→ (Xm,xm) be the retraction which takes all subspaces Xn to

the point xm whenever n 6= m.

Suppose l ∈ Lx. For each m ∈ ω let Im be the set of those maximal closed intervals

[a,b] ⊆ [0,1] with nonempty interior such that l|[a,b] is a loop in Xm with a = inf{s ∈

[a,b] : l(s) 6= xm} and b = sup{s ∈ [a,b] : l(s) 6= xm}. Write Im = {Im,0, Im,1, Im,2,} so that

the length of Im,k is at least as great as the length of Im,k+1. Then each Im consists of dis-

joint closed intervals and the collection I =
⋃

m Im consists of nonoverlapping intervals,

which has a natural ordering by comparing elements in the interior of I and I′ under the nat-
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ural ordering of [0,1]. The loop l is equivalent over [π1(
∨s

n∈ω(Xn,xn)),π1(
∨s

n∈ω(Xn,xn))]

to the loop l′ which has inf(I0,0) = 0, and sup(I0,0) equal to the length of I0,0 and all the

other relative positions of the elements of I unchanged. This loop l′ is in turn equiva-

lent over [π1(
∨s

n∈ω(Xn,xn)),π1(
∨s

n∈ω(Xn,xn))] to the loop l′′ which has I0,0 in the same

position as l′ has and I0,1 immediately to the right of I0,0 (now I0,0 and I0,1 are no longer

disjoint). Continuing in this manner we get loops l′′′, etc which are equivalent to l over

[π1(
∨s

n∈ω(Xn,xn)),π1(
∨s

n∈ω(Xn,xn))] with more and more of the elements of I0 adja-

cent to each other. Taking the limit of these loops we see that l is equivalent to a loop

l0 over [π1(
∨s

n∈ω(Xn,xn)),π1(
∨s

n∈ω(Xn,xn))] such that l0|[0,s0] is a loop lying in X0 with

l0(s) /∈ X0−{x0} for all s ∈ [s0,1]. Now we perform the same process to the loop l0|[s0,1]

to obtain a loop l1 which is equivalent over [π1(
∨s

n∈ω(Xn,xn)),π1(
∨s

n∈ω(Xn,xn))] to l such

that l0|[0,s0] = l1|[0,s0] and l1|[s0,s1] is a loop in X1 and l1(s) /∈ X1−{x1} for all s > s1.

Continue in this process to get loops l2, l3, · · · such that the analogous relations hold. Since

the lengths of the elements of I must add to a number at most 1, we may take a limit again

and see that l is equivalent over [π1(
∨s

n∈ω(Xn,xn)),π1(
∨s

n∈ω(Xn,xn))] to a loop l̃ such that

l̃|[0,s0] is a loop in X0 and l̃(s) /∈ X0−{x0} for all s > s0, l̃|[s0,s1] is a loop in X1 such

that l̃(s) /∈ X1−{x1} for s /∈ [s0,s1], and in general l̃|[sn−1,sn] is a loop in Xn such that

l̃(s) /∈ Xn−{xn} for s /∈ [sn−1,sn].

Now consider a loop l ∈
⋃

f−1
∗ ([π1(∏n∈ω Xn),π1(∏n∈ω Xn)]) where without loss of

generality l is of the form l̃ as in the preceeding paragraph. We have p0 ◦ f ◦ l|[0,s0] =

r0 ◦ l|[0,s0] is a loop in [π1(X0),π1(X0)] by the proof of Theorem 7.0.0.66. Then l|[0,s0] is

a loop in [π1(X0),π1(X0)] by considering the inclusion map (X0,x0)→
∨s

n∈ω(Xn,xn). Then

l is equivalent over [π1(
∨s

n∈ω(Xn,xn)),π1(
∨s

n∈ω(Xn,xn))] to a loop l0 such that l|[s0,1] =

l0|[s0,1] and l(s) = x for all s ∈ [0,s0]. Continuing in this fashion and taking a limit we

see that l is equivalent over [π1(
∨s

n∈ω(Xn,xn)),π1(
∨s

n∈ω(Xn,xn))] to the constant loop at x.

This gives us the reverse containment.

Example 7.0.0.70. Recall that the Hawaiian Earring X is a shrinking wedge of countably
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many circles. Thus H1(X) '∏n∈ω Z. This computation concides with the standard short

proof that H1(X) is uncountable which is given by mapping onto the fundamental group of

the infinite torus. The first homology was computed by K. Eda in [E1] to be isomorphic to

∏n∈ω Z⊕
⊕

2ℵ0 Q⊕
⊕

p Ap where Ap is the p-dic completion of the free abelian group of

rank 2ℵ0 .

We note that first homology does not behave this nicely even under a wedge of two

spaces, by observing the following theorem of Eda (see [E2])

Theorem. Letting (X ,x) and (Y,y) be arbitrary pointed spaces we have that H1((X ,x)∨

(Y,y)) ' H1(X)⊕H1(Y )⊕H1(C(X ,x)∨C(Y,y)) where C(W,w) denotes the cone of the

space W with distinguished point (w,0) in the cone.

The homology group H1(C(X ,x)∨C(Y,y)) is often nontrivial.
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Chapter 8

Complexity of Subgroups

We have seen that in case X is path connected, locally path connected and semi-locally

simply connected, every subgroup of π1(X) is clopen (Proposition ). If one considers

the famous Griffiths Space [Gri] (a wedge of two Hawaiian earrings with an independent

cone over each of the two Hawaiian earrings) then it is straightforward to check that each

loop based at the wedge point is a limit of nulhomotopic loops. Thus the only closed

subgroup of the fundamental group is the entire fundamental group. In particular, there

is no subgroup which is closed and not open. It seems natural to ask whether restrictions

exist on subgroups of arbirtrary path connected Polish spaces. In other words, does there

exist a path connected Polish space on which there exist subgroups of, say, arbitrarily high

Borel complexity? Is there a space in which one can find a a subgroup which is analytic

and not Borel? In case both questions have a positive answer, is there a space in which both

phenomena occur, and can we find such a space which is a commonly occuring example in

the literature?

We show that the fundamental group of the Hawaiiam earring exhibits subgroups of an

arbitrarily high Borel complexity, as well as a subgroup which is analytic and not Borel.

We first explore subgroups of a particular space: a countably infinite product of projective

planes. Let P denote the projective plane, which is a compact manifold with fundamental

group of order 2. Let dP be a metric on P, x ∈ P, l ∈ Lx be an essential loop and let 0

denote the trivial loop at x. We have a continuous map f : Lx→ {0,1} defined by [0] 7→ 0

and [l] 7→ 1, where the codomain is given the discrete topology. Considering {0,1} as an

additive group, we see that f essentially defines an isomorphism from the fundamental

group to {0,1}.

Endowing the product X = ∏ω P with the Tychonov topology we get a compact space.
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We endow X with the distinguished point x consisting of x in each entry. For each n ∈ ω

we have the continuous projection map pn : X → P which projects the nth coordinate. The

map f above gives a continuous map φ : Lx→{0,1}ω satisfying f ◦ pn ◦ l′ = φ(l′)(n). We

have another map ψ : {0,1}ω → Lx given by (pn ◦ψ(α))(s) =


l(s) if α(n) = 1

x if α(n) = 0
. The

map ψ ◦φ : Lx→ Lx gives a topological retraction from Lx to a selection of representatives

of elements of π1(X ,x). The map φ ◦ψ : {0,1}ω → {0,1}ω is identity. Thus we have an

isomorphism φ : π1(X ,x)→ {0,1}ω induced by a continuous map on the loop space Lx.

It shall sometimes be convenient to consider {0,1}ω as isomorphic to the group given by

the powerset on the natural numbers P(ω) with the group operation given by symmetric

difference: A∆B = (A−B)∪ (B−A). The isomorphism is given by mapping a sequence to

its support: α 7→ supp(α).

The group {0,1} is a Polish group (a topological group with Polish topology) with

compatible metric given by the Kronecker delta δ . The Polish group {0,1}ω has as com-

patible metric d(α,β ) = ∑n∈ω

δ (α(n),β (n))
(n+1)n+1 . One can define pointclass subgroups of a Polish

group G in a completely analogous way: H ≤ G is of pointclass P if and only if H is of

pointclass P as a subset of G.

Lemma 8.0.0.71. If P is a Polish pointclass and closed under continuous preimages be-

tween Polish spaces, then G≤ π1(X ,x) is P if and only if φ(G) is P .

Proof. If G≤ π1(X ,x) is P then
⋃

G⊆Lx is P , so ψ−1(
⋃

G)= φ(G) is P . If φ ≤{0,1}ω

is P then φ−1(φ(G)) =
⋃

G is P , so G≤ π1(X ,x) is P .

One of the simplest ways of constructing a subgroup of {0,1}ω from another subgroup

is by selecting a group complement, as defined below.

Definition 8.0.0.72. If G ≤ {0,1}ω then H ≤ {0,1}ω is a group complement for G if

H⊕G = {0,1}ω . In other words, H ∩G = 0 and {0,1}ω is generated by the set H ∪G.
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We say H is a sub-group complement for G if H ∩G = 0. Clearly H is a (sub-)group

complement for G if and only if G is a (sub)-group complement for H.

Group complements need not be unique, but the following lemma implies that they

always exist.

Lemma 8.0.0.73. If H is a sub-group complement of G then there exists a complement H ′

of G containing H.

Proof. Let H be the collection of all sub-group complements of G containing H. It is

clear that H is a poset under set inclusion, H ∈H 6= /0 and each chain in H has an upper

bound (the union over the chain). Let H ′ be a maximal element of H by Zorn’s Lemma. If

α ∈ {0,1}ω is not in the subgroup H ′+G then we consider the subgroup H ′′= {α,0}+H ′.

If β ∈ H ′′ ∩G with β 6= 0 then β = α + h for some h ∈ H ′, and β = α = h ∈ G as well.

Then α = β +h ∈ G+H ′, a contradiction.

Alternatively we know that H and G are Z/2 submodules of {0,1}ω so we may pick

bases B0 and B1 for H and G respectively. Extend the linearly independent set B0∪B1 to a

basis B of {0,1}ω . Letting H ′ be the linear span of B−B1 one can check that H ′ is a group

complement for G and clearly contains H.

In particular since 0 is a sub-group complement for any subgroup of {0,1}ω we see

that each subgroup has a group complement. The fact that the proof of the above lemma

used nonconstructive techniques ought to alert the reader that group complements might no

satisfy a nice topological descripition (e.g. have BP.)

We give a few trivial observations:

Observation 8.0.0.74. G≤{0,1}ω is open iff there exists N ∈ω such that 0N×{0,1}∞
n=N+1⊆

G iff G is of finite index and of a nice pointclass P with BP iff G is of countable index and

of a nice pointclass P with BP.

Thus the group complement of an open subgroup is finite, and therefore closed. One

might ask whether a group complement of a closed subgroup need be closed.
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Example 8.0.0.75. Let α = (1,1,1,1, . . .) and consider the finite closed subgroup G =

{0,α}. Let H be the subgroup of {0,1}ω of sequences which are eventually zero. Then H

is a sub-group complement of G and is therefore contained in a group complement H ′ for

G. Then H ′ cannot have BP since it is of finite index and not open (since H ′ is clearly not

closed). Thus even a group complement of a finite subgroup might be very complicated.

Each subgroup ∏
m−1
n=0 {0,1}×0×∏

∞
n=m+1{0,1} is a closed group complement to G.

Example 8.0.0.76. Letting H be the subgroup as in the previous example, we have by the

above observation that any group complement of H cannot have BP (since it would have

countable index and not be open). Thus there exists an Fσ subgroup which does not have a

group complement which has BP.

The metric d we gave to {0,1}ω satisfies the property that for all α,β ,γ ∈ {0,1}ω ,

d(α,β ) = d(α,γ) implies β = γ . Assuming G≤ {0,1}ω is closed, let r : {0,1}ω → G be

the map which takes α to the closest point in G (which is uniquely defined by the previous

sentence). We have the following

Proposition 8.0.0.77. The map r : {0,1}ω →G is a continuous homomorphic retract from

{0,1}ω to the subgroup G. Moreover the kernel of r is a closed group complement to G of

form ∏
∞
n=0 Hn ≤ {0,1}ω with Hn either 0 or {0,1}. In particular, every closed subgroup of

{0,1}ω has a closed group complement.

Proof. Observe first that r is a continuous map. If {αn}n∈ω is a sequence which converges

to α , suppose for contradiction that r(αn) does not converge to r(α). Picking a subse-

quence of {αn}n∈ω we may assume without loss of generality that d(r(αn),r(α)) > ε for

all n. Since G is a compact metric space we may again pass to a subsequence if neces-

sary so that we can assume that r(αn)) converges to β ∈ G. Now d(r(α),α) = d(G,α) =

limn→∞ d(G,αn) = limn→∞ d(r(αn),αn) = d(β ,α), so that in fact r(α) = β , a contradic-

tion.
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We show that r is a homomorphism and we will be done, since ker(r) will be a closed

group complement. We do this by showing that r′ : α 7→ α + r(α) is a homomorphism,

which is clearly sufficient. Consider the cosets {α +G}α∈{0,1}ω . If k = mind(α +G,β +

G) then there exist α1 ∈ α +G and β1 ∈ β +G such that the minimum distance between

the compact sets α +G and β +G is d(α1,β1) = k. The regular action of {0,1}ω on

itself is by isometries. Thus for any γ ∈ G we have that d(α1 + γ,β1 + γ) = d(α1,β1)

and d(α + β ,β ) = d(0,α). Then the minimum distance between α + G and β + G is

attained between any point of α +G and a particular point of β +G, and vice versa. Then

r′(α) = α + r(α) is the closest point on α +G to the point 0. Thus the image of r′ is

{α ∈ {0,1}ω : d(α,G) = d(α,0)}. In other words, α ∈ Im(r′) iff

(∀γ ∈ G−0)[α(min(supp(γ))) = 0]

Thus the image of r′ is a subgroup of form ∏
∞
n=0 Hn≤{0,1}ω with Hn either 0 or {0,1}.

We noticed that r′(α) is the closest member of α +G to 0. For any α,β ∈ {0,1}ω we have

that r′(α)+r′(β ) = α +r(α)+β +r(β )∈ α +β +G and r′(α)+r′(β )∈ Im(r′) as Im(r′)

was shown to be a subgroup. Then r′(α)+ r′(β ) is the closest element of α +β +G to 0,

so r′(α +β ) = r′(α)+ r′(β ). Thus r′ is a homomorphism and so is r. It is easy to see that

Im(r′) = ker(r), so we have our description of ker(r).

Let f : HE→ T ∞ be the standard mapping from the Hawaiian earring determined by

mapping the n-th circle to the circle in T ∞ at the n-th coordinate. This is a continuous, onto

mapping. Let g : T ∞→ ∏n∈ω P be the continuous map which takes the circle in the n-th

coordinate to the n-th copy of P in such a way that the generator of the fundamental group

of the circle maps to the generator of the fundamental group of P.

By viewing Z as a discrete topological group, ∏n∈ω Z inherits a Polish group topology.

The following lemma together with lemma 8.0.0.71 ties the pointclasses of subgroups

of the infinite torus, product of projective planes, and the Hawaiian earring in a natural way.
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Lemma 8.0.0.78. Suppose P is a Polish pointclass which is closed under continuous

preimages. A subgroup G ≤ ∏n∈ω Z is P if and only if the corresponding subgroup in

π1(T ∞) is P . A subgroup G≤ π1(T ∞) is P if and only if f−1
∗ (G) is P .

Proof. The claim in the second sentence has the same proof as lemma 8.0.0.71. If G ≤

π1(T ∞) is P then f−1
∗ (G) is P by Proposition 2.0.0.19 part (1). Suppose on the other

hand that f−1
∗ (G) is P . Let x ∈ HE be the wedge point and let y ∈ T ∞ be some point.

Let h : Ly → Lx be given by mapping the loop l ∈ Ly to the loop l′ ∈ Lx given by letting

l′|[1−2−n,1−2−n−1] trace the loop pn ◦ l on the n-th circle of the Hawaiian earring. This

map is easily checked to be continuous.

We prove that h−1(
⋃

f−1
∗ (G)) =

⋃
G, which will conclude the proof of the lemma. If

l ∈
⋃

G then it is easily seen that f ◦ h(l) is homotopic to l, so h(l) ∈
⋃

f−1
∗ (G), so l ∈

h−1(
⋃

f−1
∗ (G)). Given l ∈ h−1(

⋃
f−1
∗ (G)) we have h(l) ∈

⋃
f−1
∗ (G), so [h(l)] ∈ f−1

∗ (G),

so [ f ◦h(l)] ∈ G and since f ◦h(l) is homomotopic to l we get l ∈ G.

We recall the Borel pointclass hierarchy. If Z is a Polish space let Σ0
1(Z) denote the

collection of open subsets of X and Π0
1(Z) the collection of closed subsets. For each ordinal

γ < ω1 define the following:

1. Σ0
γ(Z) is the collection of countable unions of sets in

⋃
ε<γ Π0

ε(Z)

2. Π0
γ(Z) is the collection of countable intersections of sets in

⋃
ε<γ Σ0

ε(Z)

3. ∆0
γ(Z) = Π0

γ(Z)∩Σ0
γ(Z)

These pointclasses arrange neatly into an array scheme
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Σ0
1(Z) Σ0

2(Z) · · ·

∆0
1(Z) ∆0

2(Z) · · ·

Π0
1(Z) Π0

2(Z) · · ·

Each pointclass contains all pointclasses to the left, and if Z is an uncountable Polish

space the containments are strict. The class of Borel subsets of Z is easily checked to be⋃
γ<ω1

Σ0
γ , which is equal to

⋃
γ<ω1

Π0
γ . These pointclasses give a natural way of organizing

the Borel sets according to complexity. We shall say a subset W ⊆ Z is a true P set

provided it is a P set and is not in any of the pointclasses to the left of P . Each pointclass

is closed under continuous preimages.

The class Σ1
1(Z) is defined to be the class of all analytic subsets of Z, Π1

1(Z) is the class

of complements of analytic sets and ∆1
1(Z) = Σ1

1(Z)∩Π1
1(Z). As all Borel sets are analytic

we know the class of Borel subsets of Z is contained in ∆1
1(Z), and a theorem of Suslin

states that in fact ∆1
1(Z) is precisely the class of Borel sets. Analogously a subset W ⊆ Z is

true analytic provided W is analytic and not Borel.

We have the following theorem of Farah and Solecki (Theorem 2.1 in [FS]):

Theorem. If Γ is an uncountable Polish group then for each ω1 > γ ≥ 2 there exists a

subgroup which is true Σ0
γ in Γ and for each ω1 > γ 6= 2 there is a subgroup which is true

Π0
γ as a subspace of Γ.

As a consequence of Theorem 1.2 in [DL] we also get the following:

Theorem. If Γ is an uncountable abelian Polish group then Γ has a subgroup which is true

analytic.
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These results seem to lend a robustness to the theory of Borel and analytic subgroups

of Polish groups. As a consequence, a comparable robustness holds for subgroups of the

Hawaiian Earring fundamental group, which is summarized in the following:

Theorem 8.0.0.79. The fundamental group π1(HE) has subgroups of the following types:

1. true Σ0
γ for ω1 > γ ≥ 2

2. true Π0
γ for each ω1 > γ 6= 2

3. true analytic

Also, π1(HE) has a normal subgroup N such that π1(HE)/N is a countably infinite

group of exponent 2 (which is not of a nice pointclass with BP since π1(HE)/N is not

finitely generated). Finally, π1(HE) has 22ℵ0 -many subgroups of index 2 which are not of

a nice pointclass with BP.

Proof. The items (1) and (2) follow directly from the stated theorem of Farah and Solecki,

for if G≤∏n∈ω Z is true P , then considering G as a subgroup of π1(T ∞) we have that G

is true P , and so f−1
∗ (G) must also be true P . Item (3) follows in the same way, from

the paper of [DL]. For the subgroup N we let N be the kernel of the composition of the

surjective maps f∗ : π1(HE)→ π1(T ∞), g∗ : π1(T ∞)→ π1(∏n∈ω P), φ : π1(∏n∈ω P)→

{0,1}ω and {0,1}ω → {0,1}ω/H ′ where H ′ is any group complement of the subgroup

H ≤ {0,1}ω where H consists of those sequences which are eventually 0.

The last claim was essentially proved in [CS]. Let π1(HE)→ {0,1}ω be the onto

homomorphism described above. Each nonprinciple ultrafilter on {0,1}ω gives a distinct

homomorphism to the group of order 2 by mapping a sequence to 1 if and only if it is the

characteristic function of an element in the ultrafilter. These maps take arbitrarily small

loops to the nontrivial element 1 ∈ {0,1}. The kernel of the composition of the two maps

is therefore not open, and yet it is of index 2 in π1(HE). This kernel cannot be of a nice

pointclass with BP by Theorem 3.0.0.24. As there are 22ℵ0 -many ultrafilters on ω and each
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produces a distinct homomorphism to {0,1} we get the appropriate number of subgroups

of index 2 which are not of a nice pointclass with BP.
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Chapter 9

Noncommutatively Slender Groups

Certain groups that allow for infinite multiplication exhibit a curious behavior, namely

that maps to particular well understood groups are always boring. This phenomenon was

first noticed by Specker in [Spe], who proved that for each integer valued homomorphism

from the countable product of integers φ : ∏ω Z→ Z there exists a natural number N such

that the projection pN : ∏ω Z→∏
N
n=0Z satisfies φ = φ ◦ pN . The phenomenon was studied

by Łos and lead him to define a slender group to be a torsion-free abelian group A for which

any homomorphism φ : ∏ω Z→ A has an N ∈ ω for which φ = φ ◦ pN . These groups have

been extensively studied and also classified via subgroups (see for example [Fu] volume 2,

Sections 94, 95).

The term noncommutatively slender (we will use the contraction n-slender to be short)

was introduced by K. Eda. The first examples of such groups were free groups as demon-

strated by Higman (in [H]) 40 years before Eda defined such groups. Eda’s idea is essen-

tially the same as with the abelian case, with the domain being replaced by the fundamental

group of the Hawaiian earring. He showed that n-slender groups are necessarily torsion-

free and all abelian n-slender groups are indeed slender in the abelian sense. Also, the

class of n-slender groups is closed under direct sums and free products (see [E3] for the

definition and such results).

In contrast to slender groups, no nice characterization for n-slender groups via sub-

groups is known. Eda has noted that n-slenderness is an open question even for finitely

presented groups [E’]. This note gives a broad class of finitely presented groups which are

n-slender, and shows that most finitely generated groups are n-slender in the few-relator

sense (as used in [AO]). The theorem is the following:

Theorem 9.0.0.80. If G is a a torsion-free word hyperbolic group then G is n-slender.
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The hypothesis torsion-free cannot be dropped, as any group with torsion fails to be

n-slender ([CS] provides some interesting examples of homomorphisms to torsion). The

proof of the theorem uses an interesting theorem about torsion-free hyperbolic groups and

a modification of a theorem in [H]. In section 1 some background definitions and results

are provided. We define the universal monotone condition (u.m.), which is that there exists

a length function on the group such that for any real number r there exists a power Kr such

that gKr is of length at least r for any g 6= 1. We show that this condition is sufficient to

imply that a group is n-slender. In section 2 we prove torsion-free hyperbolic groups are

u.m. which concludes the proof of Theorem 9.0.0.80.

In section 3 we prove the following theorem, which generalizes the fact that n-slender

groups are closed under direct sums and direct products:

Theorem 9.0.0.81. The class of n-slender groups is closed under taking graph products.

In section 4 we motivate the question of whether Thompson’s group F is n-slender. We

also show that the natural length function defined by the characterization of F as a diagram

group is not u.m. Finally in section 5 we give a family of examples to show that even very

uncompicated n-slender groups can fail to be u.m.

9.1 The Hawaiian earring group and uniformly monotone length length functions

In this section we give a characterization of the Hawaiian earring fundamental group,

define n-slenderness, and prove a modification of Higman’s original theorem of the n-

slenderness of free groups.

The Hawaiian earring is a shrinking wedge of countably-infinitely-many circles. More

formally, given a point p ∈ R2 and r ∈ (0,∞) we let C(p,r) denote the circle centered at p

of radius r and define the Hawaiian earring to be the subspace HE =
⋃

n∈ω C((0, 1
n+2),

1
n+2)

of R2. Naively the fundamental group of HE might seem to be a free group of countably

infinite rank (one free generator for each circle in the union defining HE), but the funda-
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mental group is in fact uncountable. We give a combinatorial characterization of this group

using countable words.

Let {a±1
n }∞

n=0 be a countably infinite set with formal inverses, the elements of which we

call letters. A map W : W →{a±1
n }∞

n=0 from a countable totally ordered set W is a word if

for each n ∈ ω the set W−1({a±1
n }) is finite. Two words U and V are isomorphic, denoted

U ' V , if there exists an order isomorphism of the domains of each word f : U → V such

that U(t) = V ( f (t)). We identify isomorphic words. The class of isomorphic words is a

set of cardinality continuum which we denote W . For each N ∈ ω there is a projection

map pN to the set of finite words given by letting pN(W ) =W |{t ∈W : W (t) ∈ {a±1
n }N

n=0}.

For words U,V ∈ W we let U ∼ V if for each N ∈ ω we have that pN(U) = pN(V ) in

the free group F({a0, . . . ,aN}). This is an equivalence relation. For each word U there

is an inverse word U−1 whose domain is the totally ordered set U under the reverse order

and U−1(t) = U(t)−1. Given two words U,V ∈ W there is a natural way to form the

concatenation UV . In particular, one takes the domain of UV to be the disjoint union of

U with V , with order extending that of U and V and placing all elements of U before

those of V , and UV (t) =


U(t) if t ∈U

V (t) if t ∈V
. The set W /∼ now has a group structure with

binary operation given by [U ][V ] = [UV ], inverses defined by [U ]−1 = [U−1] and the trivial

element given by the equivalence class of the empty word.

Let HEG denote the group W / ∼. The free group F({a0, . . . ,aN}), which we shall

denote HEGN , may be though of as a subgroup in HEG in the obvious way. More-

over, the word map pN defines a group retraction HEG→ HEGN which we denote pN

by abuse of notation. There is another word map pN given by pN(W ) =W |{t ∈W : W (t) ∈

{a±1
n }∞

n=N+1} which gives a group retraction from HEG to the subgroup HEGN consist-

ing of those equivalence classes which contain words involving no letters in {a±1
n }N

n=0.

We again abuse notation by calling this retraction pN . There is a canonical isomorphism

HEG ' HEGN ∗HEGN obtained by considering a word W as a concatenation of finitely
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many words in the letters {a±1
n }N

n=0 and finitely many words in the letters {a±1
n }∞

n=N+1.

Definition 9.1.0.82. A group G is noncommutatively slender (or n-slender) if for each

homomorphism φ : HEG→ G there exists N ∈ ω such that φ = φ ◦ pN .

In other words, G is n-slender if for each homomorphism φ : HEG→ G there exists N

so that the restriction of φ to HEGN is the trivial homomorphism.

For our purposes a length function on a group G is a map l : G→ R such that the

following hold:

1. l(g)≥ 0 with l(1) = 0

2. l(g) = l(g−1)

3. l(gh)≤ l(g)+ l(h)

As an example, if G has a generating set X one may define a length function lX on G

by letting lX(g) be the distance from 1 to g in the Cayley graph Γ(G,X). In other words,

lX(g) is the length of a minimal word in the generators X that is needed to represent the

group element g in G. We say that a length function l is universally monotone if for each

r ∈ R there exists Kr ∈ ω such that for each g ∈ G−{1} we have that l(gKr) ≥ l(g)+ r.

In particular, for a universally monotone length function we have l(g) = 0 if and only if

g = 1. We say a group is universally monotone (or u.m.) if it has a length function which

is universally monotone.

The following is the critical theorem, the ideas of which are in [H]:

Theorem 9.1.0.83. If the group G is u.m. then G is n-slender.

Proof. Let l be a universally monotone length function on G. Let φ : HEG→ G be a

homomorphism and suppose for contradiction that the restriction of φ to each HEGN is

nontrivial. Select a sequence of words {Wm}∞
m=0 such that Wm uses only letters in {a±1

n }∞
n=m

and φ([Wm]) 6= 1. Let rm = l(φ([Wm])) and km ∈ ω be such that g ∈ G− {1} implies

l(gkm)≥ l(g)+ rm +1.

59



Consider the word U = U0 defined by the equations Up−1 = WpUkm
p . In other words,

one can think of U as being of form U =W1(W2(W3(· · ·)k3)k2)k1 . Notice that if φ([Up]) 6= 1

we have

l(φ([Up]
kp)) = l((φ([Up]))

kp)≥ l(φ([Up]))+ rp +1 = l(φ([Up]))+ l(φ([Wp]))+1

from which we have

l(φ([Up−1])) = l(φ([Wp])φ([Up]
kp))≥ l(φ([Up]

kp))− l(φ([Wp]))≥ l(φ([Up]))+1

Thus φ([Up−1]) 6= 1 and the argument may be repeated. By induction we get that

l(φ([Up−p′])) ≥ l(φ([Up]))+ p′ for p′ ≤ p. Thus if p > l(φ([U0])) we have φ([Up]) = 1,

which gives 1 = φ([Up]) = φ([Wp+1])(φ([Up+1]))
kp+1 = φ([Wp+1]), a contradiction.

9.2 Hyperbolic Groups

We review some basic concepts related to hyperbolic groups and prove that every

torsion-free word hyperbolic group is u.m.

Recall that a metric space (Z,d) is hyperbolic if there exists a δ such that for all

p,x,y,z ∈ Z we have

(x,z)p ≥min{(x,y)p,(y,z)p}−δ

where (x,y)p = 1
2(d(x, p)+ d(y, p)− d(x,y)) is the Gromov product. A geodesic metric

space (Z,d) is hyperbolic if and only if there exists a δ such that for all points x,y,z ∈ S,

and geodesics [x,y] and [x,z], the points v∈ [x,y] and w∈ [x,z] satisfying d(x,v) = d(x,w) =

(y,z)x also satisfy d(v,w)≤ 2δ . The δ used in the alternative criterion for geodesic spaces

is not necessarily the same as in the original definition. Bounded spaces and the classical

hyperbolic metric spaces Hn are examples of hyperbolic spaces.

A finitely generated group G is word hyperbolic if for some finite generating set X the

Cayley graph Γ(G,X) is a hyperbolic space under the combinatorial path metric (under
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which Γ(G,X) is a geodesic space). It turns out that for a hyperbolic group G it is the case

that for any finite generating set X the Cayley graph Γ(G,X) is hyperbolic.

Now we fix some notation. Let G be a group with generating set X . Any word W in

the letters X±1 gives an element of the group G by performing the necessary multiplication

of the letters. Write W =G g if the word W represents the element g ∈ G and W =G U

if the words W and U represent the same element in G. Let ‖W‖ denote the length of a

word W in the letters X±1. Let lX be the length function induced by X on G, that is lX(g) =

min{‖W‖ : W =G g}, and by abuse of notation let lX(W ) = lX(g) where W =G g. Obviously

lX(W ) ≤ ‖W‖. Given words V,W in the letters X±1 we say that V is W -periodic if V is a

subword of a power of W±1. We say a word W in X±1 is cyclically minimal if the equality

W =VUV−1 in G implies that lX(W )≤ ‖U‖. For R ∈ R let D(R) = {g ∈ G : lX(g)≤ R}.

We use the following two results which appear as Lemmas 21 and 26 respectively in

[O]:

Lemma 9.2.0.84. Let G be a word hyperbolic group and δ be a constant such that for all

p,x,y,z ∈ Z we have (x,z)p ≥ min{(x,y)p,(y,z)p}−δ . Let K ≥ 14δ and K1 > 12(K +δ )

and suppose that a geodesic n-gon [x1, . . . ,xn] satisfies the conditions d(xi−1,xi) > K1 for

i = 2, . . . ,n and (xi−2,xi)xi−1 < K for i = 3, . . . ,n (if n ≥ 3). Then the polygonal line p =

[x1,x2]∪ [x2,x3]∪ ·· ·∪ [xn−1,xn] is contained in a 2K-neighborhood of the side [x1,xn] and

the side [x1,xn] is contained in a 14δ -neighborhood of p.

Lemma 9.2.0.85. For every hyperbolic group G with finite generating set X and every θ >

0 there exists a number C such that for every W -periodic word V , where W is a cyclically

minimal word with ‖W‖>C it is true that lX(V )≥ (1−θ)‖V‖.

Recall the following classical facts:

Lemma 9.2.0.86. If G is word hyperbolic, generated by the finite set X , and g ∈ G is of

infinite order then the following two conditions hold:

1. There exists λ > 0 such that |n| ≤ λ lX(gn) for all n ∈ Z.
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2. There exists L≥ 0 such that each geodesic γ in Γ(G,X) between two elements in the

subgroup 〈g〉 is within the L-neighborhood of 〈g〉.

The unifom monotonicity of word hyperbolic groups follows immediately from the

following theorem, which together with Theorem 9.1.0.83 proves Theorem 9.0.0.80.

Theorem 9.2.0.87. If G is a torsion-free word hyperbolic group and X a finite generating

set there exists a constant N ∈ ω such that if g ∈ G−{1} then lX(gN)> lX(g).

Proof. Fix δ which satisfies both the original and the geodesic definitions of hyperbolic

space. Let lX(·) = l(·) for simplicity of notation. In Lemma 9.2.0.85 we let θ = 1
1000 and

pick C accordingly where without loss of generality C > 1000δ . For each h ∈ D(C)−{1}

pick λh,Lh ∈ ω−{0} as in the statement of Lemma 9.2.0.86. Let λ = max{λh}h∈D(C)−{1}

and L ≥ max{Lh}h∈D(C)−{1},C. Let N ≥ 100,241Lλ . Let g ∈ G−{1}. We treat cases.

In Cases 1a and 1b we use the fact that N ≥ 100 and in Cases 2a and 2b we use the fact

that N ≥ 241Lλ . Pick h which is conjugate to g and of minimal length. Pick x of minimal

length such that g = xhx−1.

Case 1a. Suppose l(h)>C and l(x)≤ 7l(h). Then we have that

l(gN)≥ l(hN)−2l(x)≥ l(hN)−14l(h)

≥ 100(1
2 l(h))−14l(h) (here we are using N ≥ 100 and θ ≤ 1

2 )

≥ 36l(h)> l(h)+14l(h)≥ l(h)+2l(x)≥ l(g)

Case 1b. Suppose l(h)>C and l(x)> 7l(h). Consider the geodesic n-gon [x,xh,xh2, . . . ,xhN ],

which is an isometric translate of the geodesic n-gon [1,h,h2, . . . ,hN ]. Notice that

(hi,hi+2)hi+1 = (1,h2)h

= 1
2(l(h)+d(h,h2)− l(h2))

≤ 1
2(2l(h)− (1− 1

100)2l(h))

= 1
100 l(h)< 1

50 l(h)
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for 0 ≤ i ≤ N− 2. Also, d(hi,hi+1) = l(h). Thus letting K = 1
50 l(h) and K1 = 1

2 l(h)

in Lemma 9.2.0.84, we have that [x,xhN ] is in the 14δ -neighborhood of [x,xh]∪ [xh,xh2]∪

·· ·∪ [xhN−1,xhN ].

We use Lemma 9.2.0.84 again. Notice that l(x)≤ l(xhi) for all i ∈ Z by the minimality

of the length of x (else (xhi)h(xhi)−1 = g and we have a contradiction). Letting v ∈ [x,xhN ]

be such that d(x,v) = (1,xhN)x we may pick v′ ∈ [x,xh]∪ [xh,xh2]∪·· ·∪ [xhN−1,xhN ] such

that d(v,v′) ≤ 14δ . For some 0 ≤ i ≤ N we have that d(v′,xhi) ≤ l(h)
2 . Thus d(v,xhi) ≤

l(h)
2 +14δ . Then

d(1,v)≥ d(1,xhi)−d(v,xhi)

≥ l(x)− l(h)
2 −14δ

Letting w ∈ [1,x] be such that d(x,w) = (1,xhN)x we have that d(w,v)≤ 2δ , and so

d(1,w)≥ d(1,v)−d(v,w)

≥ l(x)− l(h)
2 −14δ −2δ

= l(x)− l(h)
2 −16δ

Thus (1,xhN)x ≤ l(h)
2 +16δ . The similar argument shows that (x,gN)xhN ≤ l(h)

2 +16δ .

Now letting K = l(h)
2 +17δ and K1 = 7l(h), we see that K1 = 7l(h)≥ 12( l(h)

2 +18δ ) since

l(h) > C > 1000δ . Considering the geodesic quadrangle [1,x,xhN ,gN = xhNx−1] we see

by Lemma 9.2.0.84 that [1,x]∪ [x,xhN ]∪ [xhN ,g] is in the 2K-neighborhood of [1,gN ]. Pick

s0,s1 ∈ [1,gN ] such that d(x,s0) ≤ 2K = l(h)+34δ and d(xhN ,s1) ≤ 2K = l(h)+34δ . It

is easy to see that s0 ∈ [1,s1]⊆ [1,gN ].

Now

l(gN) = d(1,s0)+d(s0,s1)+d(s1,gN)

≥ (l(x)− l(h)−34δ )+(l(hN)−2l(h)−68δ )+(l(x)− l(h)−34δ )

= 2l(x)+ l(hN)−4l(h)−136δ

≥ 2l(x)+100( 999
1000 l(h))−4l(h)−136δ
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> 2l(x)+99l(h))−4l(h)−136δ

> 2l(x)+ l(h)

≥ l(g)

so that we are done in this case.

Case 2a. Suppose that l(h)≤C and l(x)≤ 60L. Then we have

l(gN)≥ l(hN)−2l(x)

≥ l(hN)−120L

≥ N
λ
−120L

> 241L−120L = L+120L≥ l(h)+2l(x)≥ l(g)

Case 2b. Suppose that l(h)≤C and l(x)> 60L. Let v ∈ [x,xhN ] be such that d(x,v) =

(1,xhN)x. As [x,xhN ] is an isometric translation of [1,hN ] we have that there is some i ∈ Z

such that d(v,xhi) ≤ L. We know l(xhi) ≥ l(x) by the minimality condition on l(x). Pick

w ∈ [1,x] such that d(x,w) = (1,xhN)x, so that d(v,w)≤ 2δ . Then

(1,xhN)x = l(x)−d(1,w)

≤ l(x)− (d(1,v)−2δ )

≤ l(x)+2δ − (l(xhi)−L)

≤ l(x)+2δ +L− l(x) = 2δ +L

The condition (x,gN)xhN ≤ 2δ +L is proven similarly. Now we employ Lemma 9.2.0.84

again using K = 2δ +2L and K1 = 24L+36δ , so that [1,x]∪ [x,xhN ]∪ [xhN ,gN ] is within the

2K = 4δ +4L-neighborhood of [1,gN ]. Select s0,s1 ∈ [1,gN ] so that d(x,s0),d(xhN ,s1)≤

4δ +4L. Now

l(gN) = d(1,s0)+d(s0,s1)+d(s1,gN)

≥ (l(x)−4δ −4L)+(l(hN)−8δ −8L)+(l(x)−4δ −4L)

≥ 2l(x)+ l(hN)−32L > 2l(x)+ l(h)≥ l(g)
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so we are done in this case as well.

9.3 Graph Products of n-slender Groups

We recall the definition of a graph product of groups and some machinery, then prove

Theorem 9.0.0.81. Suppose Γ = (V,E) is a graph (we allow the sets of vertices and edges

to be of arbitrary cardinality but do not allow an edge to connect a vertex to itself) and to

each vertex v ∈ V we associate a group Gv. We call the Gv the generating groups. The

graph product G = Γ({Gv}v∈V ) is defined by taking the free product ∗v∈V Gv and modding

out by the normal closure of the set {[gv0,gv1]}gv0∈Gv0 ,gv1∈Gv1 ,{v0,v1}∈E . Thus free products

of groups and direct sums of groups are examples of graph products of groups, with the

graphs having either no edges or being complete in the respective cases.

Each Gv is a retract subgroup of G and G is generated by the elements of the generating

subgroups Gv. Thus each element g∈G has a representation as a word g=G g0g1g2 · · ·gn−1

with each gi in a generating group. In such a word we call each gi a syllable. Given two

generating groups Gv0 and Gv1 it is easy to see that the subgroup 〈Gv0∪Gv1〉 ≤G is a retract

of G and is either isomorphic to Gv0 ∗Gv1 or Gv0×Gv1 , the first being the case if and only if

{v0,v1} /∈ E. Thus for nontrivial elements g0 ∈ Gv0 and g1 ∈ Gv1 we have that [g0,g1] = 1

if and only if {v0,v1} ∈ E.

We present some machinery found in [Gre], where graph products were first introduced.

We say a word g0g1 · · ·gn−1 in elements of the generating groups is reduced if the following

hold:

1. Each gi is a nontrivial element in a generating group and gi and gi+1 are in different

generating groups for all 0≤ i < n−1

2. If i ≤ k < j and [gi,gi+1] = [gi,gi+2] = · · · = [gi,gk] = 1 = [gk+1,g j] = [gk+2,g j] =

· · ·= [g j−1,g j] then gi and g j are in different generating groups.
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We say that two reduced words w0,w1 are equivalent, if one can obtain w1 from w0 by a

permutation of syllables as allowed in the group (i.e. one can permute the syllables gi and

gi+1 if and only if [gi,gi+1] = 1). Clearly the equivalence of w0 to w1 implies that w0 and

w1 have the same word length and w0 =G w1. Using
⋃

v∈V Gv as a generating set for G we

get a length function l on G.

The following result combines the statements of Theorem 3.9 and Corollary 3.13 of

[Gre]:

Lemma 9.3.0.88. Each g 6= 1 has a reduced word representation g =G g0g1 · · ·gn−1 which

is unique up to equivalence, with l(g) = n.

We give a lemma before proving Theorem 9.0.0.81.

Lemma 9.3.0.89. An n-slender by n-slender group is n-slender.

Proof. Suppose that 1→ K →ι G→q Q→ 1 is a short exact sequence of groups with

K and Q n-slender groups, where for simplicity we identify K with its image in G. Let

φ : HEG → G be a homomorphism. By the n-slenderness of Q we see that for q ◦ φ

there exists an N′ ∈ ω such that φ |HEGN′ maps into the kernel of q. In other words,

φ maps HEGN′ into K. As HEG ' HEGN′ ∗HEGN′ we may define a homomorphism

φ ′ : HEG→ G by letting φ ′|HEGN′ be the trivial map and φ ′|HEGN′ = φ |HEGN′ . By

n-slenderness of K there exists an N ∈ ω , without loss of generality N > N′ such that

φ ′|HEGN is the trivial map. Then φ |HEGN is the trivial map.

Proof. (of Theorem 9.0.0.81) Let Gv be n-slender for each v ∈ V . Let σ : G→
⊕

v∈V Gv

be the obvious surjective map. Eda proved in [? ] that
⊕

v∈V Gv is n-slender. Thus by the

previous lemma we will be done if we can show that ker(σ) is n-slender. We prove in fact

that ker(σ) is u.m.

The length function l on G described above restricts to a length function on ker(σ). We

show that for g ∈ ker(σ)−{1} we have l(g2)> l(g), which is sufficient to show that l is a

uniformly monotone length function. Let g∈ ker(σ)−{1} be given and g =G g0g1 · · ·gn−1
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be a reduced word representation as described in Lemma 9.3.0.88. We permute the syl-

lables of the word g0g1 · · ·gn−1 to get a possibly nicer reduced word representation. To

start, suppose that for some 0 ≤ i < j ≤ n− 1 we have that [gi,gi−1] = [gi,gi−1] = · · · =

[gi,g0] = 1 = [g j,g j+1] = · · ·= [g j,gn−1] and gi = g−1
j . Then permute the syllables and re-

label them so that i = 0 and j = n−1 and g0 = g−1
n−1. Perform the same process on the word

g1g2 · · ·gn−2, moving a pair of mutual inverses to the front and rear of the word if possible.

Continue this process until it is impossible to go further, so that by relabeling we get a (pos-

sibly empty, in case the process can never be performed) initial segment g0g1 · · ·gk−1 and a

(possibly empty) terminal segment gn−k · · ·gn−1 such that for 0≤ i < k we have gi = g−1
n−i−1

and the process cannot be performed on the word gkgk+1 · · ·gn−k−1.

We next manipulate the word gkgk+1 · · ·gn−k−1. If there exists k ≤ i < j ≤ n− k such

that [gi,gi−1] = [gi,gi−2] = · · · = [gi,gk] = 1 = [g j,g j+1] = · · · = [g j,gn−k−1] and both gi

and g j are in the same generating group, then move the syllable gi to the front and the

syllable g j to the rear of the word gkgk+1 · · ·gn−k−1 so that by relabeling we may assume

i = k and j = n− k− 1. For the word gk+1gk+2 · · ·gn−k−2 consider whether there exist

k+1 ≤ i < j ≤ n− k−2 such that [gi,gi−1] = [gi,gi−2] = · · · = [gi,gk] = 1 = [g j,g j+1] =

· · · = [g j,gn−k−1] and both gi and g j are in the same generating group. If so, permute the

syllables of the word gk+1gk+2 · · ·gn−k−2 so that the syllable gi is now in the front and

the syllable g j is at the rear. By relabeling we our modified word we may assume that

i = k+ 1 and j = n− 2. Perform the same process on the word gk+2gk+3 · · ·gn−k−3, and

continue the process until it becomes impossible. Thus we obtain a (possibly empty, in case

the process cannot be performed) initial segment gkgk+1 · · ·gk+p−1 and (possibly empty)

terminal segment gn−k−p · · ·gn−k−1 of the word gkgk+1 · · ·gn−k−1 such that all elements of

the set {gk, . . . ,gk+p−1} commute with each other and for k ≤ i ≤ k+ p we have that gi is

in the same generating group as gn−i−1. For k≤ i≤ k+ p−1 let hi be the element gn−i−1gi

in the generating group containing gi. By the first process that was performed, we have that

hi 6= 1.
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Notice that the syllables gk+p−1 and gn−k−p cannot be side by side, since otherwise

we have that all syllables of gkgk+1 · · ·gn−k−1 commute with each other and thus the word

g0g1 · · ·gn−1 was not reduced. Thus necessarily n− k− p > k+ p and there is a nonempty

word w0 in between gk+p−1 and gn−k−p such that for each k ≤ i ≤ k + p− 1there is a

syllable in w0 which does not commute with the syllable gi (else the word g0 · · ·gn−1 was

not reduced). Let w1 be the word gk · · ·gk+p−1, w′1 be the word gn−k−p · · ·gn−k−1, w′′1 be the

word hk · · ·hk+p−1, and w2 be the word g0 · · ·gk−1. We already have that w2w1w0w′1(w2)
−1

is a reduced word representation for g. The equalities

g2 =G w2w1w0w′1(w2)
−1w2w1w0w′1(w2)

−1

=G w2w1w0w′1w1w0w′1(w2)
−1

=G w2w1w0w′′1w0w′1(w2)
−1

are clear.

We claim that the word w2w1w0w′′1w0w′1(w2)
−1 is reduced. Each of the words w0,w1,w′1,w

′′
1,w2,(w2)

−1

is reduced. The words w0,w1,w′1,w2,(w2)
−1 are reduced since they are subwords of a re-

duced word. The word w′′1 is reduced since the hi constituting w′′1 are nontrivial, commute

with each other, are in the same generating groups as the syllables of w1 (or w′1), and w1 is

reduced. No syllable of the word w2 can be permuted to be next to a syllable of the same

generating group in the word w1, the first occurence of w0, or w′′1 since the original word

w2w1w0w′1(w2)
−1 was reduced and the hi syllables that constitute the word w′′1 are from

precisely the same generating groups as those syllables that constitute w1 and w′1. Also, no

syllable of the word w2 can be permuted next to a syllable of the same generating group

in the second occurence of w0 since the same is true of the first occurence of w0. No syl-

lable of w2 can be permuted next to a syllable of the same generating group in the words

w′1 and (w2)
−1 since the original word w2w1w0w′1(w2)

−1 was reduced. That no syllable in

w1 can be permuted next to a syllable of the same generating group in any of the words

to the right of w1 follows similar lines. No syllable in the first occurence of w0 can be

permuted next to a syllable of the same generating group in w′1 since the subword w0w1
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of the word w2w1w0w′1(w2)
−1 is reduced. If the syllable gq of the first occurence of w0

can be permuted next to a syllable gq′ in the second occurence of w0, where gq,gq′ ∈ Gv,

then gq must commute with all the syllables of w1 (and of w′1 and w′′1). By the second

process, which was performed on the word gk · · ·gn−k−1, it must be that gq = gq′ and thus

in fact gq commutes with all syllables in the word gk · · ·gn−k−1. We have that all other

syllables of the word gk · · ·gn−k−1 are not in Gv (since gk · · ·gn−k−1 is reduced) and so

σ(gk · · ·gn−k−1) = gq =6= 1 is conjugate to σ(g) = 1, a contradiction. The remaining cases

are straightforward to check and follow the same lines.

Thus we have that

l(g2) = 2l(w2)+3l(w1)+2l(w0)> 2l(w2)+2l(w1)+ l(w0) = l(g)

since, although l(w2) and/or l(w1) might be zero, we demonstrated that l(w0) is not

zero.

9.4 Thompson’s Group

The group F of R. Thompson is a well-known finitely presented group which satisfies

many curious properties, and about which many open problems remain. The group has no

infinitely divisible elements and has the unique extraction of roots property (i.e. if gn = hn

and n > 0 then g = h). Thus one might ask the following:

Question. Is Thompson’s group F n-slender?

We show that the natural length function defined on diagram groups is not universally

monotone. This does not rule out the possibility of a universally monotone length function,

nor the n-slenderness of F .

We begin with a discussion of diagram groups (essentially following [GS]), of which F

is an example. Start with an alphabet X . Given two words u,v in the elements of X a cell

(u→ v) is a directed planar graph consisting of exactly two directed paths with the same
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Figure 9.1: The cell (u→ v)

u

v

initial and terminal vertices and which share no other vertices, which share no edges, and

with the two paths labeled by the words u and v. The path labeled by u is called the top

path and that labeled by v is called the bottom path. A trivial diagram is a single directed

path labeled by a word in the elements of X ; if that word is u we denote the trivial diagram

by ε(u). For a trivial diagram we say that the path defining the trivial diagram is both the

top and the bottom path.

We declare that diagrams are defined only up to planar isotopy and that cells and trivial

diagrams are diagrams. Thus the diagrams that we have so far have an initial and a terminal

vertex, that is, any two maximal paths begin and end at the same vertices. Also, each

diagram has a top and a bottom path. Given a diagram ∆ we let ι(∆) and τ(∆) denote the

initial and terminal vertices respectively. All diagrams will similarly have an initial and

terminal vertex as well as a top and a bottom path. In addition to the cells and the trivial

diagrams, we close the collection of diagrams under the following three operations:

1. Addition. Given two diagrams ∆0 and ∆1 we let ∆0 +∆1 be the planar graph created

by identifying τ(∆0) with ι(∆1). Thus the top path of ∆0+∆1 is the concatenation of the top

paths of ∆0 and ∆1, and similarly for the bottom paths. Also we have ι(∆0 +∆1) = ι(∆0)

and τ(∆0 +∆1) = τ(∆1). The operation + is clearly associative. If u = x0x1 · · ·xk then we

may write ε(u) = ε(x0)+ ε(x1)+ · · ·+ ε(xk).
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Figure 9.2: The sum of diagrams

u

v

u’

v’

=

u
u’

v v’

+

2. Multiplication. Given diagrams ∆0 and ∆1 such that the bottom path of ∆0 has the

same label as the top path of ∆1 we let ∆0 ◦∆1 be the planar graph obtained by identifying

the bottom path of ∆0 with the top of ∆1. Thus under the identification we have ι(∆0◦∆1) =

ι(∆0) = ι(∆1) (and similarly for τ), the top of ∆0 ◦∆1 is the top of ∆0 and the bottom of

∆0 ◦∆1 is the bottom of ∆1.

3. Inversion. Given a diagram ∆ we define ∆−1 to be the diagram obtained by flipping

the diagram ∆ about a horizontal line, so that the top path becomes the bottom path and

vice versa.

By definition, the class of diagrams (over X) is built out of cells and trivial diagrams

using the above operations. If we wish, we can restrict our attention to those diagrams

which are built only from trivial diagrams and cells in a set P and the three operations

above and let D(P) denote this class. If a diagram ∆ has two cells such that the top of the

second is identified with the bottom of the first, and the first and second cells are inverses

of each other, then we call this pair of cells a dipole. Notice that if one eliminates the

two cells from the diagram and identifies the top of the first cell with the bottom of the

second, then we have a new diagram ∆′ and say that ∆ and ∆′ are equivalent. This induces

an equivalence relation on D(P) by making the relation reflexive, symmetric and transitive.
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Figure 9.3: The product of diagrams

u

v
◦ =

v

w

u

v

w

We say ∆ is reduced in case ∆ has no dipoles, and note that every diagram is equivalent to

a unique reduced diagram (see [GS]).

Given a word u and a collection of cells P we let D(P,u) denote the collection of reduced

diagrams built by using cells in P, trivial diagrams, and the above three operations and

whose top and bottom paths are labeled by the word u. This forms a group by letting

the binary operation be given by ∆0∆1 = ∆, where ∆ is the reduced diagram equivalent to

∆0 ◦∆1 (see [GS] for a proof). The identity element and the inverse operation are clear.

Now we state a characterization of F as a diagram group. We shall use this as our

working definition of F , and the isomorphism of F with the group we define is given in

[GS]. Letting X = {x} and P = {(x2→ x)} it is shown that D(P,x) ' F . Given a reduced

diagram ∆ ∈ F we let l(∆) be the number of cells in ∆. It is easy to check that l is a length

function.

We now show that l is not universally monotone. Letting n > 1 be given we give an

example of a diagram ∆ such that l(∆) > l(∆n). Since the alphabet X includes only the

letter x, we may assume that each arc in our diagrams is labeled by the letter x as read from

left to right. Let ρ denote the (1,2) diagram. Let θ be the reduced diagram with 4 cells as
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Figure 9.4: The diagram θ

pictured.

For n ∈ Z let θ n denote the reduced diagram associated with multiplying θ with itself

n times. The diagrams for θ 2 and respectively for θ m for m ≥ 1 are straightforward to

compute and are pictured in Figure 9.5, having 6 and 2+2m cells, resp.

Define ∆n to be θ
−1 +θ

−1 · · ·+θ
−1︸ ︷︷ ︸

n−1times

+θ n−1. Select k ∈ ω large enough that 2n2 <

2k+2. Let k1,k2 > n+1 be such that 1+ k1 +nk+ k2 = 2m for some m ∈ ω . Let Ψ be the

diagram pictured in Figure 9.6 with top path of length 1 and bottom path of length 2m +2.
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Figure 9.5: Powers of θ

Figure 9.6: The diagram Ψ

...

...

· · ·· · · · · ·
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Figure 9.7: The diagram Γ1

· · ·· · ·

Let χ be the diagram ρ + εk1 +∆n +∆n + · · ·+∆n︸ ︷︷ ︸
ktimes

+ε(k2) + ρ−1 and finally let ∆ =

Ψ◦χ ◦Ψ−1. It is straightforward to check that ∆ is a reduced diagram with top and bottom

path of length 1, so ∆ is in the Thompson group F . To compute l(∆) we note that each ∆n

has 2+6(n−1) cells in it, so that χ has 1+ k(2+6(n−1))+1 cells in it. The diagram Ψ

contains 2m +1 cells, so that l(∆) = 1+ k(2+6(n−1))+1+2(2m +1) = 4−4k+6kn+

2m+1. Clearly ∆n is equivalent to Ψ ◦ χn ◦Ψ. We count the number of cells in Ψ ◦ χn ◦Ψ

to obtain an upper bound on l(∆n). First of all we have 2(2m + 1) cells in Ψ and Ψ−1

combined. The reduced diagram χn is given by the equality

χn =

Γ1+ε(k1−n)+θ−1+θ−2+· · ·+θ 1−n+ε((k−1)n+2)+θ +θ 2+· · ·+θ n−1+ε(k2)+Γ2

where Γ1 is the diagram with n cells pictured below and Γ2 is the rotation of Γ1 by 180

degrees.

Thus χn has n+(4+ 6+ · · ·+(2+ 2(n− 1)))+ (4+ 6+ · · ·+(2+ 2(n− 1)))+ n =

2n+2(n2−n) = 2n2 cells. Hence l(∆n)≤ 2n2 +2(2m +1)< 4−4k+6kn+2m+1 = l(∆)

by our choice of k, as desired.
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9.5 A Family of Non-Examples

Although the uniformly monotone condition gives a very nice sufficient condition for

n-slenderness, it is not a necessary condition. We give an example of a very basic family

of groups that are n-slender but which are not uniformly monotone.

The countable slender abelian groups have the following criterion (see [Fu]):

Lemma 9.5.0.90. A countable abelian group A is slender if and only if A is torsion-free

and reduced (i.e.
⋂

∞
m=1 mA =

⋂
∞
m=1{ma : a ∈ A} is trivial.)

Theorem 9.5.0.91. The groups BS(1,n) are n-slender but not u.m. for n > 1. Moreover,

these groups are HNN extensions of the u.m. group Z.

Proof. Recall that BS(1,n) = 〈a,b|bab−1 = an〉. The retraction map q : BS(1,n)→ 〈b〉

defined by b 7→ b and a 7→ 1 has kernel which is easily seen to be isomorphic to the additive

group of the n-adic rational numbers, Z[1
n ].

The group Z[1
n ] is clearly torsion-free and countable. To see that Z[1

n ] is reduced we

notice that an element r
nk with r ∈ Z is not a p-th power for any p that divides neither n

nor r. Thus Z[1
n ] is slender and therefore n-slender, and since Z' 〈b〉 is also n-slender we

know that BS(1,n) is n-slender as an n-slender by n-slender group (Lemma 9.3.0.89).

However we know that BS(1,n) cannot be u.m. since it contains a subgroup isomorphic

to Z[1
n ]. Each element of Z[1

n ] is infinitely divisible, and a u.m. group cannot have any

infinitely divisible elements besides the identity element.
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